The present invention relates to an anhydrous liquid cosmetic composition, in particular for making up and/or caring for the skin or lips, comprising, in a physiologically acceptable medium, at least one liquid polyester obtained by condensation of unsaturated fatty acid dimer and/or trimer and of C_{2}-C_{10} diol and at least one ester of C_{2} carboxylic acid and of sucrose.
Polyester-based cosmetic composition

The present invention relates to a cosmetic composition for making up and/or caring for the skin or lips, more particularly the lips.

The development of compositions dedicated to making up and/or caring for the skin or lips, having satisfactory properties in terms of application, of comfort, of held and of coverage, and also in terms of make-up effect, namely, in particular, the achievement of gloss and transparency, is a permanent objective.

As regards making up the lips, it is known that it is possible to confer a glossy nature, conventionally by the use, in compositions dedicated to the lips, of viscous oils with a high refractive index, such as diisostearyl malate, and/or pasty compounds, such as diglyceryl polyacyladipate.

Generally, the formulations corresponding to fluid formulations, of "gloss" type, more particularly still known as "liquid gloss" or "lip gloss", are favoured in providing an optimized glossy effect.

This is because these liquid formulations exhibit the advantage, on the one hand, of allowing the use of greater amounts of these viscous oils with a high refractive index and, on the other hand, of not requiring the use of fillers and/or waxes commonly considered for formulations in the stick form and which have the effect of detrimentally affecting this glossy effect.

Nevertheless, these conventional liquid formulations are sometimes difficult to spread over the lips if the product is too thick or else, on the contrary, can drool if the product is too fluid.

Furthermore, these formulations very often display a tacky nature, brought about in particular by the use of these oils, this tacky nature being reflected in particular by a phenomenon of adhesion of the made-up lips to one another, which is thus unpleasant in terms of comfort for the user.

Surprisingly, the inventors have observed that the use of a combination of specific compounds makes it possible to obtain cosmetic compositions in the liquid form which are not very tacky, and which have high gloss and good spreading properties.

Thus, according to a first aspect, the invention relates to an anhydrous liquid cosmetic composition, in particular for making up and/or caring for the skin or lips,
comprising, in a physiologically acceptable medium, at least one liquid polyester obtained by condensation of unsaturated fatty acid dimer and/or trimer and of $\text{C}_2\text{-C}_{10}$ diol and at least one ester of $\text{C}_2\text{-C}_6$ carboxylic acid and of sucrose.

As emerges from the examples below illustrating the present invention, a composition according to the invention exhibits satisfactory properties in terms of ease of application, in particular of spreading, and of gloss, while not having an intensified tacky nature.

The term "physiologically acceptable medium" is intended to denote a medium suitable in particular for the application of a composition according to the invention to the lips.

The term "anhydrous composition" is understood to mean a composition comprising less than 2% by weight of water, indeed even less than 0.5% by weight of water, and in particular devoid of water. If appropriate, amounts of water which are as low can in particular be introduced by ingredients of the composition which may comprise residual amounts thereof.

Advantageously, a composition according to the invention is completely devoid of water.

The term "liquid" is intended, within the meaning of the present invention, to characterize the state of a composition at ambient temperature (between 20 and 25°C) and at atmospheric pressure (760 mmHg).

Preferably, the composition according to the invention is in the liquid form.

Preferably, the cosmetic composition according to the invention is a lipstick or a lip gloss.

According to another of its aspects, the invention relates to a method for making up and/or caring for the skin or lips, in particular the lips, comprising at least one stage which consists in applying, to the said skin or the said lips, at least one composition according to the invention.

Ester of $\text{C}_2\text{-C}_6$ carboxylic acid and of sucrose

A composition according to the invention comprises at least one ester of $\text{C}_2\text{-C}_6$ carboxylic acid and of sucrose.

More particularly, this ester of $\text{C}_2\text{-C}_6$ carboxylic acid and of sucrose is chosen from mixed esters of acetic acid, of isobutyric acid and of sucrose and is in particular
sucrose di-acetate hexa-(2-methyl-propanoate), such as that sold under the name Sustane SAIB Food Grade Kosher by Eastman Chemical (INCI name: sucrose acetate isobutyrate).

Advantageously, a composition of the invention can comprise from 3 to 12% by weight and preferably from 5 to 10% by weight of ester(s) of C_2-C_6 carboxylic acid and of sucrose, with respect to the total weight of the said composition.

Liquid polyester

A composition according to the invention also comprises at least one liquid polyester obtained by condensation of unsaturated fatty acid dimer and/or trimer and of C_2-C_{10} diol.

The inventors have observed that the joint presence, in a cosmetic composition, of at least one such liquid polyester with at least one ester of C_2-C_6 carboxylic and of sucrose contributes to the achievement of properties advantageous in terms of spreading and of low tack of the layer deposited during the application, and of gloss, in particular with respect to conventional cosmetic compositions generally comprising polyisobutene, in particular that sold under the name Indopol H 1500 by Ineos.

The term "liquid polyester" is intended to denote, within the meaning of the present invention, any polyester capable of flowing under its own weight in less than one minute, at atmospheric pressure and ambient temperature.

The term "unsaturated fatty acids" denotes, in the context of the present invention, mono- or polyunsaturated fatty acids comprising from 14 to 22 carbon atoms. The unsaturated fatty acid dimers can in particular comprise from 2 to 4 unsaturations in their carbon chain. The unsaturated fatty acid trimers can comprise from 3 to 6 unsaturations and their carbon chain.

Preferably, the unsaturated fatty acid dimers and/or trimers are polycarboxylic acids comprising at least 2 and up to 6 carboxylic acid functional groups per molecule.

In a preferred embodiment, the unsaturated fatty acid dimer can comprise from 28 to 44 carbon atoms and 2 carboxylic acid functional groups. The unsaturated fatty acid trimer can comprise from 42 to 66 carbon atoms and 3 carboxylic acid functional groups.

Advantageously, the liquid polyester is obtained from an unsaturated fatty acid dimer comprising between 28 and 44 carbon atoms and/or from an unsaturated fatty acid trimer comprising between 42 and 66 carbon atoms.
Advantageously, the liquid polyester is obtained from an unsaturated fatty acid dimer comprising between 28 and 44 carbon atoms.

Preferably, use is made of an unsaturated fatty acid dimer, in particular having 36 carbon atoms and 2 carboxylic acid functional groups.

Mixtures of unsaturated fatty acid dimers and trimers and/or of unsaturated fatty acid (nonpolymerized and thus corresponding to a monomer) can also be employed in the context of the invention.

In the case of such a mixture, preference is given to a mixture comprising more than 50% by weight of dimers, for example a mixture comprising more than 90% by weight, preferably more than 95%, of acids in the form of dimers, it being possible for the remainder of the mixture to be unsaturated fatty acid trimers and/or monomers.

The unsaturated fatty acid dimer and/or trimer can optionally be hydrogenated after the polymerization reaction on the unsaturated fatty acid, in order in particular to improve the stability of the dimer or trimer product.

Hydrogenated fatty acid (oleic or linoleic acid) dimers are sold in particular under the brands Empol 1008, Empol 1004, Empol 1025, Empol 1011 and Empol 1062 by Cognis and Pripol 1006 (dilinoleic acid) by Uniqema International. Uniqema also sells a hydrogenated fatty acid dimer under the name Pripol 1013 (hydrogenated dilinoleic acid).

Advantageously, the unsaturated fatty acid dimer is a linoleic acid dimer, also known as dilinoleic acid, obtained by intermolecular polymerization of linoleic acid.

The unsaturated fatty acid can be of natural origin, preferably vegetable origin. A fatty acid of vegetable origin can originate from any vegetable source which produces the said fatty acid. For example, in the case of linoleic acid, use may be made of molecules extracted from soybean, rapeseed, and the like.

The polyester in the composition according to the invention is thus obtained in particular by condensation of a polymerized long-chain fatty acid with a diol.

In the context of the present invention, the term "diol" denotes a C_2 to C_{10}, preferably C_{2-9}, and preferentially C_{2-6} hydrocarbon compound, the carbon chain of which is substituted by two hydroxyl functional groups. The hydrocarbon chain or chains can be interrupted by an oxygen atom. The diols which can be used according to the invention can be saturated or unsaturated and linear, branched or cyclic alcohols.

Preferably, the diol is a saturated linear C_{2-10} diol.
Particularly preferably, the diol is a butanediol, in particular 1,2-butanediol, 1,3-butanediol or 1,4-butanediol, preferably 1,4-butanediol.

Advantageously, the polyester employed in the composition according to the invention exhibits an average molecular weight of between 500 and 2000 g/mol, preferably between 1000 and 2000 g/mol, and preferentially between 1200 and 1800 g/mol.

According to a particularly preferred embodiment, the polyester obtained by condensation of unsaturated fatty acid dimer and/or trimer and of diol is a polymer, or polyester, of dilinoleic acid and of 1,4-butanediol, preferably exhibiting an average molecular weight of 1300, a viscosity at 40°C of 2500-3500 cSt and a refractive index at 25°C of 1.475-1.485.

Mention may in particular be made, as such, of the polymer sold by Biosynth with the name Viscoplast 14436H (INCI name: dilinoleic acid/butanediol copolymer).

Advantageously, a composition of the invention can comprise from 15 to 40% by weight and preferably from 20 to 30% by weight of liquid polyester(s), with respect to the total weight of the said composition.

According to a preferred alternative form, the said liquid polyester(s) and the said ester(s) of C₂-C₆ carboxylic acid and of sucrose can be employed in a "liquid polyester(s)/ester(s) of C₂-C₆ carboxylic acid and of sucrose" ratio by weight varying from 1 to 8 and preferably from 2 to 5.

Fatty phase

As emerges from the above, a composition according to the invention comprises at least one fatty phase.

In addition to the liquid polyester(s) obtained by condensation of unsaturated fatty acid dimer and/or trimer and of C₂-C₁₀ diol and the ester(s) of C₂-C₆ carboxylic acid and of sucrose defined above, the fatty phase can further comprise one or more fatty substance(s) and/or oil(s) distinct from these.

