

US 20050287165A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0287165 A1 Scarlato et al.

Dec. 29, 2005 (43) **Pub. Date:**

(54) MENINGOCOCCAL ANTIGENS

(75) Inventors: Vincenzo Scarlato, Siena (IT); Vega Masignani, Siena (IT); Rino Rappuoli, Siena (IT); Mariagrazia Pizza, Siena (IT); Guido Grandi, Siena (IT)

> Correspondence Address: **MORRISON & FOERSTER LLP 425 MARKET STREET** SAN FRANCISCO, CA 94105-2482 (US)

- (73) Assignee: Chiron Corporation, Emeryville, CA
- (21) Appl. No.: 11/212,443
- (22) Filed: Aug. 24, 2005

Related U.S. Application Data

Continuation of application No. 10/695,499, filed on (63)Oct. 28, 2003, which is a continuation of application No. 09/302,626, filed on Apr. 30, 1999, now Pat. No.

6,709,660, which is a continuation-in-part of application No. PCT/IB99/00103, filed on Jan. 14, 1999.

(30)**Foreign Application Priority Data**

Oct. 9, 1998	(GB)	9822143.5
Sep. 1, 1998	(GB)	9819015.0
Jan. 14, 1998	(GB)	9800760.2

Publication Classification

- (51) Int. Cl.⁷ Cl2Q 1/68; C07H 21/04; A61K 39/02
- (52) U.S. Cl. 424/190.1; 435/6; 435/69.3; 435/252.3; 435/320.1; 536/23.7;

530/350; 530/388.4

(57)ABSTRACT

The invention provides proteins from Neisseria meningitidis (strains A & B), including amino acid sequences, the corresponding nucleotide sequences, expression data, and serological data. The proteins are useful antigens for vaccines, immunogenic compositions, and/or diagnostics.

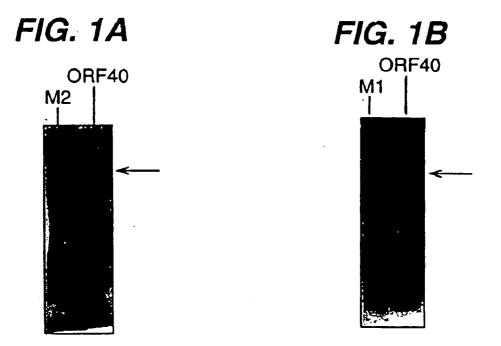
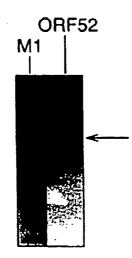
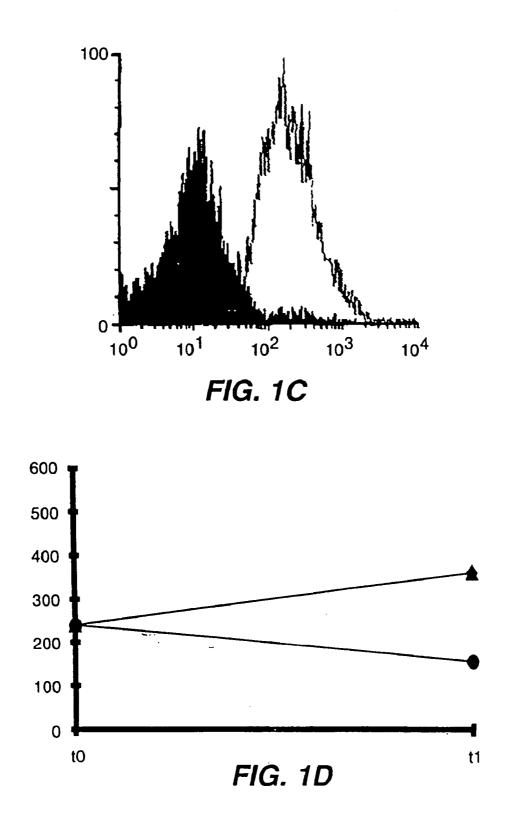




FIG. 4A

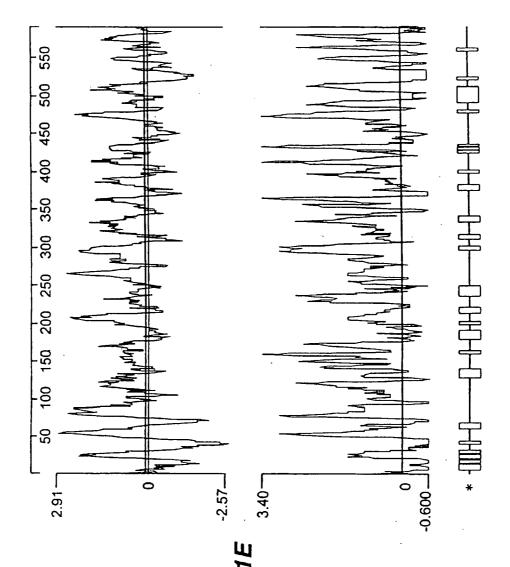


FIG. 1E

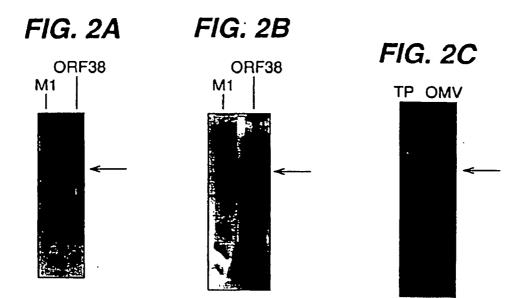
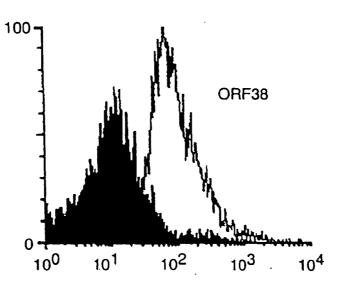



FIG. 2D

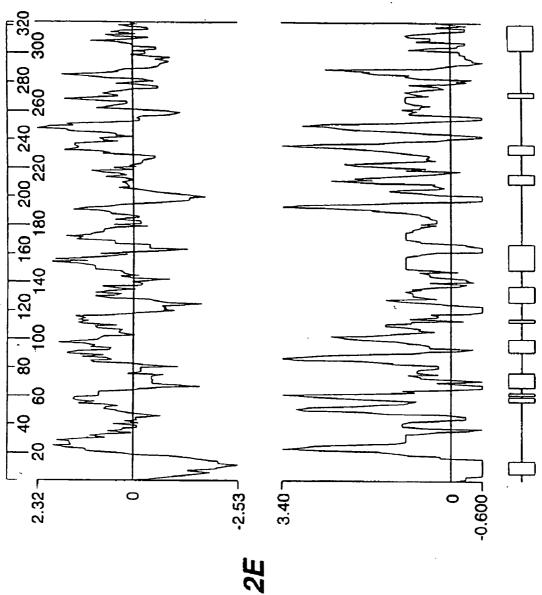


FIG. 2E

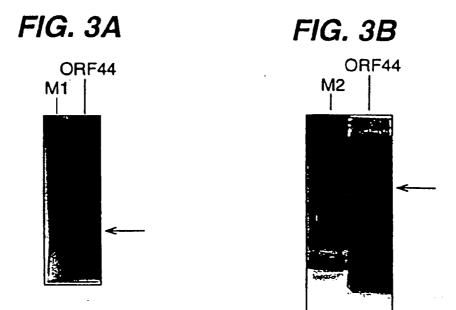
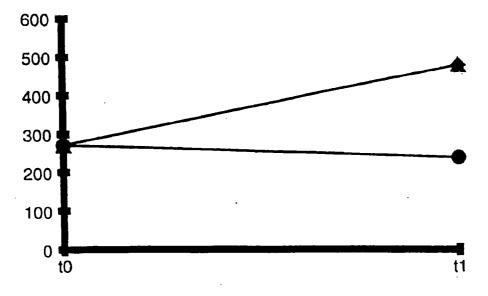
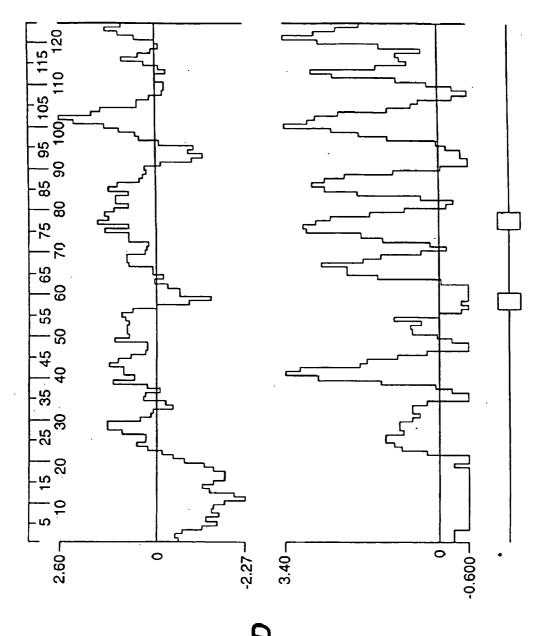
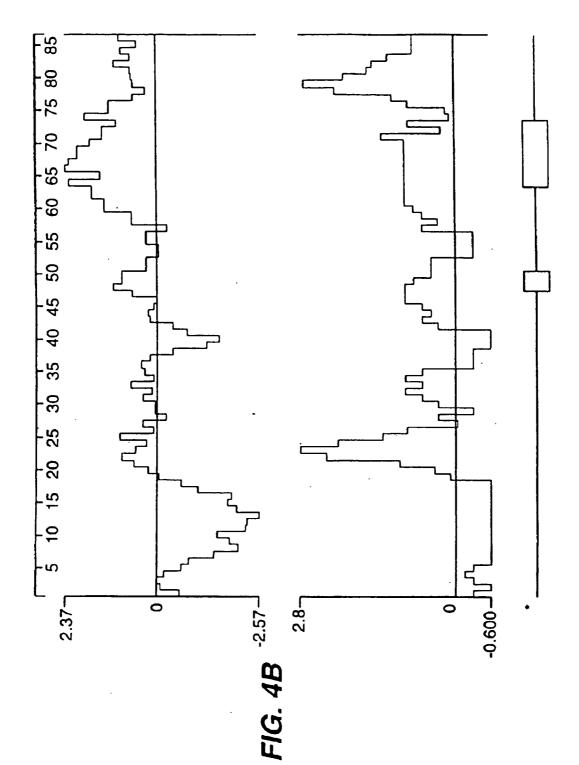
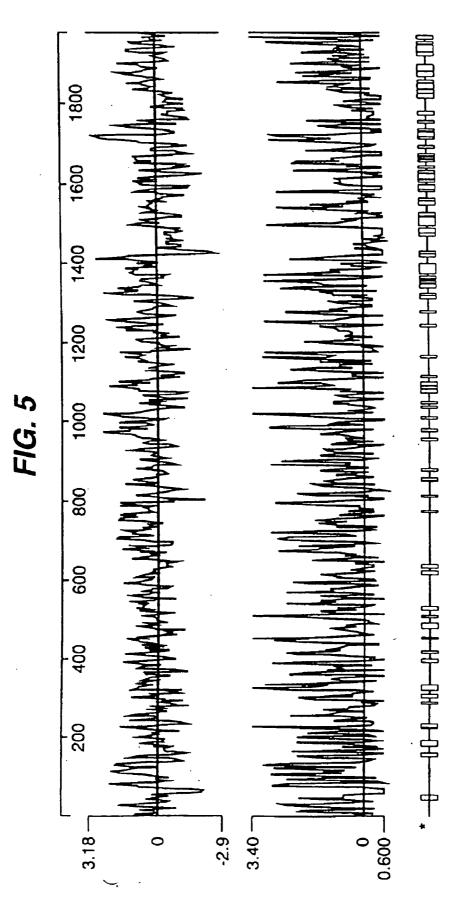
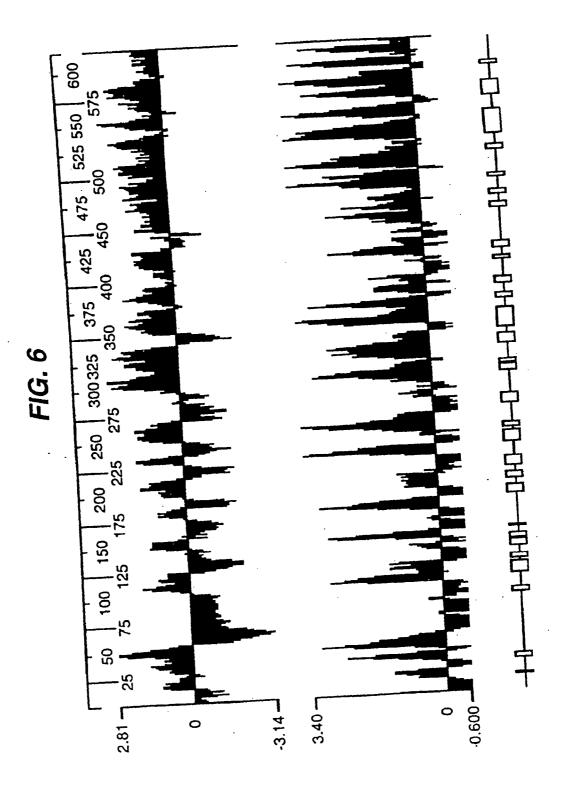
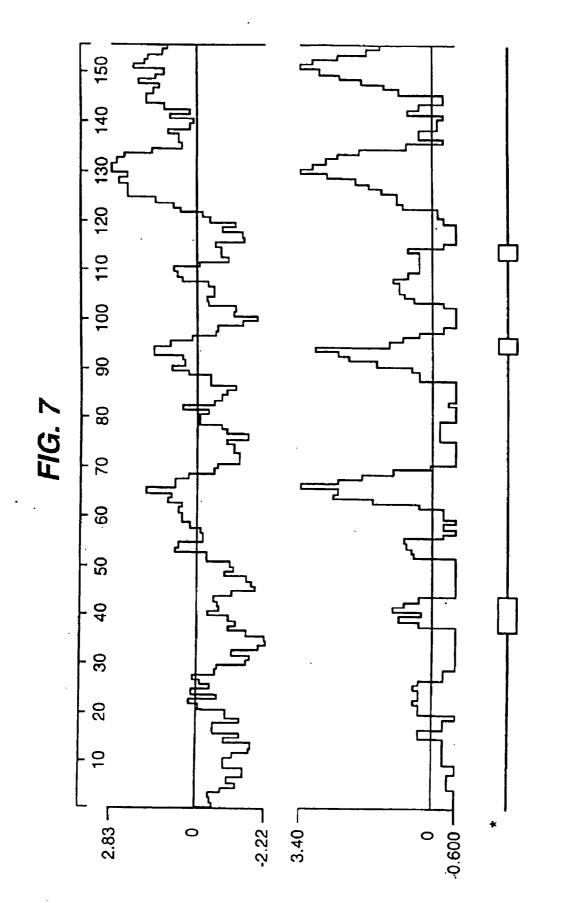



FIG. 3C


FIG. 3D



US 2005/0287165 A1

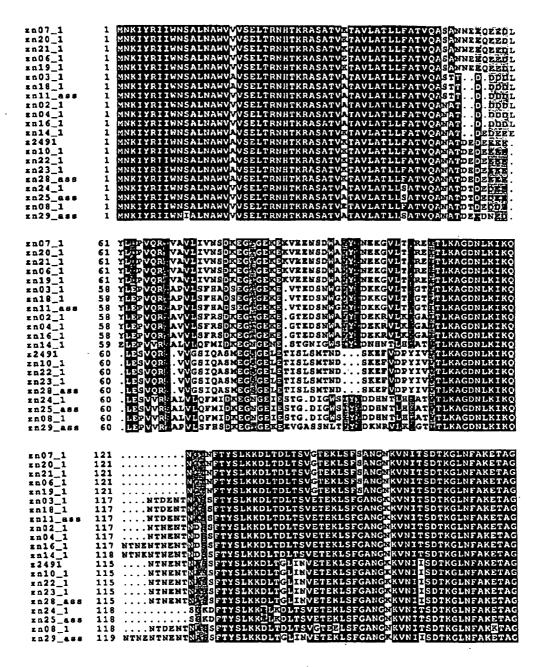


FIG. 8Å

•

±n07_1	171 TNGDTTVHLNGIGSTLTDTLLN GA TNVTND VIDDIKKRAASUKDVLNAGWNIKGVKP 171 TNGDTTVHLNGIGSTLTDTLLN GA TNVTND VIDDIKKRAASUKDVLNAGWNIKGVKP 171 TNGDTTVHLNGIGSTLTDTLLN GA TNVTND VIDDIKKRAASUKDVLNAGWNIKGVKP 171 TNGDTTVHLNGIGSTLTDTLLN GA TNVTND VIDDIKKRAASUKDVLNAGWNIKGVKP 173 TNGDTVHLNGIGSTLTDTLLN GA TNVTND VIDDIKKRAASUKDVLNAGWNIKGVKP 173 TNGDTVHLNGIGSTLTDTLLN GA TNVTND VIDDIKKRAASUKDVLNAGWNIKGVKP 173 TNGDTVHLNGIGSTLTDTLLN GA TNVTND VIDDIKKRAASUKDVLNAGWNIKGVKP 174 TNGDTVHLNGIGSTLTDTLLN GA TNVTND VIDDIKKRAASUKDVLNAGWNIKGVKP 175 TNGDTVHLNGIGSTLTDTLLN GA TNVTND VIDDIKKRAASUKDVLNAGWNIKGVKP 176 TNGDTVHLNGIGSTLTDTLLN GA TNVTND VIDDIKKRAASUKDVLNAGWNIKGVKP 177 TNGDTVHLNGIGSTLTDTLLN GA TNVTND VIDDIKKRAASUKDVLNAGWNIKGVKP
zn20_1	171 INGDTTVHLNGIGSTLTDTLLNEGATINVTNDEVTDDEKKRAASOKDVLNAGWNIKGVKP
zn21_1	171 TNGDTTVHLNGIGSTLTDTLLNGGATTNVTNDEVTDDEXERAASGKDVLNAGWNIKGVKP
rn06_1	171 INGDTTVHLNGIGSTLTDTLLN <mark>BG</mark> ANTNVINDAVIDDEKKRAASSKDVLNAGWNIKGVKP
xn19_1	171 INGDTIVHLNGIGSTLTDTLLNGA THVIND VTDDEKERAAS KOVLNAGWNIKGVKP
zn03_1	173 INGDITVHLNGIGSTLIDTLLN GA TNVINDEVIDDEKKRAAS KOVLNAGWNIKGVKP
xn18_1	173 INGDTTVILNGIGSTLTDTLLBGA TNVTND VTDDEKKRAASVKDVLNAGHNIKGVKP
rn11_ass	173 TNGDTTVHLNGIGSTLTDTLLH CAL TNVTND VTDDEXKRAASIKDVLNAGWNIKGVKP
1102_1	173 TNGDPTVHLNGIGSTLTDTLLN GA INVTHDEVTDDEKKRAASUKDVLNAGWNIKGVKP
zn04_1	173 TNGDPTVHLNGIGSTLTDTLLNGGA INVTHDIVTDDBKKRAASWKDVLNAGWNIKGVKP 177 TNGDPIVHLNGIGSTLTDTLLNGGA INVTHDIVIDDEKKRAASWKDVLNAGWNIKGVKP
<pre>rn16_1 rn14_1</pre>	178 INGDETVHLNGIGSTLTDTLLNGGA INVINDERKRAASEKDVLNAGWNIKGVKP
z2491	178 TNGDTTVHLNGIGSTLTDTLLAF GAL INVIKDS VIDDEKERAASIKDVLNAGWNIKGVKP 171 TNGDTTVHLNGIGSTLTDTLAG SAL HVDAGH STHYRAASIKDVLNAGWNIKGVKT 171 TNGDTTVHLNGIGSTLTDTLAG SAL HVDAGH STHYRAASIKDVLNAGWNIKGVKT 171 TNGDTTVHLNGIGSTLTDTLAG SAL HVDAGH STHYRAASIKDVLNAGWNIKGVKT 171 TNGDTTVHLNGIGSTLTDTLAG SAL HVDAGH STHYRAASIKDVLNAGWNIKGVKT 171 TNGDTTVHLNGIGSTLTDTLAG SAL HVDAGH STHYRAASIKDVLNAGWNIKGVKT 168 TNGDTVHLNGIGSTLTDTLAG SAL HVDAGH STHYRAASIKDVLNAGWNIKGVKT 168 TNGDTVHLNGIGSTLTDTLAG SAL HVDAGH STHYRAASIKDVLNAGWNIKGVKT 174 TNGDTTVHLNGIGSTLTDTLAG SAL HVDAGH STHYRAASIKDVLNAGWNIKGVKT 175 TNGDTVHLNGIGSTLTDTLAG SAL HVDAGH STHYRAASIKDVLNAGWNIKGVKT 174 TNGDTTVHLNGIGSTLTDTLAG SAL HVDAGH STHYRAASIKDVLNAGWNIKGVKT 175 TNGDTVHLNGIGSTLTDTLAG SAL HVDAGH STHYRAASIKDVLNAGWNIKGVKT 176 TNGDTVHLNGIGSTLTDTLAG SAL HVDAGH STHYRAASIKDVLNAGWNIKGVKT 177 TNGDTVHLNGIGSTLTDTLAG SAL HVDAGH STHYRAASIKDVLNAGWNIKGVKT 179 TNGDFTVHLNGIGSTLTDTLAG SAL HVDAGH STHYRAASIKDVLNAGWNIKGVKT
£n10_1	171 TNGDTTVHLNGIGSTLTDTLAG SAL EVDAGN ST BYTRAASEKDVLNAGWNIKGVKT
zn22_1	171 INGDITVHLNGIGSTLTDTLAG SAMEYDAGN ST BYTRAASYKDVLNAGWNIKGVKT
1n23_1	171 INGDTTVHLNGIGSTLTDTLAG SA BVDAGN ST. BYTRAASTKDVLNAGWNIKGVKT
1028_448	171 INGDTTVHLNGIGSTLTDULLNGA THVTND VTDDELSRAASVKDVLNAGWNIKGVKP
sn24_1	168 INGD TVHLNGIGSTLIDTLAG SA HVDAGN ST HYTRAAS KDVLNAGWNIKGVKT
zn25_488	168 TNGDPTVHLNGIGSTLTDTLAG SA HVDAGN ST HYTRAAS KDVLNAGWNIKGVKT
zn08_1	174 INGDITVHLNGIGSTLIDTLAGUSAUUVDAGN ST HYTRAASEKDVLNAGWNIKGVKT
zn29_48#	179 TNGDPTVHLNGIGSTLTDTLAG SALEVDAGN ST HYTRAAS KDVLNAGWNIKGVKT
	231 GTA. SINVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL 231 GTA. SINVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL 231 GTA. SINVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL 231 GTA. SINVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL 233 GTA. SINVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL 234 GTA. SINVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL 235 GTA. SINVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL 236 GTA. SINVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL 237 GTA. SINVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL 238 GTA. SINVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL
zn07_1	231 GTA. SUNVDEVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL
1 120_1	231 GTA. SUNVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL
zn21_1 zn06_1	231 GTA. SONVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKI 231 GTA. SONVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKI
zn19_1	231 GTA. SONVDEVRTYDIVEFLSADIKTTIVNVESKDNGKGTEVKIGAKTSVIKEKDGKL
zn03_1	233 GHTA. SUNVDEVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL
zn18_1	233 GTT S NVDFVRTYDTVEFLSADTKTTTVNVESKDNCK TEVKIGAKTSVIKEKDGKL
zn11_ass	233 GTTA. SANVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL
zn02_1	233 GTTASNVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL
zn04_1	233 GGTASENVDEVRTYDTVEFLSADTKTTTVNVESKDNCKSTEVKIGAKTSVIKEKDGKL
zn16_1	237 GHTASHNVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL
zn14_1	 237 GTTAS. NVDFVRTYDTVEFLSADTKTTTVNVESKDNGK, TEVKIGAKTSVIKEKDGKL 238 GTTAS. NVDFVRTYDTVEFLSADTKTTTVNVESKDNGK, TEVKIGAKTSVIKEKDGKL 229 GTTGOS, NVDFVRTYDTVEFLSADTKTTTVNVESKDNGK, TEVKIGAKTSVIKEKDGKL 229 GTTGOS, NVDFVRTYDTVEFLSADTKTTTVNVESKDNGK, TEVKIGAKTSVIKEKDGKL 229 GTTGOS, NVDFVRTYDTVEFLSADTKTTTVNVESKDNGK, TEVKIGAKTSVIKEKDGKL 231 GTTAS. NVDFVRTYDTVEFLSADTKTTTVNVESKDNGK, TEVKIGAKTSVIKEKDGKL 232 GTTGOS, NVDFVRTYDTVEFLSADTKTTTVNVESKDNGK, TEVKIGAKTSVIKEKDGKL 246 GTTGOS, NVDFVRTYDTVEFLSADTKTTTVNVESKDNGK, TEVKIGAKTSVIKEKDGKL 246 GTTGOS, NVDFVRTYDTVEFLSADTKTTVNVESKDNGK, TEVKIGAKTSVIKEKDGKL 246 GTTGOS, NVDFVRTYDTVEFLSADTKTTVNVESKDNGK, TEVKIGAKTSVIKEKDGKL
z2491	229 GSTIGOSENVDFVRTYDTVEFLSADTKTTTVNVESKDNGKETEVKIGAKTSVIKEKDGKL
· zn10_1	229 GTTGOSTNVDFVRTYDTVEFLSADTKTTTVVVESKDNGK" TEVKIGAKTSVIKEKDGKL
zn22_1	229 GETTGOSINVDFVRTYDTVEFLSADTKTTTVNVESKDNGK®TEVKIGAKTSVIKEKDGKL 229 GETTGOSINVDFVRTYDTVEFLSADTKTTTVNVESKDNGK®TEVKIGAKTSVIKEKDGKL
1223_1 1228_85	231 GETA. SNVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL
sn24_1	226 GSTTGOSENVDFVRTYDTVEFLSADTKTTTVNVESKDNGKUTEVKIGAKTSVIKEKDGKL
1125_455	226 GHTTGCSENVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL
zn08_1	226 GETTGCSENVDFVRTYDTVEFLSADTKTTTVNVESKDNGKETEVKIGAKTSVIKEKDGKL 232 GETTGCSENVDFVRTYDTVEFLSADTKTTTVNVESKDNGKETEVKIGAKTSVIKEKDGKL
1129_458	237 GTTGCS NVDFVRTYDTVEFLSADTKTTTVNVESKDNGK TEVKIGAKTSVIKEKDGKL
_	
zn07_1	289 VTGKOKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTMV
zn20_1	289 VTGKOKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNV 289 VTGKOKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNV
zn21_1 zn06_1	289 VTGKOKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNV 289 VTGKOKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNV
2n19_1	289 VTGKDKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNV
xn03_1	291 VTGKDKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGT
	291 VTGKDKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGOTGOADKFETVTSGT
zn11_ass	291 VTGKDKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGOTGOADKFETVTSGTAV
fn02_1	291 VTGKGKDENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNV
zn04_1	291 VTGKGKDENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTAV
zn16_1	295 VTGKGKDENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGT
· sn14_1	296 VTGKGKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNV
z2491	289 VTGKGKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNV 289 VTGKGKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNV
zn10_1	289 VTGKGKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTAV 289 VTGKGKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADXFETVTSGTAV
zn22_1 zn23_1	289 VTGKGKGENGSSTDEGEGEVTAKEVIDAVNAKAGHKMATTTANGQTGQADKFETVISGTAV 289 VTGKGKGENGSSTDEGEGEVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTAV
1125_1 1128_455	289 VTGKGKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGOTGQADKFETVTSGTNV
zn24_1	286 VTGKGKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTKV
zn25_ass	286 VTGKGKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGOTGOADKFETVTSGT
zn08_1	292 VTGKGKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNV
zn29_ass	297 VTGKGKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGOTGOADKFETVTSGT
	· · · · · · · · · · · · · · · · · · ·

FIG. 8B

xn07_1	349	TFASG GTTATVSKDDQGNITV YDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGN
zn20_1	349	TFASG <mark>R</mark> GTTATVSKDDQGNITVN <mark>Y</mark> DVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGN TFASG <mark>R</mark> GTTATVSKDDQGNITVN <mark>Y</mark> DVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGN
zn21_1	349	TFASG GTTATVSKDDQGNITV YDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGN
za06_1	349	TFASG GTTATVSKDDQGNITV YDVNVGDALNVNOLONSGWNLDSKAVAGSSGKVISGN
zn19_1	349	TFASGINGTTATVSKDDOGNITVNYDVNVGDALNVNOLONSGWNLDSKAVAGSSGKVISGN TFASGINGTTATVSKDDOGNITVNYDVNVGDALNVNELONSGWELDSKAVAGSSGKVISGN TFASGINGTTATVSKDDOGNITVNYDVNVGDALNVNQLONSGWNLDSKAVAGSSGKVISGN
1 203	351	TFASG GTTATVSKDDOGNITV YDVNVGDALNVNOLONSGWNLDSKAVAGSSGKVISGN
zn18_1	351	TFASGEGTTATV5KDDOGN1TVEIYDVNVGDALNVNOLONSGWNIDSKAVAGSSGKUTSGN
snll_ass	351	TFASGNGTTATVSKDDOGNITVNYDVNVGDALNVNOLONSGWNLDSKAVAGSSCKVISGN TFASGNGTTATVSKDDOGNITVNYDVNVGDALNVNQLONSGWNLDSKAVAGSSCKVISGN
zn02_1	351	TEASGUGTTATVSKDDOGNITVNYDVNVGDALNVNOLONSGWNLDSKAVAGSSGKVLSGN
xa04_1	351	TFASGAGTTATVSKDDQGNITVATDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGN TFASGAGTTATVSKDDQGNITVATDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGN TFASGAGTTATVSKDDQGNITVATDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGN TFASGAGTTATVSKDDQGNITVATDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGN TFASGAGTTATVSKDDQGNITVATDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGN
£n16_1	355	
sn14_1	356	
x2491	349	
	349	
zn10_1 zn22_1	349	
	349	IFASG GITAT VSRDDQGITT VTDVNVGDALNVNQLQNSGWNLDSKNVACSSGRVISGN
zn23_1	349	TFASGAGTTATVSKDDQCNITVAYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGN TFASGAGTTATVSKDDQCNITVAYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGN TFASGAGTTATVSKDDQGNITVAYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGN TFASGAGTTATVSKDDQGNITVKYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGN
zn28_ass		IF ASGAGT I A TV SKUDUGN I I VITUVNVGDALNVNOLONSGWNLUSKAVAGSSGRV I SGN
2n24_1	346	TFASGNGTTATVSKDDOGN1TVN1DVNVGDALNVNOLONSGWNLDSKAVAGSSGRVISGN
zn25_e##	346	TFASGNGTTATVSKDDOGNITVNYDVNVGDALNVNOLONSGWNLDSKAVAGSSGRVISGN
zn08_1	352	IFASGEGTTATVSKDDQGNITVEYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISCN
zn29_ass	357	TFASG <mark>N</mark> GTTATVSKDDQGNITV <mark>X</mark> YDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISCN
za07_1	409	VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVD <mark>G</mark> , A VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVDG VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVD <mark>G</mark> , A
zn20_1	409	VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVD <mark>G</mark> , a
zn21_1	409	VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVD <mark>G</mark> . A
zn06_1	409	VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVD <mark>G</mark> F.A
zn19_1	409	VSPSKGKMDETVNINACNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVD <mark>G</mark> .A
zn03_1	411	VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGAÐAPTLSVDDÖGA
zn18_1	411	VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVDD <mark>.</mark> Ga
zn11_ass	411	VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMTPOFSSVSLGAGADAPTLSVDD.GA
±n02_1	411	VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMPOFSSVSLGAGADAPTLSVDDÓ.GA
zn04_1	411	VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSM <mark>A</mark> POFSSVSLGAGADAPTLSVDD ¹ GA
xn16_1	415	VSPSKCKMDETVNINAGNNIEITRNCKNIDIATSMTPOFSSVSLGAGADAPTLSVDD GA
2014_1	416	VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMTPOFSSVSLGAGADAPTLSVDDØGA
12491	409	VSPSKGKMDETVNINAGNNIEI RNGKNIDIATSM POFSSVSLGAGADAPTLSVDD GA
za10_1	409	VSPSKGKMDETVNINAGNNIEI.RNGKNIDIATSM POFSSVSLGAGADAPTLSVDD [#] GA
xn22_1	409	VSPSKGKMDETVNINAGNNIEI RNGKNIDIATSM POFSSVSLGAGADAPTLSVDD CA
zn23_1	409	VSPSKGKMDETVNINAGNNIEI_RNGKNIDIATSM <mark>A</mark> POFSSVSLGAGADAPTLSVDD ^N GA
1028_ass	409	VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMTPOFSSVSLGAGADAPTLSVDDIGA
zn24_1	406	VSPSKCKMDETVNINAGNNIEITRNGKNIDIATSMTPOFSSVSLGACADAPTLSVDDÖGA
zn25_ass	406	VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMTPOFSSVSLGAGADAPTLSVDDEGA
xn08_1	412	VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMTPOFSSVSLGAGADAPTLSVDDHGA
xn29_888	417	VSPSKGKMDETVNINAGNNIEITRNGKNIDIATSMTPOFSSVSLGAGADAPTLSVDDMGA
aus/_600	•••	
£n07_1	468	LNVGSKUDNKPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIAT
zn20_1	468	LNVGSKKDNKPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIAT
zn21_1	468	LNVGSKEDNKPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIAT
zn06_1	468	LNVGSKKDNKPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIAT
1000_1 119_1	468	LNVGSKADARFVRITNVAPGVÆGDVINVAGLKGVAGNINNRIDNVDGNARAGIAGAIAT
	471	LNVGSKDINKPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNEIDNVDGNARAGIAQAIAT
zn03_1	471	LNVGSKDUNKPVRITNVAPGVKEGDVINVAQLKGVAQNLNMIDNVDGNARAGIAQAIAT
zn18_1	471	LNVGSKDANKPVRITNVAPGVKEGDVINVAQLKGVAQNLNNHIDNVDGNARAGIAQAIAT LNVGSKDANKPVRITNVAPGVKEGDVINVAQLKGVAQNLNNHIDNVDGNARAGIAQAIAT
xn11_ass	471	LNVGSKD-NKPVRITNVAPGVREGDVINVAQLKGVAQNLNNBIDNVDGNARAGIAQAIAT LNVGSKD <mark>-</mark> NKPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNBIDNVDGNARAGIAQAIAT
En02_1	471	LNVGSKDMNKPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIAT
zn04_1 zn16_1	475	
zn14_1	476	
z2491	469	LNVGSKDUNKPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIAT
zn10_1	469	
zn22_1	-469	
zn23_1	469	LNVGSKDNNKPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIAT
zn28_868	469	
zn24_1	466	
zn25_ass	466	LNVGSKD <mark>A</mark> NKPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIAT
zn08_1	472	
zn29_ess	477	LNVGSKD <mark>ANKPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIAT</mark>

FIG. 8C

zn07_1	528	AGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
zn20_1	528	AGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
zn21_1	528	AGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
xn06_1	528	AGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
zn19_1	528	AGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
zn03_1	531	AGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
zn18_1	531	AGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
znll_ass	531	ASLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
zn02_1	531	AGLVQAYLPGKSMMAIGGDTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
zn04_1	531	AGLVQAYLPGKSMMAIGG <mark>D</mark> TYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
zn16_1	535	AGLAQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISD <mark>.</mark> GNW <u>H</u> ikgtasgnsrghfgasasv
zo14_1	536	AGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
z2491	529	AGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
za10_1	529	AGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
zn22_1	529	AGLVQAYLPGK5MMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
xn23_1	529	AGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
zn28_ass	529	AGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
zn24_1	526	AGL <mark>R</mark> QAYLPGKSMMAIGGGTYRGEAGYAIGYSSISD <mark>E</mark> GNWÄIKGTASGNSRGHFG <mark>E</mark> SASV
zn25_ass	526	AGU _ QAYLPGKSMMAIGGGTYRGEAGYAIGYSSISD <mark>⊡</mark> GNW <u>Q</u> IKGTASCNSRGHFG <mark>⊡</mark> SASV
xn08_1	532	AGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASV
zn29_ass	537	AGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTÁSGNSRGHFGASASV
zn07_1	588	GYQW
zn20_1	588	GYQW®
zn21_1	588	GYQW*
zn06_1	598	GYQW*
zn19_1	588	GYQW*
zn03_1	591	
gn18_1	591	GYQW*
sn11_ass	591	GYQW ⁴
02 1	5 6 1	GYOR T

 xn11_xss
 591
 GYQW

 xn02_1
 591
 GYQW

 xn04_1
 591
 GYQW

 xn16_1
 595
 GYQW

 xn14_1
 596
 GYQW

 xn10_1
 589
 GYQW

 xn22_1
 589
 GYQW

 xn23_1
 589
 GYQW

 xn28_ass
 589
 GYQW

 xn25_ass
 586
 GYQW

 xn29_ass
 597
 GYQW

FIG. 8D

MENINGOCOCCAL ANTIGENS

[0001] This application is a continuation-in-part of international patent application PCT/IB99/00103, filed Jan. 14, 1999, from which priority is claimed under 35 U.S.C. § 119.

[0002] This invention relates to antigens from the bacterium *Neisseria meningitidis*.

BACKGROUND

[0003] Neisseria meningitidis is a non-motile, gram negative diplococcus human pathogen. It colonises the pharynx, causing meningitis and, occasionally, septicaemia in the absence of meningitis. It is closely related to *N. gonorrhoeae*, although one feature that clearly differentiates meningococcus from gonococcus is the presence of a polysaccharide capsule that is present in all pathogenic meningococci.

[0004] *N. meningitidis* causes both endemic and epidemic disease. In the United States the attack rate is 0.6-1 per 100,000 persons per year, and it can be much greater during outbreaks (see Lieberman el al. (1996) Safety and Immunogenicity of a Serogroups A/C Neisseria meningitidis Oligosaccharide-Protein Conjugate Vaccine in Young Children. JAMA 275(19):1499-1503; Schuchat et al (1997) Bacterial Meningitis in the United States in 1995. N Engl J Med 337(14):970-976). In developing countries, endemic disease rates are much higher and during epidemics incidence rates can reach 500 cases per 100,000 persons per year. Mortality is extremely high, at 10-20% in the United States, and much higher in developing countries. Following the introduction of the conjugate vaccine against Haemophilus influenzae, N. meningitidis is the major cause of bacterial meningitis at all ages in the United States (Schuchat et al (1997) supra).

[0005] Based on the organism's capsular polysaccharide, 12 serogroups of N. meningitidis have been identified. Group A is the pathogen most often implicated in epidemic disease in sub-Saharan Africa. Serogroups B and C are responsible for the vast majority of cases in the United States and in most developed countries. Serogroups W135 and Y are responsible for the rest of the cases in the United States and developed countries. The meningococcal vaccine currently in use is a tetravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Although efficacious in adolescents and adults, it induces a poor immune response and short duration of protection, and cannot be used in infants [eg. Morbidity and Mortality weekly report, Vol. 46, No. RR-5 (1997)]. This is because polysaccharides are T-cell independent antigens that induce a weak immune response that cannot be boosted by repeated immunization. Following the success of the vaccination against H. influenzae, conjugate vaccines against serogroups A and C have been developed and are at the final stage of clinical testing (Zollinger W D "New and Improved Vaccines Against Meningococcal Disease" in: New Generation Vaccines, supra, pp. 469-488; Lieberman et al (1996) supra; Costantino et al (1992) Development and phase I clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine 10:691-698).

[0006] Meningococcus B remains a problem, however. This serotype currently is responsible for approximately 50% of total meningitis in the United States, Europe, and South America. The polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer of α (2-8)-linked N-acetyl neuraminic acid that is also present in mammalian tissue. This results in tolerance to the antigen; indeed, if an immune response were elicited, it would be anti-self, and therefore undesirable. In order to avoid induction of autoimmunity and to induce a protective immune response, the capsular polysaccharide has, for instance, been chemically modified substituting the N-acetyl groups with N-propionyl groups, leaving the specific antigenicity unaltered (Romero & Outschoorn (1994) Current status of Meningococcal group B vaccine candidates: capsular or non-capsular?*Clin Microbiol Rev* 7(4):559-575).

[0007] Alternative approaches to menB vaccines have used complex mixtures of outer membrane proteins (OMPs), containing either the OMPs alone, or OMPs enriched in porins, or deleted of the class 4 OMPs that are believed to induce antibodies that block bactericidal activity. This approach produces vaccines that are not well characterized. They are able to protect against the homologous strain, but are not effective at large where there are many antigenic variants of the outer membrane proteins. To overcome the antigenic variability, multivalent vaccines containing up to nine different porins have been constructed (eg. Poolman J T (1992) Development of a meningococcal vaccine. Infect. Agents Dis. 4:13-28). Additional proteins to be used in outer membrane vaccines have been the opa and opc proteins, but none of these approaches have been able to overcome the antigenic variability (eg. Ala'Aldeen & Borriello (1996) The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine 14(1):49-53).

[0008] A certain amount of sequence data is available for meningococcal and gonococcal genes and proteins (eg. EP-A-0467714, WO96/29412), but this is by no means complete. The provision of further sequences could provide an opportunity to identify secreted or surface-exposed proteins that are presumed targets for the immune system and which are not antigenically variable. For instance, some of the identified proteins could be components of efficacious vaccines against meningococcus B, some could be components of vaccines against all meningococcal serotypes, and others could be components of vaccines against all pathogenic *Neisseriae*.

[0009] The Invention

[0010] The invention provides proteins comprising the *N*. *meningitidis* amino acid sequences disclosed in the examples.

[0011] It also provides proteins comprising sequences homologous (ie. having sequence identity) to the *N. meningitidis* amino acid sequences disclosed in the examples. Depending on the particular sequence, the degree of sequence identity is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). These homologous proteins include mutants and allelic variants of the sequences disclosed in the examples. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between the proteins is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1.

[0012] The invention further provides proteins comprising fragments of the *N. meningitidis* amino acid sequences disclosed in the examples. The fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20 or more). Preferably the fragments comprise an epitope from the sequence.

[0013] The proteins of the invention can, of course, be prepared by various means (eg. recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (eg. native, fusions etc.). They are preferably prepared in substantially pure form (ie. substantially free from other *N. meningitidis* or host cell proteins).

[0014] According to a further aspect, the invention provides antibodies which bind to these proteins. These may be polyclonal or monoclonal and may be produced by any suitable means.

[0015] According to a further aspect, the invention provides nucleic acid comprising the *N. meningitidis* nucleotide sequences disclosed in the examples. In addition, the invention provides nucleic acid comprising sequences homologous (ie. having sequence identity) to the *N. meningitidis* nucleotide sequences disclosed in the examples.

[0016] Furthermore, the invention provides nucleic acid which can hybridise to the *N. meningitidis* nucleic acid disclosed in the examples, preferably under "high stringency" conditions (eg. 65° C. in a 0.1×SSC, 0.5% SDS solution).

[0017] Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the *N. meningitidis* sequences and, depending on the particular sequence, n is 10 or more (eg 12, 14, 15, 18, 20, 25, 30, 35, 40 or more).

[0018] According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.

[0019] It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).

[0020] Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).

[0021] In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.

[0022] According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.

[0023] According to a further aspect, the invention provides compositions comprising protein, antibody, and/or nucleic acid according to the invention. These compositions may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions.

[0024] The invention also provides nucleic acid, protein, or antibody according to the invention for use as medicaments (eg. as vaccines) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of: (i) a medicament for treating or preventing infection due to Neisserial bacteria; (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria; and/or (iii) a reagent which can raise antibodies against Neisserial bacteria Said Neisserial bacteria may be any species or strain (such as *N. gonorrhoeae*) but are preferably *N. meningitidis*, especially strain A, strain B or strain C.

[0025] The invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid, protein, and/or antibody according to the invention.

[0026] According to further aspects, the invention provides various processes.

[0027] A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.

[0028] A process for producing protein or nucleic acid of the invention is provided, wherein the protein or nucleic acid is synthesised in part or in whole using chemical means.

[0029] A process for detecting polynucleotides of the invention is provided, comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridizing conditions to form duplexes; and (b) detecting said duplexes.

[0030] A process for detecting proteins of the invention is provided, comprising the steps of: (a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.

[0031] Unlike the sequences disclosed in PCT/IB98/ 01665, the sequences disclosed in the present application are believed not to have any significant homologs in *N. gonorrhoeae*. Accordingly, the sequences of the present invention also find use in the preparation of reagents for distinguishing between *N. meningitidis* and *N. gonorrhoeae*.

[0032] A summary of standard techniques and procedures which may be employed in order to perform the invention (eg. to utilise the disclosed sequences for vaccination or diagnostic purposes) follows. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

[0033] General

[0034] The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature eg. Sambrook *Molecular Cloning; A Laboratory Manual, Second Edition* (1989); *DNA Cloning, Volumes I and ii* (D. N Glover ed. 1985); *Oligonucleotide Synthesis* (M. J. Gait ed, 1984); *Nucleic Acid Hybridization* (B. D. Hames & S. J. Higgins eds. 1984); *Transcription and Translation* (B. D. Hames &

S. J. Higgins eds. 1984); Animal Cell Culture (R. I. Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology series (Academic Press, Inc.), especially volumes 154 & 155; Gene Transfer Vectors for Mammalian Cells (J. H. Miller and M. P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes, (1987) Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.), and Handbook of Experimental Immunology, Volumes I-IV (D. M. Weir and C. C. Blackwell eds 1986).

[0035] Standard abbreviations for nucleotides and amino acids are used in this specification.

[0036] All publications, patents, and patent applications cited herein are incorporated in full by reference. In particular, the contents of UK patent applications 9800760.2, 9819015.0 and 9822143.5 are incorporated herein.

[0037] Definitions

[0038] A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

[0039] The term "comprising" means "including" as well as "consisting" eg. a composition "comprising" X may consist exclusively of X or may include something additional to X, such as X+Y.

[0040] A "conserved"*Neisseria* amino acid fragment or protein is one that is present in a particular Neisserial protein in at least x % of *Neisseria*. The value of x may be 50% or more, e.g., 66%, 75%, 80%, 90%, 95% or even 100% (i.e. the amino acid is found in the protein in question in all *Neisseria*). In order to determine whether an animo acid is "conserved" in a particular Neisserial protein, it is necessary to compare that amino acid residue in the sequences of the protein in question from a plurality of different *Neisseria* (a reference population). The reference population may include a number of different *Neisseria* species or may include a single species. The reference population may include a number of different serogroups of a particular species or a single serogroup. A preferred reference population consists of the 5 most common *Neisseria*.

[0041] The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Neisserial sequence is heterologous to a mouse host cell. A further examples would be two epitopes from the same or different proteins which have been assembled in a single protein in an arrangement not found in nature.

[0042] An "origin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own

control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

[0043] A "mutant" sequence is defined as DNA, RNA or amino acid sequence differing from but having sequence identity with the native or disclosed sequence. Depending on the particular sequence, the degree of sequence identity between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more, calculated using the Smith-Waterman algorithm as described above). As used herein, an "allelic variant" of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs essentially at the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An allelic variant can also comprise an alteration in the 5' or 3' untranslated regions of the gene, such as in regulatory control regions (eg. see U.S. Pat. No. 5,753,235).

[0044] Expression Systems

[0045] The Neisserial nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, baculoviruses, plants, bacteria, and yeast.

[0046] i. Mammalian Systems

[0047] Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation [Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In Molecular Cloning: A Laboratory Manual, 2nd ed.]

[0048] Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallotheionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible), depending on the promoter can be induced with glucocorticoid in hormoneresponsive cells. [0049] The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter [Maniatis et al. (1987) Science 236:1237; Alberts et al. (1989) Molecular Biology of the Cell, 2nd ed.]. Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range. Examples include the SV40 early gene enhancer [Dijkema et al (1985) EMBO J. 4:761] and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus [Gorman et al. (1982b) Proc. Natl. Acad. Sci. 79:6777] and from human cytomegalovirus [Boshart et al. (1985) Cell 41:521]. Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion [Sassone-Corsi and Borelli (1986) Trends Genet. 2:215; Maniatis et al. (1987) Science 236:1237].

[0050] A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.

[0051] Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either in vivo or in vitro. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus triparite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

[0052] Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation [Birnstiel et al. (1985) Cell 41:349; Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In Transcription and splicing (ed. B. D. Hames and D. M. Glover); Proudfoot (1989) Trends Biochem. Sci. 14:105]. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminater/ polyadenylation signals include those derived from SV40 [Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In Molecular Cloning: A Laboratory Manual].

[0053] Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription

termination sequence are put together into expression constructs. Enhancers; introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 [Gluzman (1981) Cell 23:175] or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replicaton systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 [Kaufman et al. (1989) Mol. Cell. Biol. 9:946] and pHEBO [Shimizu et al. (1986) Mol. Cell. Biol. 6:1074].

[0054] The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

[0055] Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (eg. Hep G2), and a number of other cell lines.

[0056] ii. Baculovirus Systems

[0057] The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

[0058] After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant-virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, inter alia, Invitrogen, San Diego Calif. ("MaxBac" kit). These techniques are generally

known to those skilled in the art and fully described in Summers and Smith, *Texas Agricultural Experiment Station Bulletin No.* 1555 (1987) (hereinafter "Summers and Smith").

[0059] Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

[0060] Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, *Virology* (1989) 17:31.

[0061] The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) *Ann. Rev. Microbiol.*, 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in *E. coli*.

[0062] Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5' to 3) transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.

[0063] Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in: *The Molecular Biology of Baculoviruses* (ed. Walter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), *J. Gen. Virol.* 69:765.

[0064] DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) *Gene*, 73:409). Alternatively, since the signals for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the

signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human α -interferon, Maeda et al., (1985), *Nature* 315:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), *Molec. Cell. Biol.* 8:3129; human IL-2, Smith et al., (1985) *Proc. Nat'l Acad. Sci. USA*, 82:8404; mouse IL-3, (Miyajima et al., (1987) *Gene* 58:273; and human glucocerebrosidase, Martin et al. (1988) *DNA*, 7:99, can also be used to provide for secretion in insects.

[0065] A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by in vitro incubation with cyanogen bromide.

[0066] Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

[0067] After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus—usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5 kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art (See Summers and Smith supra; Ju et al. (1987); Smith et al., Mol. Cell. Biol. (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), Bioessays 4:91 The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrinspecific sequences and is positioned downstream of the polyhedrin promoter.

[0068] The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 μ m in

size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfection supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative of recombinant virus) of occlusion bodies. "Current Protocols in Microbiology" Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, supra; Miller et al. (1989).

[0069] Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, inter alia: *Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda,* and *Trichoplusia ni* (WO 89/046699; Carbonell et al., (1985) *J. Virol.* 56:153; Wright (1986) *Nature* 321:718; Smith et al., (1983) *Mol. Cell. Biol.* 3:2156; and see generally, Fraser, et al. (1989) *In Vitro Cell. Dev. Biol.* 25:225).

[0070] Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, eg. Summers and Smith supra.

[0071] The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, eg. HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, eg. proteins, lipids and polysaccharides.

[0072] In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.

[0073] iii. Plant Systems

[0074] There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: U.S. Pat. No. 5,693,506; U.S. Pat. No. 5,659,122; and U.S. Pat. No. 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, *Phytochemistry* 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found

in addition to the references described above in Vaulcombe et al., Mol. Gen. Genet. 209:33-40 (1987); Chandler et al., Plant Molecular Biology 3:407-418 (1984); Rogers, J. Biol. Chem. 260:3731-3738 (1985); Rothstein et al., Gene 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Wirsel et al., Molecular Microbiology 3:3-14 (1989); Yu et al., Gene 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R. L. Jones and J. MacMillin, Gibberellins: in: Advanced Plant Physiology, Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, Plant Cell, 2:1027-1038 (1990); Maas et al., EMBO J. 9:3447-3452 (1990); Benkel and Hickey, Proc. Natl. Acad. Sci 84:1337-1339 (1987)

[0075] Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host. The companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker, and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, Plant Mol. Biol. Reptr, 11(2):165-185.

[0076] Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

[0077] The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5' untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector.

[0078] A heterologous coding sequence may be for any protein relating to the present invention. The sequence

encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.

[0079] Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron" region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, *Cell* 41:95-105, 1985.

[0080] The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, Mol. Gen. Genet, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al., Nature, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., Nature, 327, 70-73, 1987 and Knudsen and Muller, 1991, Planta, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., Proc. Natl. Acad. Sci. USA, 79, 1859-1863, 1982.

[0081] The vector may also be introduced into the plant cells by electroporation. (Fromm et al., *Proc. Natl Acad. Sci. USA* 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

[0082] All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera *Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis,* Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.

[0083] Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

[0084] In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryo-less-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.

[0085] iv. Bacterial Systems

[0086] Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in Escherichia coli (E. coli) [Raibaud et al. (1984) Annu. Rev. Genet. 18:173]. Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.

[0087] Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples

include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (lac) [Chang et al. (1977) *Nature* 198:1056], and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) [Goeddel et al. (1980) *Nuc. Acids Res.* 8:4057; Yelverton et al. (1981) *Nucl. Acids Res.* 9:731; U.S. Pat. No. 4,738,921; EP-A-0036776 and EP-A-0121775]. The g-laotamase (bla) promoter system [Weissmann (1981) "The cloning of interferon and other mistates." In *Interferon* 3 (ed I. Gresser)], bacteriophage lambda PL [Shimatake et al. (1981) *Nature* 292:128] and T5 [U.S. Pat. No. 4,689,406] promoter systems also provide useful promoter sequences.

[0088] In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter [U.S. Pat. No. 4,551, 433]. For example, the tac promoter is a hybrid trp-lac promoter comprised of both trp promoter and lac operon sequences that is regulated by the lac repressor [Amann et al. (1983) Gene 25:167; de Boer et al. (1983) Proc. Natl. Acad. Sci. 80:21]. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system [Studier et al. (1986) J. Mol. Biol. 189:113; Tabor et al. (1985) Proc Natl. Acad. Sci. 82:1074]. In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an E. coli operator region (EPO-A-0 267 851).

[0089] In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In E. coli, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon [Shine et al. (1975) Nature 254:34). The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' and of E. coli 16S rRNA [Steitz et al. (1979) "Genetic signals and nucleotide sequences in messenger RNA." In Biological Regulation and Development: Gene Expression (ed. R. F. Goldberger)]. To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site [Sambrook et al. (1989) "Expression of cloned genes in Escherichia coli." In Molecular Cloning: A Laboratory Manual].

[0090] A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide or by either in vivo on in vitro incubation with a bacterial methionine N-terminal peptidase (EPO-A-0 219 237).

[0091] Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5' terminus of a foreign gene and expressed in bacteria The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene [Nagai et al. (1984) Nature 309:810]. Fusion proteins can also be made with sequences from the lacZ [Jia et al. (1987) Gene 60:197], trpE (Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al. (1989) J. Gen. Microbiol. 135:11], and Chey [EP-A-0 324 647] genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated [Miller et al. (1989) Bio/Technology 7:698].

[0092] Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria [U.S. Pat. No. 4,336,336]. The signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either in vivo or in vitro encoded between the signal peptide fragment and the foreign gene.

[0093] DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the *E. coli* outer membrane protein gene (ompA) [Masui et al. (1983), in: *Experimental Manipulation of Gene Expression*; Ghrayeb et al. (1984) *EMBO J.* 3:2437] and the *E. coli* alkaline phosphatase signal sequence (phoA) [Oka et al. (1985) *Proc. Natl. Acad. Sci.* 82:7212]. As an additional example, the signal sequence of the alpha-amylase gene from various *Bacillus* strains can be used to secrete heterologous proteins from *B. subtilis* [Palva et al. (1982) *Proc. Natl. Acad. Sci.* USA 79:5582; EP-A-0 244 042].

[0094] Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the trip gene in *E. coli* as well as other biosynthetic genes.

[0095] Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as bacteria The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

[0096] Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various *Bacillus* strains integrate into the *Bacillus* chromosome (EP-A-0 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

[0097] Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline [Davies et al. (1978) *Annu. Rev. Microbiol.* 32:469]. Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

[0098] Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.

[0099] Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria For example, expression vectors have been developed for, inter alia, the following bacteria: *Bacillus subtilis* [Palva et al. (1982) *Proc. Natl. Acad. Sci. USA* 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541], *Escherichia coli* [Shimatake et al. (1981) *Nature* 292:128; Amann et al. (1985) *Gene* 40:183; Studier et al. (1986) *J. Mol. Biol.* 189:113; EP-A-0 036 776, EP-A-0 136 829 and EP-A-0 136 907], *Streptococcus cremoris* [Powell et al. (1988) *Appl. Environ. Microbiol.* 54:655], *Streptomyces lividans* [U.S. Pat. No. 4,745,056].

[0100] Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with $CaCl_2$ or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by electroporation. Transformation procedures usually vary with the bacterial

species to be transformed. See eg. [Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, Bacillus], [Miller et al. (1988) Proc. Natl. Acad. Sci. 85:856; Wang et al. (1990) J. Bacteriol. 172:949, Campylobacter], [Cohen et al. (1973) Proc. Natl. Acad. Sci. 69:2110; Dower et al. (1988) Nucleic Acids Res. 16:6127; Kushner (1978) "An improved method for transformation of Escherichia coli with ColE1-derived plasmids. In Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H. W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Biol. 53:159; Taketo (1988) Biochim Biophys. Acta 949:318; Escherichia], [Chassy et al. (1987) FEMS Microbiol. Lett. 44:173 Lactobacillus]; [Fiedler et al. (1988) Anal. Biochem 170:38, Pseudomonas]; [Augustin et al. (1990) FEMS Microbiol. Lett. 66:203, Staphylococcus], [Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) "Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th Evr. Cong. Biotechnology 1:412, Streptococcus].

[0101] v. Yeast Expression

[0102] Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.

[0103] Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EP-A-0 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO-A-0 329 203). The yeast PHO5 gene, encoding acid phosphatase, also provides useful promoter sequences [Myanohara et al. (1983) *Proc. Natl. Acad. Sci. USA* 80:1].

[0104] In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (U.S. Pat. Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes, combined with the transcription activation with the transcription activation with the transcription of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes, combined with the transcription activation activation the transcription activation with the transcription activation activation the transcription activation the transcription activation activation activation activation activation (U.S. Pat. Nos. 4,876,197 and 4,880,734).

scriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EP-A-0 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of nonyeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, [Cohen et al. (1980) *Proc. Natl. Acad. Sci. USA* 77:1078; Henikoff et al. (1981) *Nature* 283:835; Hollenberg et al. (1981) *Curr. Topics Microbiol. Immunol.* 96:119; Hollenberg et al. (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast *Saccharomyces cerevisiae*," in: *Plasmids of Medical, Environmental and Commercial Importance* (eds. K. N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) *Gene* 11:163; Panthier et al. (1980) *Curr. Genet.* 2:109;].

[0105] A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.

[0106] Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See eg. EP-A-0 196 056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (eg. WO88/024066).

[0107] Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either in vivo or in vitro. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

[0108] DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EP-A-0 012 873; JPO. 62,096,086) and the A-factor gene (U.S. Pat. No. 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (EP-A-0 060 057).

[0109] A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (U.S. Pat. Nos. 4,546,083 and 4,870,008; EP-A-0 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (eg. see WO 89/02463.)

[0110] Usually, transcription termination sequences recognized by yeast are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.

[0111] Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeastbacteria shuttle vectors include YEp24 [Botstein et al. (1979) Gene 8:17-24], pCl/1 [Brake et al. (1984) Proc. Natl. Acad. Sci USA 81:4642-4646], and YRp17 [Stinchcomb et al. (1982) J. Mol. Biol. 158:157]. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See eg. Brake et al., supra.

[0112] Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome [Orr-Weaver et al. (1983) Methods in Enzymol. 101:228-245]. An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced [Rine et al. (1983) Proc. Natl. Acad. Sci. USA 80:6750]. The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.

[0113] Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as ADE2, HIS4, LEU2,

TRP1, and ALG7, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of CUP1 allows yeast to grow in the presence of copper ions [Butt et al. (1987) *Microbiol, Rev.* 51:351].

[0114] Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.

[0115] Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors have been developed for, inter alia, the following yeasts: Candida albicans [Kurtz, et al. (1986) Mol. Cell. Biol. 6:142], Candida maltosa [Kunze, et al. (1985) J. Basic Microbiol. 25:141]. Hansenula polymorpha [Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302], Kluyveromyces fragilis [Das, et al. (1984) J. Bacteriol. 158:1165], Kluyveromyces lactis [De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135], Pichia guillerimondii [Kunze et al. (1985) J. Basic Microbiol. 25:141], Pichia pastoris [Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; U.S. Pat. Nos. 4,837, 148 and 4,929,555], Saccharomyces cerevisiae [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75:1929; Ito et al. (1983) J. Bacteriol. 153:163], Schizosaccharomyces pombe [Beach and Nurse (1981) Nature 300:706], and Yarrowia lipolytica [Davidow, et al. (1985) Curr. Genet. 10:380471 Gaillardin, et al (1985) Curr. Genet. 10:49].

[0116] Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See eg. [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141; Candida]; [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302; Hansenula]; [Das et al. (1984) J. Bacteriol. 158:1165; De Louvencourt et al. (1983) J. Bacteriol. 154:1165; Van den Berg et al. (1990) Bio/ Technology 8:135; Kluyveromyces]; [Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141; U.S. Pat. Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75;1929; Ito et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach and Nurse (1981) Nature 300:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaillardin et al. (1985) Curr. Genet. 10:49; Yarrowia].

[0117] Antibodies

[0118] As used herein, the term "antibody" refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An "antibody combining site" is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen. "Antibody" includes, for example, vertebrate antibodies, hybrid antibodies, chimeric

antibodies, humanised antibodies, altered antibodies, univalent antibodies, Fab proteins, and single domain antibodies. Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishing/identifying Neisserial proteins.

[0119] Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In general, the protein is first used to immunize a suitable animal, preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit and anti-goat antibodies. Immunization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund's complete adjuvant, and injecting the mixture or emulsion parenterally (generally subcutaneously or intramuscularly). A dose of 50-200 μ g/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant. One may alternatively generate antibodies by in vitro immunization using methods known in the adt, which for the purposes of this invention is considered equivalent to in vivo immunization. Polyclonal antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25° C. for one hour, followed by incubating at 4° C. for 2-18 hours. The serum is recovered by centrifugation (eg. 1,000 g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits.

[0120] Monoclonal antibodies are prepared using the standard method of Kohler & Milstein [Nature (1975) 256:495-96], or a modification thereof. Typically, a mouse or rat is immunized as described above. However, rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nodes) is removed and dissociated into single cells. If desired, the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells expressing membrane-bound immunoglobulin specific for the antigen bind to the plate, and are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (eg. hypoxanthine, aminopterin, thymidine medium, "HAT"). The resulting hybridomas are plated by limiting dilution, and are assayed for the production of antibodies which bind specifically to the immunizing antigen (and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either in vitro (eg. in tissue culture bottles or hollow fiber reactors), or in vivo (as ascites in mice).

[0121] If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly ³²P and ¹²⁵I), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3',5,5'-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. "Specific binding partner" refers to a protein capable of binding a ligand molecule with high specificity, as for example in the case of an antigen and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, ¹²⁵I may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb. Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with ¹²⁵I, or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.

[0122] Pharmaceutical Compositions

[0123] Pharmaceutical compositions can comprise either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

[0124] The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgement of the clinician.

[0125] For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

[0126] A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

[0127] Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

[0128] Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

[0129] Delivery Methods

[0130] Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.

[0131] Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

[0132] Vaccines

[0133] Vaccines according to the invention may either be prophylactic (ie. to prevent infection) or therapeutic (ie. to treat disease after infection).

[0134] Such vaccines comprise immunising antigen(s), immunogen(s), polypeptide(s), protein(s) or nucleic acid, usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the antigen or immunogen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, H. pylori, etc. pathogens.

[0135] Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59TM (WO 90/14837; Chapter 10 in Vaccine design: the subunit and adjuvant approach, eds. Powell & Newman, Plenum Press 1995), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, Mass.), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% plu-

ronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RibiTM adjuvant system (RAS), (Ribi Immunochem, Hamilton, Mont.) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL+ CWS (Detox[™]); (3) saponin adjuvants, such as Stimulon[™] (Cambridge Bioscience, Worcester, Mass.) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (eg. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (eg. gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; and (6) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59[™] are preferred.

[0136] As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)ethylamine (MTP-PE), etc.

[0137] The immunogenic compositions (eg. the immunising antigen/immunogen/polypeptide/protein/nucleic acid, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.

[0138] Typically, the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

[0139] Immunogenic compositions used as vaccines comprise an immunologically effective amount of the antigenic or immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (eg. nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctors assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

[0140] The immunogenic compositions are conventionally administered parenterally, eg. by injection, either subcutaneously, intramuscularly, or transdermally/transcutaneously (eg. WO98/20734). Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

[0141] As an alternative to protein-based vaccines, DNA vaccination may be employed [eg. Robinson & Torres (1997) *Seminars in Immunology* 9:271-283; Donnelly et al. (1997) *Annu Rev Immunol* 15:617-648; see later herein].

[0142] Gene Delivery Vehicles

[0143] Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in in vivo or ex vivo modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.

[0144] The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adenoassociated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parovvirus, picomavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) *Cancer Gene Therapy* 1:51-64; Kimura (1994) *Human Gene Therapy* 5:845-852; Connelly (1995) *Human Gene Therapy* 6:185-193; and Kaplitt (1994) *Nature Genetics* 6:148-153.

[0145] Retroviral vectors are well known in the art and we contemplate that any retroviral gene therapy vector is employable in the invention, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) *J. Virol.* 53:160) polytropic retrovirus eg. MCF and MCF-MLV (see Kelly (1983) *J. Virol.* 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.

[0146] Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.

[0147] These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see U.S. Pat. No. 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.

[0148] Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines

are made from human parent cells (eg. HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.

[0149] Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) *J Virol* 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection ("ATCC") in Rockville, Md. or isolated from known sources using commonly available techniques.

[0150] Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/25698, WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, U.S. Pat. No. 5,219,740, U.S. Pat. No. 4,405,712, U.S. Pat. No. 4,861,719, U.S. Pat. No. 4,980,289, U.S. Pat. No. 4,777,127, U.S. Pat. No. 5,591,624. See also Vile (1993) *Cancer Res* 53:3860-3864; Vile (1993) *Cancer Res* 53:962-967; Rain (1993) *Cancer Res* 53 (1993) 83-88; Takamiya (1992) *J Neurosci Res* 33:493-503; Baba (1993) *J Neurosurg* 79:729-735; Mann (1983) *Cell* 33:153; Cane (1984) *Proc Natl Acad Sci* 81:6349; and Miller (1990) *Human Gene Therapy* 1.

[0151] Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) Biotechniques 6:616 and Rosenfeld (1991) Science 252:431, and WO93/07283, WO93/ 06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, WO93/19191, WO94/28938, WO95/11984, WO95/00655, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102, WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/ 09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (ie. there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) J. Virol. 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in U.S. Pat. No. 5,478,745. Still other vectors are those disclosed in Carter U.S. Pat. No. 4,797,368 and Muzyczka U.S. Pat. No. 5,139,941, Chartejee U.S. Pat. No. 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) Human Gene Therapy 7:463-470. Additional AAV gene therapy vectors are described in U.S. Pat. No. 5,354, 678, U.S. Pat. No. 5,173,414, U.S. Pat. No. 5,139,941, and U.S. Pat. No. 5,252,479.

[0152] The gene therapy vectors of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in U.S. Pat. No. 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVlac described in Geller (1988) *Science* 241:1667-1669 and in WO90/09441 and WO92/07945, HSV Us3::pgC-lacZ described in Fink (1992) *Human Gene Therapy* 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260.

[0153] Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in U.S. Pat. Nos. 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in U.S. Ser. No. 08/405, 627, filed Mar. 15, 1995, WO94/21792, WO92/10578, WO95/07994, U.S. Pat. No. 5,091,309 and U.S. Pat. No. 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Md. or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see U.S. Ser. No. 08/679,640).

[0154] DNA vector systems such as eukaryotic layered expression systems are also useful for expressing the nucleic acids of the invention. See WO95/07994 for a detailed description of eukaryotic layered expression systems. Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.

[0155] Other viral vectors suitable for use in the present invention include those derived from poliovirus, for

example ATCC VR-58 and those described in Evans, Nature 339 (1989) 385 and Sabin (1973) J. Biol. Standardization 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) J Cell Biochem L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) Proc Natl Acad Sci 86:317; Flexner (1989) Ann NY Acad Sci 569:86, Flexner (1990) Vaccine 8:17; in U.S. Pat. No. 4,603,112 and U.S. Pat. No. 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) Nature 277:108 and Madzak (1992) J Gen Virol 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in U.S. Pat. No. 5,166,057 and in Enami (1990) Proc Nail Acad Sci 87:3802-3805; Enami & Palese (1991) J Virol 65:2711-2713 and Luytjes (1989) Cell 59:110, (see also McMichael (1983) NEJ Med 309:13, and Yap (1978) Nature 273:238 and Nature (1979) 277:108); human immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) J. Virol. 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O'Nyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and coronavirus, for example ATCC VR-740 and those described in Hamre (1966) Proc Soc Exp Biol Med 121:190.

[0156] Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see U.S. Ser. No. 08/366,787, filed Dec. 30, 1994 and Curiel (1992) Hum Gene Ther 3:147-154 ligand linked DNA, for example see Wu (1989) J Biol Chem 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see U.S. Ser. No. 08/240,030, filed May 9, 1994, and U.S. Ser. No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in U.S. Pat. No. 5,149,655, ionizing radiation as described in U.S. Pat. No. 5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) Mol Cell Biol 14:2411-2418 and in Woffendin (1994) Proc Natl Acad Sci 91:1581-1585.

[0157] Particle mediated gene transfer may be employed, for example see U.S. Ser. No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level

expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu & Wu (1987) J. Biol. Chem. 262:4429-4432, insulin as described in Hucked (1990) Biochem Pharmacol 40:253-263, galactose as described in Plank (1992) Bioconjugate Chem 3:533-539, lactose or transferrin.

[0158] Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and U.S. Pat. No. 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.

[0159] Liposomes that can act as gene delivery vehicles are described in U.S. Pat. No. 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in U.S. S No. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al (1994) Proc. Natl. Acad. Sci. USA 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in U.S. Pat. No. 5,149,655; use of ionizing radiation for activating transferred gene, as described in U.S. Pat. No. 5,206,152 and WO92/11033

[0160] Exemplary liposome and polycationic gene delivery vehicles are those described in U.S. Pat. Nos. 5,422,120 and 4,762,915; in WO 95/13796; WO94/23697, and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) *Biochem Biophys Acta* 600:1; Bayer (1979) *Biochem Biophys Acta* 550:464; Rivnay (1987) *Meth Enzymol* 149:119; Wang (1987) *Proc Natl Acad Sci* 84:7851; Plant (1989) *Anal Biochem* 176:420.

[0161] A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

[0162] Delivery Methods

[0163] Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the

subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for expression of recombinant proteins. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.

[0164] Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

[0165] Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in eg. WO93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.

[0166] Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

[0167] Polynucleotide and Polypeptide Pharmaceutical Compositions

[0168] In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

[0169] A. Polypeptides

[0170] One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of *plasmodium falciparum* known as RII.

[0171] B. Hormones, Vitamins, etc.

[0172] Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

[0173] C. Polyalkylenes, Polysaccharides, etc.

[0174] Also, polyalkylene glycol can be included with the desired polynucleotides/polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. In addition, mono-, di-, or polysaccharides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)

[0175] D. Lipids, and Liposomes

[0176] The desired polynucleotide/polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.

[0177] Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) *Biochim. Biophys. Acta.* 1097:1-17; Straubinger (1983) *Meth. Enzymol.* 101:512-527.

[0178] Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) *Proc. Natl. Acad. Sci. USA* 84:7413-7416); mRNA (Malone (1989) *Proc. Natl. Acad. Sci. USA* 86:6077-6081); and purified transcription factors (Debs (1990) *J. Biol. Chem.* 265:10189-10192), in functional form.

[0179] Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, N.Y. (See, also, Felgner supra). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, eg. Szoka (1978) *Proc. Nail. Acad. Sci. USA* 75:41944198; WO90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

[0180] Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, Ala.), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

[0181] The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art See eg. Straubinger (1983) *Meth. Immunol.* 101:512-527; Szoka (1978) *Proc. Natl. Acad. Sci. USA* 75:4194-4198; Papahadjopoulos (1975) *Biochim. Biophys. Acta* 394:483; Wilson (1979) Cell 17:77); Deamer & Bangham (1976) *Biochim. Biophys. Acta* 443:629; Ostro (1977) *Biochem. Biophys. Res. Commun.* 76:836; Fraley (1979) *Proc. Natl. Acad. Sci. USA* 76:3348); Enoch & Strittmatter (1979) *Proc. Natl. Acad. Sci. USA* 76:145; Fraley (1980) *J. Biol. Chem.* (1980) 255:10431; Szoka & Papahadjopoulos (1978) *Proc. Natl. Acad. Sci. USA* 75:145; and Schaefer-Ridder (1982) *Science* 215:166.

[0182] E. Lipoproteins

[0183] In addition, lipoproteins can be included with the polynucleotide/polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, DL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

[0184] Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.

[0185] A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins. VLDL comprises A, B, C, and E apoproteins, LDL comprises apoprotein B; and HDL comprises apoproteins A, C, and E.

[0186] The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem 261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.

[0187] Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phospholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in *Meth. Enzymol.* 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.

[0188] Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in *Meth. Enzymol.* (supra); Pitas (1980) *J. Biochem.* 255:5454-5460 and Mahey (1979) *J. Clin. Invest* 64:743-750. Lipoproteins can also be produced by in vitro or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) *Annu Rev Biophys Chem* 15:403 and Radding (1958) *Biochim Biophys Acia* 30: 443. Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Mass., USA. Further description of lipoproteins can be found in Zuckermann et al. PCT/US97/14465.

[0189] F. Polycationic Agents

[0190] Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide/polypeptide to be delivered.

[0191] Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of

neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.

[0192] The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

[0193] Organic polycationic agents include: spermine, spermidine, and purtrescine.

[0194] The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.

[0195] Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. LipofectinTM, and lipofectAMINETM are monomers that form polycationic complexes when combined with polynucleotides/ polypeptides.

[0196] Immunodiagnostic Assays

[0197] Neisserial antigens of the invention can be used in immunoassays to detect antibody levels (or, conversely, anti-Neisserial antibodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to Neisserial proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.

[0198] Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, etc.) required for the conduct of the assay, as well as suitable set of assay instructions.

[0199] Nucleic Acid Hybridisation

[0200] "Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions

that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook et al. [supra] Volume 2, chapter 9, pages 9.47 to 9.57.

[0201] "Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200° C. below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook et al. at page 9.50.

[0202] Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1 g for a plasmid or phage digest to 10^{-9} to 10^{-8} g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy yeast gene can be detected with an exposure time of only 1 hour starting with 1 μ g of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 10^8 cpm/µg. For a single-copy mammalian gene a conservative approach would start with 10 µg of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10^8 cpm/µg, resulting in an exposure time of 24 hours.

[0203] Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

Tm—81+16.6(log₁₀ Ci)+0.4[% (G+C)]-0.6(% formamide)-600/n-1.5(% mismatch).

[0204] where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) *Anal. Biochem.* 138: 267-284).

[0205] In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (ie. stringency), it becomes less likely for hybrid-

ization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.

[0206] In general, convenient hybridization temperatures in the presence of 50% formamide are 42° C. for a probe with is 95% to 100% homologous to the target fragment, 37° C. for 90% to 95% homology, and 32° C. for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be washed at high stringency and reexposed. If the time required for exposure makes this approach impractical, several hybridization and/or washing stringencies should be tested in parallel.

[0207] Nucleic Acid Probe Assays

[0208] Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.

[0209] The nucleic acid probes will hybridize to the Neisserial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Neisserial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to the non-coding sequence.

[0210] The probe sequence need not be identical to the Neisserial sequence (or its complement)-some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional Neisserial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5' end of the probe, with the remainder of the probe sequence being complementary to a Neisserial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Neisserial sequence in order to hybridize therewith and thereby form a duplex which can be detected.

[0211] The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic

applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

[0212] Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. [*J. Am. Chem. Soc.* (1981) 103:3185], or according to Urdea et al. [*Proc. Natl. Acad. Sci. USA* (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

[0213] The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & Iyer (1995) *Curr Opin Biotechnol* 6:12-19; Agrawal (1996) *TIBTECH* 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) *TIBTECH* 15:224-229; Buchardt et al. (1993) *TIBTECH* 11:384-386].

[0214] Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis et al. [*Meth. Enzymol.* (1987) 155: 335-350]; U.S. Pat. Nos. 4,683,195 and 4,683,202. Two "primer" nucleotides hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Neisserial sequence.

[0215] A thermostable polymerase creases copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Neisserial sequence (or its complement).

[0216] Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected. Typically, the probe is labelled with a radioactive moiety.

BRIEF DESCRIPTION OF THE DRAWINGS

[0217] FIGS. 1-7 show biochemical data and sequence analysis pertaining to Examples 1, 2, 3, 7, 13, 16 and 19, respectively, with ORFs 40, 38, 44, 52, 114, 41 and 124. M1 and M2 are molecular weight markers. Arrows indicate the position of the main recombinant product or, in Western blots, the position of the main *N. meningitidis* immunoreactive band. TP indicates *N. meningitidis* total protein extract; OMV indicates *N. meningitidis* outer membrane vesicle preparation. In bactericidal assay results: a diamond (\blacklozenge) shows preimmune data; a triangle (\blacktriangle) shows GST control data; a circle (\bigcirc) shows data with recombinant *N*.

meningitidis protein. Computer analyses show a hydrophilicity plot (upper), an antigenic index plot (middle), and an AMPHI analysis (lower). The AMPHI program has been used to predict T-cell epitopes [Gao et al. (1989) *J. Immunol.* 143:3007; Roberts et al. (1996) *AIDS Res Hum Retrovir* 12:593; Quakyi et al. (1992) *Scand J Immunol* suppl. 11:9) and is available in the Protean package of DNASTAR, Inc. (1228 South Park Street, Madison, Wis. 53715 USA).

[0218] FIG. 8 shows an alignment comparison of amino acid sequences for ORF 40 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

EXAMPLES

[0219] The examples describe nucleic acid sequences which have been identified in *N. meningitidis*, along with their putative translation products. Not all of the nucleic acid sequences are complete ie. they encode less than the full-length wild-type protein. It is believed at present that none of the DNA sequences described herein have significant homologs in *N. gonorrhoeae*.

[0220] The examples are generally in the following format:

- **[0221]** a nucleotide sequence which has been identified in *N. meningitidis* (strain B)
- **[0222]** the putative translation product of this sequence
- **[0223]** a computer analysis of the translation product based on database comparisons
- [0224] a corresponding gene and protein sequence identified in *N. meningitidis* (strain A)
- **[0225]** a description of the characteristics of the proteins which indicates that they might be suitably antigenic
- **[0226]** results of biochemical analysis (expression, purification, ELISA, FACS etc.)

[0227] The examples typically include details of sequence homology between species and strains. Proteins that are similar in sequence are generally similar in both structure and function, and the homology often indicates a common evolutionary origin. Comparison with sequences of proteins of known function is widely used as a guide for the assignment of putative protein function to a new sequence and has proved particularly useful in whole-genome analyses.

[0228] Sequence comparisons were performed at NCBI (http://www.ncbi.nlm.nih.gov) using the algorithms BLAST, BLAST2, BLASTn, BLASTp, tBLASTn, BLASTx, & tBLASTx [eg. see also Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research* 25:2289-3402]. Searches were performed against the following databases: non-redundant GenBank+EMBL+ DDBJ+PDB sequences and non-redundant GenBank CDS translations+PDB+SwissProt+SPupdate+PIR sequences.

[0229] Dots within nucleotide sequences (eg. position 288 in Example 12) represent nucleotides which have been arbitrarily introduced in order to maintain a reading frame.

In the same way, double-underlined nucleotides were removed. Lower case letters (eg. position 589 in Example 12) represent ambiguities which arose during alignment of independent sequencing reactions (some of the nucleotide sequences in the examples are derived from combining the results of two or more experiments).

[0230] Nucleotide sequences were scanned in all six reading frames to predict the presence of hydrophobic domains using an algorithm based on the statistical studies of Esposti et al. [Critical evaluation of the hydropathy of membrane proteins (1990) *Eur J Biochem* 190:207-219]. These domains represent potential transmembrane regions or hydrophobic leader sequences.

[0231] Open reading frames were predicted from fragmented nucleotide sequences using the program ORFFINDER (NCBI).

[0232] Underlined amino acid sequences indicate possible transmembrane domains or leader sequences in the ORFs, as predicted by the PSORT algorithm (http://www.psort.nib-b.ac.jp). Functional domains were also predicted using the MOTIFS program (GCG Wisconsin & PROSITE).

[0233] Various tests can be used to assess the in vivo immunogenicity of the proteins identified in the examples. For example, the proteins can be expressed recombinantly and used to screen patient sera by immunoblot A positive reaction between the protein and patient serum indicates that the patient has previously mounted an immune response to the protein in question ie. the protein is an immunogen. This method can also be used to identify immunodominant proteins.

[0234] The recombinant protein can also be conveniently used to prepare antibodies eg. in a mouse. These can be used for direct confirmation that a protein is located on the cell-surface. Labelled antibody (eg. fluorescent labelling for FACS) can be incubated with intact bacteria and the presence of label on the bacterial surface confirms the location of the protein.

[0235] In particular, the following methods (A) to (S) were used to express, purify and biochemically characterise the proteins of the invention:

[0236] A) Chromosomal DNA Preparation

[0237] N. meningitidis strain 2996 was grown to exponential phase in 100 ml of GC medium, harvested by centrifugation, and resuspended in 5 ml buffer (20% Sucrose, 50 mM Tris-HCl, 50 mM EDTA, pH8). After 10 minutes incubation on ice, the bacteria were lysed by adding 10 ml lysis solution (50 mM NaCl, 1% Na-Sarkosyl, 50 μ g/ml Proteinase K), and the suspension was incubated at 37° C. for 2 hours. Two phenol extractions (equilibrated to pH 8) and one ChCl₃/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes ethanol, and was collected by central stratements.

trifugation. The pellet was washed once with 70% ethanol and redissolved in 4 ml buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8). The DNA concentration was measured by reading the OD at 260 nm.

[0238] B) Oligonucleotide Design

[0239] Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF, using (a) the meningococcus B sequence when available, or (b) the gonococcus/meningococcus A sequence, adapted to the codon preference usage of meningococcus as necessary. Any predicted signal peptides were omitted, by deducing the 5'-end amplification primer sequence immediately downstream from the predicted leader sequence.

[0240] The 5' primers included two restriction enzyme recognition sites (BamHI-NdeI, BamHI-NheI, or EcoRI-NheI, depending on the gene's own restriction pattern); the 3' primers included a XhoI restriction site. This procedure was established in order to direct the cloning of each amplification product (corresponding to each ORF) into two different expression systems: pGEX-KG (using either BamHI-XhoI or EcoRI-XhoI), and pET21b+ (using either NdeI-XhoI or NheI-XhoI).

5'end primer tail:	
CGC <u>GGATCCCATATG</u>	(BamHI-NdeI)
CGC <u>GGATCCGCTAGC</u>	(BamHI-NheI)
CCG <u>GAATTC</u> TA <u>GCTAGC</u>	(EcoRI-NheI)
3'-end primer tail:	
CCCG <u>CTCGAG</u>	(XhoI)

[0241] As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridised to the sequence to be amplified. The number of hybridizing nucleotides depended on the melting temperature of the whole primer, and was determined for each primer using the formulae:

$T_{\rm m}$ =4 (G+C)+2 (A+T)	(tail excluded)
$T_{\rm m}$ =64.9+0.41 (% GC)-600/N	(whole primer)

[0242] The average melting temperature of the selected oligos were $65-70^{\circ}$ C. for the whole oligo and $50-55^{\circ}$ C. for the hybridising region alone.

[0243] Table I shows the forward and reverse primers used for each amplification. Oligos were synthesized by a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2 ml NH₄OH, and deprotected by 5 hours incubation at 56° C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were then centrifuged and the pellets resuspended in either 100 μ l or 1 ml of water. OD₂₆₀ was determined using a Perkin Elmer Lambda Bio spectrophotometer and the concentration was determined and adjusted to 2-10 pmol/ μ l.

TABLE I

PCR primers			
ORF	Primer	Sequence	Restriction sites
ORF 3	3 Forward	CGC <u>GGATCCCATATG</u> -TCGCCGCAAAATTCCGA <seq 112="" id=""></seq>	BamHI-NdeI
	Reverse	CCCG <u>CTCGAG</u> -TTTTGCCGCGTTAAAAGC <seq 113="" id=""></seq>	XhoI

TABLE I-continued

	PCR primers					
ORF	Primer	Sequence	Restriction sites			
ORF	40 Forward	CGC <u>GGATCCCATATG</u> -ACCGTGAAGACCGCC <seq 114="" id=""></seq>	BamHI-NdeI			
	Reverse	CCCG <u>CTCGAG</u> -CCACTGATAACCGACAGA <seq 115="" id=""></seq>	XhoI			
ORF	41 Forward	CGC <u>GGATCCCATATG</u> -TATTTGAAACAGCTCCAAG <seo 116="" id=""></seo>	BamHI-NdeI			
	Reverse	CCCG <u>CTCGAG</u> -TTCTGGGTGAATGTTA <seq 117="" id=""></seq>	XhoI			
ORF	44 Forward	GC <u>GGATCCCATATG</u> -GGCACGGACAACCCC <seq 118="" id=""></seq>	BamHI-NdeI			
	Reverse	CCCG <u>CTCGAG</u> -ACGTGGGGGAACAGTCT <seq 119="" id=""></seq>	XhoI			
ORF	51 Forward	GC <u>GGATCCCATATG</u> -AAAAATATTCAAGTAGTTGC <seq 120="" id=""></seq>	BamHI-NdeI			
	Reverse	CCCG <u>CTCGAG</u> -AAGTTTGATTAAACCCG <seq 121="" id=""></seq>	XhoI			
ORF	52 Forward	CGC <u>GGATCCCATATG</u> -TGCCAACCGCAATCCG <seq 122="" id=""></seq>	BamHI-NdeI			
	Reverse	CCCG <u>CTCGAG</u> -TTTTTCCAGCTCCGGCA <seq 123="" id=""></seq>	XhoI			
ORF	56 Forward	GC <u>GGATCCCATATG</u> -GTTATCGGAATATTACTCG <seq 124="" id=""></seq>	BamHI-NdeI			
	Reverse	CCCG <u>CTCGAG</u> -GGCTGCAGAAGCTGG <seq 125="" id=""></seq>	XhoI			
ORF	69 Forward	CGC <u>GGATCCCATATG</u> -CGGACGTGGTTGGTTTT <seq 126="" id=""></seq>	BamHI-NdeI			
	Reverse	CCCG <u>CTCGAG</u> -ATATCTTCCGTTTTTTCAC <seq 127="" id=""></seq>	XhoI			
ORF	82 Forward	CGC <u>GGATCCGCTAGC</u> -GTAAATTTATTATTTTAGAA <seq 128="" id=""></seq>	BamHI-NheI			
	Reverse	CCCG <u>CTCGAG</u> -TCCAACTCATTGAAGTA <seq 129="" id=""></seq>	XhoI			
ORF 114	Forward	CGC <u>GGATCCCATATG</u> -AATAAAGGTTTACATCGCAT	BamHI-NheI			
	Reverse	<seq 130="" id=""> CCCG<u>CTCGAG</u>-AATCGCTGCACCGGCT <seq 131="" id=""></seq></seq>	XhoI			
ORF 124	Forward	CGC <u>GGATCCCATATG</u> -ACTGCCTTTTCGACA	BamHI-NheI			
124	Reverse	<seq 132="" id=""> CCCG<u>CTCGAG</u>-GCGTGAAGCGTCAGGA <seq 133="" id=""></seq></seq>	XhoI			

[0244] C) Amplification

[0245] The standard PCR protocol was as follows: 50-200 ng of genomic DNA were used as a template in the presence of 20-40 μ M of each oligo, 400-8004M dNTs solution, 1×PCR buffer (including 1.5 mM MgCl₂), 2.5 units TaqI DNA polymerase (using Perkin-Elmer AmpliTaQ, GIBCO Platinum, Pwo DNA polymerase, or Tahara Shuzo Taq polymerase).

perature the one of the oligos excluding the restriction enzymes tail, followed by 30 cycles performed according to the hybridization temperature of the whole length oligos. The cycles were followed by a final 10 minute extension step at 72° C.

5 cycles were performed using as the hybridization tem-

[0248] The standard cycles were as follows:

[0246] In some cases, PCR was optimised by the addition of 10 μ l DMSO or 50 μ l 2M betaine.

[0247] After a hot start (adding the polymerase during a preliminary 3 minute incubation of the whole mix at 95° C.), each sample underwent a double-step amplification: the first

	Denaturation	Hybridisation	Elongation
First 5 cycles	30 seconds	30 seconds	30–60 seconds
	95° C.	50–55° C.	72° C.

-continued				
	Denaturation	Hybridisation	Elongation	
Last 30 cycles	30 seconds 95° C.	30 seconds 65–70° C.	30–60 seconds 72° C.	

[0249] The elongation time varied according to the length of the ORF to be amplified.

[0250] The amplifications were performed using either a 9600 or a 2400 Perkin Elmer GeneAmp PCR System. To check the results, $\frac{1}{10}$ of the amplification volume was loaded onto a 1-1.5% agarose gel and the size of each amplified fragment compared with a DNA molecular weight marker.

[0251] The amplified DNA was either loaded directly on a 1% agarose gel or first precipitated with ethanol and resuspended in a suitable volume to be loaded on a 1% agarose gel. The DNA fragment corresponding to the right size band was then eluted and purified from gel, using the Qiagen Gel Extraction Kit, following the instructions of the manufacturer. The final volume of the DNA fragment was 30 μ l or 500 of either water or 10 mM Tris, pH 8.5.

[0252] D) Digestion of PCR Fragments

[0253] The purified DNA corresponding to the amplified fragment was split into 2 aliquots and double-digested with:

- [0254] NdeI/XhoI or NheI/XhoI for cloning into pET-21b+ and further expression of the protein as a C-terminus His-tag fusion
- [0255] BamHI/XhoI or EcoRI/XhoI for cloning into pGEX-KG and further expression of the protein as N-terminus GST fusion.
- [0256] EcoRI/PstI, EcoRI/SalI, SalI/PstI for cloning into pGex-His and further expression of the protein as N-terminus His-tag fusion

[0257] Each purified DNA fragment was incubated (37° C. for 3 hours to overnight) with 20 units of each restriction enzyme (New England Biolabs) in a either 30 or 40 μ l final volume in the presence of the appropriate buffer. The digestion product was then purified using the QIAquick PCR purification kit, following the manufacturer's instructions, and eluted in a final volume of 30 or 50 μ l of either water or 10 mM Tris-HCl, pH 8.5. The final DNA concentration was determined by 1% agarose gel electrophoresis in the presence of titrated molecular weight marker.

[0258] E) Digestion of the Cloning Vectors (pET22B, pGEX-KG, pTRC-His A, and pGex-His)

[0259] 10 μ g plasmid was double-digested with 50 units of each restriction enzyme in 200 μ l reaction volume in the presence of appropriate buffer by overnight incubation at 37° C. After loading the whole digestion on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen QIAquick-Gel Extraction Kit and the DNA was eluted in 50 μ l of 10 mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD₂₆₀ of the sample, and adjusted to 50 μ g/ μ l. 1 μ l of plasmid was used for each cloning procedure.

[0260] The vector pGEX-His is a modified pGEX-2T vector carrying a region encoding six histidine residues upstream to the thrombin cleavage site and containing the multiple cloning site of the vector pTRC99 (Pharmacia).

[0261] F) Cloning

[0262] The fragments corresponding to each ORF, previously digested and purified, were ligated in both pET22b and pGEX-KG. In a final volume of 20 μ l, a molar ratio of 3:1 fragment/vector was ligated using 0.5 μ l of NEB T4 DNA ligase (400 units/ μ l), in the presence of the buffer supplied by the manufacturer. The reaction was incubated at room temperature for 3 hours. In some experiments, ligation was performed using the Boehringer "Rapid Ligation Kit", following the manufacturer's instructions.

[0263] In order to introduce the recombinant plasmid in a suitable strain, 100 μ l *E. coli* DH5 competent cells were incubated with the ligase reaction solution for 40 minutes on ice, then at 37° C. for 3 minutes, then, after adding 800 μ l LB broth, again at 37° C. for 20 minutes. The cells were then centrifuged at maximum speed in an Eppendorf microfuge and resuspended in approximately 200 μ l of the supernatant. The suspension was then plated on LB ampicillin (100 mg/ml).

[0264] The screening of the recombinant clones was performed by growing 5 randomly-chosen colonies overnight at 37° C. in either 2 ml (pGEX or pTC clones) or 5 ml (pET clones) LB broth+100 μ g/ml ampicillin. The cells were then pelletted and the DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions, to a final volume of 30 μ l. 5 μ l of each individual miniprep (approximately 1 g) were digested with either NdeI/XhoI or BamHI/XhoI and the whole digestion loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1 Kb DNA Ladder, GIBCO). The screening of the positive clones was made on the base of the correct insert size.

[0265] G) Expression

[0266] Each ORF cloned into the expression vector was transformed into the strain suitable for expression of the recombinant protein product. 1 μ l of each construct was used to transform 30 µl of E. coli BL21 (pGEX vector), E. coli TOP 10 (pTRC vector) or E. coli BL21-DE3 (pET vector), as described above. In the case of the pGEX-His vector, the same E. coli strain (W3110) was used for initial cloning and expression. Single recombinant colonies were inoculated into 2 ml LB+Amp (100 µg/ml), incubated at 37° C. overnight, then diluted 1:30 in 20 ml of LB+Amp (100 μ g/ml) in 100 ml flasks, making sure that the OD₆₀₀ ranged between 0.1 and 0.15. The flasks were incubated at 30° C. into gyratory water bath shakers until OD indicated exponential growth suitable for induction of expression (0.4-0.8 OD for pET and pTRC vectors; 0.8-1 OD for pGEX and pGEX-His vectors). For the pET, pTRC and pGEX-His vectors, the protein expression was induced by addition of 1 mM IPTG, whereas in the case of pGEX system the final concentration of IPTG was 0.2 mM. After 3 hours incubation at 30° C., the final concentration of the sample was checked by OD. In order to check expression, 1 ml of each sample was removed, centrifuged in a microfuge, the pellet resuspended in PBS, and analysed by 12% SDS-PAGE with Coomassie Blue staining. The whole sample was centrifuged at 6000 g and the pellet resuspended in PBS for further use.

[0267] H) GST-Fusion Proteins Large-Scale Purification.

[0268] A single colony was grown overnight at 37° C. on LB+Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid culture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600 ml of fresh medium and allowed to grow at the optimal temperature (20-37° C.) to OD₅₅₀ 0.8-1. Protein expression was induced with 0.2 mM IPTG followed by three hours incubation. The culture was centrifuged at 800 rpm at 4° C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml cold PBS. The cells were disrupted by sonication on ice for 30 sec at 40 W using a Branson sonifier B-15, frozen and thawed twice and centrifuged again. The supernatant was collected and mixed with 150 µl Glutatione-Sepharose 4B resin (Pharmacia) (previously washed with PBS) and incubated at room temperature for 30 minutes. The sample was centrifuged at 700 g for 5 minutes at 4° C. The resin was washed twice with 10 ml cold PBS for 10 minutes, resuspended in 1 ml cold PBS, and loaded on a disposable column. The resin was washed twice with 2 ml cold PBS until the flow-through reached OD_{280} of 0.02-0.06. The GST-fusion protein was eluted by addition of 70011 cold Glutathione elution buffer (10 mM reduced glutathione, 50 mM Tris-HCl) and fractions collected until the OD₂₈₀ was 0.1. 21 μ l of each fraction were loaded on a 12% SDS gel using either Biorad SDS-PAGE Molecular weight standard broad range (M1) (200, 116.25, 97.4, 66.2, 45, 31, 21.5, 14.4, 6.5 kDa) or Amersham Rainbow Marker (M2) (220, 66, 46, 30, 21.5, 14.3 kDa) as standards. As the MW of GST is 26 kDa, this value must be added to the MW of each GST-fusion protein.

[0269] I) His-Fusion Solubility Analysis

[0270] To analyse the solubility of the His-fusion expression products, pellets of 3 ml cultures were resuspended in buffer M1 [500 μ l PBS pH 7.2]. 25 μ l lysozyme (10 mg/ml) was added and the bacteria were incubated for 15 min at 4° C. The pellets were sonicated for 30 sec at 40 W using a Branson sonifier B-15, frozen and thawed twice and then separated again into pellet and supernatant by a centrifugation step. The supernatant was collected and the pellet was resuspended in buffer M2 [8M urea, 0.5M NaCl, 20 mM imidazole and 0.1M NaH₂ PO₄] and incubated for 3 to 4 hours at 4° C. After centrifugation, the supernatant was collected and the pellet was collected and the pellet was resuspended in buffer M3 [6M guanidinium-HCl, 0.5M NaCl, 20 mM imidazole and 0.1M NaH₂PO₄] overnight at 4° C. The supernatants from all steps were analysed by SDS-PAGE.

[0271] J) His-Fusion Large-Scale Purification.

[0272] A single colony was grown overnight at 37° C. on a LB+Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid culture and incubated overnight in a water bath shaker. Bacteria were diluted 1:30 into 600 ml fresh medium and allowed to grow at the optimal temperature (20-37° C.) to OD₅₅₀ 0.6-0.8. Protein expression was induced by addition of 1 mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000 rpm at 4° C., the supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml of either (i) cold buffer A (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8) for soluble proteins or (ii) buffer B (urea 8M, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 8.8) for insoluble proteins. **[0273]** The cells were disrupted by sonication on ice for 30 sec at 40 W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again.

[0274] For insoluble proteins, the supernatant was stored at -20° C., while the pellets were resuspended in 2 ml buffer C (6M guanidine hydrochloride, 100 mM phosphate buffer, 10 mM Tris-HCl, pH 7.5) and treated in a homogenizer for 10 cycles. The product was centrifuged at 13000 rpm for 40 minutes.

[0275] Supernatants were collected and mixed with 150 μ l Ni²⁺-resin (Pharmacia) (previously washed with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700 g for 5 minutes at 4° C. The resin was washed twice with 10 ml buffer A or B for 10 minutes, resuspended in 1 ml buffer A or B and loaded on a disposable column. The resin was washed at either (i) 4° C. with 2 ml cold buffer A or (ii) room temperature with 2 ml buffer B, until the flow-through reached OD₂₈₀ of 0.02-0.06.

[0276] The resin was washed with either (i) 2 ml cold 20 mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 20 mM imidazole, pH 8) or (ii) buffer D (urea 8M, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 6.3) until the flow-through reached the O.D₂₈₀ of 0.02-0.06. The His-fusion protein was eluted by addition of 700 μ l of either (i) cold elution buffer A (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8) or (ii) elution buffer B (urea 8M, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 4.5) and fractions collected until the O.D₂₈₀ was 0.1. 21 μ l of each fraction were loaded on a 12% SDS gel.

[0277] K) His-Fusion Proteins Renaturation

[0278] 10% glycerol was added to the denatured proteins. The proteins were then diluted to 20 μ g/ml using dialysis buffer I (10% glycerol, 0.5M arginine, 50 mM phosphate buffer, 5 mM reduced glutathione, 0.5 mM oxidised glutathione, 2M urea, pH 8.8) and dialysed against the same buffer at 4° C. for 12-14 hours. The protein was further dialysed against dialysis buffer II (10% glycerol, 0.5M arginine, 50 mM phosphate buffer, 5 mM reduced glutathione, 0.5 mM oxidised glutathione, pH 8.8) for 12-14 hours at 4° C. Protein concentration was evaluated using the formula:

Protein (mg/ml)=(1.55×OD₂₈₀)-(0.76×OD₂₆₀)

[0279] L) His-Fusion Large-Scale Purification

[0280] 500 ml of bacterial cultures were induced and the fusion proteins were obtained soluble in buffer M1, M2 or M3 using the procedure described above. The crude extract of the bacteria was loaded onto a Ni-NTA superflow column (Qiagen) equilibrated with buffer M1, M2 or M3 depending on the solubilization buffer of the fusion proteins. Unbound material was eluted by washing the column with the same buffer. The specific protein was eluted with the corresponding buffer containing 500 mM imidazole and dialysed against the corresponding buffer without imidazole. After each run the columns were sanitized by washing with at least two column volumes of 0.5 M sodium hydroxide and reequilibrated before the next use.

[0281] M) Mice Immunisations

[0282] 20 μ g of each purified protein were used to immunise mice intraperitoneally. In the case of ORF 44, CD1 mice were immunised with $Al(OH)_3$ as adjuvant on days 1, 21 and 42, and immune response was monitored in samples taken on day 56. For ORF 40, CD1 mice were immunised using Freund's adjuvant, rather than $Al(OH)_3$, and the same immunisation protocol was used, except that the immune response was measured on day 42, rather than 56. Similarly, for ORF 38, CD1 mice were immunised with Freund's adjuvant, but the immune response was measured on day 49.

[0283] N) ELISA Assay (Sera Analysis)

[0284] The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37° C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 7 ml of Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD_{620} . The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10000 rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 2 hours at room temperature and then overnight at 4° C. with stirring. 100 μ l bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4° C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200 µl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37° C. Wells were washed three times with PBT. 200 μ l of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN₃ in PBS) were added to each well and the plates incubated for 90 minutes at 37° C. Wells were washed three times with PBT. 100 μ l of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37° C. Wells were washed three times with PBT buffer. 100 μ l of substrate buffer for HRP (25 ml of citrate buffer pH5, 10 mg of O-phenildiamine and 10 μ l of H₂O) were added to each well and the plates were left at room temperature for 20 minutes. 100 μ l H₂SO₄ was added to each well and OD₄₉₀ was followed. The ELISA was considered positive when OD₄₀₀ was 2.5 times the respective pre-immune sera.

[0285] O) FACScan Bacteria Binding Assay Procedure.

[0286] The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37° C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8 ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000 rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA, 0.4% NaN₃) and centrifuged for 5 minutes at 4000 rpm. Cells were resuspended in blocking buffer to reach OD_{620} of 0.07. 100 μ l bacterial cells were added to each well of a Costar 96 well plate. $100 \,\mu$ l of diluted (1:200) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4° C. Cells were centrifuged for 5

minutes at 4000 rpm, the supernatant aspirated and cells washed by addition of 200 μ l/well of blocking buffer in each well. 100 μ l of R-Phicoerytin conjugated F(ab)₂ goat antimouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4° C. Cells were spun down by centrifugation at 4000 rpm for 5 minutes and washed by addition of 200 μ l/well of blocking buffer. The supernatant was aspirated and cells resuspended in 200 μ l/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan setting were: FL1 on, FL2 and FL3 off; FSC-H threshold: 92; FSC PMT Voltage: E 02; SSC PMT: 474; Amp. Gains 7.1; FL-2 PMT: 539; compensation values: 0.

[0287] P) OMV Preparations

[0288] Bacteria were grown overnight on 5 GC plates, harvested with a loop and resuspended in 10 ml 20 mM Tris-HCl. Heat inactivation was performed at 56° C. for 30 minutes and the bacteria disrupted by sonication for 10 minutes on ice (50% duty cycle, 50% output). Unbroken cells were removed by centrifugation at 5000 g for 10 minutes and the total cell envelope fraction recovered by centrifugation at 50000 g at 4° C. for 75 minutes. To extract cytoplasmic membrane proteins from the crude outer membranes, the whole fraction was resuspended in 2% sarkosyl (Sigma) and incubated at room temperature for 20 minutes. The suspension was centrifuged at 10000 g for 10 minutes to remove aggregates, and the supernatant further ultracentrifuged at 50000 g for 75 minutes to pellet the outer membranes. The outer membranes were resuspended in 10 mM Tris-HCl, pH8 and the protein concentration measured by the Bio-Rad Protein assay, using BSA as a standard.

[0289] Q) Whole Extracts Preparation

[0290] Bacteria were grown overnight on a GC plate, harvested with a loop and resuspended in 1 ml of 20 mM Tris-HCl. Heat inactivation was performed at 56° C. for 30 minutes.

[0291] R) Western Blotting

[0292] Purified proteins (500 ng/lane), outer membrane vesicles (5 μ g) and total cell extracts (25 μ g) derived from MenB strain 2996 were loaded on 15% SDS-PAGE and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150 mA at 4° C., in transferring buffer (0.3% Tris base, 1.44% glycine, 20% methanol). The membrane was saturated by overnight incubation at 4° C. in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37° C. with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled anti-mouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.

[0293] S) Bactericidal Assay

[0294] MC58 strain was grown overnight at 37° C. on chocolate agar plates. 5-7 colonies were collected and used

to inoculate 7 ml Mueller-Hinton broth. The suspension was incubated at 37° C. on a nutator and let to grow until OD₆₂₀ was 0.5-0.8. The culture was aliquoted into sterile 1.5 ml Eppendorf tubes and centrifuged for 20 minutes at maximum speed in a microfuge. The pellet was washed once in Gey's buffer (Gibco) and resuspended in the same buffer to an OD₆₂₀ of 0.5, diluted 1:20000 in Gey's buffer and stored at 25° C.

[0295] 50 μ l of Gey's buffer/1% BSA was added to each well of a 96-well tissue culture plate. 25 μ l of diluted mice sera (1:100 in Gey's buffer/0.2% BSA) were added to each well and the plate incubated at 4° C. 25 μ l of the previously described bacterial suspension were added to each well. 25 μ l of either heat-inactivated (56° C. waterbath for 30 minutes) or normal baby rabbit complement were added to each well. Immediately after the addition of the baby rabbit complement, 22 μ l of each sample/well were plated on Mueller-Hinton agar plates (time 0). The 96-well plate was incubated for 1 hour at 37° C. with rotation and then 22 μ l of each sample/well were plated on Mueller-Hinton agar plates (time 1). After overnight incubation the colonies corresponding to time 0 and time 1 hour were counted.

TABLE II

Cloning, expression and purification							
ORF	PCR/cloning	His-fusion expression	GST-fusion expression	Purification			
orf 38	+	+	+	His-fusion			
orf 40	+	+	+	His-fusion			
orf 41	+	n.d.	n.d.				
orf 44	+	+	+	His-fusion			
orf 51	+	n.d.	n.d.				
orf 52	+	n.d.	+	GST-fusion			
orf 56	+	n.d.	n.d.				
orf 69	+	n.d.	n.d.				
orf 82	+	n.d.	n.d.				
orf 114	+	n.d.	+	GST-fusion			
orf 124	+	n.d.	n.d.				

Example 1

[0297] The following partial DNA sequence was identified in *N. meningitidis* <SEQ ID 1>:

1 ACACTGTTGT	TTGCAACGGT	TCAGGCAAGT	GCTAACCAAT	GAAGAGCAAG
51 AAGAAGATTT	ATATTTAGAC	CCCGTACAAC	GCACTGTTGC	CGTGTTGATA
101 GTCAATTCCG	ATAAAGAAGG	CACGGGAGAA	ааадааааад	TAGAAGAAAA
151 TTCAGATTGG	GCAGTATATT	TCAACGAGAA	AGGAGTACTA	ACAGCCAGAG
201 AAATCACCyT	CAAAGCCGGC	GACAACCTGA	ааатсаааса	AAACGGCACA
251 AACTTCACCT	ACTCGCTGAA	AAALGACCTC	ACAGATCTGA	CCAGTGTTGG
301 AACTGAAAAA	TTATCGTTTA	GCGCAAACGG	CAATAAAGTC	AACATCACAA
351 GCGACACCAA	AGGCTTGAAT	TTTGCGAAAG	AAACGGCTGG	sACGAACGgC
401 GACACCACGG	TTCATCTGAA	CGGTATTGGT	TCGACTTTGA	CCGATACGCT
451 GCTGAATACC	GGAGCGACCA	CAAACGTAAC	CAACGACAAC	GTTACCGATG
501 ACGAGAAAAA	ACGTGCGGCA	AGCGTTAAAG	ACGTATTAAA	CGCTGGCTGG
551 AACATTAAAG	GCGTTAAACC	CGGTACAACA	GCTTCCGATA	ACGTTGATTT
601 CGTCCGCACT	TACGACACAG	TCGAGTTCTT	GAGCGCAGAT	ACGAAAACAA
651 CGACTGTTAA	TGTGGAAAGC	AAAGACAACG	GCAAGAAAAC	CGAAGTTAAA
701 ATCGGTGCGA	AGACTTCTGT	TATTAAAGAA	AAAGAC	

[0296] Table II gives a summary of the cloning, expression and purification results.

[0298] This corresponds to the amino acid sequence <SEQ ID 2; ORF40>:

1..TLLFATVQAS ANQEEQEEDL YLDPVQRTVA VLIVNSDKEG TGEKEKVEEN
51 SDWAVYFNEK GVLTAREITX KAGDNLKIKQ NGTNFTYSLK KDLTDLTSVG
101 TEKLSFSANG NKVNITSDTK GLNFAKETAG TNGDTTVHLN GIGSTLTDTL
151 LNTGATTNVT NDNVTDDEKK RAASVKDVLN AGWNIKGVKP GTTASDNVDF
201 VRTYDTVEFL SADTKTITVN VESKDNGKKT EVKIGAXTSV IKEKD...

26

[0299] Further work revealed the complete DNA sequence <SEQ ID 3>:

1 ATGAACAAAA TATACCGCAT CATTTGGAAT AGTGCCCTCA ATGCCTGGGT 51 CGTCGTATCC GAGCTCACAC GCAACCACAC CAAACGCGCC TCCGCAACCG 101 TGAAGACCGC CGTATTGGCG ACACTGTTGT TTGCAACGGT TCAGGCAAGT 151 GCTAACAATG AAGAGCAAGA AGAAGATTTA TATTTAGACC CCGTACAACG 201 CACTGTTGCC GTGTTGATAG TCAATTCCGA TAAAGAAGGC ACGGGAGAAA 251 AAGAAAAAGT AGAAGAAAAT TCAGATTGGG CAGTATATTT CAACGAGAAA 301 GGAGTACTAA CAGCCAGAGA AATCACCCTC AAAGCCGGCG ACAACCTGAA 351 AATCAAACAA AACGGCACAA ACTTCACCTA CTCGCTGAAA AAAGACCTCA 401 CAGATCTGAC CAGTGTTGGA ACTGAAAAAT TATCGTTTAG CGCAAACGGC 451 AATAAAGTCA ACATCACAAG CGACACCAAA GGCTTGAATT TTGCGAAAGA 501 AACGGCTGGG ACGAACGGCG ACACCACGGT TCATCTGAAC GGTATTGGTT 551 CGACTTTGAC CGATACGCTG CTGAATACCG GAGCGACCAC AAACGTAACC 601 AACGACAACG TTACCGATGA CGAGAAAAAA CGTGCGGCAA GCGTTAAAGA 651 CGTATTAAAC GCTGGCTGGA ACATTAAAGG CGTTAAACCC GGTACAACAG 701 CTTCCGATAA CGTTGATTTC GTCCGCACTT ACGACACAGT CGAGTTCTTG 751 AGCGCAGATA CGAAAACAAC GACTGTTAAT GTGGAAAGCA AAGACAACGG 801 CAAGAAAACC GAAGTTAAAA TCGGTGCGAA GACTTCTGTT ATTAAAGAAA 851 AAGACGGTAA GTTGGTTACT GGTAAAGACA AAGGCGAGAA TGGTTCTTCT 901 ACAGACGAAG GCGAAGGCTT AGTGACTGCA AAAGAAGTGA TTGATGCAGT 951 AAACAAGGCT GGTTGGAGAA TGAAAACAAC AACCGCTAAT GGTCAAACAG 1001 GTCAAGCTGA CAAGTTTGAA ACCGTTACAT CAGGCACAAA TGTAACCTTT 1051 GCTAGTGGTA AAGGTACAAC TGCGACTGTA AGTAAAGATG ATCAAGGCAA 1101 CATCACTGTT ATGTATGATG TAAATGTCGG CGATGCCCTA AACGTCAATC 1151 AGCTGCAAAA CAGCGGTTGG AATTTGGATT CCAAAGCGGT TGCAGGTTCT 1201 TCGGGCAAAG TCATCAGCGG CAATGTTTCG CCGAGCAAGG GAAAGATGGA 1251 TGAAACCGTC AACATTAATG CCGGCAACAA CATCGAGATT ACCCGCAACG 1301 GTAAAAATAT CGACATCGCC ACTTCGATGA CCCCGCAGTT TTCCAGCGTT 1351 TCGCTCGGCG CGGGGGGGGGA TGCGCCCACT TTGAGCGTGG ATGGGGACGC 1401 ATTGAATGTC GGCAGCAAGA AGGACAACAA ACCCGTCCGC ATTACCAATG 1451 TCGCCCCGGG CGTTAAAGAG GGGGATGTTA CAAACGTCGC ACAACTTAAA 1501 GGCGTGGCGC AAAACTTGAA CAACCGCATC GACAATGTGG ACGGCAACGC 1551 GCGTGCGGGC ATCGCCCAAG CGATTGCAAC CGCAGGTCTG GTTCAGGCGT 1601 ATTTGCCCGG CAAGAGTATG ATGGCGATCG GCGGCGGCAC TTATCGCGGC 1651 GAAGCCGGTT ACGCCATCGG CTACTCCAGT ATTTCCGACG GCGGAAATTG

-continued 1701 GATTATCAAA GGCACGGCTT CCGGCAATTC GCGCGGCCAT TTCGGTGCTT

1751 CCGCATCTGT CGGTTATCAG TGGTAA

[0300] This corresponds to the amino acid sequence <SEQ ID 4; ORF40-1>:

1 MNKIYRIIWN SALNAWVVVS ELTRNHTKRA SATVKTAVLA TLLFATVQAS 51 ANNEEQEEDL YLDFVQRTVA VLIVNSDKEG TGEKEKVEEN SDWAVYFNEK 101 GVLTAREITL KAGDNLKIKQ NGTNFTYSLK KDLTDLTSVG TEKLSFSMIG 151 NKVNITSDTK GLNFAKETAG TNGDTTVHLN GIGSTLTDTL LNTGATTNVT 201 NDNVTDDEKK RAASVKDVLN AGWNIKGVKP GTTASDNVDF VRTYDTVEFL 251 SADTKTTTVN VESKDNGKKT EVKIGAKTSV IKEKDGKLVT GKDKGENGSS 301 TDEGEGLVTA KEVIDAYNKA GWRMKTTTAN GQTGQADKFE TVTSGTNVTF 351 ASGKGTTATV SKDDQGNITV NYDVNVGDAL NVNQLQNSGW NLDSKAVAGS 401 SGKVISGNVS PSKGKMDETV NINAGNNIEI TRNGKNIDIA TSHTPOFSSV 451 SLGAGADAPT LSVDGDALNV GSKKDNKPVR TTNVAPGVKE GOVTNVAOLK 501 GVAONLNNRI DNVDGNARAG ZAOAIATAGL VOAYLPGKSM MAIGGGTYRG 551 EAGYAIGYSS ISDGGNWIIK GTASGNSRGH FGASASVGYQ W*

[0301] Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 5>:

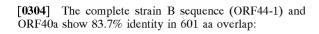
1 ATGAACAAAA TATACCGCAT CATTTGGAAT AGTGCCCTCA ATGCCTGNGT 51 CGCCGTATCC GAGCTCACAC GCAACCACAC CAAACGCGCC TCCGCAACCG 101 TGAAGACCGC CGTATTGGCG ACACTGTTGT TTGCAACGGT TCAGGCGAAT 151 GCTACCGATG AAGATGAAGA AGAAGAGTTA GAATCCGTAC AACGCTCTGT 201 CGTAGGGAGC ATTCAAGCCA GTATGGAAGG CAGCGGCGAA TTGGAAACGA 251 TATCATTATC AATGACTAAC GACAGCAAGG AATTTGTAGA CCCATACATA 301 GTAGTTACCC TCAAAGCCGG CGACAACCTG AAAATCAAAC AAAACACCAA 351 TGAAAACACC AATGCCAGTA GCTTCACCTA CTCGCTGAAA AAAGACCTCA 401 CAGGCCTGAT CAATGTTGAN ACTGAAAAAT TATCGTTTGG CGCAAACGGC 451 AAGAAAGTCA ACATCATAAG CGACACCAAA GGCTTGAATT TCGCGAAAGA 501 AACGGCTGGG ACGAACGGCG ACACCACGGT TCATCTGAAC GGTATCGGTT 551 CGACTTTGAC CGATACGCTT GCGGGTTCTT CTGCTTCTCA CGTTGATGCG 601 GGTAACCNAA GTACACATTA CACTCGTGCA GCAAGTATTA AGGATGTGTT 651 GAATGCGGGT TGGAATATTA AGGGTGTTAA ANNNGGCTCA ACAACTGGTC 701 AATCAGAAAA TGTCGATTTC GTCCGCACTT ACGACACAGT CGAGTTCTTG 751 AGCGCAGATA CGNAAACAAC GACNGTTAAT GTGGAAAGCA AAGACAACGG 801 CAAGAGAACC GAAGTTAAAA TCGGTGCGAA GACTTCTGTT ATTAAAGAAA 851 AAGACGGTAA GTTGGTTACT GGTAAAGGCA AAGGCGAGAA TGGTTCTTCT 28

-continued 901 ACAGACGAAG GCGAAGGCTT AGTGACTGCA AAAGAAGTGA TTGATGCAGT 951 AAACAAGGCT GGTTGGAGAA TGAAAACAAC AACCGCTAAT GGTCAAACAG 1001 GTCAAGCTGA CAAGTTTGAA ACCGTTACAT CAGGCACAAA TGTAACCTTT 1051 GCTAGTGGTA AAGGTACAAC TGCGACTGTA AGTAAAGATG ATCAAGGCAA 1101 CATCACTGTT ATGTATGATG TAAATGTCGG CGATGCCCTA AACGTCAATC 1151 AGCTGCAAAA CAGCGGTTGG AATTTGGATT CCAAAGCGGT TGCAGGTTCT 1201 TCGGGCAAAG TCATCAGCGG CAATGTTTCG CCGAGCAAGG GAAAGATGGA 1251 TGAAACCGTC AACATTAATG CCGGCAACAA CATCGACATT AGCCGCAACG 1301 GTAAAAATAT CGACATCGCC ACTTCGATGG CGCCGCAGTT TTCCAGCGTT 1351 TCGCTCGGCG CGGGGGCAGA TGCGCCCACT TTAAGCGTGG ATGACGAGGG 1401 CGCGTTGAAT GTCGGCAGCA AGGATGCCAA CAAACCCGTC CGCATTACCA 1451 ATGTCGCCCC GGGCGTTAAA GANGGGGATG TTACAAACGT CNCACAACTT 1501 AAAGGCGTGG CGCAAAACTT GAACAACCGC ATCGACAATG TGGACGGCAA 1551 CGCGCGTGCN GGCATCGCCC AAGCGATTGC AACCGCAGGT CTGGTTCAGG 1601 CGTATCTGCC CGGCAAGAGT ATGATGGCGA TCGGCGGCGG CACTTATCGC 1651 GGCGAAGCCG GTTACGCCAT CGGCTACTCC AGTATTTCCG ACGGCGGAAA 1701 TTGGATTATC AAAGGCACGG CTTCCGGCAA TTCGCGCGGC CATTTCGGTG 1751 CTTCCGCATC TGTCGGTTAT CAGTGGTAA

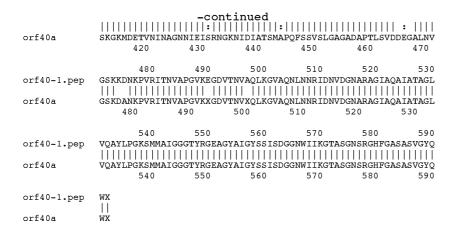
[0302] This encodes a protein having amino acid sequence <SEQ ID 6; ORF40a>:

1MNKIYRIIWNSALNPXVAVSELTRNHTKRASATVKTAVLATLLFATVQAN51ATDEDEKEELESVQRSVVGSIQASMEGSGELETISLSHTNDSKEFVDPYI101VVTLKAGDNLKIKONTHENTNASSFTYSLKKDLTGLINVXTEKLSFGANG151KKVNIISDTKGLNFAXETAGTNGDTTVHLNGIGSTLTDTLAGSSASHVDA201GNXSTHYTRAASIKDVLNAGWNIKGVKXGSTTGQSENVDFVRTYDTVEFL251SADTXTTVNVESKDNGKRTEVXIGAXTSVIKEKDGKLVTGKGKGENGSS301TDEGEGLVTAKEVIDAVNKAGWRMKTTANGQTGQADKFETVTSGTNVTF351ASGKGTTATVSXDDQGNITVMYDVNVGDALNVNQLONSGWNLDSKAVAGS401SGKVISGNVSPSKGKMDETVNINAGNNIEISRNGKNIDIATSMAPQFSSV451SLGAGADAPTLSVDDEGALNVGSKDANKPVRITNVAPGVKXGDVTNVXQL501GEAGYAIGYSSISDGGNWIIKGTASGNSGHFGASASVGYQW

[0303] The originally-identified partial strain B sequence (ORF40) shows 65.7% identity over a 254 aa overlap with ORF40a:


 10
 20
 30

 orf40.pep
 TLLFATVQASANQEEQEEDLYLDPVQRTVA


 ||||||||||:|:::::::::|::|::|::|::|::|

 orf40a
 SALNAXVAVSELTRNHTKRASATVKTAVLATLLFATVQANATDEDEEEEL--ESVQRSV

-continued						
	20	30	40	50	60	
	40	50	60	70	80	
orf40.pep					LKIKQNGT	
orf40a					:: ILKIKQNTNENTNAS	
011404	70 80			110	120	
640	90	100		.20 13		
ort40.pep			SANGNKVNITSD : :	TKGLNFAKETA	GTNGDTTVHLNGIG	
orf40a	:		• • GANGKKVNIISE			
OII40u	130	140		.60 17	0 180	
	150	160		.80 19		
orf40.pep	STLTDTLLNTGAT	TNVTNDNVTD	DEKKRAASVKDV	'LNAGWNIKGVF	PGTTASDNVDFV	
	::: :		: :		: : :	
orf40a					XGSTTGQSENVDFV	
	190	200	210 2	20 23	0 240	
	210	220	230	240		
orf40.pep	RTYDTVEFLSADI					
			:			
orf40a	RTYDTVEFLSADI	XTTTVNVESK	DNGKRTEVKIGA	KTSVIKEKDGF	LVTGKGKGENGSST	
	250	260	270	280	290 300	

orf40-1.pep orf40a	10 MNKIYRIIWNSALN MNKIYRIIWNSALN 10	:			Î : : :	: :.̃ :
orf40-1.pep orf40a	70 YLDPVQRTVAVLIV : : : ESVQRSV-VGSI 70	::: :	: :::	: : :	: :	 AGDNLKIK
1 orf40-1.pep orf40a	20 QNGTNFTY ::: QNTNENTNASSFTY 120	:	:	:		
orf40-1.pep orf40a	180 DTTVHLNGIGSTLT DTTVHLNGIGSTLT 180	::: :	: :	: :		:
orf40-1.pep orf40a	240 ASDNVDFVRTYD : : TGQSENVDFVRTYD 240			:		
orf40-1.pep orf40a	300 KDKGENGSSTDEGE KGKGENGSSTDEGE 300			Î Î	Ĩ	
orf40-1.pep orf40a	360 SGKGTTATVSKDDQ SGKGTTATVSKDDQ 360		IIIIIII	1Î		
orf40-1.pep	420 SKGKMDETVNINAG	430 NNIEITRNGK	440 NIDIATSMT	450 PQFSSVSLGA	460 GADAPTLSVI	470 DGD-ALNV

[0305] Computer analysis of these amino acid sequences gave the following results:

[0306] Homology with Hsf Protein Encoded by the Type b Surface Fibrils Locus of *H. influenzae* (Accession Number U41852)

[0307] ORF40 and Hsf protein show 54% as identity in 251 as overlap:

```
Orf40
       1 TLLFATVQASANQEEQEEDLYLDPVQRTVAVLVINSDXXXXXXXXXXXSDWAVYFNEK 60
         TLLFATVQA+A E++E LDPV RT VL +SD
                                                     NS+W +YF+ K
       41 TLLFATVQANATDEDEE----LDPVVRTAPVLSFHSDKEGTGEKEVTE-NSNWGIYFDNK 95
Hsf
      61 GVLTAREITXKAGDNLKIKQN-----GTNFTYSLKKDLTDLTSVGTEKLSFSANGNKVN 114
Orf40
         GVL A IT KAGDNLKIKON
                                  ++FTYSLKKDLTDLTSV TEKLSF ANG+KV+
Hsf
      96 GVLKAGAITLKAGDNLKIKONTDESTNASSFTYSLKKDLTDLTSVATEKLSFGANGDKVD 155
ITSD GL AK
                        G+ VHLNG+ STL D + NTG
                                                         EK RAA+
     156 ITSDANGLKLAK----TGNGNVHLNGLDSTLPDAVTNTGVLSSSSFTPNDV-EKTRAAT 209
Hsf
orf40 175 VKDVLNAGWNIKGVKPGTTASDNVDFVRTYDTVEFLSADTKTTTVNVESKDNGKKTEVKI 234
                           ++VD V Y+ VEF++ D T V ++K+NGK TEVK
         VKDVLNAGWNIKG K
     210 VKDVLNAGWNIKGAKTAGGNVESVDLVSAYNNVEFITGDKNTLDVVLTAKENGKTTEVKF 269
Hsf
Orf40 235 GAKTSVIKEKD 245
           KTSVIKEKD
     270 TPKTSVIKEKD 280
Hsf
```

[0308] ORF40a also shows homology to Hsf:

```
gi|1666683 (U41852) hsf gene product [Haemophilus influenzae] Length = 2353
Score = 153 (67.7 bits), Expect = 1.5-116, Sum P(11) = 1.5e-116
Identities = 33/36 (91%), Positives = 34/36 (94%)
        16 VAVSELTRNHTKRASATVKTAVLATLLFATVQANAT 51
Query:
            V VSELTR HTKRASATV+TAVLATLLFATVONAT
Sbjct:
        17 VVVSELTRTHTKRASATVETAVLATLLFATVQANAT 52
Score = 161 (71.2 bits), Expect = 1.5e-116, Sum P(11) 1.5e-116
Identities = 32/38 (84%), Positives = 36/38 (94%)
Query: 101 VTLKAGDNLKIKQNTNENTNASSFTYSLKKDLTGLINV 138
            +TLAGDNLKIKQNT+E+TNASSFTYSLKKDLT L +V
Sbjct: 103 ITLKAGDNLKIKQNTDESTNASSFFYSLKKDLTDLTSV 140
Score = 110 (48.7 bits), Expect = 1.5e-116, Sum P(11) = 1.5e-116
Identities = 21/29 (72%), Positives = 25/29 (86%)
Query: 138 VTEKLSFGANGKKVNIISDTKGLNFAKET 166
            V++KLS G NG KVNI SDTKGLNFAK++
```

-continued sbjct: 1439 VSDKLSLGTNGNKVNITSDTXGLNFAKDS 1467 Score = 85 (37.6 bits), Expect = 1.5e-116, Sum P(11) = 1.5e-116 Identities = 18/32 (56%), Positives = 20/32 (62%) Query: 169 TNGDTTVHLNGIGSTLTDTLAGSSASHVDAGN 200 T D +HLNGI STLTDTL S A+ GN Sbjct: 1469 TGDDANIHLNGIASTLTDTLLNSGATTNLGGN 1500 Score = 92 (40.7 bits), Expect = 1.5e-116, Sum P(11) = 1.5e-116 Identities = 16/19 (84%), Positives = 19/19 (100%) Query: 206 RAASIKOVLNAGWNIKGVK 224 RAAS+KDVLNAGWN++GVK Sbjct: 1509 RAASVKDVLNAGWNVRGVK 1527 Score = 90 (39.8 bits), Expect = 1.5e-116, Sum P(11) = 1.5e-116 Identities = 17/28 (60%), Positives 20/28 (71%) Query: 226 STTGQSENVDFVRTYDTVEFLSADTTTT 253 S Q EN+DFV TYDTV+F+S D TT Sbjct: 1530 SANNQVENIDFVATYDTVDFVSGDKDTT 1557

[0309] Based on homology with Hsf, it was predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

[0310] ORF40-1 (61 kDa) was cloned in pET and pGex vectors and expressed in *E. coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. **FIG. 1A** shows the results of affinity purification of the His-fusion protein, and **FIG. 1B** shows the results of expression of the GST-fusion in *E. coli*.

bactericidal assay (**FIG. 1D**), and ELISA (positive result). These experiments confirm that ORF40-1 is a surfaceexposed protein, and that it is a useful immunogen.

