(54) Title: METHODS OF USE OF PROBIOTIC LACTOBACILLI FOR COMPANION ANIMALS

(57) Abstract:
According to the present invention there are provided methods of use in companion animals of probiotic bacteria of the genus Lactobacilli.
(72) Inventeurs(suite)/Inventors(continued): SUNVOLD, GREGORY DEAN, US; TETRICK, MARK ALAN, US; VICKERS, ROBERT JASON, US
Title: METHODS OF USE OF PROBIOTIC LACTOBACILLI FOR COMPANION ANIMALS

Abstract: According to the present invention there are provided methods of use in companion animals of probiotic bacteria of the genus Lactobacilli.
Methods of Use of Probiotic *Lactobacilli* for Companion Animals

FIELD OF THE INVENTION

The present invention relates to the field of probiotic *Lactobacilli*, more specifically methods of use of probiotic *Lactobacilli* in companion animals.

BACKGROUND OF THE INVENTION

The defense mechanisms to protect the mammalian gastrointestinal (GI) tract from colonisation by bacteria are highly complex. The GI tract of most mammals are colonised by native microflora, and invasive pathogenic micro-organisms. In a healthy state, these competing microflora are in a state of equilibrium. Modification of the intestinal microflora equilibrium may lead to or prevent many GI disorders, both in humans, and other mammalian species, such as companion animals including cats, dogs and rabbits. The well being of companion animals is closely related to their feeding and GI health, and maintenance of the intestinal microflora equilibrium in these animals may result in healthier pets.

The number and composition of the intestinal microflora tend to be stable, although age and diet may modify it. Gastric acidity, bile, intestinal peristaltis and local immunity are factors thought to be important in the regulation of bacterial flora in the small intestine of human beings and various other mammals. Often pet GI disorders, including those found in canines and felines, are linked to bacterial overgrowth and the production of enterotoxins by pathogenic bacteria. These factors disrupt the intestinal microflora equilibrium and can promote inflammation and aberrant immune responses.

Recently, research has begun to highlight some valuable strains of bacteria obtainable by isolation from resected and washed gastrointestinal tract of mammals, such as humans and canines, and their potential use as probiotic agents. Probiotics are considered to be preparations of bacteria, either viable or dead, their constituents such as proteins or carbohydrates, or purified fractions of bacterial ferments that promote mammalian health by preserving the natural microflora in the GI tract, and reinforcing the normal controls on aberrant immune responses. It is believed by some that probiotic bacteria are more effective when derived from the species, or closely related species, intended to be treated. Whilst several strains of probiotic bacteria have been elucidated, methods of use of these strains and their therapeutic efficacy has been limited to modulation of gastro-intestinal disorders in humans. As yet, there has not been much
investigation into the potential for these organisms to beneficially affect physiological systems other than the gastrointestinal tract in companion animals, such as canines and felines.

SUMMARY OF THE INVENTION

According to the present invention, there is provided methods of use of probiotic *Lactobacilli* obtainable by isolation from resected and washed gastrointestinal tract of mammals in companion animals. Said methods include treatment, either prophylactic or therapeutic, of the immune system, weight control and body composition, urinary health, skin and coat diseases, and aging.

These and other features, aspects and advantages of the present invention will become evident to those skilled in the art from reading the present disclosure.

DETAILED DESCRIPTION OF THE INVENTION

Sequences

SEQ. ID NO. 1 – 16s-23s intergenic spacer nucleotide sequence from *Lactobacillus murinus* AHC 1222 (NCIMB 41194).

SEQ. ID NO. 2 – 16s-23s intergenic spacer nucleotide sequence from *Lactobacillus murinus* AHC 3133 (NCIMB 41195).

SEQ. ID NO. 3 – 16s-23s intergenic spacer nucleotide sequence from *Lactobacillus murinus* AHC 5323 (NCIMB 41196).

SEQ. ID NO. 4 – 16s-23s intergenic spacer nucleotide sequence from *Lactobacillus murinus* AHC 6331 (NCIMB 41197).

SEQ. ID NO. 5 – 16s-23s left PCR primer sequence for sequence analysis.

SEQ. ID NO. 6 – 16s-23s right PCR primer sequence for sequence analysis.

Bacterial Deposit Numbers

The table below describes the species, strain number and deposit number for probiotic *Lactobacilli* obtainable by isolation from resected and washed gastrointestinal tract of mammals useful in the present invention. The bacterial strains have been deposited with the National Collections of Industrial Food and Marine Bacteria (NCIMB), Aberdeen, UK.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Deposit Number</th>
<th>16 s-23s Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus murinus AHC 1222</td>
<td>NCIMB 41194</td>
<td>SEQ. ID NO. 1</td>
</tr>
<tr>
<td>Lactobacillus murinus AHC 3133</td>
<td>NCIMB 41195</td>
<td>SEQ. ID NO. 2</td>
</tr>
<tr>
<td>Lactobacillus murinus AHC 5323</td>
<td>NCIMB 41196</td>
<td>SEQ. ID NO. 3</td>
</tr>
<tr>
<td>Lactobacillus murinus AHC 6331</td>
<td>NCIMB 41197</td>
<td>SEQ. ID NO. 4</td>
</tr>
<tr>
<td>Lactobacillus salivarius UCC118</td>
<td>NCIMB 40829</td>
<td>-</td>
</tr>
<tr>
<td>Lactobacillus salivarius UCC1</td>
<td>NCIMB 40830</td>
<td>-</td>
</tr>
<tr>
<td>Lactobacillus salivarius AH102</td>
<td>NCIMB 41044</td>
<td>-</td>
</tr>
<tr>
<td>Lactobacillus salivarius AH103</td>
<td>NCIMB 41045</td>
<td>-</td>
</tr>
<tr>
<td>Lactobacillus salivarius AH105</td>
<td>NCIMB 41047</td>
<td>-</td>
</tr>
<tr>
<td>Lactobacillus salivarius AH109</td>
<td>NCIMB 41093</td>
<td>-</td>
</tr>
<tr>
<td>Lactobacillus salivarius AH110</td>
<td>NCIMB 41094</td>
<td>-</td>
</tr>
<tr>
<td>Lactobacillus casei AH101</td>
<td>NCIMB 41043</td>
<td>-</td>
</tr>
<tr>
<td>Lactobacillus casei AH104</td>
<td>NCIMB 41046</td>
<td>-</td>
</tr>
<tr>
<td>Lactobacillus casei AH111</td>
<td>NCIMB 41095</td>
<td>-</td>
</tr>
<tr>
<td>Lactobacillus casei AH112</td>
<td>NCIMB 41096</td>
<td>-</td>
</tr>
<tr>
<td>Lactobacillus casei AH113</td>
<td>NCIMB 41097</td>
<td>-</td>
</tr>
</tbody>
</table>

All weights, measurements and concentrations herein are measured at 25°C on the composition in its entirety, unless otherwise specified.

