PROCESS FOR THE STABILIZATION OF DUSTING SURFACES

Inventors: Eric Ferrall, Saline, MI (US); Michael Spradling, Ann Arbor, MI (US); Manfred Selig, Burghausen (DE)

Correspondence Address:
BROOKS KUSHMAN P.C.
1000 TOWN CENTER
TWENTY-SECOND FLOOR
SOUTHFIELD, MI 48075 (US)

Assignee: Wacker Polymer Systems GmbH & Co. KG, Burghausen (DE)

Appl. No.: 11/269,230
Filed: Nov. 8, 2005

Related U.S. Application Data
Continuation-in-part of application No. 11/012,647, filed on Dec. 15, 2004.

The invention relates to a process for the stabilization of dusting surfaces characterized in that the dusty ground is tilled or scarified and mixed with polymers in form of water-redispersible polymer powders, which are optionally re-emulsifiably modified, or reemulsifiable modified aqueous polymer dispersions, which are optionally sprayed on to the untreated dusty ground. In a preferred embodiment the redispersible polymer powder, respectively the reemulsifiable modified redispersible polymer powder or the reemulsifiable modified aqueous polymer dispersion, is combined with hydraulically setting compounds, preferably cement and/or gypsum.
PROCESS FOR THE STABILIZATION OF DUSTING SURFACES

CROSS-REFERENCE TO RELATED APPLICATIONS

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The invention relates to a process for the stabilization of dusting surfaces with polymers in form of water-
redispersible polymer powders, which are optionally reemulsifiable modified, or reemulsifiable modified aqueous
polymer dispersions.

[0004] 2. Background Art

[0005] Dust control and soil stabilization is a major envi-
ronmental and health issue. Dust, for example road dust of
unpaved roads and gravel roads, pollutes the environment
and poses health risks. Soil stabilization retards both wind
and water erosion. Furthermore the condition of roads is an
important part of road safety. It is improved by the stabil-
ization of unpaved roads preventing the development of ruts,
bumps and washboards. Fine particle stabilization also has
significant economic advantages in extending the working
lives of such machinery as air heating and cooling units and
turbine engines. In general dust is composed of fine particles
with a particle size of 1 μm to 2 mm.

[0006] For soil stabilization it has been the state of art to
spray mineral oil products onto the surface of unpaved roads
with all the environmental disadvantages. Water-dilatable
binders like calcium chloride solutions and lignosulfonate
solutions have also been used for dust control and surface
stabilization. JP-B 05-55881, ZA-A 8803253, and JP-B
49046716 concern surface stabilization with conventional
aqueous polymer dispersions. Aqueous polymer solutions,
e.g. solutions of polyacrylic acid have been used to control
dust on gravel roads. The major problem of water based
polymer products is that 1) they only bind dusting particles
a single time because they do not redisperse, 2) they are slow
to dry and form films due to the water necessary to apply
the dispersions and 3) they are more difficult to till or scarify
into the material being bound due to their inherent liquid
state. Therefore every half year these compounds have to be
applied again. When used in deep reaching applications (i.e.
depths of more than one inch) to improve durability, water
based products show the additional disadvantage of drying
much too slowly, which leads to prohibitive closure times of
the road. Considering the above mentioned rate of erosion
and the subsequent frequent rate of application, the state of
the art is not only economically disadvantageous but also
environmentally questionable considering the biodegrad-
ability and the chemical nature of most monomer bases now
in use for this type of application.

[0007] U.S. Pat. No. 3,736,758 discloses a process for
rendering soil at chemical storage sites impervious to liq-
uids, by adding a conventional polymer dispersion to a depth
of soil, moistening and compacting the soil, and applying an
impermeable thick film or coating of an organic polymer
over the treated and compacted soil to render the surface
impermeable. The process is expensive due to the amount of
impermeable polymer added onto the surface, and for many
such polymers requires an organic solvent which is envi-
ronmentally undesirable. If the integrity of the stabilized soil
is compromised, the soil cannot be again stabilized without
removing the impermeable coating and adding additional
polymer dispersion.