Such fatty substances and/or oils are employed provided that their nature and/or their content does not affect the properties of fluidity, of gloss, indeed even of tack and/or of ease of spreading, of the composition under consideration according to the invention.
Solid fatty substance

According to a particularly preferred alternative embodiment, a composition according to the invention comprises at least one solid fatty substance which can be chosen in particular from pasty fatty substances and waxes.

According to a preferred embodiment, a composition of the invention comprises at least one pasty fatty substance.

The term "pasty fatty substance" within the meaning of the present invention is understood to mean a lipophilic fatty substance with a reversible solid/liquid change in state which exhibits, in the solid state, an anisotropic crystalline arrangement and which comprises, at a temperature of 23°C, a liquid fraction and a solid fraction.

In other words, the starting melting point of the pasty fatty substance can be less than 23°C. The liquid fraction of the pasty fatty substance, measured at 23°C, can represent from 9 to 97% by weight of the compound. At 23°C, this liquid fraction preferably represents between 15 and 85% by weight, more preferably between 40 and 85% by weight.

Within the meaning of the invention, the melting point corresponds to the temperature of the most endothermic peak observed by thermal analysis (DSC) as described in Standard ISO 11357-3; 1999. The melting point of a pasty substance or of a wax can be measured using a differential scanning calorimeter (DSC), for example the calorimeter sold under the name "MDSC 2920" by TA Instruments.

The measurement protocol is as follows:

A 5 mg sample of pasty fatty substance placed in a crucible is subjected to a first rise in temperature ranging from -20°C to 100°C at a heating rate of 10°C/minute, is then cooled from 100°C to -20°C at a cooling rate of 10°C/minute and, finally, is subjected to a second rise in temperature ranging from -20°C to 100°C at a heating rate of 5°C/minute. During the second rise in temperature, the variation in the difference in power absorbed by the empty crucible and by the crucible comprising the sample of pasty fatty substance is measured as a function of the temperature.

The melting point of the compound is the value of the temperature corresponding to the tip of the peak of the curve representing the variation in the difference in power absorbed as a function of the temperature.
The liquid fraction by weight of the pasty fatty substance at 23°C is equal to the ratio of the enthalpy of fusion consumed at 23°C to the enthalpy of fusion of the pasty fatty substance.

The enthalpy of fusion of the pasty fatty substance is the enthalpy consumed by the compound to change from the solid state to the liquid state. The pasty fatty substance is "in the solid state" when the whole of its mass is in the solid crystalline form. The pasty fatty substance is "in the liquid state" when the whole of its mass is in the liquid form.

The enthalpy of fusion of the pasty fatty substance is equal to the area under the curve of the thermogram obtained using a differential scanning calorimeter (DSC), such as the calorimeter sold under the name MDSC 2920 by TA Instruments, with a rise in temperature of 5 or 10°C per minute, according to Standard ISO 11357-3:1999. The enthalpy of fusion of the pasty fatty substance is the amount of energy necessary to change the compound from the solid state to the liquid state. It is expressed in J/g.

The enthalpy of fusion consumed at 23°C is the amount of energy absorbed by the sample to change from the solid state to the state which it exhibits at 23°C, composed of a liquid fraction and of a solid fraction.

The liquid fraction of the pasty fatty substance measured at 32°C preferably represents from 30 to 100% by weight of the compound, preferably from 50 to 100%, more preferably from 60 to 100% by weight of the compound. When the liquid fraction of the pasty fatty substance measured at 32°C is equal to 100%, the temperature of the end of the melting range of the pasty fatty substance is less than or equal to 32°C.

The liquid fraction of the pasty fatty substance measured at 32°C is equal to the ratio of the enthalpy of fusion consumed at 32°C to the enthalpy of fusion of the pasty fatty substance. The enthalpy of fusion consumed at 32°C is calculated in the same way as the enthalpy of fusion consumed at 23°C.

The pasty fatty substance is preferably chosen from synthetic compounds and compounds of vegetable origin. A pasty fatty substance can be obtained by synthesis from starting compounds of vegetable origin.

The pasty fatty substance is advantageously chosen from:

- lanolin and its derivatives;
- petrolatum in the paste (non-liquid) form, in particular that sold under the name Ultima Petrolatum by Penreco;
- polyol ethers chosen from ethers of pentaerythritol and of polyalkylene glycol, ethers of fatty alcohol and of sugar, and their mixtures, the ether of pentaerythritol and of polyethylene glycol comprising 5 oxyethylene (5 OE) units (CTFA name: PEG-5 Pentaerythrityl Ether), the ether of pentaerythritol and of polypropylene glycol comprising 5 oxypropylene (5 OP) units (CTFA name: PPG-5 Pentaerythrityl Ether), and their mixtures and more particularly the PEG-5 pentaerythrityl ether, PPG-5 pentaerythrityl ether and soybean oil mixture sold under the name "Lanolide" by Vevy, in which mixture the constituents occur in a ratio by weight of 46/46/8: 46% PEG-5 pentaerythrityl ether, 46% PPG-5 pentaerythrityl ether and 8% soybean oil;
- polymeric or nonpolymeric silicone compounds;
- polymeric or nonpolymeric fluorinated compounds;
- vinyl polymers, in particular:
 - olefin homopolymers (such as polyvinyl laurate);
 - olefin copolymers;
 - hydrogenated diene homopolymers and copolymers;
 - linear or branched and homo- or copolymeric oligomers of alkyl (meth)acrylates preferably having a C8-C30 alkyl group;
 - homo- and copolymeric oligomers of vinyl esters having C8-C30 alkyl groups; and
 - homo- and copolymeric oligomers of vinyl ethers having C8-C30 alkyl groups;
- fat-soluble polyethers resulting from polyetherification between one or more C2-C100 diols, preferably C2-C50 diols;
- esters, including polyesters; and/or
- their mixtures.

The pasty fatty substance is preferably a polymer, in particular a hydrocarbon polymer.

Preference is given, among fat-soluble polyethers, in particular to copolymers of ethylene oxide and/or of propylene oxide with long-chain C6-C30 alkylene oxides, more preferably such that the ratio by weight of the ethylene oxide and/or of the propylene oxide to the alkylene oxides in the copolymer is from 5:95 to 70:30. Mention will in particular be
made, in this family, of the copolymers such that the long-chain alkylene oxides are positioned in blocks having an average molecular weight of 1000 to 100,000, for example a polyoxyethylene/polydodecyl glycol block copolymer, such as the ethers of dodecanediol (22 mol) and of polyethylene glycol (45 EO) sold under the Elfacos ST9 brand by Akzo Nobel.

Preference is given, among esters, in particular to:
- the esters of an oligomeric glycerol, in particular the esters of diglycerol, especially the condensates of adipic acid and of glycerol, for which a portion of the hydroxyl groups of the glycerols have reacted with a mixture of fatty acids, such as stearic acid, capric acid, isostearic acid and 12-hydroxystearic acid, such as, in particular, those sold under the Softisan 649 brand by Sasol;
- the arachidyl propionate sold under the Waxenol 801 brand by Alzo;
- phytosterol esters;
- triglycerides of fatty acids and their derivatives;
- pentaerythritol esters;
- noncrosslinked polyesters resulting from the polycondensation between a linear or branched C4-C50 dicarboxylic acid or polycarboxylic acid and a C2-C50 diol or polyol; and
- ester aliphatic esters resulting from the esterification of an aliphatic hydroxycarboxylic acid ester by an aliphatic carboxylic or polycarboxylic acid;
- shea butter, in particular that having the INCI name of Butyrospermum Parkii Butter, such as those sold under the references Sheasoft® and Lipex Sheasoft® by AarhusKarlshamn;
- esters of dimer diol and dimer diacid, if appropriate esterified on their free alcohol or acid functional group(s) by acid or alcohol radicals, such as Plandooll-G®; and
- their mixtures.

Advantageously, the pasty fatty substance is chosen from polyesters resulting from the esterification, by a polycarboxylic acid, of an aliphatic hydroxycarboxylic acid ester comprising at least two hydroxyl groups (also known as "hydroxylated ester").

- Hydroxylated ester

The hydroxylated ester comprises at least two hydroxyl groups.
The hydroxylated ester advantageously results from a reaction of at least one hydroxylated aliphatic carboxylic acid with a polyol.

The said hydroxylated aliphatic carboxylic acid comprises in particular from 2 to 40, preferably from 10 to 34 and better still from 12 to 28 carbon atoms.

It additionally comprises from 1 to 20, preferably from 1 to 10 and better still from 1 to 6 hydroxyl groups capable of being subsequently esterified by the polycarboxylic acid in order to obtain the pasty fatty substance.

The said polyol can comprise from 2 to 40, and better still from 3 to 30 carbon atoms.

The polyol is preferably an aliphatic polyol. Advantageously, the polyol is not a monosaccharide.

The said polyol which reacts with the hydroxylated acid described above can be partially or completely esterified. Advantageously, the polyol is completely esterified.

Preferably, the aliphatic hydroxycarboxylic acid ester is a hydroxylated fatty acid ester, such that the fatty acid residue comprises at least 12, preferably from 12 to 40 and better still from 12 to 28 carbon atoms.

The aliphatic hydroxycarboxylic acid ester which can be used in the invention can be chosen from:

a) partial or complete esters of saturated linear monohydroxylated aliphatic monocarboxylic acids;

b) partial or complete esters of unsaturated monohydroxylated aliphatic monocarboxylic acids, such as glyceryl triricinoleate (castor oil);

c) partial or complete esters of C₂ to C₁₆ aliphatic polyol which is reacted with a mono- or polyhydroxylated aliphatic mono- or polycarboxylic acid, such as, in particular, triglycerides, pentaerythritol, trimethylolpropane, propylene glycol, neopentyl glycol, dipentaerythritol or polyglycerol esters, or sorbitol esters; and

d) their mixtures.

