
JP 4784792 B2 2011.10.5

10

20

(57)【特許請求の範囲】
【請求項１】
　ＣＰＵと、前記ＣＰＵに接続されているネットワークインタフェースと、コンパイラに
よりスタティックスケジューリングされたプログラムの実行時に転送されるデータを格納
し、他のプロセッシングエレメントからアクセス可能な分散共有メモリと、当該プロセッ
シングエレメントだけからアクセス可能なローカルデータメモリと、を備える複数のプロ
セッシングエレメントと、
　前記各プロセッシングエレメントに接続され、前記各プロセッシングエレメントによっ
て共有され、コンパイラによりダイナミックスケジューリングされたプログラムの実行時
に使用されるデータを格納する集中共有メモリと、を備えるマルチプロセッサであって、
　前記集中共有メモリは、前記各プロセッシングエレメントと同じチップに設けられたオ
ンチップの第１集中共有メモリと、前記いずれのプロセッシングエレメントとも異なるチ
ップに設けられたオフチップの第２集中共有メモリとを含み、
　前記分散共有メモリは、スタティックスケジューリングされたプログラムの実行時に、
プロセシングエレメント間のデータ転送に使用され、
　前記ローカルデータメモリは、当該プロセッシングエレメントに割り当てられたタスク
において使用されるローカルデータを保持するために使用され、
　前記各プロセッシングエレメントに割り当てられたタスク間で共通に使用されるデータ
が、前記各タスクで必要とされるとき以前に、データの消費先の前記プロセッシングエレ
メントの前記分散共有メモリへ転送され、

(2) JP 4784792 B2 2011.10.5

10

20

30

40

50

　前記集中共有メモリは、粗粒度並列処理において条件分岐に対応するために使用される
ダイナミックスケジューリングにおいて、プログラムの実行時までどのＣＰＵにより使用
されるかが決まっていないデータを格納することを特徴とするマルチプロセッサ。
【請求項２】
　前記マルチプロセッサは、前記分散共有メモリに接続されるデータ転送コントローラを
備え、
　前記データ転送コントローラは、前記ローカルデータメモリから転送指示を読み出し、
前記分散共有メモリからデータを読み出して、前記データの消費先のプロセッシングエレ
メントの分散共有メモリへ転送することを特徴とする請求項１に記載のマルチプロセッサ
。
【請求項３】
　前記分散共有メモリは、デュアルポートメモリで構成され、
　前記データ転送コントローラは、前記分散共有メモリの一つのポートに接続されること
を特徴とする請求項２に記載のマルチプロセッサ。
【請求項４】
　前記第１集中共有メモリは、粗粒度並列処理において条件分岐に対応するために使用さ
れ、ダイナミックスケジューリングされたプログラムの実行時にタスク間の共有データを
格納する集中共有メモリであり、
　前記第２集中共有メモリは、大容量の集中共有メモリであることを特徴とする請求項１
から３のいずれか一つに記載のマルチプロセッサ。
【請求項５】
　前記分散共有メモリには、送信側の前記ＣＰＵの指示によって転送されるデータ及び同
期フラグが書き込まれることを特徴とする請求項１から４のいずれか一つに記載のマルチ
プロセッサ。
【発明の詳細な説明】
【０００１】
【発明の属する技術分野】
本発明は、複数のＣＰＵを単一のチップに納めたシングルチッププロセッサのアーキテク
チャに関し、より具体的には、マルチグレインのコンパイラ協調型シングルチップマルチ
プロセッサアーキテクチャと、それらを接続した高性能マルチプロセッサシステムアーキ
テクチャとに関する。
【０００２】
【従来の技術】
現在、日本のスーパーコンピュータメーカは世界でもトップのハードウエア技術を有し、
現時点でのピーク性能は、数ＴＦＬＯＰＳを越え、２１世紀初頭には数十ＴＦＬＯＰＳ以
上のピーク性能を持つマシンが開発されると予想される。しかし、現在のスーパーコンピ
ュータは、ピーク性能の向上とともにプログラムを実行したときの実効性能との差が大き
くなっている、すなわち価格性能比が必ずしも優れているとはいえない状況になっている
。また、使い勝手としても、ユーザは問題中の並列性を抽出し、ＨＰＦ、ＭＰＩ，ＰＶＭ
などの拡張言語あるいはライブラリを用いハードウエアを効果的に使用できるようなプロ
グラムを作成しなければならず、一般のユーザには使い方が難しい、あるいは使いこなせ
ないという問題が生じている。さらに、これらにも起因して、世界の高性能コンピュータ
の市場を拡大できないということが大きな問題となっている。
【０００３】
この価格性能比、使いやすさの問題を解決し、スーパーコンピュータの市場を拡大するた
めには、ユーザが使い慣れているフォートラン、Ｃ等の逐次型言語で書かれたプログラム
を自動的に並列化する自動並列化コンパイラの開発が重要となる。
【０００４】
特に、２１世紀初頭の汎用並びに組み込み用マイクロプロセッサ、家庭用サーバからスー
パーコンピュータに至るマルチプロセッサシステムの主要アーキテクチャの一つとなると