SUMMARY OF THE INVENTION

[0008] It was thus an object of the invention to provide a
process for soil stabilization of dusting surfaces which
avoids environmental disadvantages, and which does not
need a complete renewal of the surface treatment in short
time cycles. These and other objects are achieved by a
process for the stabilization of dusting surfaces, character-
ized in that the dusty ground is tilled or scarified and mixed
with polymers in the form of water-redispersible polymer
powders, which are optionally reemulsifiable modified, or
reemulsifiable modified aqueous polymer dispersions,
which are optionally sprayed on to the untreated dusty
ground.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

[0009] Redispersible polymer powders are characterized
in that they are readily redispersible after stirring with water,
largely breaking down into the original particles of the initial
dispersions, and forming water resistant polymer films.
Redispersible reemulsifiable modified polymer powders are
redispersible polymer powders that are modified by the
addition of an amount of dispersant which causes controlled
partial reemulsification of the polymer film on exposure to
sufficient moisture. Reemulsifiable modified polymer dis-
persions, in contrast to common polymer dispersions which
build up water-resistant polymer films, contain an additional
amount of dispersant which causes controlled reemulsifica-
tion of the first obtained polymer film after further contact
with water. In general, reemulsifiable modified polymer
powders or reemulsifiable modified aqueous polymer dis-
persions mean that a polymer film resulting from application
of the polymer or polymer dispersion will begin reemulsi-
fying (breaking down) immediately on exposure to water
under normal conditions to a degree of at least 50% by
weight, preferably of at least 90% by weight. The polymers
are based on one or more monomers from the group consist-
ing of vinyl esters, (meth)acrylates, vinyl aromatics,
olefins, 1,3-dienes and vinyl halides and, if required, further
monomers copolymerizable therewith.

[0010] Suitable vinyl esters are those of carboxylic acids
having 1 to 12 C atoms. Vinyl acetate, vinyl propionate,
vinyl butyrate, vinyl 2-ethylhexanoate, vinyl laurate, 1-
ethylvinyl acetate, vinyl propionate and vinyl esters of
ct-branch monocarboxylic acids having 9 to 11 C atoms,
for example VeeVac® or VeeVac® (trade names of Reso-
lation Performance Products), are preferred. Vinyl acetate
is particularly preferred.

[0011] Suitable acrylate and methacrylate monomers
include esters of straight-chain or branched alcohols having
1 to 15 carbon atoms. Preferred methacrylates or acrylates
are methyl acrylate, methyl methacrylate, ethyl acrylate,
ethyl methacrylate, propyl acrylate, propyl methacrylate,
n-butyl acrylate, n-butyl methacrylate, tert-butyl acrylate,
terti-butyl methacrylate and 2-ethylhexyl acrylate. Methyl
acrylate, methyl methacrylate, n-butyl acrylate, tert-butyl acrylate and 2-ethylhexyl acrylate are particularly preferred. Preferred vinyl aromatics are styrene, methylstyrene and vinyltoluene. A preferred vinyl halide is vinyl chloride. The preferred olefins are ethylene and propylene, and the preferred dienes are 1,3-butadiene and isoprene.

If required, 0.1 to 5% by weight, based on the total weight of the copolymer, of auxiliary monomers may also be copolymerized. Preferably, 0.5 to 2.5% by weight of auxiliary monomers is used. Examples of auxiliary monomers are ethylenically unsaturated mono- and dicarboxylic acids, preferably acrylic acid, methacrylic acid; ethylenically unsaturated carboxamidines and carbonitriles, preferably acrylamide and acrylonitrile; and ethylenically unsaturated sulfonic acids and their salts, preferably vinyl sulfonic acid and 2-acrylamido-2-methylpropane sulfonic acid. Further examples are precrosslinking co-monomers such as polyethylenically unsaturated comonomers, for example divinyl adipate or triallyl cyanurate, or postcrosslinking comonomers, for example N-methylolcarboxamide (NMA), N-methylol-methacrylamide, alkyl ethers, such as the isobutoxy ether, or esters, of N-methylolacrylamide. Comonomers having epoxide functional groups, such as glycidyl methacrylate and glycidyl acrylate, are also suitable. Further examples are comonomers having silicon functional groups, such as (meth)acyloxypropyl(siloxylalkoxy)ilanes, vinyltrialkoxysilanes and vinylmethylsiloxysilanes.