[0311] FIG. 1E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF40-1.

Example 2

[0312] The following partial DNA sequence was identified in *N. meningitidis* <SEQ ID 7>

1 ATGTFACGTT TGACTGCTTT AGCCGTATGC ACCGCCCTCG CTTTGGGCGC

51 GTGTT[]GCCG CAAAATTCCG ACTCTGCCCC ACAAGCCAAA GaACAG-GCGG

101 TTTCCGCCGC ACAAACCGAA GgCGCGTCCG TTACCGTCAA AACCGCGCGC

- 151 GGCGACGTTC AAATACCGCA AAACCCCGAA CGCATCGCCG TTTACGATTT
- 201 GGGTATGCTC GACACCTTGA GCAAACTGGG CGTGAAAACC GGTTTGTCCG
- 251 TCGATAAAAA CCGCCTGCCG TATTTAGAGG AATATTTCAA AACGACAAAA
- 301 CCTGCcGGCA CTTTGTTCGA GCCGGATTAC GAAACGCTCA ACGCTTACAA
- 351 ACCGCAGCTC ATCATCATCG GCAGCCGCGC CgCCAAGGCG TTTGACAAAT
- 401 TGAAcGAAAT CGCGCCGACC ATCGrmwTGA CCGCCGATAC CGCCAACCTC
- 451 AAAGAAAGTG CCAArGAGGC ATCGACGCTG GCGCAAATCT TC..

Purified His-fusion protein was used to immunise mice, whose sera were used for FACS analysis (FIG. 1C), a

[0313] This corresponds to the amino acid sequence <SEQ ID 8; ORF38>:

1 MLRLTAL<u>AVC TALALGAC</u>SP QNSDSAPOAK EQAVSAAQTE GASVTVKTAR 51 GDVQIPQNPE RIAVYDLGHL DTLSKLGVKT GLSVDKNRLP YLEEYFKTTK 101 PAGTLFEPDY ETLNAYKPQL IIIGSRAAKA FDKLNEIAPT IXXTADTANL 151 KESAKEASTL AQIF.. **[0314]** Further work revealed the complete nucleotide sequence <SEQ ID 9>:

1 ATGTTACGTT TGACTGCTTT AGCCGTATGC ACCGCCCTCG CTTTGGGCGC 51 GTGTTCGCCG CAAAATTCCG ACTCTGCCCC ACAAGCCAAA GAACAGGCGG 101 TTTCCGCCGC ACAAACCGAA GGCGCGTCCG TTACCGTCAA AACCGCGCGC 151 GGCGACGTTC AAATACCGCA AAACCCCCGAA CGCATCGCCG TTTACGATTT 201 GGGTATGCTC GACACCTTGA GCAAACTGGG CGTGAAAACC GGTTTGTCCG 251 TCGATAAAAA CCGCCTGCCG TATTTAGAGG AATATTTCAA AACGACAAAA 301 CCTGCCGGCA CTTTGTTCGA GCCGGATTAC GAAACGCTCA ACGCTTACAA 351 ACCGCAGCTC ATCATCATCG GCAGCCGCGC CGCCAAGGCG TTTGACAAAT 401 TGAACGAAAT CGCGCCGACC ATCGAAATGA CCGCCGATAC CGCCAACCTC 451 AAAGAAAGTG CCAAAGAGCG CATCGACGCG CTGGCGCAAA TCTTCGGCAA 501 ACAGGCGGAA GCCGACAAGC TGAAGGCGGA AATCGACGCG TCTTTTGAAG 551 CCGCGAAAAC TGCCGCACAA GGTAAGGGCA AAGGTTTGGT GATTTTGGTC 601 AACGGCGGCA AGATGTCGGC TTTCGGCCCG TCTTCACGCT TGGGCGGCTG 651 GCTGCACAAA GACATCGGCG TTCCCGCTGT CGATGAATCA ATTAAAGAAG 701 GCAGCCACGG TCAGCCTATC AGCTTTGAAT ACCTGAAAGA GAAAAATCCC 751 GACTGGCTGT TTGTCCTTGA CCGAAGCGCG GCCATCGGCG AAGAGGGTCA 801 GGCGGCGAAA GACGTGTTGG ATAATCCGCT GGTTGCCGAA ACAACCGCTT 851 GGAAAAAAGG ACAGGTCGTG TACCTCGTTC CTGAAACTTA TTTGGCAGCC 901 GGTGGCGCGC AAGAGCTGCT GAATGCAAGC AAACAGGTTG CCGACGCTTT 951 TAACGCGGCA AAATAA

[0315] This corresponds to the amino acid sequence <SEQ ID 10; ORF38-1>:

1MLRLTALAVC TALALGACSPQNSDSAPQAKEQAVSAAQTEGASVTVKTAR51GDVQIPQNPERIAVYDLQILDTLSXLGVKTGLSVDKNRLPYLEEYFKTTK101PAGTLFEPDYETLNAYKPQLIIIGSRAAKAFDKLNEIAPTIENTADTANL151KESAKERIDALAQIFGKQAEADKLKAEIDASFEAAKTAAQGKGKGLVILV201NGGKMSAFGPSSRLGGWLKKDIGVPAVDESIKEGSHGQPISFEYLKEKNP251DWLFVLDRSAAIGEEGQAAKDVLDNPLVAETTAWKKGQVVYLVETYLAA301GGAQELLNASKQVADAFNAAK*

[0316] Computer analysis of this amino acid sequence reveals a putative prokaryotic membrane lipoprotein lipid attachment site (underlined).

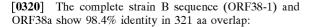
[0317] Further work identified the corresponding gene in strain A of *N. meningitidis* <SEQ ID 11>:

1 ATGTTACGTT TGACTGCTTT AGCCGTATGC ACCGCCCTCG CTTTGGGCGC

51 GTGTTCGCCG CAAAATTCCG ACTCTGCCCC ACAAGCCAAA GAACAGGCGG

33

-conti 101 TTTCCGCCGC ACAATCCGAA GGCGT	
151 GGCGATGTTC AAATACCGCA AAACC	CCGAA CGTATCGCCG TTTACGATTT
201 GGGTATGCTC GACACCTTGA GCAAA	ACTGGG CGTGAAAACC GGTTTGTCCG
251 TCGATAAAAA CCGCCTGCCG TATTI	AGAGG AATATTTCAA AACGACAAAA
301 CCTGCCGGAA CTTTGTTCGA GCCGG	ATTAC GAAACGCTCA ACGCTTACAA
351 ACCGCAGCTC ATCATCATCG GCAGC	CGCGC AGCCAAAGCG TTTGACAAAT
401 TGAACGAAAT CGCGCCGACC ATCGA	AATGA CCGCCGATAC CGCCAACCTC
451 AAAGAAAGTG CCAAAGAGCG TATCG	ACGCG CTGGCGCAAA TCTTCGGCAA
501 AAAGGCGGAA GCCGACAAGC TGAAG	GCGGA AATCGACGCG TCTTTTGAAG
551 CCGCGAAAAC TGCCGCGCAA GGCAA	AGGCA AGGGTTTGGT GATTTTGGTC
601 AACGGCGGCA AGATGTCCGC CTTCG	GCCCG TCTTCACGAC TGGGCGGCTG
651 GCTGCACAAA GACATCGGCG TTCCC	GCTGT TGACGAAGCC ATCAAAGAAG
701 GCAGCCACGG TCAGCCTATC AGCTT	TGAAT ACCTGAAAGA GAAAAATCCC
751 GACTGGCTGT TTGTCCTTGA CCGCA	AGCGCG GCCATCGGCG AAAAGGGTCA
601 GGCGGCGAAA GACGTGTTGA ACAAT	CCGCT GGTTGCCGAA ACAACCGCTT
851 GGAAAAATGG ACAAGTCGTT TACCI	TGTTC CTGAAACTTA TTTGGCAGCC
901 GGTGGCGCGC AAGAGCTACT GAATG	CAAGC AAACAGGTTG CCGACGCTTT
951 TAACGCGGCA AAATAA	


[0318] This encodes a protein having amino acid sequence <SEQ ID 12; ORF38a>:

1MLRLTALAVCTALALGACSPQNSDSAPOAKEQAVSAAQSEGVSVTVKTAR51GDVQIPQNPERIAVYDLGHLDTLSKLGVKTGLSVDKNRLPYLEEYFKTTK101PAGTLFEPDYETLNAYKPQLIIIGSRAAKAFDKLNEIAPTIENTADTANL151KESAKERIDALAOIFGKKAEADKLKAEIDASFEAAKTAAQGKGKGLVILV201NGGKMSAFGPSSRLGGWLHKDIGVPAVDEAIKEGSHGQPISFEYLKEKNP251DWLFVLDRSAAIGEEGQAAKDVLNNPLVAETTAWKKGQVVYLVPETYLAA301GGAQELLNASKQVAOAFWAAK*IIIGANAIIIGANA

[0319] The originally-identified partial strain B sequence (ORF38) shows 95.2% identity over a 165 aa overlap with ORF38a:

	10	20	30	40	50	60
orf38.pep	MLRLTALAVCT	ALALGACSPQNS	DSAPQAKEQAV	SAAQTEGAS	VTVKTARGDVÇ	IPQNPE
				: :		
orf38a	MLRLTALAVCT	ALALGACSPQNS	DSAPQAKEQAV	SAAQSEGVS	VTVKTARGDVQ	IPQNPE
	10	20	30	40	50	60
	70	80	90	100	110	120
orf38.pep	RIAVYDLGMLD	TLSKLGVKTGLS	VDKNRLPYLEE	YFKTTKPAG	FLFEPDYETLN	AYKPQL
orf38a	RIAVYDLGMLD	TLSKLGVKTGLS	VDKNRLPYLEE	YFKTTKPAG	FLFEPDYETLN	AYKPQL
	70	80	90	100	110	120

-continued						
	130	140	150	160		
orf38.pep	IIIGSRAAKAFDKI	NEIAPTIXXI	ADTANLKESA	KE-ASTLAQI	F	
			1111111111	::		
orf39a	IIIGSRAAKAFDKI	NEIAPTIEMI	ADTANLKESA	KERIDALAQI	FGKKAEADKI	KAEIDA
	130	140	150	160		
orf38a	SFEAAKTAAQGKGH	GLVILVNGGK	MSAFGPSSRI	GGWLHKDIGV	PAVDEAIKE	SHGQPI
	190	200	210	220	230	240

orf38a.pep	MLRLTALAVCTALALGACSPQNSDSAPQAKEQAVSAAQSEGVSVTVKTARGDVQIPQNPE
orf38-1	MLRLTALAVCTALALGACSPQNSDSAPQAKEQAVSAAQTEGASVTVKTARGDVQIPQNPE
orf38a.pep	RIAVYDLGMLDTLSKLGVKTGLSVDKNRLPYLEEYFKTTKPAGTLFEPDYETLNAYKPOL
orf38-1	RIAVYDLGMLDTLSKLGVKTGLSVDKNRLPYLEEYFKTTKPAGTLFEPDYETLNAYKPQL
orf38a.pep	IIIGSRAAKAFDKLNEIAPTIEMTADTANLKESAKERIDALAQIFGKKAEADKLKAEIDA
orf38-1	IIIGSRAAKAFDKLNEIAPTIEMTADTANLKESAKERIDALAQIFGKQAEADKLKAEIDA
orf38a.pep	SFEAAKTAAQGKGKGLVILVNGGKMSAFGPSSRLGGWLHKDIGVPAVDEAIKEGSHGQPI
orf38-1	SFEAAKTAAQGKGKGLVILVNGGKMSAFGPSSRLGGWLHKDIGVPAVDESIKEGSHGQPI
orf38a.pep	SFEYLKEKNPDWLFVLDRSAAIGEEGQAAKDVLNNPLVAETTAWKKGQVVYLVPETYLAA
orf38-1	SFEYLKEKNPDWLFVLDRSAAIGEEGQAAKDVLDNPLVAETTAWKKGQVVYLVPETYLAA
orf38a.pep	GGAQELLNASKQVADAFNAAK
orf38-1	

[0321] Computer analysis of these sequences revealed the following:

[0322] Homology with a Lipoprotein (lipo) of *C. jejuni* (Accession Number X82427)

[0323] ORF38 and lipo show 38% as identity in 96 as overlap:

lyzed by SDS-PAGE. **FIG. 2A** shows the results of affinity purification of the His-fusion protein, and **FIG. 2B** shows the results of expression of the GST-fusion in *E. coli*. Purified His-fusion protein was used to immunise mice, whose sera were used for Western blot analysis (**FIG. 2C**) and FACS analysis (**FIG. 2D**). These experiments confirm that ORF38-1 is a surface-exposed protein, and that it is a useful immunogen.

```
Orf38: 40 EGASVTVKTARGDVQIPQNPERIAVYDLGMLDTLSKLGVKTGLS-VKDNRLPYLEEYFKT 98
EG S VK + G+ + P+NP ++ + DLG+LDT L + ++ V LP + FK
Lipo: 51 EGDSFLVKDSLGENKTPKNPSKVVILDLGILDTFDALKLNDKVAGVPAKNLPKYLQQFKN 110
Orf38: 99 TKPAGTLFEPDYETLNAYKPQLIIIGSRAAKAFDKL 134
G + + D+E +NA KP LIII R +K +DKL
Lipo: 111 KPSVGGVQQVDFEAINALKPDLIIISGRQSKFYDKL 146
```

[0324] Based on this analysis, it was predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

[0325] ORF38-1 (32 kDa) was cloned in pET and pGex vectors and expressed in *E. coli*, as described above. The products of protein expression and purification were ana-

[0326] FIG. 2E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF38-1.

Example 3

[0327] The following *N. meningitidis* DNA sequence was identified <SEQ ID 13>:

1 ATGAAACTTC TGACCACCGC AATCCTGTCT TCCGCAATCG CGCTCAGCAG

51 TATGGCTGCC GCCGCTGGCA CGGACAACCC CACTGTTGCA AAAAAAACCG

101 TCAGCTACGT CTGCCAGCAA GGTAAAAAAG TCAAAGTAAC CTACGGCTTC

151 AACAAACAGG GTCTGACCAC ATACGCTTCC GCCGTCATCA ACGGCAAACG

201 CGTGCAAATG CCTGTCAATT TGGACAAATC CGACAATGTG GAAACATTCT

251 ACGGCAAAGA AGGCGGTTAT GTTTTGGGTA CCGGCGTGAT GGATGGCAAA

301 TCCTACCGCA AACAGCCCAT TATGATTACC GCACCTGACA ACCAAATCGT

351 CTTCAAAGAC TGTTCCCCAC GTTAA

[0328] This corresponds to the amino acid sequence <SEQ ID 14; ORF44>:

1 <u>MKLLTTAILS SAIALSSMAA AA</u>GTDWPTVA KKTVSYVCQQ GKKVKVTYGF

51 NKQGLTTYAS AVINGKRVQH PVNLDKSDNV ETFYGKEGGY VLGTGVMDGK

101 SYRKQPIHIT APDNQIVFKD CSPR*

[0329] Computer analysis of this amino acid sequence predicted the leader peptide shown underlined.

[0330] Further work identified the corresponding gene in strain A of *N. meningitidis* <SEQ ID 15>:

1 ATGAAACTTC TGACCACCGC AATCCTGTCT TCCGCAATCG CGCTCAGCAG

51 TATGGCTGCT GCTGCCGGCA CGAACAACCC CACCGTTGCC AAAAAAAACCG

101 TCAGCTACGT CTGCCAGCAA GGTAAAAAAG TCAAAGTAAC CTACGGCTTT

151 AACAAACAGG GCCTGACCAC ATACGCTTCC GCCGTCATCA ACGGCAAACG

201 TGTGCAAATG CCTGTCAATT TGGACAAATC CGACAATGTG GAAACATTCT

251 ACGGCAAAGA AGGCGGTTAT GTTTTGGGTA CCGGCGTGAT GGATGGCAAA

301 TCCTATCGCA AACAGCCTAT TATGATTACC GCACCTGACA ACCAAATCGT

351 CTTCAAAGAC TGTTCCCCAC GTTAA

[0331] This encodes a protein having amino acid sequence <SEQ ID 16; ORF44a>:

1 MKLLTTAILS SAIALSSMAA AAGTNNPTVA KKTVSYVCQQ GKKVKVTYGF

51 NKQGLTTYAS AVINGKRVQM PVNLDKSDNV ETFYGKEGGY VLGTGVMDGK

101 SYRKQPIMIT APDNQIVFKD CSPR*

[0332] The strain B sequence (ORF44) shows 99.2% identity over a 124 aa overlap with ORF44a:

	10	20	30	40	50	60
orf44.pep	MKLLTTAILSSAI	ALSSMAAAAGT	DNPTVAKKTV	SYVCQQGKK\	/KVTYGFNKQGI	LTTYAS
			:			
orf44a	<u>MKLLTTAILSSAI</u>	ALSSMAAAAGT	NNPTVAKKTV	/SYVCQQGKK\	/KVTYGFNKQGI	LTTYAS
	10	20	30	40	50	60

-continued							
7	D	80	90	100	110	120	
orf44.pep	AVINGKR					IMITAPDNQIVF	'KD
	1111111						
orf44a	AVINGKR	VQMPVNLDKS	DNVETFYGKI	EGGYVLGTGVI	IDGKSYRKQP	IMITAPDNQIVF	'KD
		70	80	90	100	110 1	.20
orf44.pep	CSPRX						
orf44a	CSPRX						

[0333] Computer analysis gave the following results:

[0334] Homology with the LecA Adhesin of *Eikenella* corrodens (Accession Number D78153)

[0335] ORF44 and LecA protein show 45% as identity in 91 as overlap:

purification of the His-fusion protein, and **FIG. 3B** shows the results of expression of the GST-fusion in E-coli. Purified His-fusion protein was used to immunise mice, whose sera were used for ELISA, which gave positive results, and for a bactericidal assay (**FIG. 3C**). These experiments confirm that ORF44-1 is a surface-exposed protein, and that it is a useful immunogen.

```
Orf44 33 TVSYVCQQGKKVKVTYGFNKQGLTTYASAVINGKRVQMPVNLDKSDNVETFYGKEGGYVL 92
+V+YVCQQG+++ V Y FN G+ T A +N + +++P NL SDNV+T + GY L
LecA 135 SVAYVCQQGRRLNVNYRFNSAGVPTSAELRVNNRNLRLPYNLSASDNVDTVF-SANGYRL 193
```

```
Orf44 93 GTGVHDGKSYRKQPIHITAPDNQIVFKDCSP 123
T MD +YR Q I+++AP+ Q+++KDCSP
LecA 194 TTNAMDSANYRSQDIIVSAPNGQNLYKDCSP 224
```

[0336] Based on homology with the adhesin, it was predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

[0337] ORF44-1 (11.2 kDa) was cloned in pET and pGex vectors and expressed in *E. coli*, as described above. The

[0338] FIG. 3D shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF44-1.

Example 4

[0339] The following partial DNA sequence was identified in *N. meningitidis* <SEQ ID 17>

1GGCACCGAATTCAAAACCACCCTTTCCGGAGCCGACATACAGGCAGGGGT51GGGTGAAAAAGCCCGAGCCGATGCGAAAATTATCCTAAAAGGCATCGTAA101ACCGCATCCAAACCGAAGAAAAGCTGGAATCCAACTCGACCGTATGGCAA151AAGCAGGCCGGAACGGCAGCACGGTTGAAACGCTGAAGCTACCGAGCTT201TGAAGGGCCGGCACTGCCTAAGCTGACCGTCCCGGCGGCTATATCGCCG251ACATCCCCAAAGGCAACCTCAAAACCGAAATCGAAAAAGCGGCCAAACAG351GAACCAAGTACAGCTGCTTACGACAAATGGGACTATAAACAGGAAGCC401TAACCGGAGCGGAACCGGAGCCTTATCGGATTAANACGNGTGGCCGCCG451TCAGGCGCAGGAACCGGAGCCGTATTGGGATTAANACGNGTGGCCGCCG501CGCAACCGATGCAGCATTT...CCCC

products of protein expression and purification were analyzed by SDS-PAGE. **FIG. 3A** shows the results of affinity

[0340] This corresponds to the amino acid sequence <SEQ ID 18; ORF49>:

1 GTEFKTTLSG ADIQAGVGEK ARADPKIILK GIVNRIQTEE KLESNSTVWQ

51 KQAGSGSTVE TLKLPSFEGP ALPKLTAPGG YIADIPKGNL KTEIEKLAKQ

101 PEYAYLKOLO TVKDVNWNQV QLAYDKWDYK QEGLTCAGAA IXALAVTVVT

151 SGAGTGAVLG LXRVAAAATD AAF..

[0341] Further work revealed the complete nucleotide sequence <SEQ ID 19>:

1 ATGCAACTGC TGGCAGCCGA AGGCATTCAC CAACACCAAT TGAATGTTCA 51 GAAAAGTACC CGTTTCATCG GCATCAAAGT GGGTAAAAGC AATTACAGCA 101 AAAACGAGCT GAACGAAACC AAACTGCCCG TACGCGTTAT CGCCCAAACA 151 GCCAAAACCC GTTCCGGCTG GGATACCGTA CTCGAAGGCA CCGAATTCAA 201 AACCACCCTT TCCGGAGCCG ACATACAGGC AGGGGTGGGT GAAAAAGCCC 251 GAGCCGATGC GAAAATTATC CTAAAAGGCA TCGTTAACCG CATCCAAACC 301 GAAGAAAAGC TGGAATCCAA CTCGACCGTA TGGCAAAAGC AGGCCGGAAG 351 CGGCAGCACG GTTGAAACGC TGAAGCTACC GAGCTTTGAA GGGCCGGCAC 401 TGCCTAAGCT GACCGCTCCC GGCGGCTATA TCGCCGACAT CCCCAAAGGC 451 AACCTCAAAA CCGAAATCGA AAAGCTGGCC AAACAGCCCG AATATGCCTA 501 TCTGAAACAG CTTCAGACGG TCAAGGACGT GAACTGGAAC CAAGTACAGC 551 TCGCTTACGA CAAATGGGAC TATAAACAGG AAGGCCTAAC CGGAGCCGGA 601 GCCGCAATTA TCGCACTGGC CGTTACCGTG GTCACCTCAG GCGCAGGAAC 651 CGGAGCCGTA TTGGGATTAA ACGGTGCGGC CGCCGCCGCA ACCGATGCAG 701 CATTTGCCTC TTTGGCCAGC CAGGCTTCCG TATCGTFCAT CAACAACAAA 751 CGCAATATCG GTAACACCCT GAAAGAGCTG GGCAGAAGCA GCACGGTGAA 801 AAATCTGATG GTTGCCGTCG CTACCGCAGG CGTAGCCGAC AAAATCGGTG 851 CTTCGGCACT GAACAATGTC AGCGATAAGC AGTGGATCAA CAACCTGACC 901 GTCAACCTGG CCAATGCGGG CAGTGCCGCA CTGATTAATA CCGCTGTCAA 951 CGGCGGCAGC CTGAAAGACA ATCTGGAAGC GAATATCCTT GCGGCTTTGG 1001 TGAATACTGC GCATGGAGAG GCAGCAAGTA AAATCAAACA GTTGGATCAG 1051 CACTACATTG CCCATAAGAT TGCCCATGCC ATAGCGGGGCT GTGCGGCAGC 1101 GGCGGCGAAT AAGGGCAAGT GTCAAGATGG TGCGATCGGT GCGGCGGTCG 1151 GTGAAATCCT TGGCGAAACC CTACTGGACG GCAGAGACCC TGGCAGCCTG 1201 AATGTGAAGG ACAGGGCAAA AATCATTGCT AAGGCGAAGC TGGCAGCAGG 1251 GGCGGTTGCG GCGTTGAGTA AGGGGGGATGT GAGTACGGCG GCGAATGCGG 1301 CTGCTGTGGC GGTAGAGAAT AATTCTTTAA ATOATATACA GGATCGTTTG 1351 TTGAGTGGAA ATTATGCTTT ATGTATGAGT GCAGGAGGAG CAGAAAGCTT 1401 TTGTGAGTCT TATCGACCAC TGGGCTTGCC ACACTTTGTA AGTGTTTCAG 1451 GAGAAATGAA ATTACCTAAT AAATTCGGGA ATCGTATGGT TAATGGAAAA 1531 TTAATTATTA ACACTAGAAA TGGCAATGTA TATTTCTCTG TAGGTAAAAT 1551 ATGGAGTACT GTAAAATCAA CAAAATCAAA TATAAGTGGG GTATCTGTCG 1601 GTTGGGTTTT AAATGTTTCC CCTAATGATT ATTTAAAAGA AGCATTTATG

1651 AATGATTTCAGAAATAGTAATCAAAATAAAGCCTATGCAGAATGATTTC1701 CCAGACTTGGTAGGTGAGAGTGTTGGTGGTAGTCTTGTCTGACAAGAG1751 CCTGCTTTCGGTAAGTTCAACAATATCTAAATCTAAAATTCCTTTTAAA1801 GATTCAAAAATTATTGGGGAAATCGGTTTGGGAAGTGGTGTTGCTGCAGG1851 AGTAGAAAAAACAATATACATAGGTAACATAAAAGATATTGATAAATTTA1901 TTAGTGCAAACATAAAAAATAG

[0342] This corresponds to the amino acid sequence <SEQ ID 20; ORF49-1>:

1MQLLAAEGIHQHQLNVQKSTRFIGIKVGKSNYSKNELNETKLPVRVIAQT51AKTRSGWDTVLEGTEFKTTLSGADIQAGVGEKARADAKIILKGIVNRIQT101EEKLESNSTVWQKQAGSGSTVETLKLPSFEGPALPKLTAPGGYIADIPKG151NLKTEIEKLAKQPEYAYLKQLQTVKDVNWQVQLAYDKWDYKQEGLTGAG201AAIIALAVTVVTSGAGTGAVLGLNGAAAAATDAAFASLASQASVSFINNK251GNIGNTLKELGRSSTVKNLMVAVATAGVADKIGASALNNVSDKQWINNLT301VNLANAGSAALINTAVNGSLKDNLEANIAAUVATAGVNSLNQLQQ351HYIAHKIAHAIAGCAAAAANKGKCQDGAIGAAVGEILGETLLDGRDPGSL401NVKDRAKIIAKAKLAAGAVAALSKGDVSTAANAAAVAVENNSLNDLQDRL451LSGNYALCNSAGGAESFCESYRPLGLPHFVSVSGENKLPNKFGNRNVNGK501LIINTRNGNVYFSVGKIWSTVKSTKSNISGVSVGWLNNSPNDYLKEASM501DSKIIGEIGLGSGVAAGVEKTIYIGNIKDIDKFISANIKK*

[0343] Computer analysis predicts a transmembrane domain and also indicates that ORF49 has no significant amino acid homology with known proteins. A corresponding ORF from *N. meningitidis* strain A was, however, identified:

[0344] ORF49 shows 86.1% identity over a 173 as overlap with an ORF (ORF49a) from strain A of *N. meningitidis*:

orf49.pep			G T 	10 EFKTTLSGAI	20 DIQAGVGEKAN	30 RADAKIILK
orf49a	SKNELNETKLPVR	VVAQXAATRS	GWDTVLEGTE	11111111111	QAGVXEKAR	VDAKIILK
	40	50	60	70	80	90
	40	50	60	70	80	90
orf49.pep	GIVNRIQTEEKLE	SNSTVWQKQA			KLTAPGGY12	ADIPKGNL
		:			:	:
orf49a	GIVNRIQSEEKLE					
	100	110	120	130	140	150
	100	110	120	130	140	150
orf49.pep	KTEIEKLAKQPEY.	AYLKQLQTVK	DVNWNQVQLA	YDKWDYKQEC	LTGAGAAIXA	ALAVTVVT
			· • •	:		
orf49a	KTEIEKLSKQPEY.	AYLKQLQVAK	NINWNQVQLA	YDRWDYKQEC	LTEAGAAII	ALAVTVVT
	160	170	180	190	200	210
	160	170				

- 38

-continued						
orf49.pep	SGAGTGAVLGLXF	VAAAATDA	AF			
		:				
orf49a	SGAGTGAVLGLNG	AXAAATDAA	AFASLASQAS	SFINNKGDV0	GKTLKELGRS	STVKNLVVA
	220	230	240	250	260	270

[0345]	ORF49-1 and	l ORF49a s	show 83.2%	identity in 457
aa overl	ap:			

orf49a.pep	XQLLAEEGIHKHELDVQKSRRFIGIKVGXSNYSKNELNETKLPVRVVAQXAATRSGWDTV : ::
orf49-1	MQLLAAEGIHQHQLNVQKSTRFIGIKVGKSNYSKNELNETKLPVRVIAQTAKTRSGWDTV
orf49a.pep	LEGTEFKTTLAGADIQAGVXEKARVDAKIILKGIVNRIQSEEKLETNSTVWQKQAGRGST
orf49-1	LEGTEFKTTLSGADIQAGVGEKARADAXIILKGIVNRIQTEEKLESNSTVWQKQAGSGST
orf49a.pep	IETLKLPSFESPTPPKLSAPGGYIVDIPKGNLKTEIEKLSKQPEYAYLKQLQVAKNINWN : ::::::::::::::::::::::::::::
orf49-1	VETLKLPSFEGPALPKLTAPGGYIADIPKGNLKTEIEKLAKQPEYAYLKQLQTVKDVNWN
orf49a.pep	QVQLAYDRWDYKQEGLTEAGAAIIALAVTVVTSGAGTGAVLGLNGAXAAATDAAFASLAS
orf49-1	QVQLAYDKWDYKQEGLTGAGAAIIALAVTVVTSGAGTGAVLGLNGAAAAATDAAFASLAS
orf49a.pep	QASVSFINNKGDVGKTLKELGRSSTVKNLVVAAATAGVADKIGASALXNVSDKQWINNLT
orf49-1	eq:QASVSFINNKGNIGNTLKELGRSSTVKNLMVAVATAGVADKIGASALNNVSDKQWINNLT
orf49a.pep	VNLANAGSAALINTAVNGGSLKDXLEANILAALVNTAHGEAASKIKQLDQHYIVHKIAHA
orf49-1	$\texttt{VNLANAGSAALINTAVNGGSLKDNLEANILAALVNTAHGEAASKIKQLDQH\texttt{YIAHKIAHA}$
orf49a.pep	IAGCAAAAANKGKCQDGAIGAAVGEIVGEALTNGKNPDTLTAKEREQILAYSKLVAGTVS
orf49-1	IAGCAAAAANKGKCQDGAIGAAVGEILGETLLDGRDPGSLNVKDRAKIIAKAKLAAGAVA
orf49a.pep	GVVGGDVNAAANAAEVAVKNNQLSDXEGREFDNEMTACAKQNXPQLCRKNTVKKYQNVAD :: :: : ::::::
orf49-1	ALSKGDVSTAANAAAVAVENNSLNDIQDRLLSGNYALCMSAGGAESFCESYRPLGLPHFV
orf49a.pep	${\tt KRLAASIAICTDISRSTECRTIRKQHLIDSRSLHSSWEAGLIGKDDEWYKLFSKSYTQAD$
orf49-1	SVSGEMKLPNKFGNRMVNGKLIINTRNGNVYFSVGKIWSTVKSTKSNISGVSVGWVLNVS

[0346] The complete length ORF49a nucleotide sequence <SEQ ID 21> is:

1	NTGCAACTGC	TGGCAGAAGA	AGGCATCCAC	AAGCACGAGT	TGGATGTCCA
51	AAAAAGCCGC	CGCTTTATCG	GCATCAAGGT	AGGTNAGAGC	AATTACAGTA
101	AAAACGAACT	GAACGAAACC	AAATTGCCTG	TCCGCGTCGT	CGCCCAAANT
151	GCAGCCACCC	GTTCAGGCTG	GGATACCGTG	CTCGAAGGTA	CCGAATTCAA
201	AACCACGCTG	GCCGGTGCCG	ACATTCAGGC	AGGTGTANGC	GAAAAAGCCC
251	GTGTCGATGC	GAAAATTATC	CTCAAAGGCA	TTGTGAACCG	TATCCAGTCG
301	GAAGAAAAAT	TAGAAACCAA	CTCAACCGTA	TGGCAGAAAC	AGGCCGGACG
351	CGGCAGCACT	ATCGAAACGC	TAAAACTGCC	CAGCTTCGAA	AGCCCTACTC
401	CGCCCAAATT	GTCCGCACCC	GGCGGNTATA	TCGTCGACAT	TCCGAAAGGC
451	ААТСТБАААА	CCGAAATCGA	AAAGCTGTCC	AAACAGCCCG	AGTATGCCTA

501 TCTGAAACAG CTCCAAGTAG CGAAAAACAT CAACTGGAAT CAGGTGCAGC 551 TTGCTTACGA CAGATGGGAC TACAAACAGG AGGGCTTAAC CGAAGCAGGT 601 GCGGCGATTA TCGCACTGGC CGTTACCGTG GTCACCTCAG GCGCAGGAAC 651 CGGAGCCGTA TTGGGATTAA ACGGTGCGNC CGCCGCCGCA ACCGATGCAG 701 CATTCGCCTC TTTGGCCAGC CAGGCTTCCG TATCGTTCAT CAACAACAAA 751 GGCGATGTCG GCAAAAACCCT GAAAGAGCTG GGCAGAAGCA GCACGGTGAA 801 AAATCTGGTG GTTGCCGCCG CTACCGCAGG CGTAGCCGAC AAAATCGGCG 851 CTTCGGCACT GANCAATGTC AGCGATAAGC AGTGGATCAA CAACCTGACC 901 GTCAACCTAG CCAATGCGGG CAGTGCCGCA CTGATTAATA CCGCTGTCAA 951 CGGCGGCAGC CTGAAAGACA NTCTGGAAGC GAATATCCTT GCGGCTTTGG 1001 TCAATACCGC GCATGGAGAA GCAGCCAGTA AAATCAAACA GTTGGATCAG 1051 CACTACATAG TCCACAAGAT TGCCCATGCC ATAGCGGGCT GTGCGGCAGC 1101 GGCGGCGAAT AAGGGCAAGT GTCAGGATGG TGCGATAGGT GCGGCTGTGG 1151 GCGAGATAGT CGGGGAGGCT TTGACAAACG GCAAAAATCC TGACACTTTG 1201 ACAGCTAAAG AACGCGAACA GATTTTGGCA TACAGCAAAC TGGTTGCCGG 1251 TACGGTAAGC GGTGTGGTCG GCGGCGATGT AAATGCGGCG GCGAATGCGG 1301 CTGAGGTAGC GGTGAAAAAT AATCAGCTTA GCGACTAAGA GGGTAGAGAA 1351 TTTGATAACG AAATGACTGC ATGCGCCAAA CAGAATANTC CTCAACTGTG 1401 CAGAAAAAAT ACTGTAAAAA AGTATCAAAA TGTTGCTGAT AAAAGACTTG 1451 CTGCTTCGAT TGCAATATGT ACGGATATAT CCCGTAGTAC TGAATGTAGA 1501 ACAATCAGAA AACAACATTT GATCGATAGT AGAAGCCTTC ATTCATCTTG 1551 GGAAGCAGGT CTAATTGGTA AAGATGATGA ATGGTATAAA TTATTCAGCA 1601 AATCTTACAC CCAAGCAGAT TTGGCTTTAC AGTCTTATCA TTTGAATACT 1651 GCTGCTAAAT CTTGGCTTCA ATCGGGGCAAT ACAAAGCCTT TATCCGAATG 1701 GATGTCCGAC CAAGGTTATA CACTTATTTC AGGAGTTAAT CCTAGATTCA 1751 TTCCAATACC AAGAGGGITF GTAAAACAAA ATACACCTAT TACTAATGTC 1801 AAATACCCGG AAGGCATCAG TTTCGATACA AACCTANAAA GACATCTGGC 1851 AAATGCTGAT GGTTTTAGTC AAGAACAGGG CATTAAAGGA GCCCATAACC 1901 GCACCAATNT TATGGCAGAA CTAAATTCAC GAGGAGGANG NGTAAAATCT 1951 GAAACCCANA CTGATATTGA AGGCATTACC CGAATTAAAT ATGAGATTCC 2001 TACACTAGAC AGGACAGGTA AACCTGATGG TGGATTTAAG GAAATTTCAA 2051 GTATAAAAAC TGTTTATAAT CCTAAAAANT TTTNNGATGA TAAAATACTT 2101 CAAATGGCTC AANATGCTGN TTCACAAGGA TATTCAAAAG CCTCTAAAAT 2151 TGCTCAAAAT GAAAGAACTA AATCAATATC GGAAAGAAAA AATGTCATTC 2201 AATTCTCAGA AACCTTTGAC GGAATCAAAT TTAGANNNTA TNTNGATGTA 2251 AATACAGGAA GAATTACAAA CATTCACCCA GAATAATTTA A

[0347] This encodes a protein having amino acid sequence <SEQ ID 22>:

1 XQLLAEEGIH KHELDVQKSR RFIGIKVGXS NYSKNELNET KLPVRVVAQX 51 AATRSGWDTV LEGTEFKTTL AGADIOAGVX EKARVOAKII LKGIVNRIOS 101 EEKLETNSTV WQKQAGRGST IETLKLPSFE SPTPPKLSAP GGYIVDIPKG 151 NLKTEIEKLS KOPEYAYLKO LOVAKNINWN OVOLAYDRWD YKOEGLTEAG 201 AAIIALAVTV VTSGAGTGAV LGLNGAXAAA TORAFASLAS QASVSFINNK 251 GDVGKTLKEL GRSSTVKNLV VAAATAGVAD KIGASALXNV SDKQNINNLT 301 VNLANAGSAA LINTAVNGGS LKDXLEANIL AALVNTAHGE AASKIKQLDQ 351 HYIVHKIAHA IAGCAAAAAN KGKCODGAIG AAVGEIVGEA LTNGKNPDTL 401 TAKEREQILA YSKLVAGTVS GVVGGDVNAA ANAAEVAVKN NQLSDXEGRE 451 FDWEHTACAK QNXPQLCRXN TVKKYQNVAD KRLAASIAIC TDISRSTECR 501 TIRKQHLIDS RSLHSSWEAG LIGKDDEWYK LFSKSYTQAD LALOSYHLNT 551 AAKSWLQSGN TKPLSEWNSD QGYTLISGVN PRFIPIPRGF VKQNTPITNV 601 KYPEGISFDT NLXRHLATAD GFSQEQGIKG AHNRTNXMAE LNSRGGXVKS 651 ETXTDIEGIT RIKYEIPTLD RTGKPDGGFK EISSIKTVYN FKXFKDDKIL 701 QMAQXAXSQG YSKASKIAQN ERTKSISERK NVIQFSETFD GIKFRXYXDV 751 NTGRITNIHP E

[0348] Based on the presence of a putative transmembrane domain, it is predicted that these proteins from *N. menin-gitidis*, and their epitopes, could be useful antigens for vaccines or diagnostics.

Example 5

[0349] The following partial DNA sequence was identified in *N. meningitidis* SEQ ID 23>

51AAGTATAACCCAAGGCTTTGTCTTCGCCTTTCATTCCGATAAGGGATATG101ACGCTTTGGTCGGTATAGCCGTCTTGGGAACCTTTGTCCACCCAACGCAT151ATCTGCCTGCGGATTCTCATTGCCGCTTCTTGGCTGCTGATTTTTCTGCC201TTCGCGTTTTTCAACTTCGCGCTTGAGGGCTTCGGCATATTTGTCGGCCA251ACGCCATTCTTTCGGGATGCAGCTGCCTATTGTTCCAATCTACATCGCA

1..CGGATCGTTG TAGGTTTGCG GATTTCTTGC GCCGTAGTCA CCGTAGTCCC

301 CCCACCACAG CACCACCACT ACCACCAGTT GCATAG

[0350] This corresponds to the amino acid sequence <SEQ ID 24; ORF50>:

1...RIVVGLRISC AVVTVVPSIT QGFVFAFHSD KGYDALVGIA VLGTFVHPTH

51<u>ICLRILIAAS WLLIFLP</u>SRF STSRLRASAY LSANAISFGC SCLLFQSTFA

101PTTAPPLPPV A*

[0351] Computer analysis predicts two transmembrane domains and also indicates that ORF50 has no significant amino acid homology with known proteins.

[0352] Based on the presence of a putative transmembrane domain, it is predicted that this protein from *N. meningitidis*,

and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 6

[0353] The following partial DNA sequence was identified in *N. meningitidis* <SEQ ID 25>

1..AAGTTTGACT TTACCTGGTT TATTCCGGCG GTAATCAAAT ACCGCCGGTT 51 GTTTTTTGAA GTATTGGTGG TGTCGGTGGT GTTGCAGCTG TTTGCGCTGA 101 TTACGCCTCT GTTTTTCCAA GTGGTGATGG ACAAGGTGCT GGTACATCGG 151 GGATTCTCTA CTTTGGATGT GGTGTCGGTG GCTTTGTTGG TGGTGTCGCT 201 GTTTGAGATT GTGTTGGGCG GTTTGCGGAC GTATCTGTTT GCACATACGA 251 CTTCACGTAT TGATGTGGAA TTGGGCGCGC GTTTGTTCCG GCATCTGCTT TCCCTGCCTT TATCCTATTT CGAGCACAGA CGAGTGGGTG ATACGGTGGC 301 351 TCGGGTGCGG GAATTGGAGC AGATTCGCAA TTTCTTGACC GGTCAGGCGC 401 TGACTTCGGT GTTGGATTTG GCGTTTTCGT TTATCTTTCT GGCGGTGATG TGGTATTACA GCTCCACTCT GACTTGGGTG GTATTGGCTT CGTTG..... 451 11 1451 1501 1551 CAACCGGACG GTGCTGATTA TCGCCCACCG TCTGTCCACT GTTAAAACGG 1601 CACACCGGAT CATTGCCATG GATAAAGGCA GGATTGTGGA AGCGGGAACA 1651 CAGCAGGAAT TGCTGGCGAA CG..AACGGA TATTACCGCT ATCTGTATGA

1701 TTTACAGAAC GGGTAG

[0354] This corresponds to the amino acid sequence <SEQ ID 26; ORF39>:

1 ... KFDFTWFIPA VIKYRRLFFE VLVVSVVLQL FALITPLFFQ VVMDKVLVHR

51 GFSTLDVVSV ALLVVSLFEI VLGGLRTYLF AHTTSRIDVE LGARLFRHLL

101 SLPLSYFEHP RVGDTVARVR ELEQIRNFLT GQALTSVLDL AFSFIFLAVM

151 WYYSSTLTWV VLASL.....

- 11

501 ICANRT VLIIAHRLST VKTAHRIIAH DKGRIVEAGT

551 QQELLANXNG YYRYLYDLQN G*

[0355] Further work revealed the complete nucleotide sequence <SEQ ID 27>:

1 ATGTCTATCG TATCCGCACC GCTCCCCGCC CTTTCCGCCC TCATCATCCT 51 CGCCCATTAC CACGGCATTG CCGCCAATCC TGCCGATATA CAGCATGAAT 101 TTTGTACTTC CGCACAGAGC GATTTAAATG AAACGCAATG GCTGTTAGCC

-continued 151 GCCAAATCTT TGGGATTGAA GGCAAAGGTA GTCCGCCAGC CTATTAAACG 201 TTTGGCTATG GCGACTTTAC CCGCATTGGT ATGGTGTGAT GACGGCAACC 251 ATTTCATTTT GGCCAAAACA GACGGTGAGG GTGAGCATGC CCAATTTTFG 301 ATACAGGATT TGGTTACGAA TAAGTCTGCG GTATTGTCTT TTGCCGAATT 351 TTCTAACAGA TATTCGGGCA AACTGATATT GGTTGCTTCC CGCGCTTCGG 401 TATTGGGCAG TTTGGCAAAG TTTGACTTTA CCTGGTTTAT TCCGGCGGTA 451 ATCAAATACC GCCGGTTGTT TTTTGAAGTA TTGGTGGTGT CGGTGGTGTT 501 GCAGCTGTTT GCGCTGATTA CGCCTCTGTT TTTCCAAGTG GTGATGGACA 551 AGGTGCTGGT ACATCGGGGA TTCTCTACTT TGGATGTGGT GTCGGTGGCT 601 TTGTTGGTGG TGTCGCTGTT TGAGATTGTG TTGGGCGGTT TGCGGACGTA 651 TCTGTTTGCA CATACGACTT CACGTATTGA TGTGGAATTG GGCGCGCGTT 701 TGTTCCGGCA TCTGCTTTCC CTGCCTTTAT CCTATTTCGA GCACAGACGA 751 GTGGGTGATA CGGTGGCTCG GGTGCGGGAA TTGGAGCAGA TTCGCAATTT 801 CTTGACCGGT CAGGCGCTGA CTTCGGTGTT GGATTTGGCG TTTTCGTTTA 951 TCTTTCTGGC GGTGATGTGG TATTACAGCT CCACTCTGAC TTGGGTGGTA 901 TTGGCTTCGT TGCCTGCCTA TGCGTTTTGG TCGGCATTTA TCAGTCCGAT 951 ACTGCGGACG CGTCTGAACG ATAAGTTCGC GCGCAATGCA GACAACCAGT 1001 CGTTTTTAGT AGAAAGCATC ACTGCGGTGG GTACGGTAAA GGCGATGGCG 1051 GTGGAGCCGC AGATGACGCA GCGTTGGGAC AATCAGTTGG CGGCTTATGT 1101 GGCTTCGGGA TTTCGGGTAA CGAAGTTGGC GGTGGTCGGC CAGCAGGGGG 1151 TGCAGCTGAT TCAGAAGCTG GTGACGGTGG CGACGTTGTG GATTGGCGCA 1201 CGGCTGGTAA TTGAGAGCAA GCTGACGGTG GGGCAGCTGA TTGCGTTTAA 1251 TATGCTCTCG GGACACGTGG CGGCGCCTGT TATCCGTTTG GCGCAGTTGT 1301 GGCAGGATTT CCAGCAGGTG GGGATTTCGG TGGCGCGTTT GGGGGATATT 1351 CTGAATGCGC CGACCGAGAA TGCGTCTTCG CATTTGGCTT TGCCCGATAT 1401 CCGGGGGGGAG ATTACGTTCG AACATGTCGA TTTCCGCTAT AAGGCGGACG 1451 GCAGGCTGAT TTTGCAGGAT TTGAACCTGC GGATTCCGGC GGGGGAAGTG 1501 CTGGGGATTG TGGGACGTTC GGGGTCGGGC AAATCCACAC TCACCAAATT 1551 GGTGCAGCGT CTGTATGTAC CGGAGCAGGG ACGGGTGTTG GTGGACGGCA 1601 ACGATTTGGC TTTGGCCGCT CCTGCCTGGC TGCGGCGGCA GGTCGGCGTG 1651 GTCTTGCAGG AGAATGTGCT GCTCAACCGC AGCATACGCG ACAATATCGC 1701 GCTGACGGAT ACGGGTATGC CGCTGGAACG CATTATCGAA GCAGCCAAAC 1751 TGGCGGGCGC ACACGAGTTT ATTATGGAGC TGCCGGAAGG CTACGGCACC 1801 GTGGTGGGCG AACAAGGGGC CGGCTTGTCG GGCGGACAGC GGCAGCGTAT 1951 TGCGATTGCC CGCGCGTTAA TCACCAATCC GCGCATTCTG ATTTTTGATG 1901 AAGCCACCAG CGCGCTGGAT TATGAAAGTG AACGAGCGAT TATGCAGAAC 1951 ATGCAGGCCA TTTGCGCCAA CCGGACGGTG CTGATTATCG CCCACCGTCT

2001 GTCCACTGTT AAAACGGCAC ACCGGATCAT TGCCATGGAT AAAGGCAGGA

2051 TTGTGGAAGC GGGAACACAG CAGGAATTGC TGGCGAAGCC GAACGGATAT

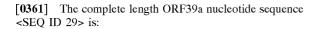
2101 TACCGCTATC TGTATGATTT ACAGAACGGG TAG

[0356] This corresponds to the amino acid sequence <SEQ ID 28; ORF39-1>:

1MSIVSAPLPA LSALIILAMY HGIAANPADI OHEFCTSAOSDLNETQWLLA51AKSLGLKAKV VRQPIKRLAMATLPALVWCDDGNHFILAKTDGEGEHAQFL101IQDLVTNKSA VLSFAEFSNRYSGKLILVASRASVLGSLAKFDFTWFIPAV151IKYRRLFFEV LVVSVVLQLFALITPLFFQVVMDKVLVHRGFSTLDVVSVA201LLVVSLFEIV LGGLRTYLFAHTTSRIDVELGARLFRHLSLPLSYFEHPA251VGDTVARVRELEQIRNFLTGQALTSVLDLAFSFIFLAVMYSSTLTWVV301LASLPAYAFW SAFISPILRTRLNDKFAPNADNQSFLVESITAVGTVKAMA351VEPQHTQRWDNQLAAYVASGFRVTKLAVGQQGVQLIQKLVTVATLWIGA401RLVIESRLTVGQLIAFNMLSGQVAAPVIRLAQLWQDFQQGISVARLGDI501LGIVGRSGSGKSTLTKLVQRLYVPEQGRVLVDGNDLALAAPAWLRQVGVG551VLOENVLLNRSIRDNIALTDTGNPLERIIEAAKLAGAHEFIMELPEGYGT651MQAICANRTVLIIAHRLSTVKTAHRIIANDKGRIVEAGTQELLAKPNGY701YRYLYDLQNG *****

[0357] Computer analysis of this amino acid sequence gave the following results:

[0358] Homology with a Predicted ORF from *N. menin-gitidis* (Strain A)


[0359] ORF39 shows 100% identity over a 165 as overlap with an ORF (ORF39a) from strain A of *N. meningitidis*:

					10	20	30
orf39.pep				KFDFT	WFIPAVIKY	RRLFFEVLVV	SVVLQL
				11111			
orf39a	AVLSF	AEFSNRYSG	LILVASRAS	VLGSLAKFDFI	WFIPAVIKY	RRLFFEVLVV	SVVLQL
	110	120	130	140	150	160	
		40	50	60	70	80	90
orf39.pep	FALIT	PLFFQVVMDF	(VLVHRGFST)	LDVVSVALLVV	SLFEIVLGG	LRTYLFAHTT	SRIDVE
		1111111111					
orf39a	FALIT	PLFFQVVMDF	VLVHRGFST	LDVVSVALLVV	SLFEIVLGG	LRTYLFAHTT	SRIDVE
	170	180	190	200	210	220	
		100	110	120	130	140	150
orf39.pep	LGARL	FRHLLSLPLS	SYFEHRRVGD'	FVARVRELEQI	RNFLTGQAL	TSVLDLAFSF	IFLAVM
orf39a	LGARL	FRHLLSLPLS	SYFEHRRVGD'	FVARVRELEQI	RNFLTGQAL	TSVLDLAFSF	IFLAVM
	230	240	250	260	270	280	

-continued							
		160	170	180	190	200	210
orf39.pep	WYYSS	FLTWVVLAS	LXXXXXXXXX	XXXXXXXXXXX	XXXXXXXXI	CANRTVLIIA	HRLSTV
orf39a	WYYSS	FLTWVVLAS	LPAYAFWSAF	ISPILRTRLN	DKFARNADNQ	SFLVESITAV	GTVKAM
	290	300	310	320	330	340	

[0360] ORF39-1 and ORF39a show 99.4%	6 identity in 710
aa overlap:	

orf39-1.pep MSIVSAPLPALSALIILAHYHGIAANPADIQHEFCTSAQSDLNETQWLLAAKSLGLKAKV
orf39-1.pep VRQPIKRLAMATLPALVWCDDGNHFILAKTDGEGEHAQFLIQDLVTNKSAVLSFAEFSNR
orf39-1.pep YSGKLILVASRASVLGSLAKFDFTWFIPAVIKYRRLFFEVLVVSVVLQLFALITPLFFQV
orf39-1.pep VMDKVLVHRGFSTLDVVSVALLVVSLFEIVLGGLRTYLFAHTTSRIDVELGARLFRHLLS
orf39-1.pep LPLSYFEHRRVGDTVARVRELEQIRNFLTGQALTSVLDLAFSFIFLAVMWYYSSTLTWVV
orf39-1.pep LASLPAYAFWSAFISPILRTRLNDKFARNADNQSFLVESITAVGTVKAMAVEPQMTQRWD
orf39-1.pep NQLAAQVASGFRVTKLAVVGQQGVQLIQKLVTVATLWIGARLVIESKLTVGQLIAFNMLS
orf39-1.pep GQVAAPVIRLAQLWQDFQQVGISVARLGDILNAPTENASSHLALPDIRGEITFEHVDFRY
orf39-1.pep KADGRLILQDLNLRIRAGEVLGIVGRSGSGKSTLTKLVQRLYVPEQGRVLVDGNDLALAA
orf39-1.pep PAWLRRQVGVVLQENVLLNRSIRDNIALTDTGMPLERIIEAAKLAGAHEFIHELPEGYGT
orf39-1.pep VVGEQGAGLSGGQRQRIAIARALITNPRILIFDEATSALDYESERAIMQNMQAICANRTV
orf39-1.pep LIIAHRLSTVKTAHRIIAMDKGRIVEAGTQQELLAKPNGYYRYLYDLQNGX

1ATGTCTATCGTATCCGCACCGCTCCCCGCCCTTTCCGCCCTCATCATCCT51CGCCATYACCACGGCATGCCGCCAATCCTGCCGATATACAGCATGAAT101TTTGTACTTCCGCACAGAGCGATTTAAATGAAACGCAATGGCTGTTAGCC151GCCAAATCTTTGGGATTGAAGGCAAAGGTAGTCCGCCAGCCTATTAAACG201TTTGGCTATGGCGACTTTACCCGCATTGGTATGGTGTGATGACGGCAACC

-continued 251 ATTTTATTTT GGCTAAAACA GACGGTGGGG GTGAGCATGC CCAATATCTA 301 ATACAGGATT TAACTACGAA TAAGTCTGCG GTATTGTCTT TTGCCGAATT 351 TTCTAACAGA TATTCGGGCA AACTGATATT GGTTGCTTCC CGCGCTTCGG 401 TATTGGGCAG TTTGGCAAAG TTTGACTTTA CCTGGTTTAT TCCGGCGGTA 451 ATCAAATACC GCCGGTTGTT TTTTGAAGTA TTGGTGGTGT CGGTGGTGTT 501 GCAGCTGTTT GCGCTGATTA CGCCTCTGTT TTTCCAAGTG GTGATGGACA 551 AGGTGCTGGT ACATCGGGGA TTCTCTATTT TGGATGTGGT GTCGGTGGCT 601 TTGTTGGTGG TGTCGCTGTT TGAGATTGTG TTGGGCGGTT TGCGGACGTA 651 TCTGTTTGCA CATACGACTT CACGTATTGA TGTGGAATTG GGCGCGCGTT 701 TGTTCCGGCA TCTGCTTTCC CTGCCTTTAT CCTATTTCGA GCACAGACGA 751 GTGGGTGATA CGGTGGCTCG GGTGCGGGAA TTGGAGCAGA TTCGCAATTT 801 CTTGACCGGT CAGGCGCTGA CTTCGGTGTT GGATTTGGCG TTTTCGTTTA 951 TCTTTCTGGC GGTGATGTGG TATTACAGCT CCACTCTGAC TTGGGTGGTA 901 TTGGCTTCGT TGCCTGCCTA TGCGTTTTGG TCGGCATTTA TCAGTCCGAT 951 ACTGCGGACG CGTCTGAACG ATAAGTTCGC GCGCAATGCA GACAACCAGT 1001 CGTTTTTAGT AGAAAGCATC ACTGCGGTGG GTACGGTAAA GGCGATGGCG 1051 GTGGAGCCGC AGATGACGCA GCGTTGGGAC AATCAGTTGG CGGCTTATGT 1101 GGCTTCGGGA TTTCGGGTAA CGAAGTTGGC GGTGGTCGGC CAGCAGGGGG 1151 TGCAGCTGAT TCAGAAGCTG GTGACGGTGG CGACGTTGTG GATTGGCGCA 1201 CGGCTGGTAA TTGAGAGCAA GCTGACGGTG GGGCAGCTGA TTGCGTTTAA 1251 TATGCTCTCG GGACAGGTGG CGGCGCCTGT TATCCGTTTG GCGCAGTTGT 1301 GGCAGGATTT CCAGCAGGTG GGGATTTCGG TGGCGCGTTT CGGGGATATT 1351 CTGAATGCGC CGACCGAGAA TGCGTCTTCG CATTTGGCTT TGCCCGATAT 1401 CCGGGGGGGAG ATTACGTTCG AACATGTCGA TTTCCGCTAT AAGGCGGACG 1451 GCAGGCTGAT TTTGCAGGAT TTGAACCTGC GGATTCGGGC GGGGGAAGTG 1501 CTGGGGATTG TGGGACGTTC GGGGTCGGGC AAATCCACAC TCACCAAATT 1551 GGTGCAGCGT CTGTATGTAC CGGCGCAGGG ACGGGTGTTG GTGGACGGCA 1601 ACGATTTGGC TTTTGGCCGCT CCTGCTTGGC TGCGGCGGCA GGTCGGCGTG 1651 GTCTTGCAGG AGAATGTGCT GCTCAACCGC AGCATACGCG ACAATATCGC 1701 GCTGACGGAT ACGGGTATGC CGCTGGAACG CATTATCGAA GCAGCCAAAC 1751 TGGCGGGCGC ACACGAGTTT ATTATGGAGC TGCCGGAAGG CTACGGCACC 1801 GTGGTGGGCG AACAAGGGGC CGGCTTGTCG GGCGGACAGC GGCAGCGTAT 1851 TGCGATTGCC CGCGCGTTAA TCACCAATCC GCGCATTCTG ATTTTTGATG 1901 AAGCCACCAG CGCGCTGGAT TATGAAAGTG AACGAGCGAT TATGCAGAAC 1951 ATGCAGGCCA TTTGCGCCAA CCGGACGGTG CTGATTATCG CCCACCGTCT 2001 GTCCACTGTT AAAACGGCAC ACCGGATCAT TGCCATGGAT AAAGGCAGGA 2051 TTGTGGAAGC GGGAACACAG CAGGAATTGC TGGCGAAGCC GAACGGATAT 2101 TACCGCTATC TGTATGATTT ACAGAACGGG TAG

[0362] This encodes a protein having amino acid sequence <SEQ ID 30>:

1 MSIVSAPLPA LSALIILAHY HGIAANPADI QHEFCTSAQS DLNETQWLLA

[0363] ORF39a is homologous to a cytolysin from *A*. *pleuropneumoniae*:

```
sp|P26760|RT1B_ACTPL RTX-I TOXIN DETERMINANT B (TOXIN RTX-I SECRETION ATP-
BINDING PROTEIN) (APX-IB) (HLY-IB) (CYTOLYSIN IB) (CLY-IB)
>gi|97137|pir||043599 cytolysin IB - Actinobacillus pleuropneumoniae
(serotype 9) >gi|36944 (X6112) ClyI-B protein [Actinobacillus
pleuropneumoniae] Length = 707 Score = 931 bits (2379), Expect =0.0
Identities = 472/690 (68%), Positives = 540/690 (77%),
Gaps = 3/690 (0%)
Query: 20 YHGIAANPADIQHEFCTSAQSDLNETQWXXXXXXXXXXVVRQPIKRLAMATLPALVWC 79
           YH IA NP +++H+F
                            + L+ T W
                                                    V++ I RLA LPALVW
sbjct: 20 YHNIAVNPEELKHKFDLEGKG-LDLTAWLLAAKSLELKAKQVKKAIDRLAFIALPALVWR 78
Query: 80 DDGNHFILAKTDGGGEHAQYLIQDLTTNKSAVLSFAEFSNRYSGKLILVASRASVLGSLA 139
           +DG HFIL K D E +YLI DL T+ +L AEF + Y GKLILVASRAS++G LA
sbjct: 79 EDGKHFILTKIDN--EAKKYLIFDLETHNPRILEQAEFESLYQGKLILVASRASIVGKLA 136
Query: 140 KFDFTWFIPAVIKYRRXXXXXXXXXXXXXXXXITPLFFQVVMDKVLVHRGFXXXXXXXX 199
                                             ITPLFFQVVMDKVLVHRGF
           KFDFTWFIPAVIKYR+
Sbjct: 137 KFDFTWFIPAVIKYRKIFIETLIVSIFLQIFALITPLFFQVVMDKVLVHRGFSTLNVITV 196
Query: 200 XXXXXXFEIVLGGLRTYLFAHTTSRIDVELGARLFRHLLSLPLSYFEHRRVGDTVARVR 259
                  FEIVL GLRTY+FAH+TSRIDVELGARLFRHLL+LP+SYFE+RRVGDTVARVR
Sbjct: 197 ALAIVVLFEIVLNGLRTYIFAHSTSRIDVELGARLFRHLLALPISYFENRRVGDTVARVR 256
Ouerv: 260 ELEOIRNFLTGOALTSVLDLAFSFIFLAVMWYYSSTLTWVVLASLPAYAFWSAFISPILR 319
           EL+QIRNFLTGQALTSVLDL FSFIF AVMWYYS LT V+L SLP Y WS FISPILR
Sbjct: 257 ELDQIRNFLTGQALTSVLDIMFSFIFFAVMWYYSPKLTLVILGSLPFYNGWSIFISPILR 316
Query: 320 TRLNDKFARNADNQSFLVESITAVGTVKAMAVEPQNTQRWDNQLAAYVASGFRVTKLAVV 379
            RL++KFAR ADNQSFLVES+TA+ T+KA+AV PQMT WD QLA+YV++GFRVT LA -
Sbjct: 317 RRLDEKFARGADNQSFLVESVTAINTIKALAVTPQMTNTWDKQLASYVSAGFRVTTLATI 376
Query: 380 GQQGVQLIQKLVTVATLWIGARLVIESKLTVGOLIAFNNLSGQVAAPVIRLAQLWQDFQQ 439
           GQQGVQ IQK+V V TLW+GA LVI L++GQLIAFNNLSGQV APVIRLAQLWQDFQQ
sbjct: 377 GQQGVQFIQKVVNVITLWLGAMLVISGDLSIGQLIAFNNLSGQVIAPVIRLAQLWQDFQQ 436
Query: 440 VGISVAPLGDILNAPTENASSHLALPDIRGEITFEHVDFRYKADGRLILQDLNLRIRAGE 499
```

Query: 440 VGISVAPLGDILNAPTENASSHLALPDIRGEITFEHVDFRYKADGRLILQDLNLRIRAGE 499 VGISV RLGD+LN+PTE+ LALP+I+G+ITF ++ FRYX D +IL D+NL I+ GE

		-continued	
Sbjct:	437	VGISVTRLGDVLNSPTESYQGKLALPEIKGDITFRNIRFRYXPDAPVILNDVNLSIQQGE	496
Quer y:	500	VLGIVGRSGSGKSTLTKLVQRLYVPAOGRVLVDGNDLALAAPAWLRRQVGVVLQENVLLN V+GIVGRSGSGKSTLTKL+QR Y+P G+VL+DG+DLALA P WLRRQVGVVLQ+NVLLN	559
Chiat.	107	VIGIVGRSGSGRSTLIKLIORFYIPENGOVLIDGHDLALADPNWLRRQVGVVLQHNVLLN	556
abjet:	497	A 101A0426264211141164411155M60AF1DGUDTWTWDEM#TWK0AGAAAF0DMAFFW	220
Quer y:	560	RSIRDNIALTDTGMPLERIIEAAKLAGAIIEFINELPEGYGTVVGEQGNLSGGQRQRIAI	619
		RSIRDNIAL D GMP+E+I+ AAKLAGAHEFI EL EGY T+VGEQGAGLSGGQRQRIAI	
Sbjct:	557	${\tt RSIRDNIALADPGMPMEKIV} HAAKLAGAHEFISELREGYNTIVGEOGAGLSGGQRQRIAI$	616
0	c		670
Query:	620	ARALITNPRILIFDEATSALDYESERAIMQNMQAICANRTVLIIAHRLSTVKTAHRIIAM ARAL+ NP+ILIFDEATSALDYESE IM+NM IC RTV+IIAHRLSTVK A RII M	6/9
ah dari s	617		676
Sbjct:	617	ARALVNNPKILIFDEATSALDYESEHIIMRNMHQICKGRTVIIIAHRLSTVKNADRIIVM	676
Ouerv:	680	DKGRIVEAGTQQELLAKPNGYYRYLYDLQN 709	
~1 -		+KG+IVE G +ELLA PNG Y YL+ LQ+	
Sbjct:	677	EKGQIVEQGKHKELLADPNGLYHYLHQLQS 706	

[0364] Homology with the HlyB Leucotoxin Secretion ATP-Binding Protein of *Haemophilus actinomycetemcomitans* (Accession Number X53955)

[0365] ORF39 and HlyB protein show 71% and 69% amino acid identity in 167 and 55 overlap at the N- and C-terminal regions, respectively:

```
Orf39
        KFDFTWFTPAVTKYR+
                                        ITPLFFOVVMDKVLVHRGF
     137 KFDFTWFIPAVIKYRKIFIETLIVSIFLQIFALITPLFFQVVMDKVLVHRGFSTLNVITV 196
HlyB
      61 XXXXXXXFEIVLGGLRTYLFAHTTSRIDVELGARLFRHLLSLPLSYFEHRRVGDTVARVR 120
Orf39
                FEI+LGGLRTY+FAH+TSRIDVELGARLFMLL+LP+SYFE RRVGDTVARVR
HlyB 197 ALAIVVLFEIILGGLRTYVFAHSTSRIDVELGARLFRHLLALPISYFEARRVGDTVARVR 256
Orf39 121 ELEQIRNFLTGQALTSVLDLAFSFIFLAVMWYYSSTLTWVVLASLIC 167
         EL+QIRNFLTGQALTS+LDL FSFIF AVMWYYS LT VVL SL C
     257 ELDQIRNFLTGQALTSILDLLFSFIFFAVMWYYSPKLTLVVLGSLPC 303
HlyB
                                   11
Orf39 166 ICANRTVLIIAHRLSTVKTAHRIIAMDKGRIVEAGTQQELLANXNGYYRYLYDLQ 220
   IC
NRTV-
LII-
AHRL-
STVK A
RII
MDKG
I + E
G QELL
+ G Y
YL+ LQ
Hlyb 651 ICQNRTVLIIAHRLSTVKNADRIIVMDKGEIIEQGKHQELLKDEKGLYSYLHQLQ 705
```

[0366] Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 7

[0367] The following partial DNA sequence was identified in *N. meningitidis* <SEQ ID 31>

1 ATGAAATACT TGATCCGCAC CGCCTTACTC GCAGTCGCAG CCGCCGGCAT

51 CTACGCCTGC CAACCGCAAT CCGAAGCCGC AGTGCAAGTC AAGGCTGAAA

-continued 101 ACAGCCTGAC CGCTATGCGC TTAGCCGTCG CCGACAAACA GGCAGAGATT

151 GACGGGTTGA ACGCCCAAAk sGACGCCGAA ATCAGA...

[0368] This corresponds to the amino acid sequence SEQ ID 32; ORF52>:

1 MKYLIRTALL AVAAAGIYAC OPOSEAAVQV KAZNSLTANR LAVADKQAEI

51 DGLNAQXDAE IR..

[0369] Further work revealed the complete nucleotide sequence <SEQ ID 33>:

1 ATGAAATACT TGATCCGCAC CGCCTTACTC GCAGTCGCAG CCGCCGGCAT

51 CTACGCCTGC CAACCGCAAT CCGAAGCCGC AGTGCAAGTC AAGGCTGAAA

101 ACAGCCTGAC CGCTATGCGC TTAGCCGTCG CCGACAAACA GGCAGAGATT

151 GACGGGTTGA ACGCCCAAAT CGACGCCGAA ATCAGACAAC GCGAAGCCGA

201 AGAATTGAAA GACTACCGAT GGATACACGG CGACGCGGAA GTGCCGGAGC

251 TGGAAAAATG A

[0370] This corresponds to the amino acid sequence <SEQ ID 34; ORF52-1>:

1 <u>MKYLIRTALL AVAAAGIYA</u>C QPQSEAAVQV KAENSLTAMR LAVADKQAEI

51 DGLNAQIDAE IRQREAEELK DThWIHGDAE VPELEK

[0371] Computer analysis of this amino acid sequence predicts a prokaryotic membrane lipoprotein lipid attachment site (underlined).

[0372] ORF52-1 (7 kDa) was cloned in the pGex vectors and expressed in *E. coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 4A shows the results of affinity purification of the GST-fusion. FIG. 4B shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF52-1. **[0373]** Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 8

[0374] The following DNA sequence was identified in *N. meningitidis* <SEQ ID 35>

1 ATGGTTATCG GAATATTACT CGCATCAAGC AAGCATGCTC TTGTCATTAC

51 TCTATTGTTA AATCCCGTCT TCCATGCATC CAGTTGCGTA TCGCGTTSGG

101 CAATACGGAA TAAAATCTGC TGTTCTGCTT TGGCTAAATT TGCCAAATTG

151 TTTATTGTTT CTTTAGGAGC AGCTTGCTTA GCCGCCTTCG CTTTCGACAA

201 CGCCCCACA GGCGCTTCCC AAGCGTTGCC TTCCGTTACC GCACCCGTGG

251 CGATTCCCGC GCCCGCTTCG GCAGCCTGA

[0375] This corresponds to the amino acid sequence <SEQ ID 36; ORF56>:

1 MVIGILLASS KHALVITLLL NPVFHASSCV SRXAIRNKIC CSALAKFAKL

51 <u>FIVSLG</u>AACL AAFAFDNAPT GASQALPTVT APVAIPAPAS AA*

[0376] Further work revealed the complete nucleotide sequence <SEQ ID 37>:

1 ATGGCTTGTA CAGGTTTGAT GGTTTTTCCG TTAATGGTYA TCGGAATATT

51 ACTTGCATCA AGCAAGCCTG CTCCTTTCCT TACTCTATTG TTAAATCCCG

101 TCTTCCATGC ATCCAGTTGC GTATCGCGTT GGGCAATACG GAATAAAATC

151 TGCTGTTCTG CTTTGGCTAA ATTTGCCAAA TTGTTTATTG TTTCTTTAGG

201 AGCAGCTTGC TTAGCCGCCT TCGCTTTCGA CAACGCCCCC ACAGGCGCTT

251 CCCAAGCGTT GCCTACCGTT ACCGCACCCG TGGCGATTCC CGCGCCCGCT

301 TCGGCAGCCT GA

[0377] This corresponds to the amino acid sequence <SEQ ID 38; ORF56-1>:

- 1 MACTGLMVFP LNVZGILLAS SKPAPFLTLL LNPVFHASSC VSRWAIRNKI
- 51 CCSALAKFAK LFIVSLGAAC LAAFAFDNAP TGASQALPTV TAPVAIPAPA
- 101 SAA*

[0378] Computer analysis of this amino acid sequence predicts a leader peptide (underlined) and suggests that ORF56 might be a membrane or periplasmic protein.

[0379] Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 9

[0380] The following partial DNA sequence was identified in *N. meningitidis* <SEQ ID 39>

1 ATGTTCAGTA TTTTAAATGT GTTTCTTCAT TGTATTCTGG CTTGTGTAGT

51 CTCTGGTGAG ACGCCTACTA TATTTGGTAT CCTTGCTCTT TTTTACTTAT

101 TGTATCTTTC TTATCTTGCT GTTTTTAAGA TTTTCTTTC TTTTTCTTA

151 GACAGAGTTT CACTCCGGTC TCCCAGGCTG GAGTGCAAAT GGCATGACCC

201 TTTGGCTCAC TGGCTCACGG CCACTTCTGC TATTCTGCCG CCTCAGCCTC

251 CAGGG...

[0381] This corresponds to the amino acid sequence <SEQ ID 40; ORF63>:

1 MFSILNVFLR CILACVVSGE TPTIFGILAL FYLLYLSYLA VFKIFFSFFL

51 DRVSLRSPRL ECKWNDPLAH WLTATSAILP PQPPG...

[0382] Computer analysis of this amino acid sequence predicts a transmembrane region.

[0383] Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 10

[0384] The following partial DNA sequence was identified in *N. meningitidis* <SEQ ID 41>

1...GTGCGGACGT GGTTGGTTTT TTGGTTGCAG CGTTTGAAAT ACCCGTTGTT

51 GCTTTGGATT GCGGATATGT TGCTGTACCG GTTGTTGGGC GGCGCGGAAA

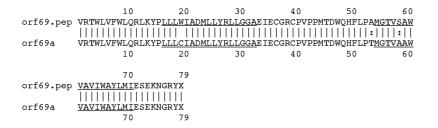
101 TCGAATGCGG CCGTTGCCCT GTGCCGCCGA TGACGGATTG GCAGCATTTT

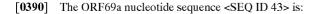
151 TTGCCGGCGA TGGGAACGGT GTCGGCTTGG GTGGCGGTGA TTTGGGCATA

201 CCTGATGATT GAAAGTGAAA AAAACGGAAG ATATTGA

[0385] This corresponds to the amino acid sequence <SEQ ID 42; ORF69>:

1 ..VRTWLVFWLQ RLKYPLLLWI ADNLLYRLLG GAE1ECGRCP VPPMTDWQHF


51 LPANGTVSAW VAVIWAYLMI ESEKNGRY*


[0386] Computer analysis of this amino acid sequence predicts a transmembrane region.

[0387] A corresponding ORF from strain A of *N. menin-gitidis* was also identified:

[0388] Homology with a Predicted ORF from *N. menin-gitidis* (Strain A)

[0389] ORF69 shows 96.2% identity over a 78 as overlap with an ORF (ORF69a) from strain A of *N. meningitidis*:

1 GTGCGGACGT GGTTGGTTTT TTGGTTGCAG CGTTTGAAAT ACCCGTTGTT

51 GCTTTGTATT GCGGATATGC TGCTGTACCG GTTGTTGGGC GGCGCGGAAA

101 TCGAATGCGG CCGTTGCCCT GTACCGCCGA TGACGGATTG GCAGCATTTT

151 TTGCCGACGA TGGGAACGGT GGCGGCTTGG GTGGCGGTGA TTTGGGCATA

201 CCTGATGATT GAAAGTGAAA AAAACGGAAG ATATTGA

[0391] This encodes a protein having amino acid sequence <SEQ ID 44>:

1 VRTWLVFWLQ RLKYPLLLCI ADMLLYRLLG GAEIECGRCP VPPNTDWQHF

51 LPTMGTVAAW VAVIWAYLMI ESEKNGRY*

[0392] Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 11

[0393] The following DNA sequence was identified in *N. meningitidis* <SEQ ID 45>

1ATGTTTCAAAATTTTGATTGGCGTGTTCCTGCTTGCCGTCCTCCCCGT51GCTGCCCTCATTACCGTCCGCACGTGCGCGCGCTATACGGCGCGCT101ACTGGGGAGACAACACTGCGAACAATACGGCAGGCTGACACTGAACCCC151CTGCCCCATATCGATTGGTCGGCACAATCACTGTACCGTGCTTACTTT201GATGTTCACGCCCTTCCTGTTCGGCTGGCGCGTCCGATTCCTATCGATT251CGCGCAACTTCCGCAACCCGCGCTGCCTGGCGTGCGGTGCTCACGGTG301GGCCCGCTGTCGAATCTACGGATGCGTGTGTGGTTTGGT351GCTGACTCGTATGTCGACGGGCGTATCAGATGCCGTT401CAAACTACGGTATTCTGATCAATGCGATTCATGCACACT451CCCATCCTGCCTTGGGACGGCGGCATTTCATGCACACT501GAAATATCGCAAGCGTCCSGGGTTTGGGTCCTTAT601aTGCGGMTGCGTGATTGCTTTGTGCAGATGTGCTTCA651GACGGCATAAGACGATAAGGCGATAAGTGCGTTAA

[0394] This corresponds to the amino acid sequence <SEQ ID 46; ORF77>:

1 <u>MFONFDLGVF LLAVLPVLPS ITVSNVA</u>RGY TARYWGDNTA EQYGRLTLNP 51 LP<u>HIDLVGTI IVPLLTLMF</u>T PFLFGWPRPI PIDSRNFRNP RLAWRCVAAS 101 GP<u>LSNLAMAV LWGVVLVLT</u>P YVGGAYQMPL A<u>QMANYGILI NAILFPLNII</u> 151 PILPWDGGIF IDTFLSAKYS QAFRKIEPY<u>G TWIILLLMLT XVLGAF</u>IAPI 201 XRXRDCXCAD VRLTGFQTA*

[0395] Further work revealed the complete nucleotide sequence <SEQ ID 47>:

1 ATGTTTCAAA ATTTTGATTT GGGCGTGTTT CTGCTTGCCG TCCTGCCCGT

51 GCTGCTCTCC ATTACCGTCA GGGAGGTGGC GCGCGGCTAT ACGGCGCGCGC

101 ACTGGGGAGA CAACACTGCC GAACAATACG GCAGGCTGAC ACTGAACCCC

151CTGCCCCATA TCGATTGGTCGGCACAATCATCGTACCGCTGCTTACTTT201GATGTTCACGCCCTTCCTGTCGGCTGGCGCGTCCGATCCTATCGATT251GGCCGCAGTCGGAACCTGGATGCCGTGTGGCGTGGCGTGGCTGGCGTG301GGCCGCCTGTCGAATCTAGCGATGCCGTTCTGTGGGGCGGGCTTTGGT351GCTGACTCCGTATGTCGGCGGGGCGTATCAGATGCCGTTGCAACATCAGG401CAAACTACGGTATTCTGATCAATGCGATCTGTTCGCGCTCAACATCAGC451CCCATCCTGCCTTGGGACGGCGGCATTTCATCGAACCTTCCTGTCGGC501GAAATATCGCAAGCTGACCGGGGTTTGGGTGCGTTAATGCACCGATT601GTGCGCTGGTGATTGCGTTTGTGCAGAGGTCCTCTGA

[0396] This corresponds to the amino acid sequence <SEQ ID 48; ORF77-1>:

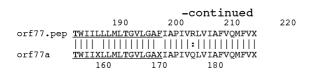
1 MFONFDLGVF LLAVLPVLLS ITVREVARGY TARYWGDNTA EQYGRLTLNP

51 <u>LPHIDLVGTI IV</u>PLLTLMFT PFLFGWARPI PIDSRNFRNP RLAWRCVAAS

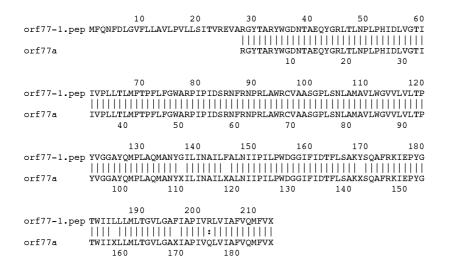
101 GPLSNLAMAV LWGVVLVLTP YVGGAYQMPL AQMANYGILI NAILFALNII

151 <u>PIL</u>PWDGGIF IDTFLSAXYS QAYRRIEPY<u>G TWIILLLNLT GVLGAF</u>IAPI

201 VRLVIAFVQH FV*


[0397] Computer analysis of this amino acid sequence reveals a putative leader sequence and several transmembrane domains.

[0398] A corresponding ORF from strain A of *N. menin-gitidis* was also identified:


[0399] Homology with a Predicted ORF from *N. menin-gitidis* (Strain A)

[0400] ORF77 shows 96.5% identity over a 173 as overlap with an ORF (ORF77a) from strain A of *N. meningitidis:*

	10	20	30	40	50	60
ort77.pep	MFQNFDLGVFLI	AVLPVLPSIT	SHVARGYTAR	YWGDNTAEQ	YGR <u>LTLNPLPH</u>	IDLVGTI
orf77a			RGYTAR	WGDNTAEQ	YGR <u>LTLNPLPH</u>	IDLVGTI
				10	20	30
	70	80	90	100	110	120
orf77.pep	<u>IV</u> PLLTLMFTPF	LFGWARPIPII	OSRNFRNPRLA	WRCVAASGPI	LSN <u>LAMAVLWG</u>	VVLVLTP
orf77a	<u>IV</u> PLLTLMFTPF	LFGWARPIPI	OSRNFRNPRLAN	WRCVAASGPI	LSN <u>LAMAVLWG</u>	VVLVLTP
	40	50	60	70	80	90
	130	140	150	160	170	180
orf77.pep	<u>YV</u> GGAYQMPLAQ	MANYGILINA	ILFALNIIPIL	WDGGIFID	FFLSAKYSQAF	RKIEPY <u>G</u>
orf77a	<u>YV</u> GGAYQMPLAQ	MANYXILINA	ILXALNIIPIL	WDGGIFID	FFLSAKXSQAF	RKIEPY <u>G</u>
	100	110	120	130	140	150

[0401] ORF77-1 and ORF77a show 96.8% identity in 185 aa overlap:

[0402] A partial ORF77a nucleotide sequence <SEQ ID 49> was identified:

1..CGCGGCTATA CAGCGCGCTA CTGGGGTGAC AACACTGCCG AACAATACGG 51 CAGGCTGACA CTGAACCCCC TGCCCCATAT CGATTTGGTC GGCACAATCA 101 TCGTACCGCT GCTTACTTTG ATGTTTACGC CCTTCCTGTT CGGCTGGGCG CGTCCGATTC CTATCGATTC GCGCAACTTC CGCAACCCGC GCCTTGCCTG 151 201 GCGTTGCGTT GCCGCGTCCG GCCCGCTGTC GAATCTGGCG ATGGCTGTTC 251 TGTGGGGCGT GGTTTTGGTG CTGACTCCGT ATGTCGGTGG GGCGTATCAG ATGCCGTTGG CNCAAATGGC AAACTACNNN ATTCTGATCA ATGCGATTCT 301 GTNCGCGCTC AACATCATCC CCATCCTGCC TTGGGACGGC GGCATTTTCA 351 401 TCGACACCTT CCTGTCGGCN AAATANTCGC AAGCGTTCCG CAAAATCGAA 451 CCTTATGGGA CGTGGATTAT CCNGCTGCTT ATGCTGACCG GGGTTTTGGG 501 TGCGTNTATT GCACCGATTG TGCAGCTGGT GATTGCGTTT GTGCAGATGT 551 TCGTCTGA

[0403] This encodes a protein having amino acid sequence <SEQ ID 50>:

1 ...RGYTARYWGD NTAEQYGR<u>LT LNPLPHIDLV GTIIV</u>PLLTL MFTPFLFGWA

51 RPIPIDSRNF RNPRLAWRCV AASGFLSN<u>LA MAVLWGVVLV LTPYV</u>GGAYQ

101 MPLAQNANYX ILINAILXAL NIIPILPWDG GIFIDTFLSA KXSQAFRKIE

151 PY<u>GTWIIXLL MLTGVLGAX</u>I APIVQLVIAF VQNFV*

[0404] Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 12

[0405] The following partial DNA sequence was identified in *N. meningitidis* SEQ ID 51>

1 ATGAACCTGA TTTCACGTTA CATCATCCGT CAAATGGCGG TTATGGCGGT

51TTACGCGCTCCTTGCCTTCCTCGCTTTGTACAGCTTTTTGAAATCCTGT101ACGAAACCGGCAACCTCGGCAAAGGCAGTTACGGCATATGGGAAATGCTG151GGCTACAACGCCCTCAAAAATGCCCGCCCGCGCCTACGAACTGATTCCCCT201CGCCGTCCTTATCGGCGGACTGGTCTCCCTCAGCCAGCCTGCCGCCGGCA251GCGAACTGACCGTCATCAAAGCCAGCGGCATGAGCACCAAAAAGCTGCTG301TTGATTCTGTCGCAGTCGGTTTTATTTTGCTATTGCCACCGTCGCGCT351CGGCGAATGGGTTGCGCCCACACTGAGCCAAAAAGCCGAAAACATCAAAG401CCGCCGCCATCAACGGCAAAATCAACACCGGCAATACCGGCCTTTGGCTG451AAAGAAAAAACAGCGTGATCAATGTGCGCGAAATGTTGCCCGACCAT.

[0406] This corresponds to the amino acid sequence SEQ ID 52; ORF112>:

- 1 HNLISRYIIR QMAVMAVYAL LAFLALYSFF EILYETGNLG KGSYGIWEML
- 51 GYTALIQPAR AYE<u>LIPLAVL IGGLVSLSOL</u> AAGSELTVIK ASGNSTKK<u>LL</u>
- 101 <u>LILSOFGFIF AIATV</u>PLGEW VAPTLSQKAE NIKAAAINGK ISTGNTGLWL
- 151 KEKNSVINVR EHLPDH...

[0407] Further work revealed further partial nucleotide sequence <SEQ ID 53>:

ATGAACCTGATTTCACGTTACATCATCCGTCAAATGGCGGTTATGGCGGT51TTACGCGCCCCTTGCCTTCCTCGCTTTGTACAGCTTTTTGAAATCCTGT101ACGAAACCGGCAACCTCGGCAAAGGCAGTTACGGCATATGGGAAATGCTG151GGCTACACCGCCCTCAAAAATGCCCGCCCGCGCCTACGAACTGATTCCCCT201CGCCGTCCTTATCGGCGGCATGGTCTCCCTCAGCCAGCTAGCCGCCGCCA251GCGAACTGACCGTCATCAAAGCCAGCGGCATGAGCACCAAAAAGCTGCTG301TTGATTCTGTCGCAGTCCGCACTGAGCCAAAAAGCCGAAAACATCAAAG401CCGCCGCCATCAACGGCAAAATCAGCACCGGCAATACCGGCCTTGCTCTG

451 AAAGAAAAA ACAGCTTAAT CAATGTGCCC GAAATGTTGC CCGACCATAC
501 GCTTTTGGCC ATCAAAATT GGGCGCGCAA CGATAAAAC GAATGGCGAG
551 AGGCAGTGGA AGCCGATTCC GCCGTTTGA ACAGCGACGG CAGTGGCAG
601 TTGAAAAACA TCCGCCGCAG CACGCTTGCC GAAGACAAAG TCGAGGTCTC
651 TATTGCGGCT GAAGAAACT GGCCGATTC CGTCAAACC ACCGCAGAG
701 ACGTATTGCT CGTCAAACC GACCAAATGT CCGTCGGCGA ACTGACCACC
751 TACATCCGCC ACCTCCAAAA CAACAGCCAA AACACCCGAA TCTACGCCAG
601 CGCATGGTGG CGCAAATGG TTTACCCCGC CGCAGCCTGG CAATAGGGCG
851 TCGTCGCCTT TGCCTTTACC CCGCAAACCA CCCGCCACGG AATAGGGCG
901 TTAAAACTC TCGGCGGCAT CTGTSTCGGA TTGCTGTCC ACCTGCCGG
951 ACGGCTCTTT GGGTTTACCA GCCAACTGG...

[0408] This corresponds to the amino acid sequence <SEQ ID 54; ORF112-1>:

1 MNLISRYIIR QMAVMAVYAL LAFLALYSFF EILYETGNLG KGSYGIWEHL

51 GYTALKMPAR AYELIPLAVL IGGLVSLSQL AAGSELTVIK ASGMSTKKLL

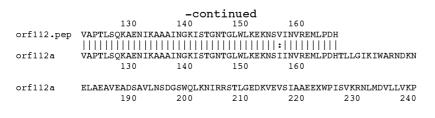
101 <u>LILSOFGFIF AIATV</u>ALGEW VAPTLSQKAE NIKAAAINGK ISTGNTGLWL

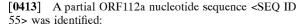
151 KEKNSXINVR EHLPDHTLLG IKIWARNDKN ELAEAVEADS AVLNSDGSWQ

201 LKNIRRSTLG EDKVEVSIAA EENWPISVKR NLTDVLLVKP DQMSVGELTT

251 YIRHLONNSQ NTRIYAIAWW RKLVYPAAAW VMALVAFAFT PQTTRHGNMG

301 <u>LKLFGGICXG LLFHL</u>AGRLF GFTSQL...


[0409] Computer analysis of this amino acid sequence predicts two transmembrane domains.


[0410] A corresponding ORF from strain A of *N. menin-gitidis* was also identified:

[0411] Homology with a Predicted ORF from *N. meningitidis* (Strain A)

[0412] ORF112 shows 96.4% identity over a 166 aa overlap with an ORF (ORF112a) from strain A of N. *meningitidis*:

	10	20	30	40	50	60
orf112.pep	MNLISRYIIRQMAVM	AVYALLAFL	ALYSFFEILY	ETGNLGKGSY	GIWEMLGYTA	LKMPAR
orf112a	MNLISRYIIRQMAVM	AVYALLAFL	ALYSFFEILY	ETGNLGKGSY	GIWEMXGYTA	LKMXAR
	10	20	30	40	50	60
	70	80	90	100	110	120
orf112.pep	AYELIPLAVLIGGLV	SLSQLAAGS	ELTVIKASGM	STKKLLLILS	QFGFIFAIAT	VALGEW
	:	$[\ []]] []] []]$:			
orf112a	AYELMPLAVLIGGLV	SXSQLAAGS	ELTVIKASGM	SXKKLLLILS	QFGFIFAIAT	VALGEW
	70	80	90	100	110	120

1 ATGAACCTGA TTTCACGTTA CATCATCCGT CAAATGGCGG TTATGGCGGT 51 TTACGCGCTC CTTGCCTTCC TCGCTTTGTA CAGCTTTTTT GAAATCCTGT 101 ACGAAACCGG CAACCTCGGC AAAGGCAGTT ACGGCATATG GGAAATGNTG 151 GGNTACACCG CCCTCAAAAT GNCCGCCCGC GCCTACGAAC TGATGCCCCT 201 CGCCGTCCTT ATCGGCGGAC TGGTCTCTNT CAGCCAGCTT GCCGCCGGCA 251 GCGAACTGAN CGTCATCAAA GCCAGCGGCA TGAGCACCAA AAAGCTGCTG 301 TTGATTCTGT CGCAGTTCGG TTTTATTTTT GCTATTGCCA CCGTCGCGCT 351 CGGCGAATGG GTTGCGCCCA CACTGAGCCA AAAAGCCGAA AACATCAAAG 401 CCGCGGCCAT CAACGGCAAA ATCAGTACCG GCAATACCGG CCTTTGGCTG 451 AAAGAAAAAA ACAGCATTAT CAATGTGCGC GAAATGTTGC CCGACCATAC 501 CCTGCTGGGC ATTAAAATCT GGGCCCGCAA CGATAAAAAC GAACTGGCAG 551 AGGCAGTGGA AGCCGATTCC GCCGTTTTGA ACAGCGACGG CAGTTGGCAG 601 TTGAAAAACA TCCGCCGCAG CACGCTTGGC GAAGACAAAG TCGAGGTCTC 651 TATTGCGGCT GAAGAAAANT GGCCGATTTC CGTCAAACGC AACCTGATGG 701 ACGTATTGCT CGTCAAACCC GACCAAATGT CCGTCGGCGA ACTGACCACC 751 TACATCCGCC ACCTCCAAAN NNACAGCCAA AACACCCGAA TCTACGCCAT 801 CGCATGGTGG CGCAAATTGG TTTACCCCGC CGCAGCCTGG GTGATGGCGC 851 TCGTCGCCTT TGCCTTTACC CCGCAAACCA CCCGCCACGG CAATATGGGC 901 TTAAAANTCT TCGGCGGCAT CTGTCTCGGP TTGCTGTTCC ACCTTGCCGG 951 NCGGCTCTTC NGGTTTACCA GCCAACTCTA CGGCATCCCG CCCTTCCTCG 1001 NCGGCGCACT ACCTACCATA GCCTTCGCCT TGCTCGCCGT TTGGCTGATA 1051 CGCAAACAGG AAAAACGCTA A

[0414] This encodes a protein having amino acid sequence <SEQ ID 56>:

 1
 MNLISRYIIR OMAVMAVYAL LAFLALYSFF EILYETGNLG KGSYGIWEMK

 51
 GYTALKMXAR AYELMPLAVL IGGLVSXSOL
 AAGSELXVIX
 ASGNSTKKLL

 101
 LILSOFGFIF AIATVALGEV
 VAPTLSQKAE
 NIKAAAINGK
 ISTGNTGLWL

 151
 KEKNSIINVR
 EMLPDHTLLG
 IKIWAIWDKN
 ELAEAVFADS
 AVLNSDGSWQ

 201
 LKNIRRSTLG
 EDKVEVSIAA
 EEXWPISVKR
 NLMDVLLVKP
 DQMSVGELTT

 251
 YIRHLQXXSQ
 NTRIYAIAWW
 RKLVYPAAAW
 VMALVAFAFT
 PQTTRHGNMG

301 <u>LKXFGGICLG LLFHL</u>AGRLF XFTSQLYGIP PFLXGALPTI AFALLAVWLI

351 RKQEKR*

[0415] ORF112a and ORF112-1 show 96.3% identity in 326 aa overlap:

orf112a.pep	MNLISRYIIRQMAVMAVYALLAFLALYSFFEILYETGNLGKGSYGIWEMXGYTALKMXAR
orf112-1	MNLISRYIIRQMAVMAVYALLAFLALYSFFEILYETGNLGKGSYGIWEMLGYTALKMXAR
orf112a.pep	AYEIIPLAVLIGGLVSXSQLAAGSELXVIKASGHSTKKLLLILSQFGFIFAIATVALGEW
orf112-1	AYEIIPLAVLIGGLVSLSQLAAGSELTVIKASGHSTKKLLLILSQFGFIFAIATVALGEW
orf112a.pep	VAPTLSQKAENIKAAAINGKISTGNTGLWLKEKNSIINVREMLPDHTLLGIKIWARNDKN
orf112-1	VAPTLSQKAENIKAAAINGKISTGNTGLWLKEKNSXINVREMLPDHTLLGIKIWARNDKN
orf112a.pep	ELAEAVEADSAVLNSDGSWQLKNIRRSTLGEDKVEVSIAAEEXWPISVKRNLMDVLLVKP
orf112-1	ELAEAVEADSAVLNSDGSWQLKNIRRSTLGEDKVEVSIAAEENWPISVKRNLMDVLLVKP
orf112a.pep	DQMSVGELTTYIRHLQXXSQNTRIYAIAWWRKLVYPAAAWVMALVAFAFTPQTTRHGNMG
orf112-1	DQMSVGELTTYIRHLQXXSQNTRIYAIAWWRKLVYPAAAWVMALVAFAFTPQTTRHGNMG
orf112a.pep	LKXFGGICLGLLFHLAGRLFXFTSQLYGIPPFLXGALPTIAFALLAVWLIRKQEXRX
orf112-1	

[0416] Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 13

[0417] The following partial DNA sequence was identified in *N. meningitidis* <SEQ ID 57>

1..GCAGTAGCCG AAACTGCCAA CAGCCAGGGC AAAGGTAAAC AGGCAGGCAG

51	TTCGGTTTCT	GTTTCACTGA	AAACTTCAGG	CGACCTTTGC	GGCAAACTCA
101	AAACCACCCT	TAAAACTTTG	GTCTGCTCTT	TGGTTTCCCT	GAGTATGGTA
151	TTGCCTGCCC	ATGCCCAAAT	TACCACCGAC	AAATCACCAC	CTAAAAACCA
201	GCAGGTCGTT	ATCCTTAAAA	CCAACACTGG	TGCCCCCTTG	GTGAATATCC
251	AAACTCCGAA	TGGACGCGGA	TTGAGCCACA	ACCGCTA.TA	CGCATTTGAT
301	GTTGACAACA	AAGGGGCAGT	GTTAAACAAC	GACCGTAACA	ATAATCCGTT
351	TGTGGTCAAA	GGCAGTGCGC	AATTGATTTT	GAACGAGGTA	CGCGGTACGG
401	CTAGCAAACT	CAACGGCATC	GTTACCGTAG	GCGGTCAAAA	GGCCGACGTG
451	ATTATTGCCA	ACCCCAACGG	CATTACCGTT	AATGGCGGCG	GCTTTAAAAA
501	TGTCGGTCGG	GGCATCTTAA	CTACCGGTGC	GCCCCAAATC	GGCAAAGACG
551	GTGCACTGAC	AGGATTTGAT	GTGCGTCAAG	GCACATTGGA	CCGTAGTAGC
601	AGCAGGTTGG	AATGATAAAG	GCGGAGCmrm	YTACACCGGG	GTACTTGCTC
651	GTGCAGTTGC	TTTGCAGGGG	AAATTwmmGG	GTAAA.AACT	GGCGGTTTCT

-continued 701 ACCGGTCCTC AGAAAGTAGA TTACGCCAGC GGCGAAATCA GTGCAGGTAC

751 GGCAGCGGGT ACGAAACCGA CTATTGCCCT TGATACTGCC GCACTGGGCG

901 GTATGTACGC CGACAGCATC ACACTGATTG CCAATGAAAA AGGCGTAGGC

951 GTCTAA

[0418] This corresponds to the amino acid sequence <SEQ ID 58; ORF114>:

1...AVAETANSQG KGKQAGSSVS VSLKTSGDLC GKLKTT<u>LKTL VCSLVSLSHV</u>

51 LPAHAQITTD KSAPKNQQVV ILKTNTGAPL VNIQTPNGRG LSHNRXYAFD
 101 VDNKGAVLNN DRNNNPFVVK GSAQLILNEV RGTASKLNGI VTVGGQKADV
 151 IIANPNGITV NGGGFXNVGR GILTTGAPQI GKDGALTGFD VVKAHVTVXA
 201 AGWNDKGGAX YTGVLAPAVA LQGKXXGLXL AVSTGPQKVD YASGEISAGT

251 AAGTKPTIAL DTAALGGNYA DSITLIANEX GVGV*

[0419] Further work revealed the complete nucleotide sequence SEQ ID 59>:

1 ATGAATAAAG GTTTACATCG CATTATCTTT AGTAAAAAGC ACAGCACCAT 51 GGTTGCAGTA GCCGAAACTG CCAACAGCCA GGGCAAAGGT AAACAGGCAG 101 GCAGTTCGGT TTCTGTTTCA CTGAAAACTT CAGGCGACCT TTGCGGCAAA 151 CTCAAAACCA CCCTTAAAAC TTTGGTCTGC TTTTTGGTTT CCCTGAGTAT 201 GGTATTGCCT GCCCATGCCC AAATTACCAC CGACAAATCA GCACCTAAAA 251 ACCAGCAGGT CGTTATCCTT AAAACCAACA CTGGTGCCCC CTTGGTGAAT 301 ATCCAAACTC CGAATGGACG CGGATTGAGC CACAACCGCT ATACGCAGTT 351 TGATGTTGAC AACAAAGGGG CAGTGTTAAA CAACGACCGT AACAATAATC 401 CGTTTGTGGT CAAAGGCAGT GCGCAATTGA TTTTGAACGA GGTACGCGGT 451 ACGGCTAGCA AACTCAACGG CATCGTTACC GTAGGCGGTC AAAAGGCCGA 501 CGTGATTATT GCCAACCCCA ACGGCATTAC CGTTAATGGC GGCGGCTTTA 551 AAAATGTCGG TCGGGGCATC TTAACTACCG GTGCGCCCCA AATCGGCAAA 601 GACGGTGCAC TGACAGGATT TGATGTGCGT CAAGGCACAT TGACCGTAGG 651 AGCAGCAGGT TGGAATGATA AAGGCGGAGC CGACTACACC GGGGTACTTG 701 CTCGTGCAGT TGCTTTGCAG GGGAAATTAC AGGGTAAAAA CCTGGCGGTT 751 TCThCCGGTC CTCAGAAAGT AGATTACGCC AGCGGCGAAA TCAGTGCAGG 801 TACGGCAGCG GGTACGAAAC CGACTATTGC CCTTGATACT GCCGCACTGG 951 GCGGTATGTA CGCCGACACC ATCACACTGA TTGCCAATGA AAAAGGCGTA 901 GGCGTCAAAA ATGCCGGCAC ACTCGAAGCG GCCAAGCAAT TGATTGTGAC 951 TTCGTCAGGC CGCATTGAAA ACAGCGGCCG CATCGCCACC ACTGCCGACG 1001 GCACCGAAGC TTCACCGACT TATCTCTCCA TCGAAAACCAC CGAAAAAGGA 1051 GCGGCAGGCA CATTTATCTC CAATGGTGGT CGGATCGAGA GCAAAGGCTT -continued 1101 ATTGGTTATT GAGACGGGAG AAGATATCAG CTTGCGTAAC GGAGCCGTGG 1151 TGCAGAATAA CGGCAGTCTC CCAGCTACCA CGGTATTAAA TGCTGGTCAT 1201 AATTTGGTGA TTGAGAGCAA AACTAATGTG AACAATGCCA AAGGCCCGGC 1251 TACTCTGTCG GCCGACGGCC GTACCGTCAT CAAGGAGGCC AGTATTCAGA 1301 CTGGCACTAC CGTATACAGT TCCAGCAAAG GCAACGCCGA ATTAGGCAAT 1351 AACACACGCA TTACCGGGGC AGATGTTACC GTATTATCCA ACGGCACCAT 1401 CAGCAGTTCC GCCGTAATAG ATGCCAAAGA CACCGCACAC ATCGAAGCAG 1451 GCAAACCGCT TTCTTTGGAA GCTTCAACAG TTACCTCCGA TATCCGCTTA 1501 AACGGAGGCA GTATCAAGGG CGGCAAGCAG CTTGCTTTAC TGGCAGACGA 1551 TAACATTACT GCCAAAACTA CCAATCTGAA TACTCCCGGC AATCTGTATG 1601 TTCATACAGG TAAAGATCTG AATTIGAATG TTGATAAAGA TTTGTCIGCC 1651 GCCAGCATCC ATTTGAAATC GGATAACGCT GCCCATATTA CCGGCACCAG 1701 TAAAACCCTC ACTGCCTCAA AAGACATGGG TGTGGAGGCA GGCTCGCTGA 1751 ATGTTACCAA TACCAATCTG CGTACCAACT CGGGTAATCT GCACATTCAG 1801 GCAGCCAAAG GCAATATTCA GCTTCGCAAT ACCAAGCTGA ACGCAGCCAA 1851 GGCTCTCGAA ACCACCGCAT TGCAGGGCAA TATCGTTTCA GACGGCCTTC 1901 ATGCTGTTTC TGCAGACGGT CATGTATCCT TATCGGCCAA CGGTAATGCC 1951 GACTTTACCG GTCACAATAC CCTGACAGCC AAGGCCGATG TCAATGCAGG 2001 ATCGGTTGGT AAAGGCCGTC TGAAAGCAGA CAATACCAAT ATCACTTCAT 2051 CTTCAGGAGA TATTACGTTG GTTGCCGGCA ACGGTATTCA GCTTGGTGAC 2101 GGAAAACAAC GCAATTCAAT CAACGGAAAA CACATCAGCA TCAAAAACAA 2151 CGGTGGTAAT GCCGACTTAA AAAACCTTAA CGTCCATGCC AAAAGCGGGG 2201 CATTGAACAT TCATTCCGAC CGGGCATTGA GCATAGAAAA TACCAAGCTG 2251 GAGTCTACCC ATAATACGCA TCTTAATGCA CAACACGAAG GGGTAACGCT 2301 CAACCAAGTA GATGCCTACG CACACCGTCA TCTAAGCATT ACCGGCAGCC 2351 AGATTTGGCA AAACGACAAA CTGCCTTCTG CCAACAAGCT GGTGGCTAAC 2401 GGTGTATTGG CACTCAATGC GCGCTATTCC CAAATTGCCG ACAACACCAC 2451 GCTGAGAGCG GGTGCAATCA ACCTTATTGC CGGTACCGCC CTAGTCAAGC 2501 GCGGCAACAT CAATTGGAGT ACCGTTGCGA CCAAAACTTT GGAAGATAAT 2551 GCCGAATTAA AACCATTGGC CGGACGGCTG AATATTGAAG CAGGTAGCGG 2601 CACATTAACC ATCGAACCTG CCAACCGCAT CAGTGCGCAT ACCGACCTGA 2651 GCATCAAAAC AGGCGGAAAA TTGCTGTTGT CTGCAAAAGG AGGAAATGCA 2701 GGTGCGCCTA GTGCTCAAGT TTCCTCATTG GAAGCAAAAG GCAATATCCG 2751 TCTGGTTACA GGAGAAACAG ATTTAAGAGG TTCTAAAATT ACAGCCGGTA 2801 AAAACTTGGT TGTCGCCACC ACCAAAGGCA AGTTGAATAT CGAAGCCGTA 2951 AACAACTCAT TCAGCAATTA TTTTCCTACA CAAAAAGCGG CTGAACTCAA 2901 CCAAAAATCC AAAGAATTGG AACAGCAGAT TGCGCAGTTG AAAAAAAGCT

2951 CGCCTAAAAG CAAGCTGATT CCAACCCTGC AAGAAGAACG CGACCGTCTC 3001 GCTTTCTATA TTCAAGCCAT CAACAAGGAA GTTAAAGGTA AAAAACCCAA

3051 AGGCAAAGAA TACCTGCAAG CCAAGCTTTC TGCACAAAAT ATTGACTTGA 3101 TTTCCGCACA AGGCATCGAA ATCAGCGGTT CCGATATTAC CGCTTCCAAA 3151 AAACTGAACC TTCACGCCGC AGGCGTATTG CCAAAGGCAG CAGATTCAGA 3201 GGCGGCTGCT ATTCTGATTG ACGGCATAAC CGACCAATAT GAAATTGGCA 3251 AGCCCACCTA CAAGAGTCAC TACGACAAAG CTGCTCTGAA CAAGCCTTCA 3301 CGTTTGACCG GACGTACAGG GGTAAGTATT CATGCAGCTG CGGCACTCGA 3351 TGATGCACGT ATTATTATCG GTGCATCCGA AATCAAAGCT CCCTCAGGCA 3401 GCATAGACAT CAAAGCCCAT AGTGATATTG TACTGGAGGC TGGACAAAAC 3451 GATGCCTATA CCTTCTTAAA AACCAAAGGT AAAAGCGGCA AAATCATCAG 3501 AAAAACCAAG TTTACCAGCA CCCGCGACCA CCTGATTATG CCAGCCCCCG 3551 TCGAGCTGAC CGCCAACGGC ATAACGCTTC AGGCAGGCGG CAACATCGAA 3601 GCTAATACCA CCCGCTTCAA TGCCCCTGCA GGTAAAGTTA CCCTGGTTGC 3651 GGGTGAAGAG CTGCAACTGC TGGCAGAASA AGGCATCCAC AAGCACGAGT 3701 TGGATGTCCA AAAAAGCCGC CGCTTTATCG GCATCAAGGT AGGCAAGAGC 3751 AATTACAGTA AAAACGAACT GAACGAAACC AAATTGCCTG TCCGCGTCGT 3801 CGCCCAAACT GCAGCCACCC GTTCAGGCTG GGATACAGTG CTCGAAGGTA 3051 CCGAATTCAA AACCACGCTG GCCGGTGCGG ACATTCAGGC AGGTGTAGGC 3901 GAAAAAGCCC GTGCCGATGC GAAAATTATC CTCAAAGGCA TTGTGAACCG 3951 TATCCAGTCG GAAGAAAAAT TAGAAACCAA CTCAACCGTA TGGCAGAAAC 4001 AGGCCGGACG CGGCAGCACT ATCGAAACGC TGAAACTGCC CAGCTTCGAA 4051 AGCCCTACTC CGCCCAAACT GACCGCCCCC GGTGGCTATA TCGTCGACAT 4101 TCCGAAAGGC AATTTGAAAA CCGAAATCGA AAAGCTGGCC AAACAGCCCG 4151 AGTATGCCTA TCTGAAACAG CTCCAAGTAG CGAAAAACGT CAACTGGAAC 4201 CAGGTGCAAC TGGCTTACGA TAAATGGGAC TATAAGCAGG AAGGCTTAAC 4251 CAGAGCCGGT GCAGCGATTG TTACCATAAT CGTAACCGCA CTGACTTATG 4301 GATACGGCGC AACCGCAGCG GGCGGTGTAG CCGCTTCAGG AAGTAGTACA 4351 GCCGCAGCTG CCGGAACAGC CGCCACAACG ACAGCAGCAG CTACTACCGT 4401 TTCTACAGCG ACTGCCATGC AAACCGCTGC TTTAGCCTCC TTGTATAGCC 4451 AAGCAGCTGT ATCCATCATC AATAATAAAG GTGATGTCGG CAAAGCGTTG 4501 AAAGATCTCG GCACCAGTGA TACGGTCAAG CAGATTGTCA CTTCTGCCCT 4551 GACGGCGGGT GCATTAAATC AGATGGGCGC AGATATIGCC CAATTGAACA 4601 GCAAGGTAAG AACCGAACTG TTCAGCAGTA CGGGCAATCA AACTATTGCC 4651 AACCTTGGAG GCAGATTGGC TACCAATCTC AGTAATGCAG GTATCTCAGC 4701 TGGTATCAAT ACCGCCGTCA ACGGCGGCAG CCTGAAAGAC AACTTAGGCA 4751 ATGCCGCATT AGGAGCATTG GTTAATAGCT TCCAAGGAGA AGCCGCCAGC 4801 AAAATCAAAA CAACCTTCAG CGACGATTAT GTTGCCAAAC AGTTCGCCCA 4851 CGCTTTGGCT GGGTGTGTTA GCGGATTGGT ACAAGGAAAA TGTAAAGACG 4901 GGGCAATTGG CGCAGCAGTT GGGGAAATCG TAGCCGACTC CATGCTTGGC

-continued 4951 GGCAGAAACC CTGCTACACT CAGCGATGCG GAAAAGCATA AGGTTATCAG 5001 TTACTCGAAG ATTATTGCCG GCAGCGTGGC GGCACTCAAC GGCGGCGATG 5051 TGAATACTGC GGCGAATGCG GCTGAGGTGG CGGTAGTGAA TAATGCTTTG 5101 AATTTTGACA GTACCCCTAC CAATGCGAAA AAGCATCAAC CGCAGAAGCC 5151 CGACAAAACC GCACTGGAAA AAATTATCCA AGGTATTATG CCTGCACATG 5201 CAGCAGGTGC GATGACTAAT CCGCAGGATA AGGATGCTGC CATTTGGATA 5251 AGCAATATCC GTAATGGCAT CACAGGCCCG ATTGTGATTA CCAGCTATGG 5301 GGTTTATGCT GCAGGTTGGA CAGCTCCGCT GATCGGTACA GCGGGTAAAT 5351 TAGCTATCAG CACCTGCATG GCTAATCCTT CTGGTTGTAC TGTCATGGTC 5401 ACTCAGGCTG CCGAAGCGGG CGCGGGAATC GCCACGGGTG CGGTAACGGT 5451 AGGCAACGCT TGGGAAGCGC CTGTGGGGGGC GTTGTCGAAA GCGAAGGCGG 5501 CCAAGCAGGC TATACCAACC CAGACAGTTA AAGAACTTGA TGGCTTACTA 5551 CAAGAATCAA AAAATATAGG TGGTGTAAAT ACACGAATAA ATATAGCGAA 5601 TAGTACTACT CGATATACAC CAATGAGACA AACGGGACAA CCGCTATCTG 5651 CTGGCTTTGA GCATGTFCTT GAGGGGGGACT TCCATAGGCC TATTGCGAAT 5701 AACCGTTCAG TTTTTACCAT CTCCCCAAAT GAATTGAAGG TTATACTTCA 5751 AAGTAATAAA GTAGTTTCTT CTCCCGTATC GATGACTCCT GATGGCCAAT 5801 ATATGCGGAC TGTCGATGTA GGAAAAGTTA TTGGTACTAC TTCTATTAAA 5651 GAAGGTGGAC AACCCACAAC TACAATTAAA GTATTTACAG ATAAGTCAGG 5901 AAATTTGATT ACTACATACC CAGTAAAAGG AAACTAA

[0420] This corresponds to the amino acid sequence <SEQ ID 60; ORF114-1>:

1HNKGLHRIIFSXKHSTMVAVAETANSQGKGKQAGSSVSVSLKTSGDLCGK51LKTTLKTLVCSLVSLSHVLPAHAQITTDKSAPKNQQVVILKFNTGAPLVN101IQTPNGRGLSHNRYTQFDVDNKGAVLNNDRNNNPFVVKGSAQLILNEVRG151TASKLNGIVTVGGQKADVIIANPNGITVNGGGFKNVGRGILTTGAPQIGK201DGALTGFDVRQGTLTVGAAGWNDKGGADYTGVLAAAVALQGKLQGKLLAV251STGFQKVDYASGEISAGTAAGTKPTIALDTAALGGHYADSITLIANEKGV301GVKNAGTLKAAXQLIVTSSGRIENSGRIATTADGTFASPTYLSIETTEKG301AAGTFISNGGRIESKGLLVIETGEDISLRNGAVVQINGSRPATTVLNAGH401HLVIESKTNVNNAKGFATLSADGRTVIKEASIQTGTTVSSSKGTAELGN401NTRZTGADVTVLSNGTISSSAVIDAKOTANIEAGKPLSLTASTVTSDIRL501NGGSIKGGKQLALLADDNITAXTTNLNTGNLVHTGKDLNIMVDKDLSA511AAKGNIQLRNTKLNAAKALETTALQGNIVSGCLHAVSADGHVSLLANGNA651DFTGHNTLTAKADVNAGSVGKGRLKADNTNITSSGDITLVAGNGIQLG701GKQRNSINGKHISIKNNGGNADLIQLNVHAKSGALNIHSDRALSIENTKL

63

-continued 751 ESTRNTHLNA QHERVTLNQV DAYAHRHLSI TGSQIWQNOK LPSANKLVTN 801 GVLALNARYS QIADNTTLRA GAINLTAGTA LVKRGNINWS TVSTKTLEDN 851 AELKPLAGRL NIEAGSGTLT IEPANRISAH TDLSIKTGGK LLLSAKGGNA 901 GAFSAQVSSL EAKGNIRLVT GETDLRGSKI TAGKNLVVAT TKGKLNIEAV 951 NNSFSNYFPT QKAAELNQKS KELEQQIAQL KKSSPKSKLI PTLQEERDRL 1001 AFYIQAINKE VKGKKPKGKE YLQAKLSAQN IDLISAQGIE ISGSDITASK 1051 KLNLHAAGVL PKAADSEAAA ILIDGITDQY EIGKPTYKSH YOKAALNKPS 1101 RLTGRTGVSI HAAAALDDAR IIIGASEIKA FSGSIDIKAH SDIVLEAGON 1151 DAYTFLKTKG KSGKIIRXTK FTSTRDHLIM PAPVELTANG ITLQAGGNIE 1201 ANTTRFNAPA GKVTLVAGEE LQLLAEEGIH KHELDVQKSR RFIGIKVGKS 1251 NYSKNELNET KLPVRVVAQT AATRSGWDTV LEGTEFKTTL AGADIQAGVG 1301 EKAPADAKII LKGIVNRIQS EEKLETNSTV WQKQAGRGST IETLKLPSFE 1351 SPTPPKLTAP GGYIVDIPKG NLKTEIEKLA KQPEPEYLKO LOVAKNVNWN 1401 QVQLAYDKWD YKQEGLTRAG AAIVTIIVTA LTYGYGATAA GGVAASGSST 1451 AAAAGTAATT TAAATTVSTA TANQTAALAS LYSQAAVSII NNKGDVGKAL 1501 KDLGTSDTVK QIVISALTAG ALNQMGADIA QLNSKVRTEL FSSTGVQTIA 1551 NLGGRLATNL SNAGISAGIN TAVNGGSLKD NLGNAALGAL VNSFQGEAAS 1601 KIKTTFSDDY VAKQFAHALA GCVSGLVQGK CKDGAIGAAV GEIVADSNLG 1651 GRNPATLSDA EKHKVISYSK IIAGSVAALN GGDVNTAANA AEVAVVNNAL 1701 NFDSTPTNAK KNQPQKPDKT ALEKIIQGIM PAHAAGAMTN PQDKDAAIWI 1751 SNIRNGITGP IVITSYGVYA AGWTAPLIGT AGKLAISTCM ANPSGCTVNV 1801 TQAAEAGAGI ATGAVTVGNA WEAPVGALSK AKAAKQAIPT QTVKELDGLL 1851 OESKNIGAVN TRINIANSTT RYTPNROTGO PVSAGFENVL EGHFHRPIAN 1901 NRSVFTXSPN ELKVILQSNK VVSSPVSMTP DGQYNRTVDV GKVIGTTSIK 1951 EGGQPTTTIK VFTDKSGNLI TTYPVKGN*

[0421] Computer analysis of this amino acid sequence predicts a transmembrane region and also gives the following results:

[0422] Homology with a Predicted ORF from *N. meningitidis* (Strain A)

[0423] ORF114 shows 91.9% identity over a 284 aa overlap with an ORF (ORF114a) from strain A of N. *meningitidis*:

			10	20	30	40
orf114.pep				GSSVSVSLKT		
orf114a	MNKGLHRIIFSKKH	ISTMVAVAETA	NSQGKGKQA	GSSVSVSLKT	SGDLCGKLKI	TLKTLVC
	10	20	30	40	50	60
	50	60	70	80	90	100
orf114.pep	SLVSLSMVLPAHAÇ	ITTDKSAPKN	IQQVVILKTN	FGAPLVNIQT	PNGRGLSHNF	XYAFDVD
		1111111111				
orf114a	SLVSLSMXXXXXX	ITTDKSAPKN	XQVVILKTN	IGAPLVNIQT:	PNGRGLSHNF	YTQFDVD
	70	80	90	100	110	120

-continued						
orf114.pep orf114a	110 NKGAVLNNDRNNN NKGAVLNNDRNNN 130	:			ĨIIIIIII	
orf114.pep orf114a	170 GGFKNVGRGILTI GGFKNVGRGILTI 190	Ĩ ::	1			~
orf114.pep orf114a	230 GKXXGKXLAVSTO GKLQGKNLAVSTO 250	1Ť111111	11111111111	1111111111		
orf114.pep orf114a	GVX GVKNAGTLEAAKQ 310	LIVTSSGRIE 320	NSGRIATTAD 330	GTEASPTYLX 340	IETTEKGAXG 350	TFISNGG 360

[0424] The complete length ORF114a nucleotide sequence <SEQ ID 61> is:

1 ATGAATAAAG GTTTACATCG CATTATCTTT AGTAAAAAGC ACAGCACCAT 51 GGTTGCAGTA GCCGAAACTG CCAACAGCCA GGGCAAAGGT AAACAGGCAG 101 GCAGTTCGGT TTCTGTTTCA CTGAAAACTT CAGGCGACCT TTGCGGCAAA 151 CTCAAAACCA CCCTTAAAAC CTTGGTCTGC TCTTTGGTTT CCCTGAGTAT 201 GGNATTNCNN NNCNNTNCCC AAATTACCAC CGACAAATCA GCACCTAAAA 251 ACCANCAGGT CGTTATCCTT AAAACCAACA CTGGTGCCCC CTTGGTGAAT 301 ATCCAAACTC CGAATGGACG CGGATTGAGC CACAACCGCT ATACGCAGTT 351 TGATGTTGAC AACAAAGGGG CAGTGTTAAA CAACGACCGT AACAATAATC 401 CGTTTCTGGT CAAAGGCAGT GCGCAATTGA TTTTGAACGA GGTACGCGGT 451 ACGGCTAGCA AACTCAACGG CATCGTTACC GTAGGCGGTC AAAAGGCCGA 501 CGTGATTATT GCCAACCCCA ACGGCATTAC TGTTAATGGC GGCGGCTTTA 551 AAAATGTCGG TCGGGGGCATC TTAACTATCG GTGCGCCCCA AATCGGCAAA 601 GACGGTGCAC TGACAGGATT TGATGTGCGT CAAGGCACAT TGACCGTAGG 651 AGCAGCAGGT TGGAATGATA AAGGCGGAGC CGACTACACC GGGGTACTTG 701 CTCGTGCAGT TGCTTTGCAG GGGAAATTAC AAGGTAAAAA CCTGGCGGTT 751 TCTACCGGTC CTCAGAAAGT AGATTACGCC AGCGGCGAAA TCAGTGCAGG 801 TACGGCAGCG GGTACGAAAC CGACTATTGC CCTTGATACT GCCGCACTGG 951 GCGGTATGTA CGCCGAGAAA ATCACACTGA TTGCCAATGA AAAAGGCGTA 901 GGcGTCAAAA ATGCCGGCAC ACTCGAAGCG GCCAAGCAAT TGATTGTGAC 951 TTCGTCAGGC CGCATTGAAA ACAGCGGCCG CATCGCCACC ACTGCCGACG 1001 GCACCGAAGC TTCACCGACT TATCTNNCNA TCGAAACCAC CGAAAAAGGA 1051 GCNNCAGGCA CATTTATCTC CAATGGTGGT CGGATCGAGA GCAAAGGCTT 1101 ATTGGTTATT GAGACGGGAG AAGATATCAT CTTGCGTAAC GGAGCCGTGG