(3) JP 4784792 B2 2011.10.5

10

20

30

40

50

考えられるシングルチップマルチプロセッサについて検討を行うことは重要である。さら
に、シングルチップマルチプロセッサについても、従来からある主記憶共有アーキテクチ
ャでは十分な性能と優れた価格性能比は得られない。したがって、プログラム中の命令レ
ベルの並列性、ループ並列性、粗粒度並列性をフルに使用できるマルチグレイン並列処理
のように、真に実行すべき命令列からより多くの並列性を抽出し、システムの価格性能比
を向上し、誰にでも使えるユーザフレンドリなシステムの構築を可能とする新しい自動並
列化コンパイル技術と、それを生かせるようなアーキテクチャの開発が重要である。
【０００５】
【発明が解決しようとする課題】
したがって、本発明は、マルチグレイン並列化をサポートするコンパイラ協調型のシング
ルチップマルチプロセッサおよびそれを結合したハイパフォーマンスマルチプロセッサシ
ステムを提供することを目的とする。
【０００６】
【課題を解決するための手段】
　本発明は、ＣＰＵと、前記ＣＰＵに接続されているネットワークインタフェースと、コ
ンパイラによりスタティックスケジューリングされたプログラムの実行時に転送されるデ
ータを格納し、他の前記プロセッシングエレメントからアクセス可能な分散共有メモリと
、当該プロセッシングエレメントだけからアクセス可能なローカルデータメモリと、を備
える複数のプロセッシングエレメントと、前記各プロセッシングエレメントに接続され、
前記各プロセッシングエレメントによって共有され、コンパイラによりダイナミックスケ
ジューリングされたプログラムの実行時に使用されるデータを格納する集中共有メモリと
、を備えるマルチプロセッサであって、前記集中共有メモリには、前記各プロセッシング
エレメントと同じチップに設けられたオンチップの第１集中共有メモリと、前記いずれの
プロセッシングエレメントとも異なるチップに設けられたオフチップの第２集中共有メモ
リとを含み、前記分散共有メモリは、スタティックスケジューリングされたプログラムの
実行時に、プロセシングエレメント間のデータ転送に使用され、前記ローカルデータメモ
リは、当該プロセッシングエレメントに割り当てられたタスクにおいて使用されるローカ
ルデータを保持するために使用され、前記各プロセッシングエレメントに割り当てられた
タスク間で共通に使用されるデータが、前記各タスクで必要とされるとき以前に、データ
の消費先の前記プロセッシングエレメントの前記分散共有メモリへ転送され、前記集中共
有メモリは、粗粒度並列処理において条件分岐に対応するために使用されるダイナミック
スケジューリングにおいて、プログラムの実行時までどのＣＰＵにより使用されるかが決
まっていないデータを格納することを特徴とするマルチプロセッサを提供する。
【０００７】
　また、本発明は、前記マルチプロセッサは、前記分散共有メモリの一つのポートに接続
されるデータ転送コントローラを備え、前記データ転送コントローラは、前記ローカルデ
ータメモリから転送指示を読み出し、前記分散共有メモリからデータを読み出して、前記
データの消費先のプロセッシングエレメントの分散共有メモリへ転送することを特徴とす
るマルチプロセッサを提供する。
【０００８】
【発明の実施の形態】
本発明はマルチグレイン並列化をサポートするシングルチップマルチプロセッサを提供す
る。本発明の一実施形態であるシングルチップマルチプロセッサのアーキテクチャを図１
に示す。図１においては、複数のプロセッシングエレメント（ＰＥ0，ＰＥ1，．．．，Ｐ
Ｅn）を含んでなる複数（ｍ＋１個）のシングルチップマルチプロセッサ（ＳＣＭ0、ＳＣ
Ｍ1、ＳＣＭ2、．．．、ＳＣＭm、．．．）１０と、共有メモリのみからなる複数（ｊ＋
１個）の集中共有メモリチップ（ＣＳＭ0，．．．．，ＣＳＭj）（ただし、ＣＳＭは要求
されるシステム条件によっては１個もなくてもよい）と、入出力制御を行う複数（ｋ＋１
個）のシングルチップマルチプロセッサで構成される入出力チップ（Ｉ／Ｏ　ＳＣＭ0，
．．．，Ｉ／Ｏ　ＳＣＭk）（ただし、入出力制御に関しては既存技術のプロセッサを用