Unless otherwise indicated, all percentages of compositions referred to herein are weight percentages and all ratios are weight ratios.

Unless otherwise indicated, all molecular weights are weight average molecular weights.

Unless otherwise indicated, the content of all literature sources referred to within this text are incorporated herein in full by reference.

Except where specific examples of actual measured values are presented, numerical values referred to herein should be considered to be qualified by the word “about”.

Within the following description, the abbreviation CFU (“colony-forming unit”) designates the number of bacterial cells revealed by microbiological counts on agar plates, as will be commonly understood in the art.

As used herein, the term “mutants thereof” includes derived bacterial strains having at least 88% homology, preferably at least 90% homology, more preferably 95% homology to the 16s-23s intergenic spacer polynucleotide sequence of a referenced strain, but otherwise comprising DNA mutations in other DNA sequences in the bacterial genome.

As used herein, the term “DNA mutations” includes natural or induced mutations comprising at least single base alterations including deletions, insertions, transversions, and other DNA modifications known to those skilled in the art, including genetic modification introduced into a parent nucleotide or amino acid sequence whilst maintaining at least 50% homology to the parent sequence. Preferably, the sequence comprising the DNA mutation or mutations has at least
60%, more preferably at least 75%, more preferably still 85% homology with the parental sequence. As used herein, sequence "homology" can be determined using standard techniques known to those skilled in the art. For example, homology may be determined using the on-line homology algorithm "BLAST" program, publicly available at http://www.ncbi.nlm.nih.gov/BLAST/.

As used herein "genetic modification" includes the introduction of exogenous and/or endogenous DNA sequences into the genome of an organism either by insertion into the genome of said organism or by vectors including plasmid DNA or bacteriophage as known by one skilled in the art, said DNA sequence being at least two deoxyribonucleic acid bases in length.

As used herein, "companion animal" means a domestic animal. Preferably, "companion animal" means a domestic canine, feline, rabbit, ferret, horse, cow, or the like. More preferably, "companion animal" means a domestic canine or feline.

The strain of lactic acid bacteria of the genus Lactobacilli murinus obtainable by isolation from resected and washed canine gastrointestinal tract can be used to deliver probiotic benefit following oral consumption in animals, preferably companion animals or humans. This probiotic benefit generally maintains and improves the overall health of the animal. Non-limiting elements of animal health and physiology that benefit, either in therapeutically relieving the symptoms of, or disease prevention by prophylaxis include inflammatory disorders, immunodeficiency, inflammatory bowel disease, irritable bowel syndrome, cancer (particularly those of the gastrointestinal and immune systems), diarrhoeal disease, antibiotic associated diarrhoea, appendicitis, autoimmune disorders, multiple sclerosis, Alzheimer's disease, amyloidosis, rheumatoid arthritis, arthritis, joint mobility, diabetes mellitus, bacterial infections, viral infections, fungal infections, periodontal disease, urogenital disease, surgical associated trauma, surgical-induced metastatic disease, sepsis, weight loss, weight gain, excessive adipose tissue accumulation, anorexia, fever control, cachexia, wound healing, ulcers, gut barrier infection, allergy, asthma, respiratory disorders, circulatory disorders, coronary heart disease, anaemia, disorders of the blood coagulation system, renal disease, disorders of the central nervous system, hepatic disease, ischaemia, nutritional disorders, osteoporosis, endocrine disorders, and epidermal disorders. Preferred are treatment of the gastrointestinal tract, including treatment or prevention of diarrhoea; immune system regulation, preferably the treatment or prevention of autoimmune disease and inflammation; maintaining or improving the health of the skin and/or coat system, preferably treating or preventing atopic disease of the skin; ameliorating or reducing the effects of aging, including mental awareness and activity levels; and preventing weight loss during and following infection.
The treatment of the disorders disclosed above may be measured using techniques known to those skilled in the art. For example, inflammatory disorders including autoimmune disease and inflammation may be detected and monitored using *in vivo* immune function tests such as lymphocyte blastogenesis, natural killer cell activity, antibody response to vaccines, delayed-type hypersensitivity, and mixtures thereof. Such methods are briefly described herein, but well known to those skilled in the art.

1. **Lymphocyte blastogenesis**: This assay measures the proliferative response *in vitro* of lymphocytes isolated from fresh whole blood of test and control animals to various mitogens and is a measure of overall T- and B-cell function. Briefly, peripheral blood mononucleocytes (PBMC) are isolated from whole blood by Ficoll-Hypaque density centrifugation methods known to those skilled in the art. The isolated PBMCs are washed twice in RPMI 1640 cell media supplemented with HEPES, L-glutamine and penicillin/streptomycin. The washed cells are resuspended in RPMI 1640, counted, and the cell density adjusted appropriately. The 2x10^5 cells are exposed to a range of concentrations (0.1μg/ml to 10μg/ml) of various mitogens, some examples of which include pokeweed mitogen (Gibco), phytohaemagglutinin (Gibco) and concanavalin A (Sigma) in triplicate for 72 hours at 37°C and 5% CO₂ with 10% foetal bovine serum (Sigma). At 54 hours the cells are pulsed with 1μCi ^3^H-thymidine, and the cells harvested and scintillation counts read on a TopCount NXT at 72 hours.