Advantageously, when the aliphatic hydroxycarboxylic acid ester results from the esterification of an aliphatic polycarboxylic acid, such as those mentioned above, there does not remain a residual COOH group not involved in an ester bond.
The aliphatic hydroxycarboxylic acid ester is preferably chosen from the esters of C$_2$ to C$_{16}$ aliphatic polyols, the said polyols having reacted with a hydroxylated aliphatic fatty acid having a saturated or unsaturated chain comprising at least 12 carbon atoms.

The fatty acid is preferably ricinoleic acid and the aliphatic hydroxycarboxylic acid ester is preferably hydrogenated castor oil.

- Polycarboxylic acid

The polycarboxylic acid comprises at least two COOH groups.

Advantageously, it is a dimer diacid of unsaturated aliphatic carboxylic acid(s).

The polycarboxylic acid according to the invention is preferably aliphatic; it is advantageously an aliphatic dicarboxylic acid.

According to one embodiment, the polycarboxylic acid is a dimer diacid of unsaturated fatty acid(s), that is to say a dimer formed from at least one unsaturated fatty acid, for example from just one unsaturated fatty acid or from two different unsaturated fatty acids.

The fatty acid is preferably monounsaturated or diunsaturated.

The term "fatty acid" is understood to mean an acid obtained by hydrolysis of a fatty substance of vegetable or animal origin.

The dimer diacids of unsaturated fatty acid(s) or also dimer diacid are conventionally obtained by an intermolecular dimerization reaction of at least one unsaturated fatty acid.

Preferably, just one type of unsaturated fatty acid is dimerized.

The dimer diacids of unsaturated fatty acid(s) are obtained in particular by the dimerization of an in particular C$_8$ to C$_{34}$, in particular C$_{12}$ to C$_{22}$, especially C$_{16}$ to C$_{20}$ and more particularly C$_{18}$ unsaturated fatty acid.

Mention may in particular be made, as representative of these unsaturated fatty acids, of undecanoic acid, linderic acid, myristoleic acid, palmitoleic acid, oleic acid, linoleic acid, eladinic acid, gadolenoic acid, eicosapentaenoic acid, docosahexaenoic acid, erucic acid, brassidic acid, arachidonic acid and their mixtures.

The dimer diacid is preferably saturated, that is to say that it does not comprise any carbon-carbon double bond and that it is obtained by condensation of unsaturated fatty acid(s), optionally followed by a hydrogenation, in order to convert the possible double bonds into single bonds.
The dimer diacids of unsaturated fatty acid(s) which are preferred are obtained by dimerization of linoleic acid, optionally followed by hydrogenation of the dimer thus obtained. The hydrogenated form can be partial or complete and can in particular correspond to the saturated form, which is more stable towards oxidation.

Dimer diacids and in particular dilinoleic diacids having a stability with regard to oxidation which has been improved by hydrogenation of the double bonds remaining after the dimerization reaction are also available commercially.

Preferably, the polyester has a molecular weight of between 3000 and 7000 g/mol. Mention may be made, as preferred pasty fatty substance, for example, of: Risocast DA-L (which has a number-average molecular weight of between 3500 and 4000 g/mol) and Risocast DA-H (which has a number-average molecular weight of between 6000 and 6500 g/mol). These products are sold by the Japanese company Kokyu Alcohol Kogyo.

The molar ratio of the polycarboxylic acid to the hydroxylated ester which are used to prepare the said pasty fatty substance is preferably between 0.25 and 1.

For example, this ratio is equal to 0.75 for the hydroxylated ester sold under the name Risocast DA-H® and to 0.5 for that sold under the name Risocast DA-L®.

Mention may in particular be made, as polyester which can be used in the composition according to the invention as pasty fatty substance, of esters resulting from the esterification reaction of hydrogenated castor oil either with dilinoleic acid or with isostearic acid. In particular, the polyester can be:

- the ester resulting from the esterification reaction of hydrogenated castor oil with dilinoleic acid in the proportions of 2 to 1; or
- the ester resulting from the esterification reaction of hydrogenated castor oil with isostearic acid in the proportions of 4 to 3.

Advantageously, a composition of the invention can comprise from 20 to 60% by weight, preferably from 30 to 55% by weight and better still from 35 to 45% by weight of pasty fatty substance, with respect to the total weight of the said composition.

Preferably, a composition of the invention can comprise from 5 to 60% by weight and better still from 10 to 30% by weight of pasty fatty substance resulting from the esterification, by a polycarboxylic acid, of an aliphatic hydroxycarboxylic acid ester...
comprising at least two hydroxyl groups, with respect to the total weight of the said composition.

In addition to such a pasty fatty substance, a composition of the invention can also comprise at least one wax.

The term "wax" is understood to mean, within the meaning of the present invention, any lipophilic compound which is solid at ambient temperature, which exhibits a reversible solid/liquid change in state and which has a melting point of greater than or equal to 30°C which can range up to 200°C and in particular up to 120°C.

In particular, the waxes suitable for the invention can exhibit a melting point of greater than or equal to 45°C and in particular of greater than or equal to 55°C.

The waxes capable of being used in the compositions according to the invention are chosen from waxes of animal, vegetable, mineral or synthetic origin, and their mixtures, which are solid at ambient temperature.

Mention may in particular be made, by way of illustration of the waxes suitable for the invention, of hydrocarbon waxes, such as beeswax, lanolin wax and Chinese insect waxes, rice bran wax, carnauba wax, candelilla wax, ouricury wax, alfa wax, berry wax, shellac wax, Japan wax and sumac wax; montan wax, orange and lemon waxes, microcrystalline waxes, paraffin waxes and ozokerite; polyethylene waxes, the waxes obtained by the Fischer-Tropsch synthesis, and waxy copolymers and also their esters.

Mention may also be made of waxes obtained by catalytic hydrogenation of animal or vegetable oils having linear or branched C8-C32 fatty chains. Mention may in particular be made, among these, of isomerized jojoba oil, such as the transisomerized partially hydrogenated jojoba oil manufactured or sold by Desert Whale under the commercial reference Iso-Jojoba-50®, hydrogenated sunflower oil, hydrogenated castor oil, hydrogenated coconut oil, hydrogenated lanolin oil and di(l,l,l-trimethylolpropane) tetrastearate, sold under the name of Hest 2T-4S® by Heterene.

Mention may also be made of silicone waxes (C30-45 alkyl dimethicone) or fluorinated waxes.

Use may also be made of the waxes obtained by hydrogenation of castor oil esterified with cetyl alcohol which are sold under the names of Phytowax Castor 16L64® and 22L73® by Sophim. Such waxes are described in Application FR-A-2 792 190.
Use may be made, as wax, of a C20-C40 alkyl (hydroxystearyloxy)stearate (the alkyl group comprising from 20 to 40 carbon atoms), alone or as a mixture.

Such a wax is sold in particular under the names "Kester Wax K 82 P®", "Hydroxypolyester K 82 P®" and "Kester Wax K 80 P®" by Koster Keunen.

Mention may in particular be made, as microwaxes which can be used in the compositions according to the invention, of carnauba microwaxes, such as that sold under the name of MicroCare 350® by Micro Powders, synthetic wax microwaxes, such as that sold under the name of MicroEase 114S® by Micro Powders, the microwaxes composed of a mixture of carnauba wax and of polyethylene wax, such as those sold under the names of MicroCare 300® and 310® by Micro Powders, the microwaxes composed of a mixture of carnauba wax and of synthetic wax, such as that sold under the name MicroCare 325® by Micro Powders, polyethylene microwaxes, such as those sold under the names of Micropoly 200®, 220®, 220L® and 250S® by Micro Powders, and polytetrafluoroethylene microwaxes, such as those sold under the names of Microslip 519® and 519 L® by Micro Powders.

Advantageously, a composition according to the invention can comprise from 0.1 to 10% by weight, in particular from 0.5 to 5% by weight, of wax(es), with respect to the total weight of the said composition.

According to a specific embodiment, the composition according to the invention is devoid of wax.

Oils

The term "oil" is understood to mean, within the meaning of the present invention, any water-immiscible nonaqueous compound which is liquid at ambient temperature (25°C) and atmospheric pressure (760 mmHg).

The oils can be of vegetable, mineral or synthetic origin.

They can be chosen from polar oils, nonpolar oils or their mixtures.

Advantageously, a composition according to the invention can additionally comprise at least one additional polar oil with a molecular weight of less than 1000 g/mol.

The term "additional polar oil" is intended to denote, within the meaning of the present invention, a polar oil distinct from an ester of C2-C6 carboxylic acid and of sucrose as defined above.
Advantageously, a composition according to the invention can comprise from 5 to 25% by weight and preferably from 10 to 20% by weight of additional polar oil(s), with respect to the total weight of the said composition.

The fatty phase according to the invention comprises oils of any type which are compatible with a cosmetic use as envisaged in the present invention. These oils are chosen according to the formulation desired, in particular in order to obtain a lip gloss or a product for making up and/or caring for the lips.

Mention may be made, among polar oils, of hydrocarbon oils comprising ester, ether, acid or alcohol functional groups or their mixtures, such as fatty alcohols and fatty acids, and their esters.

Mention may thus be made, as polar oil with a molecular weight of less than 1000, of:

- hydrocarbon vegetable oils with a high triglyceride content which are composed of ester of fatty acid and of glycerol, the fatty of acids which can have varied chain lengths, it being possible for these chains to be linear or branched and saturated or unsaturated, such as liquid triglycerides of fatty acids comprising from 4 to 10 carbon atoms, for example triglycerides of heptanoic or octanoic acids.