(4) JP 4784792 B2 2011.10.5

10

20

30

40

50

いることもできる）とが、チップ間接続ネットワーク１２によって接続されている。この
インタチップ接続ネットワーク１２は、クロスバー、バス、マルチステージネットワーク
など既存のネットワーク技術を利用して実現できるものである。
【０００９】
図１に示した形態においては、Ｉ／Ｏデバイスは要求される入出力機能に応じてｋ＋１個
のＳＣＭで構成される入出力制御チップに接続している構成となっている。さらに、この
チップ間接続ネットワーク１２には、システム中の全プロセッシングエレメントにより共
有されているメモリのみから構成されるｊ＋１個の集中共有メモリ（ＣＳＭ：centralize
d shared memory）チップ１４が接続されている。これは、ＳＣＭ１０内にある集中共有
メモリを補完する働きをするものである。
【００１０】
マルチグレイン並列処理とは、サブルーチン、ループ、基本ブロック間の粗粒度並列性、
ループタイプイタレーション間の中粒度並列性（ループ並列性）、ステートメントあるい
は命令間の（近）細粒度並列性を階層的に利用する並列処理方式である。この方式により
、従来の市販マルチプロセッサシステム用自動並列化コンパイラで用いられていたループ
並列化、あるいはスーパースカラ、ＶＬＩＷにおける命令レベル並列化のような局所的で
単一粒度の並列化とは異なり、プログラム全域にわたるグローバルかつ複数粒度によるフ
レキシブルな並列処理が可能となる。
【００１１】
［粗粒度タスク並列処理（マクロデータフロー処理）］
単一プログラム中のサブルーチン、ループ、基本ブロック間の並列性を利用する粗粒度並
列処理は、マクロデータフロー処理とも呼ばれる。ソースとなる例えばフォートランプロ
グラムを、粗粒度タスク（マクロタスク）として、繰り返しブロック（ＲＢ：repetition
 block)、サブルーチンブロック（ＳＢ：subroutine block)、疑似代入文ブロック（ＢＰ
Ａ：block of pseudo assignment statements)の３種類のマクロタスク（ＭＴ）に分解す
る。ＲＢは、各階層での最も外側のナチュラルループであり、ＳＢはサブルーチン、ＢＰ
Ａはスケジューリングオーバヘッドあるいは並列性を考慮し融合あるいは分割された基本
ブロックである。ここで、ＢＰＡは、基本的には通常の基本ブロックであるが、並列性抽
出のために単一の基本ブロックを複数に分割したり、逆に一つのＢＰＡの処理時間が短く
、ダイナミックスケジューリング時のオーバヘッドが無視できない場合には、複数のＢＰ
Ａを融合し得一つのＢＰＡを生成する。最外側ループであるＲＢがＤｏａｌｌループであ
るときは、ループインデクスを分割することにより複数の部分Ｄｏａｌｌループに分割し
、分割後の部分Ｄｏａｌｌループを新たにＲＢと定義する。また、サブルーチンＳＢは、
可能な限りインライン展開するが、コード長を考慮し効果的にインライン展開ができない
サブルーチンはそのままＳＢとして定義する。さらに、ＳＢやＤｏａｌｌ不可能なＲＢの
場合、これらの内部の並列性に対し、階層的マクロデータフロー処理を適用する。
【００１２】
次に、マクロタスク間の制御フローとデータ依存を解析し、図２のようなマクロフローグ
ラフ（ＭＦＧ）を生成する。ＭＦＧでは、各ノードがマクロタスク（ＭＴ）、点線のエッ
ジが制御フロー、実線のエッジがデータ依存、ノード内の小円が条件分岐文を表している
。また、ＭＴ７のループ（ＲＢ）は、内部で階層的にＭＴおよびＭＦＧを定義できること
を示している。
【００１３】
次に、マクロタスク間制御依存およびデータ依存より各マクロタスクが最も早く実行でき
る条件（最早実行可能条件）すなわちマクロタスク間の並列性を検出する。この並列性を
グラフ表現したのが図３に示すマクロタスクグラフ（ＭＴＧ）である。ＭＴＧでも、ノー
ドはＭＴ、実線のエッジがデータ依存、ノード内の小円が条件分岐文を表す。ただし、点
線のエッジは拡張された制御依存を表し、矢印のついたエッジは元のＭＦＧにおける分岐
先、実線の円弧はＡＮＤ関係、点線の円弧はＯＲ関係を表している。例えば、ＭＴ６への
エッジは、ＭＴ２中の条件分岐がＭＴ４の方向に分岐するか、ＭＴ３の実行が終了したと