2. **Natural killer cell activity**: As described in US6,310,090, this assay measures the *in vitro* effector activity of natural killer cells isolated from fresh whole blood of test and control animals. Natural killer cells are a component of the innate immune function of a mammal. Canine thyroid adenocarcinoma cells were used as target cells in assessing NK cell cytotoxic activity. This cell line was previously shown to be susceptible to killing by canine NK cell. Target cells were cultured in a T75 flask with 20 mL minimum essential medium (MEM; Sigma Chem. Co., St. Louis, Mo.) supplemented with 10% fetal calf serum (FCS), 100 U/mL of penicillin and 100 μg/mL of streptomycin. When confluent, target cells were trypsinsized, washed 3 times and resuspended to 5x10^5 cells/mL in complete medium (RPMI-1640+10% FCS+100 U/mL of penicillin+100 μg/mL of streptomycin). Triplicate 100 μL aliquots of the target cells were pipetted into 96-well U-bottom plates (Costar, Cambridge, Mass.) and incubated for 8 hours to allow cell adherence. Lymphocytes (effector cells; 100 μL) isolated by Ficoll-Hypaque separation (as described above) were then added to the target cells to provide an effector/target cell (E:T) ratio of 10:1. After 10 hours of incubation at 37°C, 20 μL of a substrate containing
5 μg of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was added. The mixture was incubated for 4 hours at 37°C after which the unmetabolized MTT was removed by aspiration. The formazan crystals were dissolved by adding 200 μL of 95% ethanol. Optical density was measured at 570 nm using a microplate reader. The percentage of NK cell-specific lysis was calculated as follows:

Specific Cytotoxicity (%) = 100 x \{1 - [(OD of target cells and effector cells - OD of effector cells)/(OD of target cells)]\}

3. Antibody response to vaccines: The test subjects are given an array (up to 5) of vaccines after at least 12 weeks of probiotic or control feeding. The vaccines may be a mixture of novel and redundant vaccines. Non-limiting examples of vaccine arrays that may be used include mixtures of vaccines prepared by Fort Dodge Animal Health. Non-limiting examples of vaccines suitable for use herein include Canine distemper, adenovirus, coronavirus, parainfluenza, and parvovirus. The test subject’s vaccine history will determine the vaccines to be used. The specific antibodies to the vaccines given are measured in blood for 3 weeks and the length and strength of response in control and probiotic feeding groups compared.

4. Delayed-type hypersensitivity: An in vivo, non-invasive method of assessing immune system status. This test comprises an intradermal injection of the polyclonal mitogen Phytohemmaglutinin (PHA) in combination with sheep red blood cells a multivalent vaccine, histamine (100μL of 0.0275 g/L Histamine Phosphate; Greer, Lenoir, NC), or PBS (100μL of Phosphate Buffered Saline, 8.5 g/L; Sigma). The immune response to the antigen is recorded as skinfold thickness using calipers at time intervals of 0, 24, 48 and 72 hours post-injection. An increase in skinfold thickness is indicative of a greater hypersensitivity response that should be decreased by treatment with the bacteria of the present invention.

Additional methods for determining the effect of the Lactobacilli bacteria of the present invention are described in US6,133,323 and US6,310,090.

Furthermore, ameliorating the effects of age may be determined using dual x-ray absorptiometry or CT scan for measuring body composition, including body fat mass, fat-free mass and bone mineral content. Similarly, this method may be used to determine anatomy changes such as weight loss or bone density in subjects following infection.

The Lactobacilli of the present invention may also be used in a method for reducing stress levels in companion animals. Concentrations of blood stress hormones including epinephrine, norepinephrine, dopamine, cortisol and C-reactive protein may be measured to determine stress
levels and their reduction or maintenance. These hormones are recognized biomarkers of stress and can be readily measured using techniques known to those skilled in the art.

Further still, maintenance or improvement of the health of the skin and/or coat system of companion animals, including atopic disease of the skin, may be measured using skin and coat assessments conducted by two trained individuals. Examples of criteria examined during such assessments include:

a) Shedding index: A shedding index is assigned to each test subject by collecting hair produced during a standardized brushing session. The hair is retained and weighed, and control and test subjects compared.

b) Subjective skin/coat evaluations: Trained panelists subjectively evaluate skin and coat condition by assessing shedding, dander, shine, uniformity, softness and density.

c) Skin functional assessment: The barrier function of the skin may be assessed by wiping the skin surface with an acetone-soaked gauze. This technique effectively disrupts the skin barrier by removing single cell layers and associated lipid fractions of the stratum corneum. Barrier disruption is quantified by measuring the increase in transepidermal water loss (TEWL) and the degree of redness of the insulted site using methods known to those skilled in the art. Redness (erythema) scores are obtained using the previously described camera and lighting system. TEWL readings and redness scores are obtained immediately before and after disruption, and at five and 24-hour endpoints to assess the protective and healing properties of skin.

The treatment or prevention of gastrointestinal infection, including diarrhoea, in companion animals may be measured using stool scores. Stools scores may be recorded daily according to the following guidelines and control and test groups compared before and after feeding with the bacteria according to the present invention.

Score: 5 Extremely Dry

This stool is hard and does not stick to surfaces. Stool will roll when pushed. No indentations are made when stool is picked up. Stool is often defecated in groups of individual stools instead of one complete unit. The stool maintains original shape after collection.

Score: 4 Firm (Ideal stool)

This stool is firm, well shaped, and cylindrical. This stool does not break apart easily when picked up. This stool may leave residue on surfaces and gloves. This stool is often defecated as one unit. The stool maintains original shape after collection.
Score: 3 Soft, with shape
This stool is soft, however there are definite shapes. This stool will break apart easily and will
definitely leave residue on surfaces and gloves. The stool often loses original shape after
collection. This stool is often present with another score but can comprise whole stool sample.

Score: 2 Soft, without shape
This stool is soft and will have no cylindrical shape. The shape often associated with a “2” is a
“cow patty” shape. This stool will lose the original shape when collected and will definitely leave
residue on surfaces and gloves. This stool score is often present with another score but can
comprise the whole stool sample. This stool sample may spread over an area of several inches.

Score: 1 Liquid
This stool score will always resemble liquid and there may or may not be particulate matter
present. This stool will often be defecated in groups of piles instead of one complete unit.
Mucous is often present with this stool sample. This stool sample is very difficult to collect and
residue is always left on surfaces and gloves. This stool sample may spread over an area of
several inches.

In addition, other observations are also recorded, including: blood in stool; foreign object
in stool; or mucous in stool.

Furthermore, the treatment of gastrointestinal infection in companion animals may
comprise improving microbial ecology of companion animals. Improving the microbial ecology
of companion animals preferably comprises reducing the levels of pathogenic bacteria in the
faeces of companion animals. The levels of pathogenic bacteria present in the faeces of
companion animals may be enumerated using the standard plate count method known to those
skilled in the art. More preferably, the pathogenic bacteria are selected from the group consisting
of Clostridia, Escherichia, Salmonella, bacteriodes and mixtures thereof. Non-limiting examples
of suitable strains of pathogenic bacteria include C. perfringens, C. difficile, Eschericia coli,
Salmonella typhimurium and mixtures thereof.