-continued 1151 TGCAGAATAA CGGCAGTCGC CCAGCTACCA CGGTATTAAA TGCTGGTCAT 1201 AATTTGGTGA TTGAGAGTAA AACTAATGTG AACAATGCCA AAGGCTCGNC 1251 TAATCTGTCG GCCGGCGGTC GTACTACGAT CAATGATGCT ACTATTCAAG 1301 CGGGCAGTTC CGTGTACAGC TCCACCAAAG GCGATACTGA NTTGGGTGAA 1351 AATACCCGTA TTATTGCTGA AAACGTAACC GTATTATCTA ACGGTAGTAT 1401 TGGCAGTGCT GCTGTAATTG AGGCTAAAGA CACTGCACAC ATTGAATCGG 1451 GCAAACCGCT TTCTTTAGAA ACCTCGACCG TTGCCTCCAA CATCCGTTTG 1501 AACAACGGTA ACATTAAAGG CGGAAAGCAG CTTGCTTTAC TGGCAGACGA 1551 TAACATTACT GCCAAAACTA CCAATCTGAA TACTCCCGGC AATCTGTATG 1601 TTCATACAGG TAAAGATCTG AATTTGAATG TTGATAAAGA TTTGTCTGCC 1651 GCCAGCATCC ATTTGAAATC GGATAACGCT GCCCATATTA CCGGCACCAG 1701 TAAAACCCTC ACTGCCTCAA AAGACATGGG TGTGGAGGCA GGCTTGCTGA 1751 ATGTTACCAA TACCAATCTG CGTACCAACT CGGGTAATCT GCACATTCAG 1801 GCAGCCAAAG GCAATATTCA GCTTCGCAAT ACCAAGCTGA ACGCAGCCAA 1851 GGCTCTCGAA ACCACCGCAT TGCAGGGCAA TATCGTTTCA GACGGCCTTC 1901 ATGCTGTTTC TGCAGACGGT CATGTATCCT TATTGGCCAA CGGTAATGCC 1951 GACTTTACCG GTCACAATAC CCTGACAGCC AAGGCCGATG TCNATGCAGG 2001 ATCGGTTGGT AAAGGCCGTC TGAAAGCAGA CAATACCAAT ATCACTTCAT 2051 CTTCAGGAGA TATTACGTTG GTTGCCGNNN NCGGTATTCA GCTTGGTGAC 2101 GGAAAACAAC GCAATTCAAT CAACGGAAAA CACATCAGCA TCAAAAAACAA 2151 CGGTGGTAAT GCCGACTTAA AAAACCTTAA CGTCCATGCC AAAAGCGGGG 2201 CATTGAACAT TCATTCCGAC CGGGCATTGA GCATAGAAAA TACNAAGCTG 2251 GAGTCTACCC ATAATACGCA TCTTAATGCA CAACACGAGC GGGTAACGCT 2301 CAACCAAGTA GATGCCTACG CACACCGTCA TCTAAGCATT ANCGGCAGCC 2351 AGATTTGGCA AAACGACAAA CTGCCTTCTG CCAACAAGCT GGTGGCTAAC 2401 GGTGTATTGG CAATCAATGC GCGCTATTCC CAAATTGCCG ACAACACCAC 2451 GCTGAGAGCG GGTGCAATCA ACCTTACTGC CGGTACCGCC CTAGTCAAGC 2501 GCGGCAACAT CAATTGGATT ACCGTTTCGA CCAAGACTTT GGAAGATAAT 2551 GCCGAATTAA AACCATTGGC CGGACGGCTG AATATTGAAG CAGGTAGCGG 2601 CACATTAACC ATCGAACCTG CCAACCGCAT CAGTGCGCAT ACCGACCTGA 2651 GCATCAAAAC AGGCGGAAAA TTGCTGTTGT CTGCAAAAGG AGGAAATGCA 2701 GGTGCGCNTA GTGCTCAAGT TTCCTCATTG GAAGCAAAAG GCAATATCCG 2751 TCTGGTTACA GGAGNAACAG ATTTAAGAGG TTCTAAAATT ACAGCCGGTA 2901 AAAACTTGGT TGTCGCCACC ACCAAAGGCA AGTTGAATAT CGAAGCCGTA 2951 AACAACTCAT TCAGCAATTA TTTTCNTACA CAAAAAGNGN NNGNNCTCAA 2901 CCAAAAATCC AAAGAATTGG AACAACAGAT TGCGCAGTIG AAAAAAAGCT 2951 CGCNTAAAAG CAAGCTGATT CCAACCCTGC AAGAAGAACG CGACCGTCTC 3001 GCTTTCTATA TTCAAGCCAT CAACAAGGAA GTTAAAGGTA AAAAACCCAA 3051 AGGCAAAGAA TACCTGCAAG CCAAGCTTTC TGCACAAAAT ATTGACTTGA

3101 TTTCCGCACA AGGCATCGAA ATCAGCGGTT CCGATATTAC CGCTTCCAAA 3151 AAACTGAACC TTCACGCCGC AGGCGTATTG CCAAAGGCAG CAGATTCAGA 3201 GGCGGCTGCT ATTCTGATTG ACGGCATAAC CGACCAATAT GAAATTGGCA 3251 AGCCCACCTA CAAGAGTCAC TACGACAAAG CTGCTCTGAA CAAGCCTTCA 3301 CGTTTGACCG GACGTACGGG GGTAAGTATT CATGCAGCTG CGGCACTCGA 3351 TGATGCACGT ATTATTATCG GTGCATCCGA AATCAAAGCT CCCTCAGGCA 3401 GCATAGACAT CAAAGCCCAT AGTGATATTG TACTGGAGGC TGGACAAAAC 3451 GATGCCTATA CCTTCTTAAA AACCAAAGGT AAAAGCGGCA NAATNATCAG 3501 AAAAACNAAG TTTACCAGCA CCNGCGANCA CCTGATTATG CCAGCCCCNG 3551 TCGAGCTGAC CGCCAACGGT ATCACGCTTC ACGCAGGCGG CAACATCGAA 3601 GCTAATACCA CCCGCTTCAA TGCCCCTGCA GGTAAAGTIA CCCTGGTTGC 3651 GGGTGAANAG NTGCAACTGC TGGCAGAAGA AGGCATCCAC AAGCACGAGT 3701 TGGATGTCCA AAAAAGCCGC CGCTTTATCG GCATCAAGGT AGGTNAGAGC 3751 AATTACAGTA AAAACGAACT GAACGAAACC AAATTGCCTG TCCGCGTCGT 3801 CGCCCAAAAT GCAGCCACCC GTTCAGGCTG GGAThCCGTG CTCGAAGGTA 3851 CCGAATTCAA ATCCACGCTG GCCGGTGCCG ACATTCAGGC AGGTGTANGC 3901 GAAAAAGCCC GTGTCGATGC GAAAATCATC CTCAAAGGCA TTGTGAACCG 3951 TATCCAGTCG GAAGAAAAAT TAGAAACCAA CTCAACCGTA TGGCAGAAAC 4001 AGGCCGGACG CGGCAGCACT ATCGAAACGC TAAAACTGCC CAGCTTCGAA 4051 AGCCCTACTC CGCCCAAATT GTCCGCACCC GGCGGNTATA TCGTCGACAT 4101 TCCGAAAGGC AATCTGAAAA CCGAAATCGA AAAGCTGTCC AAACAGCCCG 4151 AGTATGCCta TCTGAAACAG CTCCAAGTAG CGAAAAACAT CAACTGGAAT 4201 CAGGTGCAGC TTGCTTACGA CAGATGGGAC TACAAACAGG AGGGCTTAAC 4251 CGAAGCAGGT GCGGCGATTA TCGCACTGGC CGTTACCGTG GTCACCTCAG 4301 GCGCAGGAAC CGGAGCCGTA TTGGGATTAA ACGGTGCGNC CGCCGCCGCA 4351 ACCGATGCAG CATTCGCCTC TTTGGCCAGC CAGGCTTCCG TATCGTTCAT 4401 CAACAACAAA GGCGATGTCG GCAAAACCCT GAAAGAGCTG GGCAGAAGCA 4451 GCACGGTGAA AAATCTGGTG GTTGCCGCCG CTACCGCAGG CGTAGCCGAC 4501 AAAATCGGCG CTTCGGCACT GANCAATGTC AGCGATAAGC AGTGGATCAA 4551 CAACCTGACC GTCAACCTAG CCAATGNCGG GCAGTGCCGC ACTGAttaa

[0425] This encodes a protein having amino acid sequence <SEQ ID 62>:

1MNKGLHRIIFSKKHSTMVAVAETANSQGKGKQAGSSVSVSLKTSGDLCGK51LKTTLKTLVCSLVSLSMXXXXXXQITTDKSAPIDXQVVILKTNTGAPLVN101IQTPNGRGLSHNRYTQFDVDNKGAVLNNDRNNNPFLVKGSAQLILNEVRG151TASKLNGIVTVGGQKADVIIANPNGITVNGGGFKNVGRGILTIGAPQIGK201DGALTGFDVRQGTLTVGAAGWNDKGGADYTGVLARAVALQGKLQGKNLAV

67

251 STGPOKVDYA SGEISAGTAA GTKPTIALDT AALGGMYADS ITLTAXEKGV 301 GVKNAGTLEA AKQLIVTSSG RIENSGRIAT TADGTEASPT YLXIETTEKG 351 AXGTFISNGG RIESKGLLVI ETGEDIXLPA GAVVQNNGSR PATTVLNAGH 401 NLVIESKTNV NNAXGSXNLS AGGRTTINDA TIOAGSSVYS STKGDTXLGE 451 NTRIIAENVT VLSNGSIGSA AVIEAKDTAN IESGKPLSLE TSTVASNIRL 501 NNGNIKGGKO LALLADDNIT AKTTNLNTPG NLYVHTGKDL NLNVDKDLSA 551 ASIHLKSDNA AHITGTSKTL TASKDNGVEA GLLNVTNTNL RTNSGNLHIQ 601 AAKGNZQLRH TKLNAAKALE TTALQGNIVS DGLHAVSADG HVSLLANGNA 651 DFTGHNTLTA KADVXAGSVG KGRLKADNTN ITSSSGDITL VAXXGIQLGD 701 GKQRNSINGK HISIKNNGGN ADLKNLNVHA KSGALNIHSO RALSIENTKL 751 ESTHNTHLNA QHERVTLNQV DAYAHRHLSI XGSQIWQNDK LPSANKLVAN 801 GVLAXNARYS QIADNTTLRA CAINLTAGTA LVKRGNINWS TVSTKTLEDN 851 AELKPLAGRL NIEAGSGTLT IEFANRISAH TDLSIKTGGK LLLSAXGGNA 901 GAXSAQVSSL EAKGNIRLVT GXTDLRGSKI TAGKNLVVAT TKGKLNIEAV 951 NNSFSNYFXT QKXXXLNQKS KELEOQIAQL KKSSXKSKLI PTLQEERDRL 1001 AFYIQAINKE VKGKKPKGKE YLQAXLSAQN IDLISAQGIE ISGSDITASK 1051 KLNLHAAGVL PKAADSEAAA ILIDGITOQY EIGKPTYKSH YDKAALNKPS 1101 RLTGRTGVSI HAAAALDDAR IIIGASEIKA PSGSIDIKAR SDIVLEAGQN 1151 DAYTFLXTKG KSGXXIRKTK FTSTXXHLIM PAPVELTANG ITLQAGGNIE 1201 ANTTRFHAPA GKVTLVAGEK XQLLAEEGIK KHELDVQKSR RFIGIKVGXS 1251 NYSINELNET KLPVRVVAQX AATRSGWDTV LEGTEFKTTL AGADIQAGVX 1301 EKARVQAXII LKGIVNRIQS EEKLETNSTV WQKQAGRGST IETLKLPSFE 1351 SPTPPKLSAP GGYIVDIPKG NLKTEIEKLS KQPEYAYLKO LOVAKNINWN 1401 QVQLAYQRWD YKQEGLTEAG AAIIALAVTV VTSGAGTGAV LGLNGAXAAA 1451 TDAAFASLAS OASVSFINNK GDVGKTLKEL GRSSTVKNLV VAAATAGVAD 1501 KIGASALXNV SDKQWINNLT VNLANXGQCR TD*

[0426] ORF114-1 and ORF114a show 89.8% identity in 1564 aa overlap

orf114a.pep orf114-1	MNKGLHRIIFSKKHSTMVAVAETANSQGKGKQAGSSVSVSLKTSGDLCGKLKTTLKTLVC
	~ ~
orf114a.pep	> SLVSLSMXXXXXQITTDKSAPKNXQVVILKTNTGAPLVNIQTPNGRGLSHNRYTQFDVD
orf114-1	SLVSLSMXXXXXQITTDKSAPKNQQVVILKTNTGAPLVNIQTPNGRGLSHNRYTQFDVD
orf114a.pep	> NKGAVLNNDRNNNPFLVKGSAQLILNEVRGTASKLNGIVTVGGQKADVIIANPNGITVNG
orf114-1	
orf114a.pep	GGFKNVGRGILTIGAPQIGKDGALTGFDVRQGTLTVGAAGWNDKGGADYTGVLARAVALQ
orf114-1	

orf114a.pep GKLQGKNLAVSTGFQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEKGV

-continued orf114-1 GKLOGKNLAVSTGPOKVDYASGEISAGTAAGTKPTIALDTAALGGMYADS ITLIANEKGW orf114a.pep GVKNAGTLEAAXQLIVTSSGRIENSGRIATTADGTLASPTYLXIETTEKGAXGTFISNGG orf114-1 GVKNAGTI.EAAXOLTVTSSGRIENSGRIATTADGTLASPTYLSIETTEKGAAGTFISNGG orf114a.pep RIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESKTNVNNAKGSXNLS orf114-1 RIESKGLLVIETGEDISLRNGAVVQNNGSRPATTVLNAGHNLVIESKTNVNNAKGPANLS $orf 114 \verb"a.pep" AGGRTTINDATIQAGSSVYSSTKGDTXLGENTRIIAENVTVLSNGSIGSAAVIEAKDTAH$ orf114-1 ADGRTVIKEASIOTGTTVYSSSKGNAELGNNTRITGADVTVLSNGTISSSAVIDAKDTAH orf114a.pep IESGKPLSLETSTVASNIRLNNGNIKGGKQLALLADDNITAKTTNLNTPGNLYVHTGKDL orf114-1 IEAGKPLSLEASTVTSDIRLNGGSIKGGKQLALLADDNITAKTTNLNTPGNLYVHTGKDL orf114a.pep NLNVDKDLSAASIHLKSDNAAHITGTSKTLTASKDMGVEAGLLNVTNTNLRTNSGNLHIQ orf114-1 NLNVDKDLSAASIHLKSDNAAHITGTSKTLTASKDMGVEAGSLNVTNTNLRTNSGNLHIQ orf114a.pep AAKGNIQLRNTKLNAAKALETTALQGNIVSDGLHAVSADGHVSLLANGNADFTGHNTLTA AAKGNIQLRNTKLNAAKALETTALQGNIVSDGLHAVSADGHVSLLANGNADFTGHNTLTA orf114-1 orf114a.pep KADVXAGSVGKGRLKADNTNITSSSGDITLVAXXGIQLGDGKQRNSINGKHISIKNNGGN orf114-1 orf114a.pep ADLKNLNVHAKSGALNIHSDRALSIENTKLESTHNTHLNAQHERVTLNQVDAYAHRHLSI ADLKNLNVHAKSGALNIHSDRALSIENTKLESTHNTHLNAQHERVTLNQVDAYAHRHLSI orf114-1 orf114a.pep XGSQIWQNDKLPSANKLVANGVLAXNARYSQIADNTTLRAGAINLTAGTALVKRGNINWS TGSQIWQNDKLPSANKLVANGVLALNARYSQIADNTTLRAGAINLTAGTALVKRGNINWS orf114-1 orf114a.pep TVSTKTLEDNAELKPLAGRLNIEAGSGTLTIEPANRISAHTDLSIKTGGKLLLSAKGGNA orf114-1 TVSTKTLEDNAELKPLAGRLNIEAGSGTLTIEPANRISAHTDLSIKTGGKLLLSAKGGNA orf114a.pep GAXSAQVSSLEAKGNIRLVTGXTDLRGSKITAGKNLVVATTKGKLNIEAVNNSFSNYFXT GAPSAQVSSLEAKGNIRLVTGETDLRGSKITAGKNLVVATTKGKLNIEAVNNSFSNYFPT orf114-1 orf114a.pep QKXXXLNQKSKELEQQIAQLKKSSXKSKLIPTLQEERDRLAFYIQAINKEVKGKKPKGKE QKAAELNQKSKELEQQIAQLKKSSPKSKLIPTLQEERDRLAFYIQAINKEVKGKKPKGKE orf114-1 orf114a.pep YLQAKLSAQNIDLISAQGIEISGSDITASKKLNLHAAGVLPKAADSEAAAILIDGITDQY orf114-1 YLOAKLSAONIDLISAOGIEISGSDITASKKLNLHAAGVLPKAADSEAAAILIDGITDOY orf114a.pep EIGKPTYKSHYDKAALNKPSRLTGRTGVSIHAAAALDDARIIIGASEIKAPSGSIDIKAH orf114-1 EIGKPTYKSHYDKAALNKPSRLTGRTGVSIHAAAALDDARIIIGASEIKAPSGSIDIKAH orf114a.pep SDIVLEAGQNDAYTFLXTKGKSGXXIRKTKFTSTXXHLIMPAPVELTANGITLQAGGNIE orf114-1 ${\tt SDIVLEAGQNDAYTFLKTKGKSGKIIRKTKFTSTRDHLIMPAPVELTANGITLQAGGNIESPACE (Construction) and the second statement of the second s$ orf114a.pep ANTTRFNAPAGKVTLVAGEXXQLLAEEGIHKHELDVQKSRRFIGIKVGXSNYSKNELNET orf114-1 ANTTRFNAPAGKVTLVAGEELQLLAEEGIHKHELDVQKSRRFIGIKVGKSNYSKNELNET orf114a.pep KLPVRVVAQXAATRSGWDTVLEGTEFKTTLAGADIQAGVXEKARVDAKIILKGIVNRIQS orf114-1 KLPVRVVAQTAATRSGWDTVLEGTEFKTTLAGADIQAGVGEKARADAKIILKGIVNRIQS orf114a.pep EEKLETNSTVWQKQAGRGSTIETLKLPSFESPTPPKLSAPGGY1VDIPKGNLKTEIEKLS EEKLETNSTVWQKQAGRGSTIETLKLPSFESPTPPKLSTPGGYIVDIPKGNLKTEIEKLA orf114-1 orf114a.pep KQPEYAYLKQLQVAKNINWNQVQLAYDRWDYKQEGLTEAGAAIIALAVTVVTSGAGTGAV

orf114 - 1	-continued KQPEYAYLKQLQVAKNVNWQVQLAYDKWDYKQEGLTRAGAAIVTIIVTALTYGYGATAA	
orf114a.pep	LGLNGAXAATDAAFASLASQASVSFINNKGDVGKTL : :: : : : : : : : : : :	1477
orf114-1	${\tt GGVAASGSSTAAAAGTAATTTAAATTVSTATAMQTAALASLYSQAAVSIINNKGDVGKAL$	1500
orf114a.pep	KELGRSSTVKNLVVAAATAGVADKIGASALXNVSDKQWINNLTVNL : :: : :: ::::	1523
orf114-1	${\tt KDLGTSDTVKQIVTSALTAGALNQMGADIAQLNSKVRTELFSSTGNQTIANLGGRLATNL}$	1560
orf114a.pep	ANXGQCRTDX :	
orf114-1	SNAGISAGINTAVN	

[0427] Homology with pspA Putative Secreted Protein of *N. meningitidis* (Accession Number AF030941)

[0428] ORF114 and pspA protein show 36% aa identity in 302 aa overlap:

Orf114:	1 AVAETANSQGKGKQAGSSVSVSLKTSGDXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56
pspA:	19 AVAENVHRDGKSMQDSEAASVRVTGAASVSSARAAFGFRMAAFSVMLALGVAAFSPAPAS	78
Orf114:	57-ITTDKSAPKNQQVVILKTNTGAPLVNIQTPNGRGLSHNRXYAFDVDNKGAVLNNDRNN- I DKSAPKNQQ VIL+T G P VNIQTP+ +G+S NR FDVD KG +LNN R+N	114
pspA:	79 GIIADKSAPKNQQAVILQTANGLPQVNIQTPSSQGVSVNRFKQFDVDEKGVILNNSRSNT	138
Orf114:	115NPFVVKGSAQLILNEV-RGTASKLNGIVTVGGQKADVIIANPNGITVNGG NP + +G A++I+N++ S LNG + VGG++A+V++ANP+GI VNGG	163
pspA:	$139 \underline{\texttt{QTQLGGWIQGNPHLARGEARVIVNQIDSSNPSLLNGYIEVGGKRAEVVVANPSGIRVNGG}$	198
Orf114:	164GFKNVGRGILTTGAPQIGKDGALTGFDVVKAHWTVXAAGWNDKGGAXYTGVLARAVALQG G N LT+G P + +G LTGFDV + G D A YT +L+RA +	223
papA:	199GLINAASVTLTSGVPVL-NNGNLTGFDVSSGKVVIGGKGL-DTSDADYTRILSRAAEINA	256
Orf114:	224KXXGKXLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIANE GK + V +G K+D+ +A + PT+A+DTA LGGMYAD ITLI+ +	279
pspA:	$257{\tt GVWGKDVKVVSGKNKLDFDGSLAKTASAPSSSDSVTPTVAIDTATLGGMYAQKITLISTD$	316
Orf114:	280KG 291 G	
papA:	317NG 318	

[0429] ORF114a is also homologous to pspA:

gil2623258 (AF030941) putative secreted protein (<i>Neisseria meningitidis</i>) Length = 2273 Score +32 261 bits (659), Expect +32 3e-69 Identities = 203/663 (30%), Positives 314/663 (46%), Gaps 76/663 (11%)	
Query: 1 MNKGLHRIIFSKKHSTMVAVAETANSQGKGKQAGSSVSVSLKTSGDXXXXXXXX 55 MNK +++IF+KK S M+AVAE + GK 0 + SV + +S	
Sbjct: 1 MNKRCYKVIFNKKRSCMMAVAENVHRDGKSMQDSEAASVRVTGAASVSSARAAFGFRMAA 60	
Query: 56 XXXXXXXXXXXXXXXXXQITTKDSAPKNXQVVILKTNTGAPLVNIQTPNGRGLSHNRYT 115 I DKSAPKN O VIL+T G P VNIOTP+ +G+S NR+	5
Sbjct: 61 FSVMLALGVAAFSPAPASGIIADKSAPKNQQAVILQTANGLPQVNIQTPSSQGVSVNRFK 120	C
Query: 116 QFDVDNKGAVLNNDRNNNPFLVKGSAQLILNEV-RGTASKLNGIVTVGG 163 QFDVD KG +LNN R+NNP L +G A++I+N++ S LNG + VGG	3
Sbjct: 121 QFDVDEKGVILNNSRSNTQTQLGGWIQGNPHLARGEARVIVNQIDSSNPSLLNGYIEVGG 180	C
Query: 164 QKADVIIANPNGITVNGGGFKNVGRGILTIGAPQIGKDGALTGFDVRQGTLTVGAAGWND 223 ++A+V++ANP+GI VNGGG N LT G P + +G LTGFDV G + +G G D	3
Sbjct: 181 KRAEVVVANPSGIRVNGGGLINAASVTLTSGVPVL-NNGNLTGFDVSSGKVVIGGKGL-D 238	3

Query:	224	KGGADYTGVLARAVALQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALD ADYT +L+RA + + GK++ V +G K+D+ +A + PT+A+D	279
Sbjct:	239	$\verb"TSDADYTRILSRAAEINAGVWGKDVKVVSGKNKLDFDGSLAKTASAPSSSDSVTPTVAID"$	298
Query:	280	TAALGGMYADSITLIAXEKGVGVKNAGTLEAAK-QLIVTSSGRIENSGRIATTADGTEAS TA LGGMYAD ITLI+ + G ++N G + AA + +++ G++ NSG I	338
Sbjct:	299	TATLGGMYADKITLISTDNGAVIRNKGRIFAATGGVTLSADGKLSNSGSIDAA	351
Query:	339	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	398
Sbjct:	352	EITISAQTVDRQGFIRSGKGSVLKVSDGINNQAGLIGSAGLLDIRDT	399
Query:	399	GHNLVIESKTNVNNAKGSXNLSAGGRTTINDATIQAGSSVYSSTKGDTXLGENTRI G +S ++NN G+ ++S ++ ND + A V S + D G+	454
Sbjct:	400	GKSSLHINNTDGTIIAGKDVSLQAKSLDNDGILTAARDV-SVSLHDDFAGKRDIE	453
Query:	455	$\label{eq:linear} \begin{array}{rrrr} \textbf{IAENVTVLSNGSIGSAAVIEAKDTAHIESGKPLSLETSTVASNIRLNNGNIKGGKQLALL} \\ +T &+ \texttt{G} &+ + + \texttt{I+A} \ \texttt{DT} &+ + + + + + + \texttt{S} \ \texttt{R} & \texttt{G} & \texttt{L+} \end{array}$	514
Sbjct:	454	AGRTLTFSTQGRLKNTRIIQAGDTVSLTAAQIDNTVSGKIQSGNRTGLNGKNGITNRGLI	513
Query:	515	eq:addnitakttnlntpgnlyvhtgkdlnlnvdkdlsaasihlksdnaahitgtskt + it ak+ n t g + y g + + d l+ aa	569
Sbjct:	514	NSNGITLLQTEAKSDNAGT-GRIYGSRVAVEADTLLNREETVNGETKAAV	562
Query:	570	eq:ltaskdmgveagxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	625
Sbjct:	563	${\tt IAARERLDIGAREIENREAALLSSSGDLHIGSALNGSRQVQGANTSLHNRSAAIESS{}$	619
Query:	626	GNI 628 GNI	
Sbjct:	620	GNI 622	
Casha	32 3	$7 = b_1 + a_2 (55) = F_{TTDOA} + 0 = 53$	
		7.5 bits (65), Expect = 0.53 = 87/432 (20%), Positives +32 159/432 (36%), Gaps = 62/432 (14	18)
Identit	ies	<pre>= 87/432 (20%), Positives +32 159/432 (36%), Gaps = 62/432 (14 LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK</pre>	
Identit Query:	ies 239	= 87/432 (20%), Positives +32 159/432 (36%), Gaps = 62/432 (14	298
Identit Quer y: Sbjct:	239 1023	<pre>= 87/432 (20%), Positives +32 159/432 (36%), Gaps = 62/432 (14 LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK LQG LQGKN+ + G + +G I A A K A + + S T + LQGDLQGKNIFAAAGSDITNTGSIGAENALLLKASNNIESRSETRSNQNE GVGVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXG-TF</pre>	298 1072
Identit Query: Sbjct: Query:	ies - 239 1023 299	= 87/432 (20%), Positives +32 159/432 (36%), Gaps = 62/432 (14 LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK LQG LQGKN+ + G + +G I A A K A + + S T + LQGDLQGKNIFAAAGSDITNTGSIGAENALLLKASNNIESRSETRSNQNE	298 1072 355
Identit Query: Sbjct: Query: Sbjct:	ies 239 1023 299 1073	<pre>= 87/432 (20%), Positives +32 159/432 (36%), Gaps = 62/432 (14) LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK LQG LQGKN+ + G + +G I A A K A + + S T + LQGDLQGKNIFAAAGSDITNTGSIGAENALLLKASNNIESRSETRSNQNE GVGVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXG-TF V+N G + A L +G + + I TA E T + G T QGSVRNIGRV-AGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTV ISNGGRIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESKT</pre>	298 1072 355 1120
Identit Query: Sbjct: Query: Sbjct: Query:	ies 239 1023 299 1073 356	<pre>= 87/432 (20%), Positives +32 159/432 (36%), Gaps = 62/432 (14) LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK LQG LQGKN+ + G + +G I A A K A + + S T + LQGDLQGKNIFAAAGSDITNTGSIGAENALLLKASNNIESRSETRSNQNE GVGVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXG-TF V+N G + A L +G + + I TA E T + G T QGSVRNIGRV-AGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTV</pre>	298 1072 355 1120 408
Identit Query: Sbjct: Query: Sbjct: Query: Sbjct:	ies 239 1023 299 1073 356 1121	<pre>= 87/432 (20%), Positives +32 159/432 (36%), Gaps = 62/432 (14) LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK LQG LQGKN+ + G + +G I A A K A + + S T + LQGDLQGKNIFAAAGSDITNTGSIGAENALLLKASNNIESRSETRSNQNE GVGVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXG-TF V+N G + A L +G + + I TA E T + G T QGSVRNIGRV-AGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTV ISNGGRIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESKT ++ GG I S + I + V++ + +T+ G NL + +K LNAGGDIRSDTTGISRNQNTIFDSDNYVIRKEQNEVGSTIRTRG-NLSLNAKGDIRIPAA NVNNAKGSXNLSAGGRTTINDATIQAGSSVYSSTKGDTXLGENTRIIAENVT</pre>	298 1072 355 1120 408 1179
Identit Query: Sbjct: Query: Sbjct: Query: Sbjct: Query:	ies 239 1023 299 1073 356 1121 409	<pre>= 87/432 (20%), Positives +32 159/432 (36%), Gaps = 62/432 (14) LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK LQG LQGKN+ + G + +G I A A K A + + S T + LQGDLQGKNIFAAAGSDITNTGSIGAENALLLKASNNIESRSETRSNQNE GVGVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXG-TF V+N G + A L +G + + I TA E T + G T QGSVRNIGRV-AGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTV ISNGGRIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESKT ++ GG I S + I + V++ + +T+ G NL + +K LNAGGDIRSDTTGISRNQNTIFDSDNYVIRKEQNEVGSTIRTRG-NLSLNAKGDIRIPAA</pre>	298 1072 355 1120 408 1179 460
Identit Query: Sbjct: Query: Sbjct: Query: Sbjct: Query: Sbjct:	ies 239 1023 299 1073 356 1121 409 1180	= $87/432$ (20%), Positives +32 159/432 (36%), Gaps = $62/432$ (14 LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK LQG LQGKN+ + G + +G I A A K A + + S T + LQGDLQGKNIFAAAGSDITNTGSIGAENALLLKASNNIESRSETRSNQNE GVGVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXG-TF V+N G + A L +G + + I TA E T + G T QGSVRNIGRV-AGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTV ISNGGRIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESKT ++ GG I S + I + V++ + +T+ G NL + +K LNAGGDIRSDTTGISRNQNTIFDSDNYVIRKEQNEVGSTIRTRG-NLSLNAKGDIRIPAA NVNNAKGSXNLSAGGRTTINDATIQAGSSVYSSTKGDTXLGENTRIIAENVT V + +G L+AG D ++AG + Y+ G + TR + EVGSEQGRLKLAAGRDIKVEAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNQNG VLSNGSIGSAAVIEAKDTAHIESGKPLSLETSTVASWIRLNNGNIKGGKQLALLADDNIT	298 1072 355 1120 408 1179 460 1234
Identit Query: Sbjct: Query: Sbjct: Query: Sbjct: Query: Sbjct: Query:	ies , 239 1023 299 1073 356 1121 409 1180 461	= $87/432$ (20%), Positives +32 159/432 (36%), Gaps = $62/432$ (14 LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK LQG LQGKN+ + G + +G I Å Å K Å + +S T + LQGDLQGKNIFAAAGSDITNTGSIGAENALLLKASNNIESRSETRSNQNE GVGVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXG-TF V+N G + Å L +G + + I TÅ E T + G T QGSVRNIGRV-AGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTV ISNGGRIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESKT ++ GG I S + I + V++ + +T+ G NL + +K LNAGGDIRSDTTGISRNQNTIFDSDNYVIRKEQNEVGSTIRTRG-NLSLNAKGDIRIPAA NVNNAKGSXNLSAGGRTTINDATIQAGSSVYSSTKGDTXLGENTRIIAENVT V + +G L+AG D ++AG + Y+ G + TR + EVGSEQGRLKLAAGRDIKVEAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNQNG	298 1072 355 1120 408 1179 460 1234 520
Identit Query: Sbjct: Query: Sbjct: Query: Sbjct: Query: Sbjct: Sbjct:	ies - 239 1023 299 1073 356 1121 409 1180 461 1235	= $87/432$ (20%), Positives +32 159/432 (36%), Gaps = $62/432$ (14 LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK LQG LQGKN+ + G + +G I A A K A + + S T + LQGDLQGKNIFAAAGSDITNTGSIGAENALLKASNNIESRSETRSNQNE GVGVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXG-TF V+N G + A L +G + + I TA E T + G T QGSVRNIGRV-AGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTV ISNGGRIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESKT ++ GG I S + I + V++ + +T+ G NL + +K LNAGGDIRSDTTGISRNQNTIFDSDNYVIRKEQNEVGSTIRTRG-NLSLNAKGDIRIPAA NVNNAKGSXNLSAGGRTTINDATIQAGSSVYSSTKGDTXLGENTRIIAENVT V + +G L+AG D ++AG + Y+ G + TR + EVGSEQGRLKLAAGRDIKVEAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNQNG VLSNGSIGSAAVIEAKDTAHIESGKPLSLETSTVASWIRLNNGNIKGGKQLALLADDNIT +G++ +I +G + + T+ S NN +K + A+ N QAVSGTLDGKEIILVSGRDITVTGSNIIADNHTILSAKNNIVLKAAETRSRSAEMNKK AKTTNLNTPG-NLYVHTGKDLNLNVDKDLSAASIHLKSDNAAHITGTSKTLTA	298 1072 355 1120 408 1179 460 1234 520 1292
Identit Query: Sbjct: Query: Sbjct: Query: Sbjct: Query: Sbjct: Query: Sbjct: Query:	ies - 239 1023 299 1073 356 1121 409 1180 461 1235 521	= $87/432$ (20%), Positives +32 159/432 (36%), Gaps = $62/432$ (14 LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK LQG LQGKN+ + G + +G I A A K A + + S T + LQGDLQGKNIFAAAGSDITNTGSIGAENALLKASNNIESRSETRSNQNE GVGVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXG-TF V+N G + A L +G + + I TA E T + G T QGSVRNIGRV-AGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTV ISNGGRIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESKT ++ GG I S + I + V++ + +T+ G NL + +K LNAGGDIRSDTTGISRNQNTIFDSDNYVIRKEQNEVGSTIRTRG-NLSLNAKGDIRIPAA NVNNAKGSXNLSAGGRTTINDATIQAGSSVYSSTKGDTXLGENTRIIAENVT V + +G L+AG D ++AG + Y+ G + TR + EVGSEQGRLKLAAGRDIKVEAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNQNG VLSNGSIGSAAVIEAKDTAHIESGKPLSLETSTVASWIRLNNGNIKGGKQLALLADDNIT +G++ +I +G + + T+ S NN +K + A+ N QAVSGTLDGKEIILVSGRDITVTGSNIIADNHTILSAKNNIVLKAAETRSRSAEMNKK	298 1072 355 1120 408 1179 460 1234 520 1292 572
Identit Query: Sbjct: Query: Sbjct: Query: Sbjct: Query: Sbjct: Query: Sbjct:	ies - 239 1023 299 1073 356 1121 409 1180 461 1235 521 1293	= $87/432$ (20%), Positives +32 159/432 (36%), Gaps = $62/432$ (14 LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK LQG LQGKN + + G + + G I A A K A + + S T + LQGDLQGKNIFAAAGSDITNTGSIGAENALLKASNNIESRSETRSNQNE GVGVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXG-TF V+N G + A L +G + + I TA E T + G T QGSVRNIGRV-AGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTV ISNGGRIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESKT ++ GG I S + I + V++ + +T+ G NL + +K LNAGGDIRSDTTGISRNQNTIFDSDNYVIRKEQNEVGSTIRTG-NLSLNAKGDIRIPAA NVNNAKGSXNLSAGGRTTINDATIQAGSSVYSSTKGDTXLGENTRIIAENVT V + +G L+AG D ++AG + Y+ G + TR + EVGSEQGRLKLAAGRDIKVEAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNQNG VLSNGSIGSAAVIEAKDTAHIESGKPLSLETSTVASWIRLNNGNKGGKQLALLADDNIT +G++ +I +G + + T+ S NN +K + A+ N QAVSGTLDGKEIILVSGRDITVTGSNIIADNHTILS-AKNNIVLKAAETRSRSAEMNKK AKTTNLNTPG-NLYVHTGKDLNLNVDKDLSAASIHLKSDNAAHITGTSKTLTA K+ ++ G + KD N ++S + S N H T T T+++ EKSGLMGSGGIGFTAGSKKDTQTNRSETVSHTESVVGSLNGNTLISAGKHYTQTGSTISS SK-DMGVEAGXXXXXXXXXXXXXXXSGNLHIQAAKGNIQLRNTKLNAAKALETTALQG	298 1072 355 1120 408 1179 460 1234 520 1292 572 1352
Identit Query: Sbjct: Query: Sbjct: Query: Sbjct: Query: Sbjct: Query: Sbjct: Query: Sbjct:	ies - 239 1023 299 1073 356 1121 409 1180 461 1235 521 1293 573	= $87/432$ (20%), Positives +32 159/432 (36%), Gaps = $62/432$ (14 LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK LQG LQGKN + + G + +G I A A K A + + S T + LQGDLQGKNIFAAAGSDITNTGSIGAENALLLKASNNIESRSETRSNQNE GVGVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXG-TF V+N G + A L +G + + I TA E T + G T QGSVRNIGRV-AGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTV ISNGGRIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESKT ++ GG I S + I + V++ + +T+ G NL + +K LNAGGDIRSDTTGISRNQNTIFDSDNYVIRKEQNEVGSTIRTRG-NLSLNAKGDIRIPAA NVNNAKGSXNLSAGGRTTINDATIQAGSSVYSSTKGDTXLGENTRIIAENVT V + +G L+AG D ++AG + Y+ G + TR + EVGSEQGRLKLAAGRDIKVEAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNQNG VLSNGSIGSAAVIEAKDTAHIESGKPLSLETSTVASWIRLNNGNKGGKQLALLADDNIT +G++ +I +G + +T+ S NN +K + A+ N QAVSGTLDGKEIILVSGRDITVTGSNIIADNHTILSAKNNIVLKAAETRSRSAEMNKK AKTTNLNTPG-NLYVHTGKDLNLNVDKDLSAASIHLKSDNAHHITGTSKTLTA K+ ++ G + KD N ++S + S N H T T T+++ EKSGLMGSGGIGFTAGSKKDTQTNRSETVSHTESVVGSLNGNTLISAGKHYTQTGSTISS	298 1072 355 1120 408 1179 460 1234 520 1292 572 1352 626
Identit Query: Sbjct: Query: Sbjct: Query: Sbjct: Query: Sbjct: Query: Sbjct: Query: Sbjct:	ies - 239 1023 2999 1073 356 1121 409 1180 461 1235 521 1293 573 1353	= $87/432$ (20%), Positives +32 159/432 (36%), Gaps = $62/432$ (14 LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK LQG LQGKN + + G + + G I Å Å K Å + + S T + LQGDLQGKNIFAAAGSDITNTGSIGAENALLIKASNNIESRSETRSNQNE GVGVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXG-TF V+N G + Å L +G + + I TÅ E T + G T QGSVRNIGRV-AGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTV ISNGGRIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESKT ++ GG I S + I + V++ + +T+ G NL + +K LNAGGDIRSDTTGISRNQNTIFDSDNYVIRKEQNEVGSTIRTRG-NLSLNAKGDIRIPAA NVNNAKGSXNLSAGGRTTINDATIQAGSSVYSSTKGDTXLGENTRIIAENVT V + +G L+AG D ++AG + Y+ G + TR + EVGSEQGRLKLAAGRDIKVEAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNQNG VLSNGSIGSAAVIEAKDTAHIESGKPLSLETSTVASWIRLNNGNIKGGKQLALLADDNIT +G++ +I +G + + T+ S NN +K + A + N QAVSGTLDGKEIILVSGRDITVTGSNIIADNHTILSAKNNIVLKAAETRSRSAEMNKK AKTTNLNTPG-NLYVHTGKDLNLNVDKDLSAASIHLKSDNAHHITGTSKTLTA K+ + +G + KD N + +S + S N H T T T+++ EKSGLMGSGGIGFTAGSKKDTQTNRSETVSHTESVVGSLNGNTLISAGKHYTQTGSTISS SK-DMGVEAGXXXXXXXXXXXXXSGNLHIQAAKGNIQLRNTKLNAAKALETTALQG + D+G+ +G + KD + KG ++ + NT + A A++ G	298 1072 355 1120 408 1179 460 1234 520 1292 572 1352 626

[0430] Amino acids 1-1423 of ORF114-1 were cloned in the pGex vector and expressed in *E. coli*, as described above. GST-fusion expression was visible using SDS-PAGE, and **FIG. 5** shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF114-1.

[0431] Based on these results, including the homology with the putative secreted protein of *N. meningitidis* and on

the presence of a transmembrane domain, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 14

[0432] The following partial DNA sequence was identified in *N. meningitidis* <SEQ ID 63>

1 CGCTTCATTC	ATGATGAAGC	AGTCGGCAGC	AACATCGGCG	GCGGCAAAAT
51 GATTGTTGCA	GCCGGGCAGG	ATATCAATGT	ACGCGGCAnA	AGCCTTATTT
101 CTGATAAGGG	CATTGTTTTA	AAAGCAGGAC	ACGACATCGA	TATTTCTACT
151 gcccataatc	GCTATACCGG	CAATGAATAC	CACGAGAGCA	WAAAWTCAGG
201 CGTCATGGGT	ACTGGCGGAT	TGGGCTTTAC	TATCGGTAAC	CGGAAAACTA
251 CCGATGACAC	TGATCGTACC	AATATTGTsC	ATACAGGCAG	CATTATAGGC
301 AGCCTGAaTG	GAGACACCGT	TACAGTTGCA	GGAAACCGCT	ACCGACAAAC
351 CGGCAGTACC	GTCTCCAGCC	CCGACGGGGCG	CAATACCGTC	ACAGCCAAAw
401 GCATAGATGT	AGAGTTCGCA	AACAACCGGT	ATGCCACTGA	CTACGcCCAT
451 ACCCAGGGAA	CAAAAAGGCC	TTACCGTCGC	CCTCAATGTC	CCGGTTGTCC
501 AAGCTGCACA	AAACTTCATA	CAAGCAGCCC	AAAATGTGGG	СААААБТААА
551 AATAAACGCG	TTAATGCCAT	GGCTGCAGCC	AATGCTGCAT	GGCAGAGTTA
601 TCAAGCAACC	CAACAAATGC	AACAATTTGC	TCCAAGCAGC	AGTGCGGGAC
651 AAGGTCAAAA	СТАСААТСАА	AGCCCCAGTA	TCAGTGTGTC	CATTAC.TAC
701 GGCGAACAGA	AAAGTCGTAA	CGAGCAAAAA	AGACATTACA	CCGAAgCGGC
751 AgCAAGTCAA	ATTATCGGCA	AAGGGCAAAC	CACACTTGCG	GCAACAGGAA
801 GTGGGGAGCA	GTCCAATATC	AATATTACAG	GTTCCGATGT	CATCGGCCAT
951 GCAGGTACTC	C.CTCATTGC			
	0.010111100	AAGCAACCAT	ATCAGACTCC	AATCTGCCAA
901 ACAGGACGGC				
901 ACAGGACGGC 951 GCGTACGTnn	AGCGAGCAAA	GCAAAAACAA	AAGCAGTGGT	TGGAATGCAG
	AGCGAGCAAA CAAAATAGGC	GCAAAAACAA AAcGGCATCA	AAGCAGTGGT GGTTTGGAAT	TGGAATGCAG TACCGCCGGA
951 GCGTACGTnn	AGCGAGCAAA CAAAATAGGC GTAAAGGTAA	GCAAAAAACAA AACGGCATCA AGAGCAAGGG	AAGCAGTGGT GGTTTGGAAT GGAAGTACTA	TGGAATGCAG TACCGCCGGA CCCACCGCCA
951 GCGTACGTnn 1001 GGAAATATCG	AGCGAGCAAA CAAAATAGGC GTAAAGGTAA GGCAGCACAA	GCAAAAACAA AAcGGCATCA AGAGCAAGGG CCGGCAAAAC	AAGCAGTGGT GGTTTGGAAT GGAAGTACTA TACCATCCGA	TGGAATGCAG TACCGCCGGA CCCACCGCCA AGCGGCGGG <u>G</u>
951 GCGTACGTnn 1001 GGAAATATCG 1051 CACCCATGTC	AGCGAGCAAA CAAAATAGGC GTAAAGGTAA GGCAGCACAA TCAAAGGTGT	GCAAAAACAA AACGGCATCA AGAGCAAGGG CCGGCAAAAC GCAGCTCATC	AAGCAGTGGT GGTTTGGAAT GGAAGTACTA TACCATCCGA GGCAAAGGCA	TGGAATGCAG TACCGCCGGA CCCACCGCCA AGCGGCGGG <u>G</u> TACAGGCAGA
951 GCGTACGTnn 1001 GGAAATATCG 1051 CACCCATGTC 1101 GATACCACCC	AGCGAGCAAA CAAAATAGGC GTAAAGGTAA GGCAGCACAA TCAAAGGTGT CTGCATATAG	GCAAAAACAA AACGGCATCA AGAGCAAGGG CCGGCAAAAC GCAGCTCATC AAAGTGTTCA	AAGCAGTGGT GGTTTGGAAT GGAAGTACTA TACCATCCGA GGCAAAGGCA AGATACTGAA	TGGAATGCAG TACCGCCGGA CCCACCGCCA AGCGGCGGG <u>G</u> TACAGGCAGA ACCTATCAGA
951 GCGTACGTnn 1001 GGAAATATCG 1051 CACCCATGTC 1101 GATACCACCC 1151 TACGCGCAAC	AGCGAGCAAA CAAAATAGGC GTAAAGGTAA GGCAGCACAA TCAAAGGTGT CTGCATATAG AAACGGCAAT	GCAAAAACAA AACGGCATCA AGAGCAAGGG CCGGCAAAAC GCAGCTCATC AAAGTGTTCA GTCCAAGTT <u>t</u>	AAGCAGTGGT GGTTTGGAAT GGAAGTACTA TACCATCCGA GGCAAAGGCA AGATACTGAA ACTGTCGGTT	TGGAATGCAG TACCGCCGGA CCCACCGCCA AGCGGCGGG <u>G</u> TACAGGCAGA ACCTATCAGA ACGGATTCAG
951 GCGTACGTNN 1001 GGAAATATCG 1051 CACCCATGTC 1101 GATACCACCC 1151 TACGCGCAAC 1201 GCAAACAGCA	AGCGAGCAAA CAAAATAGGC GTAAAGGTAA GGCAGCACAA TCAAAGGTGT CTGCATATAG AAACGGCAAT AGTTACCGCC	GCAAAAACAA AACGGCATCA AGAGCAAGGG CCGGCAAAAC GCAGCTCATC AAAGTGTTCA GTCCAAGTT <u>±</u> AAAGCAAAGT	AAGCAGTGGT GGTTTGGAAT GGAAGTACTA TACCATCCGA GGCAAAGGCA AGATACTGAA ACTGTCGGTT CAAAGCAGAC	TGGAATGCAG TACCGCCGGA CCCACCGCCA AGCGGCGGGG TACAGGCAGA ACCTATCAGA ACGGATTCAG CATGCCTCCG
951 GCGTACGTnn 1001 GGAAATATCG 1051 CACCCATGTC 1101 GATACCACCC 1151 TACGCGCAAC 1201 GCAAACAGCA 1251 TGCAAGCGGC	AGCGAGCAAA CAAAATAGGC GTAAAGGTAA GGCAGCACAA TCAAAGGTGT CTGCATATAG AAACGGCAAT AGTTACCGCC AAgCGGTATT	GCAAAAACAA AACGGCATCA AGAGCAAGGG CCGGCAAAAC GCAGCTCATC AAAGTGTTCA GTCCAAGTT <u>t</u> AAAGCAAAGT	AAGCAGTGGT GGTTTGGAAT GGAAGTACTA TACCATCCGA GGCAAAGGCA AGATACTGAA ACTGTCGGTT CAAAGCAGAC AAGACGGCTA	TGGAATGCAG TACCGCCGGA AGCGGCGGG <u>G</u> TACAGGCAGA ACCTATCAGA ACGGATTCAG CATGCCTCCG TCAAATYAAA
951 GCGTACGTNN 1001 GGAAATATCG 1051 CACCCATGTC 1101 GATACCACCC 1151 TACGCGCAAC 1201 GCAAACAGCA 1251 TGCAAGCGGC 1301 TAACCGGGCA	AGCGAGCAAA CAAAATAGGC GTAAAGGTAA GGCAGCACAA TCAAAGGTGT CTGCATATAG AAACGGCAAT AGTTACCGCC AAgCGGTATT ACACAGACCT	GCAAAAACAA AACGGCATCA AGAGCAAGGG CCGGCAAAAC GCAGCTCATC AAAGTGTTCA GTCCAAGTT <u>t</u> AAAGCAAAGT TATGCCGGAG yAAGGGCGGT	AAGCAGTGGT GGTTTGGAAT GGAAGTACTA TACCATCCGA GGCAAAGGCA AGATACTGAA ACTGTCGGTT CAAAGCAGAC AAGACGGCTA ATCATCACGT	TGGAATGCAG TACCGCCGGA AGCGGCGGG <u>G</u> TACAGGCAGA ACCTATCAGA ACGGATTCAG CATGCCTCCG TCAAATYAAA CTAGCCAAAG
951 GCGTACGTNN 1001 GGAAATATCG 1051 CACCCATGTC 1101 GATACCACCC 1151 TACGCGCAAC 1201 GCAAACAGCA 1251 TGCAAGCGGC 1301 TAACCGGGCA 1351 GTYAGAGACA	AGCGAGCAAA CAAAATAGGC GTAAAGGTAA GGCAGCACAA TCAAAGGTGT CTGCATATAG AAACGGCAAT AGTTACCGCC AAgCGGTATT ACACAGACCT AAGGGCAAAA	GCAAAAACAA AACGGCATCA AGAGCAAGGG CCGGCAAAAC GCAGCTCATC AAAGTGTTCA GTCCAAGTT <u>t</u> AAAGCAAAGT TATGCCGGAG yAAGGGCGGT ACCTTTTTCA	AAGCAGTGGT GGTTTGGAAT GGAAGTACTA TACCATCCGA GGCAAAGGCA AGATACTGAA ACTGTCGGTT CAAAGCAGAC AAGACGGCTA ATCATCACGT GACGGCCACC	TGGAATGCAG TACCGCCGGA AGCGGCGGGG TACAGGCAGA ACCTATCAGA ACGGATTCAG CATGCCTCCG TCAAATYAAA CTAGCCAAAG CTTACTGCCA
951 GCGTACGTNN 1001 GGAAATATCG 1051 CACCCATGTC 1101 GATACCACCC 1151 TACGCGCAAC 1201 GCAAACAGCA 1251 TGCAAGCGGC 1301 TAACCGGGCA 1351 GTYAGAGACA 1401 CGCAGAAGAT	AGCGAGCAAA CAAAATAGGC GTAAAGGTAA GGCAGCACAA TCAAAGGTGT CTGCATATAG AAACGGCAAT AGTTACCGCC AAgCGGTATT ACACAGACCT AAGGGCAAAA AAACCACAGAC	GCAAAAACAA AACGGCATCA AGAGCAAGGG CCGGCAAAAC GCAGCTCATC AAAGTGTTCA GTCCAAGTT <u>t</u> AAAGCAAAGT TATGCCGGAG yAAGGGCGGT ACCTTTTTCA CGCTACGAAG	AAGCAGTGGT GGTTTGGAAT GGAAGTACTA TACCATCCGA GGCAAAGGCA AGATACTGAA ACTGTCGGTT CAAAGCAGAC AAGACGGCTA ATCATCACGT GACGGCCACC GCAGAAGCTT	TGGAATGCAG TACCGCCGGA AGCGGCGGG <u>G</u> TACAGGCAGA ACCTATCAGA ACGGATTCAG CATGCCTCCG TCAAATYAAA CTAGCCAAAG CTTACTGCCA
951 GCGTACGTNN 1001 GGAAATATCG 1051 CACCCATGTC 1101 GATACCACCC 1151 TACGCGCAAC 1201 GCAAACAGCA 1251 TGCAAGCGGC 1301 TAACCGGGCA 1351 GTYAGAGACA 1401 CGCAGAAGAT 1451 GCGACATTCA	AGCGAGCAAA CAAAATAGGC GTAAAGGTAA GGCAGCACAA TCAAAGGTATA CTGCATATAG AAACGGCAAT AGTTACCGCC AAGCGGTATT ACACAGACCT AAGGGCAAAA AAACCACAGC	GCAAAAACAA AACGGCATCA AGAGCAAGGG CCGGCAAAAC GCAGCTCATC AAAGTGTTCA GTCCAAGTT <u>t</u> AAAGCAAAGT TATGCCGGAG yAAGGGCGGT ACCTTTTTCA CGCTACGAAG	AAGCAGTGGT GGTTTGGAAT GGAAGTACTA TACCATCCGA GGCAAAGGCA AGATACTGAA ACTGTCGGTT CAAAGCAGAC AAGACGGCTA ATCATCACGT GACGGCCACC GCAGAAGCTT GGCACGGTTA	TGGAATGCAG TACCGCCGGA AGCGGCGGGG TACAGGCAGA ACCTATCAGA ACGGATTCAG CATGCCTCCG TCAAATYAAA CTAGCCAAAG CTTACTGCCA CGGCATAGGC
951 GCGTACGTNN 1001 GGAAATATCG 1051 CACCCATGTC 1101 GATACCACCC 1151 TACGCGCAAC 1201 GCAAACAGCA 1251 TGCAAGCGGC 1301 TAACCGGGCA 1351 GTYAGAGACA 1401 CGCAGAAGAT 1451 GCGACATTCA 1501 GGCAGTTTCG	AGCGAGCAAA CAAAATAGGC GTAAAGGTAA GGCAGCACAA TCAAAGGTGT CTGCATATAG AAACGGCAAT AGTTACCGCC AAGCGGTATT ACACAGACCT AAGGGCAAAA AAACCACAGC ACCTGAACGG	GCAAAAACAA AACGGCATCA AGAGCAAGGG CCGGCAAAAC GCAGCTCATC AAAGTGTTCA GTCCAAGTT <u>t</u> AAAGCAAAGT TATGCCGGAG yAAGGCCGGAG CGCTACGAAG CGGCTGGGAC TAAGCCCGGC	AAGCAGTGGT GGTTTGGAAT GGAAGTACTA TACCATCCGA GGCAAAGGCA AGATACTGAA ACTGTCGGTT CAAAGCAGAC AAGACGGCTA GACGGCCACC GCAGAAGCTT GGCACGGTTA AGCCGGCTAC	TGGAATGCAG TACCGCCGGA AGCGGCGGG <u>G</u> TACAGGCAGA ACCTATCAGA ACGGATTCAG CATGCCTCCG TCAAATYAAA CTAGCCAAAG CTTACTGCCA CGGCATAGGC CCGACAAACA

1701 AGAAACCGAA GCGCGTATCT ACACCGGCAT CGACACCGAA ACTGCGGATC

1751 AACACTCAGG CCATCTGAAA AACAGCTTCG AC...

[0433] This corresponds to the amino acid sequence <SEQ ID 64; ORF116>:

1...RFIHDEAVGS NIGGGKNIVA AGQDINVRGX SLISDKGIVL KAGADIDIST

51 AHNRYTGNEY HESXXSGVMG TGGLGFTIGN RKTTDDTDRT NIVHTGSIIG

101 SLNGDTVTVA GNRYRQTGST VSSPEGRNTV TAKXIDVEFA NNRYATDYAH

151 TQEQKGLTVA LNVPVVQAAQ NFIQAAQNVG KSKNKRVNAM AAANAAWQSY

201 QATQQMQQFA PSSSAGQGQN YNQSPSISVS IXYGEQKSRN EQKRNYTEAA

251 ASQIIGKGQT TLAATGSGEQ SNINITGSDV IGHAGTXLIA DNHIRLQSAX

301 QDGSEQSKNK SSGWNAGVRX KIGNGIRFGI TAGGNIGKGK EQGGSTTHRH

351 THVGSTTGKT TIRSGGDTTL KGVQLIGXGI QADTRNLHIE SVQDTETYQS

401 KOONGNVOVT VGYGFSASGS YROSKVKADH ASVTGOSGIY AGEDGYOIKV

451 RDNTDLKGGI ITSSQSAEDK GKNLFQTATL TASDIQNHSR YEGRSFGIGG

501 SFDLNGGWDG TVTDKQGRPT DRISPAAGYG SDGDSKNSTT RSGVNTHNIH

551 ITDEAGQLAR TGRTAKETEA RIYTGIDTET ADQHSGHLKN SFD...

[0434] Computer analysis of this amino acid sequence gave the following results:

[0435] Homology with pspA Putative Secreted Protein of *N. meningitidis* (Accession Number AF030941)

[0436] ORF116 and pspA protein show 38% as identity in 502 as overlap:

Orf116: 6	EAVGSNIGGGKMIVAAGQDINVRGXSLISDKGIVLKAGHDIDISTAHNRYTGNEYHESXX +AV + G ++I+ +G+DI V G ++I+D +L A ++I + A R E ++	65
PspA: 1235	QAVSGTLDGKEIILVSGRDITVTGSNIIADNHTILSAKNNIVLKAAETRSRSAEMNKKEK	1294
Orf116: 66	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	125
PspA: 1295	${\tt SGLMGSGGIGFTAGSKKDTQTNRSETVSHTESVVGSLNGNTLISAGKHYTQTGSTISSPQ$	1354
Orf116: 126	GRNTVTAKXIDVEFANNRYATDYAHTQEQKGLTVALNVPXXXXXXXXXXXXXXKKS G +++ I ++ A NRY+ + EOKG+TVA++VP GKS	182
PspA: 1355	GDVGISSGKISIDAAQNRYSQESKQVYEQKGVTVAISVPVVNTVMGAVDAVKAVQTVGKS	1414
Orf116: 183	KNKRVXXXXXXXWQSYQATQQMQQFAPSSSAGQGQNYNQSPSISVSIXYGEQKSRN KN RV + + + A P +AGOG ISVS+YGEOK+ +	240
PspA: 1415	KNSRVNAMAAANALNKGVDSGVALYNAARNPKKAAGQGISVSVTYGEQKNTS	1466
Orf116: 241	EQKRHYTEAAASQIIGKGQTTLAATGSGEQSNINITGSDVIGHAGTXLIADNHIRLQSAK	300
PspA: 1467	E + T+ +I G G+ +L A+G+G+ S I ITGSDV G GT L A+N ++++A+ ESRIKGTQVQEGKITGGGKVSLTASGAGKDSRITITGSDVYGGKGTRLKAENAVQIEAAR	1526
Orf116: 301	QDGSEQSKNKSSGWNAGVRXKIGNGIRFGITAXXXXXXXXXXXTHRHTHVGSTTGKT	360
PspA: 1527	Q E+S+NKS+G+NAGV I GI FG TA T +R++H+GS +T QTHQERSENKSAGFNAGVAIAINKGISFGFTAGANYGKGYGNGDETAYRNSHIGSKDSQT	1586
Orf116: 361	TIRSGGDTTLKGVQLIGKGIQADTRNLHIESVQDTETYQSKQQNGNVQVTVGYGFSASGS I SGGDT +KG QL GKG+ +LHIES+QDT ++ KQ+N + QVTVGYGFS GS	420
PspA: 1587	AIESGGDTVIKGGQLKGKGVGVTAESLHIESLQDTAVFKGKQENVSAQVTVGYGFSVGGS	1646

-continued Orf116: 421 YRQSKVKADHASVTGQSGIYAGEDGYQIKVRDNTDLKGGIITSSQSAEDKGKNLFQTATL 480 Y +SK +D+ASV QSGI+AG DGY+I+V T L G + S DK KNL +T+ + PspA: 1647 YNRSKSSSDYASVNEQSGIFAGGDGYRIRVNGKTGLVGAAVVSD---ADKSKNLLKTSEI 1703

Orf116:	481	TASDIQNHSRYEGRSFGIGGSF	502
		DIQNH+ + G+ G F	
PspA:	1704	WHKDIQNHASAAASALGLSGGF	1725

[0437] Based on homology with pspA, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 15

[0438] The following partial DNA sequence was identified in *N. meningitidis* SEQ ID 65>

1..ACGACCGGCA GCCTCGGCGG CATACTGGCC GGCGGCGGCA CTTCCCTTGC

51 CGCACCGTAT TTGGACAAAG CGGCGGAAAA CCTCGGTCCG GCGGGCAAAG

101 CGGCGGTCAA CGCACTGGGC GGTGCGGCCA TCGGCTATGC AACTGGTGGT

151 AGTGGTGGTG CTGTGGTGGG TGCGAATGTA GATTGGAACA ATAGGCAGCT

201 GCATCCGAAA GAAATGGCGT TGGCCGACAA ATATGCCGAA GCCCTCAAGC

251 GCGAAGTTGA AAAACGCGAA GGCAGAAAAA TCAGCAGCCA AGAAGCGGCA

301 ATGAGAATCC GCAGGCAGAT ATGCGTTGGG TGGACAAAGG TTCCCAAGAC

351 GGCTATACCG ACCAAAGCGT CATATCCCTT ATCGGAATGA

[0439] This corresponds to the amino acid sequence <SEQ ID 66; ORF118>:

1...TTGSLGGILA GGGTSLAAPY LDKAAENLGP AGKAAVNALG GAAIGYATGG

51 <u>SGGAVVGA</u>NV DWNNRQLHPK EMALADKYAE ALKREVEKRE GRKISSQEAA

101 MRIRRQICVG WTKVPKTAIP TKASYPLSE*

[0440] Computer analysis of this amino acid sequence reveals two putative transmembrane domains.

[0441] Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 16

[0442] The following partial DNA sequence was identified in *N. meningitidis* SEQ ID 67>

1..CAATGCCGTC TGAAAAGCTC ACAATYTTAC AGACGGCATT TGTTATGCAA

51 GTACATATAC AGATTCCCTA TATACTGCCC AGrkGCGTGC GTgGCTGAAG

101 ACACCCCCTA CGCTTGCTAT TTGrAACAGC TCCAAGTCAC CAAAGACGTC

151 AACTGGAACC AGGTACWACT GGCGTACGAC AAATGGGACT ATAAACAGGA

201 AGGCTTAACC GGAGCCGGAG CAGCGATTAT TGCGCTGGCT GTTACCGTGG

-continuedresolution251TTACTGCGGGCGCGGGAGCCGGAGCCGCACTGGGCTTAAACGGCGGGGCA301GCAGCGGCAACCGATGCCGCATTCGCCTCGCTGGCCAGCCAGGGTTCCGT351ATCGCTCATCAaCAACAAAGGCAATATCGGTAaCACCCTGAAAGAGCTGG401GCAGAAGCAGCACGGTGAAAAATCTGATGGTTGCCGTCGCtACCGCAGGC451GTagCcgaCAAAATCGGTGCTTCGGCACTGAAATAGCGGCAGCGATAAGCA501GTGGATCAACAACCTGACCTCAACCTGGCCAATGCGGGCAGTGCCGCACC501GTGGATCAACCGCTGTCACGGCGGCACCtgAAAGACAATCTGGAAGCG601AATATCCTTGCGGCTTTGGTGAATACTGCCACACAAGATGCCCATGCAC601AATCAAACAGTTGGATCAGCACTACATTACCACACAAGATGCCCATGCAC701TAGCGGGCTGTGCGGCTGTGGGCGAGAAAATAGGGCAACAATTTGGCAT751GCGATAGGCGCGCTGTGGGCGAGTAAGCAGTGTGGCGGCGGCGATGTA851ACAGCAAACTGCTTGCCGCACGGTAAGCAGTGTGGCTGGCGCGATGTAG951CGACAAtGACGACAACGATCACGAACACTCACGCTAGAACCGCAACAA

[0443] This corresponds to the amino acid sequence <SEQ ID 68; ORF41>:

1..QCRLKSSQFY RRHLLCKYIY RFPIYCPXAC VAEDTPYACY LXQLQVTKDV
51 HWNQVXLAYD KWDYKQEG<u>LT GAGAAIIALA VTVVT</u>AGAGA GAALGLNGAA
101 AAATDAAFAS LASQASVSLI NNKGNIGNTL KELGRSSTVK NU4VAVATAG
151 VADKIGASAL NNVSDKQWIN NLTVNLANAG SAALINTAVN GGSLKDNLEA
201 NILAALVNTA HGEAASKIKQ LDQHYITHKI AHAIAGCAAA AANKGKCQDG
251 AIGAAVGEIV GEALTNGKNP DTLTAKEREQ ILAYSKLVAG TVSGVVGGDV
301 NAAANAAEVA VKNNQLSDK*

[0444] Further work revealed the complete nucleotide sequence <SEQ ID 69>:

1ATGCAAGTAAATATTCAGATTCCCTATATACTGCCCAGATGCGTGCGTGC51TGAAGACACCCCTACGCTGCTATTTGAAACAGCTCCAAGTCACCAAAG101ACGTCAACTGGAACCAGGTACAACTGGCGTACGACAAATGGGACTATAAA151CAGGAAGCCTAACCGGAGCCGGAGCAGCGATTATTGCCGTGGCTGTTAC201CGTGGTTACTGCGGGCCGCGGAGCCGGAGCCGCACTGGCCTTAAACGGCG251CGGCCGCAGCGGCAACCGATGCCGCTAGCCCAGCCAGGCT301TCCGTATCGCTCATCAACAACAAAGGCAATATCGGTAACA351GCTGGGCAGAAGCAGACGGTGACAAAATCGATGGTTGCC451AAGCAGTGGATCAACAACCTGACCGTCACCCTGGCCAATG

-continued 501 CGCACTGATT AATACCGCTG TCAACGGCGG CAGCCTGAAA GACAATCTGG 551 AAGCGAATAT CCTTGCGGCT TTGGTGAATA CTGCGCATGG AGAAGCAGCC 601 AGTAAAATCA AACAGTTGGA TCAGCACTAC ATTACCCACA AGATTGCCCA 651 TGCCATAGCG GGCTGTGCGG CTGCGGCGGC GAATAAGGGC AAGTGTCAGG 701 ATGGTGCGAT AGGTGCGGCT GTGGGCGAGA TAGTCGGGGA GGCTTTGACA 751 AACGGCAAAA ATCCTGACAC TTTGACAGCT AAAGAACGCG AACAGATTTT 801 GGCATACAGC AAACTGGTTG CCGGTACGGT AAGCGGTGTG GTCGGCGGCG 851 ATGTAAATGC GGCGGCGAAT GCGGCTGAGG TAGCGGTGAA AAATAATCAG 901 CTTAGCGACA AAGAGGGTAG AGAATTTGAT AACGAAATGA CTGCATGCGC 951 CAAACAGAAT AATCCTCAAC TGTGCAGAAA AAATACTGTA AAAAAGTATC 1001 AAAATGTTGC TGATAAAAGA CTTGCTGCTT CGATTGCAAT ATGTACGGAT 1051 ATATCCCGTA GTACTGAATG TAGAACAATC AGAAAACAAC ATTTGATCGA 1101 TAGTAGAAGC CTTCATTCAT CTTGGGAAGC AGGTCTAATT GGTAAAGATG 1151 ATGAATGGTA TAAATTATTC AGCAAATCTT ACACCCAAGC AGATTTGGCT 1201 TTACAGTCTT ATCATTTGAA TACTGCTGCT AAATCTTGGC TTCAATCGGG 1251 CAATACAAAG CCTTTATCCG AATGGATGTC CGACCAAGGT TATACACTTA 1301 TTTCAGGAGT TAATCCTAGA TTCATTCCAA TACCAAGAGG GTTTGTAAAA 1351 CAAAATACAC CTATTACTAA TGTCAAATAC CCGGAAGGCA TCAGTTTCGA 1401 TACAAACCTA AAAAGACATC TGGCAAATGC TGATGGTTTT AGTCAAAAAC 1451 AGGGCATTAA AGGAGCCCAT AACCGCACCA ATTTTATGGC AGAACTAAAT 1501 TCACGAGGAG GACGCGTAAA ATCTGAAACC CAAACIGATA TTGAAGGCAT 1551 TACCCGAATT AAATATGAGA TTCCTACACT AGACAGGACA GGTAAACCTG 1601 ATGGTGGATT TAAGGAAATT TCAAGTATAA AAACTGTTTA TAATCCTAAA 1651 AAATTTTCTG ATGATAAAAT ACTTCAAATG GCTCAAAATG CTGCTTCACA 1701 AGGATATTCA AAAGCCTCTA AAATTGCTCA AAATGAAAGA ACTAAATCAA 1751 TATCGGAAAG AAAAAATGTC ATTCAATTCT CAGAAACCTT TGACGGAATC 1801 AAATTTAGAT CATATTTTGA TGTAAATACA GGAAGAATTA CAAACATTCA 1851 CCCAGAATAA

[0445] This corresponds to the amino acid sequence <SEQ ID 70; ORF41-1>:

1 MOVNIQIPYI LPRCVRAEDT PYACYLKOLO VTKDVNWNOV QLAYOKWDYK 51 QEGLTG<u>AGAA IIALAVTVVT AGA</u>GAGAALG LNGAAAAATD AAFASLASQA 101 SVSLINNKGN IGNTLKELGR SSTVKNLHVA VATAGVADKI GASALNNVSD 151 KOWINNLTVN LANAGSAALI NTAVNGGSLX DNLEANILAA LVNTAHGEAA 201 SKIKQLDQHY ITHKIAHAIA GCAAAAANKG KCQDGAIGAA VGEIVGEALT 251 NGKNPDTLTA KEREQILAYS KLVAGTVSGV VGGDVNAAAN AAEVAVKNNQ 301 LSDKLGREFD NEMTACAKON NPOLCRKNTV KKYONVADKR LAASIAICTD

-continued 351 ISRSTECRTI RKQHLIDSRS LHSSWEAGLX GKDDEWYKLF SKSYTQADLA 401 LQSYHLNTAA KSWLOSGNTK PLSEWNSDQG YTLISGVNPR FIPIPRGFVK 451 QHTFITNVKY PEGISFDTNL KRMLANADGF SQKQGIKGAH NRTNFNAELN 501 SRGGRVKSET QTDIEGITRI KYEIPTLDRT GKPDGGFKEI SSIKTVYNPK 551 KFSDDKILQH AQNAASQGYS KASKIAQNER TKSISERKNV IQFSETFDGI 601 KFRSYFDVNT GRITNIHPE*

[0446] Computer analysis of this amino acid sequence predicts a transmembrane domain, and homology with an ORF from N. meningitidis (strain A) was also found.

[0447] ORF41 shows 92.8% identity over a 279 aa overlap with an ORF (ORF41a) from strain A of N. meningitidis:

orf41.pep orf41a	10 YRRHLL	20 CKYIYRFPIY	30 CPXACVAEDI	11 111	1:1::11111	60 XLAYDKWDYKÇ 1111:1111 QLAYDRWDYKÇ 20	1111
orf41.pep orf41a	70 TG <u>AGAA</u> TE <u>AGAA</u>		<u>: </u> : :	1111 11111		120 SVSLINNKGNI : :: SVSFINNKGDV 80	: :
orf41.pep orf41a			:		1111111	180 LANAGSAALIN LANAGSAALIN 140	
orf41.pep orf41a				1111111111	:	240 GCAAAAANKGH GCAAAAANKGH 200	IIÎI
orf41.pep orf41a				1111111111		300 VGGDVNAAANA VGGDVNAAANA 260	
orf41.pep orf41a	310 AVKNNQ AVKNNQ		NENTACAKQN 290	XPQLCRXWIV	KKYQNVADKR 310	LAASIAICTDI 320	ISRS 330

[0448]	A partial	ORF41a	nucleotide	sequence	<seq< th=""><th>ID</th></seq<>	ID
71> is:						

1 TATCTGAAAC AGCTCCAAGT AGCGAAAAAC ATCAACTGGA ATCAGGTGCA 51 GCTTGCTTAC GACAGATGGG ACTACAAACA GGAGGGCTTA ACCGAAGCAG 101 GTGCGGCGAT TATCGCACTG GCCGTTACCG TGGTCACCTC AGGCGCAGGA 151 ACCGGAGCCG TATTGGGATT AAACGGTGCG NCCGCCGCCG CAACCGATGC 201 AGCATTCGCC TCTTTGGCCA GCCAGGCTTC CGTATCGTTC ATCAACAACA 251 AAGGCGATGT CGGCAAAACC CTGAAAGAGC TGGGCAGAAG CAGCACGGTG 77

-continued

301 AAAAATCTGG TGGTTGCCGC CGCTACCGCA GGCGTAGCCG ACAAAATCGG 351 CGCTTCGGCA CTGANCAATG TCAGCGATAA GCAGTGGATC AACAACCTGA 401 CCGTCAACCT AGCCAATGCG GGCAGTGCCG CACTGATTAA TACCGCTGTC 451 AACGGCGGCA GCCTGAAAGA CANTCTGGAA GCGAATATCC TTGCGGCTTT 501 GGTCAATACC GCGCATGGAG AAGCAGCCAG TAAAATCAAA CAGTTGGATC 551 AGCACTACAT AGTCCACAAG ATTGCCCATG CCATAGCGGG CTGTGCGGCA 601 GCGGCGGCGA ATAAGGGCAA GTGTCAGGAT GGTGCGATAG GTGCGGCTGT 651 GGGCGAGATA GTCGGGGAGG CTTTGACAAA CGGCAAAAAT CCTGACACTT 701 TGACAGCTAA AGAACGCGAA CAGATTTTGG CATACAGCAA ACTGGTTGCC 751 GGTACGGTAA GCGGTGTGGT CGGCGGCGAT GTAAATGCGG CGGCGAATGC 801 GGCTGAGGTA GCGGTGAAAA ATAATCAGCT TAGCGACNAA GAGGGTAGAG 851 AATTTGATAA CGAAATGACT GCATGCGCCA AACAGAATAN TCCTCAACTG 901 TGCAGAAAAA ATACTGTAAA AAAGTATCAA AATGTTGCTG ATAAAAGACT 951 TGCTGCTTCG ATTGCAATAT GTACGGATAT ATCCCGTAGT ACTGAATGTA 1001 GAACAATCAG AAAACAACAT TTGATCGATA GTAGAAGCCT TCATTCATCT 1051 TGGGAAGCAG GTCTAATTGG TAAAGATGAT GAATGGTATA AATTATTCAG 1101 CAAATCTTAC ACCCAAGCAG ATTTGGCTTT ACAGTCTTAT CATTTGAATA 1151 CTGCTGCTAA ATCTTGGCTT CAATCGGGCA ATACAAAGCC TTTATCCGAA 1201 TGGATGTCCG ACCAAGGTTA TACACTTATT TCAGGAGTTA ATCCTAGATT 1251 CATTCCAATA CCAAGAGGGT TTGTAAAACA AAATACACCT ATTACTAATG 1301 TCAAATACCC GGAAGGCATC AGTTTCGATA CAAACCTANA AAGACATCTG 1351 GCAAATGCTG ATGGTTTTAG TCAAGAACAG GGCATTAAAG GAGCCCATAA 1401 CCGCACCAAT NTTATGGCAG AACTAAATTC ACGAGGAGGA NGNGTAAAAT 1451 CTGAAACCCA NACTGATATT GAAGGCATTA CCCGAATTAA ATATGATATT 1501 CCTACACTAG ACAGGACAGG TAAACCTGAT GGTGGATTTA AGGAAATTTC 1551 AAGTATAAAA ACTGTTTATA ATCCTAAAAA NTTTTNNGAT GATAAAATAC 1601 TTCAAATGGC TCAANATGCT GNTTCACAAG GATATTCAAA AGCCTCTAAA 1651 ATTGCTCAAA ATGAAAGAAC TAAATCAATA TCGGAAAGAA AAAATGTCAT 1701 TCAATTCTCA GAAACCTTTG ACGGAATCAA ATTTAGANNN TATNTNGATG 1751 TAAATACAGG AAGAATTACA AACATTCACC CAGAATAA

[0449] This encodes a protein having the partial amino acid sequence <SEQ ID 72>:

1 YLKQLQVAKN INWNQVQLAY DRWDYKQEGL TE<u>AGAAIIAL AVTVVTSGA</u>G 51 TGAVLGLNGA XAAATDAAFA SLASQASVSF INNKGDVGKT LKELGRSSTV 101 KNLVVAAATA GVADKIGASA LXNVSDKQWI NNLTVNLANA GSAALINTAV 151 NGGSLKDXLE ANILAALVNT AHGEAASKIK QLDQHYIVRK IAHAIAGCAA 201 AAANKGKCQD GAIGAAVGEI VGEALTNGKN PDTLTAKERE QILAYSKLVA

251	GTVSGVVGGD	VNAAANAAEV	AVKNNQLSDX	EGREFONENT	ACAKQNXPQL
301	CRKNTVKKYQ	NVADKRLAAS	IAICTDISRS	TECRTIRKQH	LIDSRSLHSS
351	WEAGLIGKDD	EWYKLFSKSY	TQADLALQSY	BLNTAAKSWL	QSGNTKPLSE
401	VNSDQGYTLI	SGVNPRFIFI	PRGFVKQNTP	ITNVKYPEGI	SFDTNLXRHL
451	ANADGFSQEQ	GIKGAHNRTN	XMAELNSRGG	XVKSETXTDI	EGITRIKYEI
501	PTLDRTGKPD	GGFKEISSIK	TVYNPKXFXD	DKILQMAQXA	XSQGYSKASK
551	IAQNERTKSI	SERKNVIQFS	ETFDGIKFRX	YXDVNTGRIT	NIHPE*

[0450] ORF41a and ORF41-1 show 94.8% identity in 595 aa overlap:

orf41a.pep orf41-1	MQVNIQIPYI: 10	LPRCVRAEDT 20	PYACYLKQLÇ	: :: VTKDVNWNQV	: QLAYDKWDYK	QEGLTGAGAA
orf41a.pep orf41-1	40 IIALAVTVVT: IIALAVTVVT: 70	: : :	 LNGAAAAATI	 AAFASLASQA	: : SVSLINNKGN	: : IGNTLKELGR
orf41a.pep orf41-1	100 SSTVKNLVVA : SSTVKNLMVA 130	:	 GASALNNVSI			 NTAVNGGSLK
orf41a.pep orf41-1	160 DXLEANILAA DNLEANILAA 190		SKIKQLDQHY	: THKIAHAI?	 GCAAAAANKG	
orf41a.pep orf41-1	220 VGEIVGEALT VGEIVGEALT 250		KEREQILAYS		 VGGDVNAAAN	 AAEVAVKNNQ
orf41a.pep orf41-1	280 LSDXEGREFDI LSDKEGREFDI 310	HHHHĨI		 KKYQNVADKF	 RLAASIAICTE	 ISRSTECRTI
orf41a.pep orf41-1	340 RKQHLIDSRS: RKQHLIDSRS: 370					Î XSWLOSGNTK
orf41a.pep orf41-1	400 PLSEWMSDQG ⁻ PLSEWMSDQG 430		 FIPIPRGFVP		 PEGISFDTNL	 KRHLANADGF
orf41a.pep orf41-1	460 SQEQGIKGAHI : SQKQGIKGAHI 490 520		 ISRGGRVKSEI	 QTDIEGITRI	 KYEIPTLDRT	 GKPDGGFKEI

		-con	tinued			
orf41a.pep	SSIKTVYNPKXFX	DDKILQMAQX	AXSQGYSKASK	IAQNERTKS	ISERKNVIQFS	ETFDGI
		IIIII III III				
orf41-1	SSIKTVYNPKKFS	DDKILQMAQN	AASQGYSKASK	IAQNERTKS	ISERKNVIQFS	ETFDGI
	550	560	570	580	590	600
	580 59	0				
orf41a.pep	KFRXYXDVNTGRI	INIHPEX				
orf41-1	KFRSYFDVNTGRI	INIHPEX				
	610	620				

[0451] Amino acids 25-619 of ORF41-1 were amplified as described above. **FIG. 6** shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF41-1.

[0452] Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 17

[0453] The following DNA sequence was identified in *N. meningitidis* <SEQ ID 73>

1 ATGGCAATCA TTACATTGTA TTATTCTGTC AATGGTATTT TAAATGTATG

51TGCAAAAGCAAAAAATATTCAAGTAGTTGCCAATAATAAGAATATGGTTC101TTTTTGGGTTTTTGGSmrGCATCATCGGCGGTTCAACCAATGCCATGTCT151CCCATATTGTTAATATTTTGCTTAGCGAAACAGAAAATAAAAATcgTAT201CGTAAAATCAAGCAATCTATGCTATCTTTGGCGAAAATTGTTCAAATAT251ATATGCTAAGAGACCAGTATTGGTTATTAAATAAGAGTGAATACGdTTTA301ATATTTTTACTGTCGTATTGTCTGTTATTGGATTGTATGTTGGAATTCG

351 GTTAAGGACT AAGATTAGCC CAAATTTTTT TAAAATGTTA ATTTTTATTG

401 tTTTATTGGT ATTGGCtCTG AAAATCGGGC AttCGGGTTT AAtCAAACTT

451 TAA

[0454] This corresponds to the amino acid sequence <SEQ ID 74; ORF51>:

1 HAIITLYYSV NGILNVCAKA KNIQVVANNK NMVLFG<u>FLXX IICGSTNANS</u> 51 <u>PIL</u>LIFLLSE TENKNRIVKS SNLCYLLAKI VQIYMLRDQY WLLNKS<u>EYXL</u> 101 <u>IFLLSVLSVI GLY</u>VGIRLRT KI<u>SPNFFKML IFIVLLVLA</u>L KIGHSGLIKL 151 *

[0455] Further work revealed the complete nucleotide sequence <SEQ ID 75>:

1 ATGCAAGAAA TAATGCAATCTATCGTTTTTGTTGCTGCCGCAATACTGCA51 CGGAATTACA GGCATGGGATTTCCGATGCTCGGTACAACCGCATGGCTT101 TTATCATGCCATTGTCTAAGGTTGTTGCCTTGGTGGCATTACCAAGCCTG151 TTAATGAGCTTGTTGGTTCTATGCAGCAATAACAAAAAGGGTTTTTGGCA

80

-continued

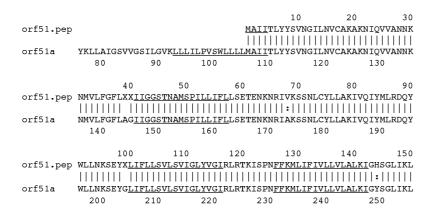
[0456] This corresponds to the amino acid sequence <SEQ ID 76; ORF51-1>:

1 MOEIMOSIVF VAAAILHGIT GMGFPMLGTT ALAFIMPLSK VVALVALPSL

51 <u>LMSLLVL</u>CSN NKKGFWQEIV YYLKTYKLLA IGSVVGSILG VK<u>LLLILPVS</u>

101 <u>WLLLLMAII</u>T LYYSVNGILN VCAKAKNIQV VANNKNNVLF GFLAG<u>IIGGS</u>

151 <u>TNAMSPILLI FL</u>LSETENKN RIVKSSNLCY LLAKIVQIYN LRDQYWLLNK


201 SEYGLIFLLS VLSVIGLYVG IRLRTKISPN FFKMLIFIVL LVLALKIGHS

251 GLIKL*

[0457] Computer analysis of this amino acid sequence reveals three putative transmembrane domains. A corresponding ORF from strain A of *N. meningitidis* was also identified:

[0458] Homology with a Predicted ORF from *N. menin-gitidis* (Strain A)

[0459] ORF51 shows 96.7% identity over a 150 as overlap with an ORF (ORF51a) from strain A of *N. meningitidis*:

[0460]	ORF51-1 and ORF51a show 99.2% identity in 255
aa overl	ap:

orf51a.pep	MQEIMQSIVFVAAAILHGITGMGFPMLGTTALAFIMPLSKVVALVALPSLLMSLLVLCSN
orf51-1	MQEIMQSIVFVAAAILHGITGMGFPMLGTTALAFIMPLSKVVALVALPSLLMSLLVLCSN
orf51a.pep	NKKGFWQEIVYYLKTYKLLAIGSVVGSILGVKLLLILPVSWLLLLMAIITLYYSVNGILN
orf51-1	NKKGFWQEIVYYLKTYKLLAIGSVVGSILGVKLLLILPVSWLLLLMAIITLYYSVNGILN
orf51a.pep	VCAKAKNIQVVANNKNMVLFGFLAGIIGGSTNAMSPILLIFLLSETENKNRIAKSSNLCY
orf51-1	VCAKAKNIQVVANNKNMVLFGFLAGIIGGSTNAMSPILLIFLLSETENKNRIVKSSNLCY
orf51a.pep	LLAKIVQIYMLRDQYWLLNKSEYGLIFLLSVLSVIGLYVGIRLRTKISPNFFKMLIFIVL
orf51-1	LLAKIVQIYMLRDQYWLLNKSEYGLIFLLSVLSVIGLYVGIRLRTKISPNFFKMLIFIVL
orf51a.pep : orf51-1	LVLALKIGYSGLIKLX LVLALKIGHSGLIKLX
01101-1	HARMONDOLLINA

[0461] The complete length ORF51a nucleotide sequence SEQ D 77> is:

1 ATGCAAGAAA TAATGCAATC TATCGTTTTT GTTGCTGCCG CAATACTGCA 51 CGGAATTACA GGCATGGGAT TTCCGATGCT CGGTACAACC GCATTGGCTT 101 TTATCATGCC ATTGTCTAAG GTTGTTGCCT TGGTGGCATT ACCAAGCCTG 151 TTAATGAGCT TGTTGGTTCT ATGCAGCAAT AACAAAAAGG GTTTTTGGCA 201 AGAGATTGTT TATTATTTAA AAACCTATAA ATTGCTTGCT ATCGGCAGCG 251 TCGTTGGCAG CATTTTGGGG GTGAAGTTGC TTTTGATACT TCCAGTGTCT 301 TGGCTGCTTT TACTGATGGC AATCATTACA TTGTATTATT CTGTCAATGG 351 TATTTTAAAT GTATGTGCAA AAGCAAAAAA TATTCAAGTA GTTGCCAATA 401 ATAAGAATAT GGTTCTTTTT GGGTTTTTGG CAGGCATCAT CGGCGGTTCA 451 ACCAATGCCA TGTCTCCCAT ATTGTTAATA TTTTTGCTTA GCGAAACAGA 501 GAATAAAAAT CGTATCGCAA AATCAAGCAA TCTATGCTAT CTTTTGGCAA 551 AAATTGTTCA AATATATATG CTAAGAGACC AGTATTGGTT ATThAATAAG 601 AGTGAATACG GTTTAATATT TTTACTGTCC GTATTGTCTG TTATTGGATT 651 GTATGTTGGA ATTCGGTTAA GGACTAAGAT TAGCCCAAAT TTTTTTAAAA 701 TGTTAATTTT TATTGTTTTA TTGGTATTGG CTCTGAAAAT CGGGTATTCA 751 GGTTTAATCA AACTTTAA

[0462] This encodes a protein having amino acid sequence <SEQ ID 78>:

1 MOEIMOSIVF VAAAILHGIT GMGFPNLGTT ALAFIMPLSK VVALVALPSL

51 <u>LMSLLVL</u>CSN NKKGFWQEIV YYLKTYKLLA IGSVVGSILG VK<u>LLLILPVS</u> 101 <u>WLLLLMAII</u>T LYYSVNGILN VCAKAKNIQV VANNKNMVLF GFLAG<u>IIGGS</u> 151 <u>TNAMSFILLI FL</u>LSETENKN RIAXSSNLCY LLAKIVQIYM LRDQYWLLNK

-continued 201 SEYG<u>LIFLLS VLSVIGLYVG I</u>RLRTKISPN <u>FFKMLIFIVL LVLALKI</u>GYS

251 GLIKL*

[0463] Based on this analysis, it is predicted that this protein from N. meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 18

[0464] The following partial DNA sequence was identified in N. meningitidis <SEQ ID 79>

1 ATGAGACATA TGAAAATACA AAATTATTTA CTAGTATTTA TAGTTTTACA

51 TATAGCCTTG ATAGTAATTA ATATAGTGTT TGGTTATTTT GTTTTTCTAT 101 TTGATTTTTT TGCGTTTTTG TTTTTTGCAA ACGTCTTTCT TGCTGTAAAT 151 TTATTATTTT TAGAAAAAAA CATAAAAAAC AAATTATTGT TTTTATTGCC 201 GATTTCTATT ATTATATGGA TGGTAATTCA TATTAGTATG ATAAATATAA 251 AATTTTATAA ATTTGAGCAT CAAATAAAGG AACAAAATAT ATCCTCGATT 301 ACTGGGGTGA TAAAACCACA TGATAGTTAT AATTATGTTT ATGACTCAAA 351 TGGATATGCT AAATTAAAAG ATAATCATAG ATATGGTAGG GTAATTAGAG 401 AAACACCTTA TATTGATGTA GTTGCATCTG ATGTTAAAAA TAAATCCATA 451 AGATTAAGCT TGGTTTGTGG TATTCATTCA TATGCTCCAT GTGCCAATTT 501 TATAAAATTT GTCAGG..

[0465] This corresponds to the amino acid sequence <SEQ ID 80; ORF82>:

1 MRHMKIQNYL LVFIVLHIAL IVINIVFGYF VFLFDFFAFL FFANVFLAVN

51 LLFLEKNIKN KLLFLLPISI IIWMVIHISM INIKFYKFEH QIKEQNISSI

- 101 TGVIKPNDSY NYVYDSNGYA KLKDWHRYGR VIRETPYIDV VASDVKNKSI
- 151 RLSLVCGIHS YAPCANFIKF VR..

[0466] Further work revealed the complete nucleotide sequence SEQ ID 81>:

1 ΑΤGAGACATA ΤGAAAAATAA AAATTATTTA CTAGTATTTA TAGTTTTACA 51 ТАТАСССТТС АТАСТААТТА АТАТАСТСТТ ТССТТАТТТ СТТТТСТАТ 101 TTGATTTTTT TGCGTTTTTG TTTTTTGCAA ACGTCTTTCT TGCTGTAAAT 151 TTATTATTTT TAAAAAAAAA CATAAAAAAC AAATTATTGT TTTTATTGCC 201 GATTTCTATT ATTATATGGA TGGTAATTCA TATTAGTATG ATAAATATAA 251 AATTTTATAA ATTTGAGCAT CAAATAAAGG AACAAAATAT ATCCTCGATT 301 ACTGGGGTGA TAAAACCACA TGATAGTTAT AATTATGTTT ATGACTCAAA 351 TGGATATGCT AAATTAAAAG ATAATCATAG ATATGGTAAG GTAATTAGAG -continued 401 AAACACCTTA TATTGATGTA GTTGCATCTG ATGTTAAAAA TAAATCCATA

401 AAACACCITA TATIGATGIA GITGGATCIO ATGITAARA TARACCATA
451 AGATTAAGCT TGGTTTGTGG TATFCATTCA TATGCFCCAT GTGCCAATTT
501 TATAAAATTT GCAAAAAAAC CTGTTAAAAT TTATTTTAT AATCAACCTC
551 AAGGAGATTT TATAGATAAT GTAATATTG AAATTAATGA TGGAAACAAA
601 AGTTTGTACT TGTTAGATAA GTATAAAACA TTTTTTCTTA TTGAAAACAG
651 TGTTTGTATC GTATTAATTA TTTTATATTT AAAATTTAAT TTGCTTTTAT
701 ATAGGACTTA CTTCAATGAG TTGGAATAG

[0467] This corresponds to the amino acid sequence <SEQ ID 82; ORF82-1>:

1 MRHMKNKNYL LVFIVLHIAL IVINIVFGYF VFLFDFFAFL FFANVFLAVN

51 LLFLEKNIKH KLLFLLPISI IIWMVIHISH INIKFYKFEH QIKEQNISSI

101 TGVIKPHDSY NYVYDSNGYA KLKDNHRYGR VIRETPYIDV VASDVKNKSI

151 RLSLVCGIHS YAPCANFIKF AKKPVKIYFY NQPQGDFIDN VIFEINDGNK

201 SLYLLDKYKT FFLIENSVCI VLIILYLKFN LLLYRTYFNE LE*

[0468] Computer analysis of this amino acid sequence reveals a predicted leader peptide.

[0469] A corresponding ORF from strain A of *N. menin-gitidis* was also identified:

[0470] Homology with a Predicted ORF from *N. menin-gitidis* (Strain A)

[0471] ORF82 shows 97.1% identity over a 172 as overlap with an ORF (ORF82a) from strain A of *N. meningitidis*:

orf82 pep orf82a	10 <u>MRHMKIONYLLVFIVLH</u> : <u>MRHMKIKNYLLVFIVLH</u>	:			50 60 <u>A</u> VNLLFLEKNIKN <u>AV</u> NLLFLEKNIKN
	10	20	30	40	50 60
orf82 pep orf82a	70 K <u>LLFLLPISIIIWMVIH</u> K <u>LLFLLPISIIIWMVIH</u> 70	<u>-</u>	FEHQIKEQNI FEHQIKEQNI	SSITGVIKPH	
130 orf82 pep orf82a	140 15 KLKDNHRYGRVIRETPY KLKDNHRYGRVIRETPY 130	IDVVASDVKNY IDVVASDVKNY	KSIRLSLVCG	IHSYAPCANF	IKFVR :: IKFAKKPVKIYFY 170
orf82a.pep orf82-1	MRHMKNKNYLLVFIVLH 	:::::::::::::::::::::::::::::::::::::::			
orf82a.pep orf82-1	KLLFLLPISIIIWMVIH 		Î Î		
orf82a.pep orf82-1	KLKDNHRYGRVIRETPY KLKDNHRYGRVIRETPY				

orf82a.pep orf82-1	-continued NQPQGDFIDNVIFEINKGKKSLYLLDKYKTFFLIENSVCIVLIILYLKFNLLLYRTYFNE
orf82a.pep orf82-1	LEX LEX

[0472] ORF82a and ORF82-1 show 99.2% identity in 242 aa overlap:

orf82a.pep orf82-1	MRHMKNKNYLLVFIVLHITLIVINIVFGYGVFLFDFFAFLFFANVFLAVNLLFLEKNIKN
orf82a.pep	KLLFLLPISIIIWMVIHISMINIKFYKFEHQIKEQNISSITGVIKPHDSYNYVYDSNGYA
orf82-1	KLLFLLPISIIIWMVIHISMINIKFYKFEHQIKEQNISSITGVIKPHDSYNYVYDSNGYA
orf82a.pep	KLKDNHRYGRVIRETPYIDVVASDVKNKSIRLSLVCGIHSYAPCANFIKFAKKPVKIYFY
orf82-1	KLKDNHRYGRVIRETPYIDVVASDVKNKSIRLSLVCGIHSYAPCANFIKFAKKPVKIYFY
orf82a.pep	NQPQGDFIDNVIFEINDGKKSLYLLDKYKTFFLIENSVCIVLIILYLKFNLLLYRTYFNE
orf82-1	NQPQGDFIDNVIFEINDGNKSLYLLDKYKTFFLIENSVCIVLIILYLKFNLLLYRTYFNE
orf82a.pep	LEX
orf82-1	LEX

[0473] The complete length ORF82a nucleotide sequence <SEQ D 83> is:

[0474] This encodes a protein having amino acid sequence <SEQ ID 84>:

1 MRHMKNKNYL LVFIVLHITL IVINIVFGYF VFLFDFFAFL FFANVFLAVN

51 LLFLEKNIKN KLLFLLPISI IIWMVIHISM INIKFYKFEH QIKEQNISSI

101 TGVIKPHDSY NYVYDSNGYA KLKDNHRYGR VIRETPYIDV VASDVIQKSI

151 RLSLVCGIHS YAPCANFIKF AXKPVKIYFY NQPQGDFXDN VIFEINDGKK

201 SLYLLDKYKT <u>FFLIENSVCI VLIILYL</u>KFN LLLYRTYFNE LE*

[0475] Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 19

[0476] The following partial DNA sequence was identified in *N. meningitidis* <SEQ ID 85>

1..ACCCCCAACA GCGTGACCGT CTTGCCGTCT TTCGGCGGAT TCGGGCGTAC
51 CGGCGGACC ATCAATGCAG CAGGCGGGGT CGGCATGACT GCCTTTTCGA
101 CAACCTTAAT TTCCGTAGCC GAGGGCGCGG TTGTAGAGCT GCAGGCCGTG
151 AGAGCCAAAG CCGTCAATGC AACCGCCGCT TGCATTTTA CGGTCTTGAG
201 TAAGGACATT TTCGATTCC TTTTTATTTT CCGTTTTCAG ACGGCTGACT
251 TCCGCCTGTA TTTTCGCCAA AGCCATGCCG ACAGCGTGCG CCTTGACTTC
301 ATATTTAAAA GCTTCCGCGC GTGCCAGTTC CAGTTCGCGC GCATAGTTTT
351 GAGCCGACAA CAGCAGGCCT TGCCGCTTGT CGCGCTCCAT CTTGTCGATG
401 ACCGCCTGCA GCTTCGCAAA TGCCGACTG TAGCCTTGAT GGTGCGACAC
451 AGCCAAGCCC GTGCCGACAA CGCGGATAAT GGCAATCGGT TGCCAGTAAT
501 TCGCCAGCAG TTTCACGAGA TTCATTCTC ACCTCTGAC GCTTCACGCT

[0477] This corresponds to the amino acid sequence <SEQ ID 86; ORF124>:

1..TPNSVTVLPS FGGFGRTGAT INAAGGVGMT AFSTTLISVA EGAVVELQAV

- 51 RAKAVNATAA <u>CIFTVLSKDI FDFLFIF</u>RFQ TADFRLYFRQ SHADSVRLDF
- 101 IFKSFRACQF QFARIVLSRQ QQGLRLVALH LVDORLQLRX CRLVALMVRH
- 151 SQARADKRDN GNRLPVIRQQ FHEIHSRPPD ASR*

[0478] Computer analysis of this amino acid sequence predicts a transmembrane domain.

[0479] Further work revealed the complete nucleotide sequence SEQ ID 87>:

1 ATGACTGCCT TTTCGACAAC CTTAATTTCC GTAGCCGAGG GCGCGGTTGT

-continued 51 AGAGCTGCAG GCCGTGAGAG CCAAAGCCGT CAATGCAACC GCCGCTTGCA

101 TTTTTACGGT CTTGAGTAAG GACATTTCG ATTTCCTTTT TATTTTCCGT
151 TTTCAGACGG CTGACTTCCG CCTGTTTTT CGCCAAAGCC ATGCCGACAG
201 CGTGCGCCTT GACTTCATAT TTTTTAGCTT CCGCGGCGTGC CAGTTCCAGT
251 TCGCGCGCAT AGTTTTGAGC CGACAACAGC AGGGCTTGCG CCTTGTCGCG
301 CTCCATCTTG TCGATGACCG CCTGCTGCTT CGCAAATGCC GACTTGTAGC
351 CTTGATGGTG CGACACAGCC AAGCCCGTGC CGACAAGCGC GATAATGGCA
401 ATCGGTTGCC AGTTATTCGC CAGCAGTTC ACGAGATTCA TTCTCGACCT
451 CCTGACGCTT CACGCTGA

[0480] This corresponds to the amino acid sequence SEQ ID 88; ORF124-1>:

1 MTAFSTTLIS VAEGAVVELQ AVRAKAVNAT AACIFTVLSK DIFDFLFIFR

51 FQTADFRLFF RQSHADSVRL DFIFFSFRAC QFQFARIVLS RQQQGLRLVA

101 LHLVDDRLLL RKCRLVAIMV RHSQARADKR DNGNRLPVIR QQFHEIHSRP

151 PDASR*

[0481] A corresponding ORF from strain A of *N. menin-gitidis* was also identified:

[0482] Homology with a Predicted ORF from *N. meningitidis* (Strain A)

[0483] ORF124 shows 87.5% identity over a 152 aa overlap with an ORF (ORF124a) from strain A of *N. meningitidis*:

	10	20	30	40	50	60
orf124.pep	TPNSVTVLPSFGGF	GRTGATINAA	GGVGMTAFST	TLISVAEGA		AVNATAA
orf124a			MTAFST		• LVELQAVMAK	AVNTTAA
				10	20	30
	70	80	90	100	110	120
orf124.pep	CIFTVLSKDIFDFL	FIFRFQTADE				RIVLSRQ
orf124a	CIFTVLSKDIFDFL	 FIFRFOTADF		: GVRLDFIFF	: SFRTRLFOFA	GVVLSRO
	40	50	60	70	80 ~	90
	130	140	150	160	170	180
orf124.pep	QQGLRLVALHLVDI	RLQLRKCRLV		ADKRDNGNR	LPVIRQQFHE	IHSRPPD
orf124a	::: OOGLRLVALHFLNE				LEVIROOFHE	
0111240	100	110	120	130	140	150
orf124.pep	ASRX					
orriz4.pep	:					
orf124a	VX					

[0484] ORF124a and ORF124-1 show 89.5% identity in 152 aa overlap:

orf124a	-continued MTAFSTTLISVAEGALVELQAVMAKAVNTTAACIFTVLSKDIFDFLFIFRFQTADFRLFF
orf124-1.pep	RQSHADSVRLDFIFFSFRACQFQFARIVLSRQQQGLRLVALHLVDDRLLLRKCRLVALMV
orf124a	RQSHADGVRLDFIFFSFRTRLFQFAGVVLSRQQQGLRLVALHFLNDRLLLRKSRLVALMV
orf124-1.pep	RHSQARADKRDNGNRLPVIRQQFHEIHSRPPDASRX : : :
orf124a	RHRQTRADKRDDGNRLPVIRQQFHEIHSRPPDVX

[0485] The complete length ORF124a nucleotide sequence <SEQ ID 89> is:

1 ATGACCGCCT TTTCGACAAC CTTAATTTCC GTAGCCGAGG GCGCGCTTGT

51 AGAGCTGCAA GCCGTGATGG CCAAAGCCGT CAATACAACC GCCGCCTGCA

101 TTTTTACGGT CTTGAGTAAG GACATTTTCG ATTTCCTTTT TATTTTCCGT

151 TTTCAGACGG CTGACTTCCG CCTGTTTTTT CGCCAAAGCC ATGCCGACGG

201 CGTGCGCCTT GACTTCATAT TTTTTAGCTT CCGCACGCGC CTGTTCCAGT

251 TCGCGGGCGT AGTTTTGAGC CGACAACAGC AGGGCTTGCG CCTTGTCGCG

301 CTTCATTTTC TCAATGACCG CCTGCTGCTT CGCAAAAGCC GACTTGTAGC

351 CTTGATGGTG CGACACCGCC AAACCCGTGC CGACAAGCGC GATGATGGCA

401 ATCGGTTGCC AGTTATTCGC CAGCAGTTTC ACGAGATTCA TTCTCGACCT

451 CCTGACGTTT GA

[0486] This encodes a protein having amino acid sequence <SEQ ID 90>:

- 1 MTAFSTTLIS VAEGALVELQ AVNAXAVNTT AACIFTVLSK DIFDFLFIFR
- 51 FQTADFRLFF RQSHADGVRL DFIFFSFRTR LFQFAGVVLS RQQQGLRLVA
- 101 LHFLNDELLL RKSRLVALHV RHRQTRADKR DDGNRLPVIR QQFHEIHSRP
- 151 PDV*

[0487] ORF124-1 was amplified as described above. **FIG.** 7 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF124-1.

[0488] Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 20

[0489] Table III lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 40 among different strains.

TABLE II

List of Neis	seria Strains V	Used for Gene Variability Study of ORF 40	
Identification number	Strains	Source/reference	
Group B			
zn02_1 zn03_1	BZ198 NG3/88	R. Moxon/Seiler et al., 1996 R. Moxon/Seiler et al., 1996	

TABLE III-continued

List of Neisseria Strains Used for Gene Variability Study of ORF 40

Identification		
number	Strains	Source/reference
zn04_1	297-0	R. Moxon/Seiler et al., 1996
zn06_1	BZ147	R. Moxon/Seiler et al., 1996
zn07_1	BZ169	R. Moxon/Seiler et al., 1996
zn08_1	528	R. Moxon/Seiler et al., 1996
zn 10_1	BZ133	R. Moxon/Seiler et al., 1996
zn11_1ass	NGE31	R. Moxon/Seiler et al., 1996
zn14_1	NGH38	R. Moxon/Seiler et al., 1996
zn16_1	NGH15	R. Moxon/Seiler et al., 1996
zn18_1	BZ232	R. Moxon/Seiler et al., 1996
zn19_1	BZ83	R. Moxon/Seiler et al., 1996
zn20_1	44/76	R. Moxon/Seiler et al., 1996
zn21_1	MC58	R. Moxon

TABLE III-continued

List of Nei	sseria Strains U	Jsed for Gene Variability Study of ORF 40
Identification number	Strains	Source/reference
		Group A
zn22_1	205900	R. Moxon
zn23_1	F6124	R. Moxon
z2491_1	Z2491	R. Moxon/Maiden et al., 1998
		Group C
zn24_1	90/18311	R. Moxon
zn25_1ass	93/4286	R. Moxon

TABLE III-continued

List of Neis	sseria Strains Used for	Gene Variability Study of ORF 40	
Identification number	Strains	Source/reference	
Others			
zn28_1ass zn29_1ass	860800 (group Y) E32 (group Z)	R. Moxon/Maiden et al., 1998 R. Moxon/Maiden et al., 1998	
References:			

Seiler A. et al., Mol. Microbiol., 1996, 19(4): 841-856. Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95: 3140-3145.

[0490] The amino acid sequences for each listed strain are as follows:

>Z2491 <SEQ ID 91>

MNKIYRIIWNSALNAWVAVSELTRNHTKRASATVKTAVLATLLFATVQANATDEDEEEEL ESVQRSVVGSIQASMEGSGELETISLSMTNDSKEFVDPYIVVTLKAGDNLKIKQNTNENT NASSFTYSLKKDLTGLINVETEKLSFGANGKKVNIISDTKGLNFAKETAGTNGDTTVHLN GIGSTLTDTLAGSSASHVDAGNQSTHYTRAASIKDVLNAGWNIKGVKTGSTTGQSENVDF VRTYDTVEFLSADTKTTTVNVESKDNGKRTEVKIGAKTSVIKEKDGKLVTGKGKGENGSS TDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTATV SKDDQGNITVMYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKISGNVSPSKADEMDETV NINAGNNIEISRNGKNIDIATSNAPQFSSVSLGAGADAPTLSVDDEGALNVGSKDANKPV RINVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVWDGNARAGIAQAIATAGLVQAYLPGKS MMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASVGYQW

>ZN02_1 <SEQ ID 92>

MNKIYRIIWNSALNAWVVVSELTRNHTKRASATVATAVLATLLFATVQANATDDDDLYLE PVQRTAVLSFRSDKEGTGEKEGTEDSHGGAVYFDEKRVLKAGAITLKAGDNLKIKQNTNE NTNDSSFTYSLKKDLTDLTSVETEKLSFGAAGNKVNITSDTKGLNFAKETAGTAGDPTVH LNGIGSTLTDTLLNTGATTNVTNDNVTDDEKKRAASVKDVLNAGWNIKGVKPGTTASDNV DFVRTYDTVEFLSADTKTTTNVSKDNGKKTEVICIGAIVTSVIKEKDGKLVTGKGKDENG SSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTA TVSKODQGNITVRYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSPSKGRMDE TVN INAGNNIEITRNGKNIDIATSMAPOFSSVSLGAGADAPTLSVDDEGALNVGSKDTNK PVRITNVAPGVKEGDVTNVAOLKGVAONLNNRIDNVDGNARAGIAOAIATAGLVOAYLPG KSMMAIGGDTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASVGYQW*

>ZN03 1 <SEO ID 93>

MNKTYRTTWNSALNAWVAVSELTRNHTKRASATVATAVLATLIFATVOASTTDDDDLYLF PVORTAPVLSFHADSEGTGEKEVTEDSNWGVYFDKKGVLTAGTITLKAGDNLKIKONTDE NTNDSSFTYSLKKDLTDLTSVETEKLSFGANGNKVNITSDTKGLNFAKETAGTNGDPTVH LNGIGSTLTDTLLNTGATTNVTNDNVTDDEKKRAASVKDVLNAGWNIKGVKPGTTASDNV DFVRTYDTVEFLSADTRTTTVNVESKDNGKKTEVKIGAKTSVIKEKDGKLVTGKGKDENG SSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTA TVSKDDOGNITVKYDVNVGDALNVNOLONSGWNLDSKAVAGSSGKVISGNVSPSKGKMDE ${\tt TVNINAGNNIEITRNGKNIDIATSMAPQFSSVSLGAGADAPTLSVDDEGALNVGSKDTNK$ ${\tt PVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLVQAYLPG}$ ${\tt KSMMAIGGDTYRGEAGYAIGYSSISDGGNMIIKGTASGNSRGHFGASASVGYQW*}$

>ZN04 1 <SEO ID 94>

 ${\tt MNKIYRIIWNSALNAWVAVSELTRNHTKRASATVATAVLATLLFATVQASTTDDDDLYLE}$ PVORTAPVLSFHADSEGTGEKEVTEDSNWGVYFDKKGVLTAGTITLKAGDNLKIKONTDE ${\tt NTNDSSFTYSLKKDLTDLTSVETEKLSFGANGNKVNITSDTKGLNFAKETAGTNGDPTVH$ LNGIGSTLTDTLLNTGATTNVTNDNVTDDEKKRAASVKDVLNAGWNIKGVKPGTTASDNV ${\tt DFVRTYDTVEFLSADTRTTTVNVESKDNGKKTEVKIGAKTSVIKEKDGKLVTGKGKDENG$ SSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTA TVSKDDQGNITVKYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSPSKGKMDE TVNINAGNNIEITRNGKNIDIATSMAPQFSSVSLGAGADAPTLSVDDEGALNVGSKDTNK PVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLVQAYLPG KSMMAIGGDTYRGEAGYAIGYSSISDGGNMIIKGTASGNSRGHFGASASVGYQW*

>ZN06_1 <SEO ID 95>

MNKIYRIIWNSALNAWVAVSELTRNHTKRASATVKTAVLATLLFATVQANATDEDEEEEL ${\tt ESVQRSVVGSIQASMEGSGELETISLSMTNDSKEFVDPYIVVTLKAGDNLKIKQNTNENT}$ NASSFTYSLKKDLTGLINVETEKLSFGANGKKVNIISDTKGLNFAKETAGTNGDTTVHLN GIGSTLTDTLAGSSASHVDAGNQSTHYTRAASIKDVLNAGWNIKGVKTGSTTGQSENVDF VRTYDTVEFLSADTKTTTVNVESKDNGKRTEVKIGAKTSVIKEKDGKLVTGKGKGENGSS TDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTATV SKDDQGNITVMYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKISGNVSPSKADEMDETV

NINAGNNIEISRNGKNIDIATSNAPQFSSVSLGAGADAPTLSVDDEGALNVGSKDANKPV RINVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVWDGNARAGIAQAIATAGLVQAYLPGKS MMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASVGYQW*

>ZN07_1 <SEQ ID 96>

MNKIYRIIWNSALNAWVAVSELTRNHTKRASATVKTAVLATLLFATVQANATDEDEEEEL ESVQRSVVGSIQASMEGSGELETISLSMTNDSKEFVDPYIVVTLKAGDNLKIKQNTNENT NASFTYSLKKDLTGLINVETEKLSFGANGKKVNIISDTKGLNFAKETAGTNGDTTVHLN GIGSTLTDTLAGSSASHVDAGNQSTHYTRAASIKDVLNAGWNIKGVKTGSTTGQSENVDF VRTYDTVEFLSADTKTTTVNVESKDNGKRTEVKIGAKTSVIKEKDGKLVTCKGKGENGSS TDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTATV SKDDQGNITVMYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKISGNVSPSKADEMDETV NINACNNIEISRNGKNIDIATSNAPQFSVSLGAGADAPTLSVDDEGALNVGSKDANKPV RINVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVWDGNARAGIAQAIATAGLVQAYLPGKS MMAIGGGTYRCEAGYAIGYSSISDGGWNIKGTASGNSGHFGASASVGYOW*

>ZN08_1 <SEQ ID 97>

MNKIYRIIWNSALNAWVVVSELTRNHTKRASATVETAVLATLLFATVQANATDTDEDDEL EPVVRSALVLQFMIDKEGNGEIESTGDIGWSIYYDDHNTLHGATVTLKAGDNLKIKQNTD ENTNASSFTYSLKKDLTDLTSVGTELSFGANGNKVNITSDTKGLNFAKKAGTMGDTTV HLNGIGSTLTDTLAGSSASHVDAGNQSTHYTRAASIKDVLNAGWNIKGVKTGSTGQSEN VDFVRTYDTVEFLSADTKTTTVNVESKDNGKRTEVKIGAKTSVIKEKDGKLVTGKGKGEN GSSTEDGEGELVTAKEVIDAVNKAGWRMKTTANGQTGQADKFETVTSGTNVTFASGKGTT ATVSKDDQGNITVKYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKISGNAVSPSKGKMD ETVNINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPLTLSVDDEALNVCSKDAN KPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNHIDNVDGNARAGIAQAIATAGLVQAYLP GKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASCNSGHFGASASVGYQM*

>ZN10_1 <SEQ ID 98>

MNKIYRIIWNSALNAWVAVSELTRNHTKRASATVKTAVLATLLFATVQANATDEDEEEEL ESVQRSVVGSIQASMEGSGELETISLSMTNDSKEFVDPYIVVTLKAGDNLKIKQNTNENT NASSFTYSLKKDLTGLINVETEKLSFGANGKKVNIISDTKGLNFAKETAGTNGDTTVHLN GIGSTLTDTLAGSSASHVDAGNQSTHYTRAASIKDVLNAGWNIKGVKTGSTTGQSENVDF VRTYDTVEFLSADTKTTTVNVESKDNGKRTEVKIGAKTSVIKEKDGKLVTGKGKGENGSS TDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTATV SKDDQGNITVMYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSPSKGKMDETV NINAGNNIEISRNGKNIDIATSMAPQFSSVSLGAGADAPILSVDDEGALNVGSKDANKPV RITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLVQAYLPGKS MMAIGGGYTRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASVGYQW*

>ZN11_1 ASS <SEQ ID 99>

MNKIYRIIWNSALNAWVAVSELTRNHTKRASATVATAVLATLLFATVQASTTDDDDLYLE PVQRTAPVLSFHADSEGTGEKEVTEDSNWGVYFDKKGVLTAGTITLKAGDNLKIKQNTDE NTNDSSFTYSLKKDLTDLTSVETEKLSFGANGNKVNITSDTKGLNFAKETAGTNGDPTVH LNGIGSTLTDTLLNTGATTNVTNDNVTDDEKKRAASVKDVLNAGWNIKGVKPGTTASDNV DFVRTYDTVEFLSADTRTTTVNVESKDNGKKTEVKIGAKTSVIKEKDGKLVTGKGKDENG SSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTA TVSKDDQGNITVKYDVNVGDALNVNQLQNSGWLDSKAVAGSSGKVISGNVSPSKGKMDE TVNINAGNNIEITRNGKNIDIATSMAPQFSSVSLGAGADAPLSVDGALNVGSKDTNK PVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVGGNARAGIAQAIATAGLVQAYLPG KSMMAIGGDTYRGEAGYAIGYSSISDGGNMIIKGTASGNSGRHFGASASVGYQW*

>ZN14_1 <SEQ ID 100>

MNKIYRIIWNSALNAWVVVSELTRNHTKRASATVETAVLATLLFATVQANATDTDEDDEL EPVVRSALVLQFMIDKEGNGEIESTGDIGWSIYYDDHNTLHGATVTLKAGNLKIKQNTD ENTNASSFTYSLKKDLTDLTSVGTEELSFGANGNKVNITSDTKGLNFAKKTAGTNGDTV HLNGIGSTLTDTLAGSSASHVDAGNQSTHYTRAASIKDVLNAGWNIKGVKTGSTTGQSEN VDFVRTYDTVEFLSADTKTTTVNVESKDNGKRTEVKIGAKTSVIKEKDGKLVTGKCKGEN GSSTEDGEGELVTAKEVIDAVNKAGWRMKTTANGQTGQADKFETVTSGTNVTFASGKGTT ATVSKDDQGNITVKYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKISGNAVSPSKGKMD ETVNINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPLTLSVDDEALNVGSKDAN KPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNHIDNVDGNARAGIAQAIATAGLVQAYLP GKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASCNSRGHFGASASVGYOW*

>ZN16_1 <SEQ ID 101>

MNKIYRIIWNSALNAWVVVSELTRNHTKRASATVATAVLATLLFATVQANATDDDDLYLE PVQRTAVVLSFRSDKEGTEGEKEGTEDSNWAVYFDEKRVLKAGATTLKAGDNLKIKQNTNE NTNENTNDSSFTYSLKKDLTDLTSVETEKLSFGANGNKVNITSDTKGGNFAKETAGTNGD PTVHLNGIGSTLTDTLLNTGATTNVTNDNVTDDEKKRASVKDVLNAGWNIKGVKPGTTA SDNVDFVRTVDTVEFLSADTKTTTVNVESKDNGKKTEVNIGAKTSVIKEKDGKLVTCKGK DENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTKVTFASGN GTTATVSKDDQGNITVKYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSPSKG KMDETVNINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVDDEGALNVGSK DANKPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLAQA YLPGKSMMAIGGGTYRGEAGYAIGYSSISDTGNWVIKGTASONSRGHFGASASVGYQW*

90

-continued

MNKIYRIIWNSALNAWVAVSELTRNHTKRASATVATAVLATLLFATVQASTTDDDDLYLE PVQRTAPVLSFHADSEGTGEKEVTEDSNWGVYFDKKGVLTAGTITLKAGDNLKIKQNTDE NTNDSSFTYSLKKDLTDLTSVETEKLSFGANGNKVNITSDTKGLNFAKETAGTNGPFVH LNGIGSTLTDTLLNTGATTNVTNDNVTDDEKKRASVKDVLNAGWNIKGVKPGTTASDNV DFVRTYDTVEFLSADTRTTTVNVESKDNGKKTEVKIGATSVIKEKDGKLVTGKGKDENG SSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTA TVSKDDQGNITVKYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSPSKGKMDE TVNINAGNNIEITRNGKNIDIATSMAPQFSSVSLGAGADAPTLSVDDEGALNVGSKDTNK PVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLVQAYLPG KSMMAIGGDTYRGEAGYAIGYSSISDGGMUIIKGTAGSNGSRFGASASVGYOW*

>ZN19_1 <SEQ ID 103>

MNKIYRIIWNSALNAWVVVSELTRNHTKRASATVKTAVLATLLFATVQASANNEEQEEDL YLDPVQRTVAVLIVNSDKEGTGEKEKVEENSDWAVYFNEKGVLTAREITLKAGDNLKIKQ NGTNFTYSLKKDLTDLTSVGTEKLSFSANGNKVNITSDTKGLNFAKETAGTNGDTTVHLN GIGSTLTDTLLNTGATTNVTNDNVTDDEKKRAASVKDVLNAGWNIKGVKPGTTASDNVDF VRTYDTVEFLSADTKTTTVNVESKDNGKKTEVKIGAKTSVIKEKDGKLVTGKDKGENGSS TDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTATV SKDDQGNITVMYDVNVOBALNVNQLQNSGWNLDSKAVAGSSGKVISGNAVSPSKGKMDETV NINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVDGDALVSGSKKDNKPVR ITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLVQAYLPGKSM

>ZN20_1 <SEQ ID 104>

MNKIYRIIWNSALNAWVVVSELTRNHTKRASATVKTAVLATLLFATVQASANNEEQEEDL YLDPVQRTVAVLIVNSDKEGTGEKEKVEENSDWAVYFNEKGVLTAREITLKAGDNLKIKQ NGTNFTYSLKKDLTDLTSVGTEKLSFSANGNKVNITSDTKGLNFAKETAGTNGDTTVHLN GIGSTLTDTLLNTGATTNVTNDNVTDDEKKRAASVKDVLNAGWNIKGVKPGTTASDNVDF VRTYDTVEFLSADTKTTTVNVESKDNGKKTEVKIGAKTSVIKEKDGKLVTCKDKGENGSS TDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTATV SKDDQGNITVMYDVNVDALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSPSKGKMDETV NINAGNNIEITRNGKNIDIATSMTPQFSVSLGAGADAPTLSVDGDAUNSGSKKDNKPVR ITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLVQAYLPGKSM MAIGGGTYRCEAGYAIGYSSISDGGNWIKGTASGNSCHFGASASVGYQW*

>ZN21_1 <SEQ ID 105>

MNKIYRIIWNSALNAWVVVSELTRNHTKRASATVKTAVLATLLFATVQASANNEEQEEDL YLDPVQRTVAVLIVNSDKEGTGEKEKVEENSDWAVYFNEKGVLTAREITLKAGDNLKIKQ NGTNFTYSLKKDLTDLTSVGTEKLSFSANGNKVNITSDTKGLNFAKETAGTNGDTTVHLN GIGSTLTDTLLNTGATTNVTNDNVTDDEKKRAASVKDVLNAGWNIKGVKPGTASDNVDF VRTYDTVEFLSADTKTTTVNVESKDNGKKTEVKIGAKTSVIKEKDGKLVTGKDKGENGSS TDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTATV SKDDQGNITVMYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSPSKGKMDETV NINACMNIEITRNGKNIDIATSMTPQFSVSLGAGADAPTLSVDGDALNVGSKKDNKPVR ITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLVQAYLPGKSM MAIGGGTYRGEAGYAIGYSSISDGGNWIKGTASGNSGHFGASASVGYOW*

>ZN22_1 <SEQ ID 106>

MNKIYRIIWNSALNAWVAVSELTRNHTKRASATVKTAVLATLLFATVQANATDEDEEEEL ESVQRSVVGSIQASMEGSGELETISLSMTNDSKEFVDPYIVVTLKAGDNLKIKQNTNENT NASSFTYSLKKDLTGLINVETEKLSFGANGKKVNIISDTKGLNFAKETAGTNGDTTVHLN GIGSTLTDTLAGSSASHVDAGNQSTHYTRAASIKDVLNAGWNIKGVKTGSTTGQSENVDF VRTYDTVEFLSADTKTTTVNVESKDNGKRTEVKIGAKTSVIKENDGKLVTGKGKGENGSS TDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTATV SKDDQGNITVMYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSPSKGKMDETV NINAGNNIEISRNGKNIDIATSMAPQFSSVSLGAGADAPTLSVDDEGALNVGSKDANKPV RITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLVQAYLPGKS MMAIGGGYTRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASVGYQW*

>ZN23_1 <SEQ ID 107>

MNKIYRIIWNSALNAWVAVSELTRNHTKRASATVKTAVLATLLFATVQANATDEDEEEEL ESVQRSVVGSIQASMEGSGELETISLSMTNDSKEFVDPYIVVTLKAGDNLKIKQNTNENT NASSFTYSLKKDLTGLINVETEKLSFGANGKKVNIISDTKGLNFAKETAGTNGDTTVHLN GIGSTLTDTLAGSSASHVDAGNQSTHYTRAASIKDVLNAGWNIKGVKTGSTTGQSENVDF VRTYDTVEFLSADTKTTTVNVESKDNGKRTEVKIGAKTSVIKEKDGKLVTGKGKGENGSS TDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTATV SKDDQGNITVMYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSPSKGKMDETV NINAGNNIEISRNGKNIDIATSMAPQFSSVSLGAGADAPTLSVDDGAIANVGSKDANKPV RITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLVQAYLPGKS MMAIGGGYTRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASVGYQW*

>ZN24_1 <SEQ ID 108>

MNKIYRIIWNSALNAWVVVSELTRNHTKRASATVATAVLATLLSATVQANATDTDEDEEL ESVVRSALVLQFMIDKEGNGEIESTGDIGWSIYYDDHNTLHGATVTLKAGNLKIKQSGK DFYYSLKKELKDLTSVETEKLSFGANGNKVNITSDTKGLNFAKETAGTNGDPTVHLNGIG STLTDTLAGSSASHVDAGNQSTHYTRAASIKDVLNAGWNIKGVKTGSTTGQSENVDFVRT YDTVEFLSADTKTTVNVESKDNGKRTEVKIGAKTSVIKEKDGKLVTGKGKGENGSSTDE

GEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTKVTFASGNGTTATVSKD DQGNITVKYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSPSKGKMDETVNIN AGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVDDEGALNVGSKDANKPVRIT NVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLAQAYLPGKSMAA IGGGTYRGEAGYAIGYSSISDTCNWVIKGTASGNSRGHFGTSASVGYOW*

>ZN25_ASS <SEQ ID 109>

MNKIYRIIWNSALNAWVVVSELTRNHTKRASATVATAVLATLLSATVQANATDTDEDEEL ESVVRSALVLQFMIDKEGNGEIESTGDIGWSIYYDDHNTLHGATVTLKAGNLKIKQSGK DFYYSLKKELKDLTSVETEKLSFGANGNKVNITSDTKGLNFAKETAGTNGDPTVHLNGIG STLTDTLAGSSASHVDAGNQSTHYTRAASIKDVLNAGWNIKGVKTGSTTGQSENVDFVRT YDTVEFLSADTKTTTVNVESKDNGKRTEVKIGAKTSVIKEKDGKLVTGKGKGENGSSTDE GEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTKVTFASGNGTTATVSKD DQGNITVKYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSSKGKMDETVNIN AGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVDDEGALNVGSKDANKPVRIT NVAPGYKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLAQAYLPGKSMMA IGGGTYRGEAGYAIGYSSISDTGNWVIKGTASGNSGHFGTSASVGYQW*

>ZN28_ASS <SEQ ID 110>

MNKIYRIIWNSALNAWVAVSELTRNHTKRASATVKTAVLATLLFATVQANATDEDEEEEL ESVQRSVVGSIQASMEGSGELETISLSMTNDSKEFVDPYIVVTLKAGDNLKIKQNTNENT NASSFTYSLKKDLTGLINVETEKLSFGANGKKVNIISDTKGLNFAKETAGTNGDTTVHLN GIGSTLTDTLAGSSASHVDAGNQSTHYTRAASIKDVLNAGWNIKGVKTGSTTGQSENVDF VRTYDTVEFLSADTKTTTVNVESKDNGKRTEVKIGAKTSVIKEKDGKLVTGKGKGENGSS TDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTFASGKGTTATV SKDDQGNITVMYDVNVODALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSPSKGKMDETV NINAGNNIEISRNGKNIDIATSMAPQFSSVSLGAGADAPTLSVDDEGIAVNGSKDANKPV RITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLVQAYLPGKS MMAIGGGYTRGEAGYAIGYSSISDGGWNIKGTASGNSRGHFGASASVGYQW*

>ZN29_ASS <SEQ ID 111>

MNKIYRIIWNSALNAWVVVSELTRNHTKRASATVETAVLATLLFATVQANATDTDEDDEL EPVVRTAPVLSFHSDKEGTGEKEEVGASSNLTVYFDKNRVLKAGTITLKAGDNLKIKQNT NENTNENTNASSFTYSLKKDLTGLINVETEKLSFGANGKKVNIISDTKGLNFAKETAGTN GDPTVHLNGIGSTLTDTLAGSSASHVDAGNQSTHYTRAASIKDVLNAGWNIKGVKTGSTT GQSENVDFVRTYDTVEFLSADTKTTTVNVESKDNGKRTEVKIGAKTSVIKEGDKLVTGK GKGENGSSTDEGEGLVTAKEV IDAVNKAGWRMKTTANQGTQADKFETVTSGTKVTFAS GNGTTATVSKDDQGNITVKYDVNGDALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSPS KGKMDETVNINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVVEAGALNVG SKDANKPVRITNVAPGVKEGDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLV QAYLPGKSMMAIGGGTYRGEAGYAIGYSSISDGGNWIIKGTASGNSRGHFGASASVGYQW

[0491] FIG. 8 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 40, further confirming its utility as an antigen for both vaccines and diagnostics.