(5) JP 4784792 B2 2011.10.5

10

20

30

40

50

き、ＭＴ６が最も早く実行が可能になることを示している。
【００１４】
そして、コンパイラは、ＭＴＧ上のＭＴをプロセッサクラスタ（コンパイラあるいはユー
ザによりソフトウェア的に実現されるプロセッサのグループ）へコンパイル時に割り当て
を行う（スタティックスケジューリング）か、実行時に割り当てを行うためのダイナミッ
クスケジューリングコードを、ダイナミックＣＰアルゴリズムを用いて生成し、これをプ
ログラム中に埋め込む。これは、従来のマルチプロセッサのようにＯＳあるいはライブラ
リに粗粒度タスクの生成、スケジューリングを依頼すると、数千から数万クロックのオー
バヘッドが生じてしまう可能性があり、それを避けるためである。このダイナミックなス
ケジューリング時には、実行時までどのプロセッサでタスクが実行されるか分からないた
め、タスク間共有データは全プロセッサから等距離に見える集中共有メモリに割り当てら
れる。
【００１５】
また、このスタティックスケジューリングおよびダイナミックスケジューリングコードの
生成の時には、各プロセッサ上のローカルメモリあるいは分散共有メモリを有効に使用し
、プロセッサ間のデータ転送量を最小化するためのデータローカライゼーション手法も用
いられる。
【００１６】
データローカライゼーションは、ＭＴＧ上でデータ依存のある複数の異なるループにわた
りイタレーション間のデータ依存を解析し（インターループデータ依存解析）、データ転
送が最小になるようにループとデータを分割（ループ整合分割）後、それらのループとデ
ータが同一のプロセッサにスケジューリングされるように、コンパイル時にそれらのルー
プを融合するタスク融合方式か、実行時に同一プロセッサへ割り当てられるようにコンパ
イラが指定するパーシャルスタティックスケジューリングアルゴリズムを用いてダイナミ
ックスケジューリングコードを生成する。このデータローカライゼーション機能を用いて
各ローカルメモリの有効利用を行うことができる。
【００１７】
またこの際、データローカライゼーションによっても除去できなかったプロセッサ間のデ
ータ転送を、データ転送とマクロタスク処理をオーバーラップして行うことにより、デー
タ転送オーバヘッドを隠蔽しようとするプレロード・ポストストアスケジューリングアル
ゴリズムも使用される。このスケジューリングの結果に基づいて各プロセッサ上のデータ
転送コントローラを利用したデータ転送が実現される。
【００１８】
［ループ並列処理（中粒度並列処理）］
マルチグレイン並列化では、マクロデータフロー処理によりプロセッサクラスタ（ＰＣ）
に割り当てられるループ（ＲＢ）は、そのＲＢがＤｏａｌｌあるいはＤｏａｃｒｏｓｓル
ープの場合、ＰＣ内のプロセッシングエレメント（ＰＥ）に対してイタレーションレベル
で並列化処理（分割）される。
【００１９】
ループストラクチャリングとしては、以下のような従来の技術をそのまま利用できる。
（ａ）ステートメントの実行順序の変更
（ｂ）ループディストリビューション
（ｃ）ノードスプリッティングスカラエクスパンション
（ｄ）ループインターチェンジ
（ｅ）ループアンローリング
（ｆ）ストリップマイニング
（ｇ）アレイプライベタイゼーション
（ｈ）ユニモジュラー変換（ループリバーサル、パーミュテーション、スキューイング）
【００２０】
また、ループ並列化処理が適用できないループに関しては、図４のようにループボディ部