The method of use of the bacteria of the present invention may also include the treatment,
either prophylactic or therapeutic of the urinary tract of mammals, preferably companion animals.
Non-limiting examples of urinary tract treatment include treatment or prevention of urinary tract
infections, treatment or prevention of kidney disease, including kidney stones, treatment or
prevention of bladder infections and the like. Without being bound by theory, it is believed that
the Lactobacilli bacteria of the present invention are useful in preventing these ailments as a result
of their ability to degrade oxalic acid, as demonstrated in vitro. Oxalic acid is a by-product of
urinary metabolism that can form insoluble precipitates that result in kidney, bladder and other
urinary tract infections. By degrading oxalic acid, and therefore potentially preventing its
precipitation and build up in the urinary tract, the bacteria of the present invention may treat and prevent infections and other ailments of the urinary tract. Oxalic acid degradation may be measured in vitro using the Oxalic acid test kit cat # 755699 commercially available from Boehringer Mannheim/R-Biopharm.

The Lactobacilli of the present invention may be used in a method for improving or maintaining the health of companion animals comprising improving fiber digestion. Improving fiber digestion is desirable as it promotes the growth of said probiotic bacteria, as well as beneficial endogenous microflora, which aid in the suppression of some potentially pathogenic bacteria. In addition, a decrease in the amount of toxic metabolites and detrimental enzymes that result from colonic fermentation has been documented in humans (Tomomatsu, H. “Health effects of oligosaccharides”, (1994) Food Technol, 48, 61-65). Fiber digestion may be determined using the method described in Vickers et al. (2001), “Comparison of fermentation of selected fructooligosaccharides and other fiber substrates by canine colonic microflora”, Am. J. Vet. Res. 61 (4), 609-615, with the exception that instead of inoculating using diluted fecal samples each experiment used pure cultures of the bacterial strains of interest.

Preferably, the methods of the present invention comprise administration of Lactobacilli selected from the species comprising Lactobacilli salivarius, Lactobacilli casei, or Lactobacilli murinus.

Non-limiting examples of probiotic Lactobacilli obtainable by isolation from resected and washed mammalian GI tract useful in the present invention are described in more detail in WO 98/35014, WO 03/010298, and WO 03/010299.

WO 98/35014 describes probiotic Lactobacilli salivarius isolated from resected and washed human GI tract. These bacteria are deposited at the NCIMB under deposit numbers 40829 and 40830.

WO 03/010298 describes further examples of probiotic Lactobacilli salivarius isolated from resected and washed human GI tract. These bacteria are deposited at the NCIMB under the deposit numbers 41044, 41045, 41047, 41093 and 41094.

WO 03/010299 describes further examples of probiotic Lactobacilli casei isolated from resected and washed human GI tract. These bacteria are deposited at the NCIMB under the deposit numbers 41043, 41046, 41095, 41096 and 41097.

Further examples include strains of Lactobacilli obtainable by isolation from resected and washed canine gastrointestinal tract having probiotic activity in animals. Probiotics are micro-organisms, either viable or dead, processed compositions of micro-organisms, their constituents such as proteins or carbohydrates, or purified fractions of bacterial ferments that beneficially affect a host. The general use of probiotic bacteria is in the form of viable cells. However, it can
be extended to non-viable cells such as killed cultures or compositions containing beneficial factors expressed by the probiotic bacteria. This may include thermally killed micro-organisms, or micro-organisms killed by exposure to altered pH or subjected to pressure. For the purpose of the present invention, "probiotics" is further intended to include the metabolites generated by the micro-organisms of the present invention during fermentation, if they are not separately indicated. These metabolites may be released to the medium of fermentation, or they may be stored within the micro-organism. As used herein "probiotic" also includes bacteria, bacterial homogenates, bacterial proteins, bacterial extracts, bacterial ferment supernatants, and mixtures thereof, which perform beneficial functions to the host animal when given at a therapeutic dose.

It has been found that lactic acid bacteria of the genus *Lactobacilli* obtainable by isolation directly from resected and washed GI tract of mammals are adherent to the GI tract following feeding of viable bacterial cells, and are also significantly immunomodulatory when fed to animals in viable, non-viable or fractionated form. Without being bound by theory, it is believed that *Lactobacilli* obtainable by isolation from resected and washed GI tract closely associate with the gut mucosal tissues. Without further being bound by theory, this is believed to result in the probiotic *Lactobacilli* of the present invention generating alternative host responses that result in its probiotic action. It has been found that probiotic bacteria obtainable by isolation from resected and washed GI tract can modulate the host's immune system via direct interaction with the mucosal epithelium, and the host's immune cells. This immunomodulation, in conjunction with the traditional mechanism of action associated with probiotic bacteria, i.e. the prevention of pathogen adherence to the gut by occlusion and competition for nutrients, results in the *Lactobacilli* of the present invention being highly efficacious as a probiotic organism.

The *Lactobacilli* of the present invention, obtainable by isolation from resected and washed canine GI tract, have *in vitro* anti-microbial activity against a number of pathogenic bacterial strains/species. Without being bound by theory, it is believed that this *in vitro* anti-microbial activity is indicative of potential probiotic activity *in vivo* in animals, preferably companion animals such as canines and felines. The lactic acid bacteria of the present invention preferably have *in vitro* anti-microbial activity against *Salmonella typhimurium, Listeria monocytogenes, Listeria innocua* or *Eschericia coli*, more preferably a mixture of these strains, more preferably still, all of these strains.

Without being bound by theory, it is believed that the anti-microbial activity of the lactic acid bacteria of the present invention may be the result of a number of different actions by the lactic acid bacteria herein. It has previously been suggested in the art that several strains of bacteria isolated from faecal samples exert their probiotic effect in the GI tract following oral consumption by preventing the attachment of pathogenic organisms to the gut mucosa by
occlusion. This requires oral consumption of “live” or viable bacterial cells in order for a colony of bacteria to be established in the gut. However, it is believed that the Lactobacilli of the present invention, obtainable by isolation from resected and washed canine GI tract, whilst exerting some probiotic effect due to occlusion if given in a viable form, may deliver a substantial probiotic effect in either the viable or non-viable form due to the production during fermentation in vitro of a substance or substances that either inhibit the growth of or kill pathogenic micro-organisms, and/or alter the host animal’s immune competence. This form of probiotic activity is desirable, as the bacteria of the present invention can be given as either viable or non-viable cultures or purified fermentation products and still deliver a beneficial therapeutic effect to the host animal.