The choice of monomers or the choice of the amounts by weight of the comonomers is made in such a way that in general, a glass transition temperature T_g of $-50\degree$ C. to $+50\degree$ C., preferably $-30\degree$ C. to $+40\degree$ C., most preferably -5 to $15\degree$ C., results. The glass transition temperature T_g of the polymer can be determined in a known manner by means of differential scanning calorimetry (DSC). The T_g can also be calculated approximately beforehand using the Fox equation. According to T. G. Fox, BULL. AM. PHYSICS Soc. 1, 3, page 123 (1956), the following is applicable: $T_g = x_1/T_g + x_2/T_g + \ldots + x_n/T_g$, where x_i is the mass fraction ($\%$ by weight/100) of the monomer i and T_g is the glass transition temperature in Kelvin of the homopolymer of the monomer i. T_g values for homopolymers appear in Polymer Handbook, 2nd Edition, J. Wiley & Sons, New York (1975).

Particularly preferred are homopolymers and copolymers of vinyl ester monomers, particularly vinyl acetate. Most preferred are polyvinyl acetate, copolymers of vinyl acetate and ethylene, copolymers comprising vinyl acetate, ethylene and a vinyl ester of a-branched monocarboxylic acids having 9 to 11 C atoms. It being possible for said polymers also to contain, if required, one or more of the abovementioned auxiliary monomers.

The polymers are prepared in a manner known per se by the emulsion polymerisation process or by the suspension polymerisation process, preferably by the emulsion polymerisation process, the polymerisation temperature being in general 40\degree C. to 100\degree C., preferably 45\degree C. to 90\degree C. In the copolymerisation of gaseous comonomers such as ethylene, 1,3-butadiene or vinyl chloride, superatmospheric pressure, in general from 5 bar to 100 bar, may also be employed.

The polymerisation is initiated with the water-soluble or monomer-soluble initiators or redox initiator combinations customarily used for emulsion polymerisation or suspension polymerisation. In a preferred embodiment the monomers are stabilized by protective colloids.

Suitable protective colloids are polyvinyl alcohol; polyvinylpyrrolidone; polyvinyl acetals; polysaccharides in water-soluble form, such as starches (amylose and amylopectin), celluloses and their carboxymethyl, methyl, hydroxyethyl and hydroxypropyl derivatives; proteins, such as casein or caseinate, soybean protein and gelatin; ligninsulfonates; synthetic polymers, such as (meth)acrylic acid, copolymers of (meth)acrylates with comonomer units having carboxyl functional groups, poly(meth)acylamide, polyvinylsulfonic acids and their water-soluble copolymers; melamine formaldehyde sulfonates, naphthalene formaldehyde sulfonates and styrene maleic acid and vinyl ether/maleic acid copolymers. Partially hydrolysed or completely hydrolysed polyvinyl alcohol is preferred. The protective colloids are generally added in a total amount of 1 to 20% by weight, based on the total weight of the monomers, during the polymerisation.

It may be advantageous additionally to use small amounts of emulsifiers if desired, for example 1 to 5% by weight, based on the amount of monomers. Suitable emulsifiers are anionic, cationic and non-ionic emulsifiers, for example anionic surfactants, such as alkylsulfates having a chain length of 8 to 18 C atoms, alkyl or alkylary ether sulfates having 8 to 18 C atoms in the hydrophobic radical and up to 40 ethylene oxide or propylene oxide units, alkane- or alkylarylsulfonates having 8 to 18 C atoms, esters and monoesters of sulfo succinic acid with monohydric alcohols or alkylphenols, or nonionic surfactants, such as alkyl polyglycol ethers or alkylpolyglycol ethers having 8 to 40 oxyethylene units therein.

