发明名称
一种旋转式步进衰减器及其制备工艺

摘要
本发明涉及无源衰减器技术领域，具体地是一种旋转式步进衰减器及其制备工艺，包括底部印制板、三片连接器组件、上部旋转印制板、带轴端面齿轮、端面定位弹簧、外壳轴套，其特征在于所述的底部印制板上设有三片连接器组件，其顶部设有上部旋转印制板，三片连接器组件顶部弹簧与上部旋转印制板底部的电阻衰减网络电接触点端盘接触，上部旋转印制板顶部设有带轴端面齿轮，带轴端面齿轮底部设有转轴，转轴底部插入上部旋转印制板和底部印制板的圆孔中。本发明同现有技术相比，集 16 种衰减值于一个衰减器之中，给设备的生产和现场调试带来了很大的方便；本发明结构新颖，功能齐全，体积小，机械结构设计合理，方便加工，可大批量生产。
权利要求书

1. 一种旋转式步进减振器，包括：底部中部板、三片连接器组件、上部旋转印制板、
 带轴端面齿轮、端面定位簧片、外壳轴套，其特征在于所述的底部中部板上设有三片连接
 器组件，底部中部板顶部设有上部旋转印制板，三片连接器组件顶部簧片与上部旋转印
 制版底面的电阻衰减网络电接触点焊盘接触，上部旋转印制板顶部设有带轴端面齿轮，带
 轴端面齿轮底部设有转轴，转轴底部插入上部旋转印制板和底部中部板中部开设的圆孔
 中，轴心端面齿轮转动带动上部旋转印制板一起转动，转轴顶部连接旋转手柄，轴心端面
 齿轮顶部设有端面定位簧片，端面定位簧片和带轴端面齿轮的定位配合。

2. 如权利要求1所述的一种旋转式步进减振器，其特征在于所述的底部中部板设有
 若干定位孔，三片连接器组件设有若干定位轴，三片连接器组件通过定位轴与底部印
 制板上定位孔配合连接。

3. 如权利要求1所述的一种旋转式步进减振器，其特征在于所述的三片连接器组件
 由连接器座、三弹簧片和盖板配合连接，连接器座上设有若干圆柱形定位轴，三弹簧片上
 设有若干圆柱形定位槽，半圆柱定位槽与圆柱形定位轴配合，确保三弹簧片精确定位，三弹簧
 片外部设有盖板，盖板上设有若干定位孔，所述的定位孔与圆柱形定位轴配合连接。

4. 如权利要求1所述的一种旋转式步进减振器，其特征在于所述的带轴端面齿轮上设
 有定位销和定位轴，和上部旋转印制板上的两个定位孔定位配合连接，端面定位簧片顶部
 设有凸块与带轴端面齿轮相配合定位，端面定位簧片两个外伸定位脚和外壳轴套上定位
 槽的精密配合。

5. 如权利要求1所述的一种旋转式步进减振器，其特征在于所述的上部旋转印制板
 底面的电阻衰减网络是由纯电阻构成的T形网络，共16挡衰减器，依次由0-15dB排列，除
 了0dB外，0-15dB各档衰减器均由T形衰减网络组成，对每个衰减网络而言，它的输入输
 出阻抗都是75Ω，其上面的两个电阻R1的阻值是相同的，而R2的阻值与它们不同，为取得
 不同的衰减量，可用以下的公式进行计算：R1=75*(K-1)/(K+1)，R2=150*K/(K*K-1)，
 201gK=β，β为衰减值。

6. 如权利要求1所述的一种旋转式步进减振器，其特征在于所述的电阻衰减网络的各
 性能参数为：整个带宽5-1000MHz内，平坦度在±0.25dB以内，反射损耗>18dB。