Preferably, the lactic acid bacteria of the present invention are able to maintain viability following transit through the GI tract. This is desirable in order for live cultures of the bacteria to be taken orally, and for colonisation to occur in the intestines and bowel following transit through the oesophagus and stomach. Colonisation of the intestine and bowel by the lactic acid bacteria of the present invention is desirable for long-term probiotic benefits to be delivered to the host. Oral dosing of non-viable cells or purified isolates thereof induces temporary benefits, but as the bacteria are not viable, they are not able to grow, and continuously deliver a probiotic effect in situ. As a result this may require the host to be dosed regularly in order to maintain the health benefits. In contrast, viable cells that are able to survive gastric transit in the viable form, and subsequently colonise by adhering to and proliferating on the gut mucosa are able to deliver probiotic effects continuously in situ.

Therefore, it is preferable that the lactic acid bacteria of the present invention maintain viability after suspension in a media having a pH of 2.5 for 1 hour. As used herein, “maintain viability” means that at least 25% of the bacteria initially suspended in the test media are viable using the plate count method known to those skilled in the art. Preferably, “maintain viability” means that at least 50% of the bacteria initially suspended are viable. It is desirable for the lactic acid bacteria of the present invention to maintain viability following exposure to low pH as this mimics the exposure to gastric juices in the stomach and upper intestine in vivo following oral consumption in animals.

Furthermore, it is preferable that the lactic acid bacteria of the present invention have a growth of at least 66% wherein the presence of at least 0.5% porcine bile salts. Growth, as used herein is described in further detail in example 3. More preferably, the bacteria of the present invention have a growth of at least 33% when in the presence of at least 1% porcine bile salts. More preferably still, the bacteria of the present invention have a growth of 100% in the presence of 0.5% porcine bile salts. Without being bound by theory it is believed that the lactic acid bacteria of the present invention, capable of maintaining viability in the presence of at least 0.5%
porcine bile salts, are able to survive the conditions present in the intestine. This is thought to be a result of the addition of porcine bile to the culture medium mimicking the conditions of the intestine.

Further still, it is preferable that the lactic acid bacteria of the present invention have significant adhesion to gut epithelial cells \textit{in vitro}. As used herein, “significant adhesion” means at least 0.2% of the total number of lactic acid bacteria co-incubated with the epithelial cells \textit{in vitro} adhere to the epithelial cells. More preferably, at least 0.3% of bacterial cells co-incubated adhere to epithelial cells \textit{in vitro}. Without wishing to be bound by theory, it is believed that gut epithelial cell adherence \textit{in vitro} is indicative of the lactic acid bacteria’s ability to colonise the GI tract of an animal \textit{in vivo}.

Preferably, the strain of lactic acid bacteria according to the present invention is of a species selected from the group comprising \textit{Lactobacillus murinus/ruminus}, \textit{Lactobacillus crispatus}, \textit{Lactobacillus acidophilus}, \textit{Lactobacillus fermentum}, \textit{Lactobacillus buchneri}, \textit{Lactobacillus reuteri}, \textit{Lactobacillus lactis}, or mixtures thereof, more preferably \textit{Lactobacillus murinus/ruminus}.

The 16s-23s intergenic polynucleotide sequence is known to those skilled in the art as the sequence of DNA in the bacterial genome that can be used in order to identify different species and strains of bacteria. This intergenic polynucleotide sequence can be determined by the method detailed below.

\textit{Lactobacilli} colonies were picked from an Agar plate and resuspended in IX PCR buffer, heated at 96°C for 5 minutes, frozen at -70°C for 5-10 minutes, thawed and an aliquot was added to a PCR eppendorf tube. PCR was performed using the intergenic spacer (IGS) primers, IGS L: 5’-GCTGGATCACCTCCTTTC-3’ (SEQ. ID NO. 5) and IGS R: 5’-CTGGTGCCAAGGCATCCA-3’ (SEQ. ID NO. 6). The cycling conditions were 96°C for 1 min (1 cycle), 94°C for 30 sec, 53°C for 30 sec, 72°C for 30 sec (28 cycles). The PCR reaction contained 5 μl of DNA, PCR buffer (Bioline, UK), 0.2 mM dNTPs (Roche, UK), 0.4 μM IGS L and R primer (150ng/50 μl) (MWG Biotech, Germany) and Bioline Taq polymerase (0.6 units). The PCR reactions were performed on a Hybaid thermocycler. The PCR products (8 μl) were ran alongside a molecular weight marker (φX174 Hae III, Promega) on a 2 % agarose EtBr stained gel in TAE, to determine their IGS profile. Using the same primers as above, the intergenic spacer (IGS) DNA was sequenced for the 4 canine \textit{Lactobacilli} strains using methods known to those skilled in the art.

In a preferred embodiment of the present invention, the strain of lactic acid bacteria of the genus \textit{Lactobacilli}, has a 16s-23s intergenic polynucleotide sequence that has at least 88%,
preferably at least 90%, more preferably at least 95% homology with the polynucleotide sequence according to SEQ. ID NO. 1. More preferably, the strain of lactic acid bacteria according to the present invention has a 16s-23s polynucleotide sequence according to SEQ. ID NO. 1. More preferably still, the strain of lactic acid bacteria according to the present invention is *Lactobacilli murinus/ruminus* strain NCIMB 41194 (AHC1222), or a mutant thereof.

In another preferred embodiment of the present invention, the strain of lactic acid bacteria of the genus *Lactobacilli*, has a 16s-23s intergenic polynucleotide sequence that has at least 88%, preferably at least 90%, more preferably at least 95% homology with the polynucleotide sequence according to SEQ. ID NO. 2. More preferably, the strain of lactic acid bacteria according to the present invention has a 16s-23s polynucleotide sequence according to SEQ. ID NO. 2. More preferably still, the strain of lactic acid bacteria according to the present invention is *Lactobacilli murinus/ruminus* strain NCIMB 41196 (AHC5323), or a mutant thereof.

In another preferred embodiment of the present invention, the strain of lactic acid bacteria of the genus *Lactobacilli*, has a 16s-23s intergenic polynucleotide sequence that has at least 88%, preferably at least 90%, more preferably at least 95% homology with the polynucleotide sequence according to SEQ. ID NO. 3. More preferably, the strain of lactic acid bacteria according to the present invention has a 16s-23s polynucleotide sequence according to SEQ. ID NO. 3. More preferably still, the strain of lactic acid bacteria according to the present invention is *Lactobacilli murinus/ruminus* strain NCIMB 41197 (AHC6331), or a mutant thereof.