[0492] It will be appreciated that the invention has been described by means of example only, and that modifications may be made whilst remaining within the spirit and scope of the invention.

Appendix 1

[0493]

Scarlato, Continuation of U.S. App. Ser. No. 10/695,499, filed herewith	Ruelle, U.S. Pat. No. 6,780,419
 18. (New) An isolated polypeptide comprising a member selected from the group consisting of (a) the amino acid sequence of SEQ ID NO: 4; and (b) an immunogenic fragment of at least 15 contiguous amino acids of SEQ ID NO: 4, wherein the immunogenic fragment, when administered to a subject in a suitable composition which can include an adjuvant, or a suitable carrier coupled to the polypeptide, induces an antibody or T-cell meditated immune response that recognizes the isolated polypeptide SEQ ID NO: 4. 19. (New) The isolated polypeptide of claim 18, wherein the polypeptide is according to (a). 20. (New) The isolated polypeptide of claim 18, wherein the polypeptide is according to (b). 	 An isolated polypeptide comprising a member selected from the group consisting of (a) the amino acid sequence of SEQ ID NO: 2; (b) an immunogenic fragment of at least 15 contiguous amino acids of SEQ ID NO: 2; wherein the immunogenic fragment, when administered to a subject in a suitable composition which can include an adjuvant, or a suitable carrier coupled to the polypeptide, induces an antibody or T-cell meditated immune response that recognizes the isolated polypeptide SEQ ID NO: 2. The isolated polypeptide of claim 1, wherein the polypeptide is according to (a). The isolated polypeptide is claim 1, wherein the polypeptide is according to (b).

Scarlato, Continuation of U.S. App. Ser. No. 10/695,499, filed herewith	Ruelle, U.S. Pat. No. 6,780,419
 (New) The isolated polypeptide of claim 18, wherein the immunogenic fragment of (b) comprises at least 20 contiguous amino acids of SEQ ID NO: 4; wherein the immunogenic fragment, when administered to a subject in a suitable composition which can include an adjuvant, or a suitable carrier coupled to the polypeptide, induces an antibody or T-cell meditated immune response that recognizes the isolated polypeptide SEQ ID NO: 4. (New) The isolated polypeptide of claim (New) A fusion protein comprising the isolated polypeptide of claim 18. (New) An immunogenic composition comprising the polypeptide. (New) An immunogenic composition comprising the polypeptide. (New) The isolated polypeptide of claim wherein the isolated polypeptide of claim wherein the isolated polypeptide is a recombinant polypeptide. (New) The isolated polypeptide of claim wherein the isolated polypeptide is a recombinant polypeptide. (New) The isolated polypeptide of claim wherein the isolated polypeptide of claim the wolypeptide of claim the woly	 4. The isolated polypeptide of claim 1, wherein the immunogenic fragment of (b) comprises at least 20 contiguous amino acids of SEQ ID NO: 2; wherein the immunogenic fragment, when administered to a subject in a suitable composition which can include an adjuvant, or a suitable carrier coupled to the polypeptide, induces an antibody or T-cell meditated immune response that recognizes the isolated polypeptide SEQ ID NO: 2. 5. The isolated polypeptide of claim 1, wherein the isolated polypeptide of claim 1, wherein the isolated polypeptide of claim 1. 7. An immunogenic composition comprising the polypeptide of claim 1, and a pharmaceutically acceptable carrier. 9. The isolated polypeptide of claim 1, wherein the isolated polypeptide is a recombinant polypeptide. 10. The isolated polypeptide is a recombinant polypeptide. 11. The isolated polypeptide of claim 3, wherein the isolated polypeptide is a recombinant polypeptide. 12. An immunogenic composition comprising the isolated polypeptide. 13. An immunogenic composition comprising the isolated polypeptide. 14. A fusion protein comprising the isolated polypeptide of claim 3. 14. A fusion protein comprising the isolated polypeptide of claim 3. 15. A fusion protein comprising the isolated polypeptide of claim 3.

Appendix 2

[0494]

Added Claim #	Written Description Support in the Current Application (Continuation of Application No. 10/695,499)	Written Description Support in Application No. PCT/IB99/00103
Claims 18–31	Throughout the application and at least at the following citations: Page 3, lines 2–24; Page 31, line 7 to page 34, line 17; Page 52, lines 10–18; Page 65, line 3 to page 70, line 3.	Throughout the application and at least at the following citations: Page 2, line 29 to page 3, line 20; Page 30, line 6 to page 33, line 11; Page 50, lines 12–20; Page 61, line 11 to page 66, line 6.
Claims 23, 30, and 31	Throughout the application and at least at the following citations: Page 3, lines 24-27; Page 9, line 26 to page 10, line 4; Page 21, lines 1-22.	Throughout the application and at least at the following citations: Page 3, lines 21–24; Page 9, lines 11–18; Page 20, line 6 to page 21, line 4.
Claims 25–27	Throughout the application and at least at the following citations: Page 3, lines 24–27;	Throughout the application and at least at the following citations: Page 3, lines 17–20;

-continued

Added Claim #	Written Description Support in the Current Application (Continuation of Application No. 10/695,499)	Written Description Support in Application No. PCT/IB99/00103
	Page 8, line 15 to page 28, line 23.	Page 8, line 1 to page 27, line 25.

Appendix 3

Disclosure of Constructive Reductions to Practice within the Scope of the Interfering Subject Matter in Application No. GB 9800760.2, filed Jan. 14, 1998

[0495]

	Location in ORF40 of Application No. GB 9800760.2	Location in SEQ 2 of '419 Patent
25	Residues 85–109	Residues 127–151
16	Residues 111–126	Residues 153–168
98	Residues 131–228	Residues 173–270
16	Residues 230–245	Residues 272–287

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 195 <210> SEQ ID NO 1 <211> LENGTH: 736 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 1 acactgttgt ttgcaacggt tcaggcaagt gctaaccaat gaagagcaag aagaagattt 60 atatttagac cccgtacaac gcactgttgc cgtgttgata gtcaattccg ataaagaagg 120 cacgggagaa aaagaaaaag tagaagaaaa ttcagattgg gcagtatatt tcaacgagaa 180 aggagtacta acagccagag aaatcaccyt caaagccggc gacaacctga aaatcaaaca 240 aaacggcaca aacttcacct actcgctgaa aaaagacctc acagatctga ccagtgttgg 300 aactgaaaaa ttatcgttta gcgcaaacgg caataaagtc aacatcacaa gcgacaccaa 360 aggettgaat tttgcgaaag aaacggetgg sacgaacgge gacaccaegg tteatetgaa 420 cggtattggt tcgactttga ccgatacgct gctgaatacc ggagcgacca caaacgtaac 480 caacgacaac gttaccgatg acgagaaaaa acgtgcggca agcgttaaag acgtattaaa 540 cgctggctgg aacattaaag gcgttaaacc cggtacaaca gcttccgata acgttgattt 600 cgtccgcact tacgacacag tcgagttctt gagcgcagat acgaaaacaa cgactgttaa 660 720 tgtggaaagc aaagacaacg gcaagaaaac cgaagttaaa atcggtgcga agacttctgt 736 tattaaaqaa aaaqac <210> SEQ ID NO 2 <211> LENGTH: 245 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (70) <223> OTHER INFORMATION: unknown <400> SEQUENCE: 2 Thr Leu Leu Phe Ala Thr Val Gln Ala Ser Ala Asn Gln Glu Glu Gln 1 5 1.0 15 Glu Glu Asp Leu Tyr Leu Asp Pro Val Gln Arg Thr Val Ala Val Leu 20 25 3.0 Ile Val Asn Ser Asp Lys Glu Gly Thr Gly Glu Lys Glu Lys Val Glu 40 35 45 Glu Asn Ser Asp Trp Ala Val Tyr Phe Asn Glu Lys Gly Val Leu Thr 50 55 60 Ala Arg Glu Ile Thr Xaa Lys Ala Gly Asp Asn Leu Lys Ile Lys Gln 65 70 75 Asn Gly Thr Asn Phe Thr Tyr Ser Leu Lys Lys Asp Leu Thr Asp Leu Thr Ser Val Gly Thr Glu Lys Leu Ser Phe Ser Ala Asn Gly Asn Lys 100 105 Val Asn Ile Thr Ser Asp Thr Lys Gly Leu Asn Phe Ala Lys Glu Thr 120 115 125 Ala Gly Thr Asn Gly Asp Thr Thr Val His Leu Asn Gly Ile Gly Ser 130 135 140

```
-continued
```

Thr Leu Thr Asp Thr Leu Leu Asn Thr Gly Ala Thr Thr Asn Val Thr 150 155 145 160 Asn Asp Asn Val Thr Asp Asp Glu Lys Lys Arg Ala Ala Ser Val Lys 165 170 175 Asp Val Leu Asn Ala Gly Trp Asn Ile Lys Gly Val Lys Pro Gly Thr 180 185 190 Thr Ala Ser Asp Asn Val Asp Phe Val Arg Thr Tyr Asp Thr Val Glu 195 200 205 Phe Leu Ser Ala Asp Thr Lys Thr Thr Thr Val Asn Val Glu Ser Lys 210 215 220 Asp Asn Gly Lys Lys Thr Glu Val Lys Ile Gly Ala Lys Thr Ser Val 225 230 235 240 Ile Lys Glu Lys Asp 245 <210> SEQ ID NO 3 <211> LENGTH: 1776 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 3 atgaacaaaa tataccgcat catttggaat agtgccctca atgcctgggt cgtcgtatcc 60 gageteacac geaaceacac caaacgegee teegeaaceg tgaagacege egtattggeg 120 180 acactgttgt ttgcaacggt tcaggcaagt gctaacaatg aagagcaaga agaagattta tatttagacc ccgtacaacg cactgttgcc gtgttgatag tcaattccga taaagaaggc 240 300 acqqqaqaaa aaqaaaaaqt aqaaqaaaat tcagattqqq caqtatattt caacqaqaaa ggagtactaa cagccagaga aatcaccctc aaagccggcg acaacctgaa aatcaaacaa 360 420 aacqqcacaa acttcaccta ctcqctqaaa aaaqacctca caqatctqac caqtqttqqa actgaaaaat tatcgtttag cgcaaacggc aataaagtca acatcacaag cgacaccaaa 480 ggcttgaatt ttgcgaaaga aacggctggg acgaacggcg acaccacggt tcatctgaac 540 600 ggtattggtt cgactttgac cgatacgctg ctgaataccg gagcgaccac aaacgtaacc aacgacaacg ttaccgatga cgagaaaaaa cgtgcggcaa gcgttaaaga cgtattaaac 660 gctggctgga acattaaagg cgttaaaccc ggtacaacag cttccgataa cgttgatttc 720 gtccgcactt acgacacagt cgagttettg agegeagata cgaaaacaac gactgttaat 780 gtggaaagca aagacaacgg caagaaaacc gaagttaaaa tcggtgcgaa gacttctgtt 840 attaaagaaa aagacggtaa gttggttact ggtaaagaca aaggcgagaa tggttcttct 900 acagacgaag gcgaaggctt agtgactgca aaagaagtga ttgatgcagt aaacaaggct 960 ggttggagaa tgaaaacaac aaccgctaat ggtcaaacag gtcaagctga caagtttgaa 1020 1080 accgttacat caggcacaaa tgtaaccttt gctagtggta aaggtacaac tgcgactgta agtaaagatg atcaaggcaa catcactgtt atgtatgatg taaatgtcgg cgatgcccta 1140 1200 aacgtcaatc agctgcaaaa cagcggttgg aatttggatt ccaaagcggt tgcaggttct tcgggcaaag tcatcagcgg caatgtttcg ccgagcaagg gaaagatgga tgaaaccgtc 1260 aacattaatg ccggcaacaa catcgagatt acccgcaacg gtaaaaatat cgacatcgcc 1320 acttcqatqa ccccqcaqtt ttccaqcqtt tcqctcqqcq cqqqqqcqqa tqcqcccact 1380

1440 ttgagcgtgg atggggacgc attgaatgtc ggcagcaaga aggacaacaa acccgtccgc 1500 attaccaatg tcgccccggg cgttaaagag ggggatgtta caaacgtcgc acaacttaaa ggcgtggcgc aaaacttgaa caaccgcatc gacaatgtgg acggcaacgc gcgtgcgggc 1560 atcgcccaag cgattgcaac cgcaggtctg gttcaggcgt atttgcccgg caagagtatg 1620 1680 atggcgatcg gcggcggcac ttatcgcggc gaagccggtt acgccatcgg ctactccagt atttccgacg gcggaaattg gattatcaaa ggcacggctt ccggcaattc gcgcggccat 1740 ttcggtgctt ccgcatctgt cggttatcag tggtaa 1776 <210> SEQ ID NO 4 <211> LENGTH: 591 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 4 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 5 10 15 Val Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20 25 Thr Val Lys Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln $_{35}$ $_{40}$ $_{45}$ Ala Ser Ala Asn Asn Glu Glu Glu Glu Glu Asp Leu Tyr Leu Asp Pro 50 55 Val Gln Arg Thr Val Ala Val Leu Ile Val Asn Ser Asp Lys Glu Gly 75 70 65 80 Thr Gly Glu Lys Glu Lys Val Glu Glu Asn Ser Asp Trp Ala Val Tyr 90 95 85 Phe Asn Glu Lys Gly Val Leu Thr Ala Arg Glu Ile Thr Leu Lys Ala 100 105 110 Gly Asp Asn Leu Lys Ile Lys Gln Asn Gly Thr Asn Phe Thr Tyr Ser 115 120 125 Leu Lys Lys Asp Leu Thr Asp Leu Thr Ser Val Gly Thr Glu Lys Leu 130 135 140 Ser Phe Ser Ala Asn Gly Asn Lys Val Asn Ile Thr Ser Asp Thr Lys 145 150 150 160 145 150 155 Gly Leu Asn Phe Ala Lys Glu Thr Ala Gly Thr Asn Gly Asp Thr Thr 165 170 175 Val His Leu Asn Gly Ile Gly Ser Thr Leu Thr Asp Thr Leu Leu Asn 185 180 190 Thr Gly Ala Thr Thr Asn Val Thr Asn Asp Asn Val Thr Asp Asp Glu 205 200 195 Lys Lys Arg Ala Ala Ser Val Lys Asp Val Leu Asn Ala Gly Trp Asn 215 210 220 Ile Lys Gly Val Lys Pro Gly Thr Thr Ala Ser Asp Asn Val Asp Phe 225 230 235 240 Val Arg Thr Tyr Asp Thr Val Glu Phe Leu Ser Ala Asp Thr Lys Thr 250 245 255 Thr Thr Val Asn Val Glu Ser Lys Asp Asn Gly Lys Lys Thr Glu Val 265 260 Lys Ile Gly Ala Lys Thr Ser Val Ile Lys Glu Lys Asp Gly Lys Leu 275 280 285

-continued

											-	con	tin	ued									
Val	Thr 290	Gly	Lys	Asp	Lys	Gly 295	Glu	Asn	Gly	Ser	Ser 300	Thr	Asp	Glu	Gly								
Glu 305	Gly	Leu	Val	Thr	Ala 310	Lys	Glu	Val	Ile	Asp 315	Ala	Val	Asn	Lys	Ala 320								
Gly	Trp	Arg	Met	L ys 325	Thr	Thr	Thr	Ala	Asn 330	Gly	Gln	Thr	Gly	Gln 335	Ala								
Asp	Lys	Phe	Glu 340	Thr	Val	Thr	Ser	Gly 345	Thr	Asn	Val	Thr	Phe 350	Ala	Ser								
Gly	Lys	Gly 355	Thr	Thr	Ala	Thr	Val 360	Ser	Lys	Asp	Asp	Gln 365	Gly	Asn	Ile								
Thr	Val 370		Tyr	Asp	Val	Asn 375	Val	Gly	Asp	Ala	Leu 380	Asn	Val	Asn	Gln								
Leu 385	Gln	Asn	Ser	Gly	Trp 390	Asn	Leu	Asp	Ser	L y s 395	Ala	Val	Ala	Gly	Ser 400								
Ser	Gly	Lys	Val	Ile 405	Ser	Gly	Asn	Val	Ser 410	Pro	Ser	Lys	Gly	Lys 415	Met								
Asp	Glu	Thr	Val 420	Asn	Ile	Asn	Ala	Gly 425	Asn	Asn	Ile	Glu	Ile 430	Thr	Arg								
Asn	Gly	Lys 435	Asn	Ile	Asp	Ile	Ala 440	Thr	Ser	Met	Thr	Pro 445	Gln	Phe	Ser								
Ser	Val 450	Ser	Leu	Gly	Ala	Gl y 455	Ala	Asp	Ala	Pro	Thr 460	Leu	Ser	Val	Asp								
Gly 465	Asp	Ala	Leu	Asn	Val 470	Gly	Ser	Lys	Lys	Asp 475	Asn	Lys	Pro	Val	Arg 480								
Ile	Thr	Asn	Val	Ala 485	Pro	Gly	Val	Lys	Glu 490	Gly	Asp	Val	Thr	Asn 495	Val								
Ala	Gln	Leu	L y s 500	Gly	Val	Ala	Gln	Asn 505	Leu	Asn	Asn	Arg	Ile 510	Asp	Asn								
Val	Asp	Gly 515	Asn	Ala	Arg	Ala	Gly 520	Ile	Ala	Gln	Ala	Ile 525	Ala	Thr	Ala								
Gly	Leu 530	Val	Gln	Ala	Tyr	Leu 535	Pro	Gly	Lys	Ser	Met 540	Met	Ala	Ile	Gly								
Gly 545	Gly	Thr	Tyr	Arg	Gly 550	Glu	Ala	Gly	Tyr	Ala 555	Ile	Gly	Tyr	Ser	Ser 560								
Ile	Ser	Asp	Gly	Gly 565	Asn	Trp	Ile	Ile	L y s 570	Gly	Thr	Ala	Ser	Gly 575	Asn								
Ser	Arg	Gly	His 580	Phe	Gly	Ala	Ser	Ala 585	Ser	Val	Gly	Tyr	Gln 590	Trp									
<21 <211 <221 <222 <222 <222 <222 <222	0> SE 1> LE 2> TY 3> OF 0> FF 1> NZ 2> LC 3> OT 0> FE 1> NZ 2> LC 03 0> FE 1> NZ 2> LC 07 0> FE 1> NZ 1> NZ	ENGTH YPE: RGANJ EATUF AME/H DCATJ CHER EATUF AME/H DCATJ CHER EATUF CHER EATUF	H: 1 [°] DNA ISM: ES: EY: INF(EY: INF(EY: INF(EY: INF(EY: INF(E:	779 Neis (48) DRMAT misc (420 DRMAT misc (608 DRMAT	c_fea) [ION: c_fea)) [ION: c_fea 3) [ION:	ature ature ature ature ature	y nuc y nuc y nuc y nuc	cleot	ide ide														

```
-continued
```

<222> LOCATION: (682)..(684) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (763)
<223> OTHER INFORMATION: any nucleotide <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (774) <223> OTHER INFORMATION: any nucleotide coop manufacture <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1473) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1492) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1560) <223> OTHER INFORMATION: any nucleotide

<400> SEQUENCE: 5

atgaacaaaa tataccgcat	catttggaat	agtgccctca	atgcctgngt	cgccgtatcc	60
gageteacae geaaceacae	caaacgcgcc	tccgcaaccg	tgaagaccgc	cgtattggcg	120
acactgttgt ttgcaacggt	tcaggcgaat	gctaccgatg	aagatgaaga	agaagagtta	180
gaatccgtac aacgctctgt	cgtagggagc	attcaagcca	gtatggaagg	cagcggcgaa	240
ttggaaacga tatcattatc	aatgactaac	gacagcaagg	aatttgtaga	cccatacata	300
gtagttaccc tcaaagccgg	cgacaacctg	aaaatcaaac	aaaacaccaa	tgaaaacacc	360
aatgccagta gcttcaccta	ctcgctgaaa	aaagacctca	caggcctgat	caatgttgan	420
actgaaaaat tatcgtttgg	cgcaaacggc	aagaaagtca	acatcataag	cgacaccaaa	480
ggcttgaatt tcgcgaaaga	aacggctggg	acgaacggcg	acaccacggt	tcatctgaac	540
ggtatcggtt cgactttgac	cgatacgctt	gcgggttctt	ctgcttctca	cgttgatgcg	600
ggtaaccnaa gtacacatta	cactcgtgca	gcaagtatta	aggatgtgtt	gaatgcgggt	660
tggaatatta agggtgttaa	annnggctca	acaactggtc	aatcagaaaa	tgtcgatttc	720
gtccgcactt acgacacagt	cgagttcttg	agcgcagata	cgnaaacaac	gacngttaat	780
gtggaaagca aagacaacgg	caagagaacc	gaagttaaaa	tcggtgcgaa	gacttctgtt	840
attaaagaaa aagacggtaa	gttggttact	ggtaaaggca	aaggcgagaa	tggttcttct	900
acagacgaag gcgaaggctt	agtgactgca	aaagaagtga	ttgatgcagt	aaacaaggct	960
ggttggagaa tgaaaacaac	aaccgctaat	ggtcaaacag	gtcaagctga	caagtttgaa	1020
accgttacat caggcacaaa	tgtaaccttt	gctagtggta	aaggtacaac	tgcgactgta	1080
agtaaagatg atcaaggcaa	catcactgtt	atgtatgatg	taaatgtcgg	cgatgcccta	1140
aacgtcaatc agctgcaaaa	cagcggttgg	aatttggatt	ccaaagcggt	tgcaggttct	1200
tcgggcaaag tcatcagcgg	caatgtttcg	ccgagcaagg	gaaagatgga	tgaaaccgtc	1260
aacattaatg ccggcaacaa	catcgagatt	agccgcaacg	gtaaaaatat	cgacatcgcc	1320
acttcgatgg cgccgcagtt	ttccagcgtt	tcgctcggcg	cggggggcaga	tgcgcccact	1380
ttaagcgtgg atgacgaggg	cgcgttgaat	gtcggcagca	aggatgccaa	caaacccgtc	1440
cgcattacca atgtcgcccc	gggcgttaaa	ganggggatg	ttacaaacgt	cncacaactt	1500
aaaggcgtgg cgcaaaactt	gaacaaccgc	atcgacaatg	tggacggcaa	cgcgcgtgcn	1560

ggcatcgccc aagcgattgc aaccgcaggt ctggttcagg cgtatctgcc cggcaagagt 1620 atgatggcga tcggcggcgg cacttatcgc ggcgaagccg gttacgccat cggctactcc 1680 agtatttccg acggcggaaa ttggattatc aaaggcacgg cttccggcaa ttcgcgcggc 1740 1779 catttcggtg cttccgcatc tgtcggttat cagtggtaa <210> SEQ ID NO 6 <211> LENGTH: 592 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (16) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (140) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (203) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (228) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (255) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (491) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (498) <223> OTHER INFORMATION: unknown <400> SEOUENCE: 6 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Xaa 5 10 15 1 Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20 25 30 Thr Val Lys Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln 35 40 45 Ala Asn Ala Thr Asp Glu Asp Glu Glu Glu Glu Leu Glu Ser Val Gln 55 60 50 Arg Ser Val Val Gly Ser Ile Gln Ala Ser Met Glu Gly Ser Gly Glu 70 75 80 Leu Glu Thr Ile Ser Leu Ser Met Thr Asn Asp Ser Lys Glu Phe Val 85 90 95 Asp Pro Tyr Ile Val Val Thr Leu Lys Ala Gly Asp Asn Leu Lys Ile 105 100 110 Lys Gln Asn Thr Asn Glu Asn Thr Asn Ala Ser Ser Phe Thr Tyr Ser 120 115 125 Leu Lys Lys Asp Leu Thr Gly Leu Ile Asn Val Xaa Thr Glu Lys Leu 130 135 Ser Phe Gly Ala Asn Gly Lys Lys Val Asn Ile Ile Ser Asp Thr Lys 145 150 155 160 Gly Leu Asn Phe Ala Lys Glu Thr Ala Gly Thr Asn Gly Asp Thr Thr

-continued

											-	con	tin	ued								
				165					170					175								
7al	His	Leu	Asn 180	Gly	Ile	Gly	Ser	Thr 185	Leu	Thr	Asp	Thr	Leu 190	Ala	Gly							
3er	Ser	Ala 195	Ser	His	Val	Asp	Ala 200	Gly	Asn	Xaa	Ser	Thr 205	His	Tyr	Thr							
4rg	Ala 210	Ala	Ser	Ile	Lys	Asp 215	Val	Leu	Asn	Ala	Gl y 220	Trp	Asn	Ile	Lys							
Gly 225	Val	Lys	Xaa	Gly	Ser 230	Thr	Thr	Gly	Gln	Ser 235	Glu	Asn	Val	Asp	Phe 240							
/al	Arg	Thr	Tyr	Asp 245	Thr	Val	Glu	Phe	Leu 250	Ser	Ala	Asp	Thr	Xaa 255	Thr							
ſhr	Thr	Val	Asn 260	Val	Glu	Ser	Lys	A sp 265	Asn	Gly	Lys	Arg	Thr 270	Glu	Val							
∶ys	Ile	Gly 275	Ala	Lys	Thr	Ser	Val 280	Ile	Lys	Glu	Lys	As p 285	Gly	Lys	Leu							
7al	Thr 290	Gly	Lys	Gly	Lys	Gly 295	Glu	Asn	Gly	Ser	Ser 300	Thr	Asp	Glu	Gly							
Glu 305	Gly	Leu	Val	Thr	Ala 310	Lys	Glu	Val	Ile	Asp 315	Ala	Val	Asn	Lys	Ala 320							
Зly	Trp	Arg	Met	L y s 325	Thr	Thr	Thr	Ala	Asn 330	Gly	Gln	Thr	Gly	Gln 335	Ala							
₹sb	Lys	Phe	Glu 340	Thr	Val	Thr	Ser	Gly 345	Thr	Asn	Val	Thr	Phe 350	Ala	Ser							
Зly	Lys	Gly 355	Thr	Thr	Ala	Thr	Val 360	Ser	Lys	Asp	Asp	Gln 365	Gly	Asn	Ile							
[hr	Val 370	Met	Tyr	Asp	Val	Asn 375	Val	Gly	Asp	Ala	Leu 380	Asn	Val	Asn	Gln							
Leu 385	Gln	Asn	Ser	Gly	Trp 390	Asn	Leu	Asp	Ser	L y s 395	Ala	Val	Ala	Gly	Ser 400							
3er	Gly	Lys	Val	Ile 405	Ser	Gly	Asn	Val	Ser 410	Pro	Ser	Lys	Gly	L y s 415	Met							
fab	Glu	Thr	Val 420	Asn	Ile	Asn	Ala	Gl y 425	Asn	Asn	Ile	Glu	Ile 430	Ser	Arg							
4sn	Gly	L y s 435	Asn	Ile	Asp	Ile	Ala 440	Thr	Ser	Met	Ala	Pro 445	Gln	Phe	Ser							
3er	Val 450	Ser	Leu	Gly	Ala	Gly 455	Ala	Asp	Ala	Pro	Thr 460	Leu	Ser	Val	Asp							
Asp 465	Glu	Gly	Ala	Leu	Asn 470	Val	Gly	Ser	Lys	Asp 475	Ala	Asn	Lys	Pro	Val 480							
4rg	Ile	Thr	Asn	Val 485	Ala	Pro	Gly	Val	Lys 490	Xaa	Gly	Asp	Val	Thr 495	Asn							
7al	Xaa	Gln	Leu 500	Lys	Gly	Val	Ala	Gln 505	Asn	Leu	Asn	Asn	Arg 510	Ile	Asp							
4sn	Val	Asp 515	Gly	Asn	Ala	Arg	Ala 520	Gly	Ile	Ala	Gln	Ala 525	Ile	Ala	Thr							
4la	Gly 530	Leu	Val	Gln	Ala	Ty r 535	Leu	Pro	Gly	Lys	Ser 540	Met	Met	Ala	Ile							
Gly 545	Gly	Gly	Thr	Tyr	Arg 550	Gly	Glu	Ala	Gly	Ty r 555	Ala	Ile	Gly	Tyr	Ser 560							
Ser	Ile	Ser	Asp	Gly 565	Gly	Asn	Trp	Ile	Ile 570	Lys	Gly	Thr	Ala	Ser 575	Gly							

```
-continued
```

Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 585 580 590 <210> SEQ ID NO 7 <211> LENGTH: 492 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 7 atgttacgtt tgactgcttt agccgtatgc accgccctcg ctttgggcgc gtgttcgccg 60 caaaattccg actctgcccc acaagccaaa gaacaggcgg tttccgccgc acaaaccgaa 120 ggcgcgtccg ttaccgtcaa aaccgcgcgc ggcgacgttc aaataccgca aaaccccgaa 180 cgcatcgccg tttacgattt gggtatgctc gacaccttga gcaaactggg cgtgaaaacc 240 ggtttgtccg tcgataaaaa ccgcctgccg tatttagagg aatatttcaa aacgacaaaa 300 cctgccggca ctttgttcga gccggattac gaaacgctca acgcttacaa accgcagctc 360 atcatcatcg gcagccgcgc cgccaaggcg tttgacaaat tgaacgaaat cgcgccgacc 420 atcgrmwtga ccgccgatac cgccaacctc aaagaaagtg ccaargaggc atcgacgctg 480 492 gcgcaaatct tc <210> SEQ ID NO 8 <211> LENGTH: 164 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (142)..(143) <223> OTHER INFORMATION: unknown <400> SEQUENCE: 8 Met Leu Arg Leu Thr Ala Leu Ala Val Cys Thr Ala Leu Ala Leu Gly 1 5 10 15 Ala Cys Ser Pro Gln Asn Ser Asp Ser Ala Pro Gln Ala Lys Glu Gln 20 25 30 Ala Val Ser Ala Ala Gln Thr Glu Gly Ala Ser Val Thr Val Lys Thr 35 40 45 Ala Arg Gly Asp Val Gln Ile Pro Gln Asn Pro Glu Arg Ile Ala Val 50 55 60 Tyr Asp Leu Gly Met Leu Asp Thr Leu Ser Lys Leu Gly Val Lys Thr65707580 Gly Leu Ser Val Asp Lys Asn Arg Leu Pro Tyr Leu Glu Glu Tyr Phe 90 85 Lys Thr Thr Lys Pro Ala Gly Thr Leu Phe Glu Pro Asp Tyr Glu Thr 100 105 110 Leu Asn Ala Tyr Lys Pro Gln Leu Ile Ile Ile Gly Ser Arg Ala Ala 120 115 125 Lys Ala Phe Asp Lys Leu Asn Glu Ile Ala Pro Thr Ile Xaa Xaa Thr 135 140 Ala Asp Thr Ala Asn Leu Lys Glu Ser Ala Lys Glu Ala Ser Thr Leu 145 150 155 160 Ala Gln Ile Phe

<211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 9	
atgttacgtt tgactgcttt agccgtatgc accgccctcg ctttgggcgc gtgttcgccg	60
caaaattccg actctgcccc acaagccaaa gaacaggcgg tttccgccgc acaaaccgaa	120
ggcgcgtccg ttaccgtcaa aaccgcgcgc ggcgacgttc aaataccgca aaaccccgaa	180
cgcatcgccg tttacgattt gggtatgctc gacaccttga gcaaactggg cgtgaaaacc	240
ggtttgtccg tcgataaaaa ccgcctgccg tatttagagg aatatttcaa aacgacaaaa	300
cctgccggca ctttgttcga gccggattac gaaacgctca acgcttacaa accgcagctc	360
atcatcatcg gcagccgcgc cgccaaggcg tttgacaaat tgaacgaaat cgcgccgacc	420
atcgaaatga ccgccgatac cgccaacctc aaagaaagtg ccaaagagcg catcgacgcg	480
ctggcgcaaa tottoggcaa acaggoggaa googacaago tgaaggogga aatogaogog	540
tcttttgaag ccgcgaaaac tgccgcacaa ggtaagggca aaggtttggt gattttggtc	600
aacggcggca agatgtcggc tttcggcccg tcttcacgct tgggcggctg gctgcacaaa	660
gacatoggog ttocogotgt ogatgaatoa attaaagaag goagooaogg toagootato	720
agetttgaat acetgaaaga gaaaaateee gaetggetgt ttgteettga eegaagegeg	780
gccatcggcg aagagggtca ggcggcgaaa gacgtgttgg ataatccgct ggttgccgaa	840
acaaccgctt ggaaaaaagg acaggtcgtg tacctcgttc ctgaaactta tttggcagcc	900
ggtggcgcgc aagagctgct gaatgcaagc aaacaggttg ccgacgcttt taacgcggca	960
aaataa	966
<210> SEQ ID NO 10 <211> LENGTH: 321 <212> TYPE: PRT	
<213> ORGANISM: Neisseria meningitidis	
<213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 10	
<400> SEQUENCE: 10 Met Leu Arg Leu Thr Ala Leu Ala Val Cys Thr Ala Leu Ala Leu Gly	
<400> SEQUENCE: 10 Met Leu Arg Leu Thr Ala Leu Ala Val Cys Thr Ala Leu Ala Leu Gly 1 5 10 15 Ala Cys Ser Pro Gln Asn Ser Asp Ser Ala Pro Gln Ala Lys Glu Gln	
<400> SEQUENCE: 10 Met Leu Arg Leu Thr Ala Leu Ala Val Cys Thr Ala Leu Ala Leu Gly 1 5 Ala Cys Ser Pro Gln Asn Ser Asp Ser Ala Pro Gln Ala Lys Glu Gln 20 Ala Val Ser Ala Ala Gln Thr Glu Gly Ala Ser Val Thr Val Lys Thr	
<pre><400> SEQUENCE: 10 Met Leu Arg Leu Thr Ala Leu Ala Val Cys Thr Ala Leu Ala Leu Gly 1 5 10 10 15 Ala Cys Ser Pro Gln Asn Ser Asp Ser Ala Pro Gln Ala Lys Glu Gln 20 20 20 25 20 20 20 30 Ala Val Ser Ala Ala Gln Thr Glu Gly Ala Ser Val Thr Val Lys Thr 35 Ala Arg Gly Asp Val Gln Ile Pro Gln Asn Pro Glu Arg Ile Ala Val</pre>	
<pre><400> SEQUENCE: 10 Met Leu Arg Leu Thr Ala Leu Ala Val Cys Thr Ala Leu Ala Leu Gly 1 Ala Cys Ser Pro Gln Asn Ser Asp Ser Ala Pro Gln Ala Lys Glu Gln 20 Ala Val Ser Ala Ala Gln Thr Glu Gly Ala Ser Val Thr Val Lys Thr 40 Ala Arg Gly Asp Val Gln Ile Pro Gln Asn Pro Glu Arg Ile Ala Val 50 Tyr Asp Leu Gly Met Leu Asp Thr Leu Ser Lys Leu Gly Val Lys Thr</pre>	
<pre><400> SEQUENCE: 10 Met Leu Arg Leu Thr Ala Leu Ala Val Cys Thr Ala Leu Ala Leu Gly 1 Ala Cys Ser Pro Gln Asn Ser Asp Ser Ala Pro Gln Ala Lys Glu Gln 20 Ala Val Ser Ala Ala Gln Thr Glu Gly Ala Ser Val Thr Val Lys Thr 40 Ala Arg Gly Asp Val Gln Ile Pro Gln Asn Pro Glu Arg Ile Ala Val 50 Tyr Asp Leu Gly Met Leu Asp Thr Leu Ser Lys Leu Gly Val Lys Thr 65 Gly Leu Ser Val Asp Lys Asn Arg Leu Pro Tyr Leu Glu Glu Tyr Phe</pre>	
<pre><400> SEQUENCE: 10 Met Leu Arg Leu Thr Ala Leu Ala Val Cys Thr Ala Leu Ala Leu Gly 15 Ala Cys Ser Pro Gln Asn Ser Asp Ser Ala Pro Gln Ala Lys Glu Gln 30 Ala Val Ser Ala Ala Gln Thr Glu Gly Ala Ser Val Thr Val Lys Thr 40 Ala Arg Gly Asp Val Gln Ile Pro Gln Asn Pro Glu Arg Ile Ala Val 55 Tyr Asp Leu Gly Met Leu Asp Thr Leu Ser Lys Leu Gly Val Lys Thr 80 Gly Leu Ser Val Asp Lys Asn Arg Leu Pro Tyr Leu Glu Glu Tyr Phe 95 Lys Thr Thr Lys Pro Ala Gly Thr Leu Phe Glu Pro Asp Tyr Glu Thr</pre>	
<pre><400> SEQUENCE: 10 Met Leu Arg Leu Thr Ala Leu Ala Val Cys Thr Ala Leu Ala Leu Gly 1 Ala Cys Ser Pro Gln Asn Ser Asp Ser Ala Pro Gln Ala Lys Glu Gln 20 Ala Val Ser Ala Ala Gln Thr Glu Gly Ala Ser Val Thr Val Lys Thr 30 Ala Arg Gly Asp Val Gln Ile Pro Gln Asn Pro Glu Arg Ile Ala Val 50 Gly Leu Ser Val Asp Lys Asn Arg Leu Pro Tyr Leu Glu Glu Tyr Phe 85 Cly Thr Thr Lys Pro Ala Gly Thr Leu Ile The Glu Pro Asp Tyr Glu Thr 10 </pre>	

											_	con	tin	ued			
145					150					155					160		
Leu	Ala	Gln	Ile	Phe 165	Gly	Lys	Gln	Ala	Glu 170	Ala	Asp	Lys	Leu	L y s 175	Ala		
Glu	Ile	Asp	Ala 180	Ser	Phe	Glu	Ala	Ala 185	Lys	Thr	Ala	Ala	Gln 190	Gly	Lys		
Gly	Lys	Gly 195	Leu	Val	Ile	Leu	Val 200	Asn	Gly	Gly	Lys	Met 205	Ser	Ala	Phe		
Gly	Pro 210	Ser	Ser	Arg	Leu	Gl y 215	Gly	Trp	Leu	His	L y s 220	Asp	Ile	Gly	Val		
Pro 225	Ala	Val	Asp	Glu	Ser 230	Ile	Lys	Glu	Gly	Ser 235	His	Gly	Gln	Pro	Ile 240		
Ser	Phe	Glu	Tyr	Leu 245	Lys	Glu	Lys	Asn	Pro 250	Asp	Trp	Leu	Phe	Val 255	Leu		
Asp	Arg	Ser	Ala 260	Ala	Ile	Gly	Glu	Glu 265	Gly	Gln	Ala	Ala	L y s 270	Asp	Val		
Leu	Asp	Asn 275	Pro	Leu	Val	Ala	Glu 280	Thr	Thr	Ala	Trp	L y s 285	Lys	Gly	Gln		
Val	Val 290	Tyr	Leu	Val	Pro	Glu 295	Thr	Tyr	Leu	Ala	Ala 300	Gly	Gly	Ala	Gln		
Glu 305	Leu	Leu	Asn	Ala	Ser 310	Lys	Gln	Val	Ala	Asp 315	Ala	Phe	Asn	Ala	Ala 320		
Lys																	
<21 <21	0> SH 1> LH 2> TY 3> OH	ENGTH (PE :	1: 96 DNA		sser	ia me	ening	gitic	lis								
<40	0> SI	EQUEI	NCE :	11													
atg	ttac	gtt ·	tgac [.]	tgcti	tt a	gccg+	tatgo	c aco	cgcco	ctcg	ctt	tggg	cgc	gtgti	cgcc	g	60
caa	aatto	ccg (actc	tgcco	cc a	caago	ccaaa	a gaa	acag	lcdd	ttt	ccgc	cgc (acaa	ccga	a :	120
ggc	gtgt	ccg ·	ttac	cgtca	aa a	acggo	cgcgo	c ggo	gate	gttc	aaa	tacc	gca (aaaco	ccga	a :	180
cgt	atcg	ccg ·	ttta	cgati	tt g	ggtai	tgcto	c gao	cacci	tga	gca	aact	aaa	cgtga	aaac	c 2	240
ggt	ttgt	ccg ·	tcga [.]	taaaa	aa co	cgcci	tgcco	g tai	tta	gagg	aat	attt	caa	aacga	acaaa	a :	300
cct	gccg	gaa (cttt	gttc	ga go	ccgga	atta	c gaa	aacgo	ctca	acg	ctta	caa	accgo	agct	c :	360
atc	atca	tog (gcag	ccgc	gc a	gcca	aagco	g tt4	cgaca	aat	tga	acga	aat	cgcgo	cgac	c í	420
atc	gaaa	tga (ccgc	cgata	ac c	gcca	accto	c aaa	agaa	agtg	cca	aaga	gcg ·	tatco	Jacgc	g í	480
ctg	gegea	aaa ·	tctt	cggca	aa a	aaggo	cggaa	a gco	cgaca	aagc	tga	aggc	gga .	aatco	Jacgc	g t	540
tct	tttga	aag	ccgc	gaaaa	ac to	gccg	cgcaa	a ggo	caaa	ggca	agg	gttt	ggt	gatti	tggt	c (600
aac	ggcg	gca (agat	gtcc	gc c	ttcg	gccc	g tơ	tca	cgac	tgg	gcgg	ctg	gctg	cacaa	a (660
gac	atcg	gcg .	ttcc	cgct	gt te	gacga	aagco	c ato	caaa	gaag	gca	gcca	cdd .	tcago	ctat	c î	720
agc	tttga	aat i	acct	gaaa	ga ga	aaaa	atcco	c gao	ctgg	ctgt	ttg	tcct	tga	ccgca	agege	g i	780
gcc	atcg	gcg (aaga	gggta	ca g	gcgg	cgaaa	a gao	gtg	tga	aca	atcc	gct	ggtto	JCCGa	a 8	840
aca	accg	ctt (ggaa	aaaa	gg a	caag	tcgt	t tao	cctt	gttc	ctg	aaac	tta ·	tttg	gcagc	c S	900
ggt	ggcgo	cgc i	aaga	gcta	ct ga	aatgo	caago	c aaa	acag	gttg	ccg	acgc [.]	ttt ·	taaco	ledde	a S	960
aaa	taa															9	966

<210> SEO ID NO 12 <211> LENGTH: 321 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 12 Met Leu Arg Leu Thr Ala Leu Ala Val Cys Thr Ala Leu Ala Leu Gly 1 5 10 15 Ala Cys Ser Pro Gln Asn Ser Asp Ser Ala Pro Gln Ala Lys Glu Gln 20 25 30 Ala Val Ser Ala Ala Gln Ser Glu Gly Val Ser Val Thr Val Lys Thr 40 35 45 Ala Arg Gly Asp Val Gln Ile Pro Gln Asn Pro Glu Arg Ile Ala Val 50 55 60 Tyr Asp Leu Gly Met Leu Asp Thr Leu Ser Lys Leu Gly Val Lys Thr65707580 Gly Leu Ser Val Asp Lys Asn Arg Leu Pro Tyr Leu Glu Glu Tyr Phe 90 Lys Thr Thr Lys Pro Ala Gly Thr Leu Phe Glu Pro Asp Tyr Glu Thr 100 105 110 Leu Asn Ala Tyr Lys Pro Gln Leu Ile Ile Ile Gly Ser Arg Ala Ala 115 120 125 Lys Ala Phe Asp Lys Leu Asn Glu Ile Ala Pro Thr Ile Glu Met Thr 135 130 140 Ala Asp Thr Ala Asn Leu Lys Glu Ser Ala Lys Glu Arg Ile Asp Ala 145 150 155 160 150 Leu Ala Gln Ile Phe Gly Lys Lys Ala Glu Ala Asp Lys Leu Lys Ala 165 170 Glu Ile Asp Ala Ser Phe Glu Ala Ala Lys Thr Ala Ala Gln Gly Lys 180 185 190 Gly Lys Gly Leu Val Ile Leu Val Asn Gly Gly Lys Met Ser Ala Phe 195 200 205 Gly Pro Ser Ser Arg Leu Gly Gly Trp Leu His Lys Asp Ile Gly Val 210 215 220 Pro Ala Val Asp Glu Ala Ile Lys Glu Gly Ser His Gly Gln Pro Ile 225 230 235 240 Ser Phe Glu Tyr Leu Lys Glu Lys Asn Pro Asp Trp Leu Phe Val Leu 245 250 255 Asp Arg Ser Ala Ala Ile Gly Glu Glu Gly Gln Ala Ala Lys Asp Val 260 265 270 Leu Asn Asn Pro Leu Val Ala Glu Thr Thr Ala Trp Lys Lys Gly Gln 275 280 285 Val Val Tyr Leu Val Pro Glu Thr Tyr Leu Ala Ala Gly Gly Ala Gln 290 295 300 Glu Leu Asn Ala Ser Lys Gln Val Ala Asp Ala Phe Asn Ala Ala 310 305 315 320 Lys

<210> SEQ ID NO 13 <211> LENGTH: 375 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis

<400> SEQUENCE: 13	
atgaaacttc tgaccaccgc aatcctgtct tccgcaatcg cgctcagcag tatggctgcc	60
gccgctggca cggacaaccc cactgttgca aaaaaaaccg tcagctacgt ctgccagcaa	120
ggtaaaaaag tcaaagtaac ctacggcttc aacaaacagg gtctgaccac atacgcttcc	180
gccgtcatca acggcaaacg cgtgcaaatg cctgtcaatt tggacaaatc cgacaatgtg	240
gaaacattot acggcaaaga aggcggttat gttttgggta coggogtgat ggatggcaaa	300
tcctaccgca aacagcccat tatgattacc gcacctgaca accaaatcgt cttcaaagac	360
tgttccccac gttaa	375
<210> SEQ ID NO 14 <211> LENGTH: 124 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 14	
Met Lys Leu Leu Thr Thr Ala Ile Leu Ser Ser Ala Ile Ala Leu Ser 1 5 10 15	
Ser Met Ala Ala Ala Ala Gly Thr Asp Asn Pro Thr Val Ala Lys Lys 20 25 30	
Thr Val Ser Tyr Val Cys Gln Gln Gly Lys Lys Val Lys Val Thr Tyr 35 40 45	
Gly Phe Asn Lys Gln Gly Leu Thr Thr Tyr Ala Ser Ala Val Ile Asn 50 55 60	
Gly Lys Arg Val Gln Met Pro Val Asn Leu Asp Lys Ser Asp Asn Val 65 70 75 80	
Glu Thr Phe Tyr Gly Lys Glu Gly Gly Tyr Val Leu Gly Thr Gly Val 85 90 95	
Met Asp Gly Lys Ser Tyr Arg Lys Gln Pro Ile Met Ile Thr Ala Pro 100 105 110	
Asp Asn Gln Ile Val Phe Lys Asp Cys Ser Pro Arg 115 120	
<210> SEQ ID NO 15 <211> LENGTH: 375 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 15	
atgaaacttc tgaccaccgc aatcctgtct tccgcaatcg cgctcagcag tatggctgct	60
gctgccggca cgaacaaccc caccgttgcc aaaaaaaccg tcagctacgt ctgccagcaa	120
ggtaaaaaag tcaaagtaac ctacggcttt aacaaacagg gcctgaccac atacgcttcc	180
gccgtcatca acggcaaacg tgtgcaaatg cctgtcaatt tggacaaatc cgacaatgtg	240
gaaacattot acggcaaaga aggcggttat gttttgggta coggogtgat ggatggcaaa	300
tcctatcgca aacagcctat tatgattacc gcacctgaca accaaatcgt cttcaaagac	360
tgttccccac gttaa	375
<210> SEQ ID NO 16 <211> LENGTH: 124 <212> TYPE: PRT <213> OPCONISM: Noiscoria moningitidia	

- <213> ORGANISM: Neisseria meningitidis

- g
- g

- a

- <
- <

- <

- <

- <

- A

- М

- G
- s т G
- < М
- а g g g g
- -continued
- 104

-continued	
<400> SEQUENCE: 16	
Met Lys Leu Leu Thr Thr Ala Ile Leu Ser Ser Ala Ile Ala Leu Ser 1 5 10 15	
Ser Met Ala Ala Ala Gly Thr Asn Asn Pro Thr Val Ala Lys Lys 20 25 30	
Thr Val Ser Tyr Val Cys Gln Gln Gly Lys Lys Val Lys Val Thr Tyr 35 40 45	
Gly Phe Asn Lys Gln Gly Leu Thr Thr Tyr Ala Ser Ala Val Ile Asn 50 55 60	
Gly Lys Arg Val Gln Met Pro Val Asn Leu Asp Lys Ser Asp Asn Val 65 70 75 80	
Glu Thr Phe Tyr Gly Lys Glu Gly Gly Tyr Val Leu Gly Thr Gly Val 85 90 95	
Met Asp Gly Lys Ser Tyr Arg Lys Gln Pro Ile Met Ile Thr Ala Pro 100 105 110	
Asp Asn Gln Ile Val Phe Lys Asp Cys Ser Pro Arg 115 120	
<pre><211> LENGTH: 519 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (425) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (485) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (485) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (489) <223> OTHER INFORMATION: any nucleotide </pre>	
<400> SEQUENCE: 17	
ggcaccgaat tcaaaaccac cctttccgga gccgacatac aggcaggggt gggtgaaaaa	60
gcccgagccg atgcgaaaat tatcctaaaa ggcatcgtta accgcatcca aaccgaagaa	120
aagctggaat ccaactcgac cgtatggcaa aagcaggccg gaagcggcag cacggttgaa	180
acgotgaago tacogagott tgaagggoog goactgoota agotgacogo tocoggoggo	240 300
tatatcgccg acatccccaa aggcaacctc aaaaccgaaa tcgaaaagct ggccaaacag	300
cagctcgctt acgacaaatg ggactataaa caggaaggcc taaccggagc cggagccgca	420
attancgcac tggccgttac cgtggtcacc tcaggcgcag gaaccggagc cgtattggga	480
ttaanacgng tggccgccgc cgcaaccgat gcagcattt	519
<210> SEQ ID NO 18 <211> LENGTH: 173 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (142) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE	

<221> NAME/KEY: SITE
<222> LOCATION: (162)

-continued	
<223> OTHER INFORMATION: unknown	
<400> SEQUENCE: 18	
Gly Thr Glu Phe Lys Thr Thr Leu Ser Gly Ala Asp Ile Gln Ala Gly 1 5 10 15	
Val Gly Glu Lys Ala Arg Ala Asp Ala Lys Ile Ile Leu Lys Gly Ile 20 25 30	
Val Asn Arg Ile Gln Thr Glu Glu Lys Leu Glu Ser Asn Ser Thr Val 35 40 45	
Trp Gln Lys Gln Ala Gly Ser Gly Ser Thr Val Glu Thr Leu Lys Leu 50 55 60	
Pro Ser Phe Glu Gly Pro Ala Leu Pro Lys Leu Thr Ala Pro Gly Gly 65 70 75 80	
Tyr Ile Ala Asp Ile Pro Lys Gly Asn Leu Lys Thr Glu Ile Glu Lys 85 90 95	
Leu Ala Lys Gln Pro Glu Tyr Ala Tyr Leu Lys Gln Leu Gln Thr Val 100 105 110	
Lys Asp Val Asn Trp Asn Gln Val Gln Leu Ala Tyr Asp Lys Trp Asp	
115 120 125	
Tyr Lys Gln Glu Gly Leu Thr Gly Ala Gly Ala Ala Ile Xaa Ala Leu 130 135 140	
Ala Val Thr Val Val Thr Ser Gly Ala Gly Thr Gly Ala Val Leu Gly 145 150 155 160	
Leu Xaa Arg Val Ala Ala Ala Ala Thr Asp Ala Ala Phe 165 170	
105 170	
<210> SEQ ID NO 19	
<211> LENGTH: 1923 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 19	
atgcaactgc tggcagccga aggcattcac caacaccaat tgaatgttca gaaaagtacc	60
cgtttcatcg gcatcaaagt gggtaaaagc aattacagca aaaacgagct gaacgaaacc	120
aaactgcccg tacgcgttat cgcccaaaca gccaaaaccc gttccggctg ggataccgta	180
ctcgaaggca ccgaattcaa aaccaccctt tccggagccg acatacaggc aggggggggt	240
gaaaaaggcc gagccgatgc gaaaattatc ctaaaaggca tcgttaaccg catccaaacc	300
gaagaaaagc tggaatccaa ctcgaccgta tggcaaaagc aggccggaag cggcagcacg	360
gttgaaacgc tgaagctacc gagctttgaa gggccggcac tgcctaagct gaccgctccc	420
ggcggctata tcgccgacat ccccaaaggc aacctcaaaa ccgaaatcga aaagctggcc	480
aaacagcccg aatatgccta totgaaacag ottcagacgg tcaaggacgt gaactggaac	540
caagtacage tegettacga caaatgggac tataaacagg aaggeetaac eggageegga	600
gccgcaatta tcgcactggc cgttaccgtg gtcacctcag gcgcaggaac cggagccgta	660
ttgggattaa acggtgcggc cgccgccgca accgatgcag catttgcctc tttggccagc	720
caggetteeg tategtteat caacaacaaa ggeaatateg gtaacaecet gaaagagetg	780
ggcagaagca gcacggtgaa aaatctgatg gttgccgtcg ctaccgcagg cgtagccgac	840
	900
aaaatcggtg cttcggcact gaacaatgtc agcgataagc agtggatcaa caacctgacc	960
gtcaacctgg ccaatgcggg cagtgccgca ctgattaata ccgctgtcaa cggcggcagc	200

ctgaaagaca atct	ggaagc gaatatcct	t gcggctttgg	tgaatactgc gcatggagag
gcagcaagta aaat	caaaca gttggatca	g cactacattg	cccataagat tgcccatgcc
atagcgggct gtgc	ggcagc ggcggcgaa	t aagggcaagt	gtcaagatgg tgcgatcggt
gcggcggtcg gtga	aatcct tggcgaaac	c ctactggacg	gcagagaccc tggcagcctg
aatgtgaagg acag	ggcaaa aatcattgc	t aaggcgaagc	tggcagcagg ggcggttgcg
gcgttgagta aggg	ggatgt gagtacggc	g gcgaatgcgg	ctgctgtggc ggtagagaat
aattotttaa atga	tataca ggatcgttt	g ttgagtggaa	attatgcttt atgtatgagt
gcaggaggag caga	aagctt ttgtgagtc	t tatcgaccac	tgggcttgcc acactttgta
agtgtttcag gaga	aatgaa attacctaa	t aaattcggga	atcgtatggt taatggaaaa
ttaattatta acac	tagaaa tggcaatgt	a tatttctctg	taggtaaaat atggagtact
gtaaaatcaa caaa	atcaaa tataagtgg	g gtatctgtcg	gttgggtttt aaatgtttcc
cctaatgatt attt	aaaaga agcatctat	g aatgatttca	gaaatagtaa tcaaaataaa
gcctatgcag aaat	gatttc ccagacttt	g gtaggtgaga	gtgttggtgg tagtctttgt
ctgacaagag cctg	cttttc ggtaagttc	a acaatatcta	aatctaaatc tccttttaaa
gattcaaaaa ttat	tgggga aatcggttt	g ggaagtggtg	ttgctgcagg agtagaaaaa
acaatataca tagg	taacat aaaagatat	t gataaattta	ttagtgcaaa cataaaaaaa
tag			
<212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE:	Neisseria menino	gitidis	
Met Gln Leu Leu 1	Ala Ala Glu Gly 5	Ile His Gln 10	His Gln Leu Asn Val 15
Gln Lys Ser Thr 20		Ile L y s Val 25	Gly Lys Ser Asn Tyr 30
Ser Lys Asn Glu 35	Leu Asn Glu Thr 40	Lys Leu Pro	Val Arg Val Ile Ala 45
Gln Thr Ala Lys 50	Thr Arg Ser Gly 55	Trp Asp Thr	Val Leu Glu Gly Thr 60
Glu Phe Lys Thr 65	Thr Leu Ser Gly 70	Ala Asp Ile 75	Gln Ala Gly Val Gly 80
Glu Lys Ala Arg	Ala Asp Ala Lys 85	Ile Ile Leu 90	Lys Gly Ile Val Asn 95
Arg Ile Gln Thr 100	-	Glu Ser Asn 105	Ser Thr Val Trp Gln 110
Lys Gln Ala Gly 115	Ser Gly Ser Thr 120	Val Glu Thr	Leu Lys Leu Pro Ser 125
Phe Glu Gly Pro 130	Ala Leu Pro Lys 135	Leu Thr Ala	Pro Gly Gly Tyr Ile 140
Ala Asp Ile Pro 145	Lys Gly Asn Leu 150	Lys Thr Glu 155	Ile Glu Lys Leu Ala 160
Lys Gln Pro Glu		-	Gln Thr Val Lys Asp
	165	170	175

-continued

Val Asn TrpAsn Gln Val Gln Leu Ala TyrAsp LysTrpAsp TyrLys180GlyLeu ThrGlyAlaGlyAlaAlaIleIleAlaVal210GlyLeuThrGlyAlaGlyAlaAlaIleIleAlaValVal210ThrSerGlyAlaGlyAlaAlaValLeuGlyLeuAsn210ThrSerGlyAlaAlaAlaValLeuGlyLeuAsn210ThrSerGlyAlaAlaPheAlaSerLeuAsn220ThrSerGlyAlaAlaPheAlaSerLeuAsn210ThrSerGlyAlaAlaPheAlaSerLeuAsn210ThrSerGlyAlaAlaPheAlaSerLeuAsn220ThrSerAlaAlaPheAlaSerLeuAsnSer225SerNSerAlaAlaAsnLysAsnLeuAsnSerZetGluLysGluAlaAlaAsnLysAsnLeuMetValAla260GluAlaAsnLysAsnLeuMetValAsn270SerAlaGluAlaAsnLeuMetVal
195200205ThrValThrSerGlyAlaGlyThrGlyAlaValLeuGlyLeuAsn202ValAlaAlaAlaAlaThrAspAlaNaValZasSer202AlaAlaAlaAlaAlaAlaAlaAlaAlaPheAlaSerLeuAlaSer202AlaAlaAlaAlaAlaAlaAlaAlaPheAlaSerLeuAlaSer203AlaAlaAlaAlaAlaAlaAlaPheAlaPheAlaSerLeuAlaSer203AlaSerValSerValSerThrAsnAsnLeuSerLeuAsnSer203AlaSerValSerSerThrAsnAsnLeuMenAsnSer204AlaSerSerThrAsnAsnLeuMenAsnLeuAsn205AlaSerSerThrSerThrAsnLeuMenAsn206GluAlaAsnLeuSerAsnLeuMenAsnLeu206GluAlaAsnLeuSerAsnLeuAsnLeuAsn207SerAlaSerSerThrSerAsnSerAs
210215220GlyAlaAlaAlaAlaAlaPheAlaSer225AlaAlaAlaAlaAlaPheAlaSerLeuAlaSer225AlaSerValSerPheIleAsnAlaPheAlaSerLeuAlaSer226AlaSerValSerPheIleAsnLysGlyAsnIhr240GluAlaSerPheIleAsnLysGlyAsnIhr255ThLeuLysGluLeuGlyArgSerSerThrValAlaSerLeuLysGluLeuGlyArgSerSerThrValAsnLysAsnLuAsnValAlaThrAlaAlaAspLysIhrNNLuMetAsnValAlaThrAlaAspLysIhrNNLuMetAsnValAlaThrAlaAspLysIhrNNLuMetAsnValAlaThrAlaAspLysIhrNNIhrAspValAlaThrAlaAspIhrAlaSerAlaIhrAspValAspSerAlaAlaAspThrAlaSerSerSer
225230235240Gln AlaSer ValSer PheIle AsnAsnLysGly AsnIle GlyAsnThrLeuLysGluLeuGlyArgSerThrValLysAsnLueMetValAlaLauLysGluLeuGlyArgSerThrValLysAsnLueMetValAlaValAlaThrAlaGlyValAlaAspLysIleGlyAlaSerAlaValSerAsnLysGlnTrpIleAsnAsnLueThrAlaLueAsn290SerAspLysGlnTrpIleAsnAsnLueThrAlaAsnValSerAspLysGlnTrpIleAsnLueThrAla290SerAspLysGlnTrpIleAsnLueThrAla290SerAspLysGlnTrpIleAsnLueThrAla305AlaGlySerAspLueAspIleAsnGlySerSer305AlaGlySerAlaAlaLueAlaAlaLueSerSer305AlaSerAspAlaAlaAlaAlaAlaLueAspSerAlaHisGlyGlu<
245 250 255 LeuLysGluLeuGlyArgSerSerThr 265 ValLysAsnLeuMetValAlaValAlaThr 275 AlaGlyValAlaAsp 280 LysAsnLeuMet 270 ValAlaValAlaThr 275 AlaGlyValAlaAsp 280 LysIleGlyAlaSer 285 AsnLeuAsnValSerAspLysGlnTrp 295 IleAsnAsnLeuAsnLeuAlaAsnValSerAlaAlaLeuIleAsnGlySer 315 SerAsnGlySer 320 LeuLysAspAsnLeuAlaAsnIleLeuAlaAsnThr 335 Thr 335 AlaHisGlyGluAlaAsnIleLysGlnLeuAspGluAlaAlaHisGlyGluAlaAsnIleLysGlnLeuAspGluAspThrAlaHisGlyGluAlaAsnIleLysGlnLeuAspGluAspAlaHisGlyGluAlaAsnIleLysGluLuuAspGluAspThrAlaHisGlyGluAlaAspIleLys
260 265 270 Val Ala Gly Val Ala Asp Lys Ile Gly Ala Ser Ala Asn Asn Val Ser Asp Lys Gln Trp Ile Asn Asn Leu Asn Leu Ala Asn Val Ser Asp Lys Gln Trp Ile Asn Asn Leu Ala Asn Ala Gly Ser Ala Ala Lau Trp Ile Asn Asn Leu Ala Asn Ala Gly Ser Ala Ala Lau Thr Ala Val Asn Leu Ala 305 Ala Gly Ser Ala Ala Leu Ala Asn Gly Ser 320 Leu Lys Asn Leu Ala Ala Leu Val Asn Thr 335 Thr Ala His Gly Glu Ala Asn I
275 280 285 Asn Val Ser Asp Lys Gln Trp Ile Asn Asn Leu Thr Val Asn Leu Ala 300 Asn Ala Gly Ser Ala Ala Leu Ile Asn Thr Ala Val Asn Gly Gly Ser 320 Leu Lys Asp Asn Leu Glu Ala Asn Ile Leu Ala Ala Ala Leu Val Asn Thr Ala His Gly Glu Ala Ala Ser Lys Ile Lys Gln Leu Asp Gln His Tyr
290 295 300 Asn Ala Gly Ser Ala Ala Leu Ile Asn Thr Ala Val Asn Gly Gly Ser 305 Ser Asn Ala Clu Ala Asn Ile Leu Ala Ala Leu Val Asn Gly Gly Ser 315 Leu Lys Asp Asn Leu Glu Ala Asn Leu Ser Clus Ile Leu Ala Ala Leu Val Asn Ser Clus Clu Ala Ala Ser Lys Ile Lys Gln Leu Asp Gln His Tyr
305 310 315 320 Leu Lys Asp Asn Leu Glu Ala Asn Ile Leu Ala Ala Leu Val Asn Thr 325 330 335 Ala His Gly Glu Ala Ala Ser Lys Ile Lys Gln Leu Asp Gln His Tyr
325 330 335 Ala His Gly Glu Ala Ala Ser Lys Ile Lys Gln Leu Asp Gln His Tyr
340 345 350
Ile Ala His Lys Ile Ala His Ala Ile Ala Gly Cys Ala Ala Ala Ala 355 360 365
Ala Asn Lys Gly Lys Cys Gln Asp Gly Ala Ile Gly Ala Ala Val Gly 370 375 380
Glu Ile Leu Gly Glu Thr Leu Leu Asp Gly Arg Asp Pro Gly Ser Leu 385 390 395 400
Asn Val Lys Asp Arg Ala Lys Ile Ile Ala Lys Ala Lys Leu Ala Ala 405 410 415
Gly Ala Val Ala Ala Leu Ser Lys Gly Asp Val Ser Thr Ala Ala Asn 420 425 430
Ala Ala Val Ala Val Glu Asn Asn Ser Leu Asn Asp Ile Gln Asp 435 440 445
Arg Leu Leu Ser Gly Asn Tyr Ala Leu Cys Met Ser Ala Gly Gly Ala 450 455 460
Glu Ser Phe Cys Glu Ser Tyr Arg Pro Leu Gly Leu Pro His Phe Val 465 470 475 480
Ser Val Ser Gly Glu Met Lys Leu Pro Asn Lys Phe Gly Asn Arg Met 485 490 495
Val Asn Gly Lys Leu Ile Ile Asn Thr Arg Asn Gly Asn Val Tyr Phe 500 505 510
Ser Val Gly Lys Ile Trp Ser Thr Val Lys Ser Thr Lys Ser Asn Ile 515 520 525
Ser Gly Val Ser Val Gly Trp Val Leu Asn Val Ser Pro Asn Asp Tyr 530 535 540
Leu Lys Glu Ala Ser Met Asn Asp Phe Arg Asn Ser Asn Gln Asn Lys 545 550 555 560
Ala Tyr Ala Glu Met Ile Ser Gln Thr Leu Val Gly Glu Ser Val Gly 565 570 575
Gly Ser Leu Cys Leu Thr Arg Ala Cys Phe Ser Val Ser Ser Thr Ile

-continued

											con	ιm	ued					
		580					585					590						
Ser Ly	vs Ser	Lvs	Ser	Pro	Phe	Lvs	Asp	Ser	Lvs	Tle	Tle	Glv	Glu	Tle				
oer by	595	_	DCI	110	I IIC	600	пор	DCI	цур	110	605	ULY	Oru	110				
аl т.			a1	TT - 1			a 1	TT - 1	a1	T	m 1	T] -	m	T 1 -				
Gly Le 61		' Ser	GIY	Val	A1a 615	Ala	GLÀ	Val	GIu	Lys 620	Thr	lle	Tyr	Ile				
					010					020								
Gly As	sn Ile	e Lys	Asp		Asp	Lys	Phe	Ile		Ala	Asn	Ile	Lys					
625				630					635					640				
<210>																		
<211> <212>			291															
<213>			Neis	sseri	ia me	ninq	gitic	lis										
<220>				. e														
<221> <222>				c_rea	ture													
<223>				FION	any:	nud	cleot	ide										
<220>				~														
<221> <222>					ture													
<223>					any:	7 nuo	cleot	ide										
<220>																		
<221> <222>					ture													
<223>					any:	v nuc	cleot	ide										
<220>																		
<221> <222>					ture													
<223>					any:	7 nuo	cleot	ide										
<220>				~														
<221> <222>					ture													
<223>					: any	7 nuo	cleot	ide										
<220>				~														
<221> <222>					ture													
<223>					any:	nud	cleot	ide										
<220>				~														
<221> <222>					ture													
<223>					: any	nuc	cleot	ide										
<220>				~														
<221> <222>					ture													
<223>					any:	nud	cleot	ide										
<220>				c														
<221> <222>					ture													
<223>					any:	nud	cleot	ide										
<220>				~														
<221> <222>					ture													
<223>	OTHER	INF			any:	nud	cleot	ide										
<220>				- for	+1100													
<221> <222>					cure													
<223>	OTHER	INF			any:	v nuc	cleot	ide										
<220>				. f	+ 17													
<221> <222>					icure													
<223>	OTHER	INF			any:	v nuc	cleot	ide										
<220>				. f														
<221> <222>					cure													
<223>	OTHER	INF			any:	nuc	cleot	ide										
<220>				. £ .														
<221> <222>					ture													
<223>					any	nuc	cleot	ide										
<220>	FEATU	RE:																
<221> <222>					ture	•												
<223>					any	nuc	cleot	ide										
					_													

```
-continued
```

<220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: (2079) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2084)..(2085) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2113) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2120) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2236)..(2238) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2242) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2244) <223> OTHER INFORMATION: any nucleotide <400> SEQUENCE: 21 ntgcaactgc tggcagaaga aggcatccac aagcacgagt tggatgtcca aaaaagccgc 60 cgctttatcg gcatcaaggt aggtnagagc aattacagta aaaacgaact gaacgaaacc 120 aaattgcctg tccgcgtcgt cgcccaaant gcagccaccc gttcaggctg ggataccgtg 180 ctcgaaggta ccgaattcaa aaccacgctg gccggtgccg acattcaggc aggtgtangc 240 300 gaaaaagccc gtgtcgatgc gaaaattatc ctcaaaggca ttgtgaaccg tatccagtcg qaaqaaaaat taqaaaccaa ctcaaccqta tqqcaqaaac aqqccqqacq cqqcaqcact 360 atcgaaacgc taaaactgcc cagcttcgaa agccctactc cgcccaaatt gtccgcaccc 420 ggcggntata tcgtcgacat tccgaaaggc aatctgaaaa ccgaaatcga aaagctgtcc 480 aaacagcccg agtatgccta tctgaaacag ctccaagtag cgaaaaacat caactggaat 540 caggtgcagc ttgcttacga cagatgggac tacaaacagg agggcttaac cgaagcaggt 600 gcggcgatta tcgcactggc cgttaccgtg gtcacctcag gcgcaggaac cggagccgta 660 ttgggattaa acggtgcgnc cgccgccgca accgatgcag cattcgcctc tttggccagc 720 caggetteeg tategtteat caacaacaaa ggegatgteg geaaaaceet gaaagagetg 780 ggcagaagca gcacggtgaa aaatctggtg gttgccgccg ctaccgcagg cgtagccgac 840 aaaatcggcg cttcggcact gancaatgtc agcgataagc agtggatcaa caacctgacc 900 gtcaacctag ccaatgcggg cagtgccgca ctgattaata ccgctgtcaa cggcggcagc 960 ctgaaagaca ntctggaagc gaatatcctt gcggctttgg tcaataccgc gcatggagaa 1020 1080 gcagccagta aaatcaaaca gttggatcag cactacatag tccacaagat tgcccatgcc atagcgggct gtgcggcagc ggcggcgaat aagggcaagt gtcaggatgg tgcgataggt 1140 gcggctgtgg gcgagatagt cggggaggct ttgacaaacg gcaaaaatcc tgacactttg 1200 acagctaaag aacgcgaaca gattttggca tacagcaaac tggttgccgg tacggtaagc 1260 1320 qqtqtqqtcq qcqqcqatqt aaatqcqqcq qcqaatqcqq ctqaqqtaqc qqtqaaaaat

aatcagctta gcgacnaaga gggtagagaa tttgataacg aaatgactgc atgcgccaaa

-continued

cagaatantc ctcaactgtg cagaaaaaat actgtaaaaa agtatcaaaa tgttgctgat 1440 aaaaqacttq ctqcttcqat tqcaatatqt acqqatatat cccqtaqtac tqaatqtaqa 1500 acaatcagaa aacaacattt gatcgatagt agaagcette atteatettg ggaagcaggt 1560 ctaattggta aagatgatga atggtataaa ttattcagca aatcttacac ccaagcagat 1620 ttggctttac agtcttatca tttgaatact gctgctaaat cttggcttca atcgggcaat 1680 acaaagcctt tatccgaatg gatgtccgac caaggttata cacttatttc aggagttaat 1740 cctagattca ttccaatacc aagagggttt gtaaaacaaa atacacctat tactaatgtc 1800 aaatacccgg aaggcatcag tttcgataca aacctanaaa gacatctggc aaatgctgat 1860 ggttttagtc aagaacaggg cattaaagga gcccataacc gcaccaatnt tatggcagaa 1920 ctaaattcac gaggaggang ngtaaaatct gaaacccana ctgatattga aggcattacc 1980 cgaattaaat atgagattcc tacactagac aggacaggta aacctgatgg tggatttaag 2040 gaaatttcaa gtataaaaac tgtttataat cctaaaaant tttnngatga taaaatactt 2100 caaatggctc aanatgctgn ttcacaagga tattcaaaag cctctaaaat tgctcaaaat 2160 gaaagaacta aatcaatatc ggaaagaaaa aatgtcattc aattctcaga aacctttgac 2220 ggaatcaaat ttagannnta tntngatgta aatacaggaa gaattacaaa cattcaccca 2280 gaataattta a 2291

<211> LENGTH: 761 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (29) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (50) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (80) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (227) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (288) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (324) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (446) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (463) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE

<210> SEQ ID NO 22

<222> LOCATION: (613) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (637) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (647) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (653) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (693) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (695) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (705) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (707) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (746) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (748) <223> OTHER INFORMATION: unknown <400> SEQUENCE: 22 Xaa Gln Leu Leu Ala Glu Glu Gly Ile His Lys His Glu Leu Asp Val 1 5 10 15 Gln Lys Ser Arg Arg Phe Ile Gly Ile Lys Val Gly Xaa Ser Asn Tyr 20 25 30 Ser Lys Asn Glu Leu Asn Glu Thr Lys Leu Pro Val Arg Val Val Ala 35 40 Gln Xaa Ala Ala Thr Arg Ser Gly Trp Asp Thr Val Leu Glu Gly Thr 50 55 60 Glu Phe Lys Thr Thr Leu Ala Gly Ala Asp Ile Gln Ala Gly Val Xaa 65 70 75 80 Glu Lys Ala Arg Val Asp Ala Lys Ile Ile Leu Lys Gly Ile Val Asn 85 90 95 Arg Ile Gln Ser Glu Glu Lys Leu Glu Thr Asn Ser Thr Val Trp Gln 100 105 110 Lys Gln Ala Gly Arg Gly Ser Thr Ile Glu Thr Leu Lys Leu Pro Ser 125 115 120 Phe Glu Ser Pro Thr Pro Pro Lys Leu Ser Ala Pro Gly Gly Tyr Ile 135 130 140 Val Asp Ile Pro Lys Gly Asn Leu Lys Thr Glu Ile Glu Lys Leu Ser 145 150 155 160 Lys Gln Pro Glu Tyr Ala Tyr Leu Lys Gln Leu Gln Val Ala Lys Asn 165 170 175 170 Ile Asn Trp Asn Gln Val Gln Leu Ala Tyr Asp Arg Trp Asp Tyr Lys 180 185 190 185 180

-continued

Gln	Glu		Leu	Thr	Glu	Ala		Ala	Ala	Ile	Ile		Leu	Ala	Val
Thr	Val	195 Val	Thr	Ser	Gly	Ala	200 Gly	Thr	Gly	Ala	Val	205 Leu	Gly	Leu	Asn
C]	210	Vaa	<u> </u>	N 1-	<u> </u>	215 Thr	Jan	N 1-	<u>_</u>	Dhe	220	505	Tou	مام	Sor
225	AId	лаа	AId	AId	230	Thr	Авр	AId	AId	235	AId	Ser	Leu	AId	240
Gln	Ala	Ser	Val	Ser 245	Phe	Ile	Asn	Asn	L y s 250	Gly	Asp	Val	Gly	L y s 255	Thr
Leu	Lys	Glu	Leu 260	Gly	Arg	Ser	Ser	Thr 265	Val	Lys	Asn	Leu	Val 270	Val	Ala
Ala	Ala	T hr 275	Ala	Gly	Val	Ala	Asp 280	Lys	Ile	Gly	Ala	Ser 285	Ala	Leu	Xaa
Asn	Val 290	Ser	Asp	Lys	Gln	Trp 295	Ile	Asn	Asn	Leu	Thr 300	Val	Asn	Leu	Ala
Asn 305	Ala	Gly	Ser	Ala	Ala 310	Leu	Ile	Asn	Thr	Ala 315	Val	Asn	Gly	Gly	Ser 320
Leu	Lys	Asp	Xaa	Leu 325	Glu	Ala	Asn	Ile	Leu 330	Ala	Ala	Leu	Val	Asn 335	Thr
Ala	His	Gly	Glu 340	Ala	Ala	Ser	Lys	Ile 345	Lys	Gln	Leu	Asp	Gln 350	His	Tyr
Ile	Val	His 355	Lys	Ile	Ala	His	Ala 360	Ile	Ala	Gly	Cys	Ala 365	Ala	Ala	Ala
Ala	Asn 370	Lys	Gly	Lys	Cys	Gln 375	Asp	Gly	Ala	Ile	Gly 380	Ala	Ala	Val	Gly
Glu 385	Ile	Val	Gly	Glu	Ala 390	Leu	Thr	Asn	Gly	L y s 395	Asn	Pro	Asp	Thr	Leu 400
Thr	Ala	Lys	Glu	Arg 405	Glu	Gln	Ile	Leu	Ala 410	Tyr	Ser	Lys	Leu	Val 415	Ala
Gly	Thr	Val	Ser 420	Gly	Val	Val	Gly	Gl y 425	Asp	Val	Asn	Ala	Ala 430	Ala	Asn
Ala	Ala	Glu 435	Val	Ala	Val	Lys	Asn 440	Asn	Gln	Leu	Ser	Asp 445	Xaa	Glu	Gly
Arg	Glu 450	Phe	Asp	Asn	Glu	Met 455	Thr	Ala	Cys	Ala	L y s 460	Gln	Asn	Xaa	Pro
Gln 465	Leu	Cys	Arg	Lys	Asn 470	Thr	Val	Lys	Lys	Ty r 475	Gln	Asn	Val	Ala	Asp 480
Lys	Arg	Leu	Ala	Ala 485	Ser	Ile	Ala	Ile	Cys 490	Thr	Asp	Ile	Ser	Arg 495	Ser
Thr	Glu	Cys	Arg 500	Thr	Ile	Arg	Lys	Gln 505	His	Leu	Ile	Asp	Ser 510	Arg	Ser
Leu	His	Ser 515	Ser	Trp	Glu	Ala	Gly 520	Leu	Ile	Gly	Lys	Asp 525	Asp	Glu	Trp
Tyr	Lys 530	Leu	Phe	Ser	Lys	Ser 535	Tyr	Thr	Gln	Ala	Asp 540	Leu	Ala	Leu	Gln
Ser 545	Tyr	His	Leu	Asn	Thr 550	Ala	Ala	Lys	Ser	Trp 555	Leu	Gln	Ser	Gly	Asn 560
Thr	Lys	Pro	Leu	Ser 565	Glu	Trp	Met	Ser	Asp 570	Gln	Gly	Tyr	Thr	Leu 575	Ile
Ser	Gly	Val	Asn 580	Pro	Arg	Phe	Ile	Pro 585	Ile	Pro	Arg	Gly	Phe 590	Val	Lys

-continued

n Asn This Fro lle Thr Asn Val Lys Tyr Pro Glu Gly lle Ser Phe GOD p Thr Asn Leu Xaa Arg His Leu Ala Asn Ala Aep Gly Phe Ser Gln GIO GIO u Gln Gly Ile Lys Gly Ala His Asn Arg Thr Asn Xae Met Ala Glu GIO u Gly Ule Thy Gly Ala His Asn Arg Thr Asn Xae Met Ala Glu GIO u Gly Ule The Yag Ile Lys Ser Glu Thr Xae Thr Asp Ile GIO u Gly Ule Thr Arg Ile Lys Tyr Glu Ile Ser Ser Ile Lys Thr Val GIO u Gly Ule Thr Arg Ile Lys Tyr Glu Ile Ser Ser Ile Lys Thr Val GIO u Gly Ule Thr Arg Ile Lys Tyr Glu Ile Ser Ser Ile Lys Thr Val GIO a Ala Xaa Ser Gln Gly Tyr Ser Lys Ala Ser Lys Ile Ala Gln Asn 700 a Ala Xaa Ser Gln Gly Tyr Ser Lys Ala Ser Lys Ile Ala Gln Phe 5 700 a Arg Thr Lys Ser Ile Ser Glu Arg Lys Asen Val Ile Gln Phe Ser 725 725 726 727 727 728 729 729 729 729 729 729 729 729
610 615 620 u Gln Gly Ile Lys Gly Xla His Asn Arg Thr Asn Xan Met Ala Glu 635 635 636 646 u Gly Ile Hrang Ile Lys Tyr Glu Ile Pro Thr Lea App Arg Thr 660 660 660 670 7 775 780 a Ala Xaa Ser Gln Gly Tyr Ser Lys Ala Ser Lys Ile Leu Gln Het Ala Gln 720 a Ala Xaa Ser Gln Gly Tyr Ser Lys Ala Ser Lys Ile Ala Gln Asn 710 720 725 725 u Thr Phe Apg Gly Ile Lys Glu Ile Ser Ser Jys Ile Ala Gln Asn 720 u Arg Thr Lys Ger Ile Ser Glu Arg Lys An Val Ile Gln Phe Ser 725 u Thr Phe Apg Gly Ile Lys Phe Arg Xaa Tyr Xaa Asp Val Asn Thr 740 740 725 700 700 725 700 700 725 725 u Thr Phe Apg Gly Ile Lys Phe Arg Xaa Tyr Xaa Asp Val Asn Thr 720 700 725 725 u Thr Phe Asp Gly
5 630 635 640 u Aan Ser Arg Gly Gly Xaa Val Lys Ser Glu Thr Xaa Thr App Ile 645 645 u Oly Ile Thr Arg Ile Lys Tyr Glu Ile Pro Thr Leu App Arg Thr 660 665 650 650 y Lys Pro App Gly Gly Phe Lys Glu Ile Ser Ser Ile Lys Thr Val 670 675 680 680 700 700 700 a Ala Xaa Ser Oln Oly Tyr Ser Lys Ala Ser Lys Ile Ala Gln App 720 720 u Arg Thr Lys Sar Ile Ser Glu Arg Lys Apn Val Ile Gln Phe Ser 720 735 u Thr Phe App Gly Ile Lys Phe Arg Xaa Tyr Xaa App Val Apn 715 730 y Arg Tle Thr Ann Ile His Pro Glu 715 700 700 745 750 700 760 735 10> SEQ ID NO 23 735 11> LENGTH: 306 735 12> CHENCTH: 33 735 13> CHANICHI: Neisseria meningitidis 60 345 stattctgco t coccaacgot at ctgcocgtagtca cogtagtcoc agatatacc 60 aggettig taggttigg taggttegt gagttct totactcogt acccaacgot at ctgcocgt gggettct at tgcocgtot 180 gtaggttig taggttigg tagget gagtct totact tiggagge tigg catage 240 300 gtaggttig taggttigg gattcttict ctgcocgt gggggggggggggg
645 650 655 u Gly He Thr Arg He Lys Tyr Glu He Pro Thr Leu Asp Arg Thr 670 f Lys Pro Asp Gly Gly Phe Lys Glu He Ser Ser He Lys Thr Val 685 670 680 685 r Am Pro Lys Xaa Phe Xaa Asp bap Lys He Leu Gln Met Ala Gln 680 690 695 700 a Ala Xaa Ser Gln Gly Tyr Ser Lys Ala Ser Lys He Ala Gln Asn 720 u Arg Thr Lys Ser He Ser Glu Arg Lys Asn Val He Gln Phe Ser 720 u Tr Phe Asp Gly He Lys Phe Arg Xaa Tyr Xaa Asp Val Asn Thr 740 740 745 750 y Arg The Thr Asn He His Pro Glu 755 755 760 10> SEQ ID NO 23 755 12> TYPE: NMA 750 13> GEANISM: Nelsseria meningitidis 600 50> SEQUENCE: 23 760 gategitg tettegoe accecact accecacgat actgoege gettegagge tetggedat 240 greggeca accecact tetteggagg accettggt getteg getteggegget teggetteg 240 greggeca accecact accecacact gettegge gettegget teggetteg 336 10> SEQ UD NO 24 11 12 11> LENNTH: 111 12 13 12> ORCANISM: Neisseeria meningitidis 336 <
y Lys Pro Asp Gly Gly Phe Lys Glu Ile Ser Ser Ile Lys Thr Val 650 650 a Ala Xaa Ser Glu Gly Tyr Ser Lys Ala Ser Lys Ile Leu Gln Met Ala Gln 650 a Ala Xaa Ser Glu Gly Tyr Ser Lys Ala Ser Lys Ile Ala Gln Asn 710 a Arg Thr Lys Ser Ile Ser Glu Arg Lys Asn Val Ile Gln Phe Ser 720 u Arg Thr Lys Ser Ile Ser Glu Arg Lys Asn Val Ile Gln Phe Ser 725 u Thr Phe Asp Gly Ile Lys Phe Arg Xaa Tyr Xaa Asp Val Asn Thr 725 y Arg Ile Thr Asn Ile His Pro Glu 755 10> SEQ ID NO 23 11> LENOTH: 336 12> OKGANISM: Neisseria meningitidis 10> SEQUENCE: 23 gategitg taggittge gattettge geogtagtae cegtagtee aagtataace 60 aggettg tettedgeet teatteegat ateggett eggett teggetat 240 gteggee a ageeattet tteggatge agetgeett tgteceaate taeattegea 10> SEQ ID NO 24 11> LENOTH: 111 12> TYPE: DNP 11> LENOTH: 111 12> TYPE: PRF 13> OKGANISM: Neisseria meningitidis 10> SEQ ID NO 24 11> LENOTH: 111 12> TYPE: PRF 13> OKGANISM: Neisseria meningitidis 10> SEQ ID NO 24 11> LENOTH: 111 12> TYPE: PRF 13> OKGANISM: Neisseria meningitidis 10> SEQ ID NO 24 11> LENOTH: 111 12> TYPE: PRF 13> OKGANISM: Neisseria meningitidis 10> SEQ ID NO 24 11> LENOTH: 111 12> TYPE: PRF 13> OKGANISM: Neisseria meningitidis 10> SEQ UNCE: 24 g Ile Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 So NGANISM: Neisseria meningitidis 10> SEQ UNCE: 24 g Ile Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 So NGANISM: Neisseria meningitidis 10> SEQ UNCE: 24 g Ile Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 So NGANISM: Neisseria meningitidis 10> SEQ UNCE: 24 g Ile Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 So NGANISM: Neisseria meningitidis 10> SEQ UNCE: 24 g Ile Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 So NGANISM: Neisseria meningitidis 10> SEQ UNCE: 24 g Ile Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 So CANISM: Neisseria meningitidis 10> 20 25 30 20 25 30 20 25 30 20 25 30 20 20 20 20 20 20 20 20 20 2
675 680 685 7 r Am Pro Lys Xaa Phe Xaa Aap Aap Lys Ile Leu Gln Met Ala Gln 695 700 700 u Arg Thr Lys Ser Ile Ser Glu Arg Lys Ala Ser Lys Ile Ala Gln Aan 715 725 725 730 u Thr Phe Aap Gly Ile Lys Phe Arg Xaa Tyr Xaa Asp Val Aan Thr 740 745 75 760 10> SEQ ID NO 23 11> LENGTH: 336 12> TYPE: DNA 13> GRANTSN: Neisseria meningitidis 00> SEQUENCE: 23 gatogttg taggtttgcg gattcttgc googtagtca cogtagtccc aagtataacc 60 aggorttg tottogoott tcattcogat aagggatag acgettggt coggtatagcc 120 cttgggac acttgtca coccaacgat atctgcocg ggattctat tgcogtctt 180 getggcca acgccaattc tttgggatg agstgctt taattciga gottgatgg 244 gtoggcca acgccaattc tttgggatg agstgcta tgttccaatc tacattcoga 300 caccacaag caccaccaat accaccagtt goatag 336 10> SEQ ID NO 24 11> LENGTH: 111 12> TYPE: PTH 13> GRANTSN: Neisseria meningitidis 00> SEQUENCE: 24 g Ile Val Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 5 10 10> SEQUENCE: 24 g Ile Val Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 5 20 2 70 25 30 r Aep Ala Leu Val Gly Ile Ala Val Leu Gly Thr Phe Val His Pro
690 695 700 700 a Ala Xaa Ser Gin Giy Tyr Ser Lys Ala Ser Lys Ile Ala Gin Aan 715 720 725 725 730 741 725 725 730 741 745 750 750 735 740 745 750 750 750 750 750 750 750 750 750 75
5 710 707 715 720 u Arg Thr Lys Ser Ile Ser Glu Arg Lys Asn Val Ile Gln Phe Ser 725 735 u Thr Phe Asp Gly Ile Lys Phe Arg Xaa Tyr Xaa Asp Val Asn Thr 740 740 745 750 y Arg Ile Thr Asn Ile His Pro Glu 755 760 10> SEQ ID NO 23 11> LENGTH: 336 12> TYEP: DNA 13> ORGANISM: Neisseria meningitidis 00> SEQUENCE: 23 gategtty taggtttgog gattettgg gccgtagtea ccgtagtee aagtataace 60 aggetttg tettegeett teatteegat aagggatatg acgettggt eggtatagee 120 ettgggaa cettgtee accaacgeat atetgeetge ggatteteat tgeoggette gteggee acgeeatte ttteggatge agetgeett tgeogetagtea 240 gteggee acgeeatte ttteggatge agetgeet tgeteat taeattegea 300 cacacaag cacaceaet accaceagt geatg 336 10> SEQ ID NO 24 11> LENGTH: 111 12> TYEP: PRT 13> ORGANISM: Neisseria meningitidis 00> SEQUENCE: 24 g Ile Val Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 1 5 10 20 25 30 r Asp Ala Leu Val Gly Ile Ala Val Leu Gly Thr Phe Val His Pro
 725 730 735 10 Thr Phe Aep Gly Ile Lys Phe Arg Xaa Tyr Xaa Asp Val Asn Thr 740 740 740 755 760 750 <l< td=""></l<>
u Thr Phe Asp Gly Ile Lys Phe Arg Xaa Tyr Xaa Asp Val Asn Thr 740 750 760 750 760 750 760 750 750 760 750 750 750 750 750 750 750 750 750 75
y Arg Ile Thr Asn Ile His Pro Glu 755 700 10> SEQ ID NO 23 11> LENGTH: 336 12> TYPE: DNA 13> ORGANISM: Neisseria meningitidis 00> SEQUENCE: 23 gatcgttg taggtttgog gattcttgo gocgtagtca cogtagtocc aagtataacc 60 aggotttg tottogoctt toattcogat aagggatatg acgotttggt cggtatagcc 120 cttgggaa cotttgtoca cocaacgcat atotgoctgo ggattotcat tgocgottet 180 gotgotga tttttotgoc ttogogtttt toaacttogo gottgaggg ttoggoatat 240 gtoggoca acgocattc tttoggatga aggtgoctat gtocoact tacattogca 300 caccacag caccaccact accaccagtt gcatag 336 10> SEQ ID NO 24 11> LENGTH: 111 12> TYPE: PRT 13> ORGANISM: Neisseria meningitidis 00> SEQUENCE: 24 g Ile Val Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 5 10 Ser Ile Thr Gln Gly Phe Val Phe Ala Phe His Ser Asp Lys Gly 20 25 30 r Asp Ala Leu Val Gly Ile Ala Val Leu Gly Thr Phe Val His Pro
<pre>10> SEQ ID NO 23 11> LENGTH: 336 12> TYPE: DNA 13> ORGANISM: Neisseria meningitidis 00> SEQUENCE: 23 gatcgttg taggtttgcg gattcttgc gccgtagtcc ccgtagtccc aagtataacc 60 aggctttg tettegeett teatteegat aagggatatg acgettggt eggtatagee 120 ettgggaa cettgteca eccaaegeat atetgeetge ggatteteat tgeegeatt 180 getgetga ttttetgee tteggettt teaaettege gettgaggge tteggeatt 240 gteggeea aegeeatte ttteggatge agetgeetat tgttecaate tacattegea 300 eaceaeaag eaceaecaet aceaecagtt geatag 336 10> SEQ ID NO 24 11> LENGTH: 111 12> TYPE: PRT 13> ORGANISM: Neisseria meningitidis 00> SEQUENCE: 24 g Ile Val Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 5 10 15 o Ser Ile Thr Gln Gly Phe Val Phe Ala Phe His Ser Asp Lys Gly 20 25 30 r Asp Ala Leu Val Gly Ile Ala Val Leu Gly Thr Phe Val His Pro</pre>
cttgggaa cettgeea eecaacgeat atetgeetge ggatteteat tgeegettet 180 getgetga tttteetgee ttegegttt teaacttege gettgaggge tteggeatat 240 gteggeea acgeeatte tteeggatge agetgeetat tgtteeaate taeattegea 300 caceacaeg caceaceaet aceaecagtt geatag 336 10> SEQ ID NO 24 11> LENGTH: 111 12> TYPE: PRT 13> ORGANISM: Neisseria meningitidis 00> SEQUENCE: 24 g Ile Val Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 5 10 15 o Ser Ile Thr Gln Gly Phe Val Phe Ala Phe His Ser Asp Lys Gly 20 25 30 r Asp Ala Leu Val Gly Ile Ala Val Leu Gly Thr Phe Val His Pro
<pre>gctgctga tttttctgcc ttcgcgtttt tcaacttcgc gcttgagggc ttcggcatat 240 gtcggcca acgccattc tttcggatgc agctgcctat tgttccaatc tacattcgca 300 caccacag caccaccact accaccagtt gcatag 336 10> SEQ ID NO 24 11> LENGTH: 111 12> TYPE: PRT 13> ORGANISM: Neisseria meningitidis 00> SEQUENCE: 24 g Ile Val Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 5 0 Ser Ile Thr Gln Gly Phe Val Phe Ala Phe His Ser Asp Lys Gly 20 25 30 r Asp Ala Leu Val Gly Ile Ala Val Leu Gly Thr Phe Val His Pro</pre>
<pre>gtcggcca acgccattc tttcggatgc agctgcctat tgttccaatc tacattcgca 300 caccacag caccaccact accaccagtt gcatag 336 10> SEQ ID NO 24 11> LENGTH: 111 12> TYPE: PRT 13> ORGANISM: Neisseria meningitidis 00> SEQUENCE: 24 g Ile Val Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 5 10 15 o Ser Ile Thr Gln Gly Phe Val Phe Ala Phe His Ser Asp Lys Gly 20 25 30 r Asp Ala Leu Val Gly Ile Ala Val Leu Gly Thr Phe Val His Pro</pre>
caccacag caccaccact accaccagtt gcatag 336 10> SEQ ID NO 24 11> LENGTH: 111 12> TYPE: PRT 13> ORGANISM: Neisseria meningitidis 00> SEQUENCE: 24 g Ile Val Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 5 10 15 o Ser Ile Thr Gln Gly Phe Val Phe Ala Phe His Ser Asp Lys Gly 20 25 30 r Asp Ala Leu Val Gly Ile Ala Val Leu Gly Thr Phe Val His Pro
<pre>10> SEQ ID NO 24 11> LENGTH: 111 12> TYPE: PRT 13> ORGANISM: Neisseria meningitidis 00> SEQUENCE: 24 g Ile Val Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 5 10 15 o Ser Ile Thr Gln Gly Phe Val Phe Ala Phe His Ser Asp Lys Gly 20 25 30 r Asp Ala Leu Val Gly Ile Ala Val Leu Gly Thr Phe Val His Pro</pre>
<pre>11> LENGTH: 111 12> TYPE: PRT 13> ORGANISM: Neisseria meningitidis 00> SEQUENCE: 24 g Ile Val Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 5 10 15 o Ser Ile Thr Gln Gly Phe Val Phe Ala Phe His Ser Asp Lys Gly 20 25 30 r Asp Ala Leu Val Gly Ile Ala Val Leu Gly Thr Phe Val His Pro</pre>
g Ile Val Val Gly Leu Arg Ile Ser Cys Ala Val Val Thr Val Val 1 5 10 15 o Ser Ile Thr Gln Gly Phe Val Phe Ala Phe His Ser Asp Lys Gly 20 25 30 r Asp Ala Leu Val Gly Ile Ala Val Leu Gly Thr Phe Val His Pro
1 5 10 15 o Ser Ile Thr Gln Gly Phe Val Phe Ala Phe His Ser Asp Lys Gly 20 25 30 r Asp Ala Leu Val Gly Ile Ala Val Leu Gly Thr Phe Val His Pro
20 25 30 r Asp Ala Leu Val Gly Ile Ala Val Leu Gly Thr Phe Val His Pro
35 40 45
r His Ile Cys Leu Arg Ile Leu Ile Ala Ala Ser Trp Leu Leu Ile 50 55 60
e Leu Pro Ser Arg Phe Ser Thr Ser Arg Leu Arg Ala Ser Ala Tyr 5 70 75 80

Leu Ser Ala Asn Ala Ile Ser Phe Gly Cys Ser Cys Leu Leu Phe Gln 85 90 95 Ser Thr Phe Ala Pro Thr Thr Ala Pro Pro Leu Pro Pro Val Ala 100 105 110 <210> SEQ ID NO 25 <211> LENGTH: 1716 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <220> FEATURE: <221> NAME/KEY: unsure <222> LOCATION: (496)..(1542) <223> OTHER INFORMATION: N = Unknown <220> FEATURE: <221> NAME/KEY: unsure <222> LOCATION: (1673)..(1674) <223> OTHER INFORMATION: N= Unknown <400> SEQUENCE: 25 aagtttgact ttacctggtt tattccggcg gtaatcaaat accgccggtt gttttttgaa 60 gtattggtgg tgtcggtggt gttgcagctg tttgcgctga ttacgcctct gtttttccaa 120 gtggtgatgg acaaggtgct ggtacatcgg ggattctcta ctttggatgt ggtgtcggtg 180 gctttgttgg tggtgtcgct gtttgagatt gtgttgggcg gtttgcggac gtatctgttt 240 gcacatacga cttcacgtat tgatgtggaa ttgggcgcgc gtttgttccg gcatctgctt 300 tccctqcctt tatcctattt cgagcacaga cgagtgggtg atacggtggc tcgggtgcgg 360 gaattggagc agattcgcaa tttcttgacc ggtcaggcgc tgacttcggt gttggatttg 420 gcgttttcgt ttatctttct ggcggtgatg tggtattaca gctccactct gacttgggtg 480 gtattggctt cgttgnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnn 540 600 660 720 780 840 900 960 1020 1080 плининини плининини плининини плининини плининини плинининин 1140 1200 1260 1320 1380 1440 1500 nnnnnnnn nnnnnnnnn nnnnnnnnn nnatttgcgc caaccggacg 1560 gtgctgatta tcgcccaccg tctgtccact gttaaaacgg cacaccggat cattgccatg 1620

-continued

gataaaggca ggattgtgga agcgggaaca cagcaggaat tgctggcgaa cgnnaacgga 1680	
tattaccgct atctgtatga tttacagaac gggtag 1716	
<pre><210> SEQ ID NO 26 <211> LENGTH: 571 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <220> FEATURE: <221> NAME/KEY: UNSURE <222> LOCATION: (166)(514) <223> OTHER INFORMATION: x = Unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (558) <223> OTHER INFORMATION: unknown</pre>	
<400> SEQUENCE: 26	
Lys Phe Asp Phe Thr Trp Phe Ile Pro Ala Val Ile Lys Tyr Arg Arg 1 5 10 15	
Leu Phe Glu Val Leu Val Val Ser Val Val Leu Gln Leu Phe Ala 20 25 30	
Leu Ile Thr Pro Leu Phe Gln Val Val Met Asp Lys Val Leu Val 35 40 45	
His Arg Gly Phe Ser Thr Leu Asp Val Val Ser Val Ala Leu Leu Val 50 55 60	
Val Ser Leu Phe Glu Ile Val Leu Gly Gly Leu Arg Thr Tyr Leu Phe 65 70 75 80	
Ala His Thr Thr Ser Arg Ile Asp Val Glu Leu Gly Ala Arg Leu Phe 85 90 95	
Arg His Leu Leu Ser Leu Pro Leu Ser Tyr Phe Glu His Arg Arg Val 100 105 110	
Gly Asp Thr Val Ala Arg Val Arg Glu Leu Glu Gln Ile Arg Asn Phe 115 120 125	
Leu Thr Gly Gln Ala Leu Thr Ser Val Leu Asp Leu Ala Phe Ser Phe 130 135 140	
Ile Phe Leu Ala Val Met Trp Tyr Tyr Ser Ser Thr Leu Thr Trp Val 145 150 155 160	
Val Leu Ala Ser Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xa	
Xaa	
Xaa	
Xaa	
Xaa	
Xaa	
Xaa	
Xaa	
Xaa	

Xaa 305	Xaa	Xaa	Xaa	Xaa	Xaa 310	Xaa	Xaa	Xaa	Xaa	Xaa 315	Xaa	Xaa	Xaa	Xaa	Xaa 320	
Xaa	Xaa	Xaa	Xaa	Xaa 325	Xaa	Xaa	Xaa	Xaa	Xaa 330	Xaa	Xaa	Xaa	Xaa	Xaa 335	Xaa	
Xaa	Xaa	Xaa	Xaa 340	Xaa	Xaa	Xaa	Xaa	Xaa 345	Xaa	Xaa	Xaa	Xaa	Xaa 350	Xaa	Xaa	
Xaa	Xaa	Xaa 355	Xaa	Xaa	Xaa	Xaa	Xaa 360	Xaa	Xaa	Xaa	Xaa	Xaa 365	Xaa	Xaa	Xaa	
Xaa	Xaa 370	Xaa	Xaa	Xaa	Xaa	Xaa 375	Xaa	Xaa	Xaa	Xaa	Xaa 380	Xaa	Xaa	Xaa	Xaa	
Xaa 385	Xaa	Xaa	Xaa	Xaa	Xaa 390	Xaa	Xaa	Xaa	Xaa	Xaa 395	Xaa	Xaa	Xaa	Xaa	Xaa 400	
Xaa	Xaa	Xaa	Xaa	Xaa 405	Xaa	Xaa	Xaa	Xaa	Xaa 410	Xaa	Xaa	Xaa	Xaa	Xaa 415	Xaa	
Xaa	Xaa	Xaa	Xaa 420	Xaa	Xaa	Xaa	Xaa	Xaa 425	Xaa	Xaa	Xaa	Xaa	Xaa 430	Xaa	Xaa	
Xaa	Xaa	Xaa 435	Xaa	Xaa	Xaa	Xaa	Xaa 440	Xaa	Xaa	Xaa	Xaa	Xaa 445	Xaa	Xaa	Xaa	
Xaa	Xaa 450	Xaa	Xaa	Xaa	Xaa	Xaa 455	Xaa	Xaa	Xaa	Xaa	Xaa 460	Xaa	Xaa	Xaa	Xaa	
Xaa 465	Xaa	Xaa	Xaa	Xaa	Xaa 470	Xaa	Xaa	Xaa	Xaa	Xaa 475	Xaa	Xaa	Xaa	Xaa	Xaa 480	
Xaa	Xaa	Xaa	Xaa	Xaa 485	Xaa	Xaa	Xaa	Xaa	Xaa 490	Xaa	Xaa	Xaa	Xaa	Xaa 495	Xaa	
Xaa	Xaa	Xaa	Xaa 500	Xaa	Xaa	Xaa	Xaa	Xaa 505	Xaa	Xaa	Xaa	Xaa	Xaa 510	Xaa	Xaa	
Xaa	Xaa	Ile 515	Cys	Ala	Asn	Arg	Thr 520	Val	Leu	Ile	Ile	Ala 525	His	Arg	Leu	
Ser	Thr 530	Val	Lys	Thr	Ala	His 535	Arg	Ile	Ile	Ala	Met 540	Asp	Lys	Gly	Arg	
Ile 545	Val	Glu	Ala	Gly	Thr 550	Gln	Gln	Glu	Leu	Leu 555	Ala	Asn	Xaa	Asn	Gl y 560	
Tyr	Tyr	Arg	Tyr	Leu 565	Tyr	Asp	Leu	Gln	Asn 570	Gly						
<21 <21	0> SH 1> LH 2> TY 3> OH	ENGTH PE:	H: 23 DNA	133	sseri	La me	ening	gitic	lis							
	0> SH															
															cattac	60
															cagagc aaggta	120 180
															tgtgat	240
															ttttg	300
															aacaga	360
tat	tcgg	gca (aact	gata	tt go	gttg	cttco	c cg	cgcti	cgg	tat	tggg	cag -	tttg	gcaaag	420
ttt	gact	tta (cctg	gttt	at to	ccgg	cggta	a ato	caaat	acc	gcc	ggtt	gtt ·	tttt	gaagta	480

				-contir	nued	
ttggtggtgt	cggtggtgtt	gcagctgttt	gcgctgatta	cgcctctgtt	tttccaagtg	540
gtgatggaca	aggtgctggt	acatcgggga	ttctctactt	tggatgtggt	gtcggtggct	600
ttgttggtgg	tgtcgctgtt	tgagattgtg	ttgggcggtt	tgcggacgta	tctgtttgca	660
catacgactt	cacgtattga	tgtggaattg	ggcgcgcgtt	tgttccggca	tctgctttcc	720
ctgcctttat	cctatttcga	gcacagacga	gtgggtgata	cggtggctcg	ggtgcgggaa	780
ttggagcaga	ttcgcaattt	cttgaccggt	caggcgctga	cttcggtgtt	ggatttggcg	840
ttttcgttta	tctttctggc	ggtgatgtgg	tattacagct	ccactctgac	ttgggtggta	900
ttggcttcgt	tgcctgccta	tgcgttttgg	tcggcattta	tcagtccgat	actgcggacg	960
cgtctgaacg	ataagttcgc	gcgcaatgca	gacaaccagt	cgtttttagt	agaaagcatc	1020
actgcggtgg	gtacggtaaa	ggcgatggcg	gtggageege	agatgacgca	gcgttgggac	1080
aatcagttgg	cggcttatgt	ggcttcggga	tttcgggtaa	cgaagttggc	ggtggtcggc	1140
cagcaggggg	tgcagctgat	tcagaagctg	gtgacggtgg	cgacgttgtg	gattggcgca	1200
cggctggtaa	ttgagagcaa	gctgacggtg	gggcagctga	ttgcgtttaa	tatgctctcg	1260
ggacaggtgg	cggcgcctgt	tatccgtttg	gcgcagttgt	ggcaggattt	ccagcaggtg	1320
gggatttcgg	tggcgcgttt	gggggatatt	ctgaatgcgc	cgaccgagaa	tgcgtcttcg	1380
catttggctt	tgcccgatat	ccgggggggag	attacgttcg	aacatgtcga	tttccgctat	1440
aaggcggacg	gcaggctgat	tttgcaggat	ttgaacctgc	ggattcgggc	gggggaagtg	1500
ctggggattg	tgggacgttc	ggggtcgggc	aaatccacac	tcaccaaatt	ggtgcagcgt	1560
ctgtatgtac	cggagcaggg	acgggtgttg	gtggacggca	acgatttggc	tttggccgct	1620
cctgcctggc	tgcggcggca	ggtcggcgtg	gtcttgcagg	agaatgtgct	gctcaaccgc	1680
agcatacgcg	acaatatcgc	gctgacggat	acgggtatgc	cgctggaacg	cattatcgaa	1740
gcagccaaac	tggcgggcgc	acacgagttt	attatggagc	tgccggaagg	ctacggcacc	1800
gtggtgggcg	aacaagggggc	cggcttgtcg	ggcggacagc	ggcagcgtat	tgcgattgcc	1860
cgcgcgttaa	tcaccaatcc	gcgcattctg	atttttgatg	aagccaccag	cgcgctggat	1920
tatgaaagtg	aacgagcgat	tatgcagaac	atgcaggcca	tttgcgccaa	ccggacggtg	1980
ctgattatcg	cccaccgtct	gtccactgtt	aaaacggcac	accggatcat	tgccatggat	2040
aaaggcagga	ttgtggaagc	gggaacacag	caggaattgc	tggcgaagcc	gaacggatat	2100
taccgctatc	tgtatgattt	acagaacggg	tag			2133
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	CH: 710	eria meningi	itidis			
<400> SEQUE	ENCE: 28					
Met Ser Ile 1	e Val Ser A 5	la Pro Leu 1	Pro Ala Leu 10	Ser Ala Leu	1 Ile Ile 15	
Leu Ala His	s Ty r His G 20	ly Ile Ala A	Ala Asn Pro 25	Ala Asp Ile 30		
Glu Phe Cy 3	s Thr Ser A 5	la Gln Ser A 40	Asp Leu Asn	Glu Thr Glu 45	n Trp Leu	
Leu Ala Ala 50	a Lys Ser Le	eu Gly Leu 1 55	Lys Ala Lys	Val Val Arc 60	g Gln Pro	

-continued

											-	con	tin	ued							
Ile 65	Lys	Arg	Leu	Ala	Met 70	Ala	Thr	Leu	Pro	Ala 75	Leu	Val	Trp	Cys	As p 80						
Asp	Gly	Asn	His	Phe 85	Ile	Leu	Ala	Lys	Thr 90	Asp	Gly	Glu	Gly	Glu 95	His	5					
Ala	Gln	Phe	Leu 100	Ile	Gln	Asp	Leu	Val 105	Thr	Asn	Lys	Ser	Ala 110	Val	Leu	1					
Ser	Phe	Ala 115	Glu	Phe	Ser	Asn	Arg 120	Tyr	Ser	Gly	Lys	Leu 125	Ile	Leu	Val	L					
Ala	Ser 130	Arg	Ala	Ser	Val	Leu 135	Gly	Ser	Leu	Ala	Lys 140	Phe	Asp	Phe	Thr	:					
T rp 145	Phe	Ile	Pro	Ala	Val 150	Ile	Lys	Tyr	Arg	Arg 155	Leu	Phe	Phe	Glu	Val 160						
Leu	Val	Val	Ser	Val 165	Val	Leu	Gln	Leu	Phe 170	Ala	Leu	Ile	Thr	Pro 175	Leu	1					
Phe	Phe	Gln	Val 180	Val	Met	Asp	Lys	Val 185	Leu	Val	His	Arg	Gly 190	Phe	Ser	5					
Thr	Leu	A sp 195	Val	Val	Ser	Val	Ala 200	Leu	Leu	Val	Val	Ser 205	Leu	Phe	Glu	1					
Ile	Val 210	Leu	Gly	Gly	Leu	Arg 215	Thr	Tyr	Leu	Phe	Ala 220	His	Thr	Thr	Ser	5					
Arg 225	Ile	Asp	Val	Glu	Leu 230	Gly	Ala	Arg	Leu	Phe 235	Arg	His	Leu	Leu	Ser 240						
Leu	Pro	Leu	Ser	Ty r 245	Phe	Glu	His	Arg	A rg 250	Val	Gly	Asp	Thr	Val 255	Ala	1					
Arg	Val	Arg	Glu 260	Leu	Glu	Gln	Ile	Arg 265	Asn	Phe	Leu	Thr	Gl y 270	Gln	Ala	1					
Leu	Thr	Ser 275	Val	Leu	Asp	Leu	Ala 280	Phe	Ser	Phe	Ile	Phe 285	Leu	Ala	Val	L					
Met	Trp 290		Tyr	Ser	Ser	Thr 295	Leu	Thr	Trp	Val	Val 300	Leu	Ala	Ser	Leu	1					
Pro 305	Ala	Tyr	Ala	Phe	Trp 310	Ser	Ala	Phe	Ile	Ser 315	Pro	Ile	Leu	Arg	Thr 320						
Arg	Leu	Asn	Asp	Lys 325	Phe	Ala	Arg	Asn	Ala 330	Asp	Asn	Gln	Ser	Phe 335	Leu	1					
Val	Glu	Ser	Ile 340	Thr	Ala	Val	Gly	Thr 345	Val	Lys	Ala	Met	Ala 350	Val	Glu	1					
Pro	Gln	Met 355	Thr	Gln	Arg	Trp	Asp 360	Asn	Gln	Leu	Ala	Ala 365	Tyr	Val	Ala	1					
Ser	Gly 370	Phe	Arg	Val	Thr	L y s 375	Leu	Ala	Val	Val	Gly 380	Gln	Gln	Gly	Val	L					
Gln 385	Leu	Ile	Gln	Lys	Leu 390	Val	Thr	Val	Ala	Thr 395	Leu	Trp	Ile	Gly	Ala 400						
Arg	Leu	Val	Ile	Glu 405	Ser	Lys	Leu	Thr	Val 410	Gly	Gln	Leu	Ile	Ala 415	Phe	e					
Asn	Met	Leu	Ser 420	Gly	Gln	Val	Ala	Ala 425	Pro	Val	Ile	Arg	Leu 430	Ala	Gln	1					
Leu	Trp	Gln 435	Asp	Phe	Gln	Gln	Val 440	Gly	Ile	Ser	Val	Ala 445	Arg	Leu	Gly	7					
Asp	Ile 450	Leu	Asn	Ala	Pro	Thr 455	Glu	Asn	Ala	Ser	Ser 460	His	Leu	Ala	Leu	1					
Pro	Asp	Ile	Arg	Gly	Glu	Ile	Thr	Phe	Glu	His	Val	Asp	Phe	Arg	Tyr	:					

continued

											-	con	tin	ued					
465					470					475					480			 	
Lys	Ala	Asp	Gly	Arg 485	Leu	Ile	Leu	Gln	Asp 490	Leu	Asn	Leu	Arg	Ile 495	Arg				
Ala	Gly	Glu	Val 500	Leu	Gly	Ile	Val	Gly 505	Arg	Ser	Gly	Ser	Gly 510	Lys	Ser				
Thr	Leu	Thr 515	Lys	Leu	Val	Gln	Arg 520	Leu	Tyr	Val	Pro	Glu 525	Gln	Gly	Arg				
Val	Leu 530		Asp	Gly	Asn	Asp 535		Ala	Leu	Ala	Ala 540		Ala	Trp	Leu				
-		Gln	Val	Gly		Val	Leu	Gln	Glu			Leu	Leu	Asn	-				
545 Ser	Ile	Arg	Asp	Asn	550 Ile	Ala	Leu	Thr	Asp	555 Thr	Gly	Met	Pro	Leu	560 Glu				
Ara	Ile	Ile	Glu	565 Ala	Ala	Lys	Leu	Ala	570 Glv	Ala	His	Glu	Phe	575 Ile	Met				
-			580			-		585	_				590						
		595		-	-	Gly	600			-		605	-		-				
Leu	Ser 610	Gly	Gly	Gln	Arg	Gln 615	Arg	Ile	Ala	Ile	Ala 620	Arg	Ala	Leu	Ile				
Thr 625	Asn	Pro	Arg	Ile	Leu 630	Ile	Phe	Asp	Glu	Ala 635	Thr	Ser	Ala	Leu	Asp 640				
Tyr	Glu	Ser	Glu	Arg 645	Ala	Ile	Met	Gln	Asn 650	Met	Gln	Ala	Ile	C y s 655	Ala				
Asn	Arg	Thr	Val 660	Leu	Ile	Ile	Ala	His 665	Arg	Leu	Ser	Thr	Val 670	Lys	Thr				
Ala	His	Arg 675	Ile	Ile	Ala	Met	A sp 680	Lys	Gly	Arg	Ile	Val 685	Glu	Ala	Gly				
Thr	Gln 690	Gln	Glu	Leu	Leu	Ala 695	Lys	Pro	Asn	Gly	Ty r 700	Tyr	Arg	Tyr	Leu				
Ty r 705		Leu	Gln	Asn	Gly 710						,								
<213 <213)> SE l> LE 2> TY 3> OF	NGTH PE:	H: 23 DNA	133	seri	ia me	ening	jitic	lis										
<400)> SE	QUEN	ICE :	29															
atg	ctat	cg t	tatc	cgca	cc g	ctcc	ccgco	c cti	tcc	Jacc	tca	tcat	cct (cgcc	cattac	60			
															cagago				
															aggta				
															:gtgat :atcta				
															acaga				
															gcaaag				
ttt	gactt	ta d	cctg	gttt	at to	ccgg	cggta	a ato	caaat	acc	gcc	ggtt	gtt ·	tttt	gaagta	480			
ttg	gtggt	egt d	cggt	ggtg [.]	tt g	cage	tgtti	t gco	gctga	atta	cgc	ctct	gtt ·	tttc	caagtg	r 540			
gtga	atgga	aca a	aggt	gctg	gt a	catc	aaaa	a tto	ctcta	actt	tgg	atgto	ggt (gtcg	gtggct	600			
ttg	tggt	:gg t	tgtc	gctg	tt te	gaga	ttgtg	g tto	gggc	ggtt	tgc	ggaco	gta -	tctg	ttgca	u 660			

-continued

720

ctgcctttat cctatttcga q	gcacagacga gtgggtgata	cggtggctcg ggtgcgggaa	780
ttggagcaga ttcgcaattt o	cttgaccggt caggcgctga	cttcggtgtt ggatttggcg	840
ttttcgttta tctttctggc o	ggtgatgtgg tattacagct	ccactctgac ttgggtggta	900
ttggcttcgt tgcctgccta (tgcgttttgg tcggcattta	tcagtccgat actgcggacg	960
cgtctgaacg ataagttcgc o	gcgcaatgca gacaaccagt	cgtttttagt agaaagcatc	1020
actgcggtgg gtacggtaaa g	ggcgatggcg gtggagccgc	agatgacgca gcgttgggac	1080
aatcagttgg cggcttatgt o	ggcttcggga tttcgggtaa	cgaagttggc ggtggtcggc	1140
cagcaggggg tgcagctgat t	tcagaagctg gtgacggtgg	cgacgttgtg gattggcgca	1200
cggctggtaa ttgagagcaa q	gctgacggtg gggcagctga	ttgcgtttaa tatgctctcg	1260
ggacaggtgg cggcgcctgt t	tatccgtttg gcgcagttgt	ggcaggattt ccagcaggtg	1320
gggatttcgg tggcgcgttt g	gggggatatt ctgaatgcgc	cgaccgagaa tgcgtcttcg	1380
catttggctt tgcccgatat o	ccgggggggag attacgttcg	aacatgtcga tttccgctat	1440
aaggcggacg gcaggctgat t	tttgcaggat ttgaacctgc	ggattcgggc gggggaagtg	1500
ctggggattg tgggacgttc o	ggggtcgggc aaatccacac	tcaccaaatt ggtgcagcgt	1560
ctgtatgtac cggcgcaggg a	acgggtgttg gtggacggca	acgatttggc tttggccgct	1620
cctgcttggc tgcggcggca o	ggtcggcgtg gtcttgcagg	agaatgtgct gctcaaccgc	1680
agcatacgcg acaatatcgc g	gctgacggat acgggtatgc	cgctggaacg cattatcgaa	1740
gcagccaaac tggcgggcgc a	acacgagttt attatggagc	tgccggaagg ctacggcacc	1800
gtggtgggcg aacaaggggc (cggcttgtcg ggcggacagc	ggcagcgtat tgcgattgcc	1860
cgcgcgttaa tcaccaatcc q	gcgcattctg atttttgatg	aagccaccag cgcgctggat	1920
tatgaaagtg aacgagcgat t	tatgcagaac atgcaggcca	tttgcgccaa ccggacggtg	1980
ctgattatcg cccaccgtct q	gtccactgtt aaaacggcac	accggatcat tgccatggat	2040
aaaggcagga ttgtggaagc g	gggaacacag caggaattgc	tggcgaagcc gaacggatat	2100
taccgctatc tgtatgattt a	acagaacggg tag		2133
<210> SEQ ID NO 30 <211> LENGTH: 710			
<212> TYPE: PRT <213> ORGANISM: Neisser	ria meningitidis		
<400> SEQUENCE: 30			
Met Ser Ile Val Ser Ala	a Pro Leu Pro Ala Leu	Ser Ala Leu Ile Ile	
1 5	10	15	
Leu Ala His Tyr His Gly 20	y Ile Ala Ala Asn Pro 25	Ala Asp Ile Gln His 30	
Glu Phe Cys Thr Ser Ala 35	a Gln Ser Asp Leu Asn 40	Glu Thr Gln Trp Leu 45	
Leu Ala Ala Lys Ser Leu 50	u Gly Leu Lys Ala Lys 55	Val Val Arg Gln Pro 60	
Ile Lys Arg Leu Ala Met 65 70		Leu Val Trp Cys Asp 80	
Asp Gly Asn His Phe Ile	e Leu Ala Lys Thr Asp	Gly Gly Gly Glu His	

catacgactt cacgtattga tgtggaattg ggcgcgcgtt tgttccggca tctgctttcc

-continued

											-	con	tin	ued										
				85					90					95										
¥la	Gln	Tyr	Leu 100	Ile	Gln	Asp	Leu	Thr 105	Thr	Asn	Lys	Ser	Ala 110	Val	Leu									
Ser	Phe	Ala 115	Glu	Phe	Ser	Asn	Arg 120	Tyr	Ser	Gly	Lys	Leu 125	Ile	Leu	Val									
4la	Ser 130	Arg	Ala	Ser	Val	Leu 135	Gly	Ser	Leu	Ala	L y s 140	Phe	Asp	Phe	Thr									
[rp 145	Phe	Ile	Pro	Ala	Val 150	Ile	Lys	Tyr	Arg	Arg 155	Leu	Phe	Phe	Glu	Val 160									
Jeu	Val	Val	Ser	Val 165	Val	Leu	Gln	Leu	Phe 170	Ala	Leu	Ile	Thr	Pro 175	Leu									
?he	Phe	Gln	Val 180	Val	Met	Asp	Lys	Val 185	Leu	Val	His	Arg	Gl y 190	Phe	Ser									
[hr	Leu	Asp 195	Val	Val	Ser	Val	Ala 200	Leu	Leu	Val	Val	Ser 205	Leu	Phe	Glu									
[le	Val 210	Leu	Gly	Gly	Leu	Arg 215	Thr	Tyr	Leu	Phe	Ala 220	His	Thr	Thr	Ser									
Arg 225	Ile	Asp	Val	Glu	Leu 230	Gly	Ala	Arg	Leu	Phe 235	Arg	His	Leu	Leu	Ser 240									
Jeu	Pro	Leu	Ser	Ty r 245	Phe	Glu	His	Arg	Arg 250	Val	Gly	Asp	Thr	Val 255	Ala									
∖rg	Val	Arg	Glu 260	Leu	Glu	Gln	Ile	Arg 265	Asn	Phe	Leu	Thr	Gly 270	Gln	Ala									
Jeu	Thr	Ser 275	Val	Leu	Asp	Leu	Ala 280	Phe	Ser	Phe	Ile	Phe 285	Leu	Ala	Val									
let.	Trp 290	Tyr	Tyr	Ser	Ser	Thr 295	Leu	Thr	Trp	Val	Val 300	Leu	Ala	Ser	Leu									
?ro 305	Ala	Tyr	Ala	Phe	Trp 310	Ser	Ala	Phe	Ile	Ser 315	Pro	Ile	Leu	Arg	Thr 320									
łrg	Leu	Asn	Asp	L y s 325	Phe	Ala	Arg	Asn	Ala 330	Asp	Asn	Gln	Ser	Phe 335	Leu									
7al	Glu	Ser	Ile 340	Thr	Ala	Val	Gly	Thr 345	Val	Lys	Ala	Met	Ala 350	Val	Glu									
?ro	Gln	Met 355	Thr	Gln	Arg	Trp	Asp 360	Asn	Gln	Leu	Ala	Ala 365	Tyr	Val	Ala									
ser	Gly 370	Phe	Arg	Val	Thr	L y s 375	Leu	Ala	Val	Val	Gly 380	Gln	Gln	Gly	Val									
385	Leu	Ile	Gln	Lys	Leu 390	Val	Thr	Val	Ala	Thr 395	Leu	Trp	Ile	Gly	Ala 400									
٩rg	Leu	Val	Ile	Glu 405	Ser	Lys	Leu	Thr	Val 410	Gly	Gln	Leu	Ile	Ala 415	Phe									
4sn	Met	Leu	Ser 420	Gly	Gln	Val	Ala	Ala 425	Pro	Val	Ile	Arg	Leu 430	Ala	Gln									
Jeu	Trp	Gln 435	Asp	Phe	Gln	Gln	Val 440	Gly	Ile	Ser	Val	Ala 445	Arg	Leu	Gly									
₹ab	Ile 450	Leu	Asn	Ala	Pro	Thr 455	Glu	Asn	Ala	Ser	Ser 460	His	Leu	Ala	Leu									
?ro 165	Asp	Ile	Arg	Gly	Glu 470	Ile	Thr	Phe	Glu	His 475	Val	Asp	Phe	Arg	Ty r 480									
Jys	Ala	Asp	Gly	Arg 485	Leu	Ile	Leu	Gln	Asp 490	Leu	Asn	Leu	Arg	Ile 495	Arg									

```
-continued
```