7. 一种如权利要求1所述的一种旋转式步进减振器的安装方法，其特征在于所述的安装
 方法步骤如下：首先开好各断裂件、五金件模板，将各部件和印制板加工成型，装好三片
 连接器组件，将其固定并焊接在底部印制板上，再将上部旋转印制板和带轴端面齿轮固定，
 然后按顺序依次将端面定位簧片、带轴端面齿轮、底部印制板装入外壳轴套中后固定，带轴
 端面齿轮已与上部旋转印制板配合固定、底部印制板已与三片连接器组件配合固定、三
 弹簧片与上部旋转印制板底面的电阻衰减网络电接触点焊盘接触，当旋转手柄时，端面定
 位簧片和带轴端面齿轮的定位配合，能够带轴端面齿轮产生精密的圆周性换挡功能，各
 档衰减量由底部印制板的走线引出，形成了0-15dB的16个不同的均衡值，旋转手柄上的指
 针对准了外壳轴套上相应的刻度。
说明 书

一种旋转式步进衰减器及其制备工艺

【技术领域】
【0001】本发明涉及无源衰减器技术领域，具体地说是一种旋转式步进衰减器及其制备工艺和应用。

【背景技术】
【0002】目前在CATV系统中常用的无源衰减器一般可分为两种：
【0003】1．固定式衰减器；
【0004】2．可变式衰减器；
【0005】无源衰减器之所以被大量地、普遍地使用，是因为它相对于有源衰减器（有源衰减器通常采用PIN管或集成电路）而言，插损小、阻抗匹配良好、操作简单、无需外加硬件控制电路或软件控制程序、较容易更换，大信号时非线性失真且价格较低。
【0006】固定式衰减器具有衰减值明确直观、数值稳定等的优点，但是一个衰减器只能有一个确定的衰减值，如果要涵盖所有常用的衰减值（例如0-15dB），就要有16种不同值的衰减器，这就造成了在设备现场调试时有时因为没有足够的备用品而找不到所需的衰减值。
【0007】可变式衰减器具有衰减值连续可调的优点，但衰减值无法直接显示出来，必须借助仪表才能得到所要的值，且其内部碳膜片在频繁旋转后较易磨损而可能造成数值不稳定。
【0008】国内专利号为CN10193906的专利文件公开了一种旋转式可调步进衰减器及制备工艺和应用的发明，但其零件繁多，结构复杂，加工该衰减器所需步骤较多，加工效率低，不能大批量生产。

【发明内容】
【0009】本发明的目的是提供一种结构新颖的旋转式步进衰减器，它解决了固定式衰减器和可变式衰减器两者不足之处而取两者的长处，集16种衰减值于一个衰减器之中，给设备的生产和现场调试带来了很大的方便。
【0010】为实现上述目的，设计一种旋转式步进衰减器，包括：底部印制板、三簧片连接器组件、上部旋转印制板、带轴端面齿轮、端面定位簧片、外壳轴套，其特征在于所述的底部印制板上设有三簧片连接器组件，底部印制板顶部设有上部旋转印制板，三簧片连接器组件顶部簧片与上部旋转印制板底面的电阻衰减网络电接触点焊盘接触，上部旋转印制板顶部设有带轴端面齿轮、带轴端面齿轮顶部设有转轴，转轴底部插入上部旋转印制板和底部印制板中部开设的圆孔中，轴端面齿轮转动能带动上部旋转印制板一起转动，转轴顶部连接旋转手柄，轴端面齿轮顶部设有端面定位簧片，端面定位簧片和带轴端面齿轮的定位配合。
【0011】所述的底部印制板上设有若干定位孔，三簧片连接器组件设有若干定位轴，三簧片连接器组件通过定位轴与底部印制板上定位孔配合连接。
【0012】所述的三簧片连接器组件由连接器座、三弹簧片和盖板配合连接，连接器座上设有若干圆柱形定位轴，三弹簧片上设有若干半圆形定位槽，半圆形定位槽与圆柱形定位轴
配合，确保三弹簧片精确定位，三弹簧片外部设有盖板，盖板上设有若干定位孔，所述的定位孔与圆柱形定位轴配合连接。

【0013】所述的带轴端面齿轮上设有定位销和定位轴，和上部旋转印制板上的两个定位孔定位配合连接，端面定位簧片底部设有凸块与带轴端面齿轮相配合定位，端面定位簧片两个外伸定位脚和外壳轴套上定位槽的精密配合。