In another preferred embodiment of the present invention, the strain of lactic acid bacteria of the genus *Lactobacilli*, has a 16s-23s intergenic polynucleotide sequence that has at least 88%, preferably at least 90%, more preferably at least 95% homology with the polynucleotide sequence according to SEQ. ID NO. 4. More preferably, the strain of lactic acid bacteria according to the present invention has a 16s-23s polynucleotide sequence according to SEQ. ID NO. 4. More preferably still, the strain of lactic acid bacteria according to the present invention is *Lactobacilli murinus/ruminus* strain NCIMB 41195 (AHC3133), or a mutant thereof.

Following sequencing, the obtained sequences for the four deposited strains were compared with the on-line sequence database “BLAST”, available at http://www.ncbi.nlm.nih.gov/BLAST/ for homology with other deposited bacterial 16s-23s sequences. The closest matches for AHC 1222, 3133, 5323 and 6331 (NCIMB 41194, 41195, 41196 and 41197 respectively) was the strain *Lactobacillus ruminis* AF080103. However several major differences between the AHC strains and the *Lactobacillus ruminis* strain exist at the spacer region, resulting in a homology score of 87%, and a BLAST score of at least 170.

The method of use of the *Lactobacilli* bacteria of the present invention typically involves oral consumption by the animal. Oral consumption may take place as part of the normal dietary
intake, or as a supplement thereto. The oral consumption typically occurs at least once a month, preferably at least once a week, more preferably at least once per day. The *Lactobacilli* may be given to the companion animal in a therapeutically effective amount to maintain or improve the health of the animal, preferably a companion animal. As used herein, the term "therapeutically effective amount" with reference to the lactic acid bacteria, means that amount of the bacteria sufficient to provide the desired effect or benefit to a host animal in need of treatment, yet low enough to avoid adverse effects such as toxicity, irritation, or allergic response, commensurate with a reasonable benefit/risk ratio when used in the manner of the present invention. The specific "therapeutically effective amount" will vary with such factors as the particular condition being treated, the physical condition of the user, the duration of the treatment, the nature of concurrent therapy (if any), the specific dosage form to be used, the carrier employed, the solubility of the dose form, and the particular dosing regimen.

Preferably, the lactic acid bacteria are given to the companion animal at a dose of from 1.0E+04 to 1.0E+14 CFU per day, more preferably from 1.0E+06 to 1.0E+12 CFU per day. The composition preferably may contain at least 0.001% of from 1.0E+04 to 1.0E+12 CFU/g of the *Lactobacilli* obtainable by isolation from resected and washed mammalian GI tract. The *Lactobacilli* bacteria can be given to the animal in either viable form, or as killed cells, or distillates, isolates or other fractions of the fermentation products of the lactic acid bacteria of the present invention, or any mixture thereof.

Preferably, the *Lactobacilli* bacteria, or a purified or isolated fraction thereof, are used to prepare a composition intended to maintain or improve the health of an animal. As indicated above, the composition may be part of the normal dietary intake, or a supplement. Where the composition comprises part of the normal dietary intake, the composition may be in the form of a dried animal food such as biscuits or kibbles, a processed grain feed, a wet animal food, yogurts, gravies, chews, treats and the like.

Such compositions may comprise further components. Other components are beneficial for inclusion in the compositions used herein, but are optional for purposes of the invention. For example, food compositions are preferably nutritionally balanced. In one embodiment, the food compositions may comprise, on a dry matter basis, from about 20% to about 50% crude protein, preferably from about 22% to about 40% crude protein, by weight of the food composition. The crude protein material may comprise any material having a protein content of at least about 15% by weight, non-limiting examples of which include vegetable proteins such as soybean, cottonseed, and peanut, animal proteins such as casein, albumin, and meat tissue. Non-limiting examples of meat tissue useful herein include fresh meat, and dried or rendered meals such as fish meal, poultry meal, meat meal, bone meal and the like. Other types of suitable crude protein
sources include wheat gluten or corn gluten, and proteins extracted from microbial sources such as yeast.

Furthermore, the food compositions may comprise, on a dry matter basis, from about 5% to about 35% fat, preferably from about 10% to about 30% fat, by weight of the food composition. Further still, food compositions comprising the lactic acid bacteria of the present invention may also comprise from about 4% to about 25% total dietary fiber. The compositions may also comprise a multiple starch source as described in WO99/51108.

The compositions of the present invention may further comprise a source of carbohydrate. Grains or cereals such as rice, corn, milo, sorghum, barley, alfalfa, wheat, and the like are illustrative sources. In addition, the compositions may also contain other materials such as dried whey and other dairy by products.

The compositions comprising the bacteria of the present invention may also comprise a prebiotic. "Prebiotic" includes substances or compounds that are fermented by the intestinal flora of the pet and hence promote the growth or development of lactic acid bacteria in the gastrointestinal tract of the pet at the expense of pathogenic bacteria. The result of this fermentation is a release of fatty acids, in particular short-chain fatty acids in the colon. This has the effect of reducing the pH value in the colon. Non-limiting examples of suitable prebiotics include oligosaccharides, such as inulin and its hydrolysis products commonly known as fructooligosaccharides, galacto-oligosaccharides, xylo-oligosaccharides or oligo derivatives of starch. The prebiotics may be provided in any suitable form. For example, the prebiotic may be provided in the form of plant material which contains the fiber. Suitable plant materials include asparagus, artichokes, onions, wheat or chicory, or residues of these plant materials. Alternatively, the prebiotic fiber may be provided as an inulin extract, for example extracts from chicory are suitable. Suitable inulin extracts may be obtained from OrAfti SA of Tirlemont 3300, Belgium under the trade mark "Raftiline". For example, the inulin may be provided in the form of Raftiline (g) ST which is a fine white powder which contains about 90 to about 94% by weight of inulin, up to about 4% by weight of glucose and fructose, and about 4 to 9% by weight of sucrose. Alternatively, the fiber may be in the form of a fructooligosaccharide such as obtained from OrAfti SA of Tirlemont 3300, Belgium under the trade mark "Raftilose". For example, the inulin may be provided in the form of Raftilose (g) P95. Otherwise, the fructooligosaccharides may be obtained by hydrolyzing inulin, by enzymatic methods, or by using micro-organisms.

For dried pet foods a suitable process is extrusion cooking, although baking and other suitable processes may be used. When extrusion cooked, the dried pet food is usually provided in the form of a kibble. If a prebiotic is used, the prebiotic may be admixed with the other ingredients of the dried pet food prior to processing. A suitable process is described in European
patent application No 0850569. If a probiotic micro-organism is used, the organism is best coated onto or filled into the dried pet food. A suitable process is described in European patent publication Number EP 0 862 863.