The thus obtained initial polymer dispersions have a solids content of 30 to 70%, and may be diluted for further processing or final application. For the preparation of the water-redispersible polymer powders, the aqueous dispersions are spray-dried after the addition of protective colloids as spraying assistants.

As a rule, the spraying assistant is used in a total amount of 3 to 30% by weight, based on the polymeric components of the dispersion. This means that the total amount of the protective colloid before the drying process should be at least 3 to 30% by weight, based on the polymer fraction; preferably, 5 to 20% by weight, based on the polymer fraction, are used. Suitable spraying assistants are partially hydrolysed polyvinyl alcohol; polyvinylpyrrolidone; polysaccharides in water-soluble form such as starches (amylose and amylopectin), celluloses and their carboxymethyl, methyl, hydroxyethyl and hydroxypropyl derivatives; proteins such as casein or caseinate, soybean protein, gelatin; ligninsulfonates; synthetic polymers such as poly(meth)acrylic acid, copolymers of (meth)acrylates with comonomer units having carboxyl functional groups, poly(meth)acylamide, polyvinylsulfonic acids and their water-soluble copolymers; melamine formaldehyde sulfonates, naphthalene formaldehyde sulfonates and styrene maleic acid and vinyl ether/maleic acid copolymers.

The rebuilding mechanism can be enhanced by the combination of the water-redispersible polymer powders with dispersants, to obtain re-emulsifiable modified water-redispersible polymer powders. This type of polymer powder facilitates the redisperision of the polymer powder after...
contact with water. Common dispersants are the protective colloids and emulsifiers already mentioned above. Preferred emulsifiers are based on ethoxylated fatty alcohols. The preferred dosage of additional dispersant is 1 to 20% based on the total weight percent of dispersible polymer powder used. These additional components for application and performance control may be added either during the stage of polymerization, the stage of spray drying or as a post add, the latter being preferred.

[0022] In the case of the reemulsifiable modified aqueous polymer dispersions, dispersants are added after the preparation of the polymer dispersion. Common dispersants are the protective colloids and emulsifiers already mentioned above. Preferred emulsifiers are based on ethoxylated fatty alcohols. The preferred dosage of dispersant is 1 to 20% based on the total weight percent of the polymer dispersion used.

[0023] In a further preferred embodiment the redispersible polymer powder, and more preferably the reemulsifiable modified redispersible polymer powder or the reemulsifiable modified aqueous polymer dispersion, is combined with hydraulically setting compounds, preferably cement and/or gypsum. With this combination an improvement of the drying time is achieved, and redispersion of compositions containing hydraulically setting compounds is aided as well.

[0024] The process is suitable for the soil stabilisation and dust binding of various undergrounds: Unpaved dirt roads, forestry roads, agricultural access roads, road shoulders, road bed sub-base, construction sites, land development, slopes, and dumps, coal piles, seasonal roads, private roads and driveways, parking lots, airstrips, athletic fields, landing pads, public parks, and athletic fields. Usually the underground is tilled or scarified to a depth of 1 to 500 mm, preferably 50 to 150 mm, and the loose material is admixed with the polymer powder or the polymer dispersion. Preferably 0.1 to 5% b.w. polymer solids, preferably 0.2 to 2.0% b.w. polymer solids, of polymer powder or polymer dispersion, based on the soil material to be stabilized, is used. In general, the thus prepared underground is then levelled and compacted or graded. Alternatively polymer dispersions can be sprayed onto the untreated underground.

[0025] For the activation of binding of the underground it only needs to be exposed to moisture, preferably by spraying with water, whereupon film-forming of the water-redispersible polymer powder occurs. Redispersible powders, especially with additional dispersant(s) (reemulsifiable modified), have unique performance properties superior to the state of the art: With every rainfall, the film fibers will desintegrate to a controlled extent allowing a refliming process to start in the next drying cycle. Thus any newly formed dust particles will be trapped, with film-forming occurring as deep as the water penetrates into the material and as deep as the polymer powder is admixed with the loose dirt material. For these reasons, in contrast to the soil stabilization by spraying the underground with common polymer dispersions which build strong films but without any rebinding capacity, the claimed polymer film is rebuilt again and again after contact with moisture. Additionally dust binding occurs as deep as the dust is admixed with polymer powder. With common aqueous polymer dispersions, binding of dust particles only occurs on the initial application and proper film formation of the polymer only occurs near the application surface where sufficient drying can occur by evaporation.