These oils are in particular wheat germ, maize, sunflower, shea, castor, sweet almond, macadamia, apricot, soybean, rapeseed, cottonseed, alfalfa, poppy, pumpkinseed, sesame, cucumber, avocado, hazelnut, grape seed, blackcurrant seed, evening primrose, millet, barley, quinoa, olive, rye, safflower, candlenut, passionflower or musk rose oil, or also triglycerides of caprylic/capric acids, such as those sold by Stearineries Dubois or those sold under the names Miglyol 810, 812 and 818 by Dynamit Nobel;

- esters of short-chain acid, in particular comprising from 4 to 11 carbon atoms, in particular of octanoic acid or heptanoic acid, such as propylene glycol dioctanoate or neopentyl glycol diheptanoate;

- esters of fatty acid, in particular of 12 to 22 carbon atoms, especially of lanolic acid, of oleic acid, of lauric acid or of stearic acid, such as propylene glycol monoisostearate or polyglyceryl-2 diisostearate,

- short synthetic esters corresponding to the formula $R_3\text{COOR}_4$ in which R_3 represents the residue of a linear or branched fatty acid comprising from 1 to 20 carbon atoms and R_3 represents a hydrocarbon chain, in particular a branched hydrocarbon chain, comprising from 1 to 20 carbon atoms, provided that the number of carbon atoms in R_3 +
is less than or equal to 25, such as, for example, isononyl isononanoate, C\textsubscript{12} to C\textsubscript{15} alkyl benzoate, 2-ethylhexyl palmitate, octanoates, decanoates or ricinoleates of alcohols or of polyalcohols, isopropyl myristate, isopropyl palmitate, butyl stearate, hexyl laurate, diisopropyl adipate, 2-ethylhexyl palmitate, di(2-ethylhexyl) succinate, isodecyl neopentanoate, isopropyl stearate, octyl palmitate, isopropyl isostearate, isostearyl neopentanoate or octylidodecyl neopentanoate;

- hydroxylated esters, such as isostearyl lactate, octyl hydroxystearate, octylidodecyl hydroxystearate, diisostearyl malate, triisocetyl citrate or diglyceryl triisostearate;

- glyceryl triisostearate or diethylene glycol diisononanoate;

- pentaerythritol esters;

- esters of aromatic acids and of alcohols comprising from 4 to 22 carbon atoms, in particular tridecyl trimilitate;

- fatty alcohols which are liquid at ambient temperature and which comprise a branched and/or unsaturated carbon chain having from 12 to 26 carbon atoms, such as oleyl alcohol, linoleyl alcohol, linolenyl alcohol, isostearyl alcohol or also dodecanol;

- higher C\textsubscript{12}-C\textsubscript{26} fatty acids, such as oleic acid, linoleic acid, linolenic acid or isostearic acid; and

- their mixtures.

The fatty phase of a composition according to the invention can also comprise, in addition, one or more nonpolar oil(s).

The term "nonpolar oil" is understood to mean, within the meaning of the present invention, an oil having a solubility parameter at 25°C, \(\delta_a\), of 0 (J/cm3)\(^{1/2}\).

The definition and the calculation of the solubility parameters in the Hansen three-dimensional solubility space are described in the paper by CM. Hansen: "The Three-dimensional Solubility Parameters" J. Paint Technol, 39, 105 (1967). According to this Hansen space:

- \(\delta_D\) characterizes the London dispersion forces resulting from the formation of dipoles induced during molecular impact;

- \(\delta_p\) characterizes the forces of Debye interactions between permanent dipoles and the forces of Keesom interactions between induced dipoles and permanent dipoles;

- \(\delta_h\) characterizes the forces of specific interactions (such as hydrogen bonds,
acid/base, donor/acceptor, and the like);

- δ_a is determined by the equation: $\delta_a = (\delta_{\rho^2} + \delta_{n^2})^{1/2}$.

The parameters $\delta_{\rho^2}, \delta_{n^2}$ and δ_a are expressed in (J/cm3)$^{1/2}$.

The nonpolar oil can in particular be a hydrocarbon and/or silicone and/or fluorinated oil.

The term "hydrocarbon oil" is understood to mean an oil formed essentially, indeed even consisting, of carbon and hydrogen atoms, and optionally of oxygen or nitrogen atoms, and not comprising a silicon or fluorine atom.

According to one embodiment, the nonpolar hydrocarbon oil is devoid of heteroatom(s). The term "heteroatom" is understood to mean an atom other than carbon or hydrogen.

Mention may be made, among hydrocarbon oils, of squalene, linear or branched hydrocarbons, such as liquid paraffin, liquid petrolatum and liquid naphthalene, hydrogenated polyisobutene (such as Parleam®, sold by Nippon Oil Fats) or partially hydrogenated polyisobutene, isoeicosane, squalene, polydecenes, decene/butene copolymers, polybutene/polyisobutene copolymers, in particular Indopol L-14, polydecenes, such as Puresyn 10, and their mixtures.

The term "silicone oil" is understood to mean an oil comprising at least one silicon atom and in particular comprising Si-0 groups. The silicone oils which can be used in the composition according to the invention can be phenylated silicone oils (the term "phenylated silicone" is understood to mean an organopolysiloxane substituted by at least one phenyl group), nonvolatile polydimethylsiloxanes (PDMSs), or polydimethylsiloxanes comprising pendant alkyl or alkoxy groups and/or alkyl or alkoxy groups at the end of the silicone chain, which groups each have from 2 to 24 carbon atoms. Mention may be made, among phenylated silicone oils, of Belsil PDM 1000 from Wacker (MW=9000 g/mol), phenyl trimethicones (such as the phenyl trimethicone sold under the trade name DC556 by Dow Corning), phenyl dimethicones, phenyl(trimethylsiloxy)diphenylsiloxanes, diphenyl dimethicones or diphenyl(methylidiphenyl)trisiloxanes.

The nonpolar oil can also be chosen from fluorinated oils (an oil comprising at least one fluorine atom), such as perfluoropolyethers, perfluoroalkanes, such as perfluorodecalin, perfluoroadamantanes, perfluoroalkyl phosphate monoesters, diesters and
triesters, and fluorinated ester oils.

According to one embodiment, the nonpolar oil is a nonvolatile nonpolar hydrocarbon oil which can advantageously be chosen from saturated and linear or branched alkanes.

The term "nonvolatile oil" is understood to mean an oil which remains on keratinous substances, at ambient temperature and atmospheric pressure, for at least several hours and which has in particular a vapour pressure of less than \(10^{-3}\) mmHg (0.13 Pa). It is also possible to define a nonvolatile oil as having a rate of evaporation such that, under the conditions defined above, the amount evaporated after 30 minutes is less than 0.07 mg/cm\(^2\).

According to a specific embodiment, the fatty phase of the composition according to the invention can also comprise, in addition, at least one additional glossy oil distinct from an ester of \(C_2-C_6\) carboxylic acid and of sucrose and in particular as defined below.

Preferably, the glossy oil is nonvolatile.

The glossy oil preferably has a high molar mass ranging from 650 to 10000 g/mol and preferably between 750 and 7500 g/mol.

The glossy oil which can be used in the present invention can be chosen from:

- lipophilic polymers, such as:
 - polybutylenes, such as Indopol H-100 (of molar mass or MW=965 g/mol), Indopol H-300 (MW=1340 g/mol) or Indopol H-1500 (MW=2160 g/mol), sold or manufactured by Amoco,
 - hydrogenated polyisobutylenes, such as Panalane H-300 E, sold or manufactured by Amoco (MW=1340 g/mol), Viseal 20000, sold or manufactured by Synteal (MW=6000 g/mol), or Rewopal PIB 1000, sold or manufactured by Witco (MW=1000 g/mol),
 - polydecenes and hydrogenated polydecenes, such as: Puresyn 10 (MW=723 g/mol) or Puresyn 150 (MW=9200 g/mol), sold or manufactured by Mobil Chemicals; and
 - vinylpyrrolidone copolymers, such as: the vinylpyrrolidone/l-hexadecene copolymer Antaron V-216, sold or manufactured by ISP (MW=7300 g/mol);
- esters, such as:
- esters of linear fatty acids having a total carbon number ranging from 35 to 70, such as pentaerythrityl tetrapelargonate (MW=697 g/mol),
- hydroxylated esters, such as polyglycerol-2 triisostearate (MW=965 g/mol);
- aromatic esters, such as tridecyl trimellitate (MW=757 g/mol);
- esters of branched C24-C28 fatty alcohols or fatty acids, such as those described in EP-A-0 955 039, in particular triisoarachidyl citrate (MW=1033.76 g/mol), pentaerythrityl tetraisononanoate (MW=891 g/mol), glycercy tri(2-decyltetradecanoate) (MW=1143 g/mol), pentaerythrityl tetradecanoate (MW=1202 g/mol), polyglyceryl-2 tetraisostearate (MW=1232 g/mol) or pentaerythrityl tetra(2-decyltetradecanoate) (MW=1538 g/mol);
- esters of dimer diol and of dimer diacid of general formula HO-R5-(-OCO-R2-HCOO-Re-VOH, in which:
 - R5 represents a dimer diol residue obtained by hydrogenation of dilinoleic diacid;
 - R6 represents a hydrogenated dilinoleic diacid residue; and
 - h represents an integer varying from 1 to 9;
 in particular the esters of dilinoleic diacids and of dimer dilinoleyl diols sold by Nippon Fine Chemical under the trade names Lusplan DD-DA5® and DD-DA7®;
- silicone oils, such as phenylated silicones (also known as phenylated silicone oil), such as Belsil PDM 1000 from Wacker (MW=9000 g/mol), phenyl trimethicones (such as the phenyl trimethicone sold under the trade name DC556 by Dow Corning), phenyl dimethicones, phenyl(trimethylsiloxy) diphenylsiloxanes, diphenyl dimethicones or diphenyl(methyldiphenyl)trisiloxanes;
- oils of vegetable origin, such as sesame oil (MW=820 g/mol); and
- their mixtures.

The glossy oil can also be an oligomer of hydroxylated fatty acid triglyceride and of saturated diacid. Such an oligomer is obtained by reaction of a hydroxylated fatty acid triglyceride (such as hydrogenated castor oil) and of a saturated diacid. According to the invention, the diacid is described as "saturated" when the hydrocarbon chain constituting it does not comprise an unsaturation, namely a carbon-carbon double bond. The term "diacid" is understood to mean a hydrocarbon compound comprising two carboxyl -COOH functional groups. The diacid can be a single diacid or a mixture of several diacids.
Likewise, within the meaning of the invention, the oligomer can be a mixture of several oligomers. Mention may be made, among the saturated diacids which can be used, of sebacic acid (or 1,10-decanedioic acid), succinic acid, adipic acid, azelaic acid, octadecamethylene dicarboxylic acid and eicosanedicarboxylic acid.