Ala Gly Glu Val Leu Gly Ile Val Gly Arg Ser Gly Ser Gly Lys Ser 505 510 500 Thr Leu Thr Lys Leu Val Gln Arg Leu Tyr Val Pro Ala Gln Gly Arg 515 520 525 Val Leu Val Asp Gly Asn Asp Leu Ala Leu Ala Ala Pro Ala Trp Leu 530 535 540 Arg Arg Gln Val Gly Val Val Leu Gln Glu Asn Val Leu Leu Asn Arg 545 550 555 560 Ser Ile Arg Asp Asn Ile Ala Leu Thr Asp Thr Gly Met Pro Leu Glu 575 565 570 Arg Ile Ile Glu Ala Ala Lys Leu Ala Gly Ala His Glu Phe Ile Met 580 585 590 Glu Leu Pro Glu Gly Tyr Gly Thr Val Val Gly Glu Gln Gly Ala Gly 600 595 605 Leu Ser Gly Gly Gln Arg Gln Arg Ile Ala Ile Ala Arg Ala Leu Ile 615 610 620 Thr Asn Pro Arg Ile Leu Ile Phe Asp Glu Ala Thr Ser Ala Leu Asp 625 630 635 640 Tyr Glu Ser Glu Arg Ala Ile Met Gln Asn Met Gln Ala Ile Cys Ala 645 650 Asn Arg Thr Val Leu Ile Ile Ala His Arg Leu Ser Thr Val Lys Thr 660 665 670 Ala His Arg Ile Ile Ala Met Asp Lys Gly Arg Ile Val Glu Ala Gly 680 685 675 Thr Gln Gln Glu Leu Leu Ala Lys Pro Asn Gly Tyr Tyr Arg Tyr Leu 695 700 690 Tyr Asp Leu Gln Asn Gly 705 710 <210> SEQ ID NO 31 <211> LENGTH: 186 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 31 atgaaatact tgatccgcac cgccttactc gcagtcgcag ccgccggcat ctacgcctgc 60 caaccgcaat ccgaagccgc agtgcaagtc aaggctgaaa acagcctgac cgctatgcgc 120 ttagccgtcg ccgacaaaca ggcagagatt gacgggttga acgcccaaak sgacgccgaa 180 atcaga 186 <210> SEQ ID NO 32 <211> LENGTH: 62 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (57) <223> OTHER INFORMATION: unknown <400> SEQUENCE: 32 Met Lys Tyr Leu Ile Arg Thr Ala Leu Leu Ala Val Ala Ala Ala Gly 10 1 5 15 Ile Tyr Ala Cys Gl
n Pro Gl
n Ser Glu Ala Ala Val Gln Val Lys Ala 20 2530

Glu Asn Ser Leu Thr Ala Met Arg Leu Ala Val Ala Asp Lys Gln Ala 35 40 45 Glu Ile Asp Gly Leu Asn Ala Gln Xaa Asp Ala Glu Ile Arg 50 55 60 <210> SEQ ID NO 33 <211> LENGTH: 261 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 33 atgaaatact tgatccgcac cgccttactc gcagtcgcag ccgccggcat ctacgcctgc 60 caaccgcaat ccgaagccgc agtgcaagtc aaggctgaaa acagcctgac cgctatgcgc 120 ttagccgtcg ccgacaaaca ggcagagatt gacgggttga acgcccaaat cgacgccgaa 180 atcagacaac gcgaagccga agaattgaaa gactaccgat ggatacacgg cgacgcggaa 240 261 gtgccggagc tggaaaaatg a <210> SEQ ID NO 34 <211> LENGTH: 86 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 34 Met Lys Tyr Leu Ile Arg Thr Ala Leu Leu Ala Val Ala Ala Ala Gly 1 5 10 15 Ile Tyr Ala Cys Gln Pro Gln Ser Glu Ala Ala Val Gln Val Lys Ala 20 25 30 Glu As
n Ser Leu Thr Ala Met Arg Leu Ala Val Ala Asp Lys Gl
n Ala 35 40 45Glu Ile Asp Gly Leu Asn Ala Gln Ile Asp Ala Glu Ile Arg Gln Arg 50 55 60 Glu Ala Glu Glu Leu Lys Asp Tyr Arg Trp Ile His Gly Asp Ala Glu 65 70 75 80 Val Pro Glu Leu Glu Lys 85 <210> SEQ ID NO 35 <211> LENGTH: 279 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 35 atggttatcg gaatattact cgcatcaagc aagcatgctc ttgtcattac tctattgtta 60 aatcccgtct tccatgcatc cagttgcgta tcgcgttsgg caatacggaa taaaatctgc 120 tgttctgctt tggctaaatt tgccaaattg tttattgttt ctttaggagc agcttgctta 180 gccgccttcg ctttcgacaa cgcccccaca ggcgcttccc aagcgttgcc taccgttacc 240 gcacccgtgg cgattcccgc gcccgcttcg gcagcctga 279 <210> SEQ ID NO 36 <211> LENGTH: 92 <212> TYPE: PRT

<213> ORGANISM: Neisseria meningitidis <220> FEATURE:

<221> NAME/KEY: SITE

```
-continued
```

<222> LOCATION: (33) <223> OTHER INFORMATION: unknown <400> SEQUENCE: 36 Met Val Ile Gly Ile Leu Leu Ala Ser Ser Lys His Ala Leu Val Ile 10 5 1 Thr Leu Leu Asn Pro Val Phe His Ala Ser Ser Cys Val Ser Arg 20 25 30 Xaa Ala Ile Arg Asn Lys Ile Cys Cys Ser Ala Leu Ala Lys Phe Ala 35 40 45 Lys Leu Phe Ile Val Ser Leu Gly Ala Ala Cys Leu Ala Ala Phe Ala 50 55 60 Phe Asp Asn Ala Pro Thr Gly Ala Ser Gln Ala Leu Pro Thr Val Thr 70 75 65 80 Ala Pro Val Ala Ile Pro Ala Pro Ala Ser Ala Ala 85 90 <210> SEQ ID NO 37 <211> LENGTH: 312 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 37 atggcttgta caggtttgat ggtttttccg ttaatggtta tcggaatatt acttgcatca 60 agcaagcotg ctcctttcct tactctattg ttaaatcccg tcttccatgc atccagttgc 120 gtatcgcgtt gggcaatacg gaataaaatc tgctgttctg ctttggctaa atttgccaaa 180 ttgtttattg tttctttagg agcagettge ttageegeet tegetttega caaegeecee 240 300 acaggcgctt cccaagcgtt gcctaccgtt accgcacccg tggcgattcc cgcgcccgct tcqqcaqcct qa 312 <210> SEQ ID NO 38 <211> LENGTH: 103 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 38 Met Ala Cys Thr Gly Leu Met Val Phe Pro Leu Met Val Ile Gly Ile 1 5 10 15 Leu Leu Ala Ser Ser Lys Pro Ala Pro Phe Leu Thr Leu Leu Asn 20 25 30 Pro Val Phe His Ala Ser Ser Cys Val Ser Arg Trp Ala Ile Arg Asn 40 35 45 Lys Ile Cys Cys Ser Ala Leu Ala Lys Phe Ala Lys Leu Phe Ile Val 50 55 60 Ser Leu Gly Ala Ala Cys Leu Ala Ala Phe Ala Phe Asp Asn Ala Pro 70 75 65 80 Thr Gly Ala Ser Gln Ala Leu Pro Thr Val Thr Ala Pro Val Ala Ile 85 90 95 Pro Ala Pro Ala Ser Ala Ala 100 <210> SEQ ID NO 39 <211> LENGTH: 255 <212> TYPE: DNA

-continued

<213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 39 atgttcagta ttttaaatgt gtttcttcat tgtattctgg cttgtgtagt ctctggtgag 60 acgcctacta tatttggtat ccttgctctt ttttacttat tgtatctttc ttatcttgct 120 gtttttaaga ttttcttttc ttttttctta gacagagttt cactccggtc tcccaggctg 180 gagtgcaaat ggcatgaccc tttggctcac tggctcacgg ccacttctgc tattctgccg 240 cctcagcctc caggg 255 <210> SEQ ID NO 40 <211> LENGTH: 85 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 40 Met Phe Ser Ile Leu Asn Val Phe Leu His Cys Ile Leu Ala Cys Val 5 10 1 15 Val Ser Gly Glu Thr Pro Thr Ile Phe Gly Ile Leu Ala Leu Phe Tyr 20 25 Leu Leu Tyr Leu Ser Tyr Leu Ala Val Phe Lys Ile Phe Phe Ser Phe 40 Phe Leu Asp Arg Val Ser Leu Arg Ser Pro Arg Leu Glu Cys Lys Trp 50 55 60 His Asp Pro Leu Ala His Trp Leu Thr Ala Thr Ser Ala Ile Leu Pro 65 75 70 80 Pro Gln Pro Pro Gly 85 <210> SEQ ID NO 41 <211> LENGTH: 237 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEOUENCE: 41 gtgcggacgt ggttggtttt ttggttgcag cgtttgaaat acccgttgtt gctttggatt 60 gcggatatgt tgctgtaccg gttgttgggc ggcgcggaaa tcgaatgcgg ccgttgccct 120 gtgccgccga tgacggattg gcagcatttt ttgccggcga tgggaacggt gtcggcttgg 180 gtggcggtga tttgggcata cctgatgatt gaaagtgaaa aaaacggaag atattga 237 <210> SEQ ID NO 42 <211> LENGTH: 78 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 42 Val Arg Thr Trp Leu Val Phe Trp Leu Gln Arg Leu Lys Tyr Pro Leu 1 5 10 15 Leu Leu Trp Ile Ala Asp Met Leu Leu Tyr Arg Leu Leu Gly Gly Ala 25 20 30 Glu Ile Glu Cys Gly Arg Cys Pro Val Pro Pro Met Thr Asp Trp Gln 35 40 45 His Phe Leu Pro Ala Met Gly Thr Val Ser Ala Trp Val Ala Val Ile 50 55 60

-continued

Trp Ala Tyr Leu Met Ile Glu Ser Glu Lys Asn Gly Arg Tyr 65 70 75 <210> SEQ ID NO 43 <211> LENGTH: 237 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEOUENCE: 43 gtgcggacgt ggttggtttt ttggttgcag cgtttgaaat acccgttgtt gctttgtatt 60 gcggatatgc tgctgtaccg gttgttgggc ggcgcggaaa tcgaatgcgg ccgttgccct 120 gtaccgccga tgacggattg gcagcatttt ttgccgacga tgggaacggt ggcggcttgg 180 gtggcggtga tttgggcata cctgatgatt gaaagtgaaa aaaacggaag atattga 237 <210> SEQ ID NO 44 <211> LENGTH: 78 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 44 Val Arg Thr Trp Leu Val Phe Trp Leu Gln Arg Leu Lys Tyr Pro Leu 5 10 15 1 Leu Leu Cys Ile Ala Asp Met Leu Leu Tyr Arg Leu Leu Gly Gly Ala 20 25 Glu Ile Glu Cys Gly Arg Cys Pro Val Pro Pro Met Thr Asp Trp Gln 40 45 35 His Phe Leu Pro Thr Met Gly Thr Val Ala Ala Trp Val Ala Val Ile 50 55 60 Trp Ala Tyr Leu Met Ile Glu Ser Glu Lys Asn Gly Arg Tyr 70 65 75 <210> SEO ID NO 45 <211> LENGTH: 660 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 45 atgtttcaaa attttgattt gggcgtgttc ctgcttgccg tcctccccgt gctgccctcc 60 attaccgtct cgcacgtggc gcgcggctat acggcgcgct actggggaga caacactgcc 120 gaacaatacg gcaggctgac actgaacccc ctgccccata tcgatttggt cggcacaatc 180 atcgtaccgc tgcttacttt gatgttcacg cccttcctgt tcggctgggc gcgtccgatt 240 cctatcgatt cgcgcaactt ccgcaacccg cgccttgcct ggcgttgcgt tgccgcgtcc 300 ggcccgctgt cgaatctagc gatggctgtw ctgtggggcg tggttttggt gctgactccg 360 tatgtcggcg gggcgtatca gatgccgttg gctcaaatgg caaactacgg tattctgatc 420 aatgcgattc tgttcgcgct caacatcatc cccatcctgc cttgggacgg cggcattttc 480 atcgacacct tcctgtcggc gaaatattcg caagcgttcc gcaaaatcga accttatggg 540 acgtggatta tcctactgct gatgctgacc sgggttttgg gtgcgtttat wgcaccgatt 600 stgcggmtgc gtgattgcrt ttgtgcagat gtwcgtctga ctggctttca gacggcataa 660 <210> SEQ ID NO 46

<211> LENGTH: 219 <212> TYPE: PRT

60

120

180

<213> ORGANISM: Neisseria meningitidis <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (191) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (201) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (203) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (207) <223> OTHER INFORMATION: unknown <400> SEQUENCE: 46 Met Phe Gln Asn Phe Asp Leu Gly Val Phe Leu Leu Ala Val Leu Pro 5 10 Val Leu Pro Ser Ile Thr Val Ser His Val Ala Arg Gly Tyr Thr Ala 20 25 Arg Tyr Trp Gly Asp Asn Thr Ala Glu Gln Tyr Gly Arg Leu Thr Leu 40 35 Asn Pro Leu Pro His Ile Asp Leu Val Gly Thr Ile Ile Val Pro Leu 50 55 60 Leu Thr Leu Met Phe Thr Pro Phe Leu Phe Gly Trp Ala Arg Pro Ile 65 70 75 80 Pro Ile Asp Ser Arg Asn Phe Arg Asn Pro Arg Leu Ala Trp Arg Cys 85 90 95 Val Ala Ala Ser Gly Pro Leu Ser Asn Leu Ala Met Ala Val Leu Trp 100 105 110 Gly Val Val Leu Val Leu Thr Pro Tyr Val Gly Gly Ala Tyr Gln Met 120 115 125 Pro Leu Ala Gln Met Ala Asn Tyr Gly Ile Leu Ile Asn Ala Ile Leu 130 135 140 Phe Ala Leu Asn Ile Ile Pro Ile Leu Pro Trp Asp Gly Gly Ile Phe 145 150 155 160 Ile Asp Thr Phe Leu Ser Ala Lys Tyr Ser Gln Ala Phe Arg Lys Ile 165 170 175 Glu Pro Tyr Gly Thr Trp Ile Ile Leu Leu Met Leu Thr Xaa Val 180 185 190 Leu Gly Ala Phe Ile Ala Pro Ile Xaa Arg Xaa Arg Asp Cys Xaa Cys 195 200 205 Ala Asp Val Arg Leu Thr Gly Phe Gln Thr Ala 210 215 <210> SEQ ID NO 47 <211> LENGTH: 639 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 47 atgtttcaaa attttgattt gggcgtgttt ctgcttgccg tcctgcccgt gctgctctcc attaccgtca gggaggtggc gcgcggctat acggcgcgct actgggggaga caacactgcc gaacaatacg gcaggetgac actgaaceee etgececata tegatttggt eggcacaate

-continued	
atcgtaccgc tgcttacttt gatgttcacg cccttcctgt tcggctgggc gcgtccgatt	240
cctatcgatt cgcgcaactt ccgcaacccg cgccttgcct ggcgttgcgt tgccgcgtcc	300
ggcccgctgt cgaatctagc gatggctgtt ctgtgggggcg tggttttggt gctgactccg	360
tatgtcggcg gggcgtatca gatgccgttg gctcaaatgg caaactacgg tattctgatc	420
aatgcgattc tgttcgcgct caacatcatc cccatcctgc cttgggacgg cggcattttc	480
atcgacacct tcctgtcggc gaaatattcg caagcgttcc gcaaaatcga accttatggg	540
acgtggatta tcctactgct gatgctgacc ggggttttgg gtgcgtttat tgcaccgatt	600
gtgcggctgg tgattgcgtt tgtgcagatg ttcgtctga	639
<210> SEQ ID NO 48 <211> LENGTH: 212 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 48	
Met Phe Gln Asn Phe Asp Leu Gly Val Phe Leu Leu Ala Val Leu Pro151015	
Val Leu Ser Ile Thr Val Arg Glu Val Ala Arg Gly Tyr Thr Ala 20 25 30	
Arg Tyr Trp Gly Asp Asn Thr Ala Glu Gln Tyr Gly Arg Leu Thr Leu 35 40 45	
Asn Pro Leu Pro His Ile Asp Leu Val Gly Thr Ile Ile Val Pro Leu 50 55 60	
Leu Thr Leu Met Phe Thr Pro Phe Leu Phe Gly Trp Ala Arg Pro Ile 65 70 75 80	
Pro Ile Asp Ser Arg Asn Phe Arg Asn Pro Arg Leu Ala Trp Arg Cys 85 90 95	
Val Ala Ala Ser Gly Pro Leu Ser Asn Leu Ala Met Ala Val Leu Trp 100 105 110	
Gly Val Val Leu Val Leu Thr Pro Tyr Val Gly Gly Ala Tyr Gln Met 115 120 125	
Pro Leu Ala Gln Met Ala Asn Tyr Gly Ile Leu Ile Asn Ala Ile Leu 130 135 140	
Phe Ala Leu Asn Ile Ile Pro Ile Leu Pro Trp Asp Gly Gly Ile Phe 145 150 155 160	
Ile Asp Thr Phe Leu Ser Ala Lys Tyr Ser Gln Ala Phe Arg Lys Ile	
165 170 175 Glu Pro Tyr Gly Thr Trp Ile Ile Leu Leu Leu Met Leu Thr Gly Val	
180 185 190	
Leu Gly Ala Phe Ile Ala Pro Ile Val Arg Leu Val Ile Ala Phe Val 195 200 205	
Gln Met Phe Val 210	
<pre><210> SEQ ID NO 49 <211> LENGTH: 558 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (312) <223> OTHER INFORMATION: any nucleotide <220> FEATURE:</pre>	

```
-continued
```

<221> NAME/KEY: misc_feature <222> LOCATION: (328)..(330) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (353) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (420) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: (426) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (473) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (506) <223> OTHER INFORMATION: any nucleotide <400> SEQUENCE: 49 cgcggctata cagcgcgcta ctggggtgac aacactgccg aacaatacgg caggctgaca 60 ctgaaccccc tgccccatat cgatttggtc ggcacaatca tcgtaccgct gcttactttg 120 atgtttacgc ccttcctgtt cggctgggcg cgtccgattc ctatcgattc gcgcaacttc 180 cgcaacccgc gccttgcctg gcgttgcgtt gccgcgtccg gcccgctgtc gaatctggcg 240 atggctgttc tgtggggcgt ggttttggtg ctgactccgt atgtcggtgg ggcgtatcag 300 atgccgttgg cncaaatggc aaactacnnn attctgatca atgcgattct gtncgcgctc 360 aacatcatcc ccatcctgcc ttgggacggc ggcattttca tcgacacctt cctgtcggcn 420 aaatantcgc aagcgttccg caaaatcgaa ccttatggga cgtggattat ccngctgctt 480 atgctgaccg gggttttggg tgcgtntatt gcaccgattg tgcagctggt gattgcgttt 540 558 gtgcagatgt tcgtctga <210> SEQ ID NO 50 <211> LENGTH: 185 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (110) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (118) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (142) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (158) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (169) <223> OTHER INFORMATION: unknown <400> SEQUENCE: 50 Arg Gly Tyr Thr Ala Arg Tyr Trp Gly Asp Asn Thr Ala Glu Gln Tyr 10 15

35

-continued

30

131

Trp	Ala 50	Arg	Pro	Ile	Pro	Ile 55	Asp	Ser	Arg	Asn	Phe 60	Arg	Asn	Pro	Arg	
Leu 65	Ala	Trp	Arg	Суз	Val 70	Ala	Ala	Ser	Gly	Pro 75	Leu	Ser	Asn	Leu	Ala 80	
Met	Ala	Val	Leu	Trp 85	Gly	Val	Val	Leu	Val 90	Leu	Thr	Pro	Tyr	Val 95	Gly	
Gly	Ala	Tyr	Gln 100	Met	Pro	Leu	Ala	Gln 105	Met	Ala	Asn	Tyr	Xaa 110	Ile	Leu	
Ile	Asn	Ala 115	Ile	Leu	Xaa	Ala	Leu 120	Asn	Ile	Ile	Pro	Ile 125	Leu	Pro	Trp	
Asp	Gly	Gly	Ile	Phe	Ile	Asp	Thr	Phe	Leu	Ser	Ala	Lys	Xaa	Ser	Gln	

45

Asp Gly Gly Ile Phe Ile Asp Thr 135 140 130 Ala Phe Arg Lys Ile Glu Pro Tyr Gly Thr Trp Ile Ile Xaa Leu Leu 145 150 155 160 Met Leu Thr Gly Val Leu Gly Ala Xaa Ile Ala Pro Ile Val Gln Leu 165 170 175

Gly Arg Leu Thr Leu Asn Pro Leu Pro His Ile Asp Leu Val Gly Thr 25

Ile Ile Val Pro Leu Leu Thr Leu Met Phe Thr Pro Phe Leu Phe Gly

40

Val Ile Ala Phe Val Gln Met Phe Val 180 185

<210> SEQ ID NO 51 <211> LENGTH: 498 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis

<400> SEQUENCE: 51

```
atgaacctga tttcacgtta catcatccgt caaatggcgg ttatggcggt ttacgcgctc
                                                                      60
cttqccttcc tcqctttqta caqctttttt qaaatcctqt acqaaaccqq caacctcqqc
                                                                     120
aaaggcagtt acggcatatg ggaaatgctg ggctacaccg ccctcaaaat gcccgcccgc
                                                                     180
gcctacgaac tgattcccct cgccgtcctt atcggcggac tggtctccct cagccagctt
                                                                     240
gccgccggca gcgaactgac cgtcatcaaa gccagcggca tgagcaccaa aaagctgctg
                                                                     300
ttgattctgt cgcagttcgg ttttattttt gctattgcca ccgtcgcgct cggcgaatgg
                                                                     360
gttgcgccca cactgagcca aaaagccgaa aacatcaaag ccgccgccat caacggcaaa
                                                                     420
atcagcaccg gcaataccgg cctttggctg aaagaaaaaa acagcgtgat caatgtgcgc
                                                                     480
gaaatgttgc ccgaccat
                                                                     498
```

<210> SEQ ID NO 52 <211> LENGTH: 166 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 52 Met Asn Leu Ile Ser Arg Tyr Ile Ile Arg Gln Met Ala Val Met Ala 10 15 1 Val Tyr Ala Leu Leu Ala Phe Leu Ala Leu Tyr Ser Phe Phe Glu Ile 25 20 30 Leu Tyr Glu Thr Gly Asn Leu Gly Lys Gly Ser Tyr Gly Ile Trp Glu 35 40 45

```
-continued
```

Met Leu Gly Tyr Thr Ala Leu Lys Met Pro Ala Arg Ala Tyr Glu Leu 50 55 60 Ile Pro Leu Ala Val Leu Ile Gly Gly Leu Val Ser Leu Ser Gln Leu 65 70 75 80 Ala Ala Gly Ser Glu Leu Thr Val Ile Lys Ala Ser Gly Met Ser Thr 85 90 95 Lys Lys Leu Leu Leu Ile Leu Ser Gln Phe Gly Phe Ile Phe Ala Ile 100 105 110 Ala Thr Val Ala Leu Gly Glu Trp Val Ala Pro Thr Leu Ser Gln Lys 115 120 125 Ala Glu Asn Ile Lys Ala Ala Ala Ile Asn Gly Lys Ile Ser Thr Gly 135 130 140 Asn Thr Gly Leu Trp Leu Lys Glu Lys Asn Ser Val Ile Asn Val Arg 145 150 155 160 Glu Met Leu Pro Asp His 165 <210> SEQ ID NO 53 <211> LENGTH: 980 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 53 atgaacctga tttcacgtta catcatccgt caaatggcgg ttatggcggt ttacgcgctc 60 cttqccttcc tcqctttqta caqctttttt gaaatcctqt acgaaaccqg caacctcqqc 120 aaaggcagtt acggcatatg ggaaatgctg ggctacaccg ccctcaaaat gcccgcccgc 180 gcctacgaac tgattcccct cgccgtcctt atcggcggac tggtctccct cagccagctt 240 gccgccggca gcgaactgac cgtcatcaaa gccagcggca tgagcaccaa aaagctgctg 300 ttgattctgt cgcagttcgg ttttattttt gctattgcca ccgtcgcgct cggcgaatgg 360 420 gttgcgccca cactgagcca aaaagccgaa aacatcaaag ccgccgccat caacggcaaa atcagcaccg gcaataccgg cctttggctg aaagaaaaaa acagcrtkat caatgtgcgc 480 gaaatgttgc ccgaccatac gcttttgggc atcaaaattt gggcgcgcaa cgataaaaaac 540 gaattggcag aggcagtgga agccgattcc gccgttttga acagcgacgg cagttggcag 600 ttgaaaaaca tccgccgcag cacgcttggc gaagacaaag tcgaggtctc tattgcggct 660 gaagaaaact ggccgatttc cgtcaaacgc aacctgatgg acgtattgct cgtcaaaccc 720 gaccaaatgt ccgtcggcga actgaccacc tacatccgcc acctccaaaa caacagccaa 780 aacacccgaa tctacgccat cgcatggtgg cgcaaattgg tttaccccgc cgcagcctgg 840 gtgatggcgc tcgtcgcctt tgcctttacc ccgcaaacca cccgccacgg caatatgggc 900 ttaaaactct tcggcggcat ctgtstcgga ttgctgttcc accttgccgg acggctcttt 960 980 gggtttacca gccaactcgg <210> SEQ ID NO 54 <211> LENGTH: 326 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <220> FEATURE: <221> NAME/KEY: SITE

<222> LOCATION: (156)
<223> OTHER INFORMATION: unknown

|--|

<220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (309) <223> OTHER INFORMATION: unknown <400> SEQUENCE: 54 Met Asn Leu Ile Ser Arg Tyr Ile Ile Arg Gln Met Ala Val Met Ala 5 10 1 Val Tyr Ala Leu Leu Ala Phe Leu Ala Leu Tyr Ser Phe Bhe Glu Ile 20 25 30 Leu Tyr Glu Thr Gly Asn Leu Gly Lys Gly Ser Tyr Gly Ile Trp Glu 35 40 45 Met Leu Gly Tyr Thr Ala Leu Lys Met Pro Ala Arg Ala Tyr Glu Leu 50 55 60 Ile Pro Leu Ala Val Leu Ile Gly Gly Leu Val Ser Leu Ser Gln Leu65707580 Ala Ala Gly Ser Glu Leu Thr Val Ile Lys Ala Ser Gly Met Ser Thr 85 90 95 Lys Lys Leu Leu Leu Ile Leu Ser Gln Phe Gly Phe Ile Phe Ala Ile 100 105 Ala Thr Val Ala Leu Gly Glu Trp Val Ala Pro Thr Leu Ser Gln Lys 115 120 125 Ala Glu Asn Ile Lys Ala Ala Ala Ile Asn Gly Lys Ile Ser Thr Gly 130 135 140 135 140 130 Asn Thr Gly Leu Trp Leu Lys Glu Lys Asn Ser Xaa Ile Asn Val Arg 150 145 - 155 160 Glu Met Leu Pro Asp His Thr Leu Leu Gly Ile Lys Ile Trp Ala Arg 165 170 175 Asn Asp Lys Asn Glu Leu Ala Glu Ala Val Glu Ala Asp Ser Ala Val 180 185 190 Leu Asn Ser Asp Gly Ser Trp Gln Leu Lys Asn Ile Arg Arg Ser Thr 195 200 205 Leu Gly Glu Asp Lys Val Glu Val Ser Ile Ala Ala Glu Glu Asn Trp 210 215 220 Pro Ile Ser Val Lys Arg Asn Leu Met Asp Val Leu Leu Val Lys Pro 225 230 235 240 Asp Gln Met Ser Val Gly Glu Leu Thr Thr Tyr Ile Arg His Leu Gln 245 250 255 Asn Asn Ser Gln Asn Thr Arg Ile Tyr Ala Ile Ala Trp Trp Arg Lys 260 265 270 260 265 Leu Val Tyr Pro Ala Ala Ala Trp Val Met Ala Leu Val Ala Phe Ala 275 280 285 Phe Thr Pro Gln Thr Thr Arg His Gly Asn Met Gly Leu Lys Leu Phe 295 290 300 Gly Gly Ile Cys Xaa Gly Leu Leu Phe His Leu Ala Gly Arg Leu Phe 310 315 305 320 Gly Phe Thr Ser Gln Leu 325 <210> SEQ ID NO 55 <211> LENGTH: 1071 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <220> FEATURE:

```
-continued
```

<221> NAME/KEY: misc_feature <222> LOCATION: (148) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (153) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (172) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (229) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (260) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (669) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (770)..(772) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (907) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (951) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (961) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1001) <223> OTHER INFORMATION: any nucleotide <400> SEQUENCE: 55 cetaa ttteacatta cateateeat caaataac

atgaacctga tttcacgtta	catcatccgt	caaatggcgg	ttatggcggt	ttacgcgctc	60
cttgccttcc tcgctttgta	cagcttttt	gaaatcctgt	acgaaaccgg	caacctcggc	120
aaaggcagtt acggcatatg	ggaaatgntg	ggntacaccg	ccctcaaaat	gnccgcccgc	180
gcctacgaac tgatgcccct	cgccgtcctt	atcggcggac	tggtctctnt	cagccagctt	240
gccgccggca gcgaactgan	cgtcatcaaa	gccagcggca	tgagcaccaa	aaagctgctg	300
ttgattctgt cgcagttcgg	ttttatttt	gctattgcca	ccgtcgcgct	cggcgaatgg	360
gttgcgccca cactgagcca	aaaagccgaa	aacatcaaag	ccgcggccat	caacggcaaa	420
atcagtaccg gcaataccgg	cctttggctg	aaagaaaaaa	acagcattat	caatgtgcgc	480
gaaatgttgc ccgaccatac	cctgctgggc	attaaaatct	gggcccgcaa	cgataaaaac	540
gaactggcag aggcagtgga	agccgattcc	gccgttttga	acagcgacgg	cagttggcag	600
ttgaaaaaca tccgccgcag	cacgcttggc	gaagacaaag	tcgaggtctc	tattgcggct	660
gaagaaaant ggccgatttc	cgtcaaacgc	aacctgatgg	acgtattgct	cgtcaaaccc	720
gaccaaatgt ccgtcggcga	actgaccacc	tacatccgcc	acctccaaan	nnacagccaa	780
aacacccgaa tctacgccat	cgcatggtgg	cgcaaattgg	tttaccccgc	cgcagcctgg	840
gtgatggcgc tcgtcgcctt	tgcctttacc	ccgcaaacca	cccgccacgg	caatatgggc	900

		-continued	
taaaantet teggeggeat e	stgtctcgga ttgctgttcc	accttgccgg ncggctcttc	960
nggtttacca gccaactcta c	ggcatcccg cccttcctcg	ncggcgcact acctaccata	1020
geettegeet tgetegeegt t	tggctgata cgcaaacagg:	aaaaacgcta a	1071
3210> SEQ ID NO 56 3211> LENGTH: 356 3211> LENGTH: 356 3212> TYPE: PRT 3213> ORGANISM: Neisser 3220> FEATURE: 3221> NAME/KEY: SITE 3222> LOCATION: (50) 3223> OTHER INFORMATION 3220> FEATURE: 3221> NAME/KEY: SITE 3222> LOCATION: (58) 3223> OTHER INFORMATION 3220> FEATURE: 3221> NAME/KEY: SITE 3222> LOCATION: (77) 323> OTHER INFORMATION 3223> OTHER INFORMATION 3223> OTHER INFORMATION 3223> OTHER INFORMATION 3223> OTHER INFORMATION 323> OTHER INFORMATION 3223> OTHER INFORMATION 323> OTHER INFORMATION 3223> OTHER INFORMATION 3223> OTHER INFORMATION 3223> OTHER INFORMATION 3224> LOCATION: (223) 323> OTHER INFORMATION 324> DOTHER INFORMATION 325< OTHER INFORMATION	Fia meningitidis I: unknown I: unknown I: unknown I: unknown I: unknown I: unknown	aaaaacgcta a	1071
	I: unknown		
400> SEQUENCE: 56			
et Asn Leu Ile Ser Arg 1 5	g Tyr Ile Ile Arg Gln 10	Met Ala Val Met Ala 15	
al Tyr Ala Leu Leu Ala 20	a Phe Leu Ala Leu Tyr 25	Ser Phe Phe Glu Ile 30	
eu Tyr Glu Thr Gly Asn 35	n Leu Gly Lys Gly Ser 40	Tyr Gly Ile Trp Glu 45	
et Xaa Gly Tyr Thr Ala 50	a Leu Lys Met Xaa Ala 55	Arg Ala Tyr Glu Leu 60	
let Pro Leu Ala Val Leu 65 70	ı Ile Gly Gly Leu Val	Ser Xaa Ser Gln Leu	
la Ala Gly Ser Glu Leu	ı Xaa Val Ile Lys Ala	Ser Gly Met Ser Thr	
85 ys Lys Leu Leu Ile	-		
100 la Thr Val Ala Leu Gly		110 Thr Leu Ser Gln Lys	
115 la Glu Asn Ile Lys Ala	120 a Ala Ala Ile Asn Gly	125 Lys Ile Ser Thr Gly	
130	135	140	

```
-continued
```

Asn 145	Thr	Gly	Leu	Trp	Leu 150	Lys	Glu	Lys	Asn	Ser 155	Ile	Ile	Asn	Val	Arg 160	
Glu	Met	Leu	Pro	Asp 165	His	Thr	Leu	Leu	Gly 170	Ile	Lys	Ile	Trp	Ala 175	Arg	
Asn	Asp	Lys	Asn 180	Glu	Leu	Ala	Glu	Ala 185	Val	Glu	Ala	Asp	Ser 190	Ala	Val	
Jeu	Asn	Ser 195	Asp	Gly	Ser	Trp	Gln 200	Leu	Lys	Asn	Ile	Arg 205	Arg	Ser	Thr	
Jeu	Gly 210	Glu	Asp	Lys	Val	Glu 215	Val	Ser	Ile	Ala	Ala 220	Glu	Glu	Xaa	Trp	
ro 25	Ile	Ser	Val	Lys	Arg 230	Asn	Leu	Met	Asp	Val 235	Leu	Leu	Val	Lys	Pro 240	
day	Gln	Met	Ser	Val 245	Gly	Glu	Leu	Thr	Thr 250	Tyr	Ile	Arg	His	Leu 255	Gln	
aa	Xaa	Ser	Gln 260	Asn	Thr	Arg	Ile	Ty r 265	Ala	Ile	Ala	Trp	T rp 270	Arg	Lys	
eu	Val	Ty r 275	Pro	Ala	Ala	Ala	T rp 280	Val	Met	Ala	Leu	Val 285	Ala	Phe	Ala	
?he	Thr 290	Pro	Gln	Thr	Thr	Arg 295	His	Gly	Asn	Met	Gly 300	Leu	Lys	Xaa	Phe	
31y 305	Gly	Ile	Cys	Leu	Gly 310	Leu	Leu	Phe	His	Leu 315	Ala	Gly	Arg	Leu	Phe 320	
ζaa	Phe	Thr	Ser	Gln 325	Leu	Tyr	Gly	Ile	Pro 330	Pro	Phe	Leu	Xaa	Gly 335	Ala	
Leu	Pro	Thr	Ile 340	Ala	Phe	Ala	Leu	Leu 345	Ala	Val	Trp	Leu	Ile 350	Arg	Lys	
Gln	Glu	L y s 355	Arg													
<211 <212	l> LE 2> TY	NGTH	D NO H: 85 DNA ISM:	54	seri	La me	ening	gitic	lis							
<400)> SE	QUEI	NCE :	57												
gcaç	gtago	ccg i	aaact	tgcca	aa ca	agee	agggo	c aaa	aggta	aac	aggo	caggo	cag 1	ttcg	gtttct	60
gttt	tcact	cga (aaact	ttca	là cả	gacci	tttgo	c ddo	caaad	ctca	aaa	ccaco	cct 1	taaa	actttg	120
gtct	tgato	ett ·	tggti	ttcco	st ga	agta	tggta	a tto	gccto	lccc	atgo	cccaa	aat 1	tacca	accgac	
aaat	tcago	cac (ctaaa	aaaco	ca go	caggi	tcgti	t ato	cctta	aaa	ccaa	acact	tgg †	tgcc	eccttg	
gtga	aata	ccc (aaact	teega	aa to	ggaco	gcgga	a tto	gageo	caca	acco	gcta	tac o	gcat [.]	ttgatg	
ttga	acaa	caa i	agggg	gcag	t t	taaa	caaco	g aco	cgtaa	acaa	taa	ccg	ttt o	gtgg	tcaaag	
gcaq	gtgco	gca (attga	attti	:g aa	acga	ggtad	c gco	ggtad	cggc	tago	caaa	ctc a	aacg	gcatcg	420
ttad	ccgta	agg	cggto	caaaa	ag go	ccga	cgtga	a tta	attgo	ccaa	CCC	caaco	ggc a	atta	ccgtta	
															aaatcg	
															gragca	
															gttgct	660
															tagatt	720
acgo	ccago	cgg (cgaaa	atca	gt go	caggi	tacgo	g cao	geggg	gtac	gaaa	accga	act a	attg	cccttg	780

atactgco	cgc a	ictg	ggcg	gt a	tgta	cgcc	g aca	agca	tcac	act	gatto	gcc a	aatg	aaaaag	840			
gcgtaggo	cgt c	taa													854			
gcgtaggg <210> SE <211> LE <212> TC <220> FE <221> NA <222> CC <223> CT <220> FE <221> NA <222> CC <223> CT <220> FE <221> NA <222> LC <223> CT <220> FE <221> NA	Q ID NGTH YPE: GANI ATUR ME/K OCATI HER CATUR ME/K CATI HER CATUR CATUR CATI HER CATUR CATI	NO SM: EY EY: ON: INFC EY: ON: EY: ON: EY: ON: INFC EY: ON: INFC EY: ON:	34 Neis SITF (96) RMAT SITF (199 ORMAT SITF (210 RMAT SITF (225 ORMAT	E FION E FION E D) FION E 5)	: un] : un] : un]	knowr knowr knowr	1	lis							854			
<2221> NA <2222> LC <223> OT	CATI	on:	(229	9)	: un]	knowr	ı											
<400> SE	QUEN	CE:	58															
Ala Val 1	Ala	Glu	Thr 5	Ala	Asn	Ser	Gln	Gly 10	Lys	Gly	Lys	Gln	Ala 15	Gly				
Ser Ser	Val	Ser 20	Val	Ser	Leu	Lys	Thr 25	Ser	Gly	Asp	Leu	Cys 30	Gly	Lys				
Leu L y s	Thr 35	Thr	Leu	Lys	Thr	Leu 40	Val	Cys	Ser	Leu	Val 45	Ser	Leu	Ser				
Met Val 50	Leu	Pro	Ala	His	Ala 55	Gln	Ile	Thr	Thr	Asp 60	Lys	Ser	Ala	Pro				
Lys Asn 65	Gln	Gln	Val	Val 70	Ile	Leu	Lys	Thr	Asn 75	Thr	Gly	Ala	Pro	Leu 80				
Val Asn	Ile	Gln	Thr 85	Pro	Asn	Gly	Arg	Gly 90	Leu	Ser	His	Asn	Arg 95	Xaa				
Tyr Ala	Phe	Asp 100	Val	Asp	Asn	Lys	Gly 105	Ala	Val	Leu	Asn	Asn 110	Asp	Arg				
Asn Asn	Asn 115	Pro	Phe	Val	Val	Lys 120	Gly	Ser	Ala	Gln	Leu 125	Ile	Leu	Asn				
Glu Val 130		Gly	Thr	Ala	Ser 135		Leu	Asn	Gly	Ile 140		Thr	Val	Gly				
Gly Gln 145	Lys	Ala	Asp	Val 150		Ile	Ala	Asn	Pro 155		Gly	Ile	Thr	Val 160				
Asn Gly	Gly	Gly	Phe 165		Asn	Val	Gly	Arg 170		Ile	Leu	Thr	Thr 175					
Ala Pro	Gln	Ile 180		Lys	Asp	Gly	Ala 185		Thr	Gly	Phe	A sp 190		Val				
Lys Ala			Thr	Val	Xaa			Gly	Trp	Asn			Gly	Gly				
Ala Xaa	195 Ty r	Thr	Gly	Val		200 Ala	Arg	Ala	Val		205 Leu	Gln	Gly	Lys				
210 Xaa Xaa	Glv	Lvs	Хаа	Leu	215 Ala	Val	Ser	Thr	Glv	220 Pro	Gln	Lvs	Val	Asp				
nad	<u> </u>	-19		มงน	****4		r	****	0±¥	0	- 111	-10		P				

			-cont	inued		
225 23	30	235		2	240	
Tyr Ala Ser Gly Glu II 245	le Ser Ala G	ly Thr Ala 250	Ala Gly '	Thr Lys F 255	?ro	
Thr Ile Ala Leu Asp Th 260		leu Gly Gly 265	-	Ala Asp S 270	Ser	
Ile Thr Leu Ile Ala As 275	sn Glu Lys G 280	Gly Val Gly	Val			
<210> SEQ ID NO 59 <211> LENGTH: 5937 <212> TYPE: DNA <213> ORGANISM: Neisse	eria meningi	tidis				
<400> SEQUENCE: 59						
atgaataaag gtttacatcg	cattatcttt	agtaaaaagc	acagcacc	at ggttgc	cagta	60
gccgaaactg ccaacagcca	gggcaaaggt	aaacaggcag	gcagttcg	gt ttctgt	ttca	120
ctgaaaactt caggcgacct	ttgcggcaaa	ctcaaaacca	cccttaaa	ac tttggt	ctgc	180
tctttggttt ccctgagtat	ggtattgcct	gcccatgccc	aaattacc	ac cgacaa	aatca	240
gcacctaaaa accagcaggt	cgttatcctt	aaaaccaaca	ctggtgcc	cc cttggt	igaat	300
atccaaactc cgaatggacg	cggattgagc	cacaaccgct	atacgcag	tt tgatgt	tgac	360
aacaaagggg cagtgttaaa	caacgaccgt	aacaataatc	cgtttgtg	gt caaagg	gcagt	420
gcgcaattga ttttgaacga	ggtacgcggt	acggctagca	aactcaac	gg catcgt	tacc	480
gtaggcggtc aaaaggccga	cgtgattatt	gccaacccca	acggcatt	ac cgttaa	atggc	540
ggcggcttta aaaatgtcgg	tcggggcatc	ttaactaccg	gtgcgccc	ca aatcgg	gcaaa	600
gacggtgcac tgacaggatt	tgatgtgcgt	caaggcacat	tgaccgta	gg agcagc	caggt	660
tggaatgata aaggcggagc	cgactacacc	ggggtacttg	ctcgtgca	gt tgcttt	cgcag	720
gggaaattac agggtaaaaa	cctggcggtt	tctaccggtc	ctcagaaa	gt agatta	acgcc	780
agcggcgaaa tcagtgcagg	tacggcagcg	ggtacgaaac	cgactatt	gc ccttga	atact	840
gccgcactgg gcggtatgta	cgccgacagc	atcacactga	ttgccaat	ga aaaagg	gcgta	900
ggcgtcaaaa atgccggcac	actcgaagcg	gccaagcaat	tgattgtg	ac ttcgtc	caggc	960
cgcattgaaa acagcggccg	catcgccacc	actgccgacg	gcaccgaa	gc ttcacc	egact	1020
tatctctcca tcgaaaccac	cgaaaaagga	gcggcaggca	catttatc	tc caatgg	gtggt	1080
cggatcgaga gcaaaggctt	attggttatt	gagacgggag	aagatatc	ag cttgcg	gtaac	1140
ggagccgtgg tgcagaataa	cggcagtcgc	ccagctacca	cggtatta	aa tgctgg	gtcat	1200
aatttggtga ttgagagcaa	aactaatgtg	aacaatgcca	aaggcccg	gc tactct	cgtcg	1260
gccgacggcc gtaccgtcat	caaggaggcc	agtattcaga	ctggcact	ac cgtata	acagt	1320
tccagcaaag gcaacgccga	attaggcaat	aacacacgca	ttaccggg	gc agatgt	tacc	1380
gtattatcca acggcaccat	cagcagttcc	gccgtaatag	atgccaaa	ga cacego	cacac	1440
atcgaagcag gcaaaccgct	ttctttggaa	gcttcaacag	ttacctcc	ga tatccç	gctta	1500
aacggaggca gtatcaaggg	cggcaagcag	cttgctttac	tggcagac	ga taacat	tact	1560
gccaaaacta ccaatctgaa	tactcccggc	aatctgtatg	ttcataca	gg taaaga	atctg	1620
aatttgaatg ttgataaaga	tttgtctgcc	gccagcatcc	atttgaaa	tc ggataa	acgct	1680
gcccatatta ccggcaccag	taaaaccctc	actgcctcaa	aagacatg	gg tgtgga	aggca	1740

ggctco	gctga	atgttaccaa	taccaatctg	cgtaccaact	cgggtaatct	gcacattcag	1800
gcagco	caaag	gcaatattca	gcttcgcaat	accaagctga	acgcagccaa	ggctctcgaa	1860
accaco	cgcat	tgcagggcaa	tatcgtttca	gacggccttc	atgctgtttc	tgcagacggt	1920
catgta	atcct	tattggccaa	cggtaatgcc	gactttaccg	gtcacaatac	cctgacagcc	1980
aaggco	gatg	tcaatgcagg	atcggttggt	aaaggccgtc	tgaaagcaga	caataccaat	2040
atcact	tcat	cttcaggaga	tattacgttg	gttgccggca	acggtattca	gcttggtgac	2100
ggaaaa	acaac	gcaattcaat	caacggaaaa	cacatcagca	tcaaaaacaa	cggtggtaat	2160
gccgac	ttaa	aaaaccttaa	cgtccatgcc	aaaagcgggg	cattgaacat	tcattccgac	2220
cgggca	attga	gcatagaaaa	taccaagctg	gagtctaccc	ataatacgca	tcttaatgca	2280
caacao	cgagc	gggtaacgct	caaccaagta	gatgcctacg	cacaccgtca	tctaagcatt	2340
accggo	cagcc	agatttggca	aaacgacaaa	ctgccttctg	ccaacaagct	ggtggctaac	2400
ggtgta	attgg	cactcaatgc	gcgctattcc	caaattgccg	acaacaccac	gctgagagcg	2460
ggtgca	aatca	accttactgc	cggtaccgcc	ctagtcaagc	gcggcaacat	caattggagt	2520
accgtt	tcga	ccaaaacttt	ggaagataat	gccgaattaa	aaccattggc	cggacggctg	2580
aatatt	gaag	caggtagcgg	cacattaacc	atcgaacctg	ccaaccgcat	cagtgcgcat	2640
accgad	ctga	gcatcaaaac	aggcggaaaa	ttgctgttgt	ctgcaaaagg	aggaaatgca	2700
ggtgcg	gccta	gtgctcaagt	ttcctcattg	gaagcaaaag	gcaatatccg	tctggttaca	2760
ggagaa	acag	atttaagagg	ttctaaaatt	acagccggta	aaaacttggt	tgtcgccacc	2820
accaaa	aggca	agttgaatat	cgaagccgta	aacaactcat	tcagcaatta	ttttcctaca	2880
сааааа	adcdd	ctgaactcaa	ccaaaaatcc	aaagaattgg	aacagcagat	tgcgcagttg	2940
aaaaaa	agct	cgcctaaaag	caagctgatt	ccaaccctgc	aagaagaacg	cgaccgtctc	3000
gcttto	tata	ttcaagccat	caacaaggaa	gttaaaggta	aaaaacccaa	aggcaaagaa	3060
taccto	gcaag	ccaagctttc	tgcacaaaat	attgacttga	tttccgcaca	aggcatcgaa	3120
atcago	ggtt	ccgatattac	cgcttccaaa	aaactgaacc	ttcacgccgc	aggcgtattg	3180
ccaaaq	ggcag	cagattcaga	ggcggctgct	attctgattg	acggcataac	cgaccaatat	3240
gaaatt	ggca	agcccaccta	caagagtcac	tacgacaaag	ctgctctgaa	caagccttca	3300
cgtttg	Jaccg	gacgtacagg	ggtaagtatt	catgcagctg	cggcactcga	tgatgcacgt	3360
attatt	atcg	gtgcatccga	aatcaaagct	ccctcaggca	gcatagacat	caaagcccat	3420
agtgat	attg	tactggaggc	tggacaaaac	gatgcctata	ccttcttaaa	aaccaaaggt	3480
aaaago	cggca	aaatcatcag	aaaaaccaag	tttaccagca	cccgcgacca	cctgattatg	3540
ccageo	cccd	tcgagctgac	cgccaacggc	ataacgcttc	aggcaggcgg	caacatcgaa	3600
gctaat	acca	cccgcttcaa	tgcccctgca	ggtaaagtta	ccctggttgc	gggtgaagag	3660
ctgcaa	actgc	tggcagaaga	aggcatccac	aagcacgagt	tggatgtcca	aaaaagccgc	3720
cgcttt	atcg	gcatcaaggt	aggcaagagc	aattacagta	aaaacgaact	gaacgaaacc	3780
aaatto	gcctg	tccgcgtcgt	cgcccaaact	gcagccaccc	gttcaggctg	ggataccgtg	3840
ctcgaa	aggta	ccgaattcaa	aaccacgctg	gccggtgcgg	acattcaggc	aggtgtaggc	3900
gaaaaa	agccc	gtgccgatgc	gaaaattatc	ctcaaaggca	ttgtgaaccg	tatccagtcg	3960
gaagaa	aaat	tagaaaccaa	ctcaaccgta	tggcagaaac	aggccggacg	cggcagcact	4020

<400> SEQUENCE: 60

140

-c	on	ti	nu	ed

atcgaaacgc	tgaaactgcc	cagcttcgaa	agccctactc	cgcccaaact	gaccgccccc	4080
ggtggctata	tcgtcgacat	tccgaaaggc	aatttgaaaa	ccgaaatcga	aaagctggcc	4140
aaacagcccg	agtatgccta	tctgaaacag	ctccaagtag	cgaaaaacgt	caactggaac	4200
caggtgcaac	tggcttacga	taaatgggac	tataagcagg	aaggcttaac	cagagccggt	4260
gcagcgattg	ttaccataat	cgtaaccgca	ctgacttatg	gatacggcgc	aaccgcagcg	4320
ggcggtgtag	ccgcttcagg	aagtagtaca	gccgcagctg	ccggaacagc	cgccacaacg	4380
acagcagcag	ctactaccgt	ttctacagcg	actgccatgc	aaaccgctgc	tttagcctcc	4440
ttgtatagcc	aagcagctgt	atccatcatc	aataataaag	gtgatgtcgg	caaagcgttg	4500
aaagatctcg	gcaccagtga	tacggtcaag	cagattgtca	cttctgccct	gacggcgggt	4560
gcattaaatc	agatgggcgc	agatattgcc	caattgaaca	gcaaggtaag	aaccgaactg	4620
ttcagcagta	cgggcaatca	aactattgcc	aaccttggag	gcagactggc	taccaatctc	4680
agtaatgcag	gtatctcagc	tggtatcaat	accgccgtca	acggcggcag	cctgaaagac	4740
aacttaggca	atgccgcatt	aggagcattg	gttaatagct	tccaaggaga	agccgccagc	4800
aaaatcaaaa	caaccttcag	cgacgattat	gttgccaaac	agttcgccca	cgctttggct	4860
gggtgtgtta	gcggattggt	acaaggaaaa	tgtaaagacg	gggcaattgg	cgcagcagtt	4920
ggggaaatcg	tagccgactc	catgcttggc	ggcagaaacc	ctgctacact	cagcgatgcg	4980
gaaaagcata	aggttatcag	ttactcgaag	attattgccg	gcagcgtggc	ggcactcaac	5040
ggcggcgatg	tgaatactgc	ggcgaatgcg	gctgaggtgg	cggtagtgaa	taatgctttg	5100
aattttgaca	gtacccctac	caatgcgaaa	aagcatcaac	cgcagaagcc	cgacaaaacc	5160
gcactggaaa	aaattatcca	aggtattatg	cctgcacatg	cagcaggtgc	gatgactaat	5220
ccgcaggata	aggatgctgc	catttggata	agcaatatcc	gtaatggcat	cacaggcccg	5280
attgtgatta	ccagctatgg	ggtttatgct	gcaggttgga	cagctccgct	gatcggtaca	5340
gcgggtaaat	tagctatcag	cacctgcatg	gctaatcctt	ctggttgtac	tgtcatggtc	5400
actcaggctg	ccgaagcggg	cgcgggaatc	gccacgggtg	cggtaacggt	aggcaacgct	5460
tgggaagcgc	ctgtgggggc	gttgtcgaaa	gcgaaggcgg	ccaagcaggc	tataccaacc	5520
cagacagtta	aagaacttga	tggcttacta	caagaatcaa	aaaatatagg	tgctgtaaat	5580
acacgaatta	atatagcgaa	tagtactact	cgatatacac	caatgagaca	aacgggacaa	5640
ccggtatctg	ctggctttga	gcatgttctt	gaggggcact	tccataggcc	tattgcgaat	5700
aaccgttcag	ttttaccat	ctccccaaat	gaattgaagg	ttatacttca	aagtaataaa	5760
gtagtttctt	ctcccgtatc	gatgactcct	gatggccaat	atatgcggac	tgtcgatgta	5820
ggaaaagtta	ttggtactac	ttctattaaa	gaaggtggac	aacccacaac	tacaattaaa	5880
gtatttacag	ataagtcagg	aaatttgatt	actacatacc	cagtaaaagg	aaactaa	5937
<210> SEQ : <211> LENG <212> TYPE <213> ORGAN	CH: 1978	eria meningi	itidis			

Met Asn Lys Gly Leu His Arg Ile Ile Phe Ser Lys Lys His Ser Thr $1 \qquad 5 \qquad 10 \qquad 15$

-continued

											-	con	tin	ued		
Met	Val	Ala	Val 20	Ala	Glu	Thr	Ala	Asn 25	Ser	Gln	Gly	Lys	Gly 30	Lys	Gln	
Ala	Gly	Ser 35	Ser	Val	Ser	Val	Ser 40	Leu	Lys	Thr	Ser	Gly 45	Asp	Leu	Сув	
Gly	Lys 50	Leu	Lys	Thr	Thr	Leu 55	Lys	Thr	Leu	Val	Cys 60	Ser	Leu	Val	Ser	
Leu 65	Ser	Met	Val	Leu	Pro 70	Ala	His	Ala	Gln	Ile 75	Thr	Thr	Asp	Lys	Ser 80	
Ala	Pro	Lys	Asn	Gln 85	Gln	Val	Val	Ile	Leu 90	Lys	Thr	Asn	Thr	Gly 95	Ala	
Pro	Leu	Val	Asn 100	Ile	Gln	Thr	Pro	Asn 105	Gly	Arg	Gly	Leu	Ser 110	His	Asn	
Arg	Tyr	Thr 115	Gln	Phe	Asp	Val	Asp 120	Asn	Lys	Gly	Ala	Val 125	Leu	Asn	Asn	
Asp	A rg 130	Asn	Asn	Asn	Pro	Phe 135	Val	Val	Lys	Gly	Ser 140	Ala	Gln	Leu	Ile	
Leu 145	Asn	Glu	Val	Arg	Gly 150	Thr	Ala	Ser	Lys	Leu 155	Asn	Gly	Ile	Val	Thr 160	
Val	Gly	Gly	Gln	L y s 165	Ala	Asp	Val	Ile	Ile 170	Ala	Asn	Pro	Asn	Gly 175	Ile	
Thr	Val	Asn	Gly 180	Gly	Gly	Phe	Lys	Asn 185	Val	Gly	Arg	Gly	Ile 190	Leu	Thr	
Thr	Gly	Ala 195	Pro	Gln	Ile	Gly	Lys 200	Asp	Gly	Ala	Leu	Thr 205	Gly	Phe	Asp	
Val	A rg 210	Gln	Gly	Thr	Leu	Thr 215	Val	Gly	Ala	Ala	Gly 220	Trp	Asn	Asp	Lys	
Gly 225	Gly	Ala	Asp	Tyr	Thr 230	Gly	Val	Leu	Ala	Arg 235	Ala	Val	Ala	Leu	Gln 240	
Gly	Lys	Leu	Gln	Gly 245	Lys	Asn	Leu	Ala	Val 250	Ser	Thr	Gly	Pro	Gln 255	Lys	
Val	Asp	Tyr	Ala 260	Ser	Gly	Glu	Ile	Ser 265	Ala	Gly	Thr	Ala	Ala 270	Gly	Thr	
Lys	Pro	Thr 275	Ile	Ala	Leu	Asp	Thr 280	Ala	Ala	Leu	Gly	Gly 285	Met	Tyr	Ala	
Asp	Ser 290	Ile	Thr	Leu	Ile	Ala 295	Asn	Glu	Lys	Gly	Val 300	Gly	Val	Lys	Asn	
Ala 305	Gly	Thr	Leu	Glu	Ala 310	Ala	Lys	Gln	Leu	Ile 315	Val	Thr	Ser	Ser	Gly 320	
Arg	Ile	Glu	Asn	Ser 325	-	Arg	Ile	Ala	Thr 330	Thr	Ala	Asp	Gly	Thr 335	Glu	
Ala	Ser	Pro	Thr 340		Leu	Ser	Ile	Glu 345	Thr	Thr	Glu	Lys	Gly 350	Ala	Ala	
Gly	Thr	Phe 355	Ile	Ser	Asn	Gly	Gly 360	Arg	Ile	Glu	Ser	L y s 365	Gly	Leu	Leu	
Val	Ile 370	Glu	Thr	Gly	Glu	Asp 375	Ile	Ser	Leu	Arg	Asn 380	Gly	Ala	Val	Val	
Gln 385	Asn	Asn	Gly	Ser	Arg 390	Pro	Ala	Thr	Thr	Val 395	Leu	Asn	Ala	Gly	His 400	
Asn	Leu	Val	Ile	Glu 405	Ser	Lys	Thr	Asn	Val 410	Asn	Asn	Ala	Lys	Gly 415	Pro	
Ala	Thr	Leu	Ser	Ala	Asp	Gly	Arg	Thr	Val	Ile	Lys	Glu	Ala	Ser	Ile	

-continued

	-continued														
			420					425					430		
Gln	Thr	Gly 435	Thr	Thr	Val	Tyr	Ser 440	Ser	Ser	Lys	Gly	Asn 445	Ala	Glu	Leu
Gly	Asn 450	Asn	Thr	Arg	Ile	Thr 455	Gly	Ala	Asp	Val	Thr 460	Val	Leu	Ser	Asn
Gly 465	Thr	Ile	Ser	Ser	Ser 470	Ala	Val	Ile	Asp	Ala 475	Lys	Asp	Thr	Ala	His 480
Ile	Glu	Ala	Gly	L y s 485	Pro	Leu	Ser	Leu	Glu 490	Ala	Ser	Thr	Val	Thr 495	Ser
Asp	Ile	Arg	Leu 500	Asn	Gly	Gly	Ser	Ile 505	Lys	Gly	Gly	Lys	Gln 510	Leu	Ala
Leu	Leu	Ala 515	Asp	Asp	Asn	Ile	Thr 520	Ala	Lys	Thr	Thr	Asn 525	Leu	Asn	Thr
Pro	Gly 530	Asn	Leu	Tyr	Val	His 535	Thr	Gly	Lys	Asp	Leu 540	Asn	Leu	Asn	Val
Asp 545	Lys	Asp	Leu	Ser	Ala 550	Ala	Ser	Ile	His	Leu 555	Lys	Ser	Asp	Asn	Ala 560
Ala	His	Ile	Thr	Gly 565	Thr	Ser	Lys	Thr	Leu 570	Thr	Ala	Ser	Lys	Asp 575	Met
Gly	Val	Glu	Ala 580	Gly	Ser	Leu	Asn	Val 585	Thr	Asn	Thr	Asn	Leu 590	Arg	Thr
Asn	Ser	Gly 595	Asn	Leu	His	Ile	Gln 600	Ala	Ala	Lys	Gly	Asn 605	Ile	Gln	Leu
Arg	Asn 610	Thr	Lys	Leu	Asn	Ala 615	Ala	Lys	Ala	Leu	Glu 620	Thr	Thr	Ala	Leu
Gln 625	Gly	Asn	Ile	Val	Ser 630	Asp	Gly	Leu	His	Ala 635	Val	Ser	Ala	Asp	Gly 640
His	Val	Ser	Leu	Leu 645	Ala	Asn	Gly	Asn	Ala 650	Азр	Phe	Thr	Gly	His 655	Asn
Thr	Leu	Thr	Ala 660	Lys	Ala	Asp	Val	Asn 665	Ala	Gly	Ser	Val	Gly 670	Lys	Gly
Arg	Leu	Lys 675	Ala	Asp	Asn	Thr	Asn 680	Ile	Thr	Ser	Ser	Ser 685	Gly	Asp	Ile
Thr	Leu 690	Val	Ala	Gly	Asn	Gly 695	Ile	Gln	Leu	Gly	Asp 700	Gly	Lys	Gln	Arg
Asn 705	Ser	Ile	Asn	Gly	L y s 710	His	Ile	Ser	Ile	L y s 715	Asn	Asn	Gly	Gly	Asn 720
Ala	Asp	Leu	Lys	Asn 725	Leu	Asn	Val	His	Ala 730	Lys	Ser	Gly	Ala	Leu 735	Asn
Ile	His	Ser	Asp 740	Arg	Ala	Leu	Ser	Ile 745	Glu	Asn	Thr	Lys	Leu 750	Glu	Ser
Thr	His	Asn 755	Thr	His	Leu	Asn	Ala 760	Gln	His	Glu	Arg	Val 765	Thr	Leu	Asn
Gln	Val 770	Asp	Ala	Tyr	Ala	His 775	Arg	His	Leu	Ser	Ile 780	Thr	Gly	Ser	Gln
Ile 785	Trp	Gln	Asn	Asp	L y s 790	Leu	Pro	Ser	Ala	Asn 795	Lys	Leu	Val	Ala	Asn 800
Gly	Val	Leu	Ala	Leu 805	Asn	Ala	Arg	Tyr	Ser 810	Gln	Ile	Ala	Asp	Asn 815	Thr
Thr	Leu	Arg	Ala 820	Gly	Ala	Ile	Asn	Leu 825	Thr	Ala	Gly	Thr	Ala 830	Leu	Val

-continued

850 955 860 Gly Ser Gly Thr Leu Thr Ile Glu Pro Ala Aan Arg Ile Ser Ala His 870 870 Thr Asp Leu Ser Ile Lys Thr Gly Gly Lys Leu Leu Leu Ser Ala Lys 890 Gly Gly Aan Ala Gly Ala Pro Ser Ala Gln Val Ser Ser Leu Glu Ala 900 900 905 Gly Gly Aan Ala Gly Ala Pro Ser Ala Gln Val Ser Ser Leu Glu Ala 900 910 910 Lys Gly Aan Ile Arg Leu Val Thr Gly Glu Thr Asp Leu Arg Gly Ser 915 930 935 931 935 Lys Gly Aan Ile Arg Leu Val Thr Gly Glu Thr Asp Leu Arg Gly Ser 915 930 935 931 935 Glu Aan Ala Gly Lys Aan Leu Val Val Ala Thr Thr Lys Gly Lys 935 930 935 Glu Aan Ala Clu Leu Aan Gln Lys Ser Lys Glu Leu Glu Gln Gln 975 Glu Lys Ala Ala Clu Leu Asn Gln Lys Ser Lys Clu Leu Glu Gln Gln 975 Ile Ala Gln Leu Lys Lys Ser Ser Pro Lys Gly Lys Clu Tyr Leu Gln Ala 110 1010 1030 1020 1035 Lys Clu Val Lys Gly Lys Lys Pro Lys Gly Lys Clu Tyr Leu Gln Ala 110 1025 1030 1030 1035 1041 1045 1055 1040 1041 1055																
Gly Ser Gly Thr Leu Thr 11e Glu Pro Ala Asn Arg Ile Ser Ala His 865 ar Gly Thr Leu Thr 11e Glu Pro Ala Asn Arg Ile Ser Ala His 865 ar Gly Cly Asn Ala Gly Ala Pro Ser Ala Gln Val Ser Ser Leu Glu Ala 900 900 900 900 900 900 900 900 900 900	Lys	Arg		Asn	Ile	Asn	Trp		Thr	Val	Ser	Thr		Thr	Leu	Glu
Thr Asp Leu Ser Ile Lys Thr Gly Gly Lys Leu Leu Leu Ser Ala Lys 895 Sly Gly Asn Ala Gly Ala Pro Ser Ala Gln Val Ser Ser Leu Glu Ala 905 915 1ys Gly Asn Ile Arg Leu Val Thr Gly Glu Thr Asp Leu Arg Gly Ser 925 1ys Ile Thr Ala Gly Lys Asn Leu Val Val Ala Thr Thr Lys Gly Lys 930 931 Lys Ala Ala Glu Lys Asn Leu Val Val Ala Thr Thr Lys Gly Lys 945 1eu Asn Ile Glu Ala Val Asn Asn Ser Phe Ser Asn Tyr Phe Pro Thr 945 950 Gln Lys Ala Ala Glu Leu Asn Gln Lys Ser Lys Glu Leu Glu Gln Gln 965 11e Ala Glu Leu Lys Lys Ser Pro Lys Ser Lys Leu Ile Pro Thr 985 12ys Glu Val Lys Gly Lys Lys Pro Lys Gly Lys Glu Tyr Leu Gln Ala 1000 100 101 1025 11e Ser Gly Ser Ala Gln Asn Ile Asp Leu Ile Ser Ala Gln Gly Ile Glu 1035 11e Ala Gly Val Leu Pro Lys Ala Ala Ser Lys Lys Leu Asn Leu His Ala 1010 11e Ser Gly Ser Asp Ile Thr Ala Ser Lys Lys Lys Dro Hr 1005 11e Asp Gly Ile Thr Asp Gln Tyr Glu Ile Gly Lys Pro Thr Tyr Lys 1045 1050 11e Asp Gly Ile Thr Asp Gln Tyr Glu Ile Gly Lys Pro Thr Tyr Lys 1075 11e Asp Gly Ile Thr Asp Gln Tyr Glu Ile Gly Lys Pro Thr Tyr Lys 1075 11e Asp Gly Ile Thr Asp Gln Tyr Glu Ile Gly Lys Pro Thr Tyr Lys 1075 110 110 110 1115 1125 1110 1125 1126 1127 1128 1129 1120 1129 1120 1129 1120 1120 1120 1231 124 125 124 125 125 125 126 127 126 127 127 128 129 129 129 129 129 120 129 120 129 120 129 120 120 120 120 120 120 120 120	Asp		Ala	Glu	Leu	Lys		Leu	Ala	Gly	Arg		Asn	Ile	Glu	Ala
885 890 895 Gly Gly Asn Ala Gly Ala Pro Ser Ala Gln Val Ser Ser Leu Glu Ala 900 900 Lys Gly Asn Ile Arg Leu Val Thr Gly Glu Thr Asp Leu Arg Gly Ser 925 Lys Ile Thr Ala Gly Lys Asn Leu Val Val Ala Thr Thr Lys Gly Lys 930 Leu Asn Ile Glu Ala Val Asn Asn Ser Phe Ser Asn Tyr Phe Pro Thr 955 Gln Lys Ala Ala Glu Leu Asn Gln Lys Ser Lys Glu Leu Glu Gln Gln 965 Ile Ala Glu Leu Asn Gln Lys Ser Lys Leu Ile Pro Thr 960 Glu Glu Glu Arg Asp Arg Leu Ala Phe Tyr Ile Gln Ala Ile Asn 1000 Leu Gln Glu Glu Arg Asp Arg Leu Ala Phe Tyr Ile Gln Ala Ile Asn 1005 Lys Gly Val Lys Gly Lys Lys Pro Lys Gly Lys Glu Tyr Leu Gln Ala 1015 Lys Gly Ser Asp Ile Thr Ala Ser Lys Lys Leu Asn Leu His Ala 1020 Ile Ser Gly Ser Asp Ile Thr Ala Ser Lys Lys Leu Asn Leu His Ala 1045 1025 1030 1030 1055 Ala Gly Val Leu Pro Lys Ala Ala Asp Ser Glu Ala Ala Ala Ala Ile Leu 1050 1045 1055 1045 1085 1050 1085 1050 1085 1050 1085 1045 1055 1050 1070 1025 1030 104 1035 1050 1070 <td< td=""><td>-</td><td>Ser</td><td>Gly</td><td>Thr</td><td>Leu</td><td></td><td>Ile</td><td>Glu</td><td>Pro</td><td>Ala</td><td></td><td>Arg</td><td>Ile</td><td>Ser</td><td>Ala</td><td></td></td<>	-	Ser	Gly	Thr	Leu		Ile	Glu	Pro	Ala		Arg	Ile	Ser	Ala	
900905910Lys Gly Asn Ile Arg Leu Val Thr Gly Glu Thr Asp Leu Arg Gly Ser 915920920Lys Ile Thr Ala Gly Lys Asn Leu Val Val Ala Thr Thr Lys Gly Lys 930935940Leu Asn Ile Glu Ala Val Asn Asn Ser Phe Ser Asn Tyr Phe Pro Thr 965950950Gln Lys Ala Ala Glu Leu Asn Gln Lys Ser Lys Glu Leu Glu Gln Gln Gln 965967975Ile Ala Gln Leu Lys Lys Ser Ser Pro Lys Ser Lys Leu Ile Pro Thr 980986986Leu Gln Glu Glu Arg Asp Arg Leu Ala Phe Tyr Ile Gln Ala Ile Asn 100010051005Lys Lys Cal Lys Gly Lys Lys Pro Lys Gly Lys Glu Tyr Leu Gln Ala 101010151040Lys Leu Ser Ala Gln Asn Ile Asp Leu Ile Ser Ala Gln Gly Ile Glu 103010351040Ile Ser Gly Ser Asp Ile Thr Ala Ser Lys Lys Leu Asn Leu His Ala 104510551040Ile Asp Gly Ile Thr Asp Gln Tyr Glu Ile Gly Lys Pro Thr Tyr Lys 107510801070Ile Asp Gly Ile Thr Asp Gln Tyr Glu Ile Gly Lys Pro Thr Tyr Lys 1075111011151101110111511201110111011151120112511301135112011411401145113511511251121135116114144Ala Ala Ala Leu Asp Asp Ala Arg 113011511261130113511611411411401170117511601135116011651141141145115112011351161145 </td <td>Thr</td> <td>Asp</td> <td>Leu</td> <td>Ser</td> <td></td> <td>Lys</td> <td>Thr</td> <td>Gly</td> <td>Gly</td> <td></td> <td>Leu</td> <td>Leu</td> <td>Leu</td> <td>Ser</td> <td></td> <td>Lys</td>	Thr	Asp	Leu	Ser		Lys	Thr	Gly	Gly		Leu	Leu	Leu	Ser		Lys
915 920 925 Lys Ile Thr Ala Gly Lys Asn Leu Val Val Ala Thr Thr Lys Gly Lys 930 935 Leu Asn Ile Glu Ala Val Asn Asn Ser Phe Ser Asn Tyr Phe Pro Thr 940 Gln Lys Ala Ala Glu Leu Asn Gln Lys Ser Lys Glu Leu Glu Gln Gln Gln Glu 980 Gln Lys Ala Ala Glu Leu Asn Gln Lys Ser Lys Glu Leu Glu Gln Gln Gln Glu Glu Arg Asp Arg Leu Ala Phe Tyr Ile Gln Ala Ile Asn 995 Leu Gln Glu Glu Arg Asp Arg Leu Ala Phe Tyr Ile Gln Ala Ile Asn 1000 Lys Glu Val Lys Gly Lys Lys Pro Lys Gly Lys Glu Tyr Leu Gln Ala 1001 1015 Lys Leu Ser Ala Gln Asn Ile Asp Leu Ile Ser Ala Gln Gly Ile Glu 1025 1030 1041 1051 1051 1052 1030 1045 1055 Ala Gly Val Leu Pro Lys Ala Ala Asp Ser Glu Ala Ala Ala Ala Ile Leu 1060 1060 1065 1075 1080 1090 1095 1090 1065 1060 1075 1080 <	Gly	Gly	Asn		Gly	Ala	Pro	Ser		Gln	Val	Ser	Ser		Glu	Ala
930 935 940 Leu Asn Ile Glu Ala Val Asn Asn Ser Phe Ser Asn Tyr Phe Pro Thr 945 950 Gln Lys Ala Ala Glu Leu Asn Gln Lys Ser Lys Glu Leu Glu Gln Gln Gln 965 970 Ser Lys Glu Leu Glu Arg Asp Arg Leu Ala Phe Tyr Ile Gln Ala Ile Asn 990 Leu Gln Glu Glu Arg Asp Arg Leu Ala Phe Tyr Ile Gln Ala Ile Asn 995 100 Leu Gln Glu Gly Lys Lys Pro Lys Gly Lys Glu Tyr Leu Gln Ala 1010 100 Lys Glu Val Lys Gly Lys Lys Pro Lys Gly Lys Glu Tyr Leu Gln Ala 1010 1030 1035 104 1025 104 1035 104 1040 1035 104 1040 1035 104 1040 105 Ala Gly Val Leu Pro Lys Ala Ala Ser Lys Lys Leu Asn Leu His Ala 1060 106 1065 1075 1080 106 1075 1080 107 Ser His Tyr Asp Lys Ala Ala Leu Asn Lys Pro Ser Arg Leu Thr Gly 1095 1100 112 1120 1120 1135 112 1121 1135 112 1122 114 His Ser Glu Ile Lys Ala Pro Ser Gly Ser Ile Asp 1120 114 1145 1135 1140 1145 1135 1136 1150 1135 116 Lys Ala His Ser Asp Ile Val Leu Glu Ala Gly Gln Asn Asp Ala 116 114 1145 1136 1170 1130 1130 118 114 1145 116 1180 1140 1175 1130 1190 1130 1130 1190 1131 1190 1130 1130 1190 1131 1190 1131 1190 1130 1190 1131 1190 1131 1190 1131 1190 1131 1190 1132 1190 1131 1190 1131 1190 1131 1201 1201 1215 110 114 114 1145 114 1140 1145 1140 1140 1140 1145 1140 1140 1140 1145 1140 1140 1140 1145 1140	Lys	Gly		Ile	Arg	Leu	Val		Gly	Glu	Thr	Asp		Arg	Gly	Ser
945 950 955 960 Gln Lys Ala Ala Glu Leu Asn Gln Lys Ser Lys Glu Leu Glu Gln Gln Gln $_{975}$ Ile Ala Gln Leu Lys Lys Ser Ser Pro Lys Ser Lys Leu Ile Pro Thr 980 100 Glu Glu Glu Arg Asp Arg Leu Ala Phe Tyr Ile Gln Ala Ile Asn 995 100 Al Lys Gly Lys Lys Pro Lys Gly Lys Glu Tyr Leu Gln Ala 1010 100 100 100 100 100 1000 Lys Leu Ser Ala Gln Asn Ile Asp Leu Ile Ser Ala Gln Gly Ile Glu 1025 1030 1035 1044 1040 1040 1040 105 1030 1055 1044 1055 1044 1055 1044 1055 1055 1055 1055 Ala Gly Val Leu Pro Lys Ala Ala Asp Ser Glu Ala Ala Ala Ile Leu 1060 1055 1085 Ser His Tyr Asp Lys Ala Ala Leu Asn Lys Pro Ser Arg Leu Thr Gly 1090 1095 1100 1115 1115 1125 1120 1120 1125 1130 1126 1120 1125 1130 1125 114 Ile Ile Gly Ala Ser Glu Ile Lys Ala Pro Ser Gly Ser Ile Asp 1055 1140 1145 115 1135 114 Ile Ile Gly Ala Ser Glu Ile Lys Ala Pro Ser Gly Ser Ile Asp 1150 1125 1130 1135 114 Ile Ile Gly Ala Ser Glu Ile Lys Ala Pro Ser Gly Ser Ile Asp 1140 1145 1150 1120 1130 1125 1130 1125 114 Ile Ile Gly Ala Ser Glu Ile Lys Ala Pro Ser Gly Ser Ile Asp 1150 1120 1135 114 Ile Ile Gly Ala Ser Glu Ile Lys Ala Pro Ser Gly Ser Ile Asp 1150 1125 1130 1125 1160 1125 1130 1125 1160 1125 1160 1125 1160 1125 1160 1125 1160 1125 1160 1125 1160 1125 1160 112	Lys		Thr	Ala	Gly	Lys		Leu	Val	Val	Ala		Thr	Lys	Gly	Lys
965970975Ile Ala Gln Leu Lys Lys Ser Ser Pro Lys Ser Lys Leu IIe Pro Thr 980985Leu Gln Glu Glu Arg Asp Arg Leu Ala Phe Tyr IIe Gln Ala IIe Asn 9951000Leu Gln Glu Glu Arg Asp Arg Leu Ala Phe Tyr IIe Gln Ala IIe Asn 9951000Lys Glu Val Lys Gly Lys Lys Pro Lys Gly Lys Glu Tyr Leu Gln Ala 10101015Lys Leu Ser Ala Gln Asn IIe Asp Leu IIe Ser Ala Gln Gly IIe Glu 1025103010351030103510401055Ala Gly Val Leu Pro Lys Ala Ala Asp Ser Glu Ala Ala Ala Ala IIe Leu 106010651080107011e Asp Gly IIe Thr Asp Gln Tyr Glu IIe Gly Lys Pro Thr Tyr Lys 10751075110010801105Ser His Tyr Asp Lys Ala Ala Leu Asn Lys Pro Ser Arg Leu Thr Gly 1095109011051110111511251110112611251127113011281140114011451155116011651165117011751180Glu Leu Thr Ala Asn Gly IIe Thr Lys Gly Lys Ser Gly Lys IIe IIe Arg Lys 115511601195117011751180Glu Leu Thr Ala Asn Gly IIe Thr Leu Gln Ala Gly Gly Asn IIe Glu 119011851190119011951201Ala Asn Thr Thr Arg Phe Asn Ala Pro Ala Gly Lys Val Thr Leu Val 120512051206Ala Asn Thr Thr Arg Phe Asn Ala Pro Ala Gly Lys Val Thr Leu Val 120112051201Ala A	Leu 945	Asn	Ile	Glu	Ala		Asn	Asn	Ser	Phe		Asn	Tyr	Phe	Pro	
980985990Leu Gln Glu Glu Arg Asp Arg Leu Ala Phe Tyr Ile Gln Ala Ile Asn 10001005Lys Glu Val Lys Gly Lys Lys Lys Pro Lys Gly Lys Glu Tyr Leu Gln Ala 10101015Lys Leu Ser Ala Gln Asn Ile Asp Leu Ile Ser Ala Gln Gly Ile Glu 10251030Lie Ser Gly Ser Asp Ile Thr Ala Ser Lys Lys Leu Asn Leu His Ala 10451045Ala Gly Val Leu Pro Lys Ala Ala Asp Ser Glu Ala Ala Ala Ile Leu 10651065Ala Gly Val Leu Pro Lys Ala Ala Asp Ser Glu Ala Ala Ala Ile Leu 10651070Ile Asp Gly Ile Thr Asp Gln Tyr Glu Ile Gly Lys Pro Thr Tyr Lys 10751080Ser His Tyr Asp Lys Ala Ala Leu Asn Lys Pro Ser Arg Leu Thr Gly 10951100Arg Thr Gly Val Ser Ile His Ala Ala Ala Ala Ala Leu Asp Asp Ala Arg 11101115Ile Lys Ala His Ser Asp Ile Val Leu Glu Ala Gly Gln Asn Asp Ala 11451150Tyr Thr Phe Leu Lys Thr Lys Gly Lys Ser Gly Lys Ile Ile Arg Lys 11551160Thr Lys Phe Thr Ser Thr Arg Asp His Leu Ile Met Pro Ala Pro Val 11701175Glu Leu Thr Ala Asn Gly Ile Thr Leu Gln Ala Gly Lys Val Thr Leu Val 1205Ala Asn Thr Thr Arg Phe Asn Ala Pro Ala Glu Leu Glu Gly Lys Val Thr Leu Val 1205	Gln	Lys	Ala	Ala		Leu	Asn	Gln	Lys		Lys	Glu	Leu	Glu		Gln
995 1000 1005 Lys Glu Val Lys Gly Lys Gly Lys Pro Lys Gly Lys Glu Tyr Leu Gln Ala 1010 1015 1010 1015 1020 1020 Lys Leu Ser Ala Gln Asn Ile Asp Leu Ile Ser Ala Gln Gly Ile Glu 1035 1040 1025 1030 1035 1040 1025 1045 1050 1055 Ala Gly Val Leu Pro Lys Ala Ala Ser Lys Lys Leu Asn Leu His Ala 1055 Ala Gly Val Leu Pro Lys Ala Ala Asp Ser Glu Ala Ala Ala Ile Leu 1065 1060 1065 1070 Ile Asp Gly Ile Thr Asp Gln Tyr Glu Ile Gly Lys Pro Thr Tyr Lys 1070 1075 1080 1085 Ser His Tyr Asp Lys Ala Ala Leu Asn Lys Pro Ser Arg Leu Thr Gly 1095 1090 1095 1100 Arg Thr Gly Val Ser Ile His Ala Ala Ala Ala Ala Leu Asp Asp Ala Arg 1120 1105 1110 1115 1120 1110 1115 1121 1125 1130 1122 1110 1145 1125 1130 1135 1120 1121 1145 1125 1130 1155 <	Ile	Ala	Gln		Lys	Lys	Ser	Ser		Lys	Ser	Lys	Leu		Pro	Thr
1010 1015 1020 Lys Leu Ser Ala Gln Asn Ile Asp Leu Ile Ser Ala Gln Gly Ile Glu 1030 1035 1025 1030 1035 1040 1025 1045 1035 1040 1025 1045 1035 1045 1045 1045 1055 1040 1026 1045 1055 1040 1026 1045 1055 1040 1045 1045 1055 1055 Ala Gly Val Leu Pro Lys Ala Ala Ser Lys Lys Leu Asn Leu His Ala 1055 1060 1070 11e Asp Gly Tle Thr Asp Gln Tyr Glu Ile Gly Lys Pro Thr Tyr Lys 1065 1080 1085 Ser His Tyr Asp Lys Ala Ala Leu Asn Lys Pro Ser Arg Leu Thr Gly 1090 1095 1100 Arg Thr Gly Val Ser Ile His Ala Ala Ala Ala Ala Leu Asp Asp Ala Arg 1120 1110 1110 1120 Ile Ile Ile Gly Ala Ser Glu Ile Lys Ala Pro Ser Gly Ser Ile Asp 1125 1130 1135 1135 Ile Lys Ala His Ser Asp Ile Val Leu Glu Ala Gly Gln Asn Asp Ala 1140 1145 1150 1135 Tyr Thr Phe Leu Lys Thr Lys Gly Lys Ser Gly Lys Ile Ile Arg Lys 1165 1165 1165 1165 Thr Lys Phe Thr Ser	Leu	Gln		Glu	Arg	Asp	_		Ala	Phe	Tyr			Ala	Ile	Asn
1025103010351040Ile Ser Gly Ser Asp Ile Thr Ala Ser Lys Lys Leu Asn Leu His Ala 10451055Ala Gly Val Leu Pro Lys Ala Ala Asp Ser Glu Ala Ala Ala Ala Ile Leu 10601065Ile Asp Gly Ile Thr Asp Gln Tyr Glu Ile Gly Lys Pro Thr Tyr Lys 10751085Ser His Tyr Asp Lys Ala Ala Leu Asn Lys Pro Ser Arg Leu Thr Gly 10901095Arg Thr Gly Val Ser Ile His Ala Ala Ala Ala Leu Asp Asp Ala Arg 11201110Ile Lys Ala His Ser Glu Ile Lys Ala Pro Ser Gly Ser Ile Asp 11251120Ile Lys Ala His Ser Asp Ile Val Leu Glu Ala Gly Gln Asn Asp Ala 1140115Tyr Thr Phe Leu Lys Thr Lys Gly Lys Ser Gly Lys Ile Ile Arg Lys 11651165Thr Lys Phe Thr Ser Thr Arg Asp His Leu Ile Met Pro Ala Pro Val 11701175Glu Leu Thr Ala Asn Gly Ile Thr Leu Gln Ala Gly Gly Asn Ile Glu 11901195Ala Asn Thr Thr Arg Phe Asn Ala Pro Ala Gly Lys Val Thr Leu Val 1201Ala Gly Glu Glu Leu Gln Leu Leu Ala Glu Glu Gly Ile His Lys His			Val	Lys	Gly			Pro	Lys	Gly			Tyr	Leu	Gln	Ala
104510501055Ala Gly Val Leu Pro Lys Ala Ala Asp Ser Glu Ala Ala Ala Ala Ile Leu 106010651070Ile Asp Gly Ile Thr Asp Gln Tyr Glu Ile Gly Lys Pro Thr Tyr Lys 107510801085Ser His Tyr Asp Lys Ala Ala Leu Asn Lys Pro Ser Arg Leu Thr Gly 109010951100Arg Thr Gly Val Ser Ile His Ala Ala Ala Ala Ala Leu Asp Asp Ala Arg 111011151120Ile Ile Ile Gly Ala Ser Glu Ile Lys Ala Pro Ser Gly Ser Ile Asp 112511801135Ile Lys Ala His Ser Asp Ile Val Leu Glu Ala Gly Gln Asn Asp Ala 115511601165Tyr Thr Phe Leu Lys Thr Lys Gly Lys Ser Gly Lys Ile Ile Arg Lys 116511651165Thr Lys Phe Thr Ser Thr Arg Asp His Leu Ile Met Pro Ala Pro Val 1170119011951200Ala Asn Thr Thr Arg Phe Asn Ala Pro Ala Gly Lys Val Thr Leu Val 1205120112151215Ala Gly Glu Glu Leu Gln Leu Leu Ala Glu Glu Gly Ile His Lys His	-		Ser	Ala			Ile	Asp	Leu			Ala	Gln	Gly		
106010651070Ile Asp Gly Ile Thr Asp Gln Tyr Glu Ile Gly Lys Pro Thr Tyr Lys 107510801085Ser His Tyr Asp Lys Ala Ala Leu Asn Lys Pro Ser Arg Leu Thr Gly 109010951100Arg Thr Gly Val Ser Ile His Ala Ala Ala Ala Ala Leu Asp Asp Ala Arg 111011151120Ile Ile Ile Gly Ala Ser Glu Ile Lys Ala Pro Ser Gly Ser Ile Asp 112511301135Ile Lys Ala His Ser Asp Ile Val Leu Glu Ala Gly Gln Asn Asp Ala 114511651160Tyr Thr Phe Leu Lys Thr Lys Gly Lys Ser Gly Lys Ile Ile Arg Lys 115511601165Thr Lys Phe Thr Ser Thr Arg Asp His Leu Ile Met Pro Ala Pro Val 117511901200Ala Asn Thr Thr Arg Phe Asn Ala Pro Ala Gly Lys Val Thr Leu Val 120012101215Ala Gly Glu Glu Leu Gln Leu Leu Ala Glu Glu Gly Ile His Lys His	Ile	Ser	Gly		_	Ile	Thr	Ala		-	Lys	Leu	Asn			Ala
1075 1080 1085 Ser His Tyr Asp Lys Ala Ala Leu Asn Lys Pro Ser Arg Leu Thr Gly 1090 1095 1100 Arg Thr Gly Val Ser Ile His Ala Ala Ala Ala Ala Leu Asp Asp Ala Arg 1115 1110 1115 Ile Ile Gly Ala Ser Glu Ile Lys Ala Pro Ser Gly Ser Ile Asp 1125 1130 1135 Ile Lys Ala His Ser Asp Ile Val Leu Glu Ala Gly Gln Asn Asp Ala 1145 1150 1150 Tyr Thr Phe Leu Lys Thr Lys Gly Lys Ser Gly Lys Ile Ile Arg Lys 1165 1165 1165 Thr Lys Phe Thr Ser Thr Arg Asp His Leu Ile Met Pro Ala Pro Val 1170 1175 1200 Glu Leu Thr Ala Asn Gly Ile Thr Leu Gln Ala Gly Gly Asn Ile Glu 1185 1190 1200 Ala Asn Thr Thr Arg Phe Asn Ala Pro Ala Gly Lys Val Thr Leu Val 1205 1210 1215 Ala Gly Glu Glu Leu Gln Leu Leu Ala Glu Glu Gly Ile His Lys His 1215 1215	Ala	Gly			Pro	Lys	Ala			Ser	Glu	Ala			Ile	Leu
109010951100Arg Thr Gly Val Ser Ile His Ala Ala Ala Ala Ala Leu Asp Asp Ala Arg 1105111011151105111011151120Ile Ile Ile Gly Ala Ser Glu Ile Lys Ala Pro Ser Gly Ser Ile Asp 11251130Ser Gly Ser Ile Asp 1130Ile Lys Ala His Ser Asp Ile Val Leu Glu Ala Gly Gln Asn Asp Ala 114011451150Tyr Thr Phe Leu Lys Thr Lys Gly Lys Ser Gly Lys Ile Ile Arg Lys 115511601165Thr Lys Phe Thr Ser Thr Arg Asp His Leu Ile Met Pro Ala Pro Val 117511801200Glu Leu Thr Ala Asn Gly Ile Thr Leu Gln Ala Gly Gly Asn Ile Glu 119011951200Ala Asn Thr Thr Arg Phe Asn Ala Pro Ala Gly Lys Val Thr Leu Val 120512101215Ala Gly Glu Glu Leu Gln Leu Leu Ala Glu Glu Gly Ile His Lys His	Ile			Ile	Thr	Asp			Glu	Ile	Gly			Thr	Tyr	Lys
1105 1110 1115 1120 Ile Ile Ile Gly Ala Ser Glu Ile Lys Ala Pro Ser Gly Ser Ile Asp 1130 1135 Ile Lys Ala His Ser Asp Ile Val Leu Glu Ala Gly Gln Asn Asp Ala 1140 1145 Tyr Thr Phe Leu Lys Thr Lys Gly Lys Ser Gly Lys Ile Ile Arg Lys 1165 Thr Lys Phe Thr Ser Thr Arg Asp His Leu Ile Met Pro Ala Pro Val 1175 1180 Glu Leu Thr Ala Asn Gly Ile Thr Leu Gln Ala Gly Gly Asn Ile Glu 1195 1200 Ala Asn Thr Thr Arg Phe Asn Ala Pro Ala Gly Lys Val Thr Leu Val 1205 1210 Ala Gly Glu Glu Leu Gln Leu Leu Ala Glu Glu Gly Ile His Lys His 1180 1215			Tyr	Asp	Lys			Leu	Asn	Lys			Arg	Leu	Thr	Gly
112511301135Ile Lys Ala His Ser Asp Ile Val Leu Glu Ala Gly Gln Asn Asp Ala 114011451150Tyr Thr Phe Leu Lys Thr Lys Gly Lys Ser Gly Lys Ile Ile Arg Lys 115511601165Thr Lys Phe Thr Ser Thr Arg Asp His Leu Ile Met Pro Ala Pro Val 117511801180Glu Leu Thr Ala Asn Gly Ile Thr Leu Gln Ala Gly Gly Asn Ile Glu 119011951200Ala Asn Thr Thr Arg Phe Asn Ala Pro Ala Gly Lys Val Thr Leu Val 121512101215Ala Gly Glu Glu Leu Gln Leu Leu Ala Glu Glu Gly Ile His Lys His11801215			Gly	Val			His	Ala	Ala			Leu	Asp	Asp		
1140 1145 1150 Tyr Thr Phe Leu Lys Thr Lys Gly Lys Ser Gly Lys Ile Ile Arg Lys 1165 1155 1160 1165 Thr Lys Phe Thr Ser Thr Arg Asp His Leu Ile Met Pro Ala Pro Val 1170 1170 1175 1180 Glu Leu Thr Ala Asn Gly Ile Thr Leu Gln Ala Gly Gly Asn Ile Glu 1190 1185 1190 1195 Ala Asn Thr Thr Arg Phe Asn Ala Pro Ala Gly Lys Val Thr Leu Val 1205 Ala Gly Glu Glu Leu Gln Leu Leu Ala Glu Glu Gly Ile His Lys His	Ile	Ile	Ile			Ser	Glu	Ile			Pro	Ser	Gly			Asp
1155 1160 1165 Thr Lys Phe Thr Ser Thr Arg Asp His Leu Ile Met Pro Ala Pro Val 1170 1175 1180 Glu Leu Thr Ala Asn Gly Ile Thr Leu Gln Ala Gly Gly Asn Ile Glu 1185 1190 1195 1200 Ala Asn Thr Thr Arg Phe Asn Ala Pro Ala Gly Lys Val Thr Leu Val 1205 1210 1215 Ala Gly Glu Glu Leu Gln Leu Leu Ala Glu Glu Gly Ile His Lys His	Ile	Lys				Asp	Ile			Glu	Ala	Gly			Asp	Ala
1170 1175 1180 Glu Leu Thr Ala Asn Gly Ile Thr Leu Gln Ala Gly Gly Asn Ile Glu 1195 1200 Ala Asn Thr Thr Arg Phe Asn Ala Pro Ala Gly Lys Val Thr Leu Val 1205 1210 Ala Gly Glu Glu Leu Gln Leu Leu Ala Glu Glu Gly Ile His Lys His	Tyr				Lys	Thr			Lys	Ser	Gly			Ile	Arg	Lys
1185 1190 1195 1200 Ala Asn Thr Thr Arg Phe Asn Ala Pro Ala Gly Lys Val Thr Leu Val 1205 1210 Ala Gly Glu Glu Leu Gln Leu Leu Ala Glu Glu Gly Ile His Lys His			Phe	Thr	Ser			Asp	His	Leu			Pro	Ala	Pro	Val
1205 1210 1215 Ala Gly Glu Glu Leu Gln Leu Leu Ala Glu Glu Gly Ile His Lys His			Thr	Ala			Ile	Thr	Leu			Gly	Gly	Asn		
	Ala	Asn	Thr				Asn	Ala			Gly	Lys	Val			Val
	Ala	Gly				Gln	Leu			Glu	Glu	Gly			Lys	His

												0011	C T I I	ucu		
G	lu Leu	1 Asp 1235	Val	Gln	Lys		Arg 1240	Arg	Phe	Ile	_	Ile 1245	Lys	Val	Gly	
Ι	ys Sei 1250		Tyr	Ser	-	Asn 1255	Glu	Leu	Asn		Thr 1260	Lys	Leu	Pro	Val	
	rg Val 265	. Val	Ala		Thr 1270	Ala	Ala	Thr		Ser 1275	Gly	Trp	Asp		Val 280	
Ι	eu Glu	ı Gly		Glu 1285	Phe	Lys	Thr		Leu 1290	Ala	Gly	Ala		Ile L295	Gln	
P	la Gly		Gly 1300	Glu	Lys	Ala		Ala 1305	Asp	Ala	Lys		Ile 1310	Leu	Lys	
Ģ	¦y Il€	e Val 1315	Asn	Arg	Ile		Ser 1320	Glu	Glu	Lys		Glu 1325	Thr	Asn	Ser	
ľ	hr Val! 1330	_	Gln	Lys		Ala 1335	Gly	Arg	Gly		Thr 1340	Ile	Glu	Thr	Leu	
	ys Leu 345	ı Pro	Ser		Glu 1350	Ser	Pro	Thr		Pro 1355	Lys	Leu	Thr		Pro 360	
G	ly Gly	7 Tyr		Val 1365	Asp	Ile	Pro		Gly 1370	Asn	Leu	Lys		Glu L375	Ile	
Ģ	lu Ly:		Ala 1380	Lys	Gln	Pro		Ty r 1385	Ala	Tyr	Leu		Gln 1390	Leu	Gln	
7	al Ala	1395 Lys	Asn	Val	Asn		Asn 1400	Gln	Val	Gln		Ala 1405	Tyr	Asp	Lys	
T	rp Asp 1410		Lys	Gln		Gl y 1415	Leu	Thr	Arg		Gly 1420	Ala	Ala	Ile	Val	
	hr Ile 425	e Ile	Val		Ala 1430	Leu	Thr	Tyr		Ty r 1435	Gly	Ala	Thr		Ala 440	
G	ly Gly	7 Val		Ala 1445	Ser	Gly	Ser		Thr 1450	Ala	Ala	Ala		Gly 1455	Thr	
P	la Ala		Thr 1460	Thr	Ala	Ala		Thr 1465	Thr	Val	Ser		Ala 1470	Thr	Ala	
Μ	let Glr	1475	Ala	Ala	Leu		Ser 1480	Leu	Tyr	Ser		Ala 1485	Ala	Val	Ser	
1	le Ile 1490		Asn	Lys		Asp 1495	Val	Gly	Lys		Leu 1500	Lys	Asp	Leu	Gly	
	hr Sei.505	Asp	Thr		L y s 1510	Gln	Ile	Val		Ser 1515	Ala	Leu	Thr		Gly 520	
P	la Lei	ı Asn		Met 1525	Gly	Ala	Asp		Ala 1530	Gln	Leu	Asn		Lys 1535	Val	
P	rg Thi		Leu 1540	Phe	Ser	Ser		Gly 1545	Asn	Gln	Thr		Ala 1550	Asn	Leu	
G	ly Gly	7 Arg 1555	Leu	Ala	Thr		Leu 1560	Ser	Asn	Ala		Ile 1565	Ser	Ala	Gly	
J	le Asr 1570		Ala	Val		Gly 1575	Gly	Ser	Leu		Asp 1580	Asn	Leu	Gly	Asn	
	la Ala .585	ı Leu	Gly		Leu 1590	Val	Asn	Ser		Gln 1595	Gly	Glu	Ala		Ser 600	
I	ys Ile	e Lys		Thr 1605	Phe	Ser	Asp		Ty r 1610	Val	Ala	Lys		Phe L615	Ala	
F	lis Ala		Ala 1620	Gly	Cys	Val		Gly 1625	Leu	Val	Gln	-	L y s 1630	Сув	Lys	
I	sp Gly	7 Ala	Ile	Gly	Ala	Ala	Val	Gly	Glu	Ile	Val	Ala	Asp	Ser	Met	

-continued

		-continued	
1635	1640	0 1645	
Leu Gly Gly Arg 1650	Asn Pro Ala Thr 1655	r Leu Ser Asp Ala Glu Lys His Lys 1660	
Val Ile Ser Tyr 1665	Ser Lys Ile Ile 1670	e Ala Gly Ser Val Ala Ala Leu Asn 1675 1680	
	Asn Thr Ala Ala 1685	a Asn Ala Ala Glu Val Ala Val Val 1690 1695	
Asn Asn Ala Leu 1700		r Thr Pro Thr Asn Ala Lys Lys His 1705 1710	
Gln Pro Gln Lys 1715	Pro Asp Lys Thr 1720	r Ala Leu Glu Lys Ile Ile Gln Gly 0 1725	
Ile Met Pro Ala 1730	His Ala Ala Gly 1735	y Ala Met Thr Asn Pro Gln Asp Lys 1740	
Asp Ala Ala Ile 1745	Trp Ile Ser Asn 1750	n Ile Arg Asn Gly Ile Thr Gly Pro 1755 1760	
	Ser Tyr Gly Val 1765	l Tyr Ala Ala Gly Trp Thr Ala Pro 1770 1775	
Leu Ile Gly Thr 1780		u Ala Ile Ser Thr Cys Met Ala Asn 1785 1790	
Pro Ser Gly Cys 1795	Thr Val Met Val 1800	l Thr Gln Ala Ala Glu Ala Gly Ala 0 1805	
Gly Ile Ala Thr 1810	Gly Ala Val Thr 1815	r Val Gly Asn Ala Trp Glu Ala Pro 1820	
Val Gly Ala Leu 1825	Ser Lys Ala Lys 1830	s Ala Ala Lys Gln Ala Ile Pro Thr 1835 1840	
	Glu Leu Asp Gly 1845	y Leu Leu Gln Glu Ser Lys Asn Ile 1850 1855	
Gly Ala Val Asn 1860		n Ile Ala Asn Ser Thr Thr Arg Tyr 1865 1870	
Thr Pro Met Arg 1875	Gln Thr Gly Gln 1880	n Pro Val Ser Ala Gly Phe Glu His 0 1885	
Val Leu Glu Gly 1890	His Phe His Arg 1895	g Pro Ile Ala Asn Asn Arg Ser Val 1900	
Phe Thr Ile Ser 1905	Pro Asn Glu Leu 1910	u Lys Val Ile Leu Gln Ser Asn Lys 1915 1920	
	Pro Val Ser Met 1925	t Thr Pro Asp Gly Gln Tyr Met Arg 1930 1935	
Thr Val Asp Val 1940		e Gly Thr Thr Ser Ile Lys Glu Gly 1945 1950	
Gly Gln Pro Thr 1955	Thr Thr Ile Lys 1960	s Val Phe Thr Asp Lys Ser Gly Asn 0 1965	
Leu Ile Thr Thr 1970	Tyr Pro Val Lys 1975	s Gly Asn	
<220> FEATURE: <221> NAME/KEY: <222> LOCATION:	Neisseria mening misc_feature (203) ORMATION: any nuc		

<222> LOCATION: (207) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (209)..(212) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (214)..(215) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (217) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (255) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (887) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1026)..(1027) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1029) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1053)..(1054) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1130) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1249) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1341) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1993) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2078)..(2081) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2244) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2342) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2413) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2708) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2765) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature

```
-continued
```

<222> LOCATION: (2876) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2888) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2890)..(2892) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2894)..(2895) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2954) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3469) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3491) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3495) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3507) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3523) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3528) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3549) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3658) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3661) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3745) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3809) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3898) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (4086) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (4339) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature

-continued

-continued	
<pre><222> LOCATION: (4523) <222> COTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (4577) <223> OTHER INFORMATION: any nucleotide</pre>	
<400> SEQUENCE: 61	
atgaataaag gtttacatcg cattatcttt agtaaaaagc acagcaccat ggttgcagta	60
gccgaaactg ccaacagcca gggcaaaggt aaacaggcag gcagttcggt ttctgtttca	120
ctgaaaactt caggcgacct ttgcggcaaa ctcaaaacca cccttaaaac cttggtctgc	180
tetttggttt ceetgagtat ggnattnenn nnenntneee aaattaeeae egacaaatea	240
gcacctaaaa accancaggt cgttatcctt aaaaccaaca ctggtgcccc cttggtgaat	300
atccaaactc cgaatggacg cggattgagc cacaaccgct atacgcagtt tgatgttgac	360
aacaaagggg cagtgttaaa caacgaccgt aacaataatc cgtttctggt caaaggcagt	420
gcgcaattga ttttgaacga ggtacgcggt acggctagca aactcaacgg catcgttacc	480
gtaggeggte aaaaggeega egtgattatt geeaaceeea aeggeattae egttaatgge	540
ggcggcttta aaaatgtcgg tcggggcatc ttaactatcg gtgcgcccca aatcggcaaa	600
gacggtgcac tgacaggatt tgatgtgcgt caaggcacat tgaccgtagg agcagcaggt	660
tggaatgata aaggcggagc cgactacacc ggggtacttg ctcgtgcagt tgctttgcag	720
gggaaattac agggtaaaaa cctggcggtt tctaccggtc ctcagaaagt agattacgcc	780
agcggcgaaa tcagtgcagg tacggcagcg ggtacgaaac cgactattgc ccttgatact	840
gccgcactgg gcggtatgta cgccgacagc atcacactga ttgccantga aaaaggcgta	900
ggcgtcaaaa atgccggcac actcgaagcg gccaagcaat tgattgtgac ttcgtcaggc	960
cgcattgaaa acageggeeg categeeace actgeegaeg geaeegaage tteaeegaet	1020
tatctnncna tcgaaaccac cgaaaaagga gcnncaggca catttatctc caatggtggt	1080
cggatcgaga gcaaaggctt attggttatt gagacgggag aagatatcan cttgcgtaac	1140
ggagccgtgg tgcagaataa cggcagtcgc ccagctacca cggtattaaa tgctggtcat	1200
aatttggtga ttgagagtaa aactaatgtg aacaatgcca aaggctcgnc taatctgtcg	1260
gccggcggtc gtactacgat caatgatgct actattcaag cgggcagttc cgtgtacagc	1320
tccaccaaag gcgatactga nttgggtgaa aatacccgta ttattgctga aaacgtaacc	1380
gtattatcta acggtagtat tggcagtgct gctgtaattg aggctaaaga cactgcacac	1440
attgaatcgg gcaaaccgct ttetttagaa acetegaeeg ttgeeteeaa cateegtttg	1500
aacaacggta acattaaagg cggaaagcag cttgctttac tggcagacga taacattact	1560
gccaaaacta ccaatctgaa tactcccggc aatctgtatg ttcatacagg taaagatctg	1620
aatttgaatg ttgataaaga tttgtctgcc gccagcatcc atttgaaatc ggataacgct	1680
gcccatatta ccggcaccag taaaaccctc actgcctcaa aagacatggg tgtggaggca	1740
ggettgetga atgttaccaa taccaatetg egtaccaaet egggtaatet geacatteag	1800
gcagccaaag gcaatattca gcttcgcaat accaagctga acgcagccaa ggctctcgaa	1860
accaccgcat tgcagggcaa tatcgtttca gacggccttc atgctgtttc tgcagacggt	1920
catgtateet tattggeeaa eggtaatgee gaetttaeeg gteacaatae eetgaeagee	1980
aaggeegatg tenatgeagg ateggttggt aaaggeegte tgaaageaga eaataeeaat	2040

-						
atcacttcat	cttcaggaga	tattacgttg	gttgccgnnn	ncggtattca	gcttggtgac	2100
ggaaaacaac	gcaattcaat	caacggaaaa	cacatcagca	tcaaaaacaa	cggtggtaat	2160
gccgacttaa	aaaaccttaa	cgtccatgcc	aaaagcgggg	cattgaacat	tcattccgac	2220
cgggcattga	gcatagaaaa	tacnaagctg	gagtctaccc	ataatacgca	tcttaatgca	2280
caacacgagc	gggtaacgct	caaccaagta	gatgcctacg	cacaccgtca	tctaagcatt	2340
ancggcagcc	agatttggca	aaacgacaaa	ctgccttctg	ccaacaagct	ggtggctaac	2400
ggtgtattgg	cantcaatgc	gcgctattcc	caaattgccg	acaacaccac	gctgagagcg	2460
ggtgcaatca	accttactgc	cggtaccgcc	ctagtcaagc	gcggcaacat	caattggagt	2520
accgtttcga	ccaagacttt	ggaagataat	gccgaattaa	aaccattggc	cggacggctg	2580
aatattgaag	caggtagcgg	cacattaacc	atcgaacctg	ccaaccgcat	cagtgcgcat	2640
accgacctga	gcatcaaaac	aggcggaaaa	ttgctgttgt	ctgcaaaagg	aggaaatgca	2700
ggtgcgcnta	gtgctcaagt	ttcctcattg	gaagcaaaag	gcaatatccg	tctggttaca	2760
ggagnaacag	atttaagagg	ttctaaaatt	acagccggta	aaaacttggt	tgtcgccacc	2820
accaaaggca	agttgaatat	cgaagccgta	aacaactcat	tcagcaatta	ttttcntaca	2880
caaaaagngn	nngnnctcaa	ccaaaaatcc	aaagaattgg	aacagcagat	tgcgcagttg	2940
aaaaaagct	cgcntaaaag	caagctgatt	ccaaccctgc	aagaagaacg	cgaccgtctc	3000
gctttctata	ttcaagccat	caacaaggaa	gttaaaggta	aaaaacccaa	aggcaaagaa	3060
tacctgcaag	ccaagctttc	tgcacaaaat	attgacttga	tttccgcaca	aggcatcgaa	3120
atcagcggtt	ccgatattac	cgcttccaaa	aaactgaacc	ttcacgccgc	aggcgtattg	3180
ccaaaggcag	cagattcaga	ggcggctgct	attctgattg	acggcataac	cgaccaatat	3240
gaaattggca	agcccaccta	caagagtcac	tacgacaaag	ctgctctgaa	caagccttca	3300
cgtttgaccg	gacgtacggg	ggtaagtatt	catgcagctg	cggcactcga	tgatgcacgt	3360
attattatcg	gtgcatccga	aatcaaagct	ccctcaggca	gcatagacat	caaagcccat	3420
agtgatattg	tactggaggc	tggacaaaac	gatgcctata	ccttcttana	aaccaaaggt	3480
aaaagcggca	naatnatcag	aaaaacnaag	tttaccagca	ccngcganca	cctgattatg	3540
ccagccccng	tcgagctgac	cgccaacggt	atcacgcttc	aggcaggcgg	caacatcgaa	3600
gctaatacca	cccgcttcaa	tgcccctgca	ggtaaagtta	ccctggttgc	gggtgaanag	3660
ntgcaactgc	tggcagaaga	aggcatccac	aagcacgagt	tggatgtcca	aaaaagccgc	3720
cgctttatcg	gcatcaaggt	aggtnagagc	aattacagta	aaaacgaact	gaacgaaacc	3780
aaattgcctg	tccgcgtcgt	cgcccaaant	gcagccaccc	gttcaggctg	ggataccgtg	3840
ctcgaaggta	ccgaattcaa	aaccacgctg	gccggtgccg	acattcaggc	aggtgtangc	3900
gaaaaagccc	gtgtcgatgc	gaaaattatc	ctcaaaggca	ttgtgaaccg	tatccagtcg	3960
gaagaaaaat	tagaaaccaa	ctcaaccgta	tggcagaaac	aggccggacg	cggcagcact	4020
atcgaaacgc	taaaactgcc	cagcttcgaa	agccctactc	cgcccaaatt	gtccgcaccc	4080
ggcggntata	tcgtcgacat	tccgaaaggc	aatctgaaaa	ccgaaatcga	aaagctgtcc	4140
aaacagcccg	agtatgccta	tctgaaacag	ctccaagtag	cgaaaaacat	caactggaat	4200
caggtgcagc	ttgcttacga	cagatgggac	tacaaacagg	agggcttaac	cgaagcaggt	4260
gcggcgatta	tcgcactggc	cgttaccgtg	gtcacctcag	gcgcaggaac	cggagccgta	4320

tgggattaa acggtgcgnc cgccgccgca accgatgcag cattcgcctc tttggccagc	4 3 8 0
aggetteeg tategtteat caacaacaaa ggegatgteg geaaaaceet gaaagagetg	4440
gcagaagca gcacggtgaa aaatctggtg gttgccgccg ctaccgcagg cgtagccgac	4500
aaatcqqcq cttcqqcact qancaatqtc aqcqataaqc aqtqqatcaa caacctqacc	4560
tcaacctag ccaatgncgg gcagtgccgc actgattaa	4599
teaateray teaatyneyy geagtytege attgattaa	4377
210> SEQ ID NO 62	
<211> LENGTH: 1532	
212> TYPE: PRT 213> ORGANISM: Neisseria meningitidis	
220> FEATURE:	
221> NAME/KEY: SITE	
222> LOCATION: (68)(73) 223> OTHER INFORMATION: unknown	
220> FEATURE:	
221> NAME/KEY: SITE	
222> LOCATION: (85) 223> OTHER INFORMATION: unknown	
220> FEATURE:	
221> NAME/KEY: SITE 222> LOCATION: (296)	
222> LOCATION: (296) 223> OTHER INFORMATION: unknown	
220> FEATURE:	
221> NAME/KEY: SITE 222> LOCATION: (343)	
223> OTHER INFORMATION: unknown	
220> FEATURE:	
221> NAME/KEY: SITE 222> LOCATION: (352)	
223> OTHER INFORMATION: unknown	
220> FEATURE:	
221> NAME/KEY: SITE 222> LOCATION: (377)	
223> OTHER INFORMATION: unknown	
220> FEATURE:	
221> NAME/KEY: SITE 222> LOCATION: (417)	
223> OTHER INFORMATION: unknown	
220> FEATURE: 221> NAME/KEY: SITE	
222> LOCATION: (477)	
223> OTHER INFORMATION: unknown	
220> FEATURE: 221> NAME/KEY: SITE	
222> LOCATION: (665)	
223> OTHER INFORMATION: unknown	
220> FEATURE: 221> NAME/KEY: SITE	
222> LOCATION: (693)(694)	
223> OTHER INFORMATION: unknown 220> FEATURE:	
220> FLAIDRE: 221> NAME/KEY: SITE	
222> LOCATION: (781)	
223> OTHER INFORMATION: unknown 220> FEATURE:	
221> NAME/KEY: SITE	
222> LOCATION: (805)	
223> OTHER INFORMATION: unknown 220> FEATURE:	
221> NAME/KEY: SITE	
222> LOCATION: (903)	
223> OTHER INFORMATION: unknown 220> FEATURE:	
221> NAME/KEY: SITE	
222> LOCATION: (922) 223> OTHER INFORMATION: unknown	
220> FEATURE:	
221> NAME/KEY: SITE	
222> LOCATION: (959)	
223> OTHER INFORMATION: unknown	

80

<220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (963)..(965) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (985) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1157) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1164)..(1165) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1175)..(1176) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1220)..(1221) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1249) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1270) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1300) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1447) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1508) <223> OTHER INFORMATION: unknown <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1526) <223> OTHER INFORMATION: unknown <400> SEQUENCE: 62 Met Asn Lys Gly Leu His Arg Ile Ile Phe Ser Lys Lys His Ser Thr 1 5 10 15 Met Val Ala Val Ala Glu Thr Ala Asn Ser Gln Gly Lys Gly Lys Gln 20 25 Ala Gly Ser Ser Val Ser Val Ser Leu Lys Thr Ser Gly Asp Leu Cys 40 35 Gly Lys Leu Lys Thr Thr Leu Lys Thr Leu Val Cys Ser Leu Val Ser 55 Leu Ser Met Xaa Xaa Xaa Xaa Xaa Gln Ile Thr Thr Asp Lys Ser 70 75 65 Ala Pro Lys Asn Xaa Gln Val Val Ile Leu Lys Thr Asn Thr Gly Ala 85 90 Pro Leu Val Asn Ile Gln Thr Pro Asn Gly Arg Gly Leu Ser His Asn 100 105 110 Arg Tyr Thr Gln Phe Asp Val Asp Asn Lys Gly Ala Val Leu Asn Asn 115 120 125 Asp Arg Asn Asn Asn Pro Phe Leu Val Lys Gly Ser Ala Gln Leu Ile

-continued

	-continued										ued				
	130					135					140				
Leu 145	Asn	Glu	Val	Arg	Gly 150	Thr	Ala	Ser	Lys	Leu 155	Asn	Gly	Ile	Val	Thr 160
Val	Gly	Gly	Gln	L y s 165	Ala	Asp	Val	Ile	Ile 170	Ala	Asn	Pro	Asn	Gl y 175	Ile
Thr	Val	Asn	Gl y 180	Gly	Gly	Phe	Lys	A sn 185	Val	Gly	Arg	Gly	Ile 190	Leu	Thr
Ile	Gly	Ala 195	Pro	Gln	Ile	Gly	L y s 200	Asp	Gly	Ala	Leu	Thr 205	Gly	Phe	Asp
Val	Arg 210	Gln	Gly	Thr	Leu	Thr 215	Val	Gly	Ala	Ala	Gly 220	Trp	Asn	Asp	Lys
Gly 225	Gly	Ala	Asp	Tyr	Thr 230	Gly	Val	Leu	Ala	Arg 235	Ala	Val	Ala	Leu	Gln 240
Gly	Lys	Leu	Gln	Gly 245	Lys	Asn	Leu	Ala	Val 250	Ser	Thr	Gly	Pro	Gln 255	Lys
Val	Asp	Tyr	Ala 260	Ser	Gly	Glu	Ile	Ser 265	Ala	Gly	Thr	Ala	Ala 270	Gly	Thr
Lys	Pro	Thr 275	Ile	Ala	Leu	Asp	Thr 280	Ala	Ala	Leu	Gly	Gly 285	Met	Tyr	Ala
Asp	Ser 290	Ile	Thr	Leu	Ile	Ala 295	Xaa	Glu	Lys	Gly	Val 300	Gly	Val	Lys	Asn
Ala 305	Gly	Thr	Leu	Glu	Ala 310	Ala	Lys	Gln	Leu	Ile 315	Val	Thr	Ser	Ser	Gly 320
Arg	Ile	Glu	Asn	Ser 325	Gly	Arg	Ile	Ala	Thr 330	Thr	Ala	Asp	Gly	Thr 335	Glu
Ala	Ser	Pro	Thr 340	Tyr	Leu	Xaa	Ile	Glu 345	Thr	Thr	Glu	Lys	Gly 350	Ala	Xaa
Gly	Thr	Phe 355	Ile	Ser	Asn	Gly	Gly 360	Arg	Ile	Glu	Ser	Lys 365	Gly	Leu	Leu
Val	Ile 370	Glu	Thr	Gly	Glu	Asp 375	Ile	Xaa	Leu	Arg	Asn 380	Gly	Ala	Val	Val
Gln 385	Asn	Asn	Gly	Ser	Arg 390	Pro	Ala	Thr	Thr	Val 395	Leu	Asn	Ala	Gly	His 400
Asn	Leu	Val	Ile	Glu 405	Ser	Lys	Thr	Asn	Val 410	Asn	Asn	Ala	Lys	Gly 415	Ser
Xaa	Asn	Leu	Ser 420	Ala	Gly	Gly	Arg	Thr 425	Thr	Ile	Asn	Asp	Ala 430	Thr	Ile
Gln	Ala	Gly 435	Ser	Ser	Val	Tyr	Ser 440	Ser	Thr	Lys	Gly	Asp 445	Thr	Xaa	Leu
Gly	Glu 450	Asn	Thr	Arg	Ile	Ile 455	Ala	Glu	Asn	Val	Thr 460	Val	Leu	Ser	Asn
Gly 465	Ser	Ile	Gly	Ser	Ala 470	Ala	Val	Ile	Glu	Ala 475	Lys	Asp	Thr	Ala	His 480
Ile	Glu	Ser	Gly	L ys 485	Pro	Leu	Ser	Leu	Glu 490	Thr	Ser	Thr	Val	Ala 495	Ser
Asn	Ile	Arg	Leu 500	Asn	Asn	Gly	Asn	Ile 505	Lys	Gly	Gly	Lys	Gln 510	Leu	Ala
Leu	Leu	Ala 515	Asp	Asp	Asn	Ile	Thr 520	Ala	Lys	Thr	Thr	Asn 525	Leu	Asn	Thr
Pro	Gly 530	Asn	Leu	Tyr	Val	His 535	Thr	Gly	Lys	Asp	Leu 540	Asn	Leu	Asn	Val

Asp 545	Lys	Asp	Leu	Ser	Ala 550	Ala	Ser	Ile	His	Leu 555	Lys	Ser	Asp	Asn	Ala 560
Ala	His	Ile	Thr	Gly 565	Thr	Ser	Lys	Thr	Leu 570	Thr	Ala	Ser	Lys	Asp 575	Met
Gly	Val	Glu	Ala 580	Gly	Leu	Leu	Asn	Val 585	Thr	Asn	Thr	Asn	Leu 590	Arg	Thr
Asn	Ser	Gly 595	Asn	Leu	His	Ile	Gln 600	Ala	Ala	Lys	Gly	Asn 605	Ile	Gln	Leu
Arg	Asn 610	Thr	Lys	Leu	Asn	Ala 615	Ala	Lys	Ala	Leu	Glu 620	Thr	Thr	Ala	Leu
Gln 625	Gly	Asn	Ile	Val	Ser 630	Asp	Gly	Leu	His	Ala 635	Val	Ser	Ala	Asp	Gl y 640
His	Val	Ser	Leu	Leu 645	Ala	Asn	Gly	Asn	Ala 650	Asp	Phe	Thr	Gly	His 655	Asn
Thr	Leu	Thr	Ala 660	Lys	Ala	Asp	Val	Xaa 665	Ala	Gly	Ser	Val	Gly 670	Lys	Gly
Arg	Leu	L y s 675	Ala	Asp	Asn	Thr	Asn 680	Ile	Thr	Ser	Ser	Ser 685	Gly	Asp	Ile
Thr	Leu 690	Val	Ala	Xaa	Xaa	Gly 695	Ile	Gln	Leu	Gly	Asp 700	Gly	Lys	Gln	Arg
Asn 705	Ser	Ile	Asn	Gly	L y s 710	His	Ile	Ser	Ile	L y s 715	Asn	Asn	Gly	Gly	Asn 720
Ala	Asp	Leu	Lys	Asn 725	Leu	Asn	Val	His	Ala 730	Lys	Ser	Gly	Ala	Leu 735	Asn
Ile	His	Ser	Asp 740	Arg	Ala	Leu	Ser	Ile 745	Glu	Asn	Thr	Lys	Leu 750	Glu	Ser
Thr	His	Asn 755	Thr	His	Leu	Asn	Ala 760	Gln	His	Glu	Arg	Val 765	Thr	Leu	Asn
Gln	Val 770	Asp	Ala	Tyr	Ala	His 775	Arg	His	Leu	Ser	Ile 780	Xaa	Gly	Ser	Gln
Ile 785	Trp	Gln	Asn	Asp	L y s 790	Leu	Pro	Ser	Ala	Asn 795	Lys	Leu	Val	Ala	Asn 800
Gly	Val	Leu	Ala	Xaa 805	Asn	Ala	Arg	Tyr	Ser 810	Gln	Ile	Ala	Asp	Asn 815	Thr
Thr	Leu	Arg	Ala 820	Gly	Ala	Ile	Asn	Leu 825	Thr	Ala	Gly	Thr	Ala 830	Leu	Val
Lys		Gly 835		Ile	Asn	Trp	Ser 840		Val	Ser		L y s 845		Leu	Glu
Asp	Asn 850	Ala	Glu	Leu	Lys	Pro 855	Leu	Ala	Gly	Arg	Leu 860	Asn	Ile	Glu	Ala
Gl y 865	Ser	Gly	Thr	Leu	Thr 870	Ile	Glu	Pro	Ala	Asn 875	Arg	Ile	Ser	Ala	His 880
Thr	Asp	Leu	Ser	Ile 885	Lys	Thr	Gly	Gly	L y s 890	Leu	Leu	Leu	Ser	Ala 895	Lys
Gly	Gly	Asn	Ala 900	Gly	Ala	Xaa	Ser	Ala 905	Gln	Val	Ser	Ser	Leu 910	Glu	Ala
Lys	Gly	Asn 915	Ile	Arg	Leu	Val	Thr 920	Gly	Xaa	Thr	Asp	Leu 925	Arg	Gly	Ser
Lys	Ile 930	Thr	Ala	Gly	Lys	Asn 935	Leu	Val	Val	Ala	Thr 940	Thr	Lys	Gly	Lys