For wet foods, the processes described in US patents 4,781,939 and 5,132,137 may be used to produce simulated meat products. Other procedures for producing chunk type products may also be used; for example cooking in a steam oven. Alternatively, loaf type products may be produced by emulsifying a suitable meat material to produce a meat emulsion, adding a suitable gelling agent, and heating the meat emulsion prior to filling into cans or other containers. Typical wet food compositions may comprise from about 5% to about 15% protein, from about 1% to about 10% fat, and from about 1% to about 7% fiber. Non-limiting ingredients that may be used in wet food compositions include chicken, turkey, beef, whitefish, chicken broth, turkey broth, beef broth, chicken liver, brewers rice, corn grits, fish meal, egg, beet pulp, chloride, flax meal, lamb, beef by-products, chicken by-products and mixtures thereof.

In another embodiment, supplement compositions such as biscuits, chews, and other treats may comprise, on a dry matter basis, from about 20% to about 60% protein, or from about 22% to about 40% protein, by weight of the supplement composition. As another example, the supplement compositions may comprise, on a dry matter basis, from about 5% to about 35% fat, or from about 10% to about 30% fat, by weight of the supplement composition. Food and supplement compositions intended for use by canines or felines are commonly known in the art.

The pet foods may contain other active agents such as long chain fatty acids and zinc. Suitable long chain fatty acids include alpha-linoleic acid, gamma linolenic acid, linoleic acid, eicosapentanoic acid, and docosahexanoic acid. Fish oils are a suitable source of eicosapentanoic acids and docosahexanoic acid.

Borage oil, blackcurrant seed oil and evening primrose oil are suitable sources of gamma linolenic acid. Safflower oils, sunflower oils, corn oils and soy bean oils are suitable sources of linoleic acid. These oils may also be used in the coating substrates referred to above. Zinc may be provided in various suitable forms, for example as zinc sulfate or zinc oxide. Further, many ingredients commonly used in pet foods are sources of fatty acids and zinc. It has been observed that the combination of chicory, as a source of prebiotic, with a linoleic-acid rich oil, such as soy bean oil, provides unexpected benefits, suggestive of a synergistic effect.

Where the composition is in the form of a gravy, the composition preferably comprises at least 10% of a broth, or stock, non-limiting examples of which include vegetable beef, chicken or ham stock. Typical gravy compositions may comprise from about 0.5% to about 5% crude protein, from about 2% to about 5% crude fat, and from about 1% to about 5% fiber.
Further non-limiting examples of supplements suitable for use herein include powders, oil suspensions, milk-based suspensions cheeses, and pills or capsules. Where the composition is in the form of a pill, suitable binding agents are required to maintain the pill in a solid, pressed form. Non-limiting examples of suitable binding agents include the natural gums such as xanthan gum, pectins, lecithins, alginates and others known to those skilled in the art. Where the composition is in the form of a capsule, the composition is preferably encapsulated using technologies known to those skilled in the art. Non-limiting examples of suitable encapsulation materials include polyvinyl alcohol (PVA), polyvinylpyrroldione (PVP), alginates, and gelatin. Yogurt-based compositions may comprise from about 1% to about 5% protein, from about 10% to about 20% carbohydrate, from about 1% to about 5% fiber, from about 1% to about 5% fat and from about 50% to about 90% liquid carrier such as milk.

Examples

Examples 1 to 4 are examples of dried kibble compositions comprising the probiotic *Lactobacilli murinus* used in accordance with the present invention.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage on a weight Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ex. 1</td>
</tr>
<tr>
<td>Cereal grains</td>
<td>To 100</td>
</tr>
<tr>
<td>Poultry by-product meal</td>
<td>43.5</td>
</tr>
<tr>
<td>Poultry fat</td>
<td>1.28</td>
</tr>
<tr>
<td>Egg product</td>
<td>2.4</td>
</tr>
<tr>
<td>Chicken liver meal</td>
<td>1.0</td>
</tr>
<tr>
<td>Brewer’s dried yeast</td>
<td>1.0</td>
</tr>
<tr>
<td>Monosodium phosphate</td>
<td>1.0</td>
</tr>
<tr>
<td>Calcium carbonate</td>
<td>0.8</td>
</tr>
<tr>
<td>Potassium chloride</td>
<td>0.6</td>
</tr>
<tr>
<td>Vitamins</td>
<td>0.4</td>
</tr>
<tr>
<td>Choline chloride</td>
<td>0.3</td>
</tr>
<tr>
<td>Minerals</td>
<td>0.3</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.1</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>0.03</td>
</tr>
<tr>
<td>Ingredient</td>
<td>Percentage on a weight Basis</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Ex. 5</td>
</tr>
<tr>
<td>Water</td>
<td>To 38</td>
</tr>
<tr>
<td>Poultry Liver</td>
<td>To 25</td>
</tr>
<tr>
<td>Poultry Products</td>
<td>25</td>
</tr>
<tr>
<td>Brewers Rice</td>
<td>5</td>
</tr>
<tr>
<td>Egg Product</td>
<td>3</td>
</tr>
<tr>
<td>Poultry Fat</td>
<td>2.9</td>
</tr>
<tr>
<td>Chicken Stock</td>
<td>0.6</td>
</tr>
<tr>
<td>Taurine</td>
<td>0.1</td>
</tr>
<tr>
<td>Vitamins</td>
<td>0.05</td>
</tr>
<tr>
<td>Minerals</td>
<td>0.05</td>
</tr>
<tr>
<td>Probiotic NCIMB 41096 (1E10 CFU/g)</td>
<td>4</td>
</tr>
</tbody>
</table>

Examples 5 to 7 are examples of wet pet food compositions comprising the probiotic *Lactobacilli murinus* used in accordance with the present invention.