More particularly, the oligomer can be an oligoester, the monomers of which are represented by the following formulae (A) for triglyceride and (B) for diacid:

\[
\begin{array}{ccc}
R_1^2 & R_1^2 & R_2^2 \\
\text{CHOH} & \text{CHOH} & \text{CHOH} \\
R_1 & R_1 & R_1 \\
C=0 & C = 0 & C = 0 \\
0_1 & 0_1 & 0_1 \\
\text{CH}_2 & \text{CH} & \text{CH}_2
\end{array}
\]

(A)

\[
\begin{array}{c}
\text{HO}--\text{C}--X--\text{C}--\text{OH} \\
\end{array}
\]

(B)

in which:

- \(R_i \) represents a saturated or unsaturated and linear or branched alkylene group comprising, for example, from 1 to 18 carbon atoms and \(R_2 \) represents a saturated or unsaturated and linear or branched alkyl group comprising, for example, from 1 to 12 carbon atoms;

- \(R_i \) preferably represents a \(-(\text{CH}_2)_n\) group, where \(n \) can vary from 1 to 20 and in particular from 3 to 16, for example from 6 to 12;

- \(R_2 \) preferably represents a \(-(\text{CH}_2)_m\text{CH}_3\) group, where \(m \) can vary from 0 to 11 and in particular from 2 to 11, for example from 3 to 9.

According to one embodiment, \(n=10 \) and \(m=5 \) and the \(-\text{R}_i\text{CHOH}-\text{R}_2\) group represents the alkyl residue of 12-hydroxystearic acid (predominant component of hydrogenated castor oil);
Xi is a linear or branched alkylene group, such as, for example, a linear \((\text{CH}_4)_x\)
alkylene group, where \(x\) can vary from 1 to 30 and in particular from 3 to 15.
When the diacid is sebacic acid, \(x\) is equal to 8.

The mean degree of polymerization of the oligomer can vary between 3 and 12.
The oligoester of hydrogenated castor oil and of sebacic acid is sold in particular
by Croda under various names, according to the degree of polymerization.
Among the oligoesters formed of hydrogenated castor oil and of sebacic acid, that
having a degree of polymerization of approximately 4.6 is available under the trade name
"Cromadol CWS-5" and that having a degree of polymerization of approximately 9.5 is
available under the trade name "Cromadol CWS-10", these being sold by Croda Japan
K.K.

Mention is also made of the oligomer of hydrogenated castor oil and of sebacic
acid sold under the name Crodabond-CSA \((\text{PM} = 3500)\) by Croda.
The oligomer can be present in the composition according to the invention in a
content ranging from 0.0001 to 50% by weight, particularly from 0.001 to 40% by weight,
more particularly from 0.01 to 30% by weight and for example from 0.1 to 20% by weight,
with respect to the total weight of the composition.

Preferably, the glossy oil has a refractive index of greater than or equal to 1.45
and in particular ranging from 1.45 to 1.6.

In a specific embodiment, the glossy oil is one of the esters of dilinoleic diacids
and of dimer dilinoleyl diols sold by Nippon Fine Chemical under the trade names
Lusplan DD-DA5 and DD-DA7.

Additional compounds

Advantageously, a composition of the invention can comprise, in addition, any
additional compound, also called supplementary compound, normally used in the cosmetics
field, such as waxes, in particular those defined above; colouring materials, in particular
pigments, pearlescent agents, materials with an optical effect, and their mixtures; fillers;
antioxidants; preservatives; neutralizing agents; semicrystalline polymers; plasticizers;
film-forming polymers; lipophilic gelling agents; nonaqueous liquid compounds;
hydrophilic gelling agents; dispersants; fragrances; surfactants; sunscreens; vitamins;
emollients; active principles; and their mixtures.
Such additional compounds are employed provided that their nature and/or their content does not detrimentally affect the properties of fluidity, of gloss and of attachment of the composition under consideration according to the invention.

5 Lipophilic gelling agents

The gelling agents which can be used according to the invention can be organic or inorganic and polymeric or molecular lipophilic gelling agents.

Mention may be made, as inorganic lipophilic gelling agent, of optionally modified clays, such as hectorites modified by a C_{10} to C_{22} ammonium chloride, such as hectorite modified by distearyldimethylammonium chloride, such as, for example, that sold under the name Bentone 38V® by Elementis.

Mention may also be made of pyrogenic silica optionally hydrophobically treated at the surface, the size of the particles of which is less than 1 µm. This is because it is possible to chemically modify the surface of the silica by chemical reaction which results in a decrease in the number of silanol groups present at the surface of the silica. Silanol groups can in particular be replaced by hydrophobic groups: a hydrophobic silica is then obtained.

The hydrophobic groups can be:

- trimethylsiloxyl groups, which are obtained in particular by treatment of pyrogenic silica in the presence of hexamethyldisilazane. Silicas thus treated are named "Silica silylate" according to the CTFA (8th edition, 2000). They are, for example, sold under the references Aerosil R812® by Degussa or Cab-O-Sil TS-530® by Cabot; or

- dimethylsilyloxyl or polydimethylsiloxane groups, which are obtained in particular by treatment of pyrogenic silica in the presence of polydimethylsiloxane or dimethyldichlorosilane. Silicas thus treated are named "Silica dimethyl silylate" according to the CTFA (8th edition, 2000). They are, for example, sold under the references Aerosil R972® and Aerosil R974® by Degussa and Cab-O-Sil TS-610® and Cab-O-Sil TS-720® by Cabot.

The hydrophobic pyrogenic silica exhibits in particular a particle size which can be from nanometric to micrometric, for example ranging approximately from 5 to 200 nm.

The polymeric organic lipophilic gelling agents are, for example, partially or completely crosslinked organopolysiloxane elastomers with a three-dimensional structure, such as those sold under the names of KSG6®, KSG16® and KSG18® by Shin-Etsu, of
Trefil E-505C® and Trefil E-506C® by Dow Corning, of Gransil SR-CYC®, SR DMF10®, SR-DC556®, SR 5CYC gel®, SR DMF 10 gel® and SR DC 556 gel® by Grant Industries and of SF 1204® and JK 113® by General Electric; ethylcellulose, such as that sold under the name Ethocel® by Dow Chemical; galactomannans comprising from one to six and in particular from two to four hydroxyl groups per monosaccharide and substituted by a saturated or unsaturated alkyl chain, such as guar gum alkylated by C1 to C6 and in particular C1 to C3 alkyl chains, and their mixtures; or block copolymers of "diblock", "triblock" or "radial" type of the polystyrene/polyisoprene or polystyrene/polybutadiene type, such as those sold under the name Luvitol HSB® by BASF, of the polystyrene/copoly(ethylene-propylene) type, such as those sold under the name Kraton® by Shell Chemical Co., or of the polystyrene/copoly(ethylene-butylene) type, or blends of triblock and radial (star) copolymers in isododecane, such as those sold by Penreco under the name Versagel®, such as, for example, the blend of butylene/ethylene/styrene triblock copolymer and of ethylene/propylene/styrene star copolymer in isododecane (Versagel M 5960).

Mention may also be made, as lipophilic gelling agent, of polymers with a weight-average molecular weight of less than 100,000 comprising a) a polymer backbone having hydrocarbon repeat units provided with at least one heteroatom and optionally b) at least one optionally functionalized pendant fatty chain and/or at least one optionally functionalized terminal fatty chain having from 6 to 120 carbon atoms and being bonded to these hydrocarbon units, such as described in WO-A-02/056847 and WO-A-02/47619, the contents of which are incorporated by way of reference, in particular polyamide resins (especially comprising alkyl groups having from 12 to 22 carbon atoms), such as those described in US-A-5,783,657 the content of which is incorporated by way of reference.

Mention may be made, as example of polyamide resin which can be employed according to the invention, of Uniclear 100 VG®, sold by Arizona Chemical.

Mention may also be made, among the lipophilic gelling agents which can be used in the compositions according to the invention, of esters of dextrin and of fatty acid, such as dextrin palmitates, in particular such as those sold under the names Rheopearl TL® and Rheopearl KL® by Chiba Flour.

Use may also be made of silicone polyamides of the polyorganosiloxane type, such as those described in US 5,874,069, US 5,919,441, US 6,051,216 and US 5,981,680.
These silicone polymers can belong to the following two families:
- polyorganosiloxanes comprising at least two groups capable of establishing hydrogen bond interactions, these two groups being situated in the chain of the polymer, and/or
- polyorganosiloxanes comprising at least two groups capable of establishing hydrogen bond interactions, these two groups being situated on grafts or branchings.

Colouring materials

Preferably, a composition according to the invention can additionally comprise at least one colouring agent, also known as "colouring material", which can be chosen in particular from water-soluble or fat-soluble dyes, pigments, pearlescent agents, materials with an optical effect, and their mixtures.

The term "pigments" should be understood as meaning white or coloured and inorganic or organic particles which are insoluble in an aqueous solution and which are intended to colour and/or opacify the resulting film.

The pigments can be present in a proportion of 0.0001 to 20% by weight, in particular of 0.001 to 15% by weight and especially of 0.005 to 10% by weight, with respect to the total weight of the cosmetic composition.

Goniochromatic colouring agents

A composition according to the invention can comprise at least one goniochromatic colouring agent which may exhibit magnetic properties, if appropriate.

The term "goniochromatic colouring agent" denotes, within the meaning of the present invention, a colouring agent which makes it possible to obtain, when the composition is spread over a substrate, a colour distance in the a*b* plane of the CIE 1976 colorimetric space which corresponds to a variation Dh in the angle of hue h of at least 20° when the angle of observation is varied with respect to the normal by between 0° and 80°, for an angle of incidence of the light of 45°.