(6) JP 4784792 B2 2011.10.5

10

20

30

40

50

を次に述べる（近）細粒度並列処理か、ボディ部を階層的にマクロタスクに分割しマクロ
データフロー処理（粗粒度タスク並列処理）を適用する。
【００２１】
［（近）細粒度並列処理］
ＰＣに割り当てられるＭＴがＢＰＡまたはループ並列化或いは階層的にマクロデータフロ
ー処理を適用できないＲＢ等の場合には、ＢＰＡ内部のステートメント或いは命令を近細
粒度タスクとしてＰＣ内プロセッサで並列処理する。
【００２２】
マルチプロセッサシステム或いはシングルチップマルチプロセッサ上での近細粒度並列処
理では、プロセッサ間の負荷バランスだけでなくプロセッサ間データ転送をも最少にする
ようにタスクをプロセッサにスケジューリングしなければ、効率よい並列処理は実現でき
ない。さらに、この近細粒度並列処理で要求されるスケジューリングでは、図４のタスク
グラフに示すように、タスク間にはデータ依存による実行順序の制約があるため強ＮＰ完
全な非常に難しいスケジューリング問題となる。このグラフは、無サイクル有向グラフで
ある。図中、各タスクは各ノードに対応している。ノード内の数字はタスク番号ｉを表し
、ノードの脇の数字はプロセッシングエレメント上でのタスク処理時間ｔiを表す。また
、ノードＮiからＮjに向けて引かれたエッジは、タスクＴiがＴjに先行するという半順序
制約を表している。タスク間のデータ転送時間も考慮する場合、各々のエッジは一般に可
変な重みを持つ。タスクＴiとＴjが異なるプロセッシングエレメントへ割り当てられた場
合、この重みｔijがデータ転送時間となる。図４においては、データ転送および同期に要
する時間を９クロックと仮定している。逆にこれらのタスクが同一プロセッシングエレメ
ントに割り当てられた場合、重みｔijは０となる。
【００２３】
このようにして生成されたタスクグラフを各プロセッサにスタティックにスケジューリン
グする。この際、スケジューリングアルゴリズムとして、データ転送オーバヘッドを考慮
し実行時間を最小化するヒューリスティックアルゴリズム、例えばＣＰ／ＤＴ／ＭＩＳＦ
法、ＣＰ／ＥＴＦ／ＭＩＳＦ法、ＥＴＦ／ＣＰ法、あるいはＤＴ／ＣＰ法の４手法を自動
的に適用し最良のスケジュールを選ぶことができる。また、このようにタスクをスタティ
ックにプロセッサに割り当てることにより、ＢＰＡ内で用いられるデータのローカルメモ
リ、分散共有メモリ、レジスタへの配置等、データのメモリへの最適化やデータ転送・同
期オーバヘッドの最小化といった各種の最適化が可能になる。
【００２４】
スケジューリング後、コンパイラはプロセッシングエレメントに割り当てられたタスクの
命令列を順番に並べ、データ転送命令や同期命令を必要な箇所に挿入することにより、各
プロセッサ用のマシンコードを生成する。近細粒度タスク間の同期にはバージョンナンバ
ー法を用い、同期フラグの受信は受信側プロセッシングエレメントのビジーウェイトによ
って行われる。ここで、データ転送および同期フラグのセットは、送信側のプロセッサが
受信側のプロセッサ上の分散共有メモリに直接書き込むことにより低オーバヘッドで行う
ことができる。
【００２５】
マシンコード生成時、コンパイラはスタティックスケジューリングの情報を用いたコード
最適化を行うことができる。例えば、同一データを使用する異なるタスクが同一プロセッ
シングエレメントに割り当てられたとき、レジスタを介してそのデータを受け渡しするこ
とができる。また、同期のオーバヘッドを最小化するため、タスクの割り当て状況や実行
順序から、冗長な同期を除去することもできる。特に、シングルチップマルチプロセッサ
では、コード生成時に厳密なコード実行スケジューリングを行うことにより、実行時のデ
ータ転送タイミングを含めたすべての命令実行をコンパイラが制御し、すべての同期コー
ドを除去して並列実行を可能とする無同期並列化のような究極的な最適化も行える。
【００２６】
上述のようなマルチグレイン並列処理をマルチプロセッサシステム上で実現するため、一