Examples 8 to 10 are examples of yogurt supplement compositions comprising the probiotic *Lactobacilli murinus* used in accordance with the present invention.
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage on a weight Basis</th>
<th>Ex. 8</th>
<th>Ex. 9</th>
<th>Ex. 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td></td>
<td>82.75</td>
<td>81.9</td>
<td>82.7</td>
</tr>
<tr>
<td>Sugar</td>
<td></td>
<td>12</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Modified Starch</td>
<td></td>
<td>1.0</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Prebiotic</td>
<td></td>
<td>0.25</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Probiotic NCIMB 41047 (1E10 CFU/g)</td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Methods of use of Probiotic Lactobacilli for Companion Animals

P150&

Not yet assigned
2004-12-15
60/531,210
2003-12-19
6
PatentIn version 3.1
1
231
DNA
Lactobacillus murinus

misc_feature
(230)..(230)
n is a, g, c or t

atcgaccgcc ttttggtag ttttgagagg tctactctca aactttttct 60
tttgaeacta gataatatct ttttttttt tgttaattaa aataacgcag aacaccgcgt 120
ttttaaggt ttaaaacatt aatgttttat cgttaaactc ataaccatta tcgtaagata 180
atataggtta agttattaag ggcgcaggttt gatgccccttg gccaccaganan a 231

2
234
DNA
Lactobacillus murinus

misc_feature
(7)..(7)
n is a, g, c or t

atttcgnacc gccttttttgt aaactttttt tagtttttgag aggtcactc tcaaacttg 60
tcttttgaaaa ctagataata tctttttatt tttgttaatat taaaataacc gagaacccg 120
cgttttaaaag agtttttaac attaatgttt aatcgctaaa ctcataacca ttatcgttaa 180
atatatatg tttagttatt aagggcgcat gttggatgccc tttgcccacca gaga 234
P150& Sequence

<210> 3
<211> 234
<212> DNA
<213> Lactobacillus murinus

<220>
<221> misc_feature
<222> (233)..(233)
<223> n is a, g, c or t

<400> 3
atctcgaccc cctttacggt gaaacttggat tagttttgag aggtctactc tcacacttgt 60
tctttgaaaa ctgataataa tcttttatatt cttttgtaat taaataaacc gagaacaccg 120
cgtttttaag atgatcctaa ctctatacc attatcgtaag aatgatcctaa ctctatacc 180
ataaatagc ttagtgttt attcggttcg cgtttttaag atgatcctaa ctctatacc 234
gagaacaccg

<210> 4
<211> 235
<212> DNA
<213> Lactobacillus murinus

<220>
<221> misc_feature
<222> (226)..(226)
<223> n is a, g, c or t

<220>
<221> misc_feature
<222> (234)..(234)
<223> n is a, g, c or t

<400> 4
atctcgaccc gcctttaccc tgaaccttgat tagttttgag aggtctactc tcacacttgt 60
tctttgaaaa actgataataa tcttttatatt cttttgtaat taaataaacc gagaacaccg 120
gcggtttttaa gagtttttaaa cattatgttt tataatctgtt gctctatcataa actcataacc attatcgtaaa 180
gataaatatag ttagatgtt taggtggtgc tttgatggtgc atcataacc 235
gagaacaccg

<210> 5
<211> 18
<212> DNA
<213> Artificial

<220> artificial

<400> 5
gcctggagtac ctccttttc

<210> 6
<211> 18
<212> DNA
<213> Artificial

<220> artificial

<223> artificial
P150& Sequence

<400> 6
ctggtgccaa ggcatcca

3

3
WHAT IS CLAIMED IS:

1. Use of a composition comprising a probiotic strain of *Lactobacilli* obtainable by isolation from resected and washed mammalian gastrointestinal tract in the manufacture of a medicament for treatment of a companion animal selected from regulating the immune system of a companion animal, maintaining or improving the health of the skin and/or coat system of a companion animal, ameliorating or reducing the effects of aging in companion animals, preventing weight loss during and following infection in a companion animal, treating or preventing urinary tract ailments in companion animals, increasing fiber digestion in a companion animal, preventing or treating infection of the gastrointestinal tract of a companion animal, improving digestion in companion animals, reducing stress levels in a companion animal, or mixtures thereof.

2. The use according to claim 1 wherein said companion animal is selected from the group consisting of canines and felines.

3. The use according to claim 1 or claim 2 wherein said probiotic strain of *Lactobacilli* is isolated from resected and washed gastrointestinal tissue obtained from humans, canines or felines.

4. The use according to any one of claims 1 to 3 wherein said probiotic *Lactobacilli* is selected for the ability to survive and colonise the gastrointestinal tract of companion animals.

5. The use according to any one of claims 1 to 4 wherein said probiotic *Lactobacilli* has at least 33% growth when cultured in the presence of 0.5% bile salts.

6. The use according to any one of claims 1 to 5 wherein said probiotic *Lactobacilli* is able to maintain viability following 1 hour at pH 2.5.

7. The use according to any one of claims 1 to 6 wherein said probiotic *Lactobacilli* is selected from the species *Lactobacilli salivarius, Lactobacilli casei,* or *Lactobacilli murinus.*

8. The use according to any one of claims 1 to 7 wherein said probiotic *Lactobacilli* is selected from the group consisting of NCIMB 40829, NCIMB 40830, NCIMB 41044, NCIMB 41045, NCIMB 41047, NCIMB 41093, NCIMB 41094, NCIMB 41043, NCIMB 41046, NCIMB 41095. NCIMB 41096, NCIMB 41097, NCIMB 41194, NCIMB 41195, NCIMB 41196, NCIMB 41197, mutants thereof and mixtures thereof.

9. The use according to claim 1 for the manufacture of a medicament for regulating the immune system of a companion animal, said regulation comprising treating or preventing autoimmune disease in a companion animal, treating or preventing inflammation in a companion animal or mixtures thereof.
10. The use according to claim 1 for the manufacture of a medicament for maintaining or improving the health of the skin and/or coat system of a companion animal comprising treating or preventing atopic disease of the skin in companion animals.

11. The use according to claim 1 for the manufacture of a medicament for treating or preventing urinary tract ailments in companion animals wherein said urinary tract ailment comprises urinary tract infection, kidney stones or mixtures thereof.

12. The use according to claim 11 wherein said probiotic *Bifidobacteria* increase the degradation of oxalic acid *in vitro*.

13. The use according to claim 1 for the manufacture of a medicament for the prevention or treatment of infection of the gastrointestinal tract, said prevention or treatment comprising improving the microbial ecology of said companion animal, reducing the number of pathogenic bacteria found in the faeces of said companion animal or mixtures thereof.

14. The use according to claim 13 wherein said pathogenic bacteria are selected from the group consisting of *Clostridia, Escherichia, Salmonella*, and mixtures thereof.

15. The use according to claim 1 for the manufacture of a medicament for reducing stress levels in a companion animal wherein said stress levels are measured by determining the level in the blood of said companion animal of stress hormones selected from the group consisting of epinephrine, norepinephrine, dopamine, cortisol, C-reactive protein and mixtures thereof.