The colour distance can be measured, for example, using a spectrogonioreflectometer of the Instrument Systems brand and with the GON 360 Goniometer reference, after the composition has been spread in the fluid state with a thickness of 300 μη using an automatic spreader over a contrast chart of the Erichsen brand and with the Type 24/5 reference, the measurement being carried out on the black background of the
The goniochromatic colouring agent can be chosen, for example, from multilayer interference structures and liquid crystal colouring agents.

In the case of a multilayer structure, the latter can comprise, for example, at least two layers, each layer being produced, for example, from at least one material chosen from the group consisting of the following materials: MgF₂, CeF₃, ZnS, ZnSe, Si, SiO₂, Ge, Te, Fe₂O₃, Pt, Vₐ, Al₂O₃, MgO, Y₂O₃, S₂O₃, SiO, HfO₂, ZrO₂, CeO₂, Nb₂O₅, Ta₂O₅, TiO₂, Ag, Al, Au, Cu, Rb, Ti, Ta, W, Zn, MoS₂, cryolite, alloys, polymers and their combinations.

The multilayer structure may or may not exhibit, with respect to a central layer, a symmetry with regard to the chemical nature of the stacked layers. Different effects are obtained according to the thickness and the nature of the various layers.

Examples of symmetrical multilayer interference structures are, for example, the following structures: Fe₂O₃/SiO₂/Fe₂O₃/SiO₂/Fe₂O₃, a pigment having this structure being sold under the name Sicopearl by BASF; MoS₂/SiO₂/mica-oxide/SiO₂/MoS₂; Fe₂O₃/SiO₂/mica-oxide/SiO₂/Fe₂O₃; TiO₂/SiO₂/TiO₂ and TiO₂/Al₂O₃/TiO₂, pigments having these structures being sold under the name Xirona by Merck (Darmstadt).

The liquid crystal colouring agents comprise, for example, silicones or cellulose ethers to which mesomorphic groups are grafted. Use may be made, as liquid crystal goniochromatic particles, for example, of those sold by Chenix and of those sold under the name Helicone®HC by Wacker.

Use may also be made, as goniochromatic colouring agent, of certain pearlescent agents, effect pigments on a synthetic substrate, in particular a substrate of alumina, silica, borosilicate, iron oxide or aluminium type, or interference holographic glitter resulting from a polytetraphthalate film.

The ratio of the proportion by weight of the magnetic pigments to the proportion of goniochromatic colouring agent is, for example, between ¼ and 4, being, for example, between ½ and 2, for example in the vicinity of 1.

The material can additionally comprise dispersed goniochromatic fibres. Such fibres can exhibit a length of less than 80 µm, for example.

Diffractive pigments.

A composition according to the invention can comprise at least one diffractive pigment which may exhibit magnetic properties, if appropriate.
The term "diffractive pigment" denotes, within the meaning of the present invention, a pigment capable of producing a variation in colour according to the angle of observation when illuminated by white light, due to the presence of a structure which diffracts the light.

A diffractive pigment can comprise a diffraction grating capable, for example, of diffracting an incident ray of monochromatic light in defined directions.

The diffraction grating can comprise a periodic unit, in particular a line, the distance between two adjacent units being of the same order of magnitude as the wavelength of the incident light.

When the incident light is polychromatic, the diffraction grating will separate the various spectral components of the light and produce a rainbow effect.

The diffractive pigment can be produced with units having different profiles, in particular triangular, symmetrical or asymmetrical, square-wave, with a constant or varying width, or sinusoidal.

The spatial frequency of the grating and the depth of the units will be chosen as a function of the degree of separation of the various orders desired. The frequency can vary, for example, between 500 and 3000 lines per mm.

Preferably, the particles of the diffractive pigment each exhibit a flattened form and in particular are in the platelet form.

The same pigment particle can comprise two intersecting, perpendicular or nonperpendicular, diffraction gratings.

The diffractive pigment can exhibit a multilayer structure comprising a layer of a reflective material covered at least on one side with a layer of a dielectric material. The latter may confer better stiffness and durability on the diffractive pigment. The dielectric material can then be chosen, for example, from the following materials: MgF₂, SiO₂, Al₂O₃, A1F₃, CeF₃, LaF₃, NdF₃, SmF₂, BaF₂, CaF₂, LiF and their combinations. The reflective material can be chosen, for example, from metals and their alloys and also from nonmetallic reflective materials. Mention may be made, among the metals which can be used, of Al, Ag, Cu, Au, Pt, Sn, Ti, Pd, Ni, Co, Rd, Nb and Cr, and their materials,
combinations or alloys. Such a reflective material can, on its own, constitute the diffractive pigment, which will then be monolayer.

In an alternative form, the diffractive pigment can comprise a multilayer structure comprising a core of a dielectric material covered with a reflective layer at least on one side, indeed even a reflective layer which completely encapsulates the core. A layer of a dielectric material can also cover the reflective layer or layers. The dielectric material used is then preferably inorganic and can be chosen, for example, from metal fluorides, metal oxides, metal sulphides, metal nitrides, metal carbides and their combinations. The dielectric material can be in the crystalline, semicrystalline or amorphous state. In this configuration, the dielectric material can, for example, be chosen from the following materials: MgF₂, SiO₂, SiO₂₋₂, A⁻¹₂O₃, TiO₂, WO, AlN, BN, B₄C, WC, TiC, TiN, N₄Si₃, ZnS, glass particles and carbons of diamond type, and their combinations.

In an alternative form, the diffractive pigment can be composed of a preformed dielectric or ceramic material, such as a mineral made of natural lamellae, for example perovskite mica or talc, or synthetic lamellae formed from glass, alumina, SiO₂, carbon, an iron oxide/mica, mica covered with BN, BC, graphite or bismuth oxychloride, and their combinations.

Instead of a layer of a dielectric material, other materials which improve the mechanical properties may be suitable. Such materials can comprise silicone, metal silicides, semiconducting materials formed from elements from Groups III, IV and V, metals having a centred cubic crystal structure, cermet compositions or materials, semiconducting glasses, and their various combinations.

The diffractive pigment used can be chosen in particular from those described in US 2003/0031870.

A diffractive pigment can comprise, for example, the following structure: MgF₂/Al/MgF₂, a diffractive pigment having this structure being sold under the name Spectraflair 1400 Pigment Silver by Flex Products, or Spectraflair 1400 Pigment Silver FG. The proportion by weight of MgF₂ can be between 80 and 95% of the total weight of the pigment.

The amount of diffractive pigment can vary, by weight with respect to the total weight of the composition, for example from 0.000 to 5%.

The dimension of the diffractive pigment can, for example, be between 5 and 200 µη, better still between 5 and 100 µη, for example between 5 and 30 µη.
The thickness of the diffractive pigment particles can be less than or equal to \(3 \mu\text{m}\), better still \(2 \mu\text{m}\), for example of the order of \(1 \mu\text{m}\).

Reflective particles

A composition according to the invention can comprise, for example, reflective particles, in particular glitter, inter alia, which may or may not be magnetic.

The term "reflective particles" denotes, within the meaning of the present invention, particles having a size, a structure, in particular a thickness of the layer or layers of which it is composed and their physical and chemical nature, and a surface condition which allow them to reflect incident light. This reflection may, if appropriate, have an intensity sufficient to create, at the surface of the composition or mixture, when the latter is applied to the substrate to be made up, highlight points visible to the naked eye, that is to say more luminous points which contrast with their surroundings by appearing to sparkle.

The reflective particles can be selected so as not to detrimentally affect, to a significant extent, the colouring effect generated by the colouring agents which are combined with them and more particularly so as to optimize this effect in terms of colour rendition. They can more particularly have a yellow, pink, red, bronze, orangey, brown, gold and/or coppery colour or glint.

The reflective particles can be present in the composition at a content ranging from 0.0001 to 60% by weight, with respect to the total weight of the composition, in particular from 0.001 to 30% by weight, especially from 0.005 to \(10\%\) by weight.

These particles can exhibit varied forms and can in particular be in the platelet or globular form, especially the spherical form.

The reflective particles, whatever their form, may or may not exhibit a multilayer structure and, in the case of a multilayer structure, may exhibit, for example, at least one layer of uniform thickness, in particular of a reflective material.

When the reflective particles do not exhibit a multilayer structure, they can be composed, for example, of metal oxides, in particular of titanium or iron oxides obtained synthetically.

When the reflective particles exhibit a multilayer structure, they can, for example, comprise a natural or synthetic substrate, in particular a synthetic substrate at least partially coated with at least one layer of a reflective material, in particular of at least one metal or metal material. The substrate can be made of one or more organic and/or inorganic
materials.

More particularly, it can be chosen from glasses, ceramics, graphite, metal oxides, aluminas, silicas, silicates, in particular aluminosilicates and borosilicates, synthetic mica and their mixtures, this list not being limiting.

The reflective material can comprise a layer of metal or of a metal material.

Mention may also be made, still by way of example of reflective particles comprising an inorganic substrate coated with a layer of metal, of the particles comprising a borosilicate substrate coated with silver, also known as "white pearlescent agents".

Particles comprising a glass substrate coated with silver, in the form of platelets, are sold under the name Microglass Metashine REFSX 2025 PS by Toyal. Particles comprising a glass substrate coated with nickel/chromium/molybdenum alloy are sold under the names Crystal Star GF 550 and GF 2525 by this same company.

Reflective particles, whatever their form, can also be chosen from particles comprising a synthetic substrate coated at least partially with at least one layer of at least one metal material, in particular a metal oxide, for example chosen from titanium oxides, in particular TiO₂, iron oxides, in particular Fe₂O₃, tin oxides, chromium oxides, barium sulphate and the following materials: MgF₂, CrF₃, ZnS, ZnSe, SiO₂, A₁₂O₃, MgO, Y₂O₃, SeO₃, SiO, HfO₂, ZrO₂, CeO₂, Nb₂O₅, Ta₂O₅ and MoS₂, and their mixtures or alloys.

Mention may be made, as an example of such particles, of the particles comprising a synthetic mica substrate coated with titanium dioxide, or glass particles coated either with brown iron oxide, with titanium oxide, with tin oxide or with one of their mixtures, such as those sold under the Reflecks® brand name by Engelhard.