(7) JP 4784792 B2 2011.10.5

10

20

30

40

50

例として、シングルチップマルチプロセッサ（ＳＣＭ）１０は図１に示すようなアーキテ
クチャを有する。
【００２７】
図１において示したアーキテクチャにおいては、ＣＰＵ２０に加えて、分散共有メモリ（
ＤＳＭ：distributed shared memory)２２とアジャスタブルプリフェッチ命令キャッシュ
２４が各ＳＣＭ１０に設けられている。ここで用いられるＣＰＵ２０は、特に限定されず
、整数演算や浮動小数点演算が可能なものであればよい。例えば、ロード／ストアアーキ
テクチャのシンプルなシングルイッシューＲＩＳＣアーキテクチャのＣＰＵを用いること
ができるほか、スーパースカラプロセッサ、ＶＬＩＷプロセッサなども用いることができ
る。分散共有メモリ２２は、デュアルポートメモリで構成されており、他のプロセッシン
グエレメントからも直接リード／ライトができるようになっており、上に説明した近細粒
度タスク間のデータ転送に使用する。
【００２８】
アジャスタブルプリフェッチ命令キャッシュ２４は、コンパイラあるいはユーザからの指
示で、将来実行すべき命令をメモリあるいは低レベルキャッシュからプリフェッチするも
のである。このアジャスタブルプリフェッチ命令キャッシュ２４は、複数ウェイのセット
アソシアティブキャッシュにおいて、コンパイラ等のソフトから指示される、あるいはハ
ードにより事前に決められたウェイに、将来実行されるライン（命令列）をフェッチでき
るようにするものである。その際、フェッチの単位としては、複数ラインの連続転送指示
も行える。アジャスタブルプリフェッチ命令キャッシュ２４は、命令キャッシュへのミス
ヒットを最小化させ、命令実行の高速化を可能にするコンパイラによる調整および制御を
可能にするキャッシュシステムである。
【００２９】
すなわち、このアジャスタブルプリフェッチ命令キャッシュ２４は、すべてのプログラム
（命令列）がメモリサイズより小さいことを仮定しているローカルプログラムメモリとは
異なり、大きなプログラムにも対応することができ、プログラムの特徴に応じ、プリフェ
ッチをしない通常のキャッシュとしても使用できるし、逆にすべてコンパイラ制御による
プリフェッチキャッシュとして使え、ミスヒットのない（ノーミスヒット）キャッシュと
して使用できるものである。
【００３０】
このようなアジャスタブルプリフェッチ命令キャッシュの構造の一例を図５に示す。図５
に示されたｎウェイのセットアソシエイティブキャッシュにおいては、コンパイラあるい
はユーザがプログラムに応じて指定するｊウェイをプリフェッチ（事前読み出し）するエ
リアとして使用できるものである。コンパイラにより挿入されたプリフェッチ命令（ライ
ンごとではなく複数ラインのプリフェッチも可能）により、命令実行の前に必要な命令が
命令キャッシュ上に存在することを可能とし、高速化が実現できる。プロセッシングエレ
メントは、ｎウェイすべてを通常のキャッシュと同様に読み出すことができる。ラインの
リプレースは通常のＬＲＵ（least recently used）法で行われる。そして、各セット（
集合）中のウェイには、通常、自由に転送されたラインを格納できるが、プリフェッチ用
に指定されたウェイにはプリフェッチ命令によってＣＳＭから転送されたラインのみ格納
される。それ以外のウェイは通常のキャッシュと同様にラインを割り当てられる。プリフ
ェッチキャッシュコントローラは、コンパイラからの指示により、命令をＣＳＭからプリ
フェッチする。このときの転送の単位は、１ラインから複数ラインである。コンパイラが
ｊウェイ分のプリフェッチエリアを指定し、それ以外の（ｎ－ｊ）ウェイ分のエリアは通
常のキャッシュとして使用される。
【００３１】
さらに、図１のアーキテクチャにおいては、ローカルデータメモリ（ＬＤＭ）２６が設け
られている。このローカルデータメモリ２６は、各プロセッシングエレメント１６内だけ
でアクセスできるメモリであり、データローカライゼーション技術などにより、各プロセ
ッシングエレメント１６に割り当てられたタスク間で使用されるローカルデータを保持す