【0014】所述的上部旋转印制板底层的电阻衰减网络是由纯电阻构成的 T 形网络，共 16 档衰减器，依次由 0~15dB 排列，除了 0dB 以外，0~15dB 各档衰减器均由 T 形衰减网络组成，对每个衰减网络而言，它的输入输出阻抗都是 75Ω，其上面的两个电阻 R1 的阻值是相同的，而 R2 的阻值与它们不同，为取得不同的衰减量，可用以下的公式进行计算：R1=75*(K-1)/(K+1)，R2=150*K/(K*K-1)，201gK=β，β 为衰减值。

【0015】所述的电阻衰减网络的各性能参数为：整个带宽 5~1000MHz 内，平坦度在±0.25dB 以内，反射损耗 >18dB。

【0016】旋转式步进衰减器的安装方法，其特征在于所述的安装方法步骤如下：首先开好各塑料件、五金件模具，将各部件和印制板加工成型，组装好三簧片连接器组件，将其固定并焊接在底部印制板上，再将上部旋转印制板和带轴端面齿轮固定，然后按顺序依次将端面定位簧片、带轴端面齿轮、底部印制板装入外壳轴套中后固定，带轴端面齿轮已与上部旋转印制板配合固定，底部印制板已与三簧片连接器组件配合固定，三簧片与上部旋转印制板底层的电阻衰减网络电接触点焊接接触，当旋转手柄时，端面定位簧片和带轴端面齿轮的定位配合，能够使带轴端面齿轮产生精密的圆周性换档功能，各档衰减量由底部印制板的走线引出，形成了 0~15dB 的 16 个不同的均衡值，旋转手柄上的指针对准了外壳轴套上相应的刻度。

【0017】本发明同现有技术相比，集 16 种衰减值于一个衰减器之中，通过旋转手柄，就可明确显示并得到 0~15dB（1dB 步进）或 0~7.5dB（0.5dB 步进）所需的任一衰减值，给设备的生产现场调试带来了很大的方便；本发明结构新颖、功能齐全、体积小、机械结构设计合理，方便加工，可大批量生产；该发明可应用于有线电视、通讯和测试仪器等技术领域。

【附图说明】

【0018】图 1 为本发明的产品整体结构图；
【0019】图 2 为本发明中的三簧片连接器组件装配图；
【0020】图 3 为本发明中的三簧片连接器组件与底部印制板的装配图；
【0021】图 4 为本发明中的带轴端面齿轮和上部旋转印制板的装配图 a；
【0022】图 5 为本发明中的带轴端面齿轮和上部旋转印制板的装配图 b；
【0023】图 6 为本发明中的插针式衰减器图；
【0024】图 7 为本发明中的上部旋转印制板图；
【0025】图 8 为本发明中的底部印制板图；
【0026】图 9 为本发明的电阻衰减网络的电原理图；
【0027】图 10 为本发明的衰减量及频响图；
【0028】图 11 为本发明在 0~15dB（1dB 步进）时的输入反射损耗图；
【0029】图 12 为本发明在 0~15dB（1dB 步进）时的输出反射损耗图；

[0031] 指定图 1 作为本发明的摘要附图。

[具体实施方式]

[0032] 下面结合附图对本发明作进一步说明，这种装置的结构和原理对本专业的人来说是非常清楚的。

[0033] 图 1 为本发明的产品整体结构图，包括底部印制板、三簧片连接器组件、盖板、弹片、上面旋转印制板、带轴端面齿轮、端面定位簧片和外壳轴套，当旋转手柄时，端面定位簧片 7 和带轴端面齿轮 6 的定位配合，能够让带轴端面齿轮 6 产生精密的圆周性换档功能；

[0034] 图 2 为本发明中的三簧片连接器组件装配图，依靠簧片 4 中的定位孔 9 和 10 分别和连接器座 2 上的定位轴 11 和 12 精密配合，能够保证簧片的精确定位；通过盖板 3 上二个孔 13 和连接器座 2 上的定位轴 12 固定配合，能够保证簧片 4 的装配精度；