-continued

										-	con	tin	ued		
Leu Asn 945	Ile	Glu	Ala	Val 950	Asn	Asn	Ser	Phe	Ser 955	Asn	Tyr	Phe	Xaa	Thr 960	
Gln Lys	Xaa	Xaa	Xaa 965	Leu	Asn	Gln	Lys	Ser 970	Lys	Glu	Leu	Glu	Gln 975	Gln	
Ile Ala	Gln	Leu 980	Lys	Lys	Ser	Ser	Xaa 985	Lys	Ser	Lys	Leu	Ile 990	Pro	Thr	
Leu Gln	Glu 995	Glu	Arg	Asp		Leu 1000	Ala	Phe	Tyr		Gln 1005	Ala	Ile	Asn	
Lys Glu 1010		Lys	Gly		Lys 1015	Pro	Lys	Gly		Glu 1020	Tyr	Leu	Gln	Ala	
L y s Leu 1025	Ser	Ala		Asn 1030	Ile	Asp	Leu		Ser 1035	Ala	Gln	Gly		Glu 1040	
Ile Ser	Gly		Asp 1045		Thr	Ala		L y s 1050	Lys	Leu	Asn		His 1055	Ala	
Ala Gly		Leu 1060	Pro	Lys	Ala		As p 1065		Glu	Ala		Ala 1070	Ile	Leu	
Ile Asp	Gly 1075		Thr	Asp		Ty r 1080	Glu	Ile	Gly		Pro 1085	Thr	Tyr	Lys	
Ser His 1090		Asp	-		Ala 1095	Leu	Asn	Lys		Ser 1100	Arg	Leu	Thr	Gly	
Arg Thr 1105	Gly	Val		Ile 1110	His	Ala	Ala		Ala 1115	Leu	Asp	Asp		Arg 1120	
Ile Ile	e Ile		Ala 1125	Ser	Glu	Ile		Ala 1130	Pro	Ser	Gly		Ile 1135	Asp	
Ile Lys		His 1140		Asp	Ile		Leu 1145	Glu	Ala	Gly		Asn 1150	Asp	Ala	
Tyr Thr	Phe 1155	Leu	Xaa	Thr		Gl y 1160	Lys	Ser	Gly		Xaa 1165	Ile	Arg	Lys	
Thr Lys 1170		Thr	Ser		Xaa 1175	Xaa	His	Leu		Met 1180	Pro	Ala	Pro	Val	
Glu Leu 1185	Thr	Ala		Gly 1190	Ile	Thr	Leu		Ala 1195	Gly	Gly	Asn		Glu 1200	
Ala Asn	. Thr		Arg 1205		Asn	Ala		Ala 1210	Gly	Lys	Val		Leu 1215	Val	
Ala Gly		Xaa 1220	Xaa	Gln	Leu		Ala 1225	Glu	Glu	Gly		His 1230	Lys	His	
Glu Leu	Asp 1235		Gln	Lys		Arg 1240	Arg	Phe	Ile		Ile 1245	Lys	Val	Gly	
Xaa Ser 1250		Tyr	Ser	_	Asn 1255	Glu	Leu	Asn		Thr 1260	Lys	Leu	Pro	Val	
Arg Val 1265	. Val	Ala		Xaa 1270	Ala	Ala	Thr		Ser 1275	Gly	Trp	Asp		Val 1280	
Leu Glu	Gly		Glu 1285		Lys	Thr		Leu 1290	Ala	Gly	Ala		Ile 1295	Gln	
Ala Gly		Xaa 1300	Glu	Lys	Ala		Val 1305	Asp	Ala	Lys		Ile 1310	Leu	Lys	
Gl y Ile	• Val 1315	Asn	Arg	Ile		Ser 1320	Glu	Glu	Lys		Glu 1325	Thr	Asn	Ser	
Thr Val 1330	-	Gln	Lys		Ala 1335	Gly	Arg	Gly		Thr 1340	Ile	Glu	Thr	Leu	
Lys Leu	Pro	Ser	Phe	Glu	Ser	Pro	Thr	Pro	Pro	Lys	Leu	Ser	Ala	Pro	

-continued

-continued	
1345 1350 1355 1360	
Gly Gly Tyr Ile Val Asp Ile Pro Lys Gly Asn Leu Lys Thr Glu Ile 1365 1370 1375	
Glu Lys Leu Ser Lys Gln Pro Glu Tyr Ala Tyr Leu Lys Gln Leu Gln 1380 1385 1390	
Val Ala Lys Asn Ile Asn Trp Asn Gln Val Gln Leu Ala Tyr Asp Arg 1395 1400 1405	
Trp Asp Tyr Lys Gln Glu Gly Leu Thr Glu Ala Gly Ala Ala Ile Ile 1410 1415 1420	
Ala Leu Ala Val Thr Val Val Thr Ser Gly Ala Gly Thr Gly Ala Val 1425 1430 1435 1440	
Leu Gly Leu Asn Gly Ala Xaa Ala Ala Ala Thr Asp Ala Ala Phe Ala 1445 1450 1455	
Ser Leu Ala Ser Gln Ala Ser Val Ser Phe Ile Asn Asn Lys Gly Asp 1460 1465 1470	
Val Gly Lys Thr Leu Lys Glu Leu Gly Arg Ser Ser Thr Val Lys Asn 1475 1480 1485	
Leu Val Val Ala Ala Ala Thr Ala Gly Val Ala Asp Lys Ile Gly Ala 1490 1495 1500	
Ser Ala Leu Xaa Asn Val Ser Asp Lys Gln Trp Ile Asn Asn Leu Thr 1505 1510 1515 1520	
Val Asn Leu Ala Asn Xaa Gly Gln Cys Arg Thr Asp 1525 1530	
<pre><210> SEQ ID NO 63 <211> LENGTH: 1782 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (89) <223> OTHER INFORMATION: any nucleotide <220> FEATURE: <221> NAME/KEY: unsure <222> LOCATION: (697) <223> OTHER INFORMATION: N = Unknown <220> FEATURE: <221> NAME/KEY: unsure <222> LOCATION: (862) <223> OTHER INFORMATION: N = Unknown <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (959)(960) <223> OTHER INFORMATION: any nucleotide</pre>	
<400> SEQUENCE: 63	
cgcttcattc atgatgaagc agtcggcagc aacatcggcg gcggcaaaat gattgttgca	60
gccgggcagg atatcaatgt acgcggcana agccttattt ctgataaggg cattgtttta	120
aaagcaggac acgacatcga tatttctact gcccataatc gctataccgg caatgaatac	180
cacgagagca waaawtcagg cgtcatgggt actggcggat tgggctttac tatcggtaac cggaaaacta ccgatgacac tgatcgtacc aatattgtsc atacaggcag cattataggc	240 300
agcotgaatg gagacaccgt tacagttgca ggaaaccgct accgacaaac cggcagtacc	360
gtotccagcc ccgaggggcg caataccgtc acagccaaaw gcatagatgt agagttcgca	420
aacaaccggt atgccactga ctacgcccat acccagggaa caaaaaggcc ttaccgtcgc	480
cctcaatgtc ccggttgtcc aagctgcaca aaacttcata caagcagccc aaaatgtggg	540

-continued

caaaagtaaa	aataaacgcg	ttaatgccat	ggctgcagcc	aatgctgcat	ggcagagtta	600	
tcaagcaacc	caacaaatgc	aacaatttgc	tccaagcagc	agtgcgggac	aaggtcaaaa	660	
ctacaatcaa	agccccagta	tcagtgtgtc	cattacntac	ggcgaacaga	aaagtcgtaa	720	
cgagcaaaaa	agacattaca	ccgaagcggc	agcaagtcaa	attatcggca	aagggcaaac	780	
cacacttgcg	gcaacaggaa	gtggggagca	gtccaatatc	aatattacag	gttccgatgt	840	
catcggccat	gcaggtactc	cnctcattgc	cgacaaccat	atcagactcc	aatctgccaa	900	
acaggacggc	agcgagcaaa	gcaaaaacaa	aagcagtggt	tggaatgcag	gcgtacgtnn	960	
caaaataggc	aacggcatca	ggtttggaat	taccgccgga	ggaaatatcg	gtaaaggtaa	1020	
agagcaaggg	ggaagtacta	cccaccgcca	cacccatgtc	ggcagcacaa	ccggcaaaac	1080	
taccatccga	agcggcgggg	gataccaccc	tcaaaggtgt	gcagctcatc	ggcaaaggca	1140	
tacaggcaga	tacgcgcaac	ctgcatatag	aaagtgttca	agatactgaa	acctatcaga	1200	
gcaaacagca	aaacggcaat	gtccaagttt	actgtcggtt	acggattcag	tgcaagcggc	1260	
agttaccgcc	aaagcaaagt	caaagcagac	catgcctccg	taaccgggca	aagcggtatt	1320	
tatgccggag	aagacggcta	tcaaatyaaa	gtyagagaca	acacagacct	yaagggcggt	1380	
atcatcacgt	ctagccaaag	cgcagaagat	aagggcaaaa	acctttttca	gacggccacc	1440	
cttactgcca	gcgacattca	aaaccacagc	cgctacgaag	gcagaagctt	cggcataggc	1500	
ggcagtttcg	acctgaacgg	cggctgggac	ggcacggtta	ccgacaaaca	aggcaggcct	1560	
accgacagga	taagcccggc	agccggctac	ggcagcgacg	gagacagcaa	aaacagcacc	1620	
acccgcagcg	gcgtcaacac	ccacaacata	cacatcaccg	acgaagcggg	acaacttgcc	1680	
cgaacaggca	ggactgcaaa	agaaaccgaa	gcgcgtatct	acaccggcat	cgacaccgaa	1740	
actgcggatc	aacactcagg	ccatctgaaa	aacagcttcg	ac		1782	
<pre><220> FEAT <221> NAME <222> LOCA' <223> OTHEI <220> FEAT <221> NAME <222> LOCA' <223> OTHEI <220> FEAT <221> NAME <222> LOCA' <223> OTHEI <220> FEAT <221> NAME <222> LOCA' <223> OTHEI <220> FEAT <221> NAME <220> FEAT <221> NAME <220> FEAT <221> NAME <222> LOCA' <223> OTHEI <220> FEAT <221> NAME <222> LOCA' <223> OTHEI <220> FEAT</pre>	TH: 593 : PRT NISM: Neisse JRE: /KEY: SITE FION: (30) R INFORMATIC JRE: /KEY: SITE FION: (64) R INFORMATIC JRE: /KEY: SITE FION: (232) R INFORMATIC JRE: /KEY: SITE FION: (287) R INFORMATIC JRE: /KEY: SITE FION: (287) R INFORMATIC JRE: /KEY: SITE	DN: unknown (65) DN: unknown DN: unknown DN: unknown	ltidis				

Arg Phe Ile His Asp Glu Ala Val Gly Ser Asn Ile Gly Gly Lys

-continued

	-continued														
1				5					10					15	
Met	Ile	Val	Ala 20	Ala	Gly	Gln	Asp	Ile 25	Asn	Val	Arg	Gly	Xaa 30	Ser	Leu
Ile	Ser	Asp 35	Lys	Gly	Ile	Val	Leu 40	Lys	Ala	Gly	His	Asp 45	Ile	Asp	Ile
Ser	Thr 50	Ala	His	Asn	Arg	Ty r 55	Thr	Gly	Asn	Glu	Tyr 60	His	Glu	Ser	Xaa
Xaa 65	Ser	Gly	Val	Met	Gly 70	Thr	Gly	Gly	Leu	Gly 75	Phe	Thr	Ile	Gly	Asn 80
Arg	Lys	Thr	Thr	Asp 85	Asp	Thr	Asp	Arg	Thr 90	Asn	Ile	Val	His	Thr 95	Gly
Ser	Ile	Ile	Gly 100	Ser	Leu	Asn	Gly	A sp 105	Thr	Val	Thr	Val	Ala 110	Gly	Asn
Arg	Tyr	Arg 115	Gln	Thr	Gly	Ser	Thr 120	Val	Ser	Ser	Pro	Glu 125	Gly	Arg	Asn
Thr	Val 130	Thr	Ala	Lys	Xaa	Ile 135	Asp	Val	Glu	Phe	Ala 140	Asn	Asn	Arg	Tyr
Ala 145	Thr	Asp	Tyr	Ala	His 150	Thr	Gln	Glu	Gln	L y s 155	Gly	Leu	Thr	Val	Ala 160
Leu	Asn	Val	Pro	Val 165	Val	Gln	Ala	Ala	Gln 170	Asn	Phe	Ile	Gln	Ala 175	Ala
Gln	Asn	Val	Gly 180	Lys	Ser	Lys	Asn	L y s 185	Arg	Val	Asn	Ala	Met 190	Ala	Ala
Ala	Asn	Ala 195	Ala	Trp	Gln	Ser	Ty r 200	Gln	Ala	Thr	Gln	Gln 205	Met	Gln	Gln
Phe	Ala 210	Pro	Ser	Ser	Ser	Ala 215	Gly	Gln	Gly	Gln	Asn 220	Tyr	Asn	Gln	Ser
Pro 225	Ser	Ile	Ser	Val	Ser 230	Ile	Xaa	Tyr	Gly	Glu 235	Gln	Lys	Ser	Arg	Asn 240
Glu	Gln	Lys	Arg	His 245	Tyr	Thr	Glu	Ala	Ala 250	Ala	Ser	Gln	Ile	Ile 255	Gly
Lys	Gly	Gln	Thr 260	Thr	Leu	Ala	Ala	Thr 265	Gly	Ser	Gly	Glu	Gln 270	Ser	Asn
Ile	Asn	Ile 275	Thr	Gly	Ser	Asp	Val 280	Ile	Gly	His	Ala	Gly 285	Thr	Xaa	Leu
Ile	Ala 290	Asp	Asn	His	Ile	Arg 295	Leu	Gln	Ser	Ala	L y s 300	Gln	Asp	Gly	Ser
Glu 305	Gln	Ser	Lys	Asn	L y s 310	Ser	Ser	Gly	Trp	Asn 315	Ala	Gly	Val	Arg	Xaa 320
Lys	Ile	Gly	Asn	Gly 325	Ile	Arg	Phe	Gly	Ile 330	Thr	Ala	Gly	Gly	Asn 335	Ile
Gly	Lys	Gly	Lys 340	Glu	Gln	Gly	Gly	Ser 345	Thr	Thr	His	Arg	His 350	Thr	His
Val	Gly	Ser 355	Thr	Thr	Gly	Lys	Thr 360	Thr	Ile	Arg	Ser	Gly 365	Gly	Asp	Thr
Thr	Leu 370	Lys	Gly	Val	Gln	Leu 375	Ile	Gly	Lys	Gly	Ile 380	Gln	Ala	Asp	Thr
A rg 385	Asn	Leu	His	Ile	Glu 390	Ser	Val	Gln	Asp	Thr 395	Glu	Thr	Tyr	Gln	Ser 400
Lys	Gln	Gln	Asn	Gly 405	Asn	Val	Gln	Val	Thr 410	Val	Gly	Tyr	Gly	Phe 415	Ser

```
-continued
```

Ala Ser Gly Ser Tyr Arg Gln Ser Lys Val Lys Ala Asp His Ala Ser 420 425 430 Val Thr Gly Gln Ser Gly Ile Tyr Ala Gly Glu Asp Gly Tyr Gln Ile 435 440 445 Lys Val Arg Asp Asn Thr Asp Leu Lys Gly Gly Ile Ile Thr Ser Ser 450 455 460 Gln Ser Ala Glu Asp Lys Gly Lys Asn Leu Phe Gln Thr Ala Thr Leu 465 470 475 480 Thr Ala Ser Asp Ile Gln Asn His Ser Arg Tyr Glu Gly Arg Ser Phe 485 490 495 Gly Ile Gly Gly Ser Phe Asp Leu Asn Gly Gly Trp Asp Gly Thr Val 500 505 510 Thr Asp Lys Gln Gly Arg Pro Thr Asp Arg Ile Ser Pro Ala Ala Gly 515 520 525 Tyr Gly Ser Asp Gly Asp Ser Lys Asn Ser Thr Thr Arg Ser Gly Val 535 530 540 Asn Thr His Asn Ile His Ile Thr Asp Glu Ala Gly Gln Leu Ala Arg 545 550 555 560 Thr Gly Arg Thr Ala Lys Glu Thr Glu Ala Arg Ile Tyr Thr Gly Ile 565 570 Asp Thr Glu Thr Ala Asp Gln His Ser Gly His Leu Lys Asn Ser Phe 580 585 590 Asp <210> SEQ ID NO 65 <211> LENGTH: 390 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEOUENCE: 65 acgaccggca gcctcggcgg catactggcc ggcggcggca cttcccttgc cgcaccgtat 60 ttggacaaag cggcggaaaa cctcggtccg gcgggcaaag cggcggtcaa cgcactgggc 120 ggtgcggcca tcggctatgc aactggtggt agtggtggtg ctgtggtggg tgcgaatgta 180 gattggaaca ataggcagct gcatccgaaa gaaatggcgt tggccgacaa atatgccgaa 240 gccctcaagc gcgaagttga aaaacgcgaa ggcagaaaaa tcagcagcca agaagcggca 300 atgagaatcc gcaggcagat atgcgttggg tggacaaagg ttcccaagac ggctataccg 360 accaaagcgt catatccctt atcggaatga 390 <210> SEQ ID NO 66 <211> LENGTH: 129 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 66 Thr Thr Gly Ser Leu Gly Gly Ile Leu Ala Gly Gly Gly Thr Ser Leu 10 15 5 Ala Ala Pro Tyr Leu Asp Lys Ala Ala Glu Asn Leu Gly Pro Ala Gly 20 25 30 Lys Ala Ala Val As
n Ala Leu Gly Gly Ala Ala Ile Gly Tyr Ala Th
r35 40 45 Gly Gly Ser Gly Gly Ala Val Val Gly Ala Asn Val Asp Trp Asn Asn

-continued

		-con	tinued		
50	55	60			
Arg Gln Leu H. 65	His Pro L y s Glu Met A 70	Ala Leu Ala Asp Lys 75	Tyr Ala Glu 80		
	Arq Glu Val Glu Lys i				
ma nea nyo m	85	90	95		
	Ala Met Arg Ile Arg A	Arg Gln Ile Cys Val 105	Gly Trp Thr 110		
	ys Thr Ala Ile Pro 1				
115	120	125			
Glu					
<210> SEQ ID I <211> LENGTH: <212> TYPE: DI <213> ORGANISM	960	tidis			
<400> SEQUENCI	E: 67				
caatgccgtc tg	gaaaagctc acaattttac	agacggcatt tgttatg	caa gtacatatac	60	
agattcccta ta	atactgccc agrkgcgtgc	gtggctgaag acacccc	cta cgcttgctat	120	
ttgraacagc tc	caagtcac caaagacgtc	aactggaacc aggtacw	act ggcgtacgac	180	
aaatgggact at	aaacagga aggcttaacc	ggagccggag cagcgat	tat tgcgctggct	240	
gttaccgtgg tt	actgcggg cgcgggagcc	ggagccgcac tgggctt	aaa cggcgcggcc	300	
gcagcggcaa cc	gatgccgc attcgcctcg	ctggccagcc aggcttc	cgt atcgctcatc	360	
aacaacaaag gc	aatatcgg taacaccctg	aaagagctgg gcagaag	cag cacggtgaaa	420	
aatctgatgg tt	geegtege taeegeagge	gtagccgaca aaatcgg	tgc ttcggcactg	480	
aacaatgtca gc	gataagca gtggatcaac	aacctgaccg tcaacct	ggc caatgcgggc	540	
agtgccgcac tg	gattaatac cgctgtcaac	ggcggcagcc tgaaaga	caa tctggaagcg	600	
	gctttggt gaatactgcg		-	660	
	tacattac ccacaagatt			720	
	gggcaagtg tcaggatggt			780	
	Jacaaacgg caaaaatcct			840	
	agcaaact ggttgccggt			900	
aatgcggcgg cg	jaatgegge tgaggtageg	gtgaaaaata atcagct	tag cgacaaatga	960	
<pre><220> FEATURE <221> NAME/KE <222> LOCATIOI <223> OTHER II <220> FEATURE <221> NAME/KE <222> LOCATIOI <223> OTHER II <220> FEATURE <221> NAME/KE <221> NAME/KE <221> NAME/KE </pre>	319 PRT M: Neisseria meningi : Y: SITE N: (28) NFORMATION: unknown : N: (42) NFORMATION: unknown : Y: SITE Y: SITE	tidis			
<400> SEQUENCI					
~~~~					

- ~	_	-	1	4	 	~	٦

-continued
Gln Cys Arg Leu Lys Ser Ser Gln Phe Tyr Arg Arg His Leu Leu Cys 1 5 10 15
Lys Tyr Ile Tyr Arg Phe Pro Ile Tyr Cys Pro Xaa Ala Cys Val Ala 20 25 30
Glu Asp Thr Pro Tyr Ala Cys Tyr Leu Xaa Gln Leu Gln Val Thr Lys 35 40 45
Asp Val Asn Trp Asn Gln Val Xaa Leu Ala Tyr Asp Lys Trp Asp Tyr 50 55 60
Lys Gln Glu Gly Leu Thr Gly Ala Gly Ala Ala Ile Ile Ala Leu Ala 65 70 75 80
Val Thr Val Val Thr Ala Gly Ala Gly Ala Gly Ala Ala Leu Gly Leu 85 90 95
Asn Gly Ala Ala Ala Ala Thr Asp Ala Ala Phe Ala Ser Leu Ala 100 105 110
Ser Gln Ala Ser Val Ser Leu Ile Asn Asn Lys Gly Asn Ile Gly Asn 115 120 125
Thr Leu Lys Glu Leu Gly Arg Ser Ser Thr Val Lys Asn Leu Met Val 130 135 140
Ala Val Ala Thr Ala Gly Val Ala Asp Lys Ile Gly Ala Ser Ala Leu 145 150 155 160
Asn Asn Val Ser Asp Lys Gln Trp Ile Asn Asn Leu Thr Val Asn Leu 165 170 175
Ala Asn Ala Gly Ser Ala Ala Leu Ile Asn Thr Ala Val Asn Gly Gly 180 185 190
Ser Leu Lys Asp Asn Leu Glu Ala Asn Ile Leu Ala Ala Leu Val Asn 195 200 205
Thr Ala His Gly Glu Ala Ala Ser Lys Ile Lys Gln Leu Asp Gln His 210 215 220
Tyr Ile Thr His Lys Ile Ala His Ala Ile Ala Gly Cys Ala Ala Ala 225 230 235 240
Ala Ala Asn Lys Gly Lys Cys Gln Asp Gly Ala Ile Gly Ala Ala Val 245 250 255
Gly Glu Ile Val Gly Glu Ala Leu Thr Asn Gly Lys Asn Pro Asp Thr 260 265 270
Leu Thr Ala Lys Glu Arg Glu Gln Ile Leu Ala Tyr Ser Lys Leu Val 275 280 285
Ala Gly Thr Val Ser Gly Val Val Gly Gly Asp Val Asn Ala Ala 290 295 300
Asn Ala Ala Glu Val Ala Val Lys Asn Asn Gln Leu Ser Asp Lys 305 310 315
<210> SEQ ID NO 69 <211> LENGTH: 1860 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 69
atgcaagtaa atattcagat teeetatata etgeecagat gegtgegtge tgaagacaee 60
ccctacgctt gctatttgaa acagctccaa gtcaccaaag acgtcaactg gaaccaggta 120
caactggcgt acgacaaatg ggactataaa caggaaggct taaccggagc cggagcagcg 180
attattgcgc tggctgttac cgtggttact gcggggcgcgg gagccggagc cgcactgggc 240

-continued
------------

-continued	
ttaaacggcg cggccgcagc ggcaaccgat gccgcattcg cctcgctggc cagccaggct	300
tccgtatcgc tcatcaacaa caaaggcaat atcggtaaca ccctgaaaga gctgggcaga	360
agcagcacgg tgaaaaatct gatggttgcc gtcgctaccg caggcgtagc cgacaaaatc	420
ggtgcttcgg cactgaacaa tgtcagcgat aagcagtgga tcaacaacct gaccgtcaac	480
ctggccaatg cgggcagtgc cgcactgatt aataccgctg tcaacggcgg cagcctgaaa	540
gacaatctgg aagcgaatat ccttgcggct ttggtgaata ctgcgcatgg agaagcagcc	600
agtaaaatca aacagttgga tcagcactac attacccaca agattgccca tgccatagcg	660
ggctgtgcgg ctgcggcggc gaataagggc aagtgtcagg atggtgcgat aggtgcggct	720
gtgggcgaga tagtcgggga ggctttgaca aacggcaaaa atcctgacac tttgacagct	780
aaagaacgcg aacagatttt ggcatacagc aaactggttg ccggtacggt aagcggtgtg	840
gtcggcggcg atgtaaatgc ggcggcgaat gcggctgagg tagcggtgaa aaataatcag	900
cttagcgaca aagagggtag agaatttgat aacgaaatga ctgcatgcgc caaacagaat	960
aatcctcaac tgtgcagaaa aaatactgta aaaaagtatc aaaatgttgc tgataaaaga	1020
cttgctgctt cgattgcaat atgtacggat atatcccgta gtactgaatg tagaacaatc	1080
agaaaacaac atttgatcga tagtagaagc cttcattcat cttgggaagc aggtctaatt	1140
ggtaaagatg atgaatggta taaattattc agcaaatctt acacccaagc agatttggct	1200
ttacagtctt atcatttgaa tactgctgct aaatcttggc ttcaatcggg caatacaaag	1260
cctttatccg aatggatgtc cgaccaaggt tatacactta tttcaggagt taatcctaga	1320
ttcattccaa taccaagagg gtttgtaaaa caaaatacac ctattactaa tgtcaaatac	1380
ccggaaggca tcagtttcga tacaaaccta aaaagacatc tggcaaatgc tgatggtttt	1440
agtcaaaaac agggcattaa aggagcccat aaccgcacca attttatggc agaactaaat	1500
tcacgaggag gacgcgtaaa atctgaaacc caaactgata ttgaaggcat tacccgaatt	1560
aaatatgaga ttcctacact agacaggaca ggtaaacctg atggtggatt taaggaaatt	1620
tcaagtataa aaactgttta taatcctaaa aaattttctg atgataaaat acttcaaatg	1680
gctcaaaatg ctgcttcaca aggatattca aaagcctcta aaatgctca aaatgaaaga	1740
actaaatcaa tatcggaaag aaaaaatgtc attcaattct cagaaacctt tgacggaatc	1800
aaatttagat catattttga tgtaaataca ggaagaatta caaacattca cccagaataa	1860
<210> SEQ ID NO 70 <211> LENGTH: 619 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 70	
Met Gln Val Asn Ile Gln Ile Pro Tyr Ile Leu Pro Arg Cys Val Arg 1 5 10 15	
Ala Glu Asp Thr Pro Tyr Ala Cys Tyr Leu Lys Gln Leu Gln Val Thr 20 25 30	
Lys Asp Val Asn Trp Asn Gln Val Gln Leu Ala Tyr Asp Lys Trp Asp 35 40 45	
Tyr Lys Gln Glu Gly Leu Thr Gly Ala Gly Ala Ala Ile Ile Ala Leu 50 55 60	
Ala Val Thr Val Val Thr Ala Gly Ala Gly Ala Gly Ala Ala Leu Gly 65 70 75 80	

Leu	Asn	Gly	Ala	Ala 85	Ala	Ala	Ala	Thr	Asp 90	Ala	Ala	Phe	Ala	Ser 95	Leu
Ala	Ser	Gln	Ala 100	Ser	Val	Ser	Leu	Ile 105	Asn	Asn	Lys	Gly	Asn 110	Ile	Gly
Asn	Thr	Leu 115	Lys	Glu	Leu	Gly	Arg 120	Ser	Ser	Thr	Val	Lys 125	Asn	Leu	Met
Val	Ala 130	Val	Ala	Thr	Ala	Gly 135	Val	Ala	Asp	Lys	Ile 140	Gly	Ala	Ser	Ala
Leu 145	Asn	Asn	Val	Ser	Asp 150	Lys	Gln	Trp	Ile	Asn 155	Asn	Leu	Thr	Val	Asn 160
Leu	Ala	Asn	Ala	Gly 165	Ser	Ala	Ala	Leu	Ile 170	Asn	Thr	Ala	Val	Asn 175	Gly
Gly	Ser	Leu	L <b>y</b> s 180	Asp	Asn	Leu	Glu	Ala 185	Asn	Ile	Leu	Ala	Ala 190	Leu	Val
Asn	Thr	Ala 195	His	Gly	Glu	Ala	Ala 200	Ser	Lys	Ile	Lys	Gln 205	Leu	Asp	Gln
His	<b>Tyr</b> 210	Ile	Thr	His	Lys	Ile 215	Ala	His	Ala	Ile	Ala 220	Gly	Cys	Ala	Ala
Ala 225	Ala	Ala	Asn	Lys	Gly 230	Lys	Cys	Gln	Asp	Gly 235	Ala	Ile	Gly	Ala	Ala 240
Val	Gly	Glu	Ile	Val 245	Gly	Glu	Ala	Leu	Thr 250	Asn	Gly	Lys	Asn	Pro 255	Asp
Thr	Leu	Thr	Ala 260	Lys	Glu	Arg	Glu	Gln 265	Ile	Leu	Ala	Tyr	Ser 270	Lys	Leu
Val	Ala	Gly 275	Thr	Val	Ser	Gly	Val 280	Val	Gly	Gly	Asp	Val 285	Asn	Ala	Ala
Ala	Asn 290	Ala	Ala	Glu	Val	Ala 295	Val	Lys	Asn	Asn	Gln 300	Leu	Ser	Asp	Lys
Glu 305	Gly	Arg	Glu	Phe	Asp 310	Asn	Glu	Met	Thr	Ala 315	Сув	Ala	Lys	Gln	Asn 320
Asn	Pro	Gln	Leu	C <b>y</b> s 325	Arg	Lys	Asn	Thr	Val 330	Lys	Lys	Tyr	Gln	Asn 335	Val
Ala	Asp	Lys	Arg 340	Leu	Ala	Ala	Ser	Ile 345	Ala	Ile	Сув	Thr	Asp 350	Ile	Ser
Arg	Ser	Thr 355	Glu	Cys	Arg	Thr	Ile 360	Arg	Lys	Gln	His	Leu 365	Ile	Asp	Ser
Arg	Ser 370	Leu	His	Ser	Ser	Trp 375	Glu	Ala	Gly	Leu	Ile 380	Gly	Lys	Asp	Asp
Glu 385	Trp	Tyr	Lys	Leu	Phe 390	Ser	Lys	Ser	Tyr	Thr 395	Gln	Ala	Asp	Leu	Ala 400
Leu	Gln	Ser	Tyr	His 405	Leu	Asn	Thr	Ala	Ala 410	Lys	Ser	Trp	Leu	Gln 415	Ser
Gly	Asn	Thr	L <b>y</b> s 420	Pro	Leu	Ser	Glu	Trp 425	Met	Ser	Asp	Gln	Gly 430	Tyr	Thr
Leu	Ile	Ser 435	Gly	Val	Asn	Pro	Arg 440	Phe	Ile	Pro	Ile	Pro 445	Arg	Gly	Phe
Val	Lys 450	Gln	Asn	Thr	Pro	Ile 455	Thr	Asn	Val	Lys	<b>Ty</b> r 460	Pro	Glu	Gly	Ile
Ser 465	Phe	Asp	Thr	Asn	Leu 470	Lys	Arg	His	Leu	Ala 475	Asn	Ala	Asp	Gly	Phe 480

-continued

											-	con	tin	ued		
Ser	Gln	Lys	Gln	Gly 485	Ile	Lys	Gly	Ala	His 490	Asn	Arg	Thr	Asn	Phe 495	Met	
Ala	Glu	Leu	Asn 500	Ser	Arg	Gly	Gly	<b>A</b> rg 505	Val	Lys	Ser	Glu	Thr 510	Gln	Thr	
Asp	Ile	Glu 515		Ile	Thr	Arg	Ile 520		Tyr	Glu	Ile	Pro 525	Thr	Leu	Asp	
Arg	Thr 530	Gly	Lys	Pro	Asp	Gly 535	Gly	Phe	Lys	Glu	Ile 540	Ser	Ser	Ile	Lys	
Thr 545	Val	Tyr	Asn	Pro	L <b>y</b> s 550	Lys	Phe	Ser	Asp	Asp 555	Lys	Ile	Leu	Gln	Met 560	
Ala	Gln	Asn	Ala	Ala 565	Ser	Gln	Gly	Tyr	Ser 570	Lys	Ala	Ser	Lys	Ile 575	Ala	
Gln .	Asn	Glu	Arg 580	Thr	Lys	Ser	Ile	Ser 585	Glu	Arg	Lys	Asn	Val 590	Ile	Gln	
Phe	Ser	Glu 595	Thr	Phe	Asp	Gly	Ile 600	Lys	Phe	Arg	Ser	<b>Ty</b> r 605	Phe	Asp	Val	
Asn '	Thr 610	Gly	Arg	Ile	Thr	Asn 615	Ile	His	Pro	Glu						
<pre>&lt;2122</pre> <2123<2200<2223<2223<2223<2223<2223<2223<2223<2223<2220<2221<2223<2220<2221<2223<2220<2221<2223<2220<2221<2223<2221<2223<2223<2221<2223<2223<2220<2221<2223<2223<2223<2220<2221<2223<2223<2223<2223<2223<2223<2223<2223<2223<2223<2223<2223<2223<2223<2223<2223<2223	> OFFEAS	CATU HER CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CATUP CAT	LSM: RE: (EY: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON: LON:	misco (181) DRMAJ misco (365) DRMAJ misco (473) DRMAJ misco (143) DRMAJ misco (141) DRMAJ misco (144) DRMAJ misco (144) DRMAJ misco (144) DRMAJ misco (144) DRMAJ misco (144) DRMAJ misco (144) DRMAJ misco (144) DRMAJ misco (144) DRMAJ misco (144) DRMAJ misco (144) DRMAJ misco (144) DRMAJ	<pre>2_fea 2_fea 1) FION: 2_fea 3) FION: 2_fea 3) FION: 2_fea 3) FION: 2_fea 3) FION: 2_fea 11) FION: 2_fea 11] FION: 2_fea 11</pre>	ture ture any ture any ture any ture any ture any ture any ture ture	y nuc y nuc y nuc y nuc y nuc y nuc y nuc y nuc y nuc	<pre>2leot 2leot 2leot 2leot 2leot 2leot 2leot</pre>	ide ide ide ide ide ide							

-continued	
<pre>&lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: misc_feature &lt;222&gt; LOCATION: (1586)(1587) &lt;223&gt; OTHER INFORMATION: any nucleotide &lt;20&gt; FEATURE: &lt;211&gt; NAME/KEY: misc_feature &lt;222&gt; LOCATION: (1615) &lt;223&gt; OTHER INFORMATION: any nucleotide &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: misc_feature &lt;222&gt; LOCATION: (1622) &lt;223&gt; OTHER INFORMATION: any nucleotide &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: misc_feature &lt;222&gt; LOCATION: (1738)(1740) &lt;223&gt; OTHER INFORMATION: any nucleotide &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: misc_feature &lt;222&gt; LOCATION: (1744) &lt;223&gt; OTHER INFORMATION: any nucleotide &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: misc_feature &lt;222&gt; LOCATION: (1744) &lt;223&gt; OTHER INFORMATION: any nucleotide &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: misc_feature &lt;222&gt; LOCATION: (1746) &lt;223&gt; OTHER INFORMATION: any nucleotide &lt;2400&gt; SEQUENCE: 71</pre>	
tatctgaaac agctccaagt agcgaaaaac atcaactgga atcaggtgca gcttgcttac	60
gacagatggg actacaaaca ggagggctta accgaagcag gtgcggcgat tatcgcactg	120
gccgttaccg tggtcacctc aggcgcagga accggagccg tattgggatt aaacggtgcg	180
nccgccgccg caaccgatgc agcattcgcc tctttggcca gccaggcttc cgtatcgttc	240
atcaacaaca aaggcgatgt cggcaaaacc ctgaaagagc tgggcagaag cagcacggtg	300
aaaaatctgg tggttgccgc cgctaccgca ggcgtagccg acaaaatcgg cgcttcggca	360
ctgancaatg tcagcgataa gcagtggatc aacaacctga ccgtcaacct agccaatgcg	420
ggcagtgccg cactgattaa taccgctgtc aacggcggca gcctgaaaga cantctggaa	480
gcgaatatcc ttgcggcttt ggtcaatacc gcgcatggag aagcagccag taaaatcaaa	540
cagttggatc agcactacat agtccacaag attgcccatg ccatagcggg ctgtgcggca	600
gcggcggcga ataagggcaa gtgtcaggat ggtgcgatag gtgcggctgt gggcgagata	660
gtcggggggg ctttgacaaa cggcaaaaat cctgacactt tgacagctaa agaacgcgaa	720
cagattttgg catacagcaa actggttgcc ggtacggtaa gcggtgtggt cggcggcgat	780
gtaaatgcgg cggcgaatgc ggctgaggta gcggtgaaaa ataatcagct tagcgacnaa	840
gagggtagag aatttgataa cgaaatgact gcatgcgcca aacagaatan tcctcaactg	900
tgcagaaaaa atactgtaaa aaagtatcaa aatgttgctg ataaaagact tgctgcttcg	960
attgcaatat gtacggatat atcccgtagt actgaatgta gaacaatcag aaaacaacat	1020
ttgatcgata gtagaagcct tcattcatct tgggaagcag gtctaattgg taaagatgat	1080
gaatggtata aattattcag caaatcttac acccaagcag atttggcttt acagtcttat	1140
catttgaata ctgctgctaa atcttggctt caatcgggca atacaaagcc tttatccgaa	1200
tggatgtccg accaaggtta tacacttatt tcaggagtta atcctagatt cattccaata	1260
ccaagagggt ttgtaaaaca aaatacacct attactaatg tcaaataccc ggaaggcatc	1320
agtttcgata caaacctana aagacatctg gcaaatgctg atggttttag tcaagaacag	1380
ggcattaaag gagcccataa ccgcaccaat nttatggcag aactaaattc acgaggagga	1440
ngngtaaaat ctgaaaccca nactgatatt gaaggcatta cccgaattaa atatgagatt	1500

cctacactag acaggacagg ta	aacctgat ggtgga	attta aggaaatttc	aagtataaaa	1560
actgtttata atcctaaaaa nt	tttnngat gataaa	aatac ttcaaatggc	tcaanatgct	1620
gnttcacaag gatattcaaa ag	jeetetaaa attget	caaa atgaaagaac	taaatcaata	1680
tcggaaagaa aaaatgtcat to	aattotoa gaaaco	tttg acggaatcaa	atttagannn	1740
tatntngatg taaatacagg aa	igaattaca aacatt	cacc cagaataa		1788
010 (TO TO NO 70				
<210> SEQ ID NO 72				
<211> LENGTH: 595				
<212> TYPE: PRT				
<213> ORGANISM: Neisseri <220> FEATURE:	a meningitiais			
<2205 FEATORE: <221> NAME/KEY: SITE				
<222> LOCATION: (61) <223> OTHER INFORMATION:	unknorm			
<220> FEATURE:	ulikilowii			
<220> FLAIGRE: <221> NAME/KEY: SITE				
<222> LOCATION: (122)	unknorm			
<223> OTHER INFORMATION: <220> FEATURE:	ulikilowii			
<220> FLATORE: <221> NAME/KEY: SITE				
<222> LOCATION: (158)				
<223> OTHER INFORMATION:	unknown			
<220> FEATURE:				
<221> NAME/KEY: SITE				
<222> LOCATION: (280)				
<223> OTHER INFORMATION:	unknown			
<220> FEATURE:				
<221> NAME/KEY: SITE				
<222> LOCATION: (297)				
<223> OTHER INFORMATION:	unknown			
<220> FEATURE:				
<221> NAME/KEY: SITE				
<222> LOCATION: (447)	,			
<223> OTHER INFORMATION:	unknown			
<220> FEATURE: <221> NAME/KEY: SITE				
<222> LOCATION: (471)				
<222> IOCATION: (471) <223> OTHER INFORMATION:	unknown			
<220> FEATURE:				
<221> NAME/KEY: SITE				
<222> LOCATION: (481)				
<223> OTHER INFORMATION:	unknown			
<220> FEATURE:				
<221> NAME/KEY: SITE				
<222> LOCATION: (487) <223> OTHER INFORMATION:				
<220> FEATURE:	ulikilowii			
<220> FEATORE: <221> NAME/KEY: SITE				
<222> LOCATION: (527)				
<223> OTHER INFORMATION:	unknown			
<220> FEATURE:				
<221> NAME/KEY: SITE				
<222> LOCATION: (529)				
<223> OTHER INFORMATION:	unknown			
<220> FEATURE:				
<221> NAME/KEY: SITE				
<222> LOCATION: (539) <223> OTHER INFORMATION:	unknown			
<220> FEATURE:				
<221> NAME/KEY: SITE				
<222> LOCATION: (541)				
<223> OTHER INFORMATION:	unknown			
<220> FEATURE:				
<221> NAME/KEY: SITE				
<222> LOCATION: (580)				
<223> OTHER INFORMATION:	unknown			
<220> FEATURE:				
<221> NAME/KEY: SITE				
<222> LOCATION: (582)	un lin er r			
<223> OTHER INFORMATION:	unknown			

<400	)> SE	QUEN	ICE :	72											
Tyr 1	Leu	Lys	Gln	Leu 5	Gln	Val	Ala	Lys	Asn 10	Ile	Asn	Trp	Asn	Gln 15	Val
Gln	Leu	Ala	Tyr 20	Asp	Arg	Trp	Asp	<b>Ty</b> r 25	Lys	Gln	Glu	Gly	Leu 30	Thr	Glu
Ala	Gly	Ala 35	Ala	Ile	Ile	Ala	Leu 40	Ala	Val	Thr	Val	Val 45	Thr	Ser	Gly
Ala	Gly 50	Thr	Gly	Ala	Val	Leu 55	Gly	Leu	Asn	Gly	Ala 60	Xaa	Ala	Ala	Ala
Thr 65	Asp	Ala	Ala	Phe	Ala 70	Ser	Leu	Ala	Ser	Gln 75	Ala	Ser	Val	Ser	Phe 80
Ile	Asn	Asn	Lys	Gly 85	Asp	Val	Gly	Lys	Thr 90	Leu	Lys	Glu	Leu	Gly 95	Arg
Ser	Ser	Thr	Val 100	Lys	Asn	Leu	Val	Val 105	Ala	Ala	Ala	Thr	Ala 110	Gly	Val
Ala	Asp	L <b>y</b> s 115	Ile	Gly	Ala	Ser	Ala 120	Leu	Xaa	Asn	Val	Ser 125	Asp	Lys	Gln
Trp	Ile 130	Asn	Asn	Leu	Thr	Val 135	Asn	Leu	Ala	Asn	Ala 140	Gly	Ser	Ala	Ala
Leu 145	Ile	Asn	Thr	Ala	Val 150	Asn	Gly	Gly	Ser	Leu 155	Lys	Asp	Xaa	Leu	Glu 160
Ala	Asn	Ile	Leu	Ala 165	Ala	Leu	Val	Asn	Thr 170	Ala	His	Gly	Glu	Ala 175	Ala
Ser	Lys	Ile	L <b>y</b> s 180	Gln	Leu	Asp	Gln	His 185	Tyr	Ile	Val	His	Lys 190	Ile	Ala
His	Ala	Ile 195	Ala	Gly	Cys	Ala	Ala 200	Ala	Ala	Ala	Asn	L <b>y</b> s 205	Gly	Lys	Сув
Gln	Asp 210	Gly	Ala	Ile	Gly	Ala 215	Ala	Val	Gly	Glu	Ile 220	Val	Gly	Glu	Ala
Leu 225	Thr	Asn	Gly	Lys	Asn 230	Pro	Asp	Thr	Leu	Thr 235	Ala	Lys	Glu	Arg	Glu 240
Gln	Ile	Leu	Ala	<b>Ty</b> r 245	Ser	Lys	Leu	Val	Ala 250	Gly	Thr	Val	Ser	Gly 255	Val
Val	Gly	Gly	Asp 260	Val	Asn	Ala	Ala	Ala 265	Asn	Ala	Ala	Glu	Val 270	Ala	Val
Lys	Asn	Asn 275	Gln	Leu	Ser	Asp	Xaa 280	Glu	Gly	Arg	Glu	Phe 285	Asp	Asn	Glu
Met	Thr 290	Ala	Сув	Ala	Lys	Gln 295	Asn	Xaa	Pro	Gln	Leu 300	Суз	Arg	Lys	Asn
Thr 305	Val	Lys	Lys	Tyr	Gln 310	Asn	Val	Ala	Asp	L <b>y</b> s 315	Arg	Leu	Ala	Ala	Ser 320
Ile	Ala	Ile	Cys	Thr 325	Asp	Ile	Ser	Arg	Ser 330	Thr	Glu	Cys	Arg	Thr 335	Ile
Arg	Lys	Gln	His 340	Leu	Ile	Asp	Ser	Arg 345	Ser	Leu	His	Ser	Ser 350	Trp	Glu
Ala	Gly	Leu 355	Ile	Gly	Lys	Asp	Asp 360	Glu	Trp	Tyr	Lys	Leu 365	Phe	Ser	Lys
Ser	<b>Ty</b> r 370	Thr	Gln	Ala	Asp	Leu 375	Ala	Leu	Gln	Ser	<b>Ty</b> r 380	His	Leu	Asn	Thr
Ala	Ala	Lys	Ser	Trp	Leu	Gln	Ser	Gly	Asn	Thr	Lys	Pro	Leu	Ser	Glu

-continued

										-	con	tin	ued					
85				390					395					400				
rp Met	Ser	Asp	Gln 405	Gly	Tyr	Thr	Leu	Ile 410	Ser	Gly	Val	Asn	Pro 415	Arg				
he Ile	Pro	Ile 420	Pro	Arg	Gly	Phe	Val 425	Lys	Gln	Asn	Thr	Pro 430	Ile	Thr				
sn Val	Lys 435	Tyr	Pro	Glu	Gly	Ile 440	Ser	Phe	Asp	Thr	Asn 445	Leu	Xaa	Arg				
lis Leu 450		Asn	Ala	Asp	Gly 455	Phe	Ser	Gln	Glu	Gln 460	Gly	Ile	Lys	Gly				
la His		Arg	Thr	Asn 470		Met	Ala	Glu	Leu 475		Ser	Arg	Gly	Gly 480				
aa Val	Lys	Ser			Xaa	Thr	Asp			Gly	Ile	Thr	-					
ys Tyr	Glu		485 Pro	Thr	Leu	Asp		490 Thr	Gly	Lys	Pro		495 Gly	Gly				
he Lys	Glu	500 Ile	Ser	Ser	Ile	Lys	505 Thr	Val	Tyr	Asn	Pro	510 Lys	Xaa	Phe				
(aa Asp	515 Asp	Lvs	Ile	Leu	Gln	520 Met	Ala	Gln	Xaa	Ala	525 Xaa	Ser	Gln	Glv				
530 yr Ser		۔ کاء	Ser	Lvs	535	۵la	Gln	Δen	Glu	540 Arg	Thr	Lvs	Ser	Tle				
45				550					555					560				
Ser Glu	-	-	565					570				-	575					
ys Phe	Arg	Xaa 580	Tyr	Xaa	Asp	Val	Asn 585	Thr	Gly	Arg	Ile	Thr 590	Asn	Ile				
lis Pro	Glu 595																	
:210> S: :211> L: :212> T :213> O	ENGTH YPE:	H: 45 DNA	53	sseri	La me	ening	jitic	lis										
:400> S	EQUEI	NCE :	73															
itggcaa	tca †	ttac	attg	ta t	tatto	ctgto	aat	zggta	attt	taaa	atgta	atg †	tgcaa	laagca	a 60			
iaaaata	ttc a	aagt	agtto	gc ca	aataa	ataa	g aat	atg	gttc	ttti	ttgg	gtt †	tttg	smrgo	c 120			
itcatcg	gcg (	gttc	aacca	aa to	gccat	tgtct	: cc	cata	tgt	taat	tatt	ttt 🤉	gctta	igegaa	a 180			
icagaaa	ata a	aaaa	tcgt	at co	gtaaa	aatca	a ago	caato	ctat	gcta	atct	ttt 🤉	ggcga	aaatt	t 240			
Ittcaaa	tat a	atat	gcta	ag ag	gacca	agtat	t tg	gttai	taa	ataa	agag-	tga a	ataco	dttta	a 300			
ıtattt	tac †	tgtc	cgta	tt g	tctgi	ttatt	s gga	attgi	atg	ttg	gaat	tog g	gttaa	ıggact	£ 360			
lagatta	gcc (	caaa	tttt	tt ta	aaaat	tgtta	a ati	ttta	attg	ttt	tatto	ggt a	attgo	rctcto	g 420			
laaatcg	ggc a	attc	gggt	tt a	atcaa	aactt	t taa	a							453			
:210> S: :211> L: :212> T :213> OI :220> F :221> N; :222> L( :223> O'	ENGTH YPE: RGANI EATUF AME/H OCATI	H: 15 PRT ISM: RE: KEY: ION: INFO	50 Neis SITE (39)	E )(4	10)	-		lis										

```
-continued
```

<222> LOCATION: (99) <223> OTHER INFORMATION: unknown <400> SEQUENCE: 74 Met Ala Ile Ile Thr Leu Tyr Tyr Ser Val Asn Gly Ile Leu Asn Val 1 5 10 15 Cys Ala Lys Ala Lys Asn Ile Gln Val Val Ala Asn Asn Lys Asn Met 20 25 30 Val Leu Phe Gly Phe Leu Xaa Xaa Ile Ile Gly Gly Ser Thr Asn Ala 35 40 Met Ser Pro Ile Leu Leu Ile Phe Leu Leu Ser Glu Thr Glu Asn Lys 55 50 60 Asn Arg Ile Val Lys Ser Ser Asn Leu Cys Tyr Leu Leu Ala Lys Ile 70 75 65 80 Val Gln Ile Tyr Met Leu Arg Asp Gln Tyr Trp Leu Leu Asn Lys Ser Glu Tyr Xaa Leu Ile Phe Leu Leu Ser Val Leu Ser Val Ile Gly Leu 100 105 110 Tyr Val Gly Ile Arg Leu Arg Thr Lys Ile Ser Pro Asn Phe Phe Lys 115 120 125 Met Leu Ile Phe Ile Val Leu Leu Val Leu Ala Leu Lys Ile Gly His 130 135 140 Ser Gly Leu Ile Lys Leu 145 150 <210> SEQ ID NO 75 <211> LENGTH: 768 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 75 atgcaagaaa taatgcaatc tatcgttttt gttgctgccg caatactgca cggaattaca 60 ggcatgggat ttccgatgct cggtacaacc gcattggctt ttatcatgcc attgtctaag 120 gttgttgcct tggtggcatt accaagcctg ttaatgagct tgttggttct atgcagcaat 180 aacaaaaagg gtttttggca agagattgtt tattatttaa aaacctataa attgcttgct 240 atcggcagcg tcgttggcag cattttgggg gtgaagttgc ttttgatact tccagtgtct 300 tggctgcttt tactgatggc aatcattaca ttgtattatt ctgtcaatgg tattttaaat 360 gtatgtgcaa aagcaaaaaa tattcaagta gttgccaata ataagaatat ggttctttt 420 gggtttttgg caggcatcat cggcggttca accaatgcca tgtctcccat attgttaata 480 tttttgctta gcgaaacaga aaataaaaat cgtatcgtaa aatcaagcaa tctatgctat 540 cttttggcga aaattgttca aatatatatg ctaagagacc agtattggtt attaaataag 600 agtgaatacg gtttaatatt tttactgtcc gtattgtctg ttattggatt gtatgttgga 660 attcggttaa ggactaagat tagcccaaat ttttttaaaa tgttaatttt tattgtttta 720 ttggtattgg ctctgaaaat cgggcattcg ggtttaatca aactttaa 768 <210> SEQ ID NO 76 <211> LENGTH: 255 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis

-00	ont	in	ue	d

Met ( 1	Gln	Glu	Ile	Met 5	Gln	Ser	Ile	Val	Phe 10	Val	Ala	Ala	Ala	Ile 15	Leu	
His (	Gly	Ile	Thr 20	Gly	Met	Gly	Phe	Pro 25	Met	Leu	Gly	Thr	Thr 30	Ala	Leu	
Ala 1	Phe	Ile 35	Met	Pro	Leu	Ser	Lys 40	Val	Val	Ala	Leu	Val 45	Ala	Leu	Pro	
Ser 1	Leu 50	Leu	Met	Ser	Leu	Leu 55	Val	Leu	Сув	Ser	Asn 60	Asn	Lys	Lys	Gly	
Phe 65	Trp	Gln	Glu	Ile	Val 70	Tyr	Tyr	Leu	Lys	Thr 75	Tyr	Lys	Leu	Leu	Ala 80	
Ile (	Gly	Ser	Val	Val 85	Gly	Ser	Ile	Leu	Gly 90	Val	Lys	Leu	Leu	Leu 95	Ile	
Leu 1	Pro	Val	Ser 100	Trp	Leu	Leu	Leu	Leu 105	Met	Ala	Ile	Ile	Thr 110	Leu	Tyr	
Tyr :	Ser	Val 115	Asn	Gly	Ile	Leu	Asn 120	Val	Cys	Ala	Lys	Ala 125	Lys	Asn	Ile	
Gln	Val 130	Val	Ala	Asn	Asn	L <b>y</b> s 135	Asn	Met	Val	Leu	Phe 140	Gly	Phe	Leu	Ala	
Gly 1 145	Ile	Ile	Gly	Gly	Ser 150	Thr	Asn	Ala	Met	Ser 155	Pro	Ile	Leu	Leu	Ile 160	
Phe 1	Leu	Leu	Ser	Glu 165	Thr	Glu	Asn	Lys	Asn 170	Arg	Ile	Val	Lys	Ser 175	Ser	
Asn 1	Leu	Cys	<b>Ty</b> r 180	Leu	Leu	Ala	Lys	Ile 185	Val	Gln	Ile	Tyr	Met 190	Leu	Arg	
Asp (	Gln	<b>Ty</b> r 195	Trp	Leu	Leu	Asn	Lys 200	Ser	Glu	Tyr	Gly	Leu 205	Ile	Phe	Leu	
Leu :	Ser 210	Val	Leu	Ser	Val	Ile 215	Gly	Leu	Tyr	Val	Gl <b>y</b> 220	Ile	Arg	Leu	Arg	
Thr 1 225	Lys	Ile	Ser	Pro	Asn 230	Phe	Phe	Lys	Met	Leu 235	Ile	Phe	Ile	Val	Leu 240	
Leu '	Val	Leu	Ala	Leu 245	Lys	Ile	Gly	His	Ser 250	Gly	Leu	Ile	Lys	Leu 255		
<210: <211: <212: <213: <400:	> LE > TY > OF	NGTH PE: RGANI	I: 76 DNA SM:	8 Neis	sseri	la me	ening	gitic	lis							
					to ta	atcgi	ttt	t gti	zgato	Jccd	caat	tact	gca (	cggaa	attaca	60
ggca	tggg	gat 1	tcc	gatgo	ct co	ggta	caaco	c gca	attg	gctt	tta	tcat	gcc a	attgi	ctaag	120
gttg	ttgo	cct 1	ggt	ggcat	tt ad	ccaa	gaato	g tta	aatga	agct	tgt	tggt	tct a	atgca	agcaat	180
aaca	aaaa	agg g	gttt	ttgg	ca aç	gagat	tgti	t tai	tati	taa	aaa	ccta	taa a	attgo	cttgct	240
atcg	gcag	gog t	cgt	tggca	ag ca	attti	aggg	g gto	gaagt	tgc	ttt	tgata	act 1	tcca	gtgtct	300
tggc	tgct	tt 1	acto	gatgo	gc aa	atca	taca	a tto	gtati	att	ctg	tcaa-	tgg †	tatti	taaat	360
gtat	gtgo	caa a	aagca	aaaa	aa ta	attca	aagta	a gti	zgada	aata	ataa	agaa	tat 🤉	ggtto	tttt	420
gggt	tttt	agg (	caggo	catca	at co	ggcg	gttca	a aco	caato	gcca	tgto	ctcc	cat a	attgi	taata	480
tttt	tgct	ta g	gcga	aaca	ga ga	aataa	aaat	t cgi	tatco	gcaa	aato	caago	caa f	tcta	gctat	540
cttt	tggo	caa a	aatt	tgtto	ca aa	atata	atato	g cta	aagaq	gacc	agta	attgo	gtt a	attaa	aataag	600

#### -continued

agtgaatacg gtttaatatt tttactgtcc gtattgtctg ttattggatt gtatgttgga attcggttaa ggactaagat tagcccaaat ttttttaaaa tgttaatttt tattgtttta ttggtattgg ctctgaaaat cgggtattca ggtttaatca aactttaa <210> SEQ ID NO 78 <211> LENGTH: 255 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 78 Met Gln Glu Ile Met Gln Ser Ile Val Phe Val Ala Ala Ala Ile Leu His Gly Ile Thr Gly Met Gly Phe Pro Met Leu Gly Thr Thr Ala Leu Ala Phe Ile Met Pro Leu Ser Lys Val Val Ala Leu Val Ala Leu Pro Ser Leu Leu Met Ser Leu Leu Val Leu Cys Ser Asn Asn Lys Lys Gly Phe Trp Gln Glu Ile Val Tyr Tyr Leu Lys Thr Tyr Lys Leu Leu Ala Ile Gly Ser Val Val Gly Ser Ile Leu Gly Val Lys Leu Leu Leu Ile Leu Pro Val Ser Trp Leu Leu Leu Met Ala Ile Ile Thr Leu Tyr Tyr Ser Val Asn Gly Ile Leu Asn Val Cys Ala Lys Ala Lys Asn Ile 115 120 125 Gln Val Val Ala Asn Asn Lys Asn Met Val Leu Phe Gly Phe Leu Ala Gly Ile Ile Gly Gly Ser Thr Asn Ala Met Ser Pro Ile Leu Leu Ile Phe Leu Leu Ser Glu Thr Glu Asn Lys Asn Arg Ile Ala Lys Ser Ser Asn Leu Cys Tyr Leu Leu Ala Lys Ile Val Gln Ile Tyr Met Leu Arg Asp Gln Tyr Trp Leu Leu Asn Lys Ser Glu Tyr Gly Leu Ile Phe Leu Leu Ser Val Leu Ser Val Ile Gly Leu Tyr Val Gly Ile Arg Leu Arg Thr Lys Ile Ser Pro Asn Phe Phe Lys Met Leu Ile Phe Ile Val Leu Leu Val Leu Ala Leu Lys Ile Gly Tyr Ser Gly Leu Ile Lys Leu <210> SEQ ID NO 79 <211> LENGTH: 516 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 79 atgagacata tgaaaataca aaattattta ctagtattta tagttttaca tatagccttg atagtaatta atatagtgtt tggttatttt gtttttctat ttgatttttt tgcgtttttg ttttttgcaa acgtctttct tgctgtaaat ttattatttt tagaaaaaaa cataaaaaac 

aaattattgt ttttattgcc gatttctatt attatatgga tggtaattca tattagtatg	240
ataaatataa aattttataa atttgagcat caaataaagg aacaaaatat atcctcgatt	300
actggggtga taaaaccaca tgatagttat aattatgttt atgactcaaa tggatatgct	360
aaattaaaag ataatcatag atatggtagg gtaattagag aaacacctta tattgatgta	420
gttgcatctg atgttaaaaa taaatccata agattaagct tggtttgtgg tattcattca	480
tatgctccat gtgccaattt tataaaattt gtcagg	516
<210> SEQ ID NO 80 <211> LENGTH: 172 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 80	
Met Arg His Met Lys Ile Gln Asn Tyr Leu Leu Val Phe Ile Val Leu 1 5 10 15	
His Ile Ala Leu Ile Val Ile Asn Ile Val Phe Gly Tyr Phe Val Phe 20 25 30	
Leu Phe Asp Phe Phe Ala Phe Leu Phe Phe Ala Asn Val Phe Leu Ala 35 40 45	
Val Asn Leu Leu Phe Leu Glu Lys Asn Ile Lys Asn Lys Leu Leu Phe 50 55 60	
Leu Leu Pro Ile Ser Ile Ile Ile Trp Met Val Ile His Ile Ser Met 65 70 75 80	
Ile Asn Ile Lys Phe Tyr Lys Phe Glu His Gln Ile Lys Glu Gln Asn 85 90 95	
Ile Ser Ser Ile Thr Gly Val Ile Lys Pro His Asp Ser Tyr Asn Tyr 100 105 110	
Val Tyr Asp Ser Asn Gly Tyr Ala Lys Leu Lys Asp Asn His Arg Tyr 115 120 125	
Gly Arg Val Ile Arg Glu Thr Pro Tyr Ile Asp Val Val Ala Ser Asp 130 135 140	
Val Lys Asn Lys Ser Ile Arg Leu Ser Leu Val Cys Gly Ile His Ser 145 150 155 160	
Tyr Ala Pro Cys Ala Asn Phe Ile Lys Phe Val Arg 165 170	
<210> SEQ ID NO 81 <211> LENGTH: 729 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 81	
atgagacata tgaaaaataa aaattattta ctagtattta tagttttaca tatagccttg	60
atagtaatta atatagtgtt tggttatttt gtttttctat ttgatttttt tgcgtttttg	120
ttttttgcaa acgtctttct tgctgtaaat ttattatttt tagaaaaaaa cataaaaaac	180
aaattattgt ttttattgcc gatttctatt attatatgga tggtaattca tattagtatg	240
ataaatataa aattttataa atttgagcat caaataaagg aacaaaatat atcctcgatt	300
actggggtga taaaaccaca tgatagttat aattatgttt atgactcaaa tggatatgct	360
aaattaaaag ataatcatag atatggtagg gtaattagag aaacacctta tattgatgta	420

continued

-continued	
gttgcatctg atgttaaaaa taaatccata agattaagct tggtttgtgg tattcattca	480
tatgctccat gtgccaattt tataaaattt gcaaaaaaac ctgttaaaat ttattttat	540
aatcaacctc aaggagattt tatagataat gtaatatttg aaattaatga tggaaacaaa	600
agtttgtact tgttagataa gtataaaaca ttttttctta ttgaaaacag tgtttgtatc	660
gtattaatta ttttatattt aaaatttaat ttgcttttat ataggactta cttcaatgag	720
ttggaatag	729
<210> SEQ ID NO 82 <211> LENGTH: 242 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 82	
Met Arg His Met Lys Asn Lys Asn Tyr Leu Leu Val Phe Ile Val Leu 1 5 10 15	
His Ile Ala Leu Ile Val Ile Asn Ile Val Phe Gly Tyr Phe Val Phe 20 25 30	
Leu Phe Asp Phe Phe Ala Phe Leu Phe Phe Ala Asn Val Phe Leu Ala 35 40 45	
Val Asn Leu Leu Phe Leu Glu Lys Asn Ile Lys Asn Lys Leu Leu Phe 50 55 60	
Leu Leu Pro Ile Ser Ile Ile Ile Trp Met Val Ile His Ile Ser Met 65 70 75 80	
Ile Asn Ile Lys Phe Tyr Lys Phe Glu His Gln Ile Lys Glu Gln Asn 85 90 95	
Ile Ser Ser Ile Thr Gly Val Ile Lys Pro His Asp Ser Tyr Asn Tyr 100 105 110	
Val Tyr Asp Ser Asn Gly Tyr Ala Lys Leu Lys Asp Asn His Arg Tyr 115 120 125	
Gly Arg Val Ile Arg Glu Thr Pro Tyr Ile Asp Val Val Ala Ser Asp 130 135 140	
Val Lys Asn Lys Ser Ile Arg Leu Ser Leu Val Cys Gly Ile His Ser 145 150 155 160	
Tyr Ala Pro Cys Ala Asn Phe Ile Lys Phe Ala Lys Lys Pro Val Lys 165 170 175	
Ile Tyr Phe Tyr Asn Gln Pro Gln Gly Asp Phe Ile Asp Asn Val Ile 180 185 190	
Phe Glu Ile Asn Asp Gly Asn Lys Ser Leu Tyr Leu Leu Asp Lys Tyr 195 200 205	
Lys Thr Phe Phe Leu Ile Glu Asn Ser Val Cys Ile Val Leu Ile Ile 210 215 220	
Leu Tyr Leu Lys Phe Asn Leu Leu Leu Tyr Arg Thr Tyr Phe Asn Glu 225 230 235 240	
Leu Glu	
<210> SEQ ID NO 83 <211> LENGTH: 729 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 83	

173

atagtaatta atatagtgtt tggttatttt gtttttctat ttgatttttt tgcgtttttg 120 ttttttgcaa acgtctttct tgctgtaaat ttattatttt tagaaaaaaa cataaaaaaac 180 aaattattgt ttttattgcc gatttctatt attatatgga tggtaattca tattagtatg 240 ataaatataa aattttataa atttgagcat caaataaagg aacaaaatat atcctcgatt 300 actggggtga taaaaccaca tgatagttat aattatgttt atgactcaaa tggatatgct 360 aaattaaaag ataatcatag atatggtagg gtaattagag aaacacctta tattgatgta 420 gttgcatctg atgttaaaaa taaatccata agattaagct tggtttgtgg tattcattca 480 tatgctccat gtgccaattt tataaaattt gcaaaaaaac ctgttaaaat ttattttat 540 aatcaacctc aaggagattt tatagataat gtaatatttg aaattaatga tggaaaaaaa 600 agtttgtact tgttagataa gtataaaaca ttttttctta ttgaaaacag tgtttgtatc 660 gtattaatta ttttatattt aaaatttaat ttgcttttat ataggactta cttcaatgag 720 729 ttggaatag <210> SEQ ID NO 84 <211> LENGTH: 242 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 84 Met Arg His Met Lys Asn Lys Asn Tyr Leu Leu Val Phe Ile Val Leu 1 5 10 15 His Ile Thr Leu Ile Val Ile Asn Ile Val Phe Gly Tyr Phe Val Phe 20 25 30 Leu Phe Asp Phe Phe Ala Phe Leu Phe Phe Ala Asn Val Phe Leu Ala 40 Val Asn Leu Leu Phe Leu Glu Lys Asn Ile Lys Asn Lys Leu Leu Phe 50 55 60 Leu Leu Pro Ile Ser Ile Ile Ile Trp Met Val Ile His Ile Ser Met 65 70 75 80 Ile Asn Ile Lys Phe Tyr Lys Phe Glu His Gln Ile Lys Glu Gln Asn 85 90 Ile Ser Ser Ile Thr Gly Val Ile Lys Pro His Asp Ser Tyr Asn Tyr 105 100 110 Val Tyr Asp Ser Asn Gly Tyr Ala Lys Leu Lys Asp Asn His Arg Tyr 120 125 115 Gly Arg Val Ile Arg Glu Thr Pro Tyr Ile Asp Val Val Ala Ser Asp 135 130 140 Val Lys Asn Lys Ser Ile Arg Leu Ser Leu Val Cys Gly Ile His Ser 145 150 155 160 Tyr Ala Pro Cys Ala Asn Phe Ile Lys Phe Ala Lys Lys Pro Val Lys 170 165 175 Ile Tyr Phe Tyr Asn Gln Pro Gln Gly Asp Phe Ile Asp Asn Val Ile 185 190 Phe Glu Ile Asn Asp Gly Lys Lys Ser Leu Tyr Leu Leu Asp Lys Tyr 195 200 205 Lys Thr Phe Phe Leu Ile Glu Asn Ser Val Cys Ile Val Leu Ile Ile 210 215 220 Leu Tyr Leu Lys Phe Asn Leu Leu Leu Tyr Arg Thr Tyr Phe Asn Glu

-continued 225 230 235 240 Leu Glu <210> SEQ ID NO 85 <211> LENGTH: 552 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 85 acccccaaca gcgtgaccgt cttgccgtct ttcggcggat tcgggcgtac cggcgcgacc 60 atcaatgcag caggcggggt cggcatgact gccttttcga caaccttaat ttccgtagcc 120 gagggcgcgg ttgtagagct gcaggccgtg agagccaaag ccgtcaatgc aaccgccgct 180 tgcattttta cggtcttgag taaggacatt ttcgatttcc tttttatttt ccgttttcag 240 acggctgact tccgcctgta ttttcgccaa agccatgccg acagcgtgcg ccttgacttc 300 atatttaaaa gcttccgcgc gtgccagttc cagttcgcgc gcatagtttt gagccgacaa 360 cagcagggct tgcgccttgt cgcgctccat cttgtcgatg accgcctgca gcttcgcaaa 420 tgccgacttg tagccttgat ggtgcgacac agccaagccc gtgccgacaa gcgcgataat 480 ggcaatcggt tgccagtaat tcgccagcag tttcacgaga ttcattctcg acctcctgac 540 gcttcacgct ga 552 <210> SEQ ID NO 86 <211> LENGTH: 183 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 86 Thr Pro Asn Ser Val Thr Val Leu Pro Ser Phe Gly Gly Phe Gly Arg 5 10 1 Thr Gly Ala Thr Ile Asn Ala Ala Gly Gly Val Gly Met Thr Ala Phe 20 25 30 Ser Thr Thr Leu Ile Ser Val Ala Glu Gly Ala Val Val Glu Leu Gln 40 35 45 Ala Val Arg Ala Lys Ala Val Asn Ala Thr Ala Ala Cys Ile Phe Thr 50 55 60 Val Leu Ser Lys Asp Ile Phe Asp Phe Leu Phe Ile Phe Arg Phe Gln 65 70 75 80 Thr Ala Asp Phe Arg Leu Tyr Phe Arg Gln Ser His Ala Asp Ser Val 85 90 95 Arg Leu Asp Phe Ile Phe Lys Ser Phe Arg Ala Cys Gln Phe Gln Phe 100 105 110 Ala Arg Ile Val Leu Ser Arg Gln Gln Gln Gly Leu Arg Leu Val Ala 120 115 125 Leu His Leu Val Asp Asp Arg Leu Gln Leu Arg Lys Cys Arg Leu Val 135 130 140 Ala Leu Met Val Arg His Ser Gln Ala Arg Ala Asp Lys Arg Asp Asn 150 145 155 160 Gly Asn Arg Leu Pro Val Ile Arg Gln Gln Phe His Glu Ile His Ser 165 170 175 Arg Pro Pro Asp Ala Ser Arg

```
-continued
```

<210> SEO ID NO 87 <211> LENGTH: 468 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 87 atgactgcct tttcgacaac cttaatttcc gtagccgagg gcgcggttgt agagctgcag 60 gccgtgagag ccaaagccgt caatgcaacc gccgcttgca tttttacggt cttgagtaag 120 gacattttcg atttcctttt tattttccgt tttcagacgg ctgacttccg cctgtttttt 180 cgccaaagcc atgccgacag cgtgcgcctt gacttcatat tttttagctt ccgcgcgtgc 240 cagttccagt tcgcgcgcat agttttgagc cgacaacagc agggcttgcg ccttgtcgcg 300 ctccatcttg tcgatgaccg cctgctgctt cgcaaatgcc gacttgtagc cttgatggtg 360 cgacacagcc aagcccgtgc cgacaagcgc gataatggca atcggttgcc agttattcgc 420 cagcagtttc acgagattca ttctcgacct cctgacgctt cacgctga 468 <210> SEQ ID NO 88 <211> LENGTH: 155 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 88 Met Thr Ala Phe Ser Thr Thr Leu Ile Ser Val Ala Glu Gly Ala Val 10 Val Glu Leu Gln Ala Val Arg Ala Lys Ala Val Asn Ala Thr Ala Ala 25 20 Cys Ile Phe Thr Val Leu Ser Lys Asp Ile Phe Asp Phe Leu Phe Ile 35 40 45 Phe Arg Phe Gln Thr Ala Asp Phe Arg Leu Phe Phe Arg Gln Ser His 50 55 60 Ala Asp Ser Val Arg Leu Asp Phe Ile Phe Phe Ser Phe Arg Ala Cys 65 70 75 Gln Phe Gln Phe Ala Arg Ile Val Leu Ser Arg Gln Gln Gln Gly Leu 85 90 Arg Leu Val Ala Leu His Leu Val Asp Asp Arg Leu Leu Leu Arg Lys 100 105 110 Cys Arg Leu Val Ala Leu Met Val Arg His Ser Gln Ala Arg Ala Asp 115 120 125 Lys Arg Asp Asn Gly Asn Arg Leu Pro Val Ile Arg Gln Gln Phe His 140 130 135 Glu Ile His Ser Arg Pro Pro Asp Ala Ser Arg 145 150 155 <210> SEQ ID NO 89 <211> LENGTH: 462 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 89 atgaccgcct tttcgacaac cttaatttcc gtagccgagg gcgcgcttgt agagctgcaa 60 gccgtgatgg ccaaagccgt caatacaacc gccgcctgca tttttacggt cttgagtaag 120 gacattttcg atttcctttt tattttccgt tttcagacgg ctgacttccg cctgttttt 180

										-	con	tin	ued		
cgccaaa	gee a	atge	cgaco	ld co	gtgc	gccti	t gao	cttca	atat	ttt	ttag	ctt (	ccgca	acgcg	rc 240
ctgttcc	agt 1	cgc	gggc	gt ag	gttt	tgago	c cga	acaa	cagc	agg	gctt	gcg (	cctt	gtcgc	:g 300
cttcatt	ttc 1	ccaa	tgaco	cg co	ctgc	tgcti	t cgo	caaa	agcc	gac-	ttgt	agc (	cttg	atggt	:g 360
cgacacc	gcc a	aaac	ccgt	de cò	gaca	agcgo	c gat	tgat	ggca	atco	ggtto	gcc (	agtta	attcg	rc 420
cagcagt	ttc a	acga	gatto	ca ti	tata	gacci	t cci	tgac	gttt	ga					462
<210> SI <211> LI <212> TY <213> OI	ENGTH (PE:	I: 15 PRT	53	seri	ia me	ening	gitic	lis							
<400> SI	EQUEN	ICE :	90												
Met Thr 1	Ala	Phe	Ser 5	Thr	Thr	Leu	Ile	Ser 10	Val	Ala	Glu	Gly	Ala 15	Leu	
Val Glu	Leu	Gln 20	Ala	Val	Met	Ala	Lys 25	Ala	Val	Asn	Thr	Thr 30	Ala	Ala	
Cys Ile	Phe 35	Thr	Val	Leu	Ser	Lys 40	Asp	Ile	Phe	Asp	Phe 45	Leu	Phe	Ile	
Phe Arg 50	Phe	Gln	Thr	Ala	Asp 55	Phe	Arg	Leu	Phe	Phe 60	Arg	Gln	Ser	His	
Ala Asp 65	Gly	Val	Arg	Leu 70	Asp	Phe	Ile	Phe	Phe 75	Ser	Phe	Arg	Thr	Arg 80	
Leu Phe	Gln	Phe	Ala 85	Gly	Val	Val	Leu	Ser 90	Arg	Gln	Gln	Gln	Gly 95	Leu	
Arg Leu	Val	Ala 100	Leu	His	Phe	Leu	Asn 105	Asp	Arg	Leu	Leu	Leu 110	Arg	Lys	
Ser Arg	Leu 115	Val	Ala	Leu	Met	Val 120	Arg	His	Arg	Gln	Thr 125	Arg	Ala	Asp	
Lys Arg 130	Asp	Asp	Gly	Asn	Arg 135	Leu	Pro	Val	Ile	Arg 140	Gln	Gln	Phe	His	
Glu Ile 145	His	Ser	Arg	Pro 150		Asp	Val								
<210> SI <211> LI <212> TY <213> OF <400> SI	ENGTH (PE: RGAN]	I: 59 PRT SM:	92 Neis	seri	La me	ening	jitic	lis							
Met Asn			Tyr	Arg	Ile	Ile	Trp		Ser	Ala	Leu	Asn		Trp	
1			5					10					15		
Val Ala	Val	Ser 20	Glu	Leu	Thr	Arg	Asn 25	His	Thr	Lys	Arg	Ala 30	Ser	Ala	
Thr Val	Lys 35	Thr	Ala	Val	Leu	Ala 40	Thr	Leu	Leu	Phe	Ala 45	Thr	Val	Gln	
Ala Asn 50	Ala	Thr	Asp	Glu	Asp 55	Glu	Glu	Glu	Glu	Leu 60	Glu	Ser	Val	Gln	
Arg Ser 65	Val	Val	Gly	Ser 70	Ile	Gln	Ala	Ser	Met 75	Glu	Gly	Ser	Gly	Glu 80	
Leu Glu	Thr	Ile	Ser 85	Leu	Ser	Met	Thr	Asn 90	Asp	Ser	Lys	Glu	Phe 95	Val	
Asp Pro	Tyr	Ile 100	Val	Val	Thr	Leu	L <b>y</b> s 105	Ala	Gly	Asp	Asn	Leu 110	Lys	Ile	

-continued

Lys	Gln	Asn 115	Thr	Asn	Glu	Asn	Thr 120	Asn	Ala	Ser	Ser	Phe 125	Thr	Tyr	Ser
Leu	Lys 130	Lys	Asp	Leu	Thr	Gly 135	Leu	Ile	Asn	Val	Glu 140	Thr	Glu	Lys	Leu
Ser 145	Phe	Gly	Ala	Asn	Gly 150	Lys	Lys	Val	Asn	Ile 155	Ile	Ser	Asp	Thr	Lys 160
Gly	Leu	Asn	Phe	Ala 165	Lys	Glu	Thr	Ala	Gly 170	Thr	Asn	Gly	Asp	Thr 175	Thr
Val	His	Leu	Asn 180	Gly	Ile	Gly	Ser	Thr 185	Leu	Thr	Asp	Thr	Leu 190	Ala	Gly
Ser	Ser	Ala 195	Ser	His	Val	Asp	Ala 200	Gly	Asn	Gln	Ser	Thr 205	His	Tyr	Thr
Arg	Ala 210	Ala	Ser	Ile	Lys	Asp 215	Val	Leu	Asn	Ala	Gly 220	Trp	Asn	Ile	Lys
Gl <b>y</b> 225	Val	Lys	Thr	Gly	Ser 230	Thr	Thr	Gly	Gln	Ser 235	Glu	Asn	Val	Asp	Phe 240
Val	Arg	Thr	Tyr	Asp 245	Thr	Val	Glu	Phe	Leu 250	Ser	Ala	Asp	Thr	L <b>y</b> s 255	Thr
Thr	Thr	Val	Asn 260	Val	Glu	Ser	Lys	Asp 265	Asn	Gly	Lys	Arg	Thr 270	Glu	Val
Lys	Ile	Gl <b>y</b> 275	Ala	Lys	Thr	Ser	Val 280	Ile	Lys	Glu	Lys	<b>As</b> p 285	Gly	Lys	Leu
Val	Thr 290	Gly	Lys	Gly	Lys	Gly 295	Glu	Asn	Gly	Ser	Ser 300	Thr	Asp	Glu	Gly
Glu 305	Gly	Leu	Val	Thr	Ala 310	Lys	Glu	Val	Ile	Asp 315	Ala	Val	Asn	Lys	Ala 320
Gly	Trp	Arg	Met	L <b>y</b> s 325	Thr	Thr	Thr	Ala	Asn 330	Gly	Gln	Thr	Gly	Gln 335	Ala
Asp	Lys	Phe	Glu 340	Thr	Val	Thr	Ser	Gl <b>y</b> 345	Thr	Asn	Val	Thr	Phe 350	Ala	Ser
Gly	Lys	Gly 355	Thr	Thr	Ala	Thr	Val 360	Ser	Lys	Asp	Asp	Gln 365	Gly	Asn	Ile
Thr	Val 370	Met	Tyr	Asp	Val	Asn 375	Val	Gly	Asp	Ala	Leu 380	Asn	Val	Asn	Gln
Leu 385	Gln	Asn	Ser	Gly	Trp 390	Asn	Leu	Asp	Ser	L <b>y</b> s 395	Ala	Val	Ala	Gly	Ser 400
Ser	Gly	Lys	Val	Ile 405	Ser	Gly	Asn	Val	Ser 410	Pro	Ser	Lys	Gly	L <b>y</b> s 415	Met
Asp	Glu	Thr	Val 420	Asn	Ile	Asn	Ala	Gl <b>y</b> 425	Asn	Asn	Ile	Glu	Ile 430	Ser	Arg
Asn	Gly	L <b>y</b> s 435	Asn	Ile	Asp	Ile	Ala 440	Thr	Ser	Met	Ala	Pro 445	Gln	Phe	Ser
Ser	Val 450	Ser	Leu	Gly	Ala	Gly 455	Ala	Asp	Ala	Pro	Thr 460	Leu	Ser	Val	Asp
Asp 465	Glu	Gly	Ala	Leu	Asn 470	Val	Gly	Ser	Lys	Asp 475	Ala	Asn	Lys	Pro	Val 480
Arg	Ile	Thr	Asn	Val 485	Ala	Pro	Gly	Val	Lys 490	Glu	Gly	Asp	Val	Thr 495	Asn
Val	Ala	Gln	Leu 500	Lys	Gly	Val	Ala	Gln 505	Asn	Leu	Asn	Asn	Arg 510	Ile	Asp

177

-continued

											_	con	υIII	uea						
Asn	Val	Asp 515	Gly	Asn	Ala	Arg	Ala 520	Gly	Ile	Ala	Gln	Ala 525	Ile	Ala	Thr					
Ala	Gly 530	Leu	Val	Gln	Ala	<b>Ty</b> r 535	Leu	Pro	Gly	Lys	Ser 540	Met	Met	Ala	Ile					
Gl <b>y</b> 545	Gly	Gly	Thr	Tyr	Arg 550	Gly	Glu	Ala	Gly	<b>Ty</b> r 555	Ala	Ile	Gly	Tyr	Ser 560					
Ser	Ile	Ser	Asp	Gly 565	Gly	Asn	Trp	Ile	Ile 570	Lys	Gly	Thr	Ala	Ser 575	Gly					
Asn	Ser	Arg	Gly 580	His	Phe	Gly	Ala	Ser 585	Ala	Ser	Val	Gly	<b>Ty</b> r 590	Gln	Trp					
<21: <212	)> SE L> LE 2> TY 3> OR	NGTH	1: 59 PRT	94	sseri	La me	ening	gitic	lis											
<400	)> SE	QUEN	ICE :	92																
Met 1	Asn	Lys	Ile	Tyr 5	Arg	Ile	Ile	Trp	Asn 10	Ser	Ala	Leu	Asn	Ala 15	Trp					
Val	Val	Val	Ser 20	Glu	Leu	Thr	Arg	Asn 25	His	Thr	Lys	Arg	Ala 30	Ser	Ala					
Thr	Val	Ala 35	Thr	Ala	Val	Leu	Ala 40	Thr	Leu	Leu	Phe	Ala 45	Thr	Val	Gln					
Ala	Asn 50	Ala	Thr	Asp	Asp	Asp 55	Asp	Leu	Tyr	Leu	Glu 60	Pro	Val	Gln	Arg					
Thr 65	Ala	Val	Val	Leu	Ser 70	Phe	Arg	Ser	Asp	L <b>y</b> s 75	Glu	Gly	Thr	Gly	Glu 80					
Lys	Glu	Gly	Thr	Glu 85	Asp	Ser	Asn	Trp	Ala 90	Val	Tyr	Phe	Asp	Glu 95	Lys					
Arg	Val	Leu	Lys 100	Ala	Gly	Ala	Ile	Thr 105	Leu	Lys	Ala	Gly	Asp 110	Asn	Leu					
Lys	Ile	Lys 115	Gln	Asn	Thr	Asn	Glu 120	Asn	Thr	Asn	Asp	Ser 125	Ser	Phe	Thr					
Tyr	Ser 130	Leu	Lys	Lys	Asp	Leu 135	Thr	Asp	Leu	Thr	Ser 140	Val	Glu	Thr	Glu					
L <b>y</b> s 145	Leu	Ser	Phe	Gly	Ala 150	Asn	Gly	Asn	Lys	Val 155	Asn	Ile	Thr	Ser	Asp 160					
Thr	Lys	Gly		Asn 165				Glu			Gly	Thr	Asn	Gly 175	Asp					
Pro	Thr	Val	His 180	Leu	Asn	Gly	Ile	Gl <b>y</b> 185	Ser	Thr	Leu	Thr	Asp 190	Thr	Leu					
Leu	Asn	Thr 195	Gly	Ala	Thr	Thr	Asn 200	Val	Thr	Asn	Asp	Asn 205	Val	Thr	Asp					
Asp	Glu 210	Lys	Lys	Arg	Ala	Ala 215	Ser	Val	Lys	Asp	Val 220	Leu	Asn	Ala	Gly					
Trp 225	Asn	Ile	Lys	Gly	Val 230	Lys	Pro	Gly	Thr	Thr 235	Ala	Ser	Asp	Asn	Val 240					
Asp	Phe	Val	Arg	Thr 245	Tyr	Asp	Thr	Val	Glu 250	Phe	Leu	Ser	Ala	Asp 255	Thr					
Lys	Thr	Thr	Thr 260	Val	Asn	Val	Glu	Ser 265	Lys	Asp	Asn	Gly	L <b>y</b> s 270	Lys	Thr					
									1	- 1	-	- 1	-	Asp	<b>a</b> 1					

Lys       Leu       Val       Th       Gly       Lys       Gly       Sap       Glu       An       Gly       Sap       An																
305       310       315       320         Lys Ala Gly Try Arg Met Lys Thr Thr Thr Ala Asn Gly Gln Thr Gly       335       330         Gln Ala Asp Lys Phe Glu Thr Val Thr Ser Gly Thr Asn Val Thr Phe       345       360         Ala Ser Gly Lys Gly Thr Thr Ala Thr Val Ser Lys Asp Asp Gln Gly       365         Ala Ser Gly Lys Gly Thr Thr Ala Thr Val Ser Lys Asp Asp Cln Gly       365         Asn Ile Thr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val       380         Ass Gln Leu Gln Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala       390         390       390       390         Gly Ser Ser Gly Lys Val Ile Ser Gly Asn Val Ser Pro Ser Lys Gly       410         410       405       410         420       405       410         420       405       410         420       405       410         435       400         Gly Ser Ser Gly Lys Val Ile Ser Gly Ala Cly Asn Asn Ile Glu Ile         420       455         Asn Ala Pro Thr Leu Ser       445         440       450         110       Asn Ala Cly Asp Ala Pro Thr Leu Ser         445       450         111       Asn Ala Cly Lys Asp Thr Asn Lys         445       470         111       Asp Ala Cly Asp Thr Asn Lys <td>Lys</td> <td></td> <td>Val</td> <td>Thr</td> <td>Gly</td> <td>Lys</td> <td></td> <td>Lys</td> <td>Asp</td> <td>Glu</td> <td>Asn</td> <td></td> <td>Ser</td> <td>Ser</td> <td>Thr</td> <td>Asp</td>	Lys		Val	Thr	Gly	Lys		Lys	Asp	Glu	Asn		Ser	Ser	Thr	Asp
325       330       335         Gln Ala Asp Lys Phe Glu Thr Val Thr Ser Gly Thr Asn Val Thr Phe 340       345         Ala Ser Gly Lys Gly Thr Thr Ala Thr Val Ser Lys Asp Asp Gln Gly 375         Asn Ile Thr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val 370         Asn Ile Thr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val 375         Asn Ile Thr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val 380         Asn Gln Leu Gln Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala 395         Gly Ser Ser Gly Lys Val Ile Ser Gly Asn Nal Er Dro Ser Lys Gly 405         Thr Arg Asn Gly Lys Asn Ile Asp Tle Ala Thr Ser Met Ala Pro Gln 420         Thr Arg Asn Gly Lys Asn Ile Asp Tle Ala Thr Ser Met Ala Pro Gln 445         Phe Ser Ser Val Ser Leu Gly Ala Cly Ala Asp Ala Pro Thr Leu Ser 455         Val Asp Asp Glu Gly Ala Leu Asn Val Gly Ser Lys Asp Thr Asn Lys 465         Pro Val Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val 465         Yan Ash Val Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asp Arg 510         Thr Asn Val Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met 530         Sta Si Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met 530         Sta Si Ala Ser Arg Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala 565         Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr 580         Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr 580         Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr 580		Gly	Glu	Gly	Leu		Thr	Ala	Lys	Glu		Ile	Asp	Ala	Val	
Alo Ser Gly Lys Gly Thr Thr Ala Thr Val Ser Lys Asp Asp Gln Gly Asn Tile Thr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val 355 Asn Tile Thr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val 370 Asn Tile Thr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val 395 Cln Leu Gln Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala 395 Cln Leu Gln Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala 395 Cln Leu Gln Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala 395 Cln Leu Gln Asn Ser Gly Lys Val Ile Ser Gly Asn Val Ser Pro Ser Lys Gly 405 Val Asp Glu Thr Val Asn Ile Asn Ala Gly Asn Asn Tile Glu Ile 420 Thr Arg Asn Gly Lys Asn Ile Asp Ile Ala Thr Ser Met Ala Pro Gln 435 Cln Chr Asp Ser Val Ser Leu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser 455 Cln Val Ser Leu Gly Ala Cly Ala Asp Ala Pro Thr Leu Ser 456 Asp Asp Glu Gly Ala Leu Asn Val Gly Ser Lys Asp Thr Asn Lys 475 Cln Val Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val 475 Cln Asp Asp Clu Asp Gly Asn Ala Arg Ala Gln Asn Leu Asn Arg 510 Cln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg 510 Cln Asp Asp Nel Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile 515 Cln Asp Asp Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile 515 Cln Asp Asp Clu Gly Asp Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly 546 Cln Cly Asp Thr Tyr Arg Gly Glu Ala Cly Tyr Ala Ile Gly 545 Cln DNO 93 520 Cln No 93 520 Cln No 93 520 Cln No 93 520 Cln No 93 520 SEQUENCE: 93 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1 Clo SEQUENCE: 93 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn His Thr Lys Arg Ala Ser Ala 20 Clu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 30 Cr Ala Clu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 30 Cr Ala Clu Leu Arn Ala Thr Leu Leu Phe Ala Thr Val Gln	Lys	Ala	Gly	Trp		Met	Lys	Thr	Thr		Ala	Asn	Gly	Gln		Gly
355360365365Asn Ile Thr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val 370375380Ala Leu Asp Ser Lys Ala Val Ala 400Gly Ser Ser Gly Lys Val Ile Ser Gly Asn Val Ser Pro Ser Lys Gly 405400Gly Ser Ser Gly Lys Val Ile Ser Gly Asn Val Ser Pro Ser Lys Gly 405400Han Val Asp Glu Thr Val Asn Ile Asn Ala Gly Asn Asn Ile Glu Ile 420400Thr Arg Asn Gly Lys Asn Ile Asp Ile Ala Thr Ser Met Ala Pro Gln 435440Phe Ser Ser Val Ser Leu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser 450400Val Asp Asp Glu Gly Ala Leu Asn Val Gly Ser Lys Asp Thr Asn Lys 465470Val Asp Asp Glu Gly Ala Leu Asn Val Gly Ser Lys Asp Thr Asn Lys 465470Val Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val 485Thr Asn Val Ala Gln Leu Lys Gly Val Ala Gly Ile Ala Gln Ala Ile 510Soo500Thr Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met 530Sata Thr Ala Gly Asp Thr Tyr Arg Gly Glu Ala Gly Tir Ala Ile Gly 550Tyr Ser Ser Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala 580Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr 580Gln Trp<210> SEQUENCE: 93Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 10Ala Val Ala Val Ser Tyr Arg Sa His Thr Lys Arg Ala Ser Ala 20Ala Val Ala Thr Ala Val Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 300Ala Val Ase Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20Ala Val Ala Val Leu Asn Ala Thr Leu Lys Oly Ash Asn Yrp Ile	Gln	Ala	Asp		Phe	Glu	Thr	Val		Ser	Gly	Thr	Asn		Thr	Phe
370 375 380 Asn Gln Leu Gln Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala 395 395 395 395 395 395 395 395 395 395	Ala	Ser		Lys	Gly	Thr	Thr		Thr	Val	Ser	Lys		Asp	Gln	Gly
385 390 390 395 400 Gly Ser Ser Gly Lys Val Ile Ser Gly Asn Val Ser Pro Ser Lys Gly 405 415 Lys Met Asp Glu Thr Val Asn Ile Asn Ala Gly Asn Asn Ile Glu Ile 420 440 440 Thr Arg Asn Gly Lys Asn Ile Asn Ile Asn Ala Gly Asn Asn Ile Glu Ile 435 Phe Ser Ser Val Ser Leu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser 455 Val Asp Asp Glu Gly Ala Leu Asn Val Gly Ser Lys Asp Thr Asn Lys 465 Asn Val Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val 480 Pro Val Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val 485 Thr Asn Val Ala Gln Leu Lys Gly Val Ala Gly Ile Ala Gln Ala Ile 500 Thr Asn Val Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met 530 Ala Thr Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met 530 Ala Ile Gly Gly Asp Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly 545 Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Thr Ala 580 Gln Trp 2110 SEQUENCE: 93 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1 2100 SEQUENCE: 93 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 2110 SEQUENCE: 93 Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln	Asn		Thr	Val	Lys	Tyr		Val	Asn	Val	Gly		Ala	Leu	Asn	Val
$\frac{405}{420}$ $\frac{410}{415}$ $\frac{415}{420}$ $\frac{415}{440}$ $\frac{41}{450}$ $\frac{41}{40}$ $\frac{41}{450}$ $\frac{41}{4$		Gln	Leu	Gln	Asn		Gly	Trp	Asn	Leu		Ser	Lys	Ala	Val	
420425430Thr Arg Asn Gly Lys Asn Ile Asp Ile Ala Thr Ser Met Ala Pro Gln 435Ala Pro Gln 445Phe Ser Ser Val Ser Leu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser 450Gly Ala Leu Asn Val Gly Ser Lys Asp Thr Asn Lys 460Val Asp Asp Glu Gly Ala Leu Asn Val Gly Ser Lys Asp Thr Asn Lys 465Arf Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val 480Pro Val Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val 485Asp Asp Clu Asp Val Asp Cly Val Ala Gly The Ala Gln Asn Leu 500Thr Asn Val Ala Gly Leu Val Gln Ala Arg Ala Gly Ile Ala Gln Ala Ile 515Ser Met Met 520Ala Thr Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met 540Ser Met Met 560Ala Ile Gly Gly Asp Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly 545Ser Met Met 570Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Thr Ala 580Ser Ala Ser Val Gly Tyr 580Gln Trp1015<210> SEQ ID NO 93 <211> LENGTH: 594 212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis<400> SEQUENCE: 93Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20Thr Val Ala Thr Ala Val Leu Ala Thr Leu Ala Thr Val Gln	Gly	Ser	Ser	Gly		Val	Ile	Ser	Gly		Val	Ser	Pro	Ser	_	Gly
435440445Phe Ser Ser Val Ser Leu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser 450455Aa Gly Ala Asp Ala Pro Thr Leu Ser 460Ser Lys Asp Thr Asn Lys 480Val Asp Asp Glu Gly Ala Leu Asn Val Gly Ser Lys Asp Thr Asn Lys 465Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val 480Pro Val Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val 485Asn Asn Asn Arg 500Thr Asn Val Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg 500Ile Asp Asn Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile 515Ala Thr Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met 530Ala Ile Gly Gly Asp Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly 545Ser Gly Asn Ser Arg Gly His Phe Gly Asn Trp Ile Ile Lys Gly Thr Ala 580Seq Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr 580Seq UENCE: 93Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln	Lys	Met	Asp		Thr	Val	Asn	Ile		Ala	Gly	Asn	Asn		Glu	Ile
450 455 460 Val Asp Asp Glu Gly Ala Leu Asn Val Gly Ser Lys Asp Thr Asn Lys 465 Asp Val Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val 480 Pro Val Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val 495 Thr Asn Val Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg 510 Ile Asp Asn Val Ala Gly Leu Val Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile 525 Ala Thr Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met 530 Ala Ile Gly Gly Asp Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly 560 Tyr Ser Ser Ile Ser Asp Gly His Phe Gly Asn Trp Ile Ile Lys Gly Thr Ala 565 Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Ser Val 575 Gln Trp <210> SEQ ID NO 93 <211> LENGTH: 594 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis $<400> SEQUENCE: 93Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 15Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 30Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln$	Thr	Arg		Gly	Lys	Asn	Ile		Ile	Ala	Thr	Ser		Ala	Pro	Gln
465 470 475 480 Pro Val Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val 485 485 480 Val Ala Pro Gly Val Lys Glu Gly Asp Val 485 490 495 Thr Asn Val Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg 500 505 505 505 505 505 505 505 505 505	Phe		Ser	Val	Ser	Leu		Ala	Gly	Ala	Asp		Pro	Thr	Leu	Ser
Thr Asn Val Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg 500 Thr Asn Val Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg 500 Ile Asp Asn Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile 515 Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile 515 Son Val Asp Gly Asn Ala Tyr Leu Pro Gly Lys Ser Met Met 530 Ala Thr Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met 530 Ala Ile Gly Gly Asp Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly 545 Ser Ser Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala 566 Tyr Ser Ser Ile Ser Asp Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr 587 Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr 588 Seq ID NO 93 2112 LENGTH: 594 2122 TYPE: PRT 2133 ORGANISM: Neisseria meningitidis <400> SEQUENCE: 93 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1 5 Nal Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20 Charter Ala Charter Ala Charter Val Gln Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln		Asp	Asp	Glu	Gly		Leu	Asn	Val	Gly		Lys	Asp	Thr	Asn	-
500 = 505 = 510 Ile Asp Asn Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile $515$ S = 0 Asn Val Gly Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile $525$ Gly Ash Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met $530$ Ala Ile Gly Gly Asp Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly $545$ S = 0 F = 1 E Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala $560$ Tyr Ser Ser Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala $575$ S = Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr $580$ G = $585$ S = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F = 0 F =	Pro	Val	Arg	Ile		Asn	Val	Ala	Pro	_	Val	Lys	Glu	Gly	-	Val
515520525Ala Thr Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met535Ala Thr Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met540SateAla Ile Gly Gly Asp Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly545Tyr Ser Ser Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala565Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr580Gln Trp<210> SEQ ID NO 93<211> LENCTH: 594<212> TYPE: PRT<213> ORGANISM: Neisseria meningitidis<400> SEQUENCE: 93Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp1112012021212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121 <t< td=""><td>Thr</td><td>Asn</td><td>Val</td><td></td><td>Gln</td><td>Leu</td><td>Lys</td><td>Gly</td><td></td><td>Ala</td><td>Gln</td><td>Asn</td><td>Leu</td><td></td><td>Asn</td><td>Arg</td></t<>	Thr	Asn	Val		Gln	Leu	Lys	Gly		Ala	Gln	Asn	Leu		Asn	Arg
530535540Ala Ile Gly Gly Asp Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly 545550Tyr Arg Gly Gly Ala Gly Tyr Ala Ile Gly 560Tyr Ser Ser Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala 565Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr 585Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr 580Gln Trp<210> SEQ ID NO 93 <211> LENGTH: 594 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis<400> SEQUENCE: 93Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 10Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20Ser Ala 30Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln	Ile	Asp		Val	Asp	Gly	Asn		Arg	Ala	Gly	Ile		Gln	Ala	Ile
545       550       555       560         Tyr Ser Ser Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala       565       570         Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr       580         Gln Trp       580       585       580         <210> SEQ ID NO 93       521       211> LENGTH: 594         <212> TYPE: PRT       5213       ORGANISM: Neisseria meningitidis         <400> SEQUENCE: 93       10       15         Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp       15         Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala       20         Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln	Ala		Ala	Gly	Leu	Val		Ala	Tyr	Leu	Pro		Lys	Ser	Met	Met
565 570 575 Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr 580 585 585 590 Gln Trp <210> SEQ ID NO 93 <211> LENGTH: 594 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 93 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1 5 10 15 Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20 25 30 Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln		Ile	Gly	Gly	Asp		Tyr	Arg	Gly	Glu		Gly	Tyr	Ala	Ile	-
580     585     590       Gln Trp       <210> SEQ ID NO 93       <211> LENGTH: 594       <212> TYPE: PRT       <213> ORGANISM: Neisseria meningitidis       <400> SEQUENCE: 93       Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1       Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20       Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln	Tyr	Ser	Ser	Ile		Asp	Gly	Gly	Asn		Ile	Ile	Lys	Gly		Ala
<pre>&lt;210&gt; SEQ ID NO 93 &lt;211&gt; LENGTH: 594 &lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: Neisseria meningitidis &lt;400&gt; SEQUENCE: 93 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1 5 10 15 Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20 25 30 Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln</pre>	Ser	Gly	Asn		Arg	Gly	His	Phe		Ala	Ser	Ala	Ser		Gly	Tyr
<pre>&lt;211&gt; LENGTH: 594 &lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: Neisseria meningitidis &lt;400&gt; SEQUENCE: 93 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1 5 10 15 Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20 25 30 Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln</pre>	Gln	Trp														
Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1 5 10 15 Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20 25 30 Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln	<211 <212	l> LE 2> TY	NGTH	I: 59 PRT	94	seri	La me	ening	ritid	lis						
1     5     10     15       Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala     20     25     30       Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln	<400	)> SE	QUEN	ICE :	93											
20 25 30 Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln		Asn	Lys	Ile		Arg	Ile	Ile	Trp		Ser	Ala	Leu	Asn		Trp
	Val	Ala	Val		Glu	Leu	Thr	Arg		His	Thr	Lys	Arg		Ser	Ala
	Thr	Val		Thr	Ala	Val	Leu		Thr	Leu	Leu	Phe		Thr	Val	Gln

Ala	Ser 50	Thr	Thr	Asp	Asp	Asp 55	Asp	Leu	Tyr	Leu	Glu 60	Pro	Val	Gln	Arg
Thr 65	Ala	Pro	Val	Leu	Ser 70	Phe	His	Ala	Asp	Ser 75	Glu	Gly	Thr	Gly	Glu 80
Lys	Glu	Val	Thr	Glu 85	Asp	Ser	Asn	Trp	Gly 90	Val	Tyr	Phe	Asp	Lys 95	Lys
Gly	Val	Leu	Thr 100	Ala	Gly	Thr	Ile	Thr 105	Leu	Lys	Ala	Gly	Asp 110	Asn	Leu
Lys	Ile	L <b>y</b> s 115	Gln	Asn	Thr	Asp	Glu 120	Asn	Thr	Asn	Ala	Ser 125	Ser	Phe	Thr
Tyr	Ser 130	Leu	Lys	Lys	Asp	Leu 135	Thr	Asp	Leu	Thr	Ser 140	Val	Glu	Thr	Glu
L <b>y</b> s 145	Leu	Ser	Phe	Gly	Ala 150	Asn	Gly	Lys	Lys	Val 155	Asn	Ile	Thr	Ser	Asp 160
Thr	Lys	Gly	Leu	Asn 165	Phe	Ala	Lys	Glu	Thr 170	Ala	Gly	Thr	Asn	Gly 175	Asp
Thr	Thr	Val	His 180	Leu	Asn	Gly	Ile	Gl <b>y</b> 185	Ser	Thr	Leu	Thr	Asp 190	Thr	Leu
Leu	Asn	Thr 195	Gly	Ala	Thr	Thr	Asn 200	Val	Thr	Asn	Asp	Asn 205	Val	Thr	Asp
Asp	Glu 210	Lys	Lys	Arg	Ala	Ala 215	Ser	Val	Lys	Asp	Val 220	Leu	Asn	Ala	Gly
Trp 225	Asn	Ile	Lys	Gly	Val 230	Lys	Pro	Gly	Thr	Thr 235	Ala	Ser	Asp	Asn	Val 240
Asp	Phe	Val	Arg	Thr 245	Tyr	Asp	Thr	Val	Glu 250	Phe	Leu	Ser	Ala	<b>A</b> sp 255	Thr
Lys	Thr	Thr	Thr 260	Val	Asn	Val	Glu	Ser 265	Lys	Asp	Asn	Gly	L <b>y</b> s 270	Lys	Thr
Glu	Val	L <b>y</b> s 275	Ile	Gly	Ala	Lys	Thr 280	Ser	Val	Ile	Lys	Glu 285	Lys	Asp	Gly
Lys	Leu 290	Val	Thr	Gly	Lys	Asp 295	Lys	Gly	Glu	Asn	Gl <b>y</b> 300	Ser	Ser	Thr	Asp
Glu 305	Gly	Glu	Gly	Leu	Val 310	Thr	Ala	Lys	Glu	Val 315	Ile	Asp	Ala	Val	Asn 320
Lys	Ala	Gly	Trp	Arg 325	Met	Lys	Thr	Thr	Thr 330	Ala	Asn	Gly	Gln	Thr 335	Gly
Gln	Ala	Asp	Lys 340	Phe	Glu	Thr	Val	Thr 345	Ser	Gly	Thr	Lys	Val 350	Thr	Phe
Ala	Ser	Gly 355	Asn	Gly	Thr	Thr	Ala 360	Thr	Val	Ser	Lys	Asp 365	Asp	Gln	Gly
Asn	Ile 370	Thr	Val	Lys	Tyr	Asp 375	Val	Asn	Val	Gly	Asp 380	Ala	Leu	Asn	Val
Asn 385	Gln	Leu	Gln	Asn	Ser 390	Gly	Trp	Asn	Leu	Asp 395	Ser	Lys	Ala	Val	Ala 400
Gly	Ser	Ser	Gly	L <b>y</b> s 405	Val	Ile	Ser	Gly	Asn 410	Val	Ser	Pro	Ser	Lys 415	Gly
Lys	Met	Asp	Glu 420	Thr	Val	Asn	Ile	Asn 425	Ala	Gly	Asn	Asn	Ile 430	Glu	Ile
Thr	Arg	Asn 435	Gly	Lys	Asn	Ile	Asp 440	Ile	Ala	Thr	Ser	Met 445	Thr	Pro	Gln

-continued

											-	con	tin	ued		
Phe	Ser 450	Ser	Val	Ser	Leu	Gly 455	Ala	Gly	Ala	Asp	Ala 460	Pro	Thr	Leu	Ser	
Val 465	Asp	Asp	Glu	Gly	Ala 470	Leu	Asn	Val	Gly	Ser 475	Lys	Asp	Ala	Asn	Lys 480	
Pro	Val	Arg	Ile	Thr 485	Asn	Val	Ala	Pro	Gly 490	Val	Lys	Glu	Gly	Asp 495	Val	
Thr	Asn	Val	Ala 500	Gln	Leu	Lys	Gly	Val 505	Ala	Gln	Asn	Leu	Asn 510	Asn	His	
Ile	Asp	Asn 515	Val	Asp	Gly	Asn	Ala 520	Arg	Ala	Gly	Ile	Ala 525	Gln	Ala	Ile	
Ala	Thr 530	Ala	Gly	Leu	Val	Gln 535	Ala	Tyr	Leu	Pro	Gly 540	Lys	Ser	Met	Met	
Ala 545	Ile	Gly	Gly	Gly	Thr 550	Tyr	Arg	Gly	Glu	Ala 555	Gly	Tyr	Ala	Ile	Gly 560	
Tyr	Ser	Ser	Ile	Ser 565	Asp	Gly	Gly	Asn	Trp 570	Ile	Ile	Lys	Gly	Thr 575	Ala	
Ser	Gly	Asn	Ser 580	Arg	Gly	His	Phe	Gly 585	Ala	Ser	Ala	Ser	Val 590	Gly	Tyr	
Gln	Trp															
<212	> LE > TY	NGTH	I: 59 PRT	94	sser	ia me	ening	gitic	lis							
<400	> SE	QUEN	ICE :	94												
Met 1	Asn	Lys	Ile	Tyr 5	Arg	Ile	Ile	Trp	Asn 10	Ser	Ala	Leu	Asn	Ala 15	Trp	
Val	Val	Val	Ser 20	Glu	Leu	Thr	Arg	Asn 25	His	Thr	Lys	Arg	Ala 30	Ser	Ala	
Thr	Val	Ala 35	Thr	Ala	Val	Leu	Ala 40	Thr	Leu	Leu	Phe	Ala 45	Thr	Val	Gln	
Ala	Asn 50	Ala	Thr	Asp	Asp	Asp 55	Asp	Leu	Tyr	Leu	Glu 60	Pro	Val	Gln	Arg	
Thr 65	Ala	Val	Val	Leu	Ser 70	Phe	Arg	Ser	Asp	Lys 75	Glu	Gly	Thr	Gly	Glu 80	
Lys	Glu	Gly	Thr	Glu 85	Asp	Ser	Asn	Trp	Ala 90	Val	Tyr	Phe	Asp	Glu 95	Lys	
Arg	Val	Leu	L <b>y</b> s 100	Ala	Gly	Ala	Ile	Thr 105	Leu	Lys	Ala	Gly	Asp 110	Asn	Leu	
Lys	Ile	L <b>ys</b> 115	Gln	Asn	Thr	Asn	Glu 120	Asn	Thr	Asn	Asp	Ser 125	Ser	Phe	Thr	
Tyr	Ser 130	Leu	Lys	Lys	Asp	Leu 135	Thr	Asp	Leu	Thr	Ser 140	Val	Glu	Thr	Glu	
L <b>y</b> s 145	Leu	Ser	Phe	Gly	Ala 150	Asn	Gly	Asn	Lys	Val 155	Asn	Ile	Thr	Ser	Asp 160	
Thr	Lys	Gly	Leu	Asn 165	Phe	Ala	Lys	Glu	Thr 170	Ala	Gly	Thr	Asn	Gly 175	Asp	
Pro	Thr	Val	His 180	Leu	Asn	Gly	Ile	Gly 185	Ser	Thr	Leu	Thr	Asp 190	Thr	Leu	
Leu	Asn	Thr 195	Gly	Ala	Thr	Thr	Asn 200	Val	Thr	Asn	Asp	Asn 205	Val	Thr	Asp	

cont i	nued

pp Qiu Lye Lye Arg Ale Ale Ser Val Lye Aeg Val Lev Aen Ale Gly 220 220 220 220 220 220 240 245 247 248 249 249 249 249 249 249 249 249
230       235       240         pp Phe Val Arg Thr Ya Asg Thr Val Glu Phe Leu Ger Ala Asg Thr       255       240         rs Thr Thr Thr Val Asn Val Glu Ser Lys Asp Asn Gly Lys Lys Thr       200       285         ra Uval Lyg Ile Gly Ala Lys Thr Ser Val Ile Lys Glu Lys Asp Gly       285       285         290       Val Thr Gly Lye Gly Lys Asp Glu Aan Gly Ser Ser Thr Asg       300         290       Glu Gly Leu Val Thr Ala Lys Glu Val Ile Asp Ala Val Asn       315         10       Gly Gly Leu Val Thr Ala Lys Glu Val Ile Asp Ala Val Asn       322         re Ala Gly Trp Arg Net Lys Thr Thr Thr Ala Asn Gly Gln Thr Gly       335         300       315       365         310       365       365         325       365       Gln Gly         326       336       365         327       Ser Gly Lys Oly Thr Thr Ala Thr Val Ser Lys Asp Asp Gln Gly         330       365       365         330       365       365         330       365       400         345       385       400         390       128       400         391       128       595         392       595       597       418         393       597       597       597
re The The The Val Aan Val Gu See Lys Aap Aan Gly Lys Lys The 270 yes The 275 He Gly Lys Lys The 285 yes that Let $V_{285}$ and
260265270uu Val Lys Ile Gly Ala Lys Thr Ser Val Ile Lys Glu Lys Asp Gly 27578 Leu Val Thr Gly Lys Gly Lys Asp Glu Asn Gly Ser Ser Thr Asp 29010 Gly Glu Gly Leu Val Thr Ala Lys Glu Val Ile Asp Ala Val Asn 31511 Gly Trp Arg Met Lys Thr Thr Thr Ala Asn Gly Gln Thr Gly 32512 sc Ala Gly Trp Arg Met Lys Thr Thr Thr Ala Asn Gly Gln Thr Gly 32513 as Cly Lys Gly Thr Thr Ala Thr Val Ser Lys Asp Asp Gl Gly 35514 as p Lys Fhe Glu Thr Val Thr Ser Gly Thr Asn Val Thr Fhe 36015 as Cly Lys Gly Thr Thr Ala Thr Val Ser Lys Asp Asp Gl Gly 37516 m Gln Leu Gln Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala 39017 of Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val 39018 Ser Glu Thr Val Lys Tyr Asp Val Asn Val Ser Pro Ser Lys Glu 40019 Ser Ser Glu Lys Asn Ile Asn Ile Asn Ala Gly Asn Asn Ile Glu Ile 42010 Asn Ser Glu Thr Val Asn Ile Asn Ala Gly Asn Asn Ile Glu Ile 42011 Asp Asp Glu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser 45012 Asp Asp Glu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser 45013 Asp Asp Glu Gly Ala Gly Val Iles Glu Gly Asp Val 45514 Asp Asp Glu Gly Ala Gly Ala Asp Ala Glu Asn Lys 45015 Asp Asp Glu Gly Ala Asp Ala Gli Jee Ann Asp 51016 Asp Glu Soli Soli Soli Soli Soli Soli Soli Soli
275       280       285         re Leu Val Thr Gly Lye Gly Lye Asp Glu Asn Gly Ser Ser Thr Asp 200         10 Gly Glu Gly Leu Val Thr Ala Lys Glu Val I Asp Ala Val Asn 320         rs Ala Gly Trp Arg Met Lys Thr Thr Thr Ala Asn Gly Ger Ser Thr Asp 320         rs Ala Gly Trp Arg Met Lys Thr Thr Thr Ala Asn Gly Ger Ser Gly Glu Gly 335         an Ala Asp Lys Phe Glu Thr Val Thr Ser Gly Thr Asn Val Thr Phe 320         as Ser Gly Lys Gly Thr Thr Ala Thr Val Ser Lys Asp Asp Gln Gly 335         an Ala Asp Lys Phe Glu Thr Val Thr Ser Gly Asp Ala Leu Asn Val Gly 335         an Ile Thr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val Ala 400         370         go Gln Leu Gln Asn 336         and Gly Lys Val Ile Ser Gly Asn Val Ser Pro Ser Lys Gly 410         415         420         420         420         420         420         420         420         420         420         420         420         420         420         420         420         420         420         420         420         420         420         420         420         420
290       295       300         110       Gly Glu Gly Leu Val Thr Ala Lys Glu Val ILe Aep Ala Val Asn Sizo         155       Ala Gly Trp Arg Met Lys Thr Thr Thr Ala Asn Gly Gln Thr Gly 335         111       Ala Asp Lys Phe Glu Thr Val Thr Ser Gly Thr Asn Val Thr Phe 350         112       Gly Lys Gly Thr Thr Ala Thr Val Ser Lys Asp Asp Gln Gly 355         113       Fr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val 300         115       Gln Asn Ser Gly Lys Gly Thr Thr Ala Thr Val Ser Lys Asp Asp Cln Gly 365         116       Leu Gln Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala 300         117       Yer Val Van Val The Asn Tle Asp Ala Cly Asp Ala Leu Asn Val 300         118       Kesp Glu Thr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val 300         119       Ser Ser Gly Lys Val Tle Ser Gly Asn Val Ser Pro Ser Lys Gly 410         110       Ser Lys Ala Val Ala 241         110       Ser Lys Ala Val Ala 240         111       Ser Gly Asn Na Ash Tle Gly Asn Ala Cly Asn Ash Tle Glu Tle 4450         118       Asp Glu Thr Val Asn Tle Asp Tle Asp Ala Pro Thr Leu Ser 4450         119       Ato 41         110       Asn Ash Tle Asp The Asn Ala Pro Glu 4450         111       Asn Val Ser Pro Thr Leu Ser 4450         112       Ato 41         1135       Asn Val Asp Gly Ala Leu Asn Val Gly Ser Lys Asp Thr Asn Lys
15       310       315       320         rs Ala Gly Trp Arg Met Lys Thr Thr Thr Thr Ala Asn Gly Gln Thr Gly       335       330         10       315       320         11       As Gly Trp Arg Met Lys Thr Thr Thr Thr Ala Asn Gly Gln Thr Gly         11       Ala Asp Lys Phe Glu Thr Val Thr Ser Gly Thr Asn Val Thr Phe         355       350         11       Ala Asp Lys Qly Thr Thr Thr Ala Thr Val Ser Lys Asp Asp Gln Gly         11       Thr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val         370       Thr Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala         370       Thr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val         370       Thr Val Asn Ile Asn Ala Gly Asn Asn Ile Glu The         415       Ser Ser Gly Lys Asn Ile Asn Ala Gly Asn Asn Ile Glu The         425       Asp Ala Pro Thr Leu Ser         445       Asp Clu Thr Val Asn Ile Asp Ala Pro Thr Leu Ser         450       Asp Ala Clu Asn Asp Ala Pro Glu         451       Asp Glu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser         452       Asp Ala Pro Thr Lau Ser         453       Asp Ala Pro Glu Gly Ala       Asp Ala Pro Thr Leu Ser         450       Asp Ala Clu Asn Val Gly Ser Lys Asp Thr Asn Lys         451       Asp Ala Glu Gly Ala Glu Asp Ala Pro Glu Alasp Ala         452
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
340 $345$ $350$ Ia SerGly Lys Gly Thr Thr Ala Thr Val Ser Lys Asp Asp Gln Gly $355$ $355$ Ser Us Asp Asp Gln Gly $365$ in The Tval Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val $370$ $375$ Ser Us Asp Ser Lys Ala Val Ala $400$ in Gln Leu Gln Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala $400$ $400$ iy Ser Ser Gly Lys Val IIe $420$ Ser Gly Asn Val Ser Pro Ser Lys Gly $410$ ir Asp Glu Lys Val IIe $420$ Ser Gly Asn Nal Gly Asn Asn Ie Glu IIe $420$ ir Arg Asn Gly Lys Asn IIe Asp IIe Ala Thr Ser Met Ala Pro Gln $445$ ie Ser Ser Val Ser Leu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser $450$ ich Asp Glu Gly Ala Leu Asn Val Gly $475$ ich Asp Glu Gly Ala Cu Lys Gly Val Ala Ser Lys Asp Thr Asn Lys $460$ ich Asp Asp Glu Gly Ala Gly Ala Cu Ser Lys Glu Gly Asp Val $490$ ich Asn Val Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg $510$ ich Asp Su Val Asp Gly Asn Ala Arg Ala Gly IIe Ala Gln Ala IIe $520$ ich Asp Man Val Gly Asn Ala Gly IIe Ala Gln Asn Leu Asn Asn Arg $510$ ich Asp Val Asp Gly Asn Ala Arg Ala Gly IIe Ala Gln Ala IIe $520$ ich Asp Man Val Asp Gly Asn Ala Arg Ala Gly IIe Ala Gln Ala IIe $520$ ich Asp Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met $540$ ich Gly Gly Asp Thr Tyr Arg Gly Glu Ala Gly Tyr Ala IIe Gly $550$ ich Ser Ser IIe Ser Asp Gly Gly Asn Trp IIe IIe Lys Gly Thr Ala $570$ ich Ser Ser IIe Ser Asp Gly Gly Asn Trp IIe IIe Lys Gly Thr Ala $570$
355  360  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365  365
370 375 380 and Gln Leu Gln Aan Ser Gly Trp Aan Leu Aap Ser Lys Ala Val Ala 400 405 405 405 405 405 405 405
35       390       395       400         47       Ser       Gly Lys       Val       Ile       Ser       Gly Asn       Val       Ser       Pro       Ser       Lys       Gly         47       Asp       Glu       Thr       Val       Asn       Ile       Asn       Ala       Gly Asn       Asn       Ile       Glu       Ile       Asn       Ile       Asn       Ile       Asn       Ile       Asn       Ile       Asn       Ile       Gly Asn       Asn       Ile       Glu       Ile         415       Asn       Glu       Thr       Val       Asn       Ile       Asn       Ala       Gly Asn       Ser       Met       Ala       Pro       Ser       Met       Ala       Pro       Glu       Ile       Asn       Ala       Gly Asn       Pro       Glu       Ile       Asn       Asn       Asn       Ala       Gly Asn       Asn       Asn       Asn       Asn       Asn       Val       Asn       Val       Asn       Val       Asn       Val       Asn       Val       Asn       Val       Asn       Asn       Asn       Asn       Asn       Asn       Asn       Asn       Asn
40541041578MetAspGluThrValAsnIleAsnAlaGlyAsnIleGluIleArArsnGlyLysAsnIleAsnIleAsnAlaGlyAsnAsnIleGluIleArArsnGlyLysAsnIleAsnIleAsnIleAsnAlaGlyAsnAlaProGlnArArsnGlyLysAsnIleAsnValAsnValAsnValAsnValAsnValAsnValAsnValAsnAsnGlyAlaGlySerLysAsnLysAsnLysAsnLysAsnValAsnValAsnAlaClyValAsnNaNaLysAsnValAsnValAsnValAsnValAsnValAsnLysAsnValAsnValAsnValAsnValAsnAsnAsnAsnAsnAsnValAsnValAsnValAsnValAsnAsnAsnAsnAsnAsnAsnAsnValAsnValAsnValAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnValAsnAsnAsnAsnAsnAsnAsnA
420       425       430         ar Arg Asn Gly Lys Asn Ile Asp Gly Ala Asp Ala Thr Ser Met Ala Pro Gln         435 $440$ Ile Ala Thr Ser Met Ala Pro Gln         450       Ser Val Ser Leu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser         455       Asp Asp Glu Gly Ala Leu Asn Val Gly Ser Lys Asp Thr Asn Lys         450       Val Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val         450       Val Asp Asp Glu Gly Asn Ala Arg Son Val Ala Glu Asp Ala Glu Asn Leu Asn Asn Arg         51       Asn Val Ala Glu Leu Lys Gly Val Ala Glu Asn Leu Asn Asn Asn Arg         52       Asp Ash Val Ala Gly Leu Val Glu Asp Ala Glu Gly Ile Ala Gly Ile Ala Glu Asp Asp Asp Asp         420       Asp Asp Son Val Asp Gly Asp Asp Ala Tyr Leu Pro Gly Lys Ser Met Met         530       Fur Asp Gly Asp Thr Arg Gly Glu Asp Trp Ile Ile Lys Gly Tyr Ala Ile Gly 560         431       Fur Asp Asp Calu Asp Gly Asp Thr Arg Gly Glu Asp Trp Ile Ile Lys Gly Tyr Ala Ile Gly 560         435       Fur Asp Asp Calu Asp Gly Gly Asp Trp Trp Arg Gly Glu Asp Trp The Ile Lys Gly Tyr Ala Ile Gly 560         435       Fur Asp Son Fur Arg Gly His Pro Gly Asp Trp Trp Trp Trp Trp Trp Trp Trp Trp Tr
435440445 $435$ $440$ $445$ $450$ $55$ $5er$ $Val$ $5er$ $Leu$ $Gly$ $Ala$ $Abp$ $Ala$ $Pro$ $Thr$ $Leu$ $Ser$ $450$ $Abp$ $Glu$ $Gly$ $Ala$ $Cly$ $Ala$ $Pro$ $Thr$ $Leu$ $Ser$ $455$ $Abp$ $Glu$ $Gly$ $Ala$ $Cly$ $Ser$ $Leu$ $Asr$ $Leu$ $Asr$ $470$ $Arg$ $Ile$ $Thr$ $Asn$ $Val$ $Gly$ $Ser$ $Lys$ $Asp$ $Val$ $485$ $Arg$ $Ile$ $Thr$ $Asn$ $Val$ $Ala$ $Pro$ $Gly$ $Val$ $Asp$ $Sup$ $Sup$ $ard$ $Arg$ $Ile$ $Thr$ $Asn$ $Val$ $Ala$ $Pro$ $Gly$ $Val$ $Asp$ $Sup$ $Sup$ $ard$ $Asn$ $Sup$ $Glu$ $Ala$ $Pro$ $Gly$ $Val$ $Asp$ $Sup$ $Asn$ $Asn$ $ard$ $Asp$ $Glu$ $Asp$ $Gly$ $Val$ $Asp$ $Sup$ $Asp$ $Asp$ $ard$ $Asp$ $Glu$ $Asp$ $Ala$ $Glu$ $Asp$ $Ius$ $Asp$ $Asp$ $ard$ $Asp$ $Sup$ $Asp$ $Asp$ $Asp$ $Asp$ $Asp$ $Asp$ $Asp$ $ard$ $Asp$ $Sup$ $Asp$ $Asp$ $Asp$ $Asp$ $Asp$ $Asp$ $Asp$ $ard$ $Asp$ $Sup$ $Asp$ $Asp$ $Asp$
450 450 450 450 450 450 450 450
35       470       475       480         co Val Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp 495       Val         ar Asn Val Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg 500       Soo Sl Val Asp 61         ar Asn Val Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg 510       Asn Asn Arg 510         ar Asn Val Ala Gln Leu Lys Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile 525       Gln Ala Ile 525         ar Thr Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met 535       Soo
495    495 $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$ $495$
500       505       510         Le       Asp       Asp       Gly       Asn       Ala       Arg       Ala       Gly       Ile       Ala       Gln       Ala       Ile         La       Thr       Ala       Gly       Leu       Val       Gln       Ala       Gln       Ala       Ile         La       Thr       Ala       Gly       Leu       Val       Gln       Ala       Type       Ser       Met         La       Ile       Gly       Asp       Type       Arg       Gly       Gly       Ser       Met         La       Ile       Gly       Asp       Type       Arg       Gly       Gly       Ser       Met         La       Ile       Gly       Asp       Type       Arg       Gly       Gly       Ser       Met         La       Ile       Ser       Ser       Ala       Ser       Ala       Ile       Gly       Ser       Met         La       Ile       Ser       Ser       Ser       Ala       Ser </td
515       520       525         Ia       Thr       Ala       Gly       Leu       Val       Gln       Ala       Tyr       Leu       Pro       Gly       Lys       Ser       Met         Ia       II       Gly       Aly       Asp       Tyr       Ala       Tyr       Leu       Pro       Gly       Lys       Ser       Met         Ia       II       Gly       Asp       Thr       Tyr       Arg       Gly       Gly       Ala       IIe       Gly       Ser       Met         Ia       IIe       Gly       Asp       Thr       Tyr       Arg       Gly       Gly       Ala       IIe       Gly       Ser       Met         Ia       Ser       Ser       IIe       Ser       Ser       Met       Ser       Ser       Met         Ia       Ser       Ser       Ser       Ser       Ser       Ser       Met       Ser         Ia       Ser       Ser       Ser       Ser       Ser       Ser       Met         Ia       Ser       Ser       Val       Ser       Ser       Ser       Ser       Ser         Ia       Ser
530 535 540 La Ile Gly Gly Asp Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly 550 555 550 560 Fr Ser Ser Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala 565 570 570 575 Er Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr
15     550     555     560       7r Ser Ser Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala       565     570     575       er Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr
565 570 575 er Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr
n Trp

<212	1> LH 2> TY 3> OH	PE:	$\mathbf{PRT}$			ia ma	min	•i+i	lie								
<b>\</b> 21.	J> 01	GAN		Ner:	SBCI.		- IIII	91010	115								
<40	0> SH	QUEN	ICE :	95													
Met 1	Asn	Lys	Ile	Tyr 5	Arg	Ile	Ile	Trp	Asn 10	Ser	Ala	Leu	Asn	Ala 15	Trp		
Val	Val	Val	Ser 20	Glu	Leu	Thr	Arg	Asn 25	His	Thr	Lys	Arg	Ala 30	Ser	Ala		
Thr	Val	Glu 35	Thr	Ala	Val	Leu	Ala 40	Thr	Leu	Leu	Phe	Ala 45	Thr	Val	Gln		
Ala	Ser 50	Ala	Asn	Asn	Glu	Glu 55	Gln	Glu	Glu	Азр	Leu 60	Tyr	Leu	Asp	Pro		
Val 65	Gln	Arg	Thr	Val	Ala 70	Val	Leu	Ile	Val	Asn 75	Ser	Asp	Lys	Glu	Gly 80		
Thr	Gly	Glu	Lys	Glu 85	Lys	Val	Glu	Glu	Asn 90	Ser	Asp	Trp	Ala	Val 95	Tyr		
Phe	Asn	Glu	L <b>y</b> s 100	Gly	Val	Leu	Thr	Ala 105	Arg	Glu	Ile	Thr	Leu 110	Lys	Ala		
Gly	Asp	Asn 115	Leu	Lys	Ile	Lys	Gln 120	Asn	Gly	Thr	Asn	Phe 125	Thr	Tyr	Ser		
Leu	L <b>y</b> s 130	Lys	Asp	Leu	Thr	Asp 135	Leu	Thr	Ser	Val	Gly 140	Thr	Glu	Lys	Leu		
Ser 145	Phe	Ser	Ala	Asn	Gly 150	Asn	Lys	Val	Asn	Ile 155	Thr	Ser	Asp	Thr	L <b>y</b> s 160		
Gly	Leu	Asn	Phe	Ala 165	Lys	Glu	Thr	Ala	Gly 170	Thr	Asn	Gly	Asp	<b>T</b> hr 175	Thr		
Val	His	Leu	Asn 180	Gly	Ile	Gly	Ser	Thr 185	Leu	Thr	Asp	Thr	Leu 190	Leu	Asn		
Thr	Gly	Ala 195	Thr	Thr	Asn	Val	Thr 200	Asn	Asp	Asn	Val	Thr 205	Asp	Asp	Glu		
Lys	L <b>y</b> s 210	Arg	Ala	Ala	Ser	Val 215	Lys	Asp	Val	Leu	Asn 220	Ala	Gly	Trp	Asn		
Ile 225	Lys	Gly	Val	Lys	Pro 230	Gly	Thr	Thr	Ala	Ser 235	Asp	Asn	Val	Asp	Phe 240		
Val	Arg	Thr	Tyr	Asp 245	Thr	Val	Glu	Phe	Leu 250	Ser	Ala	Asp	Thr	Lys 255	Thr		
Thr	Thr	Val	Asn 260	Val	Glu	Ser	Lys	Asp 265	Asn	Gly	Lys	Lys	Thr 270	Glu	Val		
Lys	Ile	Gly 275	Ala	Lys	Thr	Ser	Val 280	Ile	Lys	Glu	Lys	<b>As</b> p 285	Gly	Lys	Leu		
Val	Thr 290	Gly	Lys	Asp	Lys	Gly 295	Glu	Asn	Gly	Ser	Ser 300	Thr	Asp	Glu	Gly		
Glu 305	Gly	Leu	Val	Thr	Ala 310	Lys	Glu	Val	Ile	Asp 315	Ala	Val	Asn	Lys	Ala 320		
Gly	Trp	Arg	Met	L <b>y</b> s 325	Thr	Thr	Thr	Ala	Asn 330	Gly	Gln	Thr	Gly	Gln 335	Ala		
Asp	Lys	Phe	Glu 340	Thr	Val	Thr	Ser	Gly 345	Thr	Asn	Val	Thr	Phe 350	Ala	Ser		
Gly	Lys	Gly 355	Thr	Thr	Ala	Thr	Val 360	Ser	Lys	Asp	Asp	Gln 365	Gly	Asn	Ile		
Thr	Val	Met	Tyr	Asp	Val	Asn	Val	Gly	Asp	Ala	Leu	Asn	Val	Asn	Gln		

-continued

											-	con	tin	ued					
	370					375					380								
Leu 385	Gln	Asn	Ser	Gly	Trp 390	Asn	Leu	Asp	Ser	Lys 395	Ala	Val	Ala	Gly	Ser 400				
Ser	Gly	Lys	Val	Ile 405	Ser	Gly	Asn	Val	Ser 410	Pro	Ser	Lys	Gly	L <b>y</b> s 415	Met				
Asp	Glu	Thr	Val 420	Asn	Ile	Asn	Ala	Gly 425	Asn	Asn	Ile	Glu	Ile 430	Thr	Arg				
Asn	Gly	L <b>y</b> s 435	Asn	Ile	Asp	Ile	Ala 440	Thr	Ser	Met	Thr	Pro 445	Gln	Phe	Ser				
Ser	Val 450	Ser	Leu	Gly	Ala	Gly 455	Ala	Asp	Ala	Pro	Thr 460	Leu	Ser	Val	Asp				
Gly 465	Asp	Ala	Leu	Asn	Val 470	Gly	Ser	Lys	Lys	Asp 475	Asn	Lys	Pro	Val	Arg 480				
Ile	Thr	Asn	Val	Ala 485	Pro	Gly	Val	Lys	Glu 490	Gly	Asp	Val	Thr	Asn 495	Val				
Ala	Gln	Leu	L <b>y</b> s 500	Gly	Val	Ala	Gln	Asn 505	Leu	Asn	Asn	Arg	Ile 510	Asp	Asn				
Val	Asp	Gly 515	Asn	Ala	Arg	Ala	Gly 520	Ile	Ala	Gln	Ala	Ile 525	Ala	Thr	Ala				
Gly	Leu 530	Val	Gln	Ala	Tyr	Leu 535	Pro	Gly	Lys	Ser	Met 540	Met	Ala	Ile	Gly				
Gly 545	Gly	Thr	Tyr	Arg	Gly 550	Glu	Ala	Gly	Tyr	Ala 555	Ile	Gly	Tyr	Ser	Ser 560				
Ile	Ser	Asp	Gly	Gly 565	Asn	Trp	Ile	Ile	Lys 570	Gly	Thr	Ala	Ser	Gly 575	Asn				
Ser	Arg	Gly	His 580	Phe	Gly	Ala	Ser	Ala 585	Ser	Val	Gly	Tyr	Gln 590	Trp					
<213 <213	0> SE 1> LE 2> TY 3> OF	ENGTH	H: 59 PRT	91	sser:	ia me	ening	gitid	dis										
<400	0> SE	QUEN	ICE :	96															
Met 1	Asn	Lys	Ile	Tyr 5	Arg	Ile	Ile	Trp	Asn 10	Ser	Ala	Leu	Asn	Ala 15	Trp				
Val	Val	Val	Ser 20	Glu	Leu	Thr	Arg	Asn 25	His	Thr	Lys	Arg	Ala 30	Ser	Ala				
Thr	Val	Lys 35		Ala	Val	Leu	Ala 40	Thr	Leu	Leu	Phe	Ala 45	Thr	Val	Gln				
Ala	Ser 50		Asn	Asn	Glu	Glu 55		Glu	Glu	Asp	Leu 60	Tyr	Leu	Asp	Pro				
Val 65	Gln	Arg	Thr	Val	Ala 70	Val	Leu	Ile	Val	Asn 75	Ser	Asp	Lys	Glu	Gly 80				
Thr	Gly	Glu	Lys	Glu 85	_	Val	Glu	Glu	Asn 90	Ser	Asp	Trp	Ala	Val 95	Tyr				
Phe	Asn	Glu	Lys 100		Val	Leu	Thr	Ala 105	-	Glu	Ile	Thr	Leu 110	Lys	Ala				
Gly	Asp	Asn 115	Leu	Lys	Ile	Lys	Gln 120	Asn	Gly	Thr	Asn	Phe 125	Thr	Tyr	Ser				
Leu	L <b>y</b> s 130	Lys	Asp	Leu	Thr	Asp 135	Leu	Thr	Ser	Val	Gly 140	Thr	Glu	Lys	Leu				

-C	$\sim$	n	+	÷	n	17	А

											-	con	tin	ued	
Ser 145	Phe	Ser	Ala	Asn	Gly 150	Asn	Lys	Val	Asn	Ile 155	Thr	Ser	Asp	Thr	L <b>y</b> s 160
Gly	Leu	Asn	Phe	Ala 165	Lys	Glu	Thr	Ala	Gly 170	Thr	Asn	Gly	Asp	Thr 175	Thr
Val	His	Leu	Asn 180	Gly	Ile	Gly	Ser	Thr 185	Leu	Thr	Asp	Thr	Leu 190	Leu	Asn
Thr	Gly	Ala 195	Thr	Thr	Asn	Val	Thr 200	Asn	Asp	Asn	Val	Thr 205	Asp	Asp	Glu
Lys	L <b>y</b> s 210	Arg	Ala	Ala	Ser	Val 215	Lys	Asp	Val	Leu	Asn 220	Ala	Gly	Trp	Asn
Ile 225	Lys	Gly	Val	Lys	Pro 230	Gly	Thr	Thr	Ala	Ser 235	Asp	Asn	Val	Asp	Phe 240
Val	Arg	Thr	Tyr	<b>A</b> sp 245	Thr	Val	Glu	Phe	Leu 250	Ser	Ala	Asp	Thr	L <b>y</b> s 255	Thr
Thr	Thr	Val	Asn 260	Val	Glu	Ser	Lys	<b>A</b> sp 265	Asn	Gly	Lys	Lys	Thr 270	Glu	Val
Lys	Ile	Gly 275		Lys	Thr	Ser	Val 280		Lys	Glu	Lys	Asp 285		Lys	Leu
Val			Lys	Asp	Lys			Asn	Gly	Ser	Ser 300		Asp	Glu	Gly
	290 Gly	Leu	Val	Thr	Ala	295 Lys	Glu	Val	Ile	-		Val	Asn	Lys	
305 Gly	Trp	Arg	Met		310 Thr	Thr	Thr	Ala		315 Gly	Gln	Thr	Gly		320 Ala
Asp	Lys	Phe	Glu	325 Thr	Val	Thr	Ser	Gly	330 Thr	Asn	Val	Thr	Phe	335 Ala	Ser
Glv	Lvs	Glv	340 Thr	Thr	Ala	Thr	Val	345 Ser	Lvs	Asp	Asp	Gln	350 Glv	Asn	Ile
-	-	355			Val		360		-	_		365	_		
	370		_	_		375			_		380				
385				-	Trp 390			-		395				-	400
Ser	Gly	Lys	Val	Ile 405	Ser	Gly	Asn	Val	Ser 410	Pro	Ser	Lys	Gly	L <b>y</b> s 415	Met
Asp	Glu	Thr	Val 420	Asn	Ile	Asn	Ala	Gl <b>y</b> 425	Asn	Asn	Ile	Glu	Ile 430	Thr	Arg
Asn	Gly	L <b>y</b> s 435	Asn	Ile	Asp	Ile	Ala 440	Thr	Ser	Met	Thr	Pro 445	Gln	Phe	Ser
Ser	Val 450	Ser	Leu	Gly	Ala	Gly 455		Asp	Ala	Pro	Thr 460	Leu	Ser	Val	Asp
Gly 465	Asp	Ala	Leu	Asn	Val 470	Gly	Ser	Lys	Lys	Asp 475	Asn	Lys	Pro	Val	<b>A</b> rg 480
Ile	Thr	Asn	Val	Ala 485	Pro	Gly	Val	Lys	Glu 490	Gly	Asp	Val	Thr	Asn 495	Val
Ala	Gln	Leu	L <b>y</b> s 500	Gly	Val	Ala	Gln	Asn 505	Leu	Asn	Asn	Arg	Ile 510	Asp	Asn
Val	Asp	Gly 515	Asn	Ala	Arg	Ala	Gly 520	Ile	Ala	Gln	Ala	Ile 525	Ala	Thr	Ala
Gly	Leu 530		Gln	Ala	Tyr	Leu 535		Gly	Lys	Ser	Met 540		Ala	Ile	Gly
Gly		Thr	Tyr	Arg	Gly		Ala	Gly	Tyr	Ala		Gly	Tyr	Ser	Ser

545 550 555 560 Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala Ser Gly Asn 565 570 575 Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 580 585 590 <210> SEQ ID NO 97 <211> LENGTH: 595 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 97 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 10 Val Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 25 20 Thr Val Glu Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln 35 40 45 Ala Asn Ala Thr Asp Thr Asp Glu Asp Asp Glu Leu Glu Pro Val Val 55 Arg Ser Ala Leu Val Leu Gln Phe Met Ile Asp Lys Glu Gly Asn Gly65707580 Glu Ile Glu Ser Thr Gly Asp Ile Gly Trp Ser Ile Tyr Tyr Asp Asp 85 90 95 His Asn Thr Leu His Gly Ala Thr Val Thr Leu Lys Ala Gly Asp Asn 100 105 110 100 Leu Lys Ile Lys Gln Asn Thr Asp Glu Asn Thr Asn Ala Ser Ser Phe 115 120 125 Thr Tyr Ser Leu Lys Lys Asp Leu Thr Asp Leu Thr Ser Val Gly Thr 130 135 140 Glu Glu Leu Ser Phe Gly Ala Asn Gly Asn Lys Val Asn Ile Thr Ser 145 150 155 160 Asp Thr Lys Gly Leu Asn Phe Ala Lys Lys Thr Ala Gly Thr Asn Gly 165 170 175 Asp Thr Thr Val His Leu Asn Gly Ile Gly Ser Thr Leu Thr Asp Thr 180 185 190 Leu Ala Gly Ser Ser Ala Ser His Val Asp Ala Gly Asn Gln Ser Thr 195 200 205 His Tyr Thr Arg Ala Ala Ser Ile Lys Asp Val Leu Asn Ala Gly Trp 215 220 210 Asn Ile Lys Gly Val Lys Thr Gly Ser Thr Thr Gly Gln Ser Glu Asn 230 235 225 240 Val Asp Phe Val Arg Thr Tyr Asp Thr Val Glu Phe Leu Ser Ala Asp 245 250 255 Thr Lys Thr Thr Thr Val Asn Val Glu Ser Lys Asp Asn Gly Lys Arg 265 270 Thr Glu Val Lys Ile Gly Ala Lys Thr Ser Val Ile Lys Glu Lys Asp 275 280 285 280 Gly Lys Leu Val Thr Gly Lys Gly Lys Gly Glu Asn Gly Ser Ser Thr 290 295 300 Asp Glu Gly Glu Gly Leu Val Thr Ala Lys Glu Val Ile Asp Ala Val 310 305 315 320

-continued
------------

											-	con	tin	ued		
Asn	Lys	Ala	Gly	<b>T</b> rp 325	Arg	Met	Lys	Thr	Thr 330	Thr	Ala	Asn	Gly	Gln 335	hr	
Gly	Gln	Ala	Asp 340	_	Phe	Glu	Thr	Val 345	Thr	Ser	Gly	Thr	Asn 350	Val	hr	
Phe	Ala	Ser 355	Gly	Lys	Gly	Thr	Thr 360	Ala	Thr	Val	Ser	L <b>y</b> s 365	Asp	Asp	ln	
Gly	Asn 370		Thr	Val	Lys	<b>Ty</b> r 375		Val	Asn	Val	Gly 380	Asp	Ala	Leu	sn	
Val 385	Asn	Gln	Leu	Gln	Asn 390	Ser	Gly	Trp	Asn	Leu 395	Asp	Ser	Lys	Ala	al 00	
Ala	Gly	Ser	Ser	Gly 405		Val	Ile	Ser	Gly 410	Asn	Val	Ser	Pro	Ser 415	ys	
Gly	Lys	Met	Asp 420		Thr	Val	Asn	Ile 425	Asn	Ala	Gly	Asn	Asn 430	Ile	lu	
Ile	Thr	Arg 435	Asn	Gly	Lys	Asn	Ile 440	Asp	Ile	Ala	Thr	Ser 445	Met	Thr	ro	
Gln	Phe 450	Ser	Ser	Val	Ser	Leu 455		Ala	Gly	Ala	Asp 460	Ala	Pro	Thr	eu	
Ser 465	Val	Asp	Asp	Glu	Gly 470	Ala	Leu	Asn	Val	Gly 475	Ser	Lys	Asp	Ala	sn 80	
Lys	Pro	Val	Arg	Ile 485	Thr	Asn	Val	Ala	Pro 490	Gly	Val	Lys	Glu	Gly 495	sp	
Val	Thr	Asn	Val 500	Ala	Gln	Leu	Lys	Gly 505	Val	Ala	Gln	Asn	Leu 510	Asn	sn	
His	Ile	Asp 515	Asn	Val	Asp	Gly	Asn 520	Ala	Arg	Ala	Gly	Ile 525	Ala	Gln	la	
Ile	Ala 530	Thr	Ala	Gly	Leu	Val 535		Ala	Tyr	Leu	Pro 540	Gly	Lys	Ser	et	
Met 545	Ala	Ile	Gly	Gly	Gl <b>y</b> 550	Thr	Tyr	Arg	Gly	Glu 555	Ala	Gly	Tyr	Ala	le 60	
Gly	Tyr	Ser	Ser	Ile 565	Ser	Asp	Gly	Gly	Asn 570	Trp	Ile	Ile	Lys	Gly 575	hr	
Ala	Ser	Gly	Asn 580	Ser	Arg	Gly	His	Phe 585	Gly	Ala	Ser	Ala	Ser 590	Val	ly	
Tyr	Gln	Trp 595														
<213 <212	)> SE 1> LE 2> TY 3> OF	NGTH	I: 59 PRT	92	seri	La me	ening	jitic	lis							
<400	)> SE	QUEN	ICE :	98												
Met 1	Asn	Lys	Ile	Tyr 5	Arg	Ile	Ile	Trp	Asn 10	Ser	Ala	Leu	Asn	Ala 15	rp	
Val	Ala	Val	Ser 20	Glu	Leu	Thr	Arg	Asn 25	His	Thr	Lys	Arg	Ala 30	Ser	la	
Thr	Val	Lys 35	Thr	Ala	Val	Leu	Ala 40	Thr	Leu	Leu	Phe	Ala 45	Thr	Val	ln	
Ala	Asn 50	Ala	Thr	Asp	Glu	Asp 55	Glu	Glu	Glu	Glu	Leu 60	Glu	Ser	Val	ln	
Arg 65	Ser	Val	Val	Gly	Ser 70	Ile	Gln	Ala	Ser	Met 75	Glu	Gly	Ser	Gly	lu 80	

Leu	Glu	Thr	Ile	Ser 85	Leu	Ser	Met	Thr	Asn 90	Asp	Ser	Lys	Glu	Phe 95	Val
Asp	Pro	Tyr	Ile 100	Val	Val	Thr	Leu	Lys 105	Ala	Gly	Asp	Asn	Leu 110	Lys	Ile
Lys	Gln	Asn 115	Thr	Asn	Glu	Asn	Thr 120	Asn	Ala	Ser	Ser	Phe 125	Thr	Tyr	Ser
Leu	Lys 130	Lys	Asp	Leu	Thr	Gly 135	Leu	Ile	Asn	Val	Glu 140	Thr	Glu	Lys	Leu
Ser 145	Phe	Gly	Ala	Asn	Gly 150	Lys	Lys	Val	Asn	Ile 155	Ile	Ser	Asp	Thr	Lys 160
Gly	Leu	Asn	Phe	Ala 165	Lys	Glu	Thr	Ala	Gl <b>y</b> 170	Thr	Asn	Gly	Asp	Thr 175	Thr
Val	His	Leu	Asn 180	Gly	Ile	Gly	Ser	Thr 185	Leu	Thr	Asp	Thr	Leu 190	Ala	Gly
Ser	Ser	Ala 195	Ser	His	Val	Asp	Ala 200	Gly	Asn	Gln	Ser	Thr 205	His	Tyr	Thr
Arg	Ala 210	Ala	Ser	Ile	Lys	Asp 215	Val	Leu	Asn	Ala	Gly 220	Trp	Asn	Ile	Lys
Gl <b>y</b> 225	Val	Lys	Thr	Gly	Ser 230	Thr	Thr	Gly	Gln	Ser 235	Glu	Asn	Val	Asp	Phe 240
Val	Arg	Thr	Tyr	Asp 245	Thr	Val	Glu	Phe	Leu 250	Ser	Ala	Asp	Thr	Lys 255	Thr
Thr	Thr	Val	Asn 260	Val	Glu	Ser	Lys	Asp 265	Asn	Gly	Lys	Arg	Thr 270	Glu	Val
Lys	Ile	Gl <b>y</b> 275	Ala	Lys	Thr	Ser	Val 280	Ile	Lys	Glu	Lys	<b>A</b> sp 285	Gly	Lys	Leu
Val	Thr 290	Gly	Lys	Gly	Lys	Gly 295	Glu	Asn	Gly	Ser	Ser 300	Thr	Asp	Glu	Gly
Glu 305	Gly	Leu	Val	Thr	Ala 310	Lys	Glu	Val	Ile	Asp 315	Ala	Val	Asn	Lys	Ala 320
Gly	Trp	Arg	Met	L <b>y</b> s 325	Thr	Thr	Thr	Ala	Asn 330	Gly	Gln	Thr	Gly	Gln 335	Ala
Asp	Lys	Phe	Glu 340	Thr	Val	Thr	Ser	Gly 345	Thr	Asn	Val	Thr	Phe 350	Ala	Ser
Gly	Lys	Gly 355	Thr	Thr	Ala	Thr	Val 360	Ser	Lys	Asp	Asp	Gln 365	Gly	Asn	Ile
Thr	Val 370	Met	Tyr	Asp	Val	Asn 375	Val	Gly	Asp	Ala	Leu 380	Asn	Val	Asn	Gln
Leu 385	Gln	Asn	Ser	Gly	Trp 390	Asn	Leu	Asp	Ser	Lys 395	Ala	Val	Ala	Gly	Ser 400
Ser	Gly	Lys	Val	Ile 405	Ser	Gly	Asn	Val	Ser 410	Pro	Ser	Lys	Gly	L <b>y</b> s 415	Met
Asp	Glu	Thr	Val 420	Asn	Ile	Asn	Ala	Gly 425	Asn	Asn	Ile	Glu	Ile 430	Ser	Arg
Asn	Gly	Lys 435	Asn	Ile	Asp	Ile	Ala 440	Thr	Ser	Met	Ala	Pro 445	Gln	Phe	Ser
Ser	Val 450	Ser	Leu	Gly	Ala	Gly 455	Ala	Asp	Ala	Pro	Thr 460	Leu	Ser	Val	Asp
Asp 465	Glu	Gly	Ala	Leu	Asn 470	Val	Gly	Ser	Lys	Asp 475	Ala	Asn	Lys	Pro	Val 480

-continued

											-	con	tin	ued							
Arg	Ile	Thr	Asn	Val 485	Ala	Pro	Gly	Val	L <b>y</b> s 490	Glu	Gly	Asp	Val	Thr 495	Asn	ı					
Val	Ala	Gln	Leu 500		Gly	Val	Ala	Gln 505	Asn	Leu	Asn	Asn	Arg 510		Asp	2					
Asn	Val	<b>A</b> sp 515	Gly	Asn	Ala	Arg	Ala 520	Gly	Ile	Ala	Gln	Ala 525	Ile	Ala	Thr	c					
Ala	Gly 530	Leu	Val	Gln	Ala	<b>Ty</b> r 535	Leu	Pro	Gly	Lys	Ser 540	Met	Met	Ala	Ile	Э					
Gly 545	Gly	Gly	Thr	Tyr	Arg 550	Gly	Glu	Ala	Gly	<b>Ty</b> r 555	Ala	Ile	Gly	Tyr	Ser 560						
Ser	Ile	Ser	Asp	Gly 565	Gly	Asn	Trp	Ile	Ile 570	Lys	Gly	Thr	Ala	Ser 575	Gly	Ŧ					
Asn	Ser	Arg	Gly 580	His	Phe	Gly	Ala	Ser 585	Ala	Ser	Val	Gly	<b>Ty</b> r 590	Gln	Trp	ò					
<21 <21	0> SE 1> LE 2> TY 3> OF	ENGTH	I: 5 PRT	94	sseri	ia me	ening	gitic	lis												
<40	0> SE	EQUEN	ICE :	99																	
Met 1	Asn	Lys	Ile	Tyr 5	Arg	Ile	Ile	Trp	Asn 10	Ser	Ala	Leu	Asn	Ala 15	Trp	ò					
Val	Val	Val	Ser 20	Glu	Leu	Thr	Arg	Asn 25	His	Thr	Lys	Arg	Ala 30	Ser	Ala	a					
Thr	Val	Ala 35	Thr	Ala	Val	Leu	Ala 40	Thr	Leu	Leu	Phe	Ala 45	Thr	Val	Gln	ı					
Ala	Ser 50	Thr	Thr	Asp	Asp	Asp 55	Asp	Leu	Tyr	Leu	Glu 60	Pro	Val	Gln	Arg	3					
Thr 65	Ala	Pro	Val	Leu	Ser 70	Phe	His	Ala	Asp	Ser 75	Glu	Gly	Thr	Gly	Glu 80						
Lys	Glu	Val	Thr	Glu 85	Asp	Ser	Asn	Trp	Gly 90	Val	Tyr	Phe	Asp	Lys 95	Lys	5					
Gly	Val	Leu	Thr 100	Ala	Gly	Thr	Ile	Thr 105	Leu	Lys	Ala	Gly	Asp 110	Asn	Leu	1					
Lys	Ile	L <b>y</b> s 115	Gln	Asn	Thr	Asp	Glu 120	Asn	Thr	Asn	Ala	Ser 125	Ser	Phe	Thr	c					
Tyr	Ser 130	Leu	Lys	Lys	Asp	Leu 135	Thr	Asp	Leu	Thr	Ser 140	Val	Glu	Thr	Glu	1					
L <b>y</b> s 145	Leu	Ser	Phe	Gly	Ala 150	Asn	Gly	Lys	Lys	Val 155	Asn	Ile	Thr	Ser	Asp 160	-					
Thr	Lys	Gly	Leu	Asn 165	Phe	Ala	Lys	Glu	Thr 170	Ala	Gly	Thr	Asn	Gly 175	Asp	2					
Thr	Thr	Val	His 180	Leu	Asn	Gly	Ile	Gly 185	Ser	Thr	Leu	Thr	Asp 190	Thr	Leu	1					
Leu	Asn	Thr 195	Gly	Ala	Thr	Thr	Asn 200	Val	Thr	Asn	Asp	Asn 205	Val	Thr	Asp	2					
Asp	Glu 210	Lys	Lys	Arg	Ala	Ala 215	Ser	Val	Lys	Asp	Val 220	Leu	Asn	Ala	Gly	Y					
Trp 225	Asn	Ile	Lys	Gly	Val 230	Lys	Pro	Gly	Thr	Thr 235	Ala	Ser	Asp	Asn	Val 240						
Asp	Phe	Val	Arg	Thr 245	Tyr	Asp	Thr	Val	Glu 250	Phe	Leu	Ser	Ala	Asp 255	Thr	c					