(8) JP 4784792 B2 2011.10.5

10

20

30

40

50

るために使用される。また、このローカルデータメモリ２６は、対象とするアプリケーシ
ョンプログラムに対しコンパイラあるいはユーザがデータのローカルメモリへの分割配置
が可能な場合には、ローカルメモリとして使用され、ローカルメモリを有効に使用できな
い場合には、レベル１キャッシュ（Ｄキャッシュ）に切り替えて使用できるようにするこ
とが好ましい。また、ゲーム機等のリアルタイム応用に専ら用いられるような場合には、
ローカルメモリだけとして設計することも可能である。基本的に各プロセッシングエレメ
ント内で使用されるメモリであるため、共有メモリに比べチップ面積を消費しないので、
相対的に大きな容量をとれるものである。
【００３２】
粗粒度並列処理では、条件分岐に対処するためにダイナミックスケジューリングが使用さ
れる。この場合、マクロタスクがどのプロセッサで実行されるかは、コンパイル時には分
からない。したがって、ダイナミックにスケジューリングされるマクロタスク間の共有デ
ータは、集中共有メモリ(ＣＳＭ：centralized shared memory)に配置できることが好ま
しい。そのため、本実施形態においては、各プロセッシングエレメント１６が共有するデ
ータを格納する集中共有メモリ２８を各ＳＣＭ内に設けるほか、さらに、チップ間接続ネ
ットワーク１２につながれた集中共有メモリ１４を設けている。このチップ内の集中共有
メモリ２８は、チップ１０内のすべてのプロセッシングエレメント１６から、そして複数
チップの構成では他のチップ上のプロセッシングエレメントからも共有されるデータを保
存するメモリである。チップ外の集中共有メモリ１４も同様に各プロセッシングエレメン
トにより共有されるメモリである。したがって、実際の設計上、集中共有メモリ２８、１
４は、物理的に各チップに分散されているが、論理的にはどのプロセッシングエレメント
からも等しく共有することができるものである。すべてのプロセッシングエレメントから
等距離に見えるようにインプリメントすることもできるし、自チップ内のプロセッシング
エレメントからは近く見えるようにインプリメントすることをも可能である。
【００３３】
単一のＳＣＭチップからなるシステムでは、チップ内のプロセッシングエレメント（ＰＥ
）１６間で共有される等距離の共有メモリとしてこの集中共有メモリ２８を用いることが
できる。また、コンパイラの最適化が困難である場合には、Ｌ２キャッシュとして使用す
ることができる。このメモリ２８，１４には、ダイナミックタスクスケジューリング時に
タスク間で共有されるデータを主に格納する。また、別のチップとなった集中共有メモリ
１４は、ＳＣＭチップ１０内の集中共有メモリ２８の容量が足りない場合、必要に応じて
、メモリのみからなる大容量集中共有メモリチップを任意の数接続することができる。
【００３４】
また、粒度によらずスタティックスケジューリングが適用できる場合には、あるマクロタ
スクが定義する共有データをどのプロセッサが必要とするかはコンパイル時に分かるため
、生産側のプロセッサが消費側のプロセッサの分散共有メモリにデータと同期用のフラグ
を直接書き込めることが好ましい。
【００３５】
データ転送コントローラ（ＤＴＣ）３０は、コンパイラあるいはユーザの指示により自プ
ロセッシングエレメント上のＤＳＭ２２や、自あるいは他のＳＣＭ１０内のＣＳＭ２８、
あるいは他のプロセッシングエレメント上のＤＳＭとの間でデータ転送を行う。複数のＳ
ＣＭからなる構成を採用する場合には、他のＳＣＭ上のＣＳＭやＤＳＭとの間でのデータ
転送、あるいは、独立したＣＳＭとの間でのデータ転送を行う。
【００３６】
図１におけるローカルデータメモリ２６とデータ転送コントローラ３０との間の点線は、
用途に応じて、データ転送コントローラ３０がローカルデータメモリ（Ｄキャッシュ）２
６にアクセスできる構成をとってもよいことを表している。このような場合、ローカルデ
ータメモリ２６を介してＣＰＵ２０が転送指示をデータ転送コントローラ３０に与えたり
、転送終了のチェックを行う構成をとることができる。
【００３７】