[0035] 图 3 为本发明中的三簧片连接器组件与底部印制板的装配图，通过三簧片连接器座上二个定位轴 15，精确定位在印制板的二个定位孔 14 上，能够确保弹簧片 4 和上面旋转印制板 5 的固定位置精度；

[0036] 图 4 为本发明中的带轴端面齿轮和上面旋转印制板的装配图 a，通过端面齿轮 6 上的定位销 18 和定位轴 19，和上面旋转印制板上的定位孔 16 和 17 和精密定位；

[0037] 图 5 为本发明中的带轴端面齿轮和上面旋转印制板的装配图 b，通过端面定位簧片 7 上的二个外伸定位脚 20 和壳体上定位槽 21 的精密配合，能够让端面定位簧片 7 不能够做旋转移动，保证带轴端面齿轮 6 转动角度的精度；

[0038] 图 5 为本发明中的插针式衰减器图；

[0039] 图 6 为本发明中的上面旋转印制板图，在半径方向上按一定的换档角度均匀装有 0-15dB 的电阻衰减网络，层底有电阻衰减网络的电接触点焊盘引出；

[0040] 图 7 为本发明中的底部印制板图，其上装有三簧片连接器组件，板上走线引出；

[0041] 图 8 为本发明的电原理图，它的工作原理是：除了 0dB 以外，0-15dB 各档衰减器均由 T 形衰减网络组成，对某一个衰减网络而言，它的输入输出阻抗都是 75Ω，其上面的两个电阻 R1 的阻值是相同的，而 R2 的阻值与它们不同，为取得不同的衰减量，可用以下的公式进行计算：R2=75*(K-1)/(K+1)，R2=150*K/(K*K-1)，201gK=β。其中 β 为衰减量。下面列出的阻值表可供参考：

<table>
<thead>
<tr>
<th>衰减值 (dB)</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4.32</td>
<td>650</td>
</tr>
<tr>
<td>2</td>
<td>8.6</td>
<td>323</td>
</tr>
<tr>
<td>3</td>
<td>12.8</td>
<td>212</td>
</tr>
<tr>
<td>4</td>
<td>16.8</td>
<td>157</td>
</tr>
<tr>
<td>5</td>
<td>21.0</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>24.0</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>28.6</td>
<td>83.2</td>
</tr>
<tr>
<td>8</td>
<td>32.3</td>
<td>71.0</td>
</tr>
<tr>
<td>9</td>
<td>35.8</td>
<td>60.8</td>
</tr>
<tr>
<td>10</td>
<td>38.8</td>
<td>52.6</td>
</tr>
<tr>
<td>11</td>
<td>42.2</td>
<td>45.9</td>
</tr>
<tr>
<td>12</td>
<td>44.9</td>
<td>40.2</td>
</tr>
<tr>
<td>13</td>
<td>47.5</td>
<td>35.3</td>
</tr>
<tr>
<td>14</td>
<td>50.0</td>
<td>31.0</td>
</tr>
<tr>
<td>15</td>
<td>52.3</td>
<td>27.6</td>
</tr>
</tbody>
</table>

【0043】印板和弹簧片都采用镀金工艺以减小接触电阻，本装置在外壳顶部明确标示出所获取的不同衰减值，使用时轴柄上指针始终对准相应的刻度。

【0044】对本发明相关的电性能参数进行了测试，见附图9、附图10和附图11，在整个带宽5—1000MHz内，平坦度在±0.25dB以内，反射损耗＞18dB，优于其它衰减器。

【0045】本发明采用一种无源衰减器制备工艺，它可应用于有线电视、通讯和测试仪器等技术领域，尤其可用于CATV（有线电视）网络设备中，作为放大器、光站和调制器等的电信号输入输出电平控制，能以方便快捷、明确直观的方式提供设备所需的适当的输入输出电平，使设备正常稳定地工作。
图 12