[0026] In the case of reemulsifiable modified polymer dispersions, no strong water-resistant polymer films occur as is the case with common polymer dispersions. After rainfall or after spraying with water following a longer dry period, the polymer film disintegrates and is rebuilt again and again, and additional dust binding occurs in a similar mechanism as already described above for redispersible polymer powders.

[0027] With cementitious materials added, further improvement to the state of the art occurs as a result of a drying mechanism in addition to evaporation. Cementitious materials may be added in amounts of less than 1% by weight to 20% by weight, preferably 1% to 10%, and most preferably about 1% to 4% by weight, relative to the weight of soil to be bound. As is the case with common aqueous dispersions, proper film formation below the surface of an application, whether initially sprayed onto the surface or tilled into the ground, may never occur, and then only over very long periods of time. With the addition of cementitious materials, drying occurs below the surface via chemical consumption of the water, whether a polymer powder or an aqueous dispersion is applied, to support proper film formation regardless of the localized evaporation rate at varying depths.

[0028] The soil thus stabilized may, in general, be quite hard, similar upon visual inspection in the case of sand or sandy soils, to the appearance of cements or mortars. The soil thus stabilized also possesses considerable tensile strength and modulus, and depending upon the depth of soil treated and the amount of treating agent, may support considerable loads. Should the upper level crack, be pulverized with heavy machinery, or have additional soil or dust deposited thereon, the soil may be wetted and again compacted, renewing the stabilization of the soil. While a strongly stabilized soil is thus obtained, the soil remains permeable to water.

[0029] Because it is desirable for the soil to be able to be restabilized by addition of moisture, whether purposefully added or as a result of natural precipitation, it is most desirable that the surface remain free of impermeable films and vapor barriers, whether applied in situ, for example by spraying a non-moisture adsorbing or other thermost set polymer layer, or by covering with a plastics film. Thus, the process of the invention preferably does not employ the addition of any water impermeable film, and in particular, any polymer film of sufficient integrity and imperviousness such that a relatively uniform rewetting of the soil is prevented. It would not depart from the spirit of the invention, however, to spray onto the treated area a very thin film of a water impermeable substance uniformly or over portions, wherein the thickness or the areal discontinuities or both are such that rewetting of the soil can in fact readily take place, preferably without scarifying or reworking of the soil. Such films are, in general, less than 0.1 mm in thickness, and are themselves preferably formed of an aqueous polymer dispersion, but not of a polymer which is water redispersible. Coatings of thermoset, crosslinked polymers such as polyurethanes, epoxy resins, vinyl ester resins, and the like are in particular preferably avoided. Even without such coatings, a hard, stabilized soil is produced, which, in
the case of use of redispersible polymers alone is at least somewhat water permeable, and in the case where cementitious ingredients are also added, is water vapour permeable, which is not the case when films such as polyurethanes or epoxy resins are applied to the surface.

[0030] The tests below serve as a further illustration of the invention:

[0031] For the test of soil stabilization, dirt was obtained from two different Michigan dirt roads that represent the primary target for such an application. The dirt collected was characterized before testing began with the following results:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>44.4</td>
</tr>
<tr>
<td>30</td>
<td>15.4</td>
</tr>
<tr>
<td>50</td>
<td>19.1</td>
</tr>
<tr>
<td>70</td>
<td>7.4</td>
</tr>
<tr>
<td>100</td>
<td>5.2</td>
</tr>
<tr>
<td>200</td>
<td>4.4</td>
</tr>
<tr>
<td>Pan</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Testing of soil stabilization:

COMPARISON EXAMPLE 1

[0032] 250 g of MI dirt was weighed into a cup.