```
-continued
```

Lys	Thr	Thr	Thr 260	Val	Asn	Val	Glu	Ser 265	Lys	Asp	Asn	Gly	L <b>y</b> s 270	Lys	Thr
Glu	Val	L <b>y</b> s 275	Ile	Gly	Ala	Lys	<b>T</b> hr 280	Ser	Val	Ile	Lys	Glu 285	Lys	Asp	Gly
Lys	Leu 290	Val	Thr	Gly	Lys	Asp 295	Lys	Gly	Glu	Asn	Gly 300	Ser	Ser	Thr	Asp
Glu 305	Gly	Glu	Gly	Leu	Val 310	Thr	Ala	Lys	Glu	Val 315	Ile	Asp	Ala	Val	Asn 320
Lys	Ala	Gly	Trp	Arg 325	Met	Lys	Thr	Thr	Thr 330	Ala	Asn	Gly	Gln	Thr 335	Gly
Gln	Ala	Asp	Lys 340	Phe	Glu	Thr	Val	Thr 345	Ser	Gly	Thr	Lys	Val 350	Thr	Phe
Ala	Ser	Gly 355	Asn	Gly	Thr	Thr	Ala 360	Thr	Val	Ser	Lys	Asp 365	Asp	Gln	Gly
Asn	Ile 370	Thr	Val	Lys	Tyr	Asp 375	Val	Asn	Val	Gly	Asp 380	Ala	Leu	Asn	Val
Asn 385	Gln	Leu	Gln	Asn	Ser 390	Gly	Trp	Asn	Leu	Asp 395	Ser	Lys	Ala	Val	Ala 400
Gly	Ser	Ser	Gly	L <b>y</b> s 405	Val	Ile	Ser	Gly	Asn 410	Val	Ser	Pro	Ser	Lys 415	Gly
Lys	Met	Asp	Glu 420	Thr	Val	Asn	Ile	Asn 425	Ala	Gly	Asn	Asn	Ile 430	Glu	Ile
Thr	Arg	Asn 435	Gly	Lys	Asn	Ile	Asp 440	Ile	Ala	Thr	Ser	Met 445	Thr	Pro	Gln
Phe	Ser 450	Ser	Val	Ser	Leu	Gly 455	Ala	Gly	Ala	Asp	Ala 460	Pro	Thr	Leu	Ser
Val 465	Asp	Asp	Glu	Gly	Ala 470	Leu	Asn	Val	Gly	Ser 475	Lys	Asp	Ala	Asn	L <b>y</b> s 480
Pro	Val	Arg	Ile	Thr 485	Asn	Val	Ala	Pro	Gly 490	Val	Lys	Glu	Gly	Asp 495	Val
Thr	Asn	Val	Ala 500	Gln	Leu	Lys	Gly	Val 505	Ala	Gln	Asn	Leu	Asn 510	Asn	His
Ile	Asp	Asn 515	Val	Asp	Gly	Asn	Ala 520	Arg	Ala	Gly	Ile	Ala 525	Gln	Ala	Ile
Ala	Thr 530	Ala	Ser	Leu	Val	Gln 535	Ala	Tyr	Leu	Pro	Gly 540	Lys	Ser	Met	Met
Ala 545	Ile	Gly	Gly	Gly	Thr 550	Tyr	Arg	Gly	Glu	Ala 555	Gly	Tyr	Ala	Ile	Gly 560
Tyr	Ser	Ser	Ile	Ser 565	Asp	Gly	Gly	Asn	Trp 570	Ile	Ile	Lys	Gly	Thr 575	Ala
Ser	Gly	Asn	Ser 580	Arg	Gly	His	Phe	Gly 585	Ala	Ser	Ala	Ser	Val 590	Gly	Tyr
Gln	Trp														
<211 <212	l> LE 2> TY	EQ II ENGTH (PE: RGAN]	I: 59 PRT	99	seri	La me	enina	ritic	lis						
		EQUEN													
Mo+	Asn	Lys	Ile	Tyr	Arg	Ile	Ile	Trp	Asn	Ser	Ala	Leu	Asn	Ala	Trp

-continued

Val	Ala	Val	Ser 20	Glu	Leu	Thr	Arg	Asn 25	His	Thr	Lys	Arg	Ala 30	Ser	Ala
Thr	Val	Lys 35	Thr	Ala	Val	Leu	Ala 40	Thr	Leu	Leu	Phe	Ala 45	Thr	Val	Gln
Ala	Asn 50	Ala	Thr	Asp	Glu	Asp 55	Glu	Glu	Glu	Glu	Leu 60	Glu	Pro	Val	Val
Arg 65	Ser	Ala	Leu	Val	Leu 70	Gln	Phe	Met	Ile	Asp 75	Lys	Glu	Gly	Asn	Gly 80
Glu	Asn	Glu	Ser	Thr 85	Gly	Asn	Ile	Gly	Trp 90	Ser	Ile	Tyr	Tyr	Asp 95	Asn
His	Asn	Thr	Leu 100	His	Gly	Ala	Thr	Val 105	Thr	Leu	Lys	Ala	Gly 110	Asp	Asn
Leu	Lys	Ile 115	Lys	Gln	Asn	Thr	Asn 120	Lys	Asn	Thr	Asn	Glu 125	Asn	Thr	Asn
Asp	Ser 130	Ser	Phe	Thr	Tyr	Ser 135	Leu	Lys	Lys	Asp	Leu 140	Thr	Asp	Leu	Thr
Ser 145	Val	Glu	Thr	Glu	L <b>y</b> s 150	Leu	Ser	Phe	Gly	Ala 155	Asn	Gly	Asn	Lys	Val 160
Asn	Ile	Thr	Ser	Asp 165	Thr	Lys	Gly	Leu	Asn 170	Phe	Ala	Lys	Glu	Thr 175	Ala
Gly	Thr	Asn	Gly 180	Asp	Thr	Thr	Val	His 185	Leu	Asn	Gly	Ile	Gly 190	Ser	Thr
		195			Leu		200	_				205			
Asp	Asn 210	Val	Thr	Asp	Asp	L <b>y</b> s 215	Lys	Lys	Arg	Ala	Ala 220	Ser	Val	Lys	Asp
Val 225	Leu	Asn	Ala	Gly	Trp 230	Asn	Ile	Lys	Gly	Val 235	Lys	Pro	Gly	Thr	Thr 240
Ala	Ser	Asp	Asn	Val 245	Asp	Phe	Val	His	Thr 250	Tyr	Asp	Thr	Val	Glu 255	Phe
Leu	Ser	Ala	Asp 260	Thr	Lys	Thr	Thr	Thr 265	Val	Asn	Val	Glu	Ser 270	Lys	Asp
Asn	Gly	L <b>y</b> s 275	Arg	Thr	Glu	Val	L <b>y</b> s 280	Ile	Gly	Ala	Lys	Thr 285	Ser	Val	Ile
Lys	Glu 290	Lys	Asp	Gly	Lys	Leu 295	Val	Thr	Gly	Lys	Gly 300	Lys	Gly	Glu	Asn
Gly 305	Ser	Ser	Thr	Asp	Glu 310	Gly	Glu	Gly	Leu	Val 315	Thr	Ala	Lys	Glu	Val 320
Ile	Asp	Ala	Val	Asn 325	Lys	Ala	Gly	Trp	Arg 330	Met	Lys	Thr	Thr	Thr 335	Ala
Asn	Gly	Gln	Thr 340	Gly	Gln	Ala	Asp	Lys 345	Phe	Glu	Thr	Val	Thr 350	Ser	Gly
Thr	Asn	Val 355	Thr	Phe	Ala	Ser	Gly 360	Lys	Gly	Thr	Thr	Ala 365	Thr	Val	Ser
Lys	Asp 370	Asp	Gln	Gly	Asn	Ile 375	Thr	Val	Lys	Tyr	Asp 380	Val	Asn	Val	Gly
Asp 385	Ala	Leu	Asn	Val	Asn 390	Gln	Leu	Gln	Asn	Ser 395	Gly	Trp	Asn	Leu	Asp 400
Ser	Lys	Ala	Val	Ala 405	Gly	Ser	Ser	Gly	Lys 410	Val	Ile	Ser	Gly	Asn 415	Val

-continued
------------

														ued	
Ser	Pro	Ser	L <b>y</b> s 420	Gly	Lys	Met	Asp	Glu 425	Thr	Val	Asn	Ile	Asn 430	Ala	Gly
Asn	Asn	Ile 435	Glu	Ile	Thr	Arg	Asn 440	Gly	Lys	Asn	Ile	Asp 445	Ile	Ala	Thr
Ser	Met 450	Thr	Pro	Gln	Phe	Ser 455	Ser	Val	Ser	Leu	Gly 460	Ala	Gly	Ala	Asp
Ala 465	Pro	Thr	Leu	Ser	Val 470	Asp	Asp	Lys	Gly	Ala 475	Leu	Asn	Val	Gly	Ser 480
Lys	Asp	Ala	Asn	L <b>y</b> s 485	Pro	Val	Arg	Ile	Thr 490	Asn	Val	Ala	Pro	Gly 495	Val
Lys	Glu	Gly	Asp 500		Thr	Asn	Val	Ala 505		Leu	Lys	Gly	Val 510		Gln
Asn	Leu	Asn 515		Arg	Ile	Asp	Asn 520		Asp	Gly	Asn	Ala 525		Ala	Gly
Ile	Ala 530		Ala	Ile	Ala	Thr 535		Gly	Leu	Val	Gln 540		Tyr	Leu	Pro
_	Lys	Ser	Met	Met			Gly	Gly	Gly			Arg	Gly	Glu	
545 Gly	Tyr	Ala	Ile		550 Tyr	Ser	Ser	Ile		555 Asp	Gly	Gly	Asn		560 Ile
Ile	Lys	Gly		565 Ala	Ser	Gly	Asn		570 Arg	Gly	His	Phe	-	575 Ala	Ser
		Val	580 Glv	Tyr	Gln	Trp		585					590		
Ala	Ser	VUII													
Ala	Ser	595	1												
<21 <21 <21	Ser 0> SE 1> LE 2> TY 3> OF	595 EQ II ENGTH YPE:	) NO H: 59 PRT	98	seri	La me	ening	gitic	lis						
<21 <21 <21 <21	0> SE 1> LE 2> TY	595 EQ II ENGTH YPE: RGANJ	) NO H: 59 PRT [SM:	98 Neis	sseri	ia me	ening	gitic	lis						
<21) <21; <21; <21; <40)	0> SE 1> LE 2> TY 3> OF 0> SE Asn	595 EQ II ENGTH YPE: RGANJ EQUEN	O NO H: 59 PRT ISM: NCE:	98 Nei: 101						Ser	Ala	Leu	Asn	Ala 15	Trp
<21 <21 <21 <21 <40 Met	0> SE 1> LE 2> TY 3> OF 0> SE Asn	595 EQ II ENGTH YPE: RGANI EQUEN Lys	D NO H: 59 PRT ISM: NCE: Ile	98 Nei: 101 Tyr 5	Arg	Ile	Ile	Trp	Asn 10					15	_
<21 <21 <21 <21 <40 Met 1 Val	0> SE 1> LE 2> TY 3> OF 0> SE Asn	595 EQ II ENGTH YPE: RGANI EQUEN Lys Val	) NO H: 59 PRT ISM: NCE: Ile Ser 20	98 Nei: 101 Tyr 5 Glu	Arg Leu	Ile Thr	Ile Arg	Trp Asn 25	Asn 10 His	Thr	Lys	Arg	Ala 30	15 Ser	Ala
<21) <21; <21; <21; <40) Met 1 Val	0> SH 1> LH 2> TY 3> OF 0> SH Asn Val	595 EQ II ENGTH YPE: RGANI EQUEN Lys Val Ala 35	D NO H: 59 PRT ISM: NCE: Ile Ser 20 Thr	98 Nei: 101 Tyr 5 Glu Ala	Arg Leu Val	Ile Thr Leu	Ile Arg Ala 40	Trp Asn 25 Thr	Asn 10 His Leu	Thr Leu	Lys Phe	Arg Ala 45	Ala 30 Thr	15 Ser Val	Ala Gln
<211 <211 <211 <400 Met 1 Val Thr	0> SE 1> LE 2> TY 3> OF 0> SE Asn Val Val	595 EQ III ENGTHYPE: GGANJ EQUEN Lys Val Ala 35 Ala	) NO H: 55 PRT ISM: ILE Ser 20 Thr Thr	Neis 101 Tyr 5 Glu Ala Asp	Arg Leu Val Asp	Ile Thr Leu Asp 55	Ile Arg Ala 40 Asp	Trp Asn 25 Thr Leu	Asn 10 His Leu Tyr	Thr Leu Leu	Lys Phe Glu 60	Arg Ala 45 Pro	Ala 30 Thr Val	15 Ser Val Gln	Ala Gln Arg
<211 <211 <211 <211 <400 Met 1 Val Thr Ala Thr 65	0> SH 1> LH 2> TY 3> OF 0> SH Asn Val Val Asn 50	595 GQ II ENGTH TPE: RGANJ EQUEN Lys Val Ala 35 Ala Val	) NO H: 55 PRT (SM: Ile Ser 20 Thr Thr Val	Neis 101 Tyr 5 Glu Ala Asp Leu	Arg Leu Val Asp Ser 70	Ile Thr Leu Asp 55 Phe	Ile Arg Ala 40 Asp Arg	Trp Asn 25 Thr Leu Ser	Asn 10 His Leu Tyr Asp	Thr Leu Leu Lys 75	Lys Phe Glu 60 Glu	Arg Ala 45 Pro Gly	Ala 30 Thr Val Thr	15 Ser Val Gln Gly	Ala Gln Arg Glu 80
<21: <21: <21: <21: <40: 1 Val Thr Ala fhr 65 Lys	0> SE 1> LE 2> TY 3> OF Asn Val Val Asn 50 Ala	595 5Q II ENGTH YPE: CQUEN Lys Val Ala 35 Ala Val Gly	) NO H: 55 PRT ISM: ISM: ILE Ser 20 Thr Thr Val Thr	Neis 101 Tyr 5 Glu Ala Asp Leu Glu 85	Arg Leu Val Asp Ser 70 Asp	Ile Thr Leu Asp 55 Phe Ser	Ile Arg Ala 40 Asp Arg Asn	Trp Asn 25 Thr Leu Ser Trp	Asn 10 His Leu Tyr Asp Ala 90	Thr Leu Leu 75 Val	Lys Phe Glu Glu Tyr	Arg Ala 45 Pro Gly Phe	Ala 30 Thr Val Thr Asp	15 Ser Val Gln Gly Glu 95	Ala Gln Arg Glu 80 Lys
<211 <211 <211 <211 <400 Met 1 Val Thr 65 Lys Arg	0> SE 1> LE 2> TY 3> OF 0> SE Asn Val Asn 50 Ala Glu	595 SQ II ENGTH TPE: CANJ SQUEN Lys Val Ala 35 Ala Gly Leu	D NO H: 59 PRT (SM: ILE Ser 20 Thr Thr Val Thr Lys 100	Neis 101 Tyr 5 Glu Ala Asp Leu Glu 85 Ala	Arg Leu Val Asp Ser 70 Asp Gly	Ile Thr Leu Asp 55 Phe Ser Ala	Ile Arg Ala 40 Asp Arg Asn Ile	Trp Asn 25 Thr Leu Ser Trp Thr 105	Asn 10 His Leu Tyr Asp Ala 90 Leu	Thr Leu Leu Ys Val	Lys Phe Glu Glu Tyr Ala	Arg Ala 45 Pro Gly Phe Gly	Ala 30 Thr Val Thr Asp 110	15 Ser Val Gln Gly 95 Asn	Ala Gln Arg Glu 80 Lys Leu
<211 <211 <211 <211 <211 Val Thr Ala Thr 65 Lys Lys	0> SEE 1> LF 2> TY 3> OF 0> SE Asn Val Val Ala Glu Val Ile Ser	595 EQ II ENGTH TPE: CQUEN Lys Val Ala 35 Ala Gly Leu Lys 115	D NO H: 59 PRT (SM: NCE: Ile Ser 20 Thr Thr Val Thr Val Thr Lys 100 Gln	98 Neis 101 Tyr 5 Glu Ala Asp Leu Blu 85 Ala Asn	Arg Leu Val Asp Ser 70 Asp Gly Thr	Ile Thr Leu Asp 55 Phe Ser Ala Asn Leu	Ile Arg Ala 40 Asp Arg Asn Ile Glu 120	Trp Asn 25 Thr Leu Ser Trp Thr 105 Asn	Asn 10 His Leu Tyr Asp Ala 90 Leu Thr	Thr Leu Leu Lys 75 Val Lys Asn	Lys Phe Glu 60 Glu Tyr Ala Glu Thr	Arg Ala 45 Pro Gly Phe Gly Asn 125	Ala 30 Thr Val Thr Asp 110 Thr	15 Ser Val Gln Gly Glu 95 Asn Asn	Ala Gln Arg Glu 80 Lys Leu Asp
<21( <21) <21) <21) val Thr Ala Thr 65 Lys Lys Ser val	0> SE 1> LE 2> TY 3> OF 0> SE Asn Val Val Asn 50 Ala Glu Val Ile Ser 130 Glu	595 SQ III ENGTH TPE: CGANJ SQUEN Lys Val Ala 35 Ala Gly Leu Lys 115 Phe	D NO H: 55 PRT ISM: Ile Ser 20 Thr Thr Val Thr Lys 100 Gln Thr	Neis Neis 101 Tyr 5 Glu Ala Asp Leu 85 Ala Asn Tyr	Arg Leu Val Asp Ser 70 Asp Gly Thr Ser Leu	Ile Thr Leu Asp 55 Phe Ser Ala Asn Leu 135	Ile Arg Ala 40 Asp Arg Asn Ile Glu 120 Lys	Trp Asn 25 Thr Leu Ser Trp Thr 105 Asn Lys	Asn 10 His Leu Tyr Asp Ala 90 Leu Thr Asp	Thr Leu Leu Lys 75 Val Lys Asn Leu Asn	Lys Phe Glu 60 Glu Tyr Ala Glu Thr 140	Arg Ala 45 Pro Gly Phe Gly Asn 125 Asp	Ala 30 Thr Val Thr Asp 110 Thr Leu	15 Ser Val Gln Gly 95 Asn Asn Thr	Ala Gln Arg Glu 80 Lys Leu Asp Ser Asn
<210 <211 <211 <211 <211 val Thr Ala fhr 65 Lys Lys Ser Val 145	0> SE 1> LE 2> TY 3> OF 0> SE Asn Val Val Asn 50 Ala Glu Val Ile Ser 130 Glu	595 SQ III ENGTH YPE: CANJ EQUEN Lys Val Ala 35 Ala Gly Leu Lys 115 Phe Thr	NO NO H: 59 PRT (SM: ILE Ser 20 Thr Thr Val Thr Lys 100 Gln Thr Glu	Neis Neis 101 Tyr 5 Glu Ala Asp Leu Glu 85 Ala Asn Tyr Lys	Arg Leu Val Asp Ser 70 Asp Gly Thr Ser Leu 150	Ile Thr Leu Asp 55 Phe Ser Ala Asn Leu 135 Ser	Ile Arg Ala 40 Asp Arg Asn Ile Glu 120 Lys Phe	Trp Asn 25 Thr Leu Ser Trp Thr 105 Asn Lys Gly	Asn 10 His Leu Tyr Asp Ala 90 Leu Thr Asp Ala	Thr Leu Lys 75 Val Lys Asn Leu Asn 155	Lys Phe Glu Glu Tyr Ala Glu Thr 140 Gly	Arg Ala 45 Pro Gly Phe Gly Asn 125 Asp Asn	Ala 30 Thr Val Thr Asp 110 Thr Leu Lys	15 Ser Val Gln Gly 95 Asn Asn Thr Val	Ala Gln Arg Glu 80 Lys Leu Asp Ser Asn 160

-continued

Thr	Asn	Gly	Asp 180	Pro	Thr	Val	His	Leu 185	Asn	Gly	Ile	Gly	Ser 190	Thr	Leu	
Thr	Asp	Thr 195	Leu	Leu	Asn	Thr	Gly 200	Ala	Thr	Thr	Asn	Val 205	Thr	Asn	Asp	
Asn	Val 210	Thr	Asp	Asp	Glu	L <b>y</b> s 215	Lys	Arg	Ala	Ala	Ser 220	Val	Lys	Asp	Val	
Leu 225	Asn	Ala	Gly	Trp	Asn 230	Ile	Lys	Gly	Val	L <b>y</b> s 235	Pro	Gly	Thr	Thr	Ala 240	
Ser	Asp	Asn	Val	Asp 245	Phe	Val	Arg	Thr	<b>Ty</b> r 250	Asp	Thr	Val	Glu	Phe 255	Leu	
Ser	Ala	Asp	Thr 260	Lys	Thr	Thr	Thr	Val 265	Asn	Val	Glu	Ser	L <b>y</b> s 270	Asp	Asn	
Gly	Lys	L <b>y</b> s 275	Thr	Glu	Val	Lys	Ile 280	Gly	Ala	Lys	Thr	Ser 285	Val	Ile	Lys	
Glu	Lys 290	Asp	Gly	Lys	Leu	Val 295	Thr	Gly	Lys	Gly	Lys 300	Asp	Glu	Asn	Gly	
Ser 305	Ser	Thr	Asp	Glu	Gly 310	Glu	Gly	Leu	Val	Thr 315	Ala	Lys	Glu	Val	Ile 320	
Asp	Ala	Val	Asn	L <b>y</b> s 325	Ala	Gly	Trp	Arg	Met 330	Lys	Thr	Thr	Thr	Ala 335	Asn	
Gly	Gln	Thr	Gly 340	Gln	Ala	Asp	Lys	Phe 345	Glu	Thr	Val	Thr	Ser 350	Gly	Thr	
Lys	Val	Thr 355	Phe	Ala	Ser	Gly	Asn 360	Gly	Thr	Thr	Ala	Thr 365	Val	Ser	Lys	
Asp	Asp 370	Gln	Gly	Asn	Ile	Thr 375	Val	Lys	Tyr	Asp	Val 380	Asn	Val	Gly	Asp	
Ala 385	Leu	Asn	Val	Asn	Gln 390	Leu	Gln	Asn	Ser	Gly 395	Trp	Asn	Leu	Asp	Ser 400	
Lys	Ala	Val	Ala	Gly 405	Ser	Ser	Gly	Lys	Val 410	Ile	Ser	Gly	Asn	Val 415	Ser	
Pro	Ser	Lys	Gly 420	Lys	Met	Asp	Glu	Thr 425	Val	Asn	Ile	Asn	Ala 430	Gly	Asn	
Asn	Ile	Glu 435	Ile	Thr	Arg	Asn	Gly 440	Lys	Asn	Ile	Asp	Ile 445	Ala	Thr	Ser	
Met	Thr 450	Pro	Gln	Phe	Ser	Ser 455	Val	Ser	Leu	Gly	Ala 460	Gly	Ala	Asp	Ala	
Pro 465	Thr	Leu	Ser	Val	Asp 470	Asp	Glu	Gly	Ala	Leu 475	Asn	Val	Gly	Ser	Lys 480	
Asp	Ala	Asn	Lys	Pro 485	Val	Arg	Ile	Thr	Asn 490	Val	Ala	Pro	Gly	Val 495	Lys	
Glu	Gly	Asp	Val 500	Thr	Asn	Val	Ala	Gln 505	Leu	Lys	Gly	Val	Ala 510	Gln	Asn	
Leu	Asn	Asn 515	Arg	Ile	Asp	Asn	Val 520	Asp	Gly	Asn	Ala	Arg 525	Ala	Gly	Ile	
Ala	Gln 530	Ala	Ile	Ala	Thr	Ala 535	Gly	Leu	Ala	Gln	Ala 540	Tyr	Leu	Pro	Gly	
L <b>y</b> s 545	Ser	Met	Met	Ala	Ile 550	Gly	Gly	Gly	Thr	<b>Ty</b> r 555	Arg	Gly	Glu	Ala	Gl <b>y</b> 560	
Tyr	Ala	Ile	Gly	<b>Ty</b> r 565	Ser	Ser	Ile	Ser	Asp 570	Thr	Gly	Asn	Trp	Val 575	Ile	

Lys Gly Thr Ala Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp <210> SEQ ID NO 102 <211> LENGTH: 594 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEOUENCE: 102 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln Ala Ser Thr Thr Asp Asp Asp Asp Leu Tyr Leu Glu Pro Val Gln Arg Thr Ala Pro Val Leu Ser Phe His Ala Asp Ser Glu Gly Thr Gly Glu65707580 Lys Glu Val Thr Glu Asp Ser Asn Trp Gly Val Tyr Phe Asp Lys Lys 85 90 95 Gly Val Leu Thr Ala Gly Thr Ile Thr Leu Lys Ala Gly Asp Asn Leu 100 105 110 Lys Ile Lys Gln Asn Thr Asp Glu Asn Thr Asn Ala Ser Ser Phe Thr 115 120 125 Tyr Ser Leu Lys Lys Asp Leu Thr Asp Leu Thr Ser Val Glu Thr Glu Lys Leu Ser Phe Gly Ala Asn Gly Lys Lys Val Asn Ile Thr Ser Asp Thr Lys Gly Leu Asn Phe Ala Lys Glu Thr Ala Gly Thr Asn Gly Asp 165 170 175 Thr Thr Val His Leu Asn Gly Ile Gly Ser Thr Leu Thr Asp Thr Leu Leu Asn Thr Gly Ala Thr Thr Asn Val Thr Asn Asp Asn Val Thr Asp Asp Glu Lys Lys Arg Ala Ala Ser Val Lys Asp Val Leu Asn Ala Gly Trp Asn Ile Lys Gly Val Lys Pro Gly Thr Thr Ala Ser Asp Asn Val Asp Phe Val Arg Thr Tyr Asp Thr Val Glu Phe Leu Ser Ala Asp Thr Lys Thr Thr Thr Val Asn Val Glu Ser Lys Asp Asn Gly Lys Lys Thr Glu Val Lys Ile Gly Ala Lys Thr Ser Val Ile Lys Glu Lys Asp Gly Lys Leu Val Thr Gly Lys Asp Lys Gly Glu Asn Gly Ser Ser Thr Asp Glu Gly Glu Gly Leu Val Thr Ala Lys Glu Val Ile Asp Ala Val Asn Lys Ala Gly Trp Arg Met Lys Thr Thr Ala Asn Gly Gln Thr Gly 325 330 335

```
-continued
```

Gln Ala Asp	Lys Phe 340	Glu Thr	Val	Thr 345	Ser	Gly	Thr	Lys	Val 350	Thr	Phe
Ala Ser Gly 355		Thr Thr	Ala 360	Thr	Val	Ser	Lys	Asp 365	Asp	Gln	Gly
Asn Ile Thr 370	Val Lys	Tyr Asp 375		Asn	Val	Gly	Asp 380	Ala	Leu	Asn	Val
Asn Gln Leu 385	ı Gln Asn	Ser Gly 390	' Trp	Asn	Leu	Asp 395	Ser	Lys	Ala	Val	Ala 400
Gly Ser Ser	Gly Lys 405		e Ser	Gly	Asn 410	Val	Ser	Pro	Ser	Lys 415	Gly
Lys Met Asp	Glu Thr 420	Val Asr	l Ile	Asn 425	Ala	Gly	Asn	Asn	Ile 430	Glu	Ile
Thr Arg Asr 435		Asn Ile	Asp 440	Ile	Ala	Thr	Ser	Met 445	Thr	Pro	Gln
Phe Ser Ser 450	Val Ser	Leu Gly 455		Gly	Ala	Asp	Ala 460	Pro	Thr	Leu	Ser
Val Asp Asp 465	) Glu Gly	Ala Leu 470	l Asn	Val	Gly	Ser 475	Lys	Asp	Ala	Asn	L <b>y</b> s 480
Pro Val Arc	JIE Thr 485		. Ala	Pro	Gly 490	Val	Lys	Glu	Gly	Asp 495	Val
Thr Asn Val	Ala Gln 500	Leu Ly:	Gly	Val 505	Ala	Gln	Asn	Leu	Asn 510	Asn	His
Ile Asp Asr 515		Gly Asr	Ala 520	Arg	Ala	Gly	Ile	Ala 525	Gln	Ala	Ile
Ala Thr Ala 530	ı Gly Leu	Val Glr 535		Tyr	Leu	Pro	Gly 540	Lys	Ser	Met	Met
Ala Ile Gly 545	y Gly Gly	Thr Tyr 550	Arg	Gly	Glu	Ala 555	Gly	Tyr	Ala	Ile	Gly 560
Tyr Ser Ser	Ile Ser 565		' Gly	Asn	<b>T</b> rp 570	Ile	Ile	Lys	Gly	Thr 575	Ala
Ser Gly Asr	Ser Arg 580	Gly His	Phe	Gl <b>y</b> 585	Ala	Ser	Ala	Ser	Val 590	Gly	Tyr
Gln Trp											
<210> SEQ I <211> LENGT <212> TYPE:	H: 591 PRT										
<213> ORGAN		sseria m	enino	gitic	lis						
<400> SEQUE		Arg Tle		Trp	Acn	Sor	مام	Lou	Acn	مام	Tro
Met Asn Lys 1	5 IIE Tyr 5		e IIe	тгр	10	ser	AIa	Leu	ASI	15	Trp
Val Val Val	. Ser Glu 20	Leu Thr	Arg	Asn 25	His	Thr	Lys	Arg	Ala 30	Ser	Ala
Thr Val Lys 35		Val Leu	Ala 40	Thr	Leu	Leu	Phe	Ala 45	Thr	Val	Gln
Ala Ser Ala 50	ı Asn Asn	Glu Glu 55		Glu	Glu	Asp	Leu 60	Tyr	Leu	Asp	Pro
Val Gln Arc 65	f Thr Val	Ala Val 70	. Leu	Ile	Val	Asn 75	Ser	Asp	Lys	Glu	Gly 80
Thr Gly Glu	ı L <b>y</b> s Glu 85		. Glu	Glu	Asn 90	Ser	Asp	Trp	Ala	Val 95	Tyr

-continued

Phe	Asn	Glu	L <b>y</b> s 100	Gly	Val	Leu	Thr	Ala 105	Arg	Glu	Ile	Thr	Leu 110	Lys	Ala
Gly	Asp	Asn 115	Leu	Lys	Ile	Lys	Gln 120	Asn	Gly	Thr	Asn	Phe 125	Thr	Tyr	Ser
Leu	Lys 130	Lys	Asp	Leu	Thr	Asp 135	Leu	Thr	Ser	Val	Gly 140	Thr	Glu	Lys	Leu
Ser 145	Phe	Ser	Ala	Asn	Gly 150	Asn	Lys	Val	Asn	Ile 155	Thr	Ser	Asp	Thr	Lys 160
Gly	Leu	Asn	Phe	Ala 165	Lys	Glu	Thr	Ala	Gly 170	Thr	Asn	Gly	Asp	Thr 175	Thr
Val	His	Leu	Asn 180	Gly	Ile	Gly	Ser	Thr 185	Leu	Thr	Asp	Thr	Leu 190	Leu	Asn
Thr	Gly	Ala 195	Thr	Thr	Asn	Val	Thr 200	Asn	Asp	Asn	Val	Thr 205	Asp	Asp	Glu
Lys	Lys 210	Arg	Ala	Ala	Ser	Val 215	Lys	Asp	Val	Leu	Asn 220	Ala	Gly	Trp	Asn
Ile 225	Lys	Gly	Val	Lys	Pro 230	Gly	Thr	Thr	Ala	Ser 235	Asp	Asn	Val	Asp	Phe 240
Val	Arg	Thr	Tyr	Asp 245	Thr	Val	Glu	Phe	Leu 250	Ser	Ala	Asp	Thr	L <b>y</b> s 255	Thr
Thr	Thr	Val	Asn 260	Val	Glu	Ser	Lys	Asp 265	Asn	Gly	Lys	Lys	Thr 270	Glu	Val
Lys	Ile	Gl <b>y</b> 275	Ala	Lys	Thr	Ser	Val 280	Ile	Lys	Glu	Lys	<b>A</b> sp 285	Gly	Lys	Leu
Val	Thr 290	Gly	Lys	Asp	Lys	Gly 295	Glu	Asn	Gly	Ser	Ser 300	Thr	Asp	Glu	Gly
Glu 305	Gly	Leu	Val	Thr	Ala 310	Lys	Glu	Val	Ile	Asp 315	Ala	Val	Asn	Lys	Ala 320
Gly	Trp	Arg	Met	L <b>y</b> s 325	Thr	Thr	Thr	Ala	Asn 330	Gly	Gln	Thr	Gly	Gln 335	Ala
Asp	Lys	Phe	Glu 340	Thr	Val	Thr	Ser	Gly 345	Thr	Asn	Val	Thr	Phe 350	Ala	Ser
Gly	Lys	Gly 355	Thr	Thr	Ala	Thr	Val 360	Ser	Lys	Asp	Asp	Gln 365	Gly	Asn	Ile
	Val 370		-	-		375			-		380				
385	Gln			-	390	-		-		395				-	400
	Gly	-		405		-			410			-	-	415	
	Glu		420					425					430		
	Gly	435			-		440					445			
	Val 450					455					460				
465	Asp				470	-		-	-	475		-			480
Ile	Thr	Asn	Val	Ala 485	Pro	Gly	Val	Lys	Glu 490	Gly	Asp	Val	Thr	Asn 495	Val

196

-continued

											con	tin	ued	
Ala Gln	Leu	Lys 500	Gly	Val	Ala	Gln	Asn 505	Leu	Asn	Asn	Arg	Ile 510	Asp	Asn
Val Asp	Gly 515	Asn	Ala	Arg	Ala	Gly 520	Ile	Ala	Gln	Ala	Ile 525	Ala	Thr	Ala
Gly Leu 530	Val	Gln	Ala	Tyr	Leu 535	Pro	Gly	Lys	Ser	Met 540	Met	Ala	Ile	Gly
Gly Gly 545	Thr	Tyr	Arg	Gly 550	Glu	Ala	Gly	Tyr	Ala 555	Ile	Gly	Tyr	Ser	Ser 560
Ile Ser	Asp	Gly	Gly 565	Asn	Trp	Ile	Ile	L <b>y</b> s 570	Gly	Thr	Ala	Ser	Gl <b>y</b> 575	Asn
Ser Arg	Gly	His 580	Phe	Gly	Ala	Ser	Ala 585	Ser	Val	Gly	Tyr	Gln 590	Trp	
<210> SE	II QI	) NO	104											
<211> LE <212> TY	PE:	$\mathbf{PRT}$		een	ia ma	ənin		lia						
<213> OF				sser.	La Ille	entnö	JTCTC	112						
Met Asn			Tyr	Arg	Ile	Ile	Trp		Ser	Ala	Leu	Asn		Trp
1 Val Val	Val		5 Glu	Leu	Thr	Arg		10 His	Thr	Lys	Arg		15 Ser	Ala
Thr Val	Lys	20 Thr	Ala	Val	Leu	Ala	25 Thr	Leu	Leu	Phe	Ala	30 Thr	Val	Gln
	35					40					45			
Ala Ser 50					55					60				
Val Gln 65	Arg	Thr	Val	Ala 70	Val	Leu	Ile	Val	Asn 75	Ser	Asp	Lys	Glu	Gly 80
Thr Gly	Glu	Lys	Glu 85	Lys	Val	Glu	Glu	Asn 90	Ser	Asp	Trp	Ala	Val 95	Tyr
Phe Asn	Glu	L <b>y</b> s 100	Gly	Val	Leu	Thr	Ala 105	Arg	Glu	Ile	Thr	Leu 110	Lys	Ala
Gly Asp	Asn 115	Leu	Lys	Ile	Lys	Gln 120	Asn	Gly	Thr	Asn	Phe 125	Thr	Tyr	Ser
Leu L <b>y</b> s 130	Lys	Asp	Leu	Thr	Asp 135	Leu	Thr	Ser	Val	Gly 140	Thr	Glu	Lys	Leu
Ser Phe 145	Ser	Ala		Gly 150		Lys		Asn			Ser	Asp	Thr	L <b>y</b> s 160
Gly Leu	Asn	Phe	Ala 165	Lys	Glu	Thr	Ala	Gly 170	Thr	Asn	Gly	Asp	Thr 175	Thr
Val His	Leu	Asn 180	Gly	Ile	Gly	Ser	<b>T</b> hr 185	Leu	Thr	Asp	Thr	Leu 190	Leu	Asn
Thr Gly	Ala 195		Thr	Asn	Val	Thr 200		Asp	Asn	Val	Thr 205		Asp	Glu
Lys Lys 210		Ala	Ala	Ser	Val 215		Asp	Val	Leu	Asn 220		Gly	Trp	Asn
Ile Lys 225	Gly	Val	Lys	Pro 230		Thr	Thr	Ala	Ser 235	Asp	Asn	Val	Asp	Phe 240
Val Arg	Thr	Tyr			Val	Glu	Phe				Asp	Thr		
Thr Thr	Val		245 Val	Glu	Ser	Lys		250 Asn	Gly	Lys	Lys		255 Glu	Val
		260					265					270		

Lys       Ile       213       Als       Lys       Th       Ser       201       Ile       Lys       Gu       Lys       Als       Gu       Lys       Als       Gu       Ser       Ser       Ser       Ser       Mat       Als       Gu       Ser       Ser       Ser       Mat       Als       Gu       Mat																
290       295       300         Glu Gly Leu Val Thr Ala Lys Glu Val Ile Asp Ala Zal 315       Asn Lys Ala 320         Gly Trp Arg Met Lys Thr Thr Ala Asn Gly Gln Thr Gly Gln Ala 335       Asp Lys Phe Glu Thr Val Thr Ser Gly Thr Asn Val Thr Phe Ala Ser 355         Gly Lys Gly Thr Thr Ala Thr Yal Ser Lys Asp Asp Gln Gly Asn Ile 355       Asn Sit 20         Glu Asn Ser Gly Thr Asp Val Asn Val Gly Asp Ala Leu Asn Val Asn Gly Ser Gly Lys Val Ile Ser Gly Asn Val Ser Lys Ala Asn Ile Glu Asn Ser Gly Lys Val Ile Ser Gly Asn Val Ser Fro Ser Lys Gly Lys Wet 400         Ser Gly Lys Val Ile Ser Gly Asn Ala Cly Asn Asn Ile Glu Thr Val Asn Ile Asp Ala Cly Asn Asn Ile Glu Thr Val Asn Ile Asp Ala 425         Asn Gly Lys Val Ile Ser Gly Asn Ala Cly Asn Asn Ile Glu Thr Arg 420         Ass Glu Thr Val Asn Ile Asp Ile Ala Thr Ser Met Thr Pato Glu Thr Arg 420         Ass Glu Asp Ala Leu Ash Val Cly Ser Lys Lys Asp Asp Ile Asp Ile Asp Ala 455         Ass Glu Asp Ala Leu Ash Val Gly Ala Asp Ala Pro Thr Leu Ser Val Asp 450         Gly Asp Ala Leu Ash Val Gly Ser Lys Lys Asp Asp Asp Asp Asp Asp Asp Asp Asp As	Lys I	Ile		Ala	Lys	Thr	Ser		Ile	Lys	Glu	Lys	_	Gly	Lys	Leu
305 310 310 315 315 320 Gly Trp Arg Met Lys Thr Thr Thr Ala Aren Gly Gln Thr Gly Gln Ala 335 Aren Lys Phe Glu Thr Val Thr Ser Gly Thr Aren Val Thr Phe Ala Ser 345 Gly Lys Gly Thr Thr Ala Thr Val Ser Lys Aren Aren Val Thr Phe Ala Ser 365 Gly Lys Gly Thr Thr Ala Thr Val Ser Lys Aren Aren Val Aren Gln 355 Thr Val Met Tyr Aren Val Aren Val Gly Aren Ala Leu Aren Val Aren Gln 370 Leu Gln Aren Ser Gly Trp Aren Leu Aren Ser Lys Ala Val Ala Gly Ser 395 Ser Gly Lys Val IIe Ser Gly Aren Val Ser Pro Ser Lys Gly Lys Met 400 Ser Gly Lys Val IIe Ser Gly Aren Val Ser Pro Ser Lys Gly Lys Met 400 Ser Gly Lys Val IIe Ser Gly Aren Val Ser Pro Ser Lys Gly Lys Met 400 Aren Gly Lys Aren Ile Aren Ile Aren Ala Gly Aren Aren Ile Glu Ile Thr Arg 420 Aren Gly Lys Aren Ile Aren Ile Ala Thr Ser Met Thr Pro Gln Phe Ser 430 Aren Gly Lys Aren Ile Aren Ile Ala Thr Ser Met Thr Pro Gln Phe Ser 440 Gly Aren Ala Euu Aren Val Gly Ser Lys Lys Aren Aren Lys Pro Val Aren 440 Her A			Gly	Lys	Asp	Lys		Glu	Asn	Gly	Ser		Thr	Asp	Glu	Gly
As a big by the form of the set		Gly	Leu	Val	Thr		Lys	Glu	Val	Ile		Ala	Val	Asn	Lys	
340345350GlyLysGlyThrThrAlaThrValSerLysAspAspGlnGlyAsnIle370355ThThrAlaThrValSerLysAspAspGlnGlyAsnIle370377SerLysAspAlaAspAspAlaClnSer385SerNanSerSerAspAspGlGlyAsnClnSer395AsnValAspSer395AsnValAspGlyAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAsp	Gly 7	Irp	Arg	Met		Thr	Thr	Thr	Ala		Gly	Gln	Thr	Gly		Ala
The Val Met Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val Asn Gln 370 Thr Val Met Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val Asn Gln 370 Leu Gln Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala Gly Ser 395 Ser Gly Lys Val Ile Ser Gly Asn Val Ser Pro Ser Lys Gly Lys Met 400 Ser Gly Lys Val Ile Ser Gly Asn Val Ser Pro Ser Lys Gly Lys Met 400 Asp Glu Thr Val Asn Ile Asn Ala Gly Asn Asn Ile Glu Ile Thr Arg 420 Asn Gly Lys Asn Ile Asp Ile Ala Thr Ser Met Thr Pro Gln Phe Ser 435 Ser Val Ser Leu Gly Ala Gly Ser Lys Lys Asp Asn Lys Pro Val Asp 455 Asp Ala Leu Asn Val Gly Ser Lys Lys Asp Asn Lys Pro Val Arg 445 Asp Glu Thr Val Ala Pro Gly Val Lys Glu Gly Asp Val Thr Asn Val 480 Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val Thr Asn Val 480 Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg Ile Asp Asn 500 Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile Ala Thr Ala 525 Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met Ala Ile Gly 530 Gly Gly Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly Tyr Ser Ser 555 Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Thr Ala Ser Gly Asn 575 Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 580 <210 > SEQ ID NO 105 <211 > LENCTH: 591 <212 > TYPE PRT $<213 > ORGANISM: Neisseria meningitidis <400 > SEQUENCE: 105Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 15Val Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 2021 = 20$	Asp I	Lys	Phe		Thr	Val	Thr	Ser		Thr	Asn	Val	Thr		Ala	Ser
370 375 380 Leu Gln Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala Gly Ser 385 390 Ser Gly Lys Val Ile Ser Gly Asn Val Ser Pro Ser Lys Gly Lys Met 405 Asp Glu Thr Val Asn Ile Asn Ala Gly Asn Asn Ile Glu Ile Thr Arg 420 Asn Gly Lys Asn Ile Asp Ile Ala Thr Ser Met Thr Pro Gln Phe Ser 440 445 445 Ser Val Ser Leu Gly Ala Cly Ala Asp Ala Pro Thr Leu Ser Val Asp 450 Gly Asp Ala Leu Asn Val Gly Ser Lys Lys Asp Asn Lys Pro Val Arg 455 Gly Asp Ala Leu Asn Val Gly Ser Lys Glu Gly Asp Val Thr Asn Val 465 Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg Ile Asp Asn 500 Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile Ala Thr Ala 510 Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met Ala Ile Gly 530 Gly Gly Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly Tyr Ser Ser 545 540 Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Thr Ala Ser Gly Asn 555 Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 585 580 580 580 580 580 580 580	Gly I	Lys		Thr	Thr	Ala	Thr		Ser	Lys	Asp	Asp		Gly	Asn	Ile
385 390 395 400 Ser Gly Lys Val IIe Ser Gly Asn Val Ser Pro Ser Lys Gly Lys Met 405 410 Asn Gly Asn IIe Asn Ala Gly Asn Asn IIe Glu IIe Thr Arg 420 Asn Gly Lys Asn IIe Asn IIe Ala Thr Ser Met Thr Pro Gln Phe Ser 430 Asn Gly Lys Asn IIe Asp IIe Ala Thr Ser Met Thr Pro Gln Phe Ser 435 455 Asn Ala Cly Ala Asp Ala Pro Thr Leu Ser Val Asp 445 445 Asn Val Gly Ser Lys Lys Asp Asn Lys Pro Val Arg 465 Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val Thr Asn Val 485 450 Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val Thr Asn Val 485 450 Asn Ala Arg Ala Gly IIe Ala Gln Ala IIe Ala Thr Ala 500 Fly Asn Ala Arg Ala Gly IIe Ala Gln Ala IIe Ala Thr Ala 510 Ser Val Gly Asn Ala Arg Ala Gly Thr Ala IIe Gly Tyr Ser Sec Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met Ala IIe Gly 530 Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 580 Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 580 Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 580 Sec Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 580 Sec Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 580 Sec Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 580 Sec Arg Gly His Phe Gly Ala Ser Ala Ser Ala Leu Asn Ala Trp 1 2110 LENGTH: 591 2212 TYPE: PRT 2213 ORGANISM: Neisseria meningitidis 2400 SEQUENCE: 105 Met Asn Lys IIe Tyr Arg IIe IIe Trp Asn Ser Ala Leu Asn Ala Trp 1 20 22 25 30 30 30 30 30 30 30 30 30 30 30 30 30			Met	Tyr	Asp	Val		Val	Gly	Asp	Ala		Asn	Val	Asn	Gln
405 410 415 Asp Glu Thr Val Asn Ile Asn Ala Gly Asn Asn Ile Glu Ile Thr Arg 420 Asn Gly Lys Asn Ile Asp Ile Ala Thr Ser Met Thr Pro Gln Phe Ser 435 440 The Ser Met Thr Pro Gln Phe Ser 445 450 Asp Ala Cly Ala Gly Ala Asp Ala Pro Thr Leu Ser Val Asp 450 450 Asp Ala Leu Asn Val Gly Ser Lys Lys Asp Asn Lys Pro Val Arg 460 475 Asp Ala Leu Asn Val Gly Ser Lys Lys Asp Asn Lys Pro Val Arg 460 475 Asp Ala Leu Asn Val Gly Val Lys Glu Gly Asp Val Thr Asn Val 485 480 Asp Ala Cly Val Ala Gly Ala Asp Ala Cly Asp Val Thr Asn Val 485 480 Asp Ala Cly Val Ala Gln Asn Leu Asn Asp Arg Tle Asp Asn 500 Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile Ala Thr Ala 515 515 Asp Ala Tyr Leu Pro Gly Lys Ser Met Met Ala Ile Gly 530 Cly Gly Gly Glu Ala Gly Tyr Ala Ile Gly Tyr Ser Ser 540 540 550 550 550 550 550 550 550 550		Gln	Asn	Ser	Gly		Asn	Leu	Asp	Ser		Ala	Val	Ala	Gly	
420425430Asn Gly Lys Asn Ile Asp Ile Ala Thr Ser Met Thr Pro Gln Phe Ser 435Asn Gly Lys Asn Ile Asp Ile Ala Gly Ala Asp Ala Pro Thr Leu Ser Val Asp 455Asp Ala Pro Thr Leu Ser Val Asp 466Asp Ala Pro Thr Leu Ser Val Asp 466Gly Asp Ala Leu Asn Val Gly Ser Lys Lys Asp Asn Lys Pro Val Arg 465Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val Thr Asn Val 485Asn Age Ser Val Asp 485Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asp file Asp Asn 500Ser Yal Ser Val Asp Asn Arg Ile Asp Asn 505Asn Arg Ile Asp Asn 510Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Asn Leu Asn Arg Ile Ala Thr Ala 515Ser Met Met Ala Ile Gly 550Thr Ala Ser Ser 560Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met Ala Ile Gly 530Gly Asn Trp Ile Ile Lys Gly Thr Ala Ser Gly Asn 575Ser Arg Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala Ser Gly Asn 570<210> SEQ ID NO 105 <211> LENGTH: S91 <212> TYPE: PRT 213> ORGANISM: Neisseria meningitidisSer Ala Leu Asn Ala Trp 1Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Sr Trp 10The Try Arg Asn His Thr Lys Arg Ala Ser Ala 30	Ser (	Gly	Lys	Val		Ser	Gly	Asn	Val		Pro	Ser	Lys	Gly		Met
435 440 445 Ser Val Ser Leu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser Val Asp 450 455 Ala Leu Asn Val Gly Ser Lys Lys Asp Asn Lys Pro Val Arg 465 Ala Leu Asn Val Gly Ser Lys Lys Asp Asn Lys Pro Val Arg 465 Ala Cln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg Tle Asp Asn 500 500 500 500 500 500 500 500 500 500	Asp (	Glu	Thr		Asn	Ile	Asn	Ala		Asn	Asn	Ile	Glu		Thr	Arg
450       455       460         Gly Asp Ala Leu Asn Val Gly Ser Lys $Asp Asp Asp Asp Asp Asp Val Pro Val Arg 480         Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val Thr Asp Val 485         Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asp Slo Pro Pro Slo Pro Slo Pro Slo Pro Pro Pro Pro Pro Pro Pro Pro Pro Pr$	Asn (	Gly		Asn	Ile	Asp	Ile		Thr	Ser	Met	Thr		Gln	Phe	Ser
465470475480Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val Thr Asn Val 485480490Asp Val Thr Asn Val 495Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg Ile Asp Asn 500505Son Asn Arg Ile Asp Asn 510Son Asn Arg Ile Asp Asn 510Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile Ala Thr Ala 515Son Ala Tyr Leu Pro Gly Lys Ser Met Met Ala Ile Gly 530Son Ala Tyr Leu Pro Gly Lys Ser Met Met Ala Ile Gly 540Gly Gly Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly Tyr Ser Ser 550Son Trp Ile Ile Lys Gly Thr Ala Ser Gly Asn 570Son Trp Son 570Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 580Son Trp Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 10Trp 10<210> SEQUENCE: 105101015Wet Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 202030			Ser	Leu	Gly	Ala		Ala	Asp	Ala	Pro		Leu	Ser	Val	Asp
485490495Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg Ile Asp Asn 500Arg Ala Gly Ile Ala Gln Asn Leu Asn Asn Arg Ile Asp Asn 510Arg Ala Gly Ile Ala Gln Ala Ile Ala Thr Ala 520Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile Ala Thr Ala 515Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met Ala Ile Gly 530Het Ala Ile Gly 540Gly Cly Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly Tyr Ser Ser 545Gly Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly Tyr Ser Ser 550Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala Ser Gly Asn 565Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 580<210> SEQ ID NO 105 <211> LENGTH: 591 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis<400> SEQUENCE: 105Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 10Val Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20		Asp	Ala	Leu	Asn		Gly	Ser	Lys	Lys		Asn	Lys	Pro	Val	
500505510Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile Ala Thr Ala 515Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile Ala Thr Ala 525Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met Ala Ile Gly 530Gly Gly Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly Tyr Ser Ser 545Ser Arg Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala Ser Gly Asn 575Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 580Seq ID NO 105 585<210> SEQ ID NO 105 <211> LENGTH: 591 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis<400> SEQUENCE: 105Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 10Val Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20	Ile 1	<b>F</b> hr	Asn	Val		Pro	Gly	Val	Lys		Gly	Asp	Val	Thr		Val
515 $520$ $525$ Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met Ala Ile Gly $530$ Gly Gly Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly Tyr Ser Ser $545$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $540$ $575$ $575$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $590$ $59$	Ala (	Gln	Leu		Gly	Val	Ala	Gln		Leu	Asn	Asn	Arg		Asp	Asn
530       535       540         Gly Gly Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly Tyr Ser Ser 555       560         Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala Ser Gly Asn 575         Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 580         <210> SEQ ID NO 105         <211> LENGTH: 591         <212> TYPE: PRT         <213> ORGANISM: Neisseria meningitidis         <400> SEQUENCE: 105         Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 10         Yal Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20	Val A	Asp		Asn	Ala	Arg	Ala		Ile	Ala	Gln	Ala		Ala	Thr	Ala
545       550       555       560         Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala Ser Gly Asn 565       575       560         Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 580       585       590         <210> SEQ ID NO 105       591       591         <211> LENGTH: 591       591       590         <212> TYPE: PRT       591       591         <213> ORGANISM: Neisseria meningitidis       560         <400> SEQUENCE: 105       10         Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 10       15         Val Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20       30			Val	Gln	Ala	Tyr		Pro	Gly	Lys	Ser		Met	Ala	Ile	Gly
565       570       575         Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 580       585       590         <210> SEQ ID NO 105       591         <212> TYPE: PRT       2213> ORGANISM: Neisseria meningitidis         <400> SEQUENCE: 105         Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1       15         Val Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20       30		Gly	Thr	Tyr	Arg		Glu	Ala	Gly	Tyr		Ile	Gly	Tyr	Ser	
<pre>&lt;210&gt; SEQ ID NO 105 &lt;211&gt; LENGTH: 591 &lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: Neisseria meningitidis &lt;400&gt; SEQUENCE: 105 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1 5 10 15 Val Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20 25 30</pre>	Ile \$	Ser	Asp	Gly		Asn	Trp	Ile	Ile		Gly	Thr	Ala	Ser		Asn
<pre>&lt;211&gt; LENGTH: 591 &lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: Neisseria meningitidis &lt;400&gt; SEQUENCE: 105 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1 5 10 15 Val Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20 25 30</pre>	Ser 1	Arg	Gly		Phe	Gly	Ala	Ser		Ser	Val	Gly	Tyr		Trp	
Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1 5 10 15 Val Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20 25 30	<211> <212>	> LE > TY	NGTH PE:	1: 59 PRT	91	sseri	a me	ening	gitic	lis						
151015Val Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala202530	<400>	> SE	QUEN	ICE :	105											
20 25 30		Asn	Lys	Ile		Arg	Ile	Ile	Trp		Ser	Ala	Leu	Asn		Trp
Thr Val Lys Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln	Val V	Val	Val		Glu	Leu	Thr	Arg		His	Thr	Lys	Arg		Ser	Ala
	Thr V	Val	Lys	Thr	Ala	Val	Leu	Ala	Thr	Leu	Leu	Phe	Ala	Thr	Val	Gln

-continued

											_	con	tin	ued	
		35					40					45			
Ala	Ser 50	Ala	Asn	Asn	Glu	Glu 55	Gln	Glu	Glu	Asp	Leu 60	Tyr	Leu	Asp	Pro
Val 65	Gln	Arg	Thr	Val	Ala 70	Val	Leu	Ile	Val	Asn 75	Ser	Asp	Lys	Glu	Gly 80
Thr	Gly	Glu	Lys	Glu 85	Lys	Val	Glu	Glu	Asn 90	Ser	Asp	Trp	Ala	Val 95	Tyr
Phe	Asn	Glu	L <b>y</b> s 100	Gly	Val	Leu	Thr	Ala 105	Arg	Glu	Ile	Thr	Leu 110	Lys	Ala
Gly	Asp	Asn 115	Leu	Lys	Ile	Lys	Gln 120	Asn	Gly	Thr	Asn	Phe 125	Thr	Tyr	Ser
Leu	L <b>y</b> s 130	Lys	Asp	Leu	Thr	Asp 135	Leu	Thr	Ser	Val	Gly 140	Thr	Glu	Lys	Leu
Ser 145	Phe	Ser	Ala	Asn	Gly 150	Asn	Lys	Val	Asn	Ile 155	Thr	Ser	Asp	Thr	L <b>y</b> s 160
Gly	Leu	Asn	Phe	Ala 165	Lys	Glu	Thr	Ala	Gly 170	Thr	Asn	Gly	Asp	Thr 175	Thr
Val	His	Leu	<b>A</b> sn 180	Gly	Ile	Gly	Ser	Thr 185	Leu	Thr	Asp	Thr	Leu 190	Leu	Asn
Thr	Gly	Ala 195	Thr	Thr	Asn	Val	Thr 200	Asn	Asp	Asn	Val	Thr 205	Asp	Asp	Glu
Lys	Lys 210	Arg	Ala	Ala	Ser	Val 215	Lys	Asp	Val	Leu	Asn 220	Ala	Gly	Trp	Asn
Ile 225	Lys	Gly	Val	Lys	Pro 230	Gly	Thr	Thr	Ala	Ser 235	Asp	Asn	Val	Asp	Phe 240
Val	Arg	Thr	Tyr	Asp 245	Thr	Val	Glu	Phe	Leu 250	Ser	Ala	Asp	Thr	L <b>y</b> s 255	Thr
Thr	Thr	Val	Asn 260	Val	Glu	Ser	Lys	Asp 265	Asn	Gly	Lys	Lys	Thr 270	Glu	Val
Lys	Ile	Gl <b>y</b> 275	Ala	Lys	Thr	Ser	Val 280	Ile	Lys	Glu	Lys	<b>As</b> p 285	Gly	Lys	Leu
Val	Thr 290	Gly	Lys	Asp	Lys	Gly 295	Glu	Asn	Gly	Ser	Ser 300	Thr	Asp	Glu	Gly
Glu 305	Gly	Leu	Val	Thr	Ala 310	Lys	Glu	Val	Ile	Asp 315	Ala	Val	Asn	Lys	Ala 320
Gly	Trp	Arg	Met	L <b>y</b> s 325	Thr	Thr	Thr	Ala	Asn 330	Gly	Gln	Thr	Gly	Gln 335	Ala
Asp	Lys	Phe	Glu 340	Thr	Val	Thr	Ser	Gly 345		Asn	Val	Thr	Phe 350	Ala	Ser
Gly	Lys	Gly 355	Thr	Thr	Ala	Thr	Val 360		Lys	Asp	Asp	Gln 365	Gly	Asn	Ile
Thr	Val 370	Met	Tyr	Asp	Val	Asn 375		Gly	Asp	Ala	Leu 380	Asn	Val	Asn	Gln
Leu 385	Gln	Asn	Ser	Gly	Trp 390		Leu	Asp	Ser	L <b>y</b> s 395		Val	Ala	Gly	Ser 400
Ser	Gly	Lys	Val	Ile 405	Ser	Gly	Asn	Val	Ser 410	Pro	Ser	Lys	Gly	L <b>y</b> s 415	Met
Asp	Glu	Thr	Val 420	Asn	Ile	Asn	Ala	Gl <b>y</b> 425		Asn	Ile	Glu	Ile 430	Thr	Arg

```
-continued
```

Ser Val Ser Leu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser Val Asp Gly Asp Ala Leu Asn Val Gly Ser Lys Lys Asp Asn Lys Pro Val Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val Thr Asn Val Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg Ile Asp Asn Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile Ala Thr Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met Ala Ile Gly Gly Gly Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly Tyr Ser Ser Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp <210> SEQ ID NO 106 <211> LENGTH: 592 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 106 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1 5 10 15 Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala Thr Val Lys Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln Ala Asn Ala Thr Asp Glu Asp Glu Glu Glu Glu Leu Glu Ser Val Gln Arg Ser Val Val Gly Ser Ile Gln Ala Ser Met Glu Gly Ser Gly Glu65707580 Leu Glu Thr Ile Ser Leu Ser Met Thr Asn Asp Ser Lys Glu Phe Val Asp Pro Tyr Ile Val Val Thr Leu Lys Ala Gly Asp Asn Leu Lys Ile Lys Gln Asn Thr Asn Glu Asn Thr Asn Ala Ser Ser Phe Thr Tyr Ser Leu Lys Lys Asp Leu Thr Gly Leu Ile Asn Val Glu Thr Glu Lys Leu Ser Phe Gly Ala Asn Gly Lys Lys Val Asn Ile Ile Ser Asp Thr Lys145150155160 Gly Leu Asn Phe Ala Lys Glu Thr Ala Gly Thr Asn Gly Asp Thr Thr 165 170 175 Val His Leu Asn Gly Ile Gly Ser Thr Leu Thr Asp Thr Leu Ala Gly Ser Ser Ala Ser His Val Asp Ala Gly Asn Gln Ser Thr His Tyr Thr Arg Ala Ala Ser Ile Lys Asp Val Leu Asn Ala Gly Trp Asn Ile Lys

-continued

											-	con	tin	ued						
	210					215					220									
Gl <b>y</b> 225	Val	Lys	Thr	Gly	Ser 230	Thr	Thr	Gly	Gln	Ser 235	Glu	Asn	Val	Asp	Phe 240					
Val	Arg	Thr	Tyr	Asp 245	Thr	Val	Glu	Phe	Leu 250	Ser	Ala	Asp	Thr	L <b>y</b> s 255	Thr					
Thr	Thr	Val	Asn 260	Val	Glu	Ser	Lys	<b>A</b> sp 265	Asn	Gly	Lys	Arg	Thr 270	Glu	Val					
Lys	Ile	Gly 275	Ala	Lys	Thr	Ser	Val 280	Ile	Lys	Glu	Lys	<b>A</b> sp 285	Gly	Lys	Leu					
Val	Thr 290	Gly	Lys	Gly	Lys	Gly 295	Glu	Asn	Gly	Ser	Ser 300	Thr	Asp	Glu	Gly					
Glu 305	Gly	Leu	Val	Thr	Ala 310	Lys	Glu	Val	Ile	Asp 315	Ala	Val	Asn	Lys	Ala 320					
Gly	Trp	Arg	Met	L <b>y</b> s 325	Thr	Thr	Thr	Ala	Asn 330	Gly	Gln	Thr	Gly	Gln 335	Ala					
Asp	Lys	Phe	Glu 340	Thr	Val	Thr	Ser	Gly 345	Thr	Asn	Val	Thr	Phe 350	Ala	Ser					
Gly	Lys	Gly 355	Thr	Thr	Ala	Thr	Val 360	Ser	Lys	Asp	Asp	Gln 365	Gly	Asn	Ile					
Thr	Val 370	Met	Tyr	Asp	Val	Asn 375	Val	Gly	Asp	Ala	Leu 380	Asn	Val	Asn	Gln					
Leu 385	Gln	Asn	Ser	Gly	Trp 390	Asn	Leu	Asp	Ser	L <b>y</b> s 395	Ala	Val	Ala	Gly	Ser 400					
Ser	Gly	Lys	Val	Ile 405	Ser	Gly	Asn	Val	Ser 410	Pro	Ser	Lys	Gly	Lys 415	Met					
Asp	Glu	Thr	Val 420	Asn	Ile	Asn	Ala	Gl <b>y</b> 425	Asn	Asn	Ile	Glu	Ile 430	Ser	Arg					
Asn	Gly	L <b>y</b> s 435	Asn	Ile	Asp	Ile	Ala 440	Thr	Ser	Met	Ala	Pro 445	Gln	Phe	Ser					
Ser	Val 450	Ser	Leu	Gly	Ala	Gl <b>y</b> 455	Ala	Asp	Ala	Pro	Thr 460	Leu	Ser	Val	Asp					
Asp 465	Glu	Gly	Ala	Leu	Asn 470	Val	Gly	Ser	Lys	Asp 475	Ala	Asn	Lys	Pro	Val 480					
Arg	Ile	Thr	Asn	Val 485	Ala	Pro	Gly	Val	L <b>y</b> s 490	Glu	Gly	Asp	Val	Thr 495	Asn					
Val	Ala	Gln	Leu 500	Lys	Gly	Val	Ala	Gln 505	Asn	Leu	Asn	Asn	Arg 510	Ile	Asp					
Asn	Val	Asp 515	Gly	Asn	Ala	Arg	Ala 520	Gly	Ile	Ala	Gln	Ala 525	Ile	Ala	Thr					
Ala	Gly 530	Leu	Val	Gln	Ala	<b>Ty</b> r 535	Leu	Pro	Gly	Lys	Ser 540	Met	Met	Ala	Ile					
Gly 545	Gly	Gly	Thr	Tyr	Arg 550	Gly	Glu	Ala	Gly	<b>Ty</b> r 555	Ala	Ile	Gly	Tyr	Ser 560					
Ser	Ile	Ser	Asp	Gly 565	Gly	Asn	Trp	Ile	Ile 570	Lys	Gly	Thr	Ala	Ser 575	Gly					
Asn	Ser	Arg	Gly 580	His	Phe	Gly	Ala	Ser 585	Ala	Ser	Val	Gly	<b>Ty</b> r 590	Gln	Trp					

<211> LENGTH: 592 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis

<400	)> SE	QUEN	ICE :	107											
Met 1	Asn	Lys	Ile	Tyr 5	Arg	Ile	Ile	Trp	Asn 10	Ser	Ala	Leu	Asn	Ala 15	Trp
Val	Ala	Val	Ser 20	Glu	Leu	Thr	Arg	Asn 25	His	Thr	Lys	Arg	Ala 30	Ser	Ala
Thr	Val	Lys 35	Thr	Ala	Val	Leu	Ala 40	Thr	Leu	Leu	Phe	Ala 45	Thr	Val	Gln
Ala	Asn 50	Ala	Thr	Asp	Glu	Asp 55	Glu	Glu	Glu	Glu	Leu 60	Glu	Ser	Val	Gln
Arg 65	Ser	Val	Val	Gly	Ser 70	Ile	Gln	Ala	Ser	Met 75	Glu	Gly	Ser	Gly	Glu 80
Leu	Glu	Thr	Ile	Ser 85	Leu	Ser	Met	Thr	Asn 90	Asp	Ser	Lys	Glu	Phe 95	Val
Asp	Pro	Tyr	Ile 100	Val	Val	Thr	Leu	Lys 105	Ala	Gly	Asp	Asn	Leu 110	Lys	Ile
Lys	Gln	Asn 115	Thr	Asn	Glu	Asn	Thr 120	Asn	Ala	Ser	Ser	Phe 125	Thr	Tyr	Ser
Leu	Lys 130	Lys	Asp	Leu	Thr	Gly 135	Leu	Ile	Asn	Val	Glu 140	Thr	Glu	Lys	Leu
Ser 145	Phe	Gly	Ala	Asn	Gly 150	Lys	Lys	Val	Asn	Ile 155	Ile	Ser	Asp	Thr	Lys 160
Gly	Leu	Asn	Phe	Ala 165	Lys	Glu	Thr	Ala	Gl <b>y</b> 170	Thr	Asn	Gly	Asp	Thr 175	Thr
Val	His	Leu	Asn 180	Gly	Ile	Gly	Ser	Thr 185	Leu	Thr	Asp	Thr	Leu 190	Ala	Gly
Ser	Ser	Ala 195	Ser	His	Val	Asp	Ala 200	Gly	Asn	Gln	Ser	Thr 205	His	Tyr	Thr
Arg	Ala 210	Ala	Ser	Ile	Lys	Asp 215	Val	Leu	Asn	Ala	Gly 220	Trp	Asn	Ile	Lys
Gly 225	Val	Lys	Thr	Gly	Ser 230	Thr	Thr	Gly	Gln	Ser 235	Glu	Asn	Val	Asp	Phe 240
Val	Arg	Thr	Tyr	Asp 245	Thr	Val	Glu	Phe	Leu 250	Ser	Ala	Asp	Thr	L <b>y</b> s 255	Thr
Thr	Thr	Val	Asn 260	Val	Glu	Ser	Lys	Asp 265	Asn	Gly	Lys	Arg	Thr 270	Glu	Val
Lys	Ile	Gl <b>y</b> 275	Ala	Lys	Thr	Ser	Val 280	Ile	Lys	Glu	Lys	Asp 285	Gly	Lys	Leu
Val	Thr 290	Gly	Lys	Gly	Lys	Gl <b>y</b> 295	Glu	Asn	Gly	Ser	Ser 300	Thr	Asp	Glu	Gly
Glu 305	Gly	Leu	Val	Thr	Ala 310	Lys	Glu	Val	Ile	Asp 315	Ala	Val	Asn	Lys	Ala 320
Gly	Trp	Arg	Met	L <b>ys</b> 325	Thr	Thr	Thr	Ala	Asn 330	Gly	Gln	Thr	Gly	Gln 335	Ala
Asp	Lys	Phe	Glu 340	Thr	Val	Thr	Ser	Gly 345	Thr	Asn	Val	Thr	Phe 350	Ala	Ser
Gly	Lys	Gly 355	Thr	Thr	Ala	Thr	Val 360	Ser	Lys	Asp	Asp	Gln 365	Gly	Asn	Ile
Thr	Val 370	Met	Tyr	Asp	Val	Asn 375	Val	Gly	Asp	Ala	Leu 380	Asn	Val	Asn	Gln
Leu	Gln	Asn	Ser	Gly	Trp	Asn	Leu	Asp	Ser	Lys	Ala	Val	Ala	Gly	Ser

-continued

											-	con	tin	ued	
385					390					395					400
Ser	Gly	Lys	Val	Ile 405	Ser	Gly	Asn	Val	Ser 410	Pro	Ser	Lys	Gly	L <b>y</b> s 415	Met
Asp	Glu	Thr	Val 420	Asn	Ile	Asn	Ala	Gly 425	Asn	Asn	Ile	Glu	Ile 430	Ser	Arg
Asn	Gly	L <b>y</b> s 435	Asn	Ile	Asp	Ile	Ala 440	Thr	Ser	Met	Ala	Pro 445	Gln	Phe	Ser
Ser	Val 450	Ser	Leu	Gly	Ala	Gly 455	Ala	Asp	Ala	Pro	Thr 460	Leu	Ser	Val	Asp
Asp 465		Gly	Ala	Leu	Asn 470	Val	Gly	Ser	Lys	Авр 475		Asn	Lys	Pro	Val 480
	Ile	Thr	Asn			Pro	Gly	Val	-		Gly	Asp	Val		
Val	Ala	Gln	Leu	485 Lys	Gly	Val	Ala	Gln	490 Asn	Leu	Asn	Asn	Arg	495 Ile	Asp
Asn	Val	Asp	500 Glv	Asn	Ala	Arq	Ala	505 Glv	Tle	Ala	Gln	Ala	510 Tle	Ala	- Thr
		515	-			-	520	-				525			
Ala	G1y 530	Leu	Val	Gln	Ala	<b>Ty</b> r 535	Leu	Pro	GIY	Lys	Ser 540	Met	Met	Ala	Ile
Gly 545	Gly	Gly	Thr	Tyr	Arg 550	Gly	Glu	Ala	Gly	<b>Ty</b> r 555	Ala	Ile	Gly	Tyr	Ser 560
Ser	Ile	Ser	Asp	Gly 565		Asn	Trp	Ile	Ile 570	Lys	Gly	Thr	Ala	Ser 575	Gly
Asn	Ser	Arg	Gly 580	His	Phe	Gly	Ala	Ser 585	Ala	Ser	Val	Gly	<b>Ty</b> r 590	Gln	Trp
-210		II QI		100											
<211	l> LE	NGTH	H: 58												
					sser	ia me	ening	gitio	lis						
		Lvs			Ara	Ile	Tle	Tro	Asn	Ser	Ala	Leu	Asn	Ala	Trp
1		-		5	-			-	10					15	-
Val	Val	Val	Ser 20	Glu	Leu	Thr	Arg	Asn 25	His	Thr	Lys	Arg	A1a 30	Ser	Ala
Thr	Val	Ala 35	Thr	Ala	Val	Leu	Ala 40	Thr	Leu	Leu	Ser	Ala 45	Thr	Val	Gln
Ala	Asn 50	Ala	Thr	Asp	Thr	Asp 55		Asp	Glu	Glu	Leu 60	Glu	Ser	Val	Val
Arg 65	Ser	Ala	Leu	Val	Leu 70	Gln	Phe	Met	Ile	Asp 75	Lys	Glu	Gly	Asn	Gly 80
Glu	Ile	Glu	Ser	Thr 85		Asp	Ile	Gly	Trp 90		Ile	Tyr	Tyr	Asp 95	Asp
His	Asn	Thr	Leu 100		Gly	Ala	Thr	Val 105	Thr	Leu	Lys	Ala	Gly 110	Asp	Asn
Leu	Lys	Ile 115	Lys		Ser	Gly	L <b>y</b> s 120	Asp	Phe	Thr	Tyr	Ser 125		Lys	Lys
Glu		Lys		Leu	Thr	Ser	Val		Thr				Ser	Phe	Gly
Ala	130 Asn		Asn	Lys	Val	135 Asn		Thr	Ser		140 Thr	Lys	Gly	Leu	Asn
145		-1		1-	150					155		1.5	-1		160

-continued
------------

											-	con	tin	ued						
Phe	Ala	Lys	Glu	Thr 165	Ala	Gly	Thr	Asn	Gly 170	Asp	Pro	Thr	Val	His 175	Leu			 	 	
Asn	Gly	Ile	Gly 180		Thr	Leu	Thr	<b>A</b> sp 185	Thr	Leu	Ala	Gly	Ser 190	Ser	Ala					
Ser	His	Val 195	Asp	Ala	Gly	Asn	Gln 200	Ser	Thr	His	Tyr	Thr 205	Arg	Ala	Ala					
Ser	Ile 210	Lys	Asp	Val	Leu	Asn 215	Ala	Gly	Trp	Asn	Ile 220	Lys	Gly	Val	Lys					
Thr 225	Gly	Ser	Thr	Thr	Gly 230	Gln	Ser	Glu	Asn	Val 235	Asp	Phe	Val	Arg	Thr 240					
Tyr	Asp	Thr	Val	Glu 245	Phe	Leu	Ser	Ala	<b>A</b> sp 250	Thr	Lys	Thr	Thr	Thr 255	Val					
Asn	Val	Glu	Ser 260	Lys	Asp	Asn	Gly	Lys 265	Arg	Thr	Glu	Val	L <b>y</b> s 270	Ile	Gly					
Ala	Lys	Thr 275	Ser	Val	Ile	Lys	Glu 280	Lys	Asp	Gly	Lys	Leu 285	Val	Thr	Gly					
Lys	Gly 290		Gly	Glu	Asn	Gly 295	Ser	Ser	Thr	Asp	Glu 300	Gly	Glu	Gly	Leu					
Val 305	Thr	Ala	Lys	Glu	Val 310	Ile	Asp	Ala	Val	Asn 315	Lys	Ala	Gly	Trp	Arg 320					
Met	Lys	Thr	Thr	Thr 325	Ala	Asn	Gly	Gln	Thr 330	Gly	Gln	Ala	Asp	Lys 335	Phe					
Glu	Thr	Val	Thr 340	Ser	Gly	Thr	Lys	Val 345	Thr	Phe	Ala	Ser	Gly 350	Asn	Gly					
Thr	Thr	Ala 355	Thr	Val	Ser	Lys	Asp 360	Asp	Gln	Gly	Asn	Ile 365	Thr	Val	Lys					
Tyr	Asp 370		Asn	Val	Gly	Asp 375	Ala	Leu	Asn	Val	Asn 380	Gln	Leu	Gln	Asn					
Ser 385	Gly	Trp	Asn	Leu	Asp 390	Ser	Lys	Ala	Val	Ala 395	Gly	Ser	Ser	Gly	L <b>y</b> s 400					
Val	Ile	Ser	Gly	Asn 405	Val	Ser	Pro	Ser	Lys 410	Gly	Lys	Met	Asp	Glu 415	Thr					
Val	Asn	Ile	Asn 420	Ala	Gly	Asn	Asn	Ile 425	Glu	Ile	Thr	Arg	Asn 430	Gly	Lys					
Asn	Ile	Asp 435	Ile	Ala	Thr	Ser	Met 440	Thr	Pro	Gln	Phe	Ser 445	Ser	Val	Ser					
Leu	Gly 450	Ala	Gly	Ala	Asp	Ala 455	Pro	Thr	Leu	Ser	Val 460	Asp	Asp	Glu	Gly					
Ala 465	Leu	Asn	Val	Gly	Ser 470	Lys	Asp	Ala	Asn	L <b>y</b> s 475	Pro	Val	Arg	Ile	Thr 480					
Asn	Val	Ala	Pro	Gly 485	Val	Lys	Glu	Gly	Asp 490	Val	Thr	Asn	Val	Ala 495	Gln					
Leu	Lys	Gly	Val 500	Ala	Gln	Asn	Leu	Asn 505	Asn	Arg	Ile	Asp	Asn 510	Val	Asp					
Gly	Asn	Ala 515	Arg	Ala	Gly	Ile	Ala 520	Gln	Ala	Ile	Ala	Thr 525	Ala	Gly	Leu					
Ala	Gln 530	Ala	Tyr	Leu	Pro	Gly 535	Lys	Ser	Met	Met	Ala 540	Ile	Gly	Gly	Gly					
Thr 545	Tyr	Arg	Gly	Glu	Ala 550	Gly	Tyr	Ala	Ile	Gly 555	Tyr	Ser	Ser	Ile	Ser 560					
Asp	Thr	Gly	Asn	Trp	Val	Ile	Lys	Gly	Thr	Ala	Ser	Gly	Asn	Ser	Arg					

-continued	
concritaca	

_															
				565					570					575	
Gly	His	Phe	Gly 580	Thr	Ser	Ala	Ser	Val 585	Gly	Tyr	Gln	Trp			
<21	)> SE 1> LE 2> TY	ENGTH	H: 58												
	3> OF			Neis	sseri	la me	ening	gitic	lis						
<400	)> SE	QUEI	ICE :	109											
Met 1	Asn	Lys	Ile	Tyr 5	Arg	Ile	Ile	Trp	Asn 10	Ser	Ala	Leu	Asn	Ala 15	Trp
Val	Val	Val	Ser 20	Glu	Leu	Thr	Arg	Asn 25	His	Thr	Lys	Arg	Ala 30	Ser	Ala
Thr	Val	Ala 35	Thr	Ala	Val	Leu	Ala 40	Thr	Leu	Leu	Ser	Ala 45	Thr	Val	Gln
Ala	Asn 50	Ala	Thr	Asp	Thr	Asp 55	Glu	Asp	Glu	Glu	Leu 60	Glu	Ser	Val	Val
Arg 65	Ser	Ala	Leu	Val	Leu 70	Gln	Phe	Met	Ile	Asp 75	Lys	Glu	Gly	Asn	Gly 80
Glu	Ile	Glu	Ser	Thr 85	Gly	Asp	Ile	Gly	Trp 90	Ser	Ile	Tyr	Tyr	Asp 95	Asp
His	Asn	Thr	Leu 100	His	Gly	Ala	Thr	Val 105	Thr	Leu	Lys	Ala	Gly 110	Asp	Asn
Leu	Lys	Ile 115	Lys	Gln	Ser	Gly	L <b>y</b> s 120	Asp	Phe	Thr	Tyr	Ser 125	Leu	Lys	Lys
Glu	Leu 130	Lys	Asp	Leu	Thr	Ser 135	Val	Glu	Thr	Glu	L <b>y</b> s 140	Leu	Ser	Phe	Gly
Ala 145	Asn	Gly	Asn	Lys	Val 150	Asn	Ile	Thr	Ser	Asp 155	Thr	Lys	Gly	Leu	Asn 160
Phe	Ala	Lys	Glu	Thr 165	Ala	Gly	Thr	Asn	Gly 170	Asp	Pro	Thr	Val	His 175	Leu
Asn	Gly	Ile	Gly 180	Ser	Thr	Leu	Thr	Asp 185	Thr	Leu	Ala	Gly	Ser 190	Ser	Ala
Ser	His	Val 195	Asp	Ala	Gly	Asn	Gln 200	Ser	Thr	His	Tyr	Thr 205	Arg	Ala	Ala
	Ile 210	-	-			215		-	-		220	-	-		-
225	Gly				230					235					240
-	Asp			245					250		-			255	
	Val		260					265					270		
	Lys	275				-	280	-	-	-	-	285			-
-	Gly 290	-	-			295				-	300	-		-	
Val 305	Thr	Ala	Lys	Glu	Val 310	Ile	Asp	Ala	Val	Asn 315	Lys	Ala	Gly	Trp	Arg 320
Met	Lys	Thr	Thr	Thr 325	Ala	Asn	Gly	Gln	Thr 330	Gly	Gln	Ala	Asp	Lys 335	Phe

					-1
ഹറ	nт	- 1	mı	10	а

											-	con	tin	ued						
Glu	Thr	Val	Thr 340	Ser	Gly	Thr	Lys	Val 345	Thr	Phe	Ala	Ser	Gly 350	Asn	Gly					
Thr	Thr	Ala 355	Thr	Val	Ser	Lys	Asp 360	Asp	Gln	Gly	Asn	Ile 365	Thr	Val	Lys					
Tyr	<b>A</b> sp 370	Val	Asn	Val	Gly	<b>A</b> sp 375	Ala	Leu	Asn	Val	Asn 380	Gln	Leu	Gln	Asn					
Ser 385	Gly	Trp	Asn	Leu	Asp 390	Ser	Lys	Ala	Val	Ala 395	Gly	Ser	Ser	Gly	Lys 400					
Val	Ile	Ser	Gly	Asn 405	Val	Ser	Pro	Ser	Lys 410	Gly	Lys	Met	Asp	Glu 415	Thr					
Val	Asn	Ile	Asn 420	Ala	Gly	Asn	Asn	Ile 425	Glu	Ile	Thr	Arg	Asn 430	Gly	Lys					
Asn	Ile	Asp 435		Ala	Thr	Ser	Met 440		Pro	Gln	Phe	Ser 445		Val	Ser					
Leu	Gly 450		Gly	Ala	Asp	Ala 455		Thr	Leu	Ser	Val 460		Asp	Glu	Gly					
Ala 465		Asn	Val	Gly	Ser 470		Asp	Ala	Asn	Lys 475		Val	Arg	Ile	Thr 480					
	Val	Ala	Pro	Gly 485		Lys	Glu	Gly	_		Thr	Asn	Val							
Leu	Lys	Gly		485 Ala	Gln	Asn	Leu		490 Asn	Arg	Ile	Asp		495 Val	Asp					
Gly	Asn		500 Arg	Ala	Gly	Ile		505 Gln	Ala	Ile	Ala		510 Ala	Gly	Leu					
Ala		515 Ala	Tyr	Leu	Pro		520 Lys	Ser	Met	Met	Ala	525 Ile	Gly	Gly	Gly					
Thr	530 <b>Ty</b> r	Arg	Gly	Glu	Ala	535 Gly	Tyr	Ala	Ile	Gly	540 Tyr	Ser	Ser	Ile	Ser					
545 Asp	Thr	Gly	Asn	Trp	550 Val	Ile	Lys	Gly	Thr	555 Ala	Ser	Gly	Asn	Ser	560 Arg					
_				565 Thr			-	_	570			_		575	2					
1			580					585	1	-1-										
<21	l> LE	EQ II ENGTH (PE:	f: 5	92																
				Nei	sseri	ia me	eninç	gitic	lis											
<400	)> SE	EQUEN	NCE:	110																
Met 1	Asn	Lys	Ile	Tyr 5	Arg	Ile	Ile	Trp	Asn 10	Ser	Ala	Leu	Asn	Ala 15	Trp					
Val	Ala	Val	Ser 20	Glu	Leu	Thr	Arg	Asn 25	His	Thr	Lys	Arg	Ala 30	Ser	Ala					
Thr	Val	Lys 35	Thr	Ala	Val	Leu	Ala 40	Thr	Leu	Leu	Phe	Ala 45	Thr	Val	Gln					
Ala	Asn 50	Ala	Thr	Asp	Glu	Asp 55	Glu	Glu	Glu	Glu	Leu 60	Glu	Ser	Val	Gln					
Arg 65	Ser	Val	Val	Gly	Ser 70	Ile	Gln	Ala	Ser	Met 75	Glu	Gly	Ser	Gly	Glu 80					
Leu	Glu	Thr	Ile	Ser 85	Leu	Ser	Met	Thr	Asn 90	Asp	Ser	Lys	Glu	Phe 95	Val					
Asp	Pro	Tyr	Ile 100	Val	Val	Thr	Leu	L <b>y</b> s 105	Ala	Gly	Asp	Asn	Leu 110	Lys	Ile					

-continued

Lys	Gln	Asn 115	Thr	Asn	Glu	Asn	Thr 120	Asn	Ala	Ser	Ser	Phe 125	Thr	Tyr	Ser
Leu	Lys 130	Lys	Asp	Leu	Thr	Gly 135	Leu	Ile	Asn	Val	Glu 140	Thr	Glu	Lys	Leu
Ser 145	Phe	Gly	Ala	Asn	Gly 150	Lys	Lys	Val	Asn	Ile 155	Ile	Ser	Asp	Thr	Lys 160
Gly	Leu	Asn	Phe	Ala 165	Lys	Glu	Thr	Ala	Gly 170	Thr	Asn	Gly	Asp	Thr 175	Thr
Val	His	Leu	Asn 180	Gly	Ile	Gly	Ser	Thr 185	Leu	Thr	Asp	Met	Leu 190	Leu	Asn
Thr	Gly	Ala 195	Thr	Thr	Asn	Val	Thr 200	Asn	Asp	Asn	Val	Thr 205	Asp	Asp	Glu
Lys	Lys 210	Arg	Ala	Ala	Ser	Val 215	Lys	Asp	Val	Leu	Asn 220	Ala	Gly	Trp	Asn
Ile 225	Lys	Gly	Val	Lys	Pro 230	Gly	Thr	Thr	Ala	Ser 235	Asp	Asn	Val	Asp	Phe 240
Val	Arg	Thr	Tyr	<b>A</b> sp 245	Thr	Val	Glu	Phe	Leu 250	Ser	Ala	Asp	Thr	Lys 255	Thr
Thr	Thr	Val	Asn 260	Val	Glu	Ser	Lys	Asp 265	Asn	Gly	Lys	Lys	Thr 270	Glu	Val
Lys	Ile	Gly 275	Ala	Lys	Thr	Ser	Val 280	Ile	Lys	Glu	Lys	Asp 285	Gly	Lys	Leu
Val	Thr 290	Gly	Lys	Gly	Lys	Gl <b>y</b> 295	Glu	Asn	Gly	Ser	Ser 300	Thr	Asp	Glu	Gly
Glu 305	Gly	Leu	Val	Thr	Ala 310	Lys	Glu	Val	Ile	Asp 315	Ala	Val	Asn	Lys	Ala 320
Gly	Trp	Arg	Met	L <b>y</b> s 325	Thr	Thr	Thr	Ala	Asn 330	Gly	Gln	Thr	Gly	Gln 335	Ala
Asp	Lys	Phe	Glu 340	Thr	Val	Thr	Ser	Gl <b>y</b> 345	Thr	Asn	Val	Thr	Phe 350	Ala	Ser
Gly	Lys	Gly 355	Thr	Thr	Ala	Thr	Val 360	Ser	Lys	Asp	Asp	Gln 365	Gly	Asn	Ile
Thr	Val 370	Met	Tyr	Asp	Val	Asn 375	Val	Gly	Asp	Ala	Leu 380	Asn	Val	Asn	Gln
Leu 385	Gln	Asn	Ser	Gly	Trp 390	Asn	Leu	Asp	Ser	L <b>y</b> s 395	Ala	Val	Ala	Gly	Ser 400
Ser	Gly	Lys	Val	Ile 405	Ser	Gly	Asn	Val	Ser 410	Pro	Ser	Lys	Gly	Lys 415	Met
Asp	Glu	Thr	Val 420	Asn	Ile	Asn	Ala	Gl <b>y</b> 425	Asn	Asn	Ile	Glu	Ile 430	Thr	Arg
Asn	Gly	L <b>y</b> s 435	Asn	Ile	Asp	Ile	Ala 440	Thr	Ser	Met	Thr	Pro 445	Gln	Phe	Ser
Ser	Val 450	Ser	Leu	Gly	Ala	Gly 455	Ala	Asp	Ala	Pro	Thr 460	Leu	Ser	Val	Asp
Asp 465	Lys	Gly	Ala	Leu	Asn 470	Val	Gly	Ser	Lys	Asp 475	Ala	Asn	Lys	Pro	Val 480
Arg	Ile	Thr	Asn	Val 485	Ala	Pro	Gly	Val	Lys 490	Glu	Gly	Asp	Val	Thr 495	Asn
Val	Ala	Gln	Leu 500	Lys	Gly	Val	Ala	Gln 505	Asn	Leu	Asn	Asn	Arg 510	Ile	Asp

-continued

Asn Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile Ala Thr Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met Ala Ile Gly Gly Gly Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly Tyr Ser Ser Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp <210> SEQ ID NO 111 <211> LENGTH: 600 <212> TYPE: PRT <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 111 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ile Ala Leu Asn Ala Trp Val Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Ser Ala Thr Val Gln Ala Asn Ala Thr Asp Glu Glu Asp Asn Glu Asp Leu Glu Pro Val Val 50 55 60 Arg Thr Ala Pro Val Leu Ser Phe His Ser Asp Lys Glu Gly Thr Gly 65 70 75 80 Glu Lys Glu Glu Val Gly Ala Ser Ser Asn Leu Thr Val Tyr Phe Asp 85 90 95 Lys Asn Arg Val Leu Lys Ala Gly Thr Ile Thr Leu Lys Ala Gly Asp Asn Leu Lys Ile Lys Gln Asn Thr Asn Glu Asn Thr Asn Glu Asn Thr Asn Ala Ser Ser Phe Thr Tyr Ser Leu Lys Lys Asp Leu Thr Gly Leu 130 135 140 Ile Asn Val Glu Thr Glu Lys Leu Ser Phe Gly Ala Asn Gly Lys Lys Val Asn Ile Ile Ser Asp Thr Lys Gly Leu Asn Phe Ala Lys Glu Thr Ala Gly Thr Asn Gly Asp Pro Thr Val His Leu Asn Gly Ile Gly Ser Thr Leu Thr Asp Thr Leu Ala Gly Ser Ser Ala Ser His Val Asp Ala Gly Asn Gln Ser Thr His Tyr Thr Arg Ala Ala Ser Ile Lys Asp Val Leu Asn Ala Gly Trp Asn Ile Lys Gly Val Lys Thr Gly Ser Thr Thr 225 230 235 240 Gly Gln Ser Glu Asn Val Asp Phe Val Arg Thr Tyr Asp Thr Val Glu Phe Leu Ser Ala Asp Thr Lys Thr Thr Thr Val Asn Val Glu Ser Lys Asp Asn Gly Lys Arg Thr Glu Val Lys Ile Gly Ala Lys Thr Ser Val 275 280 285

Ile Lys Glu Lys Asp Gly Lys Leu Val

-continued

Glu

Thr	Gly	L <b>y</b> s 300	Gly	Lys	Gly
Gly	Leu	Val	Thr	Ala	Lys

Asn Gly Ser Ser Thr Asp Glu Gly Glu G Glu Val Ile Asp Ala Val Asn Lys Ala Gly Trp Arg Met Lys Thr Thr Thr Ala Asn Gly Gln Thr Gly Gln Ala Asp Lys Phe Glu Thr Val Thr Ser Gly Thr Lys Val Thr Phe Ala Ser Gly Asn Gly Thr Thr Ala Thr Val Ser Lys Asp Asp Gln Gly Asn Ile Thr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val Asn Gln Leu Gln Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala Gly Ser Ser Gly Lys Val Ile Ser Gly Asn Val Ser Pro Ser Lys Gly Lys Met Asp Glu Thr Val Asn Ile Asn Ala Gly Asn Asn Ile Glu Ile Thr Arg Asn Gly Lys Asn Ile Asp Ile Ala Thr Ser Met Thr Pro Gln Phe Ser Ser Val Ser Leu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser Val Asp Asp Glu Gly Ala Leu Asn Val Gly Ser Lys Asp Ala Asn Lys Pro Val Arg Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val Thr Asn Val Ala Gln Leu Lys Gly Val Ala 500 505 510 Gln Asn Leu Asn Asn Arg Ile Asp Asn Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile Ala Thr Ala Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met Ala Ile Gly Gly Gly Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly Tyr Ser Ser Ile Ser Asp Gly Gly Asn Trp 565 570 575 Ile Ile Lys Gly Thr Ala Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp <210> SEQ ID NO 112 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis <400> SEQUENCE: 112 cgcggatccc atatgtcgcc gcaaaattcc ga <210> SEQ ID NO 113

<210> SEQ ID NO 113 <211> LENGTH: 28

<212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis

## -continued

<400> SEQUENCE: 113	
cccgctcgag ttttgccgcg ttaaaagc	28
<210> SEQ ID NO 114 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 114	
cgcggatccc atatgaccgt gaagaccgcc	30
<210> SEQ ID NO 115 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 115	
cccgctcgag ccactgataa ccgacaga	28
<210> SEQ ID NO 116 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 116	
cgcggatccc atatgtattt gaaacagctc caag	34
<210> SEQ ID NO 117 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 117	
cccgctcgag ttctgggtga atgtta	26
<210> SEQ ID NO 118 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 118	
gcggatccca tatgggcacg gacaacccc	29
<210> SEQ ID NO 119 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 119	
cccgctcgag acgtgggggaa cagtct	26
<210> SEQ ID NO 120 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 120	
gcggatccca tatgaaaaat attcaagtag ttgc	34

-continued

	-continued
<pre>&lt;210&gt; SEQ ID NO 121 &lt;211&gt; LENGTH: 27 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Neisseria meningitidis</pre>	
<400> SEQUENCE: 121	
cccgctcgag aagtttgatt aaacccg	27
<210> SEQ ID NO 122 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 122	
cgcggatccc atatgtgcca accgcaatcc g	31
<210> SEQ ID NO 123 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 123	
cccgctcgag tttttccagc tccggca	27
<210> SEQ ID NO 124 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 124	
gcggatccca tatggttatc ggaatattac tcg	33
<210> SEQ ID NO 125 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 125	
cccgctcgag ggctgcagaa gctgg	25
<210> SEQ ID NO 126 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 126	
cgcggatccc atatgcggac gtggttggtt tt	32
<210> SEQ ID NO 127 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 127	
cccgctcgag atatcttccg tttttttcac	30
<210> SEQ ID NO 128 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 128	

## -continued

cgcggatccg ctagcgtaaa tttattattt ttagaa	36
<210> SEQ ID NO 129 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 129	
cccgctcgag ttccaactca ttgaagta	28
<210> SEQ ID NO 130 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 130	
cgcggatccc atatgaataa aggtttacat cgcat	35
<210> SEQ ID NO 131 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 131	
cccgctcgag aatcgctgca ccggct	26
<210> SEQ ID NO 132 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 132	
cgcggatccc atatgactgc cttttcgaca	30
<210> SEQ ID NO 133 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Neisseria meningitidis	
<400> SEQUENCE: 133	
cccgctcgag gcgtgaagcg tcagga	26
<210> SEQ ID NO 134 <211> LENGTH: 15 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: BamHI - NdeI	
<400> SEQUENCE: 134	
cgcggatccc atatg	15
<pre>&lt;210&gt; SEQ ID NO 135 &lt;211&gt; LENGTH: 15 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of Artificial Sequence: BamHI - NheI &lt;400&gt; SEQUENCE: 135</pre>	

## -continued

cgcggatccg ctagc 15 <210> SEQ ID NO 136 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: EcoRI -NheI <400> SEQUENCE: 136 ccggaattct agctagc 17 <210> SEQ ID NO 137 <211> LENGTH: 10 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: XhoI <400> SEQUENCE: 137 cccgctcgag 10 <210> SEQ ID NO 138 <211> LENGTH: 291 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: ORF40a <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (6) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (130) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (193) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (218) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (245) <223> OTHER INFORMATION: place-holder <400> SEQUENCE: 138 Ser Ala Leu Asn Ala Xaa Val Ala Val Ser Glu Leu Thr Arg Asn His 5 10 1 15 Thr Lys Arg Ala Ser Ala Thr Val Lys Thr Ala Val Leu Ala Thr Leu 25 20 30 Leu Phe Ala Thr Val Gln Ala Asn Ala Thr Asp Glu Asp Glu Glu Glu 40 35 45 Glu Leu Glu Ser Val Gln Arg Ser Val Val Gly Ser Ile Gln Ala Ser 55 50 60 Met Glu Gly Ser Gly Glu Leu Glu Thr Ile Ser Leu Ser Met Thr Asn 65 70 75 80 Asp Ser Lys Glu Phe Val Asp Pro Tyr Ile Val Val Thr Leu Lys Ala 85 90 95

-continued

												con	tin	uea	
Gly A	Asp	Asn	Leu 100	Lys	Ile	Lys	Gln	Asn 105	Thr	Asn	Glu	Asn	Thr 110	Asn	Ala
Ser S	Ser	Phe 115	Thr	Tyr	Ser	Leu	Lys 120	Lys	Asp	Leu	Thr	Gly 125	Leu	Ile	Asn
Val X 1	{aa 130		Glu	Lys	Leu	Ser 135		Gly	Ala	Asn	Gly 140		Lys	Val	Asn
- Ile I 145		Ser	Asp	Thr	L <b>y</b> s 150		Leu	Asn	Phe	Ala 155		Glu	Thr	Ala	Gly 160
Thr A	Asn	Gly	Asp		Thr	Val	His	Leu			Ile	Gly	Ser		
Thr A	Asp	Thr	Leu	165 Ala		Ser	Ser	Ala	170 Ser	His	Val	Asp	Ala	175 Gly	Asn
Xaa S	Ser	Thr	180 His	Tvr	Thr	Ara	Ala	185 Ala	Ser	Ile	Lvs	Asp	190 Val	Leu	Asn
		195					200					205			
Ala G 2	31 <b>y</b> 210	Trp	Asn	Ile	Lys	G1y 215	Val	Lys	Хаа	GIY	Ser 220	Thr	Thr	GIY	Gln
Ser G 225	Jlu	Asn	Val	Asp	Phe 230	Val	Arg	Thr	Tyr	Asp 235	Thr	Val	Glu	Phe	Leu 240
Ser A	Ala	Asp	Thr	Xaa 245	Thr	Thr	Thr	Val	<b>A</b> sn 250	Val	Glu	Ser	Lys	<b>A</b> sp 255	Asn
Gly L	Ys	Arg	Thr 260	Glu	Val	Lys	Ile	Gl <b>y</b> 265	Ala	Lys	Thr	Ser	Val 270	Ile	Lys
Glu L	Ys	Asp 275	Gly	Lys	Leu	Val	Thr 280	Gly	Lys	Gly	Lys	Gly 285	Glu	Asn	Gly
Ser S 2	Ser 290	Thr													
010				1.00											
<210> <211> <212>	> LE	NGTH	H: 24												
<212> <213> <220>	> OR	GANI	ISM:	Art:	ificia	al Se	equer	nce							
<223>	> OT	HER	INFO		FION	: Des	scrip	ptior	n of	Art	ificia	al Se	equer	nce:	Hsf
<400> Thr L					Thr	Val	Gln	Ala	Asn	Ala	Thr	Asp	Glu	Asn	G] 11
1				5					10					15	
Glu L	Leu	Asp	Pro 20	Val	Val	Arg	Thr	Ala 25	Pro	Val	Leu	Ser	Phe 30	His	Ser
Asp L	Ys	Glu 35	Gly	Thr	Gly	Glu	Lys 40	Glu	Val	Thr	Glu	Asn 45	Ser	Asn	Trp
Gly I	[le 50	Tyr	Phe	Asp	Asn	Lys 55	Gly	Val	Leu	Lys	Ala 60	Gly	Ala	Ile	Thr
Leu L 65	Ys	Ala	Gly	Asp	Asn 70	Leu	Lys	Ile	Lys	Gln 75	Asn	Thr	Asp	Glu	Ser 80
Thr A	Asn	Ala	Ser	Ser 85	Phe	Thr	Tyr	Ser	Leu 90	Lys	Lys	Asp	Leu	Thr 95	Asp
Leu T	ſhr	Ser			Thr	Glu	Lys			Phe	Gly	Ala			Asp
Lys V	/al	Asp	100 Ile	Thr	Ser	Asp	Ala	105 Asn	Gly	Leu	Lys	Leu	110 Ala	Lys	Thr
Gly A	Asn	115 Glv	Asn	Val	Hi∝	Len	120 Asn	Glv	Leu	Asn	Ser	125 Thr	Leu	Pro	Asn
	130	0 ± ¥	11011	var		135	11011	0±¥	шац	11010	140		Leu	110	770 H

-continued

Ala Val Thr Asn Thr Gly Val Leu Ser Ser Ser Ser Phe Thr Pro Asn 145 150 155 160 Asp Val Glu Lys Thr Arg Ala Ala Thr Val Lys Asp Val Leu Asn Ala 165 170 175 Gly Trp Asn Ile Lys Gly Ala Lys Thr Ala Gly Gly Asn Val Glu Ser 180 185 190 Val Asp Leu Val Ser Ala Tyr Asn Asn Val Glu Phe Ile Thr Gly Asp 200 195 205 Lys Asn Thr Leu Asp Val Val Leu Thr Ala Lys Glu Asn Gly Lys Thr 210 215 220 Thr Glu Val Lys Phe Thr Pro Lys Thr Ser Val Ile Lys Glu Lys Asp 225 230 235 240 <210> SEQ ID NO 140 <211> LENGTH: 251 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: overlap identity <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (10) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (12)..(13) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (15)..(16) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (18)..(21) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (26) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (29)..(30) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (33)..(35) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (38)..(49) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (52) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (54)..(55) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (58)..(59) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (64) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE

```
-continued
```

<222> LOCATION: (66)..(67) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (70)<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (82)..(90) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (106) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (113) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (117) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (120) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (125)..(126) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (129)..(130) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (133)..(138) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (140)..(142) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (148)..(149) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (153) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (155)..(157) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (161)..(173) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (176) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (180) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (194) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (196)..(203) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE

```
-continued
```

<222> LOCATION: (206) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (208)..(209) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (211)..(212) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (216)..(218) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (220)..(221) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (223)..(224) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (226)..(229) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (231) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (235) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (240)..(242) <223> OTHER INFORMATION: absent or positive <400> SEQUENCE: 140 Thr Leu Leu Phe Ala Thr Val Gln Ala Xaa Ala Xaa Glu Xaa Xaa 10 5 Glu Xaa Xaa Xaa Leu Asp Pro Val Xaa Arg Thr Xaa Xaa Val Leu 20 25 30 35 40 Xaa Asn Ser Xaa Trp Xaa Xaa Tyr Phe Xaa Xaa Lys Gly Val Leu Xaa 50 55 60 Ala Xaa Xaa Ile Thr Xaa Lys Ala Gly Asp Asn Leu Lys Ile Lys Gln 65 70 75 80 Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Thr Tyr Ser Leu Lys 85 90 95 Lys Asp Leu Thr Asp Leu Thr Ser Val Xaa Thr Glu Lys Leu Ser Phe 100 105 110 Xaa Ala Asn Gly Xaa Lys Val Xaa Ile Thr Ser Asp Xaa Xaa Gly Leu 115 120 125 Xaa Xaa Ala Lys Xaa Xaa Xaa Xaa Xaa Xaa Gly Xaa Xaa Xaa Val His 135 130 140 Leu Asn Gly Xaa Xaa Ser Thr Leu Xaa Asp Xaa Xaa Xaa Asn Thr Gly 145 150 155 160 170 165 175 Arg Ala Ala Xaa Val Lys Asp Val Leu Asn Ala Gly Trp Asn Ile Lys 180 185 190

```
-continued
```

Gly Xaa Lys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Val Asp Xaa Val Xaa 200 195 205 Xaa Tyr Xaa Xaa Val Glu Phe Xaa Xaa Xaa Asp Xaa Xaa Thr Xaa Xaa 210 215 220 Val Xaa Xaa Xaa Xaa Lys Xaa Asn Gly Lys Xaa Thr Glu Val Lys Xaa 225 230 235 240 Xaa Xaa Lys Thr Ser Val Ile Lys Glu Lys Asp 245 250 <210> SEQ ID NO 141 <211> LENGTH: 36 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: ORF40a <400> SEQUENCE: 141 Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 1 5 10 15 Thr Val Lys Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln 25 20 30 Ala Asn Ala Thr 35 <210> SEQ ID NO 142 <211> LENGTH: 36 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: homology <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (2) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (9) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (19) <223> OTHER INFORMATION: absent or positive <400> SEQUENCE: 142 Val Xaa Val Ser Glu Leu Thr Arg Xaa His Thr Lys Arg Ala Ser Ala 10 15 1 5 Thr Val Xaa Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln 30 20 25 Ala Asn Ala Thr 35 <210> SEQ ID NO 143 <211> LENGTH: 36 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Hsf <400> SEQUENCE: 143 Val Val Ser Glu Leu Thr Arg Thr His Thr Lys Arg Ala Ser Ala 5 10 1 15

-continued

Thr Val Glu Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln 25 20 30 Ala Asn Ala Thr 35 <210> SEQ ID NO 144 <211> LENGTH: 38 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Orf40a <400> SEQUENCE: 144 Val Thr Leu Lys Ala Gly Asp Asn Leu Lys Ile Lys Gln Asn Thr Asn 5 10 Glu Asn Thr Asn Ala Ser Ser Phe Thr Tyr Ser Leu Lys Lys Asp Leu 20 25 Thr Gly Leu Ile Asn Val 35 <210> SEQ ID NO 145 <211> LENGTH: 38 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: homology <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (16) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (18) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (34) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (36)..(37) <223> OTHER INFORMATION: absent or positive <400> SEQUENCE: 145 Xaa Thr Leu Lys Ala Gly Asp Asn Leu Lys Ile Lys Gln Asn Thr Xaa 5 10 15 1 Glu Xaa Thr Asn Ala Ser Ser Phe Thr Tyr Ser Leu Lys Lys Asp Leu 20 25 30 Thr Xaa Leu Xaa Xaa Val 35 <210> SEQ ID NO 146 <211> LENGTH: 38 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Hsf <400> SEOUENCE: 146 Ile Thr Leu Lys Ala Gly Asp Asn Leu Lys Ile Lys Gln Asn Thr Asp151015 15

```
-continued
```

Glu Ser Thr Asn Ala Ser Ser Phe Thr Tyr Ser Leu Lys Lys Asp Leu 20 25 30 Thr Asp Leu Thr Ser Val 35 <210> SEQ ID NO 147 <211> LENGTH: 29 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Orf40a <400> SEQUENCE: 147 Val Thr Glu Lys Leu Ser Phe Gly Ala Asn Gly Lys Lys Val Asn Ile 5 10 1 15 Ile Ser Asp Thr Lys Gly Leu Asn Phe Ala Lys Glu Thr 20 25 <210> SEQ ID NO 148 <211> LENGTH: 29 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: homology <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (2)..(3) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (7) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (9) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (12) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (17) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (28)..(29) <223> OTHER INFORMATION: absent or positive <400> SEQUENCE: 148 Val Xaa Xaa Lys Leu Ser Xaa Gly Xaa Asn Gly Xaa Lys Val Asn Ile 5 10 1 15 Xaa Ser Asp Thr Lys Gly Leu Asn Phe Ala Lys Xaa Xaa 20 25 <210> SEQ ID NO 149 <211> LENGTH: 29 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Hsf <400> SEQUENCE: 149 Val Ser Asp Lys Leu Ser Leu Gly Thr Asn Gly Asn Lys Val Asn Ile 5 10 1 15

Thr Ser Asp Thr Lys Gly Leu Asn Phe Ala Lys Asp Ser 20 25 <210> SEQ ID NO 150 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: ORF40a <400> SEQUENCE: 150 Thr Asn Gly Asp Thr Thr Val His Leu Asn Gly Ile Gly Ser Thr Leu 5 10 Thr Asp Thr Leu Ala Gly Ser Ser Ala Ser His Val Asp Ala Gly Asn 20 25 30 <210> SEQ ID NO 151 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: homology <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (2)..(3) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (5)..(7) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (13) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (21)..(22) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (24) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (26)..(30) <223> OTHER INFORMATION: absent or positive <400> SEOUENCE: 151 Thr Xaa Xaa Asp Xaa Xaa Xaa His Leu Asn Gly Ile Xaa Ser Thr Leu 1 5 10 15 Thr Asp Thr Leu Xaa Xaa Ser Xaa Ala Xaa Xaa Xaa Xaa Gly Asn 20 25 30 <210> SEQ ID NO 152 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Hsf <400> SEQUENCE: 152 Thr Gly Asp Asp Ala Asn Ile His Leu Asn Gly Ile Ala Ser Thr Leu 5 10 1 Thr Asp Thr Leu Leu Asn Ser Gly Ala Thr Thr Asn Leu Gly Gly Asn 20 25 30

```
-continued
```

<210> SEQ ID NO 153 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: ORF40a <400> SEQUENCE: 153 Arg Ala Ala Ser Ile Lys Asp Val Leu Asn Ala Gly Trp Asn Ile Lys 5 15 10 1 Gly Val Lys <210> SEQ ID NO 154 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: homology <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (5) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (15)..(16) <223> OTHER INFORMATION: absent or positive <400> SEQUENCE: 154 Arg Ala Ala Ser Xaa Lys Asp Val Leu Asn Ala Gly Trp Asn Xaa Xaa 5 10 15 1 Gly Val Lys <210> SEQ ID NO 155 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Hsf <400> SEOUENCE: 155 Arg Ala Ala Ser Val Lys Asp Val Leu Asn Ala Gly Trp Asn Val Arg 5 10 15 Gly Val Lys <210> SEQ ID NO 156 <211> LENGTH: 28 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: ORF40a <400> SEQUENCE: 156 Ser Thr Thr Gly Gln Ser Glu Asn Val Asp Phe Val Arg Thr Tyr Asp 1 5 10 15 Thr Val Glu Phe Leu Ser Ala Asp Thr Thr Thr Thr 20 25 <210> SEQ ID NO 157 <211> LENGTH: 28 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: homology <220> FEATURE:

```
-continued
```

<221> NAME/KEY: SITE <222> LOCATION: (2)..(4) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (6) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (9) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (13)<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (19) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (21) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (23) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (25)..(26) <223> OTHER INFORMATION: absent or positive <400> SEQUENCE: 157 Ser Xaa Xaa Xaa Gln Xaa Glu Asn Xaa Asp Phe Val Xaa Thr Tyr Asp 5 10 15 1 Thr Val Xaa Phe Xaa Ser Xaa Asp Xaa Xaa Thr Thr 20 25 <210> SEQ ID NO 158 <211> LENGTH: 28 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Hsf <400> SEQUENCE: 158 Ser Ala Asn Asn Gln Val Glu Asn Ile Asp Phe Val Ala Thr Tyr Asp 1 5 10 Thr Val Asp Phe Val Ser Gly Asp Lys Asp Thr Thr 20 25 <210> SEQ ID NO 159 <211> LENGTH: 240 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: ORF38a <400> SEQUENCE: 159 Met Leu Arg Leu Thr Ala Leu Ala Val Cys Thr Ala Leu Ala Leu Gly 1 5 10 15 Ala Cys Ser Pro Gln Asn Ser Asp Ser Ala Pro Gln Ala Lys Glu Gln 20 25 30 Ala Val Ser Ala Ala Gln Ser Glu Gly Val Ser Val Thr Val Lys Thr 35 40 45 Ala Arg Gly Asp Val Gln Ile Pro Gln Asn Pro Glu Arg Ile Ala Val

-continued

											_	con	tin	ueu		
	50					55					60					
Tyr 65	Asp	Leu	Gly	Met	Leu 70	Asp	Thr	Leu	Ser	L <b>y</b> s 75	Leu	Gly	Val	Lys	Thr 80	
Gly	Leu	Ser	Val	Asp 85	Lys	Asn	Arg	Leu	Pro 90	Tyr	Leu	Glu	Glu	Tyr 95	Phe	
Lys	Thr	Thr	L <b>y</b> s 100	Pro	Ala	Gly	Thr	Leu 105	Phe	Glu	Pro	Asp	<b>Ty</b> r 110	Glu	Thr	
Leu	Asn	Ala 115	Tyr	Lys	Pro	Gln	Leu 120	Ile	Ile	Ile	Gly	Ser 125	Arg	Ala	Ala	
Lys	Ala 130	Phe	Asp	Lys	Leu	Asn 135	Glu	Ile	Ala	Pro	Thr 140	Ile	Glu	Met	Thr	
Ala 145	Asp	Thr	Ala	Asn	Leu 150	Lys	Glu	Ser	Ala	Lys 155	Glu	Arg	Ile	Asp	Ala 160	
Leu	Ala	Gln	Ile	Phe 165	Gly	Lys	Lys	Ala	Glu 170	Ala	Asp	Lys	Leu	Lys 175	Ala	
Glu	Ile	Asp	Ala 180	Ser	Phe	Glu	Ala	<b>Ala</b> 185	Lys	Thr	Ala	Ala	Gln 190	Gly	Lys	
Gly	Lys	Gl <b>y</b> 195	Leu	Val	Ile	Leu	Val 200	Asn	Gly	Gly	Lys	Met 205	Ser	Ala	Phe	
Gly	Pro 210	Ser	Ser	Arg	Leu	Gl <b>y</b> 215	Gly	Trp	Leu	His	L <b>y</b> s 220	Asp	Ile	Gly	Val	
Pro 225	Ala	Val	Asp	Glu	Ala 230	Ile	Lys	Glu	Gly	Ser 235	His	Gly	Gln	Pro	Ile 240	
<21 <21	2> TY 3> OF	PE:	ESM:		ificia	al Se	equer	nce								
<21: <21: <22: <22:	2> T3 3> OF 3> FF 3> OT	(PE: RGANI EATUR	PRT ISM: RE: INFO	Art: DRMA			-		n of	Arti	lficia	al S€	equer	ice:	ORF38	
<21: <21: <22: <22: <40	2> T3 3> OF 3> FE 3> OT 3> SE	(PE: RGANI EATUR THER EQUEN	PRT ISM: RE: INFO	Art: DRMA 160		: Des	scrip	otior					-			
<21: <21: <22: <22: <40: Glu 1	2> T) 3> OF 0> FF 3> OJ 0> SF Gly	(PE: RGANI EATUH THER EQUEN Ala	PRT ISM: RE: INFO NCE: Ser	Art: DRMAT 160 Val 5	FION:	: De: Val	- scrip Lys	otior Thr	Ala 10	Arg	Gly	Asp	Val	Gln 15	Ile	
<21: <21: <22: <22: <40: Glu 1 Pro	2> T3 3> OF 0> FE 3> OT 0> SE Gly Gln	(PE: RGAN] EATUR THER EQUEN Ala Asn	PRT ISM: INFO NCE: Ser Pro 20	Art: DRMA 160 Val 5 Glu	FION: Thr	Val Ile	- scrip Lys Ala	Thr Val 25	Ala 10 Tyr	Arg Asp	Gly Leu	Asp Gly	Val Met 30	Gln 15 Leu	Ile Asp	
<21: <21: <22: <22: <40: Glu 1 Pro Thr	2> TY 3> OF 3> OF 3> OT 3> OT 0> SF Gly Gln Leu	(PE: GGANJ EATUR THER EQUEN Ala Asn Ser 35	PRT ISM: XE: INFO NCE: Ser Pro 20 Lys	Art: DRMA 160 Val 5 Glu Leu	TION: Thr Arg	Val Ile Val	Lys Ala Lys 40	Thr Val 25 Thr	Ala 10 Tyr Gly	Arg Asp Leu	Gly Leu Ser	Asp Gly Val 45	Val Met 30 Asp	Gln 15 Leu Lys	Ile Asp Asn	
<21: <21: <22: <22: <40 Glu 1 Pro Thr Arg	2> TY 3> OF 5> FH 3> O 3> O 5 3> O 5 4 5 1 5 0 5 0	(PE: RGANJ EATUF THER CQUEN Ala Asn Ser 35 Pro	PRT ISM: INFO NCE: Ser Pro 20 Lys Tyr	Art: DRMA 160 Val 5 Glu Leu Leu	TION: Thr Arg Gly	Val Ile Val Glu 55	Lys Ala Lys 40 Tyr	Thr Val 25 Thr Phe	Ala 10 Tyr Gly Lys	Arg Asp Leu Thr	Gly Leu Ser Thr 60	Asp Gly Val 45 Lys	Val Met 30 Asp Pro	Gln 15 Leu Lys Ala	Ile Asp Asn Gly	
<21: <21: <22: <22: <40' Glu 1 Pro Thr Arg Thr 65	<pre>2&gt; TY 3&gt; OF 3&gt; OF 3&gt; OT 3&gt; OT Gly Gln Leu 50 Leu</pre>	REE: CANUE CATUR CHER Ala Asn Ser 35 Pro Phe	PRT ISM: INFC INFC: Ser Pro 20 Lys Tyr Glu	Art: 160 Val 5 Glu Leu Leu Pro	TION: Thr Arg Gly Glu Asp	: Des Val Ile Val 55 Tyr	Lys Ala Lys 40 Tyr Glu	Thr Val 25 Thr Phe Thr	Ala 10 Tyr Gly Lys Leu	Arg Asp Leu Thr Asn 75	Gly Leu Ser Thr 60 Ala	Asp Gly Val 45 Lys Tyr	Val Met 30 Asp Pro Lys	Gln 15 Leu Lys Ala	Ile Asp Asn Gly Gln	

```
-continued
```

<221> NAME/KEY: SITE <222> LOCATION: (5)..(6) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (9)..(11) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (13)..(16) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (18) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (21)..(26) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (30) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (34)..(36) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (38)..(45) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (47)..(50) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (53)..(57) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (60)..(64) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (66)..(70) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (72) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (74)..(75) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (78) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (81) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (86)..(87) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (89)..(90) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (92)..(93) <223> OTHER INFORMATION: absent or positive

			-001101110	eu
<400> SEQUENCE:	161			
Glu Gly Xaa Ser 1	- Xaa Xaa Va 5	l L <b>y</b> s Xaa Xaa 10	Xaa Gly Xaa Xaa	Xaa Xaa 15
Pro Xaa Asn Pro 20		a Xaa Xaa Xaa 25	Asp Leu Gly Xaa 30	Leu Asp
Thr Xaa Xaa Xaa 35	Leu Xaa Xaa	a Xaa Xaa Xaa 40	Xaa Xaa Xaa Val 45	Xaa Xaa
Xaa Xaa Leu Pro 50	Xaa Xaa Xaa 5		Lys Xaa Xaa Xaa 60	Xaa Xaa
Gly Xaa Xaa Xaa 65	Xaa Xaa Asj 70	o Xaa Glu Xaa	Xaa Asn Ala Xaa 75	Lys Pro 80
Xaa Leu Ile Ile	e Ile Xaa Xaa 85	a Arg Xaa Xaa 90	Lys Xaa Xaa Asp	Lys Leu 95
<pre>&lt;210&gt; SEQ ID NO &lt;211&gt; LENGTH: 9 &lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: &lt;220&gt; FEATURE: &lt;223&gt; OTHER INF</pre>	6 Artificial &	-	Artificial Sequen	ce: Lipo
<400> SEQUENCE:	162			
Glu Gly Asp Ser 1	Phe Leu Va 5	l Lys Asp Ser 10	Leu Gly Glu Asn	Lys Thr 15
Pro Lys Asn Pro 20		l Val Ile Leu 25	Asp Leu Gly Ile 30	Leu Asp
Thr Phe Asp Ala 35	Leu Lys Le	1 Asn Asp Lys 40	Val Ala Gly Val 45	Pro Ala
Lys Asn Leu Pro 50	Lys Tyr Len 5!		L <b>y</b> s Asn L <b>y</b> s Pro 60	Ser Val
Gly Gly Val Glr 65	Gln Val Asj 70	p Phe Glu Ala	Ile Asn Ala Leu 75	L <b>y</b> s Pro 80
Asp Leu Ile Ile	lle Ser Gl 85	y Arg Gln Ser 90	Lys Phe Tyr Asp	L <b>y</b> s Leu 95
<pre>&lt;210&gt; SEQ ID NO &lt;211&gt; LENGTH: 9 &lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: &lt;220&gt; FEATURE: &lt;223&gt; OTHER INF</pre>	1 Artificial &	-	Artificial Sequen	ce: ORF44
<400> SEQUENCE:	163			
Thr Val Ser Tyr 1	Val Cys Gli 5	n Gln Gly Lys 10	Lys Val Lys Val	Thr Tyr 15
Gly Phe Asn Lys 20		ı Thr Thr Tyr 25	Ala Ser Ala Val 30	Ile Asn
Gly Lys Arg Val 35	Gln Met Pro	o Val Asn Leu 40	Asp Lys Ser Asp 45	Asn Val
Glu Thr Phe Tyr 50	Gly Lys Glu 5		Val Leu Gly Thr 60	Gly Val
Met Asp Gly Lys 65	Ser Tyr Are 70	g Lys Gln Pro	Ile Met Ile Thr 75	Ala Pro 80
Asp Asn Gln Ile	Val Phe Ly: 85	s Asp Cys Ser 90	Pro	

```
-continued
```

<210> SEO ID NO 164 <211> LENGTH: 91 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: overlap identity <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (3) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (10)..(13) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (15) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (17) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (20)..(21) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (23)..(24) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (26) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (28)..(31) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (33)..(38) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (40) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (43)..(44) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (49) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (51)..(56) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (59) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (61) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (63)..(64) <223> OTHER INFORMATION: absent or positive

```
-continued
```

<220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (67)..(69) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (72) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (74) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (76)..(78) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (81)..(82) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (84)..(86) <223> OTHER INFORMATION: absent or positive <400> SEQUENCE: 164 Xaa Val Xaa Tyr Val Cys Gln Gln Gly Xaa Xaa Xaa Xaa Val Xaa Tyr 5 10 Xaa Phe Asn Xaa Xaa Gly Xaa Xaa Thr Xaa Ala Xaa Xaa Xaa Asn 20 25 30 Xaa Xaa Xaa Xaa Xaa Pro Xaa Asn Leu Xaa Xaa Ser Asp Asn Val 40 35 Xaa Thr Xaa Xaa Xaa Xaa Xaa Gly Tyr Xaa Leu Xaa Thr Xaa Xaa 50 55 60 
 Met Asp Xaa Xaa Xaa Xaa Tyr Arg Xaa Gln Xaa Ile Xaa Xaa Xaa Ala Pro

 65
 70
 75
 80
 Xaa Xaa Gln Xaa Xaa Xaa Lys Asp Cys Ser Pro 85 90 <210> SEQ ID NO 165 <211> LENGTH: 90 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: LecA <400> SEQUENCE: 165 Ser Val Ala Tyr Val Cys Gln Gln Gly Arg Arg Leu Asn Val Asn Tyr 1 5 10 15 Arg Phe Asn Ser Ala Gly Val Pro Thr Ser Ala Glu Leu Arg Val Asn 20 25 30 Asn Arg Asn Leu Arg Leu Pro Tyr Asn Leu Ser Ala Ser Asp Asn Val 40 35 45 Asp Thr Val Phe Ser Ala Asn Gly Tyr Arg Leu Thr Thr Asn Ala Met 55 50 60 Asp Ser Ala Asn Tyr Arg Ser Gln Asp Ile Ile Val Ser Ala Pro Asn 70 65 75 80 Gly Gln Met Leu Tyr Lys Asp Cys Ser Pro 85 90 <210> SEQ ID NO 166

<211> LENGTH: 240

```
-continued
```

<212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: ORF49a <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (18) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (48) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (195) <223> OTHER INFORMATION: place-holder <400> SEQUENCE: 166 Ser Lys Asn Glu Leu Asn Glu Thr Lys Leu Pro Val Arg Val Val Ala 5 10 15 Gln Xaa Ala Ala Thr Arg Ser Gly Trp Asp Thr Val Leu Glu Gly Thr 25 20 30 Glu Phe Lys Thr Thr Leu Ala Gly Ala Asp Ile Gln Ala Gly Val Xaa 35 40 45 Glu Lys Ala Arg Val Asp Ala Lys Ile Ile Leu Lys Gly Ile Val Asn 50 55 60 Arg Ile Gln Ser Glu Glu Lys Leu Glu Thr Asn Ser Thr Val Trp Gln 65 70 75 80 Lys Gln Ala Gly Arg Gly Ser Thr Ile Glu Thr Leu Lys Leu Pro Ser 85 90 95 Phe Glu Ser Pro Thr Pro Pro Lys Leu Ser Ala Pro Gly Gly Tyr Ile 105 100 110 Val Asp Ile Pro Lys Gly Asn Leu Lys Thr Glu Ile Glu Lys Leu Ser 115 120 125 Lys Gln Pro Glu Tyr Ala Tyr Leu Lys Gln Leu Gln Val Ala Lys Asn 130 135 140 Ile Asn Trp Asn Gln Val Gln Leu Ala Tyr Asp Arg Trp Asp Tyr Lys 150 155 160 145 Gln Glu Gly Leu Thr Glu Ala Gly Ala Ala Ile Ile Ala Leu Ala Val 165 170 175 Thr Val Val Thr Ser Gly Ala Gly Thr Gly Ala Val Leu Gly Leu Asn 180 185 190 Gly Ala Xaa Ala Ala Ala Thr Asp Ala Ala Phe Ala Ser Leu Ala Ser 200 195 205 Gln Ala Ser Val Ser Phe Ile Asn Asn Lys Gly Asp Val Gly Lys Thr 215 220 210 Leu Lys Glu Leu Gly Arg Ser Ser Thr Val Lys Asn Leu Val Val Ala 225 230 235 240 <210> SEQ ID NO 167 <211> LENGTH: 540 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: ORF49a <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1) <223> OTHER INFORMATION: place-holder <220> FEATURE:

```
-continued
```

<221> NAME/KEY: SITE <222> LOCATION: (29) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (50) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (80) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (227) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (288) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (324) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (446) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (463) <223> OTHER INFORMATION: place-holder <400> SEQUENCE: 167 Xaa Gln Leu Leu Ala Glu Glu Gly Ile His Lys His Glu Leu Asp Val 5 10 1 Gln Lys Ser Arg Arg Phe Ile Gly Ile Lys Val Gly Xaa Ser Asn Tyr 20 25 30 Ser Lys Asn Glu Leu Asn Glu Thr Lys Leu Pro Val Arg Val Val Ala 35 40 45 Gln Xaa Ala Ala Thr Arg Ser Gly Trp Asp Thr Val Leu Glu Gly Thr 50 55 60 Glu Phe Lys Thr Thr Leu Ala Gly Ala Asp Ile Gln Ala Gly Val Xaa65707580 75 Glu Lys Ala Arg Val Asp Ala Lys Ile Ile Leu Lys Gly Ile Val Asn 85 90 Arg Ile Gln Ser Glu Glu Lys Leu Glu Thr Asn Ser Thr Val Trp Gln 100 105 110 Lys Gln Ala Gly Arg Gly Ser Thr Ile Glu Thr Leu Lys Leu Pro Ser 120 115 125 Phe Glu Ser Pro Thr Pro Pro Lys Leu Ser Ala Pro Gly Gly Tyr Ile 140 135 130 Val Asp Ile Pro Lys Gly Asn Leu Lys Thr Glu Ile Glu Lys Leu Ser 150 145 155 160 Lys Gln Pro Glu Tyr Ala Tyr Leu Lys Gln Leu Gln Val Ala Lys Asn 165 170 175 Ile Asn Trp Asn Gln Val Gln Leu Ala Tyr Asp Arg Trp Asp Tyr Lys 185 180 190 Gln Glu Gly Leu Thr Glu Ala Gly Ala Ala Ile Ile Ala Leu Ala Val 200 195 205 Thr Val Val Thr Ser Gly Ala Gly Thr Gly Ala Val Leu Gly Leu Asn 210 215 220

-C	$\cap$	n	t.	п.	n	11	е	a

											-	con	tin	ued	
Gly 225	Ala	Xaa	Ala	Ala	Ala 230	Thr	Asp	Ala	Ala	Phe 235	Ala	Ser	Leu	Ala	Ser 240
Gln	Ala	Ser	Val	Ser 245	Phe	Ile	Asn	Asn	L <b>y</b> s 250	Gly	Asp	Val	Gly	L <b>y</b> s 255	Thr
Leu	Lys	Glu	Leu 260	Gly	Arg	Ser	Ser	Thr 265	Val	Lys	Asn	Leu	Val 270	Val	Ala
Ala	Ala	Thr 275	Ala	Gly	Val	Ala	Asp 280	Lys	Ile	Gly	Ala	Ser 285	Ala	Leu	Xaa
Asn	Val 290	Ser	Asp	Lys	Gln	Trp 295	Ile	Asn	Asn	Leu	Thr 300	Val	Asn	Leu	Ala
Asn 305	Ala	Gly	Ser	Ala	Ala 310	Leu	Ile	Asn	Thr	Ala 315	Val	Asn	Gly	Gly	Ser 320
Leu	Lys	Asp	Xaa	Leu 325	Glu	Ala	Asn	Ile	Leu 330	Ala	Ala	Leu	Val	Asn 335	Thr
Ala	His	Gly	Glu 340	Ala	Ala	Ser	Lys	Ile 345	Lys	Gln	Leu	Asp	Gln 350	His	Tyr
Ile	Val	His 355	Lys	Ile	Ala	His	Ala 360	Ile	Ala	Gly	Суз	Ala 365	Ala	Ala	Ala
Ala	Asn 370	Lys	Gly	Lys	Cys	Gln 375	Asp	Gly	Ala	Ile	Gly 380	Ala	Ala	Val	Gly
Glu 385	Ile	Val	Gly	Glu	Ala 390	Leu	Thr	Asn	Gly	L <b>y</b> s 395	Asn	Pro	Asp	Thr	Leu 400
Thr	Ala	Lys	Glu	Arg 405	Glu	Gln	Ile	Leu	Ala 410	Tyr	Ser	Lys	Leu	Val 415	Ala
Gly	Thr	Val	Ser 420	Gly	Val	Val	Gly	Gl <b>y</b> 425	Asp	Val	Asn	Ala	Ala 430	Ala	Asn
Ala	Ala	Glu 435	Val	Ala	Val	Lys	Asn 440	Asn	Gln	Leu	Ser	Asp 445	Xaa	Glu	Gly
Arg	Glu 450	Phe	Asp	Asn	Glu	Met 455	Thr	Ala	Cys	Ala	Lys 460	Gln	Asn	Xaa	Pro
Gln 465	Leu	Сув	Arg	Lys	Asn 470	Thr	Val	Lys	Lys	<b>Ty</b> r 475	Gln	Asn	Val	Ala	Asp 480
Lys	Arg	Leu	Ala	Ala 485	Ser	Ile	Ala	Ile	Cys 490	Thr	Asp	Ile	Ser	Arg 495	Ser
Thr	Glu	Суз	Arg 500	Thr	Ile	Arg	Lys	Gln 505	His	Leu	Ile	Asp	Ser 510	Arg	Ser
Leu	His	Ser 515	Ser	Trp	Glu	Ala	Gl <b>y</b> 520	Leu	Ile	Gly	Lys	Asp 525	Asp	Glu	Trp
Tyr	Lys 530	Leu	Phe	Ser	Lys	Ser 535	Tyr	Thr	Gln	Ala	Asp 540				
<211 <212 <213 <220 <223	)> SE 2> LE 2> TY 3> OR )> FE 3> OT )> SE	NGTH PE: GANI ATUF HER	I: 54 PRT SM: E: INFC	10 Arti ORMAJ			-		ı of	Arti	ificia	al Se	equer	nce:	ORF49-1
Met 1	Gln	Leu	Leu	Ala 5	Ala	Glu	Gly	Ile	His 10	Gln	His	Gln	Leu	Asn 15	Val
Gln	Lys	Ser	Thr 20	Arg	Phe	Ile	Gly	Ile 25	Lys	Val	Gly	Lys	Ser 30	Asn	Tyr

-continued

												con	tin	ued	
Ser	Lys	Asn 35	Glu	Leu	Asn	Glu	Thr 40	Lys	Leu	Pro	Val	Arg 45	Val	Ile	Ala
Gln	Thr 50	Ala	Lys	Thr	Arg	Ser 55	Gly	Trp	Asp	Thr	Val 60	Leu	Glu	Gly	Thr
Glu 65	Phe	Lys	Thr	Thr	Leu 70	Ser	Gly	Ala	Asp	Ile 75	Gln	Ala	Gly	Val	Gly 80
Glu	Lys	Ala	Arg	Ala 85	Asp	Ala	Lys	Ile	Ile 90	Leu	Lys	Gly	Ile	Val 95	Asn
Arg	Ile	Gln	Thr 100	Glu	Glu	Lys	Leu	Glu 105	Ser	Asn	Ser	Thr	Val 110	Trp	Gln
Lys	Gln	Ala 115	Gly	Ser	Gly	Ser	Thr 120	Val	Glu	Thr	Leu	L <b>y</b> s 125		Pro	Ser
Phe			Pro	Ala	Leu	Pro 135		Leu	Thr	Ala	Pro 140		Gly	Tyr	Ile
	130 Asp	Ile	Pro	Lys	Gly		Leu	Lys	Thr			Glu	Lys	Leu	
145 Lys	Gln	Pro	Glu		150 Ala	Tyr	Leu	Lys		155 Leu	Gln	Thr	Val	_	160 Asp
Val	Asn	Trp	Asn	165 Gln	Val	Gln	Leu	Ala	170 Tyr	Asp	Lys	Trp	Asp	175 Tyr	Lys
Gln	Glu	Gly	180 Leu	Thr	Gly	Ala	Gly	185 Ala	Ala	Ile	Ile	Ala	190 Leu	Ala	Val
		195			Gly		200					205			
	210				_	215	_		-		220		_		
225					Ala 230		_			235					240
GIn	Ala	Ser	Val	Ser 245	Phe	lle	Asn	Asn	L <b>y</b> s 250	GIY	Asn	lle	GIY	Asn 255	Thr
Leu	Lys	Glu	Leu 260	Gly	Arg	Ser	Ser	Thr 265	Val	Lys	Asn	Leu	Met 270	Val	Ala
Val	Ala	Thr 275	Ala	Gly	Val	Ala	<b>A</b> sp 280	Lys	Ile	Gly	Ala	Ser 285	Ala	Leu	Asn
Asn	Val 290	Ser	Asp	Lys	Gln	Trp 295	Ile	Asn	Asn	Leu	Thr 300	Val	Asn	Leu	Ala
Asn 305	Ala	Gly	Ser	Ala	Ala 310	Leu	Ile	Asn	Thr	Ala 315	Val	Asn	Gly	Gly	Ser 320
Leu	Lys	Asp	Asn	Leu 325	Glu	Ala	Asn	Ile	Leu 330	Ala	Ala	Leu	Val	Asn 335	Thr
Ala	His	Gly	Glu 340	Ala	Ala	Ser	Lys	Ile 345	Lys	Gln	Leu	Asp	Gln 350	His	Tyr
Ile	Ala	His 355	Lys	Ile	Ala	His	Ala 360	Ile	Ala	Gly	Cys	Ala 365	Ala	Ala	Ala
Ala	Asn 370	Lys	Gly	Lys	Cys	Gln 375	Asp	Gly	Ala	Ile	Gly 380	Ala	Ala	Val	Gly
Glu 385	Ile	Leu	Gly	Glu	Thr 390	Leu	Leu	Asp	Gly	Arg 395	Asp	Pro	Gly	Ser	Leu 400
	Val	Lys	Asp	Arg 405	Ala	Lys	Ile	Ile	Ala 410		Ala	Lys	Leu	Ala 415	
Gly	Ala	Val			Leu	Ser	Lys	_		Val	Ser	Thr			Asn
Ala	Ala	Ala	420 Val	Ala	Val	Glu	Asn	425 Asn	Ser	Leu	Asn	Asp	430 Ile	Gln	Asp

-continued

											-	con	tin	ued			
		435					440					445					
Arg	Leu 450	Leu	Ser	Gly	Asn	<b>Ty</b> r 455	Ala	Leu	Сув	Met	Ser 460	Ala	Gly	Gly	Ala		
Glu 465	Ser	Phe	Сув	Glu	Ser 470	Tyr	Arg	Pro	Leu	Gly 475	Leu	Pro	His	Phe	Val 480		
Ser	Val	Ser	Gly	Glu 485	Met	Lys	Leu	Pro	Asn 490	Lys	Phe	Gly	Asn	Arg 495	Met		
Val	Asn	Gly	L <b>y</b> s 500	Leu	Ile	Ile	Asn	Thr 505	Arg	Asn	Gly	Asn	Val 510	Tyr	Phe		
Ser	Val	Gly 515	Lys	Ile	Trp	Ser	Thr 520	Val	Lys	Ser	Thr	L <b>y</b> s 525	Ser	Asn	Ile		
Ser	Gly 530	Val	Ser	Val	Gly	Trp 535	Val	Leu	Asn	Val	Ser 540						
<212 <213 <220 <223 <220 <223 <223 <223	2> TY 3> OF 0> FF 3> O' 0> FF 1> NA 2> LC 3> O'	ATUF THER ATUF ME/F CATI	PRT SM: E: INFC E: CY: CON: INFC	Arti DRMAT SITI (160 DRMAT	FION: E 5)	: De:		otior		Art	ificia	al S	equer	nce:	ORF39		
Lys 1	Phe	Asp	Phe	Thr 5	Trp	Phe	Ile	Pro	Ala 10	Val	Ile	Lys	Tyr	Arg 15	Arg		
	Phe	Phe	Glu 20		Leu	Val	Val	Ser 25		Val	Leu	Gln	Leu 30		Ala		
Leu	Ile	Thr 35	Pro	Leu	Phe	Phe	Gln 40	Val	Val	Met	Asp	Lys 45	Val	Leu	Val		
His	Arg 50	Gly	Phe	Ser	Thr	Leu 55	Asp	Val	Val	Ser	Val 60	Ala	Leu	Leu	Val		
Val 65	Ser	Leu	Phe	Glu	Ile 70	Val	Leu	Gly	Gly	Leu 75	Arg	Thr	Tyr	Leu	Phe 80		
Ala	His	Thr	Thr	Ser 85	Arg	Ile	Asp	Val	Glu 90	Leu	Gly	Ala	Arg	Leu 95	Phe		
Arg	His	Leu	Leu 100	Ser	Leu	Pro	Leu	Ser 105	Tyr	Phe	Glu	His	Arg 110	Arg	Val		
Gly	Asp	Thr 115	Val	Ala	Arg	Val	Arg 120	Glu	Leu	Glu	Gln	Ile 125	Arg	Asn	Phe		
Leu	Thr 130		Gln	Ala	Leu	Thr 135		Val	Leu		Leu 140	Ala	Phe	Ser	Phe		
Ile 145	Phe	Leu	Ala	Val	Met 150	_	Tyr	Tyr	Ser	Ser 155		Leu	Thr	Trp	Val 160		
Val	Leu	Ala	Ser	Leu 165	Xaa	Xaa	Xaa	Xaa	Xaa 170	Xaa	Xaa	Xaa	Xaa	Xaa 175	Xaa		
Xaa	Xaa	Xaa	Xaa 180	Xaa	Xaa	Xaa	Xaa	<b>Xaa</b> 185	Xaa	Xaa	Xaa	Xaa	Xaa 190	Xaa	Xaa		
Xaa	Ile	Cys 195	Ala	Asn	Arg	Thr	Val 200		Ile	Ile	Ala	His 205	Arg	Leu	Ser		
Thr	Val 210																

```
-continued
```

<210> SEO ID NO 170 <211> LENGTH: 240 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: ORF39a <400> SEQUENCE: 170 Ala Val Leu Ser Phe Ala Glu Phe Ser Asn Arg Tyr Ser Gly Lys Leu 5 10 1 Ile Leu Val Ala Ser Arg Ala Ser Val Leu Gly Ser Leu Ala Lys Phe 20 25 30 Asp Phe Thr Trp Phe Ile Pro Ala Val Ile Lys Tyr Arg Arg Leu Phe 40 35 Phe Glu Val Leu Val Val Ser Val Val Leu Gln Leu Phe Ala Leu Ile 55 50 Thr Pro Leu Phe Phe Gln Val Val Met Asp Lys Val Leu Val His Arg 75 65 70 Gly Phe Ser Thr Leu Asp Val Val Ser Val Ala Leu Leu Val Val Ser 85 90 Leu Phe Glu Ile Val Leu Gly Gly Leu Arg Thr Tyr Leu Phe Ala His 100 105 110 Thr Thr Ser Arg Ile Asp Val Glu Leu Gly Ala Arg Leu Phe Arg His 115 120 125 Leu Leu Ser Leu Pro Leu Ser Tyr Phe Glu His Arg Arg Val Gly Asp 130 135 140 Thr Val Ala Arg Val Arg Glu Leu Glu Gln Ile Arg Asn Phe Leu Thr 150 145 155 160 Gly Gln Ala Leu Thr Ser Val Leu Asp Leu Ala Phe Ser Phe Ile Phe 165 170 175 Leu Ala Val Met Trp Tyr Tyr Ser Ser Thr Leu Thr Trp Val Val Leu 180 185 190 Ala Ser Leu Pro Ala Tyr Ala Phe Trp Ser Ala Phe Ile Ser Pro Ile 200 195 205 Leu Arg Thr Arg Leu Asn Asp Lys Phe Ala Arg Asn Ala Asp Asn Gln 215 220 210 Ser Phe Leu Val Glu Ser Ile Thr Ala Val Gly Thr Val Lys Ala Met 225 230 235 240 <210> SEQ ID NO 171 <211> LENGTH: 690 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: ORF39a <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (29)..(40) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (137)..(153) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (173)..(187) <223> OTHER INFORMATION: place-holder <400> SEQUENCE: 171

-continued
------------

Tyr 1	His	Gly	Ile	Ala 5	Ala	Asn	Pro	Ala	Asp 10	Ile	Gln	His	Glu	Phe 15	Cys
Thr	Ser	Ala	Gln 20	Ser	Asp	Leu	Asn	Glu 25	Thr	Gln	Trp	Xaa	Xaa 30	Xaa	Xaa
Xaa	Xaa	Xaa 35	Xaa	Xaa	Xaa	Xaa	Xaa 40	Val	Val	Arg	Gln	Pro 45	Ile	Lys	Arg
Leu	Ala 50	Met	Ala	Thr	Leu	Pro 55	Ala	Leu	Val	Trp	Cys 60	Asp	Asp	Gly	Asn
His 65	Phe	Ile	Leu	Ala	Lys 70	Thr	Asp	Gly	Gly	Gly 75	Glu	His	Ala	Gln	<b>Ty</b> r 80
Leu	Ile	Gln	Asp	Leu 85	Thr	Thr	Asn	Lys	Ser 90	Ala	Val	Leu	Ser	Phe 95	Ala
Glu	Phe	Ser	Asn 100	Arg	Tyr	Ser	Gly	L <b>y</b> s 105	Leu	Ile	Leu	Val	Ala 110	Ser	Arg
Ala	Ser	Val 115	Leu	Gly	Ser	Leu	Ala 120	Lys	Phe	Asp	Phe	Thr 125	Trp	Phe	Ile
Pro	Ala 130	Val	Ile	Lys	Tyr	Arg 135	Arg	Xaa	Xaa	Xaa	Xaa 140	Xaa	Xaa	Xaa	Xaa
Xaa 145	Xaa	Xaa	Xaa	Xaa	Xaa 150	Xaa	Xaa	Xaa	Ile	Thr 155	Pro	Leu	Phe	Phe	Gln 160
Val	Val	Met	Asp	L <b>y</b> s 165	Val	Leu	Val	His	Arg 170	Gly	Phe	Xaa	Xaa	Xaa 175	Xaa
Xaa	Xaa	Xaa	Xaa 180	Xaa	Xaa	Xaa	Xaa	Xaa 185	Xaa	Xaa	Phe	Glu	Ile 190	Val	Leu
Gly	Gly	Leu 195	Arg	Thr	Tyr	Leu	Phe 200	Ala	His	Thr	Thr	Ser 205	Arg	Ile	Asp
Val	Glu 210	Leu	Gly	Ala	Arg	Leu 215	Phe	Arg	His	Leu	Leu 220	Ser	Leu	Pro	Leu
Ser 225	Tyr	Phe	Glu	His	Arg 230	Arg	Val	Gly	Asp	Thr 235	Val	Ala	Arg	Val	Arg 240
Glu	Leu	Glu	Gln	Ile 245	Arg	Asn	Phe	Leu	Thr 250	Gly	Gln	Ala	Leu	Thr 255	Ser
Val	Leu	Asp	Leu 260	Ala	Phe	Ser	Phe	Ile 265	Phe	Leu	Ala	Val	Met 270	Trp	Tyr
Tyr	Ser	Ser 275	Thr	Leu	Thr	Trp	Val 280	Val	Leu	Ala	Ser	Leu 285	Pro	Ala	Tyr
Ala	Phe 290	Trp	Ser	Ala	Phe	Ile 295	Ser	Pro	Ile	Leu	Arg 300	Thr	Arg	Leu	Asn
Asp 305	Lys	Phe	Ala	Arg	Asn 310	Ala	Asp	Asn	Gln	Ser 315	Phe	Leu	Val	Glu	Ser 320
Ile	Thr	Ala	Val	Gly 325	Thr	Val	Lys	Ala	Met 330	Ala	Val	Glu	Pro	Gln 335	Met
Thr	Gln	Arg	Trp 340	Asp	Asn	Gln	Leu	Ala 345	Ala	Tyr	Val	Ala	Ser 350	Gly	Phe
Arg	Val	Thr 355	Lys	Leu	Ala	Val	Val 360	Gly	Gln	Gln	Gly	Val 365	Gln	Leu	Ile
Gln	Lys 370	Leu	Val	Thr	Val	Ala 375	Thr	Leu	Trp	Ile	Gly 380	Ala	Arg	Leu	Val
Ile 385	Glu	Ser	Lys	Leu	Thr 390	Val	Gly	Gln	Leu	Ile 395	Ala	Phe	Asn	Met	Leu 400

-co	nt	21	n	u١	е	a

											-	con	tin	ued	
Ser	Gly	Gln	Val	Ala 405	Ala	Pro	Val	Ile	Arg 410	Leu	Ala	Gln	Leu	<b>T</b> rp 415	
Asp	Phe	Gln	Gln 420	Val	Gly	Ile	Ser	Val 425	Ala	Arg	Leu	Gly	Asp 430	Ile	Leu
Asn	Ala	Pro 435	Thr	Glu	Asn	Ala	Ser 440	Ser	His	Leu	Ala	Leu 445	Pro	Asp	Ile
Arg	Gly 450		Ile	Thr	Phe	Glu 455	His	Val	Asp	Phe	Arg 460	Tyr	Lys	Ala	Asp
Gly 465	-	Leu	Ile	Leu	Gln 470	Asp	Leu	Asn	Leu	Arg 475	Ile	Arg	Ala	Gly	Glu 480
Val	Leu	Gly	Ile	Val 485	Gly	Arg	Ser	Gly	Ser 490	Gly	Lys	Ser	Thr	Leu 495	
Lys	Leu	Val	Gln 500	Arg	Leu	Tyr	Val	Pro 505	Ala	Gln	Gly	Arg	Val 510	Leu	Val
Asp	Gly	Asn 515	Asp	Leu	Ala	Leu	Ala 520	Ala	Pro	Ala	Trp	Leu 525	Arg	Arg	Gln
Val	Gly 530		Val	Leu	Gln	Glu 535	Asn	Val	Leu	Leu	Asn 540	Arg	Ser	Ile	Arg
Asp 545		Ile	Ala	Leu	Thr 550	Asp	Thr	Gly	Met	Pro 555	Leu	Glu	Arg	Ile	Ile 560
Glu	Ala	Ala	Lys	Leu 565	Ala	Gly	Ala	His	Glu 570	Phe	Ile	Met	Glu	Leu 575	
Glu	Gly	Tyr	Gly 580	Thr	Val	Val	Gly	Glu 585	Gln	Gly	Ala	Gly	Leu 590	Ser	Gly
Gly	Gln	Arg 595	Gln	Arg	Ile	Ala	Ile 600	Ala	Arg	Ala	Leu	Ile 605	Thr	Asn	Pro
Arg	Ile 610	Leu	Ile	Phe	Asp	Glu 615	Ala	Thr	Ser	Ala	Leu 620	Asp	Tyr	Glu	Ser
Glu 625	Arg	Ala	Ile	Met	Gln 630	Asn	Met	Gln	Ala	Ile 635	Cys	Ala	Asn	Arg	Thr 640
Val	Leu	Ile	Ile	Ala 645	His	Arg	Leu	Ser	<b>T</b> hr 650	Val	Lys	Thr	Ala	His 655	Arg
Ile	Ile	Ala	Met 660	Asp	Lys	Gly	Arg	Ile 665	Val	Glu	Ala	Gly	Thr 670	Gln	Gln
Glu	Leu	Leu 675	Ala	Lys	Pro	Asn	Gly 680	Tyr	Tyr	Arg	Tyr	Leu 685	Tyr	Asp	Leu
Gln	Asn 690														
<21 <21 <22 <22 <22 <22 <22 <22 <22 <22	>       FE         3>       OI         3>       OI         1>       NZ         2>       LC         3>       OI         0>       FE         1>       NZ         2>       LC         3>       OI         0>       FE         1>       NZ         2>       LC         2>       LC         2>       LC         2>       LC         2>       LC	ENGTH (PE: (GAN) EATUF (HER EATUF AME / F (CAT) CAT) CAT) CAT) CAT)	I: 69 PRT SM: E: INFC E: INFC E: CON: INFC E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: E: CON: CON: CON: CON: CON: CON: CON: CON	Art: DRMA SITI (3) DRMA SITI (6) DRMA SITI (9)	e fion : e fion :	: De: : ab: : ab: 2)	sent	or p or p	oosit	ive	lficia	ll S€	equer	ice:	homology

```
-continued
```

<220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (14) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (16)..(22) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (24)..(25) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (27) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (29)..(41) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (43)..(45) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (47) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (51)..(53) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (60)..(61) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (64) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (69) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (71) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (73)..(75) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (77)..(79) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (83) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (86) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (88)..(92) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (94)..(95) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (99)..(101) <223> OTHER INFORMATION: absent or positive

```
-continued
```

<220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (103) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (115)..(116) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (118) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (136)..(153) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (173)..(187) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (193) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (199) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (203) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (221) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (224) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (229) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (243) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (261) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (267) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (275)..(276) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (279) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (281) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (283) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (287) <223> OTHER INFORMATION: absent or positive

```
-continued
```

<220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (289)..(290) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (293) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (301) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (304)..(305) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (310) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (321) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (324)..(325) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (327) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (330) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (333) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (338)..(339) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (342) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (346) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (349)..(350) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (356) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (359)..(360) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (367) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (371) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (373) <223> OTHER INFORMATION: absent or positive

```
-continued
```

<220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (375) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (379) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (382) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (386)..(388) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (390)..(391) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (405) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (426) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (431) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (434) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (438)..(442) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (447) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (449) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (451) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (455)..(458) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (463) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (465)..(467) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (470) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (472) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (475) <223> OTHER INFORMATION: absent or positive

```
-continued
```

<220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (477)..(478) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (482) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (499) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (502) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (504) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (506)..(507) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (509) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (512) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (515) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (521) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (523) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (535) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (550) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (552) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (556) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (558) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (560)..(561) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (573) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (576) <223> OTHER INFORMATION: absent or positive

```
-continued
```

<220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (580) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (582) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (605)..(606) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (609) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (626)..(6272) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (630) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (633)..(634) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (637)..(638) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (642) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (653) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (655) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (659) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (661) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (664) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (668) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (670)..(672) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (677) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (681) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (683) <223> OTHER INFORMATION: absent or positive

<220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (686)..(687) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (690) <223> OTHER INFORMATION: absent or positive <400> SEQUENCE: 172 Tyr His Xaa Ile Ala Xaa Asn Pro Xaa Xaa Xaa His Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa Thr Xaa Trp Xaa Val Xaa Xaa Ile Xaa Arg Leu Ala Xaa Xaa Xaa Leu Pro Ala Leu Val Trp Xaa Xaa Asp Gly Xaa His Phe Ile Leu Xaa Lys Xaa Asp Xaa Xaa Xaa Glu Xaa Xaa Xaa Tyr 65 70 75 80 Leu Ile Xaa Asp Leu Xaa Thr Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa Ala Glu Phe Xaa Xaa Xaa Tyr Xaa Gly Lys Leu Ile Leu Val Ala Ser Arg 100 105 110 Ala Ser Xaa Xaa Gly Xaa Leu Ala Lys Phe Asp Phe Thr Trp Phe Ile 115 120 125 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ile Thr Pro Leu Phe Gln Val Val Met Asp Lys Val Leu Val His Arg Gly Phe Xaa Xaa Xaa Xaa Xaa Gly Leu Arg Thr Tyr Xaa Phe Ala His Xaa Thr Ser Arg Ile Asp Val Glu Leu Gly Ala Arg Leu Phe Arg His Leu Leu Xaa Leu Pro Xaa Ser Tyr Phe Glu Xaa Arg Arg Val Gly Asp Thr Val Ala Arg Val Arg Glu Leu Xaa Gln Ile Arg Asn Phe Leu Thr Gly Gln Ala Leu Thr Ser Val Leu Asp Leu Xaa Phe Ser Phe Ile Phe Xaa Ala Val Met Trp Tyr Tyr Ser Xaa Xaa Leu Thr Xaa Val Xaa Leu Xaa Ser Leu Pro Xaa Tyr Xaa Xaa Trp Ser Xaa Phe Ile Ser Pro Ile Leu Arg Xaa Arg Leu Xaa Xaa Lys Phe Ala Arg Xaa Ala Asp Asn Gln Ser Phe Leu Val Glu Ser Xaa Thr Ala Xaa Xaa Thr Xaa Lys Ala Xaa Ala Val Xaa Pro Gln Met 

```
-continued
```

Arg	Val	Thr 355	Xaa	Leu	Ala	Xaa	Xaa 360	Gly	Gln	Gln	Gly	Val 365	Gln	Xaa	Ile
Gln	L <b>y</b> s 370	Xaa	Val	Xaa	Val	Xaa 375	Thr	Leu	Trp	Xaa	Gly 380	Ala	Xaa	Leu	Val
Ile 385	Xaa	Xaa	Xaa	Leu	Xaa 390	Xaa	Gly	Gln	Leu	Ile 395	Ala	Phe	Asn	Met	Leu 400
Ser	Gly	Gln	Val	Xaa 405	Ala	Pro	Val	Ile	Arg 410	Leu	Ala	Gln	Leu	<b>T</b> rp 415	Gln
Asp	Phe	Gln	Gln 420	Val	Gly	Ile	Ser	Val 425	Xaa	Arg	Leu	Gly	Asp 430	Xaa	Leu
Asn	Xaa	Pro 435	Thr	Glu	Xaa	Xaa	Xaa 440	Xaa	Xaa	Leu	Ala	Leu 445	Pro	Xaa	Ile
Xaa	Gly 450	Xaa	Ile	Thr	Phe	Xaa 455	Xaa	Xaa	Xaa	Phe	Arg 460	Tyr	Lys	Xaa	Asp
Xaa 465	Xaa	Xaa	Ile	Leu	Xaa 470	Asp	Xaa	Asn	Leu	Xaa 475	Ile	Xaa	Xaa	Gly	Glu 480
Val	Xaa	Gly	Ile	Val 485	Gly	Arg	Ser	Gly	Ser 490	Gly	Lys	Ser	Thr	Leu 495	Thr
Lys	Leu	Xaa	Gln 500	Arg	Xaa	Tyr	Xaa	Pro 505	Xaa	Xaa	Gly	Xaa	Val 510	Leu	Xaa
Asp	Gly	Xaa 515	Asp	Leu	Ala	Leu	Ala 520	Xaa	Pro	Xaa	Trp	Leu 525	Arg	Arg	Gln
Val	Gl <b>y</b> 530	Val	Val	Leu	Gln	Xaa 535	Asn	Val	Leu	Leu	Asn 540	Arg	Ser	Ile	Arg
<b>A</b> sp 545	Asn	Ile	Ala	Leu	Xaa 550	Asp	Xaa	Gly	Met	Pro 555	Xaa	Glu	Xaa	Ile	Xaa 560
Xaa	Ala	Ala	Lys	Leu 565	Ala	Gly	Ala	His	Glu 570	Phe	Ile	Xaa	Glu	Leu 575	Xaa
Glu	Gly	Tyr	Xaa 580	Thr	Xaa	Val	Gly	Glu 585	Gln	Gly	Ala	Gly	Leu 590	Ser	Gly
Gly	Gln	Arg 595	Gln	Arg	Ile	Ala	Ile 600	Ala	Arg	Ala	Leu	Xaa 605	Xaa	Asn	Pro
Xaa	Ile 610	Leu	Ile	Phe	Asp	Glu 615	Ala	Thr	Ser	Ala	Leu 620	Asp	Tyr	Glu	Ser
Glu 625	Xaa	Xaa	Ile	Met	Xaa 630	Asn	Met	Xaa	Xaa	Ile 635	Суз	Xaa	Xaa	Arg	Thr 640
Val	Xaa	Ile	Ile	Ala 645	His	Arg	Leu	Ser	Thr 650		Lys	Xaa	Ala	Xaa 655	Arg
Ile	Ile	Xaa	Met 660	Xaa	Lys	Gly	Xaa	Ile 665	Val	Glu	Xaa	Gly	Xaa 670	Xaa	Xaa
Glu	Leu	Leu 675	Ala	Xaa	Pro	Asn	Gl <b>y</b> 680	Xaa	Tyr	Xaa	Tyr	Leu 685	Xaa	Xaa	Leu
Gln	Xaa 690														
<212 <212 <212 <220	)> FE 3> 01	ENGTH PE: RGANJ ATUF THER	H: 68 PRT ISM: RE: INFO	37 Arti DRMAI	ificia FION: opne:	: Des	scrip		n of	Arti	ficia	al Se	equer	ice:	cytolysin

				170											
<400	)> SE	QUEI	ICE :	1/3											
Tyr 1	His	Asn	Ile	Ala 5	Val	Asn	Pro	Glu	Glu 10	Leu	Lys	His	Lys	Phe 15	Asp
Leu	Glu	Gly	L <b>y</b> s 20	Gly	Leu	Asp	Leu	Thr 25	Ala	Trp	Leu	Leu	Ala 30	Ala	Lys
Ser	Leu	Glu 35	Leu	Lys	Ala	Lys	Gln 40	Val	Lys	Lys	Ala	Ile 45	Asp	Arg	Leu
Ala	Phe 50	Ile	Ala	Leu	Pro	Ala 55	Leu	Val	Trp	Arg	Glu 60	Asp	Gly	Lys	His
Phe 65	Ile	Leu	Thr	Lys	Ile 70	Asp	Asn	Glu	Ala	Lys 75	Lys	Tyr	Leu	Ile	Phe 80
Asp	Leu	Glu	Thr	His 85	Asn	Pro	Arg	Ile	Leu 90	Glu	Gln	Ala	Glu	Phe 95	Glu
Ser	Leu	Tyr	Gln 100	Gly	Lys	Leu	Ile	Leu 105	Val	Ala	Ser	Arg	Ala 110	Ser	Ile
Val	Gly	L <b>y</b> s 115	Leu	Ala	Lys	Phe	<b>A</b> sp 120	Phe	Thr	Trp	Phe	Ile 125	Pro	Ala	Val
Ile	Lys 130	Tyr	Arg	Lys	Ile	Phe 135	Ile	Glu	Thr	Leu	Ile 140	Val	Ser	Ile	Phe
Leu 145	Gln	Ile	Phe	Ala	Leu 150	Ile	Thr	Pro	Leu	Phe 155	Phe	Gln	Val	Val	Met 160
Asp	Lys	Val	Leu	Val 165	His	Arg	Gly	Phe	Ser 170	Thr	Leu	Asn	Val	Ile 175	Thr
Val	Ala	Leu	Ala 180	Ile	Val	Val	Leu	Phe 185	Glu	Ile	Val	Leu	Asn 190	Gly	Leu
Arg	Thr	<b>Ty</b> r 195	Ile	Phe	Ala	His	Ser 200	Thr	Ser	Arg	Ile	Asp 205	Val	Glu	Leu
Gly	Ala 210	Arg	Leu	Phe	Arg	His 215	Leu	Leu	Ala	Leu	Pro 220	Ile	Ser	Tyr	Phe
Glu 225	Asn	Arg	Arg	Val	Gly 230	Asp	Thr	Val	Ala	Arg 235	Val	Arg	Glu	Leu	Asp 240
Gln	Ile	Arg	Asn	Phe 245	Leu	Thr	Gly	Gln	<b>A</b> la 250	Leu	Thr	Ser	Val	Leu 255	Asp
Leu	Met	Phe	Ser 260	Phe	Ile	Phe	Phe	Ala 265	Val	Met	Trp	Tyr	<b>Ty</b> r 270	Ser	Pro
Lys	Leu	Thr 275	Leu	Val	Ile	Leu	Gly 280	Ser	Leu	Pro	Phe	<b>Ty</b> r 285	Met	Gly	Trp
Ser	Ile 290	Phe	Ile	Ser	Pro	Ile 295	Leu	Arg	Arg	Arg	Leu 300	Asp	Glu	Lys	Phe
Ala 305	Arg	Gly	Ala	Asp	Asn 310	Gln	Ser	Phe	Leu	Val 315	Glu	Ser	Val	Thr	Ala 320
Ile	Asn	Thr	Ile	L <b>y</b> s 325	Ala	Leu	Ala	Val	Thr 330	Pro	Gln	Met	Thr	Asn 335	Thr
Trp	Asp	Lys	Gln 340	Leu	Ala	Ser	Tyr	Val 345	Ser	Ala	Gly	Phe	Arg 350	Val	Thr
Thr	Leu	Ala 355	Thr	Ile	Gly	Gln	Gln 360	Gly	Val	Gln	Phe	Ile 365	Gln	Lys	Val
Val	Met 370	Val	Ile	Thr	Leu	Trp 375	Leu	Gly	Ala	His	Leu 380	Val	Ile	Ser	Gly
Asp 385	Leu	Ser	Ile	Gly	Gln 390	Leu	Ile	Ala	Phe	Asn 395	Met	Leu	Ser	Gly	Gln 400

## -continued

Val	Ile	Ala	Pro	Val 405	Ile	Arg	Leu	Ala	Gln 410	Leu	Trp	Gln	Asp	Phe 415	Gln
Gln	Val	Gly	Ile 420	Ser	Val	Thr	Arg	Leu 425	Gly	Asp	Val	Leu	Asn 430	Ser	Pro
Thr	Glu	Ser 435	Tyr	Gln	Gly	Lys	Leu 440	Ala	Leu	Pro	Glu	Ile 445	Lys	Gly	Asp
Ile	Thr 450	Phe	Arg	Asn	Ile	Arg 455	Phe	Arg	Tyr	Lys	Pro 460	Asp	Ala	Pro	Val
Ile 465	Leu	Asn	Asp	Val	Asn 470	Leu	Ser	Ile	Gln	Gln 475	Gly	Glu	Val	Ile	Gly 480
Ile	Val	Gly	Arg	Ser 485	Gly	Ser	Gly	Lys	Ser 490	Thr	Leu	Thr	Lys	Leu 495	Ile
Gln	Arg	Phe	<b>Ty</b> r 500	Ile	Pro	Glu	Asn	Gly 505	Gln	Val	Leu	Ile	Asp 510	Gly	His
Asp	Leu	Ala 515	Leu	Ala	Asp	Pro	Asn 520	Trp	Leu	Arg	Arg	Gln 525	Val	Gly	Val
Val	Leu 530	Gln	Asp	Asn	Val	Leu 535	Leu	Asn	Arg	Ser	Ile 540	Arg	Asp	Asn	Ile
Ala 545	Leu	Ala	Asp	Pro	Gly 550	Met	Pro	Met	Glu	L <b>y</b> s 555	Ile	Val	His	Ala	Ala 560
Lys	Leu	Ala	Gly	Ala 565	His	Glu	Phe	Ile	Ser 570	Glu	Leu	Arg	Glu	Gly 575	Tyr
Asn	Thr	Ile	Val 580	Gly	Glu	Gln	Gly	<b>Ala</b> 585	Gly	Leu	Ser	Gly	Gly 590	Gln	Arg
Gln	Arg	Ile 595	Ala	Ile	Ala	Arg	Ala 600	Leu	Val	Asn	Asn	Pro 605	Lys	Ile	Leu
Ile	Phe 610	Asp	Glu	Ala	Thr	Ser 615	Ala	Leu	Asp	Tyr	Glu 620	Ser	Glu	His	Ile
Ile 625	Met	Arg	Asn	Met	His 630	Gln	Ile	Cys	Lys	Gly 635	Arg	Thr	Val	Ile	Ile 640
Ile	Ala	His	Arg	Leu 645	Ser	Thr	Val	Lys	Asn 650	Ala	Asp	Arg	Ile	Ile 655	Val
Met	Glu	Lys	Gly 660	Gln	Ile	Val	Glu	Gln 665	Gly	Lys	His	Lys	Glu 670	Leu	Leu
Ala	Asp	Pro 675	Asn	Gly	Leu	Tyr	His 680	Tyr	Leu	His	Gln	Leu 685	Gln	Ser	
<pre>&lt;21: &lt;212 &lt;212 &lt;220 &lt;222 &lt;222 &lt;222 &lt;222 &lt;222</pre>	<ul> <li>SE</li> <li>L2</li> <li>TY</li> <li>OF</li> <li>FF</li> <li>NA</li> <li>CO</li> <li>FF</li> <li>L&gt;</li> <li>NA</li> <li>CO</li> <li>FF</li> <li>L&gt;</li> <li>NA</li> <li>CO</li> <li>FF</li> <li>L&gt;</li> <li>NA</li> <li>CO</li> <li>TE</li> <li>SA</li> <li>OT</li> <li>SA</li> <li>SA</li> <li>OT</li> </ul>	ENGTH TPE: CATUF CATUF CATUF CATUF CATUF CATUF CATUF CATUF CATUF CATUF CATUF CATUF CATUF	H: 22 PRT (SM: (E) (E) (E) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	22 Arti DRMAT SITE (17) DRMAT SITE (53) DRMAT SITE (21)	FION: 	: De: 33) : pla 57) : pla	ace-h	nolde	er	Arti	ficia	al Se	equer	ice:	ORF 39

<400> SEQUENCE: 174

Lys 1	Phe	Asp	Phe	Thr 5	Trp	Phe	Ile	Pro	Ala 10	Val	Ile	Lys	Tyr	Arg 15	Arg
Xaa	Xaa	Xaa	Xaa 20	Xaa	Xaa	Xaa	Xaa	Xaa 25	Xaa	Xaa	Xaa	Xaa	Xaa 30	Xaa	Xaa
Xaa	Ile	Thr 35	Pro	Leu	Phe	Phe	Gln 40	Val	Val	Met	Asp	L <b>y</b> s 45	Val	Leu	Val
His	Arg 50	Gly	Phe	Xaa	Xaa	Xaa 55	Xaa	Xaa	Xaa	Xaa	Xaa 60	Xaa	Xaa	Xaa	Хаа
Xaa 65	Xaa	Xaa	Phe	Glu	Ile 70	Val	Leu	Gly	Gly	Leu 75	Arg	Thr	Tyr	Leu	Phe 80
Ala	His	Thr	Thr	Ser 85	Arg	Ile	Asp	Val	Glu 90	Leu	Gly	Ala	Arg	Leu 95	Phe
Arg	His	Leu	Leu 100	Ser	Leu	Pro	Leu	Ser 105	Tyr	Phe	Glu	His	Arg 110	Arg	Val
Gly	Asp	Thr 115	Val	Ala	Arg	Val	<b>A</b> rg 120	Glu	Leu	Glu	Gln	Ile 125	Arg	Asn	Phe
Leu	Thr 130	Gly	Gln	Ala	Leu	Thr 135	Ser	Val	Leu	Asp	Leu 140	Ala	Phe	Ser	Phe
Ile 145	Phe	Leu	Ala	Val	Met 150	Trp	Tyr	Tyr	Ser	Ser 155	Thr	Leu	Thr	Trp	Val 160
Val	Leu	Ala	Ser	Leu 165	Ile	Cys	Ile	Cys	Ala 170	Asn	Arg	Thr	Val	Leu 175	Ile
Ile	Ala	His	Arg 180	Leu	Ser	Thr	Val	L <b>y</b> s 185	Thr	Ala	His	Arg	Ile 190	Ile	Ala
Met	Asp	L <b>y</b> s 195	Gly	Arg	Ile	Val	Glu 200	Ala	Gly	Thr	Gln	Gln 205	Glu	Leu	Leu
Ala	Asn 210	Xaa	Asn	Gly	Tyr	<b>Ty</b> r 215	Arg	Tyr	Leu	Tyr	Asp 220	Leu	Gln		
<pre>&lt;210 &lt;211 &lt;212 &lt;213 &lt;220 &lt;223 &lt;220 &lt;221 &lt;222 &lt;223 &lt;220 <!--221 <222 <223 <220 </221 </222 </222 </223 </220 </p--></pre>	> LE > TY > OF > OF > FF > NA > CO > SF P NA > CO > SF > SO > SO > SF > SO > SO SO > SO SO > SO SO > SO > SO SO SO SO SO SO SO SO SO SO	ENGTH PE: GGANJ HER HER HER HER CATUF HER CATUF HER CATUF HER ME/H CATUF HER ME/H CATUF HER ME/H CATUF HER ATUF CATU HER ATUF CATU HER ATUF CATUF HER ATUF CATUF HER ATUF CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF HER CATUF	I: 22 PRT SSM: SSM: SSM: INFO E: CON: INFO EY: CON: INFO EY: CON: INFO EY: INFO EY: CON: INFO EY: CON: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO EY: INFO INFO EY: INFO INFO INFO INFO INFO EY: INFO INFO INFO INFO INFO INFO INFO INFO	22 Art: SITH (16; CRMAT SITH (153; CRMAT SITH (79; CRMAT SITH (83; CRMAT SITH (83; CRMAT SITH (10;	<pre>FION:    </pre>	: Des 33) : abs 57) : abs : abs	sent sent	or p or p or p or p	oosit oosit oosit	ive ive ive	ficia	ll S€	equer	ice:	overlap

```
-continued
```

<221> NAME/KEY: SITE <222> LOCATION: (104) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (109) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (123) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (137) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (141) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (147) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (155)..(156) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (159) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (163) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (166) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (170) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (186) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (188) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (192) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (197) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (199) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (201) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (203)..(204) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (209)..(212) <223> OTHER INFORMATION: absent or positive <220> FEATURE:

```
-continued
```

<221> NAME/KEY: SITE <222> LOCATION: (214) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (216) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (219)..(220) <223> OTHER INFORMATION: absent or positive <400> SEOUENCE: 175 Lys Phe Asp Phe Thr Trp Phe Ile Pro Ala Val Ile Lys Tyr Arg Xaa 5 10 15 1 20 25 30 Xaa Ile Thr Pro Leu Phe Phe Gln Val Val Met Asp Lys Val Leu Val 40 35 55 Xaa Xaa Xaa Phe Glu Ile Xaa Leu Gly Gly Leu Arg Thr Tyr Xaa Phe 70 75 Ala His Xaa Thr Ser Arg Ile Asp Val Glu Leu Gly Ala Arg Leu Phe 85 90 Arg His Leu Leu Xaa Leu Pro Xaa Ser Tyr Phe Glu Xaa Arg Arg Val 100 105 110 Gly Asp Thr Val Ala Arg Val Arg Glu Leu Xaa Gln Ile Arg Asn Phe 115 120 125 Leu Thr Gly Gln Ala Leu Thr Ser Xaa Leu Asp Leu Xaa Phe Ser Phe 135 140 130 Ile Phe Xaa Ala Val Met Trp Tyr Tyr Ser Xaa Xaa Leu Thr Xaa Val 150 145 155 160 Val Leu Xaa Ser Leu Xaa Cys Ile Cys Xaa Asn Arg Thr Val Leu Ile 165 170 175 Ile Ala His Arg Leu Ser Thr Val Lys Xaa Ala Xaa Arg Ile Ile Xaa 180 185 190 Met Asp Lys Gly Xaa Ile Xaa Glu Xaa Gly Xaa Xaa Gln Glu Leu Leu 200 205 195 Xaa Xaa Xaa Gly Xaa Tyr Xaa Tyr Leu Xaa Xaa Leu Gln 210 215 220 <210> SEQ ID NO 176 <211> LENGTH: 222 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: HlyB <400> SEQUENCE: 176 Lys Phe Asp Phe Thr Trp Phe Ile Pro Ala Val Ile Lys Tyr Arg Lys 5 10 Ile Phe Ile Glu Thr Leu Ile Val Ser Ile Phe Leu Gln Ile Phe Ala202530 Leu Ile Thr Pro Leu Phe Phe Gln Val Val Met Asp Lys Val Leu Val 40 35 His Arg Gly Phe Ser Thr Leu Asn Val Ile Thr Val Ala Leu Ala Ile

-continued

											-	con	tin	ued	
	50					55					60				
Val 65	Val	Leu	Phe	Glu	Ile 70	Ile	Leu	Gly	Gly	Leu 75	Arg	Thr	Tyr	Val	Phe 80
Ala	His	Ser	Thr	Ser 85	Arg	Ile	Asp	Val	Glu 90	Leu	Gly	Ala	Arg	Leu 95	Phe
Arg	His	Leu	Leu 100	Ala	Leu	Pro	Ile	Ser 105	Tyr	Phe	Glu	Ala	Arg 110	Arg	Val
Gly	Asp	Thr 115	Val	Ala	Arg	Val	Arg 120	Glu	Leu	Asp	Gln	Ile 125	Arg	Asn	Phe
Leu	Thr 130	Gly	Gln	Ala	Leu	Thr 135	Ser	Ile	Leu	Asp	Leu 140	Leu	Phe	Ser	Phe
Ile 145	Phe	Phe	Ala	Val	Met 150	Trp	Tyr	Tyr	Ser	Pro 155	Lys	Leu	Thr	Leu	Val 160
Val	Leu	Gly	Ser	Leu 165	Pro	Сув	Ile	Cys	Gln 170	Asn	Arg	Thr	Val	Leu 175	Ile
Ile	Ala	His	Arg 180	Leu	Ser	Thr	Val	L <b>ys</b> 185	Asn	Ala	Asp	Arg	Ile 190	Ile	Val
Met	Asp	Lys 195	Gly	Glu	Ile	Ile	Glu 200	Gln	Gly	Lys	His	Gln 205	Glu	Leu	Leu
Lys	Asp 210	Glu	Lys	Gly	Leu	<b>Ty</b> r 215	Ser	Tyr	Leu	His	Gln 220	Leu	Gln		
<pre>&lt;223 &lt;220 &lt;221 &lt;222 &lt;223 &lt;220 &lt;221 &lt;222 &lt;223 &lt;220 &lt;221 &lt;222 &lt;2223 &lt;220 &lt;221 &lt;222 &lt;222 &lt;222 &lt;222 &lt;222 &lt;222</pre>	<ul> <li>&gt; OT</li> <li>&gt; FE</li> <li>&gt; NA</li> <li>&gt; IC</li> <li>&gt; FE</li> <li>&gt; NA</li> <li>&gt; CO</li> <li>&gt; FE</li> <li>&gt; NA</li> <li>&gt; CO</li> <li>&gt; FE</li> <li>&gt; NA</li> <li>&gt; CO</li> <li>&gt; FE</li> <li>&gt; NA</li> <li>&gt; LO</li> <li>&gt; FE</li> <li>&gt; NA</li> <li>&gt; LO</li> <li>&gt; FE</li> <li>&gt; NA</li> <li>&gt; LO</li> <li>&gt; SO</li> <li>&gt; TE</li> <li>&gt; NA</li> <li>&gt; LO</li> <li>&gt; NA</li> <li>&gt; LO</li> <li>&gt; NA</li> <li>&gt; LO</li> <li>&gt; NA</li> <li>&gt; LO</li> <li< th=""><th>HER ATUF CATUF CATUF CATUF ME/F CATUF CATUF CATUF CATUF CATUF CATUF ME/F CATUF</th><th>INFC EY: ON: INFC EY: ON: INFC EY: ON: INFC E: EY: ON:</th><th>SITE (58) DRMAT SITE (77) DRMAT SITE (87) DRMAT SITE (223</th><th>FION: FION: FION: FION: FION:</th><th>: pla : pla : pla : pla</th><th>ace-h ace-h ace-h</th><th>nolde</th><th>er er</th><th></th><th></th><th></th><th></th><th></th><th></th></li<></ul>	HER ATUF CATUF CATUF CATUF ME/F CATUF CATUF CATUF CATUF CATUF CATUF ME/F CATUF	INFC EY: ON: INFC EY: ON: INFC EY: ON: INFC E: EY: ON:	SITE (58) DRMAT SITE (77) DRMAT SITE (87) DRMAT SITE (223	FION: FION: FION: FION: FION:	: pla : pla : pla : pla	ace-h ace-h ace-h	nolde	er er						
		QUEN				рта	100-11	Iorue							
Met 1	Asn	Leu	Ile	Ser 5	Arg	Tyr	Ile	Ile	Arg 10	Gln	Met	Ala	Val	Met 15	Ala
Val	Tyr	Ala	Leu 20	Leu	Ala	Phe	Leu	Ala 25	Leu	Tyr	Ser	Phe	Phe 30	Glu	Ile
Leu	Tyr	Glu 35	Thr	Gly	Asn	Leu	Gly 40	Lys	Gly	Ser	Tyr	Gly 45	Ile	Trp	Glu
Met	Xaa 50	Gly	Tyr	Thr	Ala	Leu 55	Lys	Met	Xaa	Ala	Arg 60	Ala	Tyr	Glu	Leu
		Leu													

-cont	inu	ed
-------	-----	----

Ala Ala Gly	Ser Glu 3 85	Leu Xaa	Val Ile	Lys Ala 90	a Ser Gly	Met Ser 95	Thr
Lys Lys Leu	Leu Leu 100	Ile Leu	Ser Gln 105	Phe Gly	7 Phe Ile	Phe Ala 110	Ile
Ala Thr Val 115	Ala Leu (	Gly Glu	Trp Val 120	Ala Pro	o Thr Leu 125	Ser Gln	Lys
Ala Glu Asn 130	Ile Lys J	Ala Ala 135	Ala Ile	Asn Gly	v Lys Ile 140	Ser Thr	Gly
Asn Thr Gly 145		Leu L <b>y</b> s 150	Glu Lys	Asn Ser 155		Asn Val	Arg 160
Glu Met Leu	Pro Asp 1 165	His Thr	Leu Leu	Gly Ile 170	e Lys Ile	Trp Ala 175	Arg
Asn Asp Lys	Asn Glu 1 180	Leu Ala	Glu Ala 185	Val Glu	ı Ala Asp	Ser Ala 190	Val
Leu Asn Ser 195	Asp Gly :	Ser Trp	Gln Leu 200	Lys Asr	l Ile Arg 205	Arg Ser	Thr
Leu Gly Glu 210	Asp Lys '	Val Glu 215	Val Ser	Ile Ala	Ala Glu 220	Glu Xaa	Trp
Pro Ile Ser 225		Arg Asn 230	Leu Met	Asp Val 235		Val Lys	Pro 240
<pre>&lt;210&gt; SEQ ID &lt;211&gt; LENGTH &lt;212&gt; TYPE: &lt;213&gt; ORGANI &lt;220&gt; FEATUR &lt;220&gt; FEATUR &lt;220&gt; FEATUR &lt;221&gt; NAME/K &lt;222&gt; LOCATI &lt;223&gt; OTHER &lt;220&gt; FEATUR &lt;221&gt; NAME/K &lt;222&gt; LOCATI &lt;223&gt; OTHER &lt;221&gt; NAME/K &lt;222&gt; LOCATI &lt;223&gt; OTHER &lt;221&gt; NAME/K &lt;222&gt; LOCATI &lt;223&gt; OTHER &lt;221&gt; NAME/K</pre>	: 360 PRT SM: Artif E: INFORMAT: E: EY: SITE ON: (68) INFORMAT: E: EY: SITE ON: (296 INFORMAT: E: EY: SITE EY: SITE EY: SITE ON: (343 INFORMAT:	ION: Des (73) ION: pla ION: pla ) ION: pla )	ace-holde ace-holde ace-holde	er er	ificial Se	equence:	ORF114a
<222> LOCATI <223> OTHER <400> SEQUEN	EY: SITE ON: (352 INFORMAT	,	ace-holde	ər			
<222> LOCATI <223> OTHER	EY: SITE ON: (352 INFORMAT CE: 178	ÍON: pla			t Lys Lys	His Ser 15	Thr
<222> LOCATI <223> OTHER <400> SEQUEN Met Asn Lys	EY: SITE ON: (352 INFORMAT CE: 178 Gly Leu 1 5	ÍON: pla His Arg	Ile Ile	Phe Ser 10		15	
<222> LOCATI <223> OTHER <400> SEQUEN Met Asn Lys 1	EY: SITE ON: (352 INFORMAT: CE: 178 Gly Leu 1 5 Val Ala 0 20	ÍON: pla His Arg Glu Thr	Ile Ile Ala Asn 25	Phe Ser 10 Ser Glr	. Gly Lys	15 Gly Lys 30	Gln
<222> LOCATI <223> OTHER <400> SEQUEN Met Asn Lys 1 Met Val Ala Ala Gly Ser	EY: SITE ON: (352 INFORMAT CE: 178 Gly Leu 1 5 Val Ala 0 20 Ser Val 3	ION: pla His Arg Glu Thr Ser Val	Ile Ile Ala Asn 25 Ser Leu 40	Phe Ser 10 Ser Glr Lys Thr	Gly Lys Ser Gly 45	15 Gly Lys 30 Asp Leu	Gln Cys

-continued
------------

											-	con	υIII	ued		
Ala	Pro	Lys	Asn	Xaa 85	Gln	Val	Val	Ile	Leu 90	Lys	Thr	Asn	Thr	Gly 95	a	
Pro	Leu	Val	Asn 100	Ile	Gln	Thr	Pro	Asn 105	Gly	Arg	Gly	Leu	Ser 110	His	n	
Arg	Tyr	Thr 115	Gln	Phe	Asp	Val	Asp 120	Asn	Lys	Gly	Ala	Val 125	Leu	Asn	n	
Asp	Arg 130	Asn	Asn	Asn	Pro	Phe 135	Leu	Val	Lys	Gly	Ser 140	Ala	Gln	Leu	e	
Leu 145	Asn	Glu	Val	Arg	Gly 150	Thr	Ala	Ser	Lys	Leu 155	Asn	Gly	Ile	Val	r 0	
Val	Gly	Gly	Gln	L <b>y</b> s 165	Ala	Asp	Val	Ile	Ile 170	Ala	Asn	Pro	Asn	Gly 175	e	
Thr	Val	Asn	Gly 180	Gly	Gly	Phe	Lys	Asn 185	Val	Gly	Arg	Gly	Ile 190	Leu	r	
Ile	Gly	Ala 195	Pro	Gln	Ile	Gly	L <b>y</b> s 200	Asp	Gly	Ala	Leu	Thr 205	Gly	Phe	p	
Val	Arg 210	Gln	Gly	Thr	Leu	Thr 215	Val	Gly	Ala	Ala	Gly 220	Trp	Asn	Asp	S	
Gly 225	Gly	Ala	Asp	Tyr	Thr 230	Gly	Val	Leu	Ala	Arg 235	Ala	Val	Ala	Leu	n 0	
Gly	Lys	Leu	Gln	Gly 245	Lys	Asn	Leu	Ala	Val 250	Ser	Thr	Gly	Pro	Gln 255	s	
Val	Asp	Tyr	Ala 260	Ser	Gly	Glu	Ile	Ser 265	Ala	Gly	Thr	Ala	Ala 270	Gly	r	
Lys	Pro	Thr 275		Ala	Leu	Asp	Thr 280		Ala	Leu	Gly	Gly 285		Tyr	a	
Asp	Ser 290	Ile	Thr	Leu	Ile	Ala 295		Glu	Lys	Gly	Val 300		Val	Lys	n	
Ala 305		Thr	Leu	Glu	Ala 310		Lys	Gln	Leu	Ile 315		Thr	Ser	Ser	<b>y</b> 0	
	Ile	Glu	Asn	Ser 325		Arg	Ile	Ala	Thr 330		Ala	Asp	Gly	Thr 335		
Ala	Ser	Pro	Thr 340	Tyr	Leu	Xaa	Ile	Glu 345		Thr	Glu	Lys	Gly 350		a	
Gly	Thr	Phe 355			Asn	Gly	Gly 360	545					550			
<211 <212 <213 <220	l> LE 2> TY 3> OF )> FE	EQ II ENGTH (PE: RGANI EATUF	I: 15 PRT SM: RE:	574 Arti			equer		ı of	Art	ificia	al Se	equer	ice:	F114-1	
<400	)> SE	EQUEN	ICE :	179												
Met 1	Asn	Lys	Gly	Leu 5	His	Arg	Ile	Ile	Phe 10	Ser	Lys	Lys	His	Ser 15	r	
Met	Val	Ala	Val 20	Ala	Glu	Thr	Ala	Asn 25	Ser	Gln	Gly	Lys	Gly 30	Lys	n	
Ala	Gly	Ser 35	Ser	Val	Ser	Val	Ser 40	Leu	Lys	Thr	Ser	Gly 45	Asp	Leu	S	
<b>a</b> 1	Lvs	Leu	Lys	Thr	Thr	Leu	Lys	Thr	Leu	Val	Cys	Ser	Leu	Val	r	

-continued
------------

											-	con	tin	ued			
Leu 65	Ser	Met	Val	Leu	Pro 70	Ala	His	Ala	Gln	Ile 75	Thr	Thr	Asp	Lys	Ser 80		
Ala	Pro	Lys	Asn	Gln 85	Gln	Val	Val	Ile	Leu 90	Lys	Thr	Asn	Thr	Gly 95	Ala		
Pro	Leu	Val	Asn 100	Ile	Gln	Thr	Pro	Asn 105	Gly	Arg	Gly	Leu	Ser 110	His	Asn		
Arg	Tyr	Thr 115	Gln	Phe	Asp	Val	<b>A</b> sp 120	Asn	Lys	Gly	Ala	Val 125	Leu	Asn	Asn		
Asp	Arg 130		Asn	Asn	Pro	Phe 135	Val	Val	Lys	Gly	Ser 140	Ala	Gln	Leu	Ile		
Leu 145	Asn	Glu	Val	Arg	Gly 150	Thr	Ala	Ser	Lys	Leu 155	Asn	Gly	Ile	Val	Thr 160		
Val	Gly	Gly	Gln	L <b>y</b> s 165	Ala	Asp	Val	Ile	Ile 170	Ala	Asn	Pro	Asn	Gl <b>y</b> 175	Ile		
Thr	Val	Asn	Gly 180		Gly	Phe	Lys	<b>A</b> sn 185	Val	Gly	Arg	Gly	Ile 190	Leu	Thr		
Thr	Gly	Ala 195	Pro	Gln	Ile	Gly	Lys 200	Asp	Gly	Ala	Leu	Thr 205	Gly	Phe	Asp		
Val	Arg 210	Gln	Gly	Thr	Leu	Thr 215	Val	Gly	Ala	Ala	Gly 220	Trp	Asn	Asp	Lys		
Gly 225	Gly	Ala	Asp	Tyr	Thr 230	Gly	Val	Leu	Ala	Arg 235	Ala	Val	Ala	Leu	Gln 240		
Gly	Lys	Leu	Gln	Gl <b>y</b> 245		Asn	Leu	Ala	Val 250	Ser	Thr	Gly	Pro	Gln 255	Lys		
Val	Asp	Tyr	Ala 260	Ser	Gly	Glu	Ile	Ser 265	Ala	Gly	Thr	Ala	Ala 270	Gly	Thr		
Lys	Pro	Thr 275	Ile	Ala	Leu	Asp	Thr 280	Ala	Ala	Leu	Gly	Gl <b>y</b> 285	Met	Tyr	Ala		
Asp	Ser 290	Ile	Thr	Leu	Ile	Ala 295	Asn	Glu	Lys	Gly	Val 300	Gly	Val	Lys	Asn		
Ala 305	Gly	Thr	Leu	Glu	Ala 310	Ala	Lys	Gln	Leu	Ile 315	Val	Thr	Ser	Ser	Gl <b>y</b> 320		
Arg	Ile	Glu	Asn	Ser 325		Arg	Ile	Ala	Thr 330	Thr	Ala	Asp	Gly	Thr 335	Glu		
Ala	Ser	Pro	Thr 340	Tyr	Leu	Ser	Ile	Glu 345	Thr	Thr	Glu	Lys	Gly 350	Ala	Ala		
Gly	Thr	Phe 355	Ile	Ser	Asn	Gly	Gly 360	Arg	Ile	Glu	Ser	L <b>y</b> s 365	Gly	Leu	Leu		
Val	Ile 370	Glu	Thr	Gly	Glu	Asp 375	Ile	Ser	Leu	Arg	Asn 380	Gly	Ala	Val	Val		
Gln 385	Asn	Asn	Gly	Ser	Arg 390	Pro	Ala	Thr	Thr	Val 395	Leu	Asn	Ala	Gly	His 400		
Asn	Leu	Val	Ile	Glu 405	Ser	Lys	Thr	Asn	Val 410	Asn	Asn	Ala	Lys	Gly 415	Pro		
Ala	Thr	Leu	Ser 420	Ala	Asp	Gly	Arg	Thr 425	Val	Ile	Lys	Glu	Ala 430	Ser	Ile		
Gln	Thr	Gly 435	Thr	Thr	Val	Tyr	Ser 440	Ser	Ser	Lys	Gly	Asn 445	Ala	Glu	Leu		
Gly	Asn 450	Asn	Thr	Arg	Ile	Thr 455	Gly	Ala	Asp	Val	Thr 460	Val	Leu	Ser	Asn		
Gly	Thr	Ile	Ser	Ser	Ser	Ala	Val	Ile	Asp	Ala	Lys	Asp	Thr	Ala	His		

-continued

Thr	Asp	Leu	Ser	Ile 885	Lys	Thr	Gly	Gly	L <b>y</b> s 890	Leu	Leu	Leu	Ser	Ala 895	Lys
Gly	Gly	Asn	Ala 900	Gly	Ala	Pro	Ser	Ala 905	Gln	Val	Ser	Ser	Leu 910	Glu	Ala
Lys	Gly	Asn 915	Ile	Arg	Leu	Val	Thr 920	Gly	Glu	Thr	Asp	Leu 925	Arg	Gly	Ser
Lys	Ile 930	Thr	Ala	Gly	Lys	Asn 935	Leu	Val	Val	Ala	Thr 940	Thr	Lys	Gly	Lys
Leu 945	Asn	Ile	Glu	Ala	Val 950	Asn	Asn	Ser	Phe	Ser 955	Asn	Tyr	Phe	Pro	Thr 960
Gln	Lys	Ala	Ala	Glu 965	Leu	Asn	Gln	Lys	Ser 970	Lys	Glu	Leu	Glu	Gln 975	Gln
Ile	Ala	Gln	Leu 980	Lys	Lys	Ser	Ser	Pro 985	Lys	Ser	Lys	Leu	Ile 990	Pro	Thr
Leu	Gln	Glu 995	Glu	Arg	Asp		Leu 1000	Ala	Phe	Tyr		Gln 1005	Ala	Ile	Asn
	Glu 1010	Val	Lys	Gly		L <b>y</b> s 1015	Pro	Lys	Gly		Glu 1020	Tyr	Leu	Gln	Ala
L <b>y</b> s 1025	Leu 5	Ser	Ala		Asn 1030	Ile	Asp	Leu		Ser L035	Ala	Gln	Gly		Glu 1040
Ile	Ser	Gly		Asp L045	Ile	Thr	Ala		L <b>y</b> s 1050	Lys	Leu	Asn		His 1055	Ala
Ala	Gly		Leu 1060	Pro	Lys	Ala		Asp 1065	Ser	Glu	Ala		Ala 1070	Ile	Leu
Ile	Asp 1	Gl <b>y</b> 1075	Ile	Thr	Asp		<b>Ty</b> r 1080	Glu	Ile	Gly		Pro 1085	Thr	Tyr	Lys
	His 1090	Tyr	Asp	Lys		Ala 1095	Leu	Asn	Lys		Ser 1100	Arg	Leu	Thr	Gly
Arg 1105	Thr 5	Gly	Val		Ile 1110	His	Ala	Ala		Ala 1115	Leu	Asp	Asp		Arg 1120
Ile	Ile	Ile		Ala L125	Ser	Glu	Ile		Ala 130	Pro	Ser	Gly		Ile 1135	Asp
Ile	Lys		His L140	Ser	Asp	Ile		Leu 1145	Glu	Ala	Gly		Asn 150	Asp	Ala
Tyr	Thr	Phe 1155	Leu	Lys	Thr		Gly 1160	Lys	Ser	Gly		Ile 1165	Ile	Arg	Lys
	Lys 1170	Phe	Thr	Ser		Arg 1175	Asp	His	Leu		Met 1180	Pro	Ala	Pro	Val
Glu 1185	Leu 5	Thr	Ala		Gly 1190	Ile	Thr	Leu		Ala 195	Gly	Gly	Asn		Glu 1200
Ala	Asn	Thr		Arg L205	Phe	Asn	Ala		Ala 1210	Gly	Lys	Val		Leu 1215	Val
Ala	Gly		Glu 1220	Leu	Gln	Leu		Ala 1225	Glu	Glu	Gly		His 230	Lys	His
Glu	Leu	Asp 1235	Val	Gln	Lys		Arg 1240	Arg	Phe	Ile		Ile 1245	Lys	Val	Gly
	Ser 1250	Asn	Tyr	Ser		Asn 1255	Glu	Leu	Asn		Thr 1260	Lys	Leu	Pro	Val
Arg 1265	Val 5	Val	Ala		Thr 1270	Ala	Ala	Thr		Ser 1275	Gly	Trp	Asp		Val 1280

## -continued

Leu Glu Gly Thr Glu Phe Lys Thr Thr Leu Ala Gly Ala Asp Ile Gln 1285 1290 1295
Ala Gly Val Gly Glu Lys Ala Arg Ala Asp Ala Lys Ile Ile Leu Lys 1300 1305 1310
Gly Ile Val Asn Arg Ile Gln Ser Glu Glu Lys Leu Glu Thr Asn Ser 1315 1320 1325
Thr Val Trp Gln Lys Gln Ala Gly Arg Gly Ser Thr Ile Glu Thr Leu 1330 1335 1340
Lys Leu Pro Ser Phe Glu Ser Pro Thr Pro Pro Lys Leu Thr Ala Pro 1345 1350 1355 1360
Gly Gly Tyr Ile Val Asp Ile Pro Lys Gly Asn Leu Lys Thr Glu Ile 1365 1370 1375
Glu Lys Leu Ala Lys Gln Pro Glu Tyr Ala Tyr Leu Lys Gln Leu Gln 1380 1385 1390
Val Ala Lys Asn Val Asn Trp Asn Gln Val Gln Leu Ala Tyr Asp Lys 1395 1400 1405
Trp Asp Tyr Lys Gln Glu Gly Leu Thr Arg Ala Gly Ala Ala Ile Val 1410 1415 1420
Thr Ile Ile Val Thr Ala Leu Thr Tyr Gly Tyr Gly Ala Thr Ala Ala 1425 1430 1435 1440
Gly Gly Val Ala Ala Ser Gly Ser Ser Thr Ala Ala Ala Ala Gly Thr 1445 1450 1455
Ala Ala Thr Thr Ala Ala Ala Thr Thr Val Ser Thr Ala Thr Ala 1460 1465 1470
Met Gln Thr Ala Ala Leu Ala Ser Leu Tyr Ser Gln Ala Ala Val Ser 1475 1480 1485
Ile Ile Asn Asn Lys Gly Asp Val Gly Lys Ala Leu Lys Asp Leu Gly 1490 1495 1500
Thr Ser Asp Thr Val Lys Gln Ile Val Thr Ser Ala Leu Thr Ala Gly 1505 1510 1515 1520
Ala Leu Asn Gln Met Gly Ala Asp Ile Ala Gln Leu Asn Ser Lys Val 1525 1530 1535
Arg Thr Glu Leu Phe Ser Ser Thr Gly Asn Gln Thr Ile Ala Asn Leu 1540 1545 1550
Gly Gly Arg Leu Ala Thr Asn Leu Ser Asn Ala Gly Ile Ser Ala Gly 1555 1560 1565
Ile Asn Thr Ala Val Asn 1570
<pre>&lt;210&gt; SEQ ID NO 180 &lt;211&gt; LENGTH: 281 &lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of Artificial Sequence: ORF114 &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: SITE &lt;222&gt; LOCATION: (29)(51) &lt;223&gt; OTHER INFORMATION: place-holder &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: SITE &lt;222&gt; LOCATION: (96) &lt;223&gt; OTHER INFORMATION: place-holder &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: SITE &lt;222&gt; LOCATION: (96) &lt;223&gt; OTHER INFORMATION: place-holder &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: SITE &lt;222&gt; LOCATION: (199) &lt;223&gt; OTHER INFORMATION: place-holder</pre>

```
-continued
```

<220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (210) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (225)..(226) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (229) <223> OTHER INFORMATION: place-holder <400> SEQUENCE: 180 Ala Val Ala Glu Thr Ala Asn Ser Gln Gly Lys Gly Lys Gln Ala Gly 1 5 10 15 Ser Ser Val Ser Val Ser Leu Lys Thr Ser Gly Asp Xaa Xaa Xaa Xaa 25 20 30 35 40 45 Xaa Xaa Pro Ala His Ala Gln Ile Thr Thr Asp Lys Ser Ala Pro 50 55 60 Lys Asn Gln Gln Val Val Ile Leu Lys Thr Asn Thr Gly Ala Pro Leu 70 Val Asn Ile Gln Thr Pro Asn Gly Arg Gly Leu Ser His Asn Arg Xaa 85 90 95 Tyr Ala Phe Asp Val Asp Asn Lys Gly Ala Val Leu Asn Asn Asp Arg 100 105 110 Asn Asn Asn Pro Phe Val Val Lys Gly Ser Ala Gln Leu Ile Leu Asn 115 120 125 Glu Val Arg Gly Thr Ala Ser Lys Leu Asn Gly Ile Val Thr Val Gly 130 135 140 Gly Gln Lys Ala Asp Val Ile Ile Ala Asn Pro Asn Gly Ile Thr Val 150 155 145 160 Asn Gly Gly Gly Phe Lys Asn Val Gly Arg Gly Ile Leu Thr Thr Gly 165 170 175 Ala Pro Gln Ile Gly Lys Asp Gly Ala Leu Thr Gly Phe Asp Val Val 180 185 190 Lys Ala His Trp Thr Val Xaa Ala Ala Gly Trp Asn Asp Lys Gly Gly 195 200 205 Ala Xaa Tyr Thr Gly Val Leu Ala Arg Ala Val Ala Leu Gln Gly Lys 220 215 210 Xaa Xaa Gly Lys Xaa Leu Ala Val Ser Thr Gly Pro Gln Lys Val Asp 230 225 235 240 Tyr Ala Ser Gly Glu Ile Ser Ala Gly Thr Ala Ala Gly Thr Lys Pro 245 250 255 Thr Ile Ala Leu Asp Thr Ala Ala Leu Gly Gly Met Tyr Ala Asp Ser 260 270 265 Ile Thr Leu Ile Ala Asn Glu Lys Gly 275 280 <210> SEQ ID NO 181 <211> LENGTH: 302 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence

- <220> FEATURE:
- <223> OTHER INFORMATION: Description of Artificial Sequence: overlap

```
-continued
```

identity <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (5)..(9) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (12)..(13) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (15)..(19) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (22)..(29) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (31)..(55) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (58) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (60)..(61) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (63)..(64) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (74) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (78) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (80)..(81) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (83) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (85) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (92)..(94) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (96) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (98) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (101)..(103) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (108) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (111)..(112)

```
-continued
```

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (116) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (118) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (120)..(130) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (133)..(136) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (138) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (140)..(141) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (143) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (145)..(151) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (153) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (157)..(159) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (163)..(164) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (166) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (168)..(169) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (173) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (176) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (182)..(183) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (185)..(189) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (192) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (194)

```
-continued
```

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (196)..(200) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (202) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (209)..(218) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (220)..(221) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (223)..(225) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (227) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (230)..(231) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (233) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (236)..(243) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (246)..(248) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (250)..(251) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (253)..(254) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (256) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (258)..(267) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (269)..(276) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (279) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (281) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (285) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (293)

-cont	inued
-------	-------

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (298)..(301) <223> OTHER INFORMATION: absent or positive <400> SEOUENCE: 181 Ala Val Ala Glu Xaa Xaa Xaa Xaa Xaa Gly Lys Xaa Xaa Gln Xaa Xaa Xaa Xaa Xaa Ser Val Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ser Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Pro Ala Xaa Ala Xaa Xaa Ile Xaa Xaa Asp Lys Ser Ala Pro Lys Asn Gln Gln Xaa Val Ile Leu Xaa Thr Xaa Xaa Gly Xaa Pro Xaa Val Asn Ile Gln Thr Pro Xaa Xaa Gly Xaa Ser Xaa Asn Arg Xaa Xaa Xaa Phe Asp Val Asp Xaa Lys Gly Xaa Xaa Leu Asn Asn Xaa Arg Xaa Asn Xaa Asn Pro Xaa Xaa Xaa Xaa Gly Xaa Ala Xaa Xaa Ile Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Ser Xaa Leu Asn Gly Xaa Xaa Xaa Val Gly Gly Xaa Xaa Ala Xaa Val Xaa Xaa Ala Asn Pro Xaa Gly Ile Xaa Val Asn Gly Gly Gly Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Leu Thr Xaa Gly Xaa Pro Xaa Xaa Xaa Xaa Xaa Gly Xaa Leu Thr Gly Phe Asp Val 195 200 205 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Xaa Xaa Asp Xaa Xaa Xaa Ala Xaa Tyr Thr Xaa Xaa Leu Xaa Arg Ala Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Lys Xaa Xaa Xaa Val Xaa Xaa Gly Xaa Xaa Lys Xaa Xaa Xaa Xaa Aro Thr Xaa Ala Xaa Asp Thr Ala Xaa Leu Gly Gly Met Tyr Ala Asp Xaa Ile Thr Leu Ile Xaa Xaa Xaa Gly <210> SEQ ID NO 182 <211> LENGTH: 300 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: pspA <400> SEQUENCE: 182

Ala Val Ala Glu Asn Val His Arg Asp Gly Lys Ser Met Gln Asp Ser

-continued

	-continued														
1				5					10					15	
Glu	Ala	Ala	Ser 20	Val	Arg	Val	Thr	Gl <b>y</b> 25	Ala	Ala	Ser	Val	Ser 30	Ser	Ala
Arg	Ala	Ala 35	Phe	Gly	Phe	Arg	Met 40	Ala	Ala	Phe	Ser	Val 45	Met	Leu	Ala
Leu	Gly 50	Val	Ala	Ala	Phe	Ser 55	Pro	Ala	Pro	Ala	Ser 60	Gly	Ile	Ile	Ala
Asp 65	Lys	Ser	Ala	Pro	L <b>y</b> s 70	Asn	Gln	Gln	Ala	Val 75	Ile	Leu	Gln	Thr	Ala 80
Asn	Gly	Leu	Pro	Gln 85	Val	Asn	Ile	Gln	Thr 90	Pro	Ser	Ser	Gln	Gly 95	Val
Ser	Val	Asn	Arg 100	Phe	Lys	Gln	Phe	<b>A</b> sp 105	Val	Asp	Glu	Lys	Gly 110	Val	Ile
Leu	Asn	Asn 115	Ser	Arg	Ser	Asn	Thr 120	Gln	Thr	Gln	Leu	Gly 125	Gly	Trp	Ile
Gln	Gly 130	Asn	Pro	His	Leu	Ala 135	Arg	Gly	Glu	Ala	Arg 140	Val	Ile	Val	Asn
Gln 145	Ile	Asp	Ser	Ser	Asn 150	Pro	Ser	Leu	Leu	Asn 155	Gly	Tyr	Ile	Glu	Val 160
Gly	Gly	Lys	Arg	Ala 165	Glu	Val	Val	Val	Ala 170	Asn	Pro	Ser	Gly	Ile 175	Arg
Val	Asn	Gly	Gly 180	Gly	Leu	Ile	Asn	<b>Ala</b> 185	Ala	Ser	Val	Thr	Leu 190	Thr	Ser
Gly	Val	Pro 195	Val	Leu	Asn	Asn	Gly 200	Asn	Leu	Thr	Gly	Phe 205	Asp	Val	Ser
Ser	Gly 210	Lys	Val	Val	Ile	Gl <b>y</b> 215	Gly	Lys	Gly	Leu	Asp 220	Thr	Ser	Asp	Ala
<b>A</b> sp 225	Tyr	Thr	Arg	Ile	Leu 230	Ser	Arg	Ala	Ala	Glu 235	Ile	Asn	Ala	Gly	Val 240
Trp	Gly	Lys	Asp	Val 245	Lys	Val	Val	Ser	Gly 250	Lys	Asn	Lys	Leu	<b>A</b> sp 255	Phe
Asp	Gly	Ser	Leu 260	Ala	Lys	Thr	Ala	Ser 265	Ala	Pro	Ser	Ser	Ser 270	Asp	Ser
Val	Thr	Pro 275	Thr	Val	Ala	Ile	<b>A</b> sp 280	Thr	Ala	Thr	Leu	Gly 285	Gly	Met	Tyr
Ala	Asp 290		Ile	Thr	Leu	Ile 295		Thr	Asp	Asn	Gly 300				
<pre>&lt;211 &lt;212 &lt;213 &lt;213 &lt;220 &lt;223 &lt;220 &lt;221 &lt;222 &lt;223 &lt;220 &lt;221 &lt;222 &lt;223 &lt;220 &lt;221 &lt;222 &lt;223 &lt;220 &lt;221 &lt;222 &lt;223 &lt;222 &lt;223 &lt;222 &lt;223 &lt;222 &lt;223 <!--23 </</td--><td>&gt;       FE         3&gt;       OI         3&gt;       FE         1&gt;       NZ         2&gt;       LC         3&gt;       OI         0&gt;       FE         1&gt;       NZ         2&gt;       LC         3&gt;       OI         0&gt;       FE         1&gt;       NZ         1&gt;       NZ         2&gt;       LC         2&gt;       LC         2&gt;       LC         2&gt;       LC         2&gt;       LC         2&gt;       LC</td><td>ENGTH PE: CGAN CATUE CHER CATUE CATUE CATUE CATUE CATUE CATUE CATUE CATUE CATUE CATUE CATUE CATUE CATUE CATUE</td><td>H: 62 PRT ISM: INFC RE: CEY: INFC RE: CEY: ION: RE: CEY: ION: INFC RE: CEY: ION:</td><td>28 Art:</td><td>FION : 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td>: De: 73) : pla : pla</td><td>ace-f</td><td>nolde</td><td>er</td><td>Art.</td><td>ifici</td><td>al Se</td><td>equer</td><td>nce:</td><td>ORF1</td></pre>	>       FE         3>       OI         3>       FE         1>       NZ         2>       LC         3>       OI         0>       FE         1>       NZ         2>       LC         3>       OI         0>       FE         1>       NZ         1>       NZ         2>       LC         2>       LC         2>       LC         2>       LC         2>       LC         2>       LC	ENGTH PE: CGAN CATUE CHER CATUE CATUE CATUE CATUE CATUE CATUE CATUE CATUE CATUE CATUE CATUE CATUE CATUE CATUE	H: 62 PRT ISM: INFC RE: CEY: INFC RE: CEY: ION: RE: CEY: ION: INFC RE: CEY: ION:	28 Art:	FION : 5 5 5 5 5 5 5 5 5 5 5 5 5	: De: 73) : pla : pla	ace-f	nolde	er	Art.	ifici	al Se	equer	nce:	ORF1

-continued

<221> NAME/KEY: SITE <222> LOCATION: (343) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (352) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (377) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (417) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (447) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (582)..(593) <223> OTHER INFORMATION: place-holder <400> SEQUENCE: 183 Met Asn Lys Gly Leu His Arg Ile Ile Phe Ser Lys Lys His Ser Thr 5 10 Met Val Ala Val Ala Glu Thr Ala Asn Ser Gln Gly Lys Gly Lys Gln 20 25 30 Ala Gly Ser Ser Val Ser Val Ser Leu Lys Thr Ser Gly Asp Xaa Xaa 35 40 45 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Ile Thr Thr Asp Lys Ser 70 75 80 Ala Pro Lys Asn Xaa Gln Val Val Ile Leu Lys Thr Asn Thr Gly Ala 90 85 Pro Leu Val Asn Ile Gln Thr Pro Asn Gly Arg Gly Leu Ser His Asn 100 105 110 Arg Tyr Thr Gln Phe Asp Val Asp Asn Lys Gly Ala Val Leu Asn Asn 115 120 125 Asp Arg Asn Asn Asn Pro Phe Leu Val Lys Gly Ser Ala Gln Leu Ile 135 130 140 Leu Asn Glu Val Arg Gly Thr Ala Ser Lys Leu Asn Gly Ile Val Thr 145 150 155 160 Val Gly Gly Gln Lys Ala Asp Val Ile Ile Ala Asn Pro Asn Gly Ile 165 170 175 Thr Val Asn Gly Gly Gly Phe Lys Asn Val Gly Arg Gly Ile Leu Thr 180 185 190 Ile Gly Ala Pro Gln Ile Gly Lys Asp Gly Ala Leu Thr Gly Phe Asp 195 200 205 Val Arg Gln Gly Thr Leu Thr Val Gly Ala Ala Gly Trp Asn Asp Lys 215 Gly Gly Ala Asp Tyr Thr Gly Val Leu Ala Arg Ala Val Ala Leu Gln 225 230 235 240 Gly Lys Leu Gln Gly Lys Asn Leu Ala Val Ser Thr Gly Pro Gln Lys 250 245 255 Val Asp Tyr Ala Ser Gly Glu Ile Ser Ala Gly Thr Ala Ala Gly Thr 260 265 270

Lys Pro Thr Ile Ala Leu Asp Thr Ala Ala Leu Gly Gly Met Ty 275 280 285	yr Ala
Asp Ser Ile Thr Leu Ile Ala Xaa Glu Lys Gly Val Gly Val Ly 290 295 300	ys Asn
Ala Gly Thr Leu Glu Ala Ala Lys Gln Leu Ile Val Thr Ser Se 305 310 315	er Gly 320
Arg Ile Glu Asn Ser Gly Arg Ile Ala Thr Thr Ala Asp Gly Th32533033	hr Glu 35
Ala Ser Pro Thr Tyr Leu Xaa Ile Glu Thr Thr Glu Lys Gly Al 340 345 350	la Xaa
Gly Thr Phe Ile Ser Asn Gly Gly Arg Ile Glu Ser Lys Gly Le 355 360 365	eu Leu
Val Ile Glu Thr Gly Glu Asp Ile Xaa Leu Arg Asn Gly Ala Va370375380	al Val
Gln Asn Asn Gly Ser Arg Pro Ala Thr Thr Val Leu Asn Ala G 385 390 395	ly His 400
Asn Leu Val Ile Glu Ser Lys Thr Asn Val Asn Asn Ala Lys G 405 410 41	ly Ser 15
Xaa Asn Leu Ser Ala Gly Gly Arg Thr Thr Ile Asn Asp Ala Th 420 425 430	nr Ile
Gln Ala Gly Ser Ser Val Tyr Ser Ser Thr Lys Gly Asp Thr Xa 435 440 445	aa Leu
Gly Glu Asn Thr Arg Ile Ile Ala Glu Asn Val Thr Val Leu Se 450 455 460	er Asn
Gly Ser Ile Gly Ser Ala Ala Val Ile Glu Ala Lys Asp Thr Al 465 470 475	la His 480
Ile Glu Ser Gly Lys Pro Leu Ser Leu Glu Thr Ser Thr Val Al 485 490 49	la Ser 95
Asn Ile Arg Leu Asn Asn Gly Asn Ile Lys Gly Gly Lys Gln Le 500 505 510	eu Ala
Leu Leu Ala Asp Asp Asn Ile Thr Ala Lys Thr Thr Asn Leu As 515 520 525	sn Thr
Pro Gly Asn Leu Tyr Val His Thr Gly Lys Asp Leu Asn Leu As 530 535 540	sn Val
Asp Lys Asp Leu Ser Ala Ala Ser Ile His Leu Lys Ser Asp As 545 550 555	sn Ala 560
Ala His Ile Thr Gly Thr Ser Lys Thr Leu Thr Ala Ser Lys As 565 570 57	sp Met 75
Gly Val Glu Ala Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xa	аа Хаа
Xaa Ser Gly Asn Leu His Ile Gln Ala Ala Lys Gly Asn Ile G 595 600 605	ln Leu
Arg Asn Thr Lys Leu Asn Ala Ala Lys Ala Leu Glu Thr Thr Al 610 615 620	la Leu
Gln Gly Asn Ile 625	
<210> SEQ ID NO 184 <211> LENGTH: 663 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE:	

## -continued

<223> OTHER INFORMATION: Description of Artificial Sequence: homology <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (4)..(8) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (11) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (14) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (16) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (18) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (23)..(27) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (30)..(31) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (33)..(37) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (40)..(48) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (50)..(79) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (81)..(82) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (90) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (92) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (96) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (98)..(99) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (101) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (103) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (110)..(112) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (114)

-continued

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (116) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (119)..(120) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (126) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (129)..(130) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (134) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (136) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (138)..(148) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (151) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (153)..(154) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (156) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (158)..(159) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (161) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (163)..(169) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (171) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (175)..(177) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (181)..(182) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (184) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (186)..(187) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (191)

```
-continued
```

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (194) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (200)..(201) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (203)..(207) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (210) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (212) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (214)..(218) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (220) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (227)..(228) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (230)..(233) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (235)..(236) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (238)..(239) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (241)..(243) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (248)..(249) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (251) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (254)..(261) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (264)..(266) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (268)..(269) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (271)..(272) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (274)

```
-continued
```

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (276)..(285) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (287)..(294) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (297) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (299) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (303) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (311) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (316)..(319) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (321)..(324) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (326) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (328)..(330) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (333)..(341) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (343)..(345) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (349) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (351)..(358) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (360)..(367) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (369)..(381) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (383) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (385) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (387)..(390)

```
-continued
```

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (392)..(397) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (399)..(402) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (404)..(409) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (412)..(420) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (422)..(427) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (429)..(432) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (435)..(436) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (438)..(445) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (447)..(453) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (456)..(459) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (461)..(463) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (465) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (467)..(470) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (472)..(474) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (476)..(485) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (487)..(490) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (492)..(498) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (500) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (502)

```
-continued
```

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (505)..(521) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (523)..(524) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (526)..(532) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (534)..(538) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (540)..(544) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (547)..(551) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (554)..(555) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (557)..(558) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (560) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (562)..(563) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (565)..(567) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (569)..(575) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (577)..(578) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (580)..(590) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (593)..(602) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (604)..(610) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (612)..(624) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (627) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (631)..(632)

```
-continued
```

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (634)..(640) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (642)..(643) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (646) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (648) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (650)..(652) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (654) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (656)..(660) <223> OTHER INFORMATION: absent or positive <400> SEQUENCE: 184 Met Asn Lys Xaa Xaa Xaa Xaa Xaa Ile Phe Xaa Lys Lys Xaa Ser Xaa 10 Met Xaa Ala Val Ala Glu Xaa Xaa Xaa Xaa Xaa Gly Lys Xaa Xaa Gln 25 Xaa Xaa Xaa Xaa Xaa Ser Val Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 40 35 55 50 60 Xaa Xaa Asp Lys Ser Ala Pro Lys Asn Xaa Gln Xaa Val Ile Leu Xaa 85 90 Thr Xaa Xaa Gly Xaa Pro Xaa Val Asn Ile Gln Thr Pro Xaa Xaa Xaa 110 100 105 Gly Xaa Ser Xaa Asn Arg Xaa Xaa Gln Phe Asp Val Asp Xaa Lys Gly 115 120 125 Xaa Xaa Leu Asn Asn Xaa Arg Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa 135 130 140 Xaa Xaa Xaa Asn Pro Xaa Leu Xaa Xaa Gly Xaa Ala Xaa Xaa Ile 145 150 155 160 Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Ser Xaa Leu Asn Gly Xaa Xaa 165 170 175 Xaa Val Gly Gly Xaa Xaa Ala Xaa Val Xaa Xaa Ala Asn Pro Xaa Gly 185 180 Ile Xaa Val Asn Gly Gly Gly Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Leu 200 195 Thr Xaa Gly Xaa Pro Xaa Xaa Xaa Xaa Xaa Gly Xaa Leu Thr Gly Phe 215 220 
 Asp Val Xaa Xaa Gly Xaa Xaa Gly Xaa Xaa Gly Xaa Xaa Asp
 225
 230
 235
 240

Xaa	Xaa	Xaa	Ala	Asp	Tyr	Thr	Xaa	Xaa	Leu	Xaa	Arg	Ala	Xaa	Xaa	Xaa
				245					250		-			255	
Хаа	Xaa	Хаа	Хаа 260	Хаа	GIY	Lys	Хаа	Хаа 265	Хаа	Val	Хаа	Хаа	G1 <b>y</b> 270	Хаа	Хаа
Lys	Xaa	Asp 275	Xaa	Xaa	Xaa	Xaa	Xaa 280	Xaa	Xaa	Xaa	Xaa	Xaa 285	Ala	Xaa	Xaa
Xaa	Xaa 290	Xaa	Xaa	Xaa	Xaa	Pro 295	Thr	Xaa	Ala	Xaa	Asp 300	Thr	Ala	Xaa	Leu
Gl <b>y</b> 305	Gly	Met	Tyr	Ala	Asp 310	Xaa	Ile	Thr	Leu	Ile 315	Xaa	Xaa	Xaa	Xaa	Gly 320
Xaa	Xaa	Xaa	Xaa	Asn 325	Xaa	Gly	Xaa	Xaa	Xaa 330	Ala	Ala	Xaa	Xaa	Xaa 335	Xaa
Xaa	Xaa	Xaa	Xaa 340	Xaa	Gly	Xaa	Xaa	Xaa 345	Asn	Ser	Gly	Xaa	Ile 350	Xaa	Xaa
Xaa	Xaa	Xaa 355	Xaa	Xaa	Xaa	Ala	Xaa 360	Xaa	Xaa	Xaa	Xaa	Xaa 365	Xaa	Xaa	Thr
Xaa	Xaa 370	Xaa	Xaa	Xaa	Xaa	Xaa 375	Xaa	Xaa	Xaa	Xaa	Xaa 380	Xaa	Gly	Xaa	Ile
Xaa 385	Ser	Xaa	Xaa	Xaa	Xaa 390	Val	Xaa	Xaa	Xaa	Xaa 395	Xaa	Xaa	Ile	Xaa	Xaa 400
Xaa	Xaa	Gly	Xaa	Xaa 405	Xaa	Xaa	Xaa	Xaa	Gly 410	Ser	Xaa	Xaa	Xaa	Xaa 415	Xaa
Xaa	Xaa	Xaa	Xaa 420	Gly	Xaa	Xaa	Xaa	Xaa 425	Xaa	Xaa	Ser	Xaa	Xaa 430	Xaa	Xaa
Asn	Asn	Xaa 435	Xaa	Gly	Xaa	Xaa	Xaa 440	Xaa	Xaa	Xaa	Xaa	Xaa 445	Ser	Xaa	Xaa
Xaa	Xaa 450	Xaa	Xaa	Xaa	Asn	Asp 455	Xaa	Xaa	Xaa	Xaa	Ala 460	Xaa	Xaa	Xaa	Val
Xaa 465	Ser	Xaa	Xaa	Xaa	Xaa 470	Asp	Xaa	Xaa	Xaa	Gly 475	Xaa	Xaa	Xaa	Xaa	Xaa 480
Xaa	Xaa	Xaa	Xaa	Xaa 485	Thr	Xaa	Xaa	Xaa	Xaa 490	Gly	Xaa	Xaa	Xaa	Xaa 495	Xaa
Xaa	Xaa	Ile	Xaa 500	Ala	Xaa	Asp	Thr	Xaa 505	Xaa	Xaa	Xaa	Xaa	Xaa 510	Xaa	Xaa
Xaa	Xaa	Xaa 515	Xaa	Xaa	Xaa	Xaa	