Pearlescent agents

A composition according to the invention can comprise at least one magnetic or non-magnetic pearlescent agent.

The term "pearlescent agent" should be understood as meaning coloured particles of any form, which may or may not be iridescent, produced in particular by certain shellfish in their shells or else synthesized, which exhibit a colouring effect by optical interference.
The pearlescent agents can be chosen from pearlescent pigments, such as titanium oxide-coated mica covered with an iron oxide, titanium oxide-coated mica covered with bismuth oxychloride, titanium oxide-coated mica covered with chromium oxide or titanium oxide-coated mica covered with an organic dye, in particular of the abovementioned type, and pearlescent pigments based on bismuth oxychloride. They can also be mica particles, at the surface of which at least two successive layers of metal oxides and/or of organic colouring materials are superimposed.

Mention may also be made, as example of pearlescent agents, of natural mica covered with titanium oxide, with iron oxide, with natural pigment or with bismuth oxychloride.

Mention may be made, among pearlescent agents available commercially, of the Timica, Flamenco and Duochrome (mica-based) pearlescent agents sold by Engelhard, the Timiron pearlescent agents sold by Merck, the Prestige mica-based pearlescent agents sold by Eckart and the Sunshine pearlescent agents, based on synthetic mica, sold by Sun Chemical.

The pearlescent agents can more particularly have a yellow, pink, red, bronze, orangey, brown, gold and/or coppery colour or glint.

Mention may in particular be made, by way of illustration of the pearlescent agents which can be introduced into the composition, of pearlescent agents of gold colour sold in particular by Engelhard under the name of Brilliant Gold 212G (Timica), Gold 222C (Cloisonne), Sparkle Gold (Timica), Gold 4504 (Chromalite) and Monarch Gold 233X (Cloisonne); bronze pearlescent agents sold in particular by Merck under the names Bronze Fine (17384) (Colorona) and Bronze (17353) (Colorona) and by Engelhard under the name Super Bronze (Cloisonne); orange pearlescent agents sold in particular by Engelhard under the names Orange 363C (Cloisonne) and Orange MCR 101 (Cosmica) and by Merck under the names Passion Orange (Colorona) and Matte Orange (17449) (Microna); brown-coloured pearlescent agents sold in particular by Engelhard under the names Nu-Antique Copper 340XB (Cloisonne) and Brown CL4509 (Chromalite); pearlescent agents with a copper glint sold in particular by Engelhard under the name Copper 340A (Timica); pearlescent agents with a red glint sold in particular by Merck under the name Sienna Fine (17386) (Colorona); pearlescent agents with a yellow glint sold in particular by Engelhard under the name Yellow (4502) (Chromalite); red-coloured pearlescent agents with a gold glint sold in particular by Engelhard under the name...
Sunstone GO12 (Gemtone); pink pearlescent agents sold in particular by Engelhard under the name Tan Opale G005 (Gemtone); black pearlescent agents with a gold glint sold in particular by Engelhard under the name Nu-Antique Bronze 240 AB (Timica); blue pearlescent agents sold in particular by Merck under the name Matte Blue (17433) (Microna); white pearlescent agents with a silvery glint sold in particular by Merck under the name Xirona Silver; golden green pinkish orangey pearlescent agents sold in particular by Merck under the name Indian Summer (Xirona); and their mixtures.

Dyes, organic pigments and lakes

A composition according to the invention can also comprise dyes or organic pigments.

The dyes can be fat-soluble or water-soluble.

The fat-soluble dyes are, for example, Sudan red, D&C Red 17, D&C Green 6, β-carotene, soybean oil, Sudan brown, D&C Yellow 11, D&C Violet 2, D&C Orange 5 or quinoline yellow.

The water-soluble dyes are, for example, beetroot juice and methylene blue.

The dyes can, for example, represent from 0.0001 to 20% of the weight of the composition, indeed even from 0.001 to 6%, when present.

The organic lakes are organic pigments formed from a dye attached to a substrate.

The lakes, which are also known as organic pigments, can be chosen from the materials below and their mixtures:

- cochineal carmine;
- organic pigments formed of azo, anthraquinone, indigoid, xanthene, pyrene, quinoline, triphenylmethane or fluoran dyes. Mention may in particular be made, among organic pigments, of those known under the following names: D&C Blue No. 4, D&C Brown No. 1, D&C Green No. 5, D&C Green No. 6, D&C Orange No. 4, D&C Orange No. 5, D&C Orange No. 10, D&C Orange No. 11, D&C Red No. 6, D&C Red No. 7, D&C Red No. 17, D&C Red No. 21, D&C Red No. 22, D&C Red No. 27, D&C Red No. 28, D&C Red No. 30, D&C Red No. 31, D&C Red No. 33, D&C Red No. 34, D&C Red No. 36, D&C Violet No. 2, D&C Yellow No. 7, D&C Yellow No. 8, D&C Yellow No. 10, D&C Yellow No. 11, FD&C Blue No. 1, FD&C Green No. 3, FD&C Red No. 40, FD&C Yellow No. 5 and FD&C Yellow No. 6;
- the organic lakes can be insoluble sodium, potassium, calcium, barium, aluminium, zirconium, strontium or titanium salts of acid dyes, such as azo, anthraquinone, indigoid, xanthene, pyrene, quinoline, triphenylmethane or fluoran dyes, it being possible for these dyes to comprise at least one carboxylic or sulphonic acid group.

The organic lakes can also be supported by an organic support, such as rosin or aluminium benzoate, for example.

Mention may in particular be made, among organic lakes, of those known under the following names: D&C Red No. 2 Aluminium lake, D&C Red No. 3 Aluminium lake, D&C Red No. 4 Aluminium lake, D&C Red No. 6 Aluminium lake, D&C Red No. 6 Barium lake, D&C Red No. 6 Barium/Strontium lake, D&C Red No. 6 Strontium lake, D&C Red No. 6 Potassium lake, D&C Red No. 7 Aluminium lake, D&C Red No. 7 Barium lake, D&C Red No. 7 Calcium lake, D&C Red No. 7 Calcium/Strontium lake, D&C Red No. 7 Zirconium lake, D&C Red No. 8 Sodium lake, D&C Red No. 9 Aluminium lake, D&C Red No. 9 Barium lake, D&C Red No. 9 Barium/Strontium lake, D&C Red No. 9 Zirconium lake, D&C Red No. 10 Sodium lake, D&C Red No. 19 Aluminium lake, D&C Red No. 19 Barium lake, D&C Red No. 19 Zirconium lake, D&C Red No. 21 Aluminium lake, D&C Red No. 21 Zirconium lake, D&C Red No. 22 Aluminium lake, D&C Red No. 27 Aluminium lake, D&C Red No. 27 Aluminium/Titanium/Zirconium lake, D&C Red No. 27 Barium lake, D&C Red No. 27 Calcium lake, D&C Red No. 27 Zirconium lake, D&C Red No. 28 Aluminium lake, D&C Red No. 30 lake, D&C Red No. 31 Calcium lake, D&C Red No. 33 Aluminium lake, D&C Red No. 34 Calcium lake, D&C Red No. 36 Aluminium lake, D&C Red No. 40 Aluminium lake, D&C Blue No. 1 Aluminium lake, D&C Green No. 3 Aluminium lake, D&C Orange No. 4 Aluminium lake, D&C Orange No. 5 Aluminium lake, D&C Orange No. 5 Zirconium lake, D&C Orange No. 10 Aluminium lake, D&C Orange No. 17 Barium lake, D&C Yellow No. 5 Aluminium lake, D&C Yellow No. 5 Zirconium lake, D&C Yellow No. 6 Aluminium lake, D&C Yellow No. 7 Zirconium lake, D&C Yellow No. 10 Aluminium lake, FD&C Blue No. 1 Aluminium lake, FD&C Red No. 4 Aluminium lake, FD&C Red No. 40 Aluminium lake, FD&C Yellow No. 5 Aluminium lake or FD&C Yellow No. 6 Aluminium lake.

The chemicals corresponding to each of the abovementioned organic colouring materials are mentioned in the work "International Cosmetic Ingredient Dictionary and
Composite pigments

A composition according to the invention can also comprise composite pigments. The composite pigment can be composed in particular of particles comprising:
- a magnetic or non-magnetic inorganic core;
- at least one coating, at least partial, of at least one organic colouring material.

At least one binder can advantageously contribute to the attaching of the organic colouring material to the inorganic core.

The composite pigment particles can exhibit varied forms. These particles can in particular be in the platelet or globular, in particular spherical, form and be hollow or solid. The term "in the platelet form" denotes particles having a ratio of the greatest dimension to the thickness of greater than or equal to 5.

A composite pigment can, for example, exhibit a specific surface of between 1 and 1000 m²/g, in particular between 10 and 600 m²/g approximately and especially between 20 and 400 m²/g approximately. The specific surface is the value measured by the BET method.

The inorganic core of the composite pigment can be of any form suitable for the attaching of particles of organic colouring material, for example spherical, globular, granular, polyhedral, acicular, spindle-shaped, flattened in the fleck, rice grain or flake form, and a combination of these forms, this list not being limiting.

The ratio of the greatest dimension of the core to its smallest dimension can be between 1 and 50.

The inorganic core can exhibit a size of between approximately 1 nm and approximately 100 nm, indeed even between approximately 5 nm and approximately 75 nm, for example between approximately 10 nm and approximately 50 nm.

The inorganic core can be made of a material chosen from the nonlimiting list consisting of metal salts and metal oxides, in particular titanium, zirconium, cerium, zinc, iron, aluminium and chromium oxides, ferric blue, aluminas, glasses, ceramics, graphite, silicas, silicates, in particular alumino silicates and borosilicates, synthetic mica and their mixtures.
Titanium oxides, in particular TiO$_2$, iron oxides, in particular Fe$_2$O$_3$, cerium oxides, zinc oxides, aluminium oxides or silicates, in particular aluminosilicates and borosilicates, are very particularly suitable.