[0033] For testing a state of art dust binding composition, 4.7 g of a polyacrylate dispersion (solids content 47%) and 9 g of water were mixed into the dirt until uniform wet-out appeared to have been achieved. The cup was then placed in an oven at 50°C to accelerate drying. After 12 hours the cup was removed from the oven and was subjectively evaluated for binding of the dust by shaking the cup and observe the mass of particles that is emitted.

EXEMPLARY EXAMPLE 2

[0034] According to comparison example 1, but instead of 4.7 g of the polymer dispersion, 15 g of water was mixed with the dust. The cup was then placed in an oven at 50°C to accelerate drying. After 12 hours the cup was removed from the oven and was subjectively evaluated for binding of the dust by shaking the cup and observe the mass of particles that is emitted.

EXAMPLE 3

[0035] According to comparison example 1, but instead of 4.7 g of the polymer dispersion, 5 g of a redispersible polymer powder based on a vinyl acetate-ethylene copolymer was mixed with a metal spatula into the dirt until it seemed homogenous. Then 15 g of water was added to the homogenous mixture and mixed in. The cup was then placed in an oven at 50°C to accelerate drying. After 12 hours the cup was removed from the oven and was subjectively evaluated for the binding of the dust by shaking the cup and observe the mass of particles that is emitted.

EXAMPLE 4

[0036] According to comparison example 1, but instead of 4.7 g of the polymer dispersion, 1.5 g of a redispersible polymer powder based on a vinyl acetate-ethylene copolymer, and 3 g of cementitious material was mixed with a metal spatula into the dirt until it seemed homogenous. Then 15 g of water was added to the homogenous mixture and mixed in. The cup was then placed in an oven at 50°C to accelerate drying. After 12 hours the cup was removed from the oven and was subjectively evaluated for binding of the dust by shaking the cup and observe the mass of particles that is emitted.

EXAMPLE 5

[0037] Unlike comparison example 1, 1000 g of MI dirt was introduced into a one liter beaker. To the beaker was added 10 g of a redispersible polymer powder based on a vinyl acetate-ethylene copolymer, and 2.5 g of an ethoxylated fatty alcohol was mixed with a metal spatula into the dirt until it seemed homogenous. Then 15 g of water was added to the homogenous mixture. The beaker was then placed in an oven at 50°C to accelerate drying. After 12 hours the beaker was removed from the oven and was subjectively evaluated for binding of the dust by shaking the cup and observe the mass of particles that is emitted.

EXAMPLE 6

[0038] The bound layer of dirt at the top of each beaker was then removed, physically crushed to a similar particle size as the original MI dirt, was mixed with 5% by weight of the homogeneous mixture from its respective beaker (to simulate mixing that would occur in an actual application), and was added back to the beaker. 15 g of water was then added to the top of the beaker, and the was placed back in the oven at 50°C to accelerate drying. After 12 hours, the beaker was removed from the oven and was subjectively evaluate for binding of the dust by shaking the beaker and observing the mass of particles that was emitted.

EXAMPLE 7

[0039] According to example 5, but in addition to the redispersible polymer powder and to the ethoxylated fatty alcohol 20 g of cementitious material was mixed with a metal spatula into the dirt until it seemed homogenous. Then 15 g of water was added to the top of the beaker. The cup was then placed in an oven at 50°C to accelerate drying. After 12 hours the cup was removed from the oven and was subjectively evaluated for binding of the dust by shaking the cup and observe the mass of particles that is emitted.

EXAMPLE 8

[0040] The bound layer of dirt at the top of each beaker was then removed, physically crushed to a similar particle size as the original MI dirt, was mixed with 5% by weight of the homogeneous mixture from its respective beaker (to simulate mixing that would occur in an actual application), and was added back to the beaker. 15 g of water was then added to the top of the beaker, and the was placed back in the oven at 50°C to accelerate drying. After 12 hours, the beaker was removed from the oven and was subjectively evaluate for binding of the dust by shaking the beaker and observing the mass of particles that was emitted.
Test Results:

[0041] The results were rated as follows:

[0042] 3 = Very good dust binding, better than state of the art

[0043] 2 = Good dust binding, similar to the state of the art

[0044] 1 = Low dust binding

[0045] 0 = No dust binding

TABLE 1

<table>
<thead>
<tr>
<th>Cycle/ Sample</th>
<th>Comp. Ex. 1</th>
<th>Comp. Ex. 2</th>
<th>Example 3</th>
<th>Example 4</th>
<th>Example 5</th>
<th>Comp. Ex. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Second</td>
<td>—</td>
<td>—</td>
<td>2.5</td>
<td>3</td>
<td>—</td>
<td>3</td>
</tr>
</tbody>
</table>

What is claimed is:

1. A process for stabilizing a soil surface, comprising treating soil by means of at least one of:

 a. admixing with soil a water-redispersible polymer powder or reemulsifiable-modified dispersible polymer powder to form a soil/polymer mixture and wetting said soil/polymer mixture to form a polymer-bound soil; or

 b. applying to soil an aqueous dispersion of at least one of a water-redispersible polymer powder or a reemulsifiable-modified dispersible polymer powder,

 and optionally compacting the soil thus treated, with the proviso that the soil surface is free of water-impermeable polymer film such that the soil is rewettable with water.

2. The process of claim 1, wherein the soil surface is free of any water-impermeable polymer film.

3. The process of claim 1, wherein the soil is sand and an aqueous dispersion of a water-redispersible polymer powder or reemulsifiable-modified dispersible polymer powder is applied to the soil.

4. The process of claim 1, wherein a water-redispersible polymer powder or a reemulsifiable-modified dispersible polymer powder is admixed with soil, and said wetting is accomplished by applying an aqueous dispersion of a water-redispersible polymer powder or a reemulsifiable-modified dispersible polymer powder.

5. The process of claim 1, wherein a composition comprising a water-redispersible polymer powder and a hydraulically settable cement is admixed with soil and wetted.

6. The process of claim 1, wherein a composition comprising a reemulsifiable-modified dispersible polymer powder and a hydraulically settable cement is admixed with soil and wetted.

7. The process of claim 1 wherein said water-redispersible polymer is a polymer prepared by copolymerizing a monomer mixture comprising at least one monomer selected from the group consisting of vinyl esters, (meth)acrylates, vinyl aromatics, olefins, 1,3-dienes, and vinyl halides, in the presence of a protective colloid.

8. The process of claim 1, wherein said water-redispersible polymer is a polymer prepared by copolymerizing a monomer mixture comprising vinyl acetate and ethylene in the presence of a protective colloid.

9. The process of claim 1 wherein said water-redispersible polymer is a polymer prepared by copolymerizing a monomer mixture comprising at least one vinyl ester and an olefin, in the presence of a protective colloid, and wherein a dispersant is added to the water-redispersible polymer prior to adding said water-redispersible polymer to the soil, or is added to the soil with the water-redispersible polymer, prior to compaction of the soil.

10. The process of claim 1, wherein said water-redispersible polymer is a polymer prepared by copolymerizing a monomer mixture comprising vinyl acetate and ethylene in the presence of a protective colloid, and wherein a dispersant is added to the water-redispersible polymer prior to adding said water-redispersible polymer to the soil, or is added to the soil with the water-redispersible polymer, prior to compaction of the soil.

11. The process of claim 1, wherein the soil is compacted in a moist state.

12. The process of claim 2, wherein the soil is compacted in a moist state.

13. A process for restabilizing stabilized soil prepared by the process of claim 1, comprising rewetting the soil.

14. The process of claim 13, wherein the soil is tilled or scarified prior to, during, or following rewetting, and is subsequently compacted.

15. A stabilized soil, prepared by the process of claim 1, having a hard surface permeable to water.

16. A stabilized soil, prepared by the process of claim 2, having a hard surface permeable to water.

17. A stabilized soil, prepared by the process of claim 3, having a hard surface permeable to water.

18. A stabilized soil, prepared by the process of claim 4, having a hard surface permeable to water.

19. A stabilized soil, prepared by the process of claim 5, having a hard surface permeable to water vapor.

20. A stabilized soil, prepared by the process of claim 6, having a hard surface permeable to water vapor.

* * * * *