(9) JP 4784792 B2 2011.10.5

10

20

30

40

50

データ転送コントローラ３０へのデータ転送の指示は、ローカルデータメモリ２６、ＤＳ
Ｍ２２、あるいは専用のバッファ（図示しない）を介して行い、データ転送コントローラ
３０からＣＰＵ２０へのデータ転送終了の報告は、ローカルメモリ、ＤＳＭあるいは専用
のバッファを介して行う。このとき、どれを使うかはプロセッサの用途に応じプロセッサ
設計時に決めるかあるいはハード的に複数の方法を用意し、プログラムの特性に応じコン
パイラあるいはユーザがソフト的に使い分けられるようにする。
【００３８】
データ転送コントローラ３０へのデータ転送指示（例えば何番地から内バイトのデータを
どこにストアし、またロードするか、データ転送のモード（連続データ転送、ストライド
、ストライド・ストライド転送など）など）は、コンパイラが、データ転送命令をメモリ
あるいは専用バッファに格納しておき、実行時にはどのデータ転送命令を実行するかの指
示のみを出すようにして、データ転送コントローラ２０の駆動のためのオーバヘッドを削
減することが好ましい。
【００３９】
各ＳＣＭチップ１０内のプロセッシングエレメント１６の間の接続は、各プロセッシング
エレメントに設けられたネットワークインタフェース３２を介して、チップ内接続ネット
ワーク（マルチバス、クロスバーなどからなる）３４によって達成されており、このチッ
プ内接続ネットワーク３４を介して、プロセッシングエレメントが共通の集中共有メモリ
２８に接続される。集中共有メモリ２８は、チップの外にあるチップ間接続ネットワーク
１２に接続している。このチップ間接続ネットワークは、クロスバーネットワークあるい
はバス（複数バスも含む）が特に好ましいが、多段結合網等でもかまわず、予算、ＳＣＭ
の数、アプリケーションの特性に応じて選ぶことができるものである。また、このチップ
内接続ネットワーク３４を介さずに、外部のチップ間接続ネットワーク１２とネットワー
クインタフェース３２を接続することも可能であり、このような構成は、システム中の全
プロセッシングエレメントが平等に各チップ上に分散された集中共有メモリ、分散共有メ
モリにアクセスすることを可能にするほか、チップ間でのデータ転送が多い場合には、こ
の直結パスを設けることにより、システム全体のデータ転送能力を大幅に高めることがで
きる。
【００４０】
グローバルレジスタファイル３６は、マルチポートレジスタであり、チップ内のプロセッ
シングエレメントにより共有されるレジスタである。たとえば、近細粒度タスク（分散共
有メモリを用いた場合など）のデータ転送および同期に使用することができる。このグロ
ーバルレジスタファイルは、プロセッサの用途に応じて、省略することも可能なものであ
る。
【００４１】
図１において、点線は、通信線を必要に応じて用意できることを意味しており、コストあ
るいはピン数などを考えて不必要あるいは困難な場合には、点線の接続はなくても動作す
ることを示すものである。
【００４２】
以上のように、特定の実施の形態に基づいて本発明を説明してきたが、本発明の技術的範
囲はこのような実施の形態に限定されるものではなく、当業者にとって容易な種々の変形
を含むものである。
【００４３】
【発明の効果】
上述のように、本発明のシングルチップマルチプロセッサによれば、価格性能比を改善し
、高まりつつある半導体集積度にスケーラブルな性能向上が可能である。また、本発明は
、このようなシングルチップマルチプロセッサを複数含むシステムをも提供するが、その
ようなシステムは、より一層の高速処理を可能にするものである。
【図面の簡単な説明】
【図１】本発明の１実施形態であるマルチグレイン並列処理用システムを示すブロックダ

(10) JP 4784792 B2 2011.10.5

10

20

イアグラムである。
【図２】本発明において用いることができるコンパイラにおける粗粒度並列処理のための
マクロフローグラフの一例を示すグラフである。
【図３】本発明において用いることができるコンパイラにおける粗粒度並列処理のための
マクロタスクグラフの一例を示すグラフである。
【図４】本発明において用いることができるコンパイラにおける近細粒度並列処理のため
の近細粒度タスクグラフの一例を示すグラフである。
【図５】本発明において用いることができるアジャスタブルプリフェッチ命令キャッシュ
の構成を示すブロックダイアグラムである。
【符号の説明】
１０　シングルチップマルチプロセッサ
１２　チップ間接続ネットワーク
１４　集中共有メモリ（チップ）
１６　プロセッシングエレメント
２０　ＣＰＵ
２２　分散共有メモリ
２４　アジャスタブルプリフェッチ命令キャッシュ
２６　ローカルデータメモリ
２８　集中共有メモリ
３０　データ転送コントローラ
３２　ネットワークインタフェース
３４　チップ内接続ネットワーク

【図１】 【図２】

(11) JP 4784792 B2 2011.10.5

【図３】

【図４】

【図５】

(12) JP 4784792 B2 2011.10.5

フロントページの続き

 合議体
 審判長 鈴木　匡明
 審判官 石井　茂和
 審判官 清木　泰

	biblio-graphic-data
	claims
	description
	drawings
	overflow