The inorganic core can exhibit a specific surface, measured by the BET method, of, for example, between approximately 1 m2/g and approximately 1000 m2/g, better still between approximately 10 m2/g and approximately 600 m2/g, for example between approximately 20 m2/g and approximately 400 m2/g.

The inorganic core can be coloured, if appropriate.

The organic colouring material can be as defined above.

The binder of the composite pigment can be of any type, provided that it allows the organic colouring material to adhere to the surface of the inorganic core.

The binder can in particular be chosen from a nonlimiting list consisting of silicone materials, polymeric, oligomeric or similar materials, and in particular from organosilanes, fluoroalkylated organosilanes and polysiloxanes, for example polymethylhydrosiloxane, and various coupling agents, such as coupling agents based on silanes, on titanates, on aluminates or on zirconates, and their mixtures.

The colouring agent present in the composition can comprise a photochromic colouring material or photochromic agent.

Photochromic agents

Generally, a "photochromic colouring agent" is a colouring agent which has the property of changing in hue when it is illuminated by ultraviolet light and of returning to its initial colour when it is no longer illuminated by this light or also of changing from an uncoloured state to a coloured state and vice versa. In other words, such an agent exhibits different hues according to whether it is illuminated by light comprising a certain amount of UV radiation, as in sunlight or artificial light.

Reference may usefully be made to the examples of photochromic agent described in EP 1 410 786.

Thermochromic agents

Use may be made, for example, of the thermochromic agents sold under the reference Kromafast Yellow 5GX 02- by Kromachem Ltd.
Other colouring agents

A composition according to the invention can also comprise piezochromic, in particular tribochromic, or solvatochromic compounds.

Fillers

The composition according to the invention can also comprise, in addition, at least one filler, in particular in a content ranging from 0.1 to 20% by weight and preferably from 0.1 to 10%, by weight, with respect to the total weight of the composition.

The term "fillers" should be understood as meaning colourless or white and inorganic or synthetic particles of any shape which are insoluble in the medium of the composition, whatever the temperature at which the composition is manufactured. These fillers serve in particular to modify the rheology or the texture of the composition.

The fillers can be inorganic or organic and of any shape, platelet, spherical or oblong, whatever the crystallographic form (for example sheet, cubic, hexagonal, orthorhombic, and the like). Mention may be made of talc, mica, silica, kaolin, powders formed of polyamide (Nylon®) (Orgasol® from Atochem), of poly-B-alanine and of polyethylene, powders formed of tetrafluoroethylene polymers (Teflon®), lauroyllysine, starch, boron nitride, hollow polymeric microspheres, such as those of poly(vinylidene chloride)/acrylonitrile, for example Expanscel® (Nobel Industrie), or of acrylic acid copolymers (Polytrap® from Dow Corning), silicone resin microbeads (Tospearls® from Toshiba, for example), polyorganosiloxane elastomer particles, precipitated calcium carbonate, magnesium carbonate, basic magnesium carbonate, hydroxyapatite, hollow silica microspheres (Silica Beads® from Maprecos), glass or ceramic microcapsules, or metal soaps derived from organic carboxylic acids having from 8 to 22 carbon atoms, preferably from 12 to 18 carbon atoms, for example zinc stearate, magnesium stearate, lithium stearate, zinc laurate or magnesium myristate.

Throughout the description, including the claims, the expression "comprising a" should be understood as being synonymous with "comprising at least one", unless otherwise specified.

The expression "between ... and ..." should be understood as limits included, unless otherwise specified.
The aim of the examples which follow is to illustrate, without implied limitation, the subject matter of the present invention. The amounts are given as percentage by weight.

EXAMPLES

Example 1: liquid gloss formulation for the lips

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>(% by weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrophilic pyrogenic silica (Aerosil 200 from Evonik Degussa)</td>
<td>3.5</td>
</tr>
<tr>
<td>Pigments</td>
<td>0.3</td>
</tr>
<tr>
<td>Castor oil</td>
<td>14.6</td>
</tr>
<tr>
<td>Beeswax</td>
<td>2.7</td>
</tr>
<tr>
<td>Polyester of hydrogenated castor oil and of dimer dilinoleic acid (Risocast DA-L from Kokyu Alcohol Kogyo)</td>
<td>19.2</td>
</tr>
<tr>
<td>Shea butter (Lipex Sheasoft from AarhusKarshamn)</td>
<td>12</td>
</tr>
<tr>
<td>Shea butter (Lipex Shea from AarhusKarshamn)</td>
<td>12</td>
</tr>
<tr>
<td>Fragrance</td>
<td>0.4</td>
</tr>
<tr>
<td>Sucrose diacetate hexa(2-methylpropanoate) (Sustane SAIB Food Grade Kosher from Eastman Chemical)</td>
<td>8.5</td>
</tr>
<tr>
<td>Hydrogenated polyester of dilinoleic acid and of butanediol (Viscoplast 14436 H from Biosynth)</td>
<td>26.8</td>
</tr>
</tbody>
</table>

The protocol employed for the manufacture of this liquid gloss is the "conventional" protocol for the formulation of glosses.

The pigments are milled in a portion of the castor oil.

The milled product obtained is subsequently placed in a heating vessel with the remainder of the castor oil, the shea butters, the polyester of hydrogenated castor oil and of dimer dilinoleic acid (Risocast DA-L), the sucrose diacetate hexa(2-methylpropanoate) and the hydrogenated polyester of dilinoleic acid and of butanediol (Viscoplast 14436 H), and mixing is carried out at a temperature of 80-90°C.

The beeswax is subsequently added and the mixture is allowed to homogenize for approximately 20 to 30 min.
When the mixture is thoroughly smooth, the silica is dispersed with a Rayneri mixer and then the fragrance is added.

A panel of 5 people evaluated the cosmetic properties of such a composition during and after application.

The liquid gloss spreads out easily and correctly over the lips. The make-up obtained is glossy and not very tacky. In particular, it is found that the lips do not adhere very much to one another.

Example 2, comparative: composition not in accordance with the invention

This is a composition of Example 1 devoid of the sucrose diacetate hexa(2-methylpropanoate), the eliminated amount of which is compensated for by the hydrogenated polyester of dilinoleic acid and of butanediol (Viscoplast 14436 H).

A panel of 5 people evaluated the cosmetic properties of such a composition during and after application.

In comparison with the gloss of Example 1, the composition of Example 2 spreads out less well over the lips. Furthermore, although the make-up obtained is glossy, it is more tacky.

Example 3, comparative: composition not in accordance with the invention

This is a composition of Example 1 devoid of the hydrogenated polyester of dilinoleic acid and of butanediol (Viscoplast 14436 H), the eliminated amount of which is compensated for by the sucrose diacetate hexa(2-methylpropanoate).

A panel of 5 people evaluated the cosmetic properties of such a composition during and after application.

In comparison with the gloss of Example 1, the composition of Example 3 spreads out less well over the lips and, although the tackiness of this composition is similar to that of Example 1, it is observed that the make-up obtained is less glossy.
CLAIMS

1. Anhydrous liquid cosmetic composition comprising, in a physiologically acceptable medium, at least one liquid polyester obtained by condensation of unsaturated fatty acid dimer and/or trimer and of \(C_2-C_{10} \) diol and at least one ester of \(C_2-C_6 \) carboxylic acid and of sucrose.

2. Composition according to Claim 1, wherein the liquid polyester is obtained from an unsaturated fatty acid dimer comprising from 28 to 44 carbon atoms and/or from an unsaturated fatty acid trimer comprising from 42 to 66 carbon atoms.

3. Composition according to Claim 1 or 2, wherein the diol is a saturated linear \(C_2-C_{10} \) diol.

4. Composition according to any one of the preceding claims, wherein the said composition comprises from 15 to 40% by weight, and preferably from 20 to 30% by weight of liquid polyester(s), with respect to the total weight of the said composition.

5. Composition according to any one of the preceding claims, wherein the ester of \(C_2-C_6 \) carboxylic acid and of sucrose is sucrose di-acetate-hexa-(2-methyl-propanoate).

6. Composition according to any one of the preceding claims, wherein the said composition comprises from 3 to 12% by weight, and preferably from 5 to 10% by weight of ester(s) of \(C_2-C_6 \) carboxylic acid and of sucrose, with respect to the total weight of the said composition.

7. Composition according to any one of the preceding claims, wherein the "liquid polyester(s)"/"ester(s)" of \(C_2-C_6 \) carboxylic acid and of sucrose" ratio by weight varies from 1 to 8, and preferably from 2 to 5.

8. Composition according to any one of the preceding claims, wherein it further comprises at least one pasty fatty substance.

9. Composition according to the preceding claim, wherein the pasty fatty substance results from the esterification, by a polycarboxylic acid, of an aliphatic hydroxycarboxylic acid ester comprising at least two hydroxyl groups.

10. Composition according to Claim 8 or 9, wherein the pasty fatty substance is an ester resulting from the esterification reaction of hydrogenated castor oil with dilinoleic acid.

11. Composition according to Claim 9 or 10, wherein it comprises from 5 to 60% by weight, and better still from 10 to 30% by weight of pasty fatty substance resulting from
the esterification, by a polycarboxylic acid, of an aliphatic hydroxycarboxylic acid ester comprising at least two hydroxyl groups, with respect to the total weight of the said composition.

12. Composition according to any one of the preceding claims, wherein it further comprises at least one additional compound chosen from waxes; colouring materials, in particular pigments, pearlescent agents, materials with an optical effect, and their mixtures; fillers; antioxidants; preservatives; neutralizing agents; semicrystalline polymers; plasticizers; film-forming polymers; lipophilic gelling agents; nonaqueous liquid compounds; hydrophilic gelling agents; dispersants; fragrances; surfactants; sunscreens; vitamins; emollients; active principles; and their mixtures.

13. Composition according to any one of the preceding claims, wherein it is intended for making up and/or caring for the skin or lips.

14. Method for making up and/or caring for the skin or lips, in particular the lips, comprising at least one stage which consists in applying, to the said skin or the said lips, at least one composition as defined according to any one of Claims 1 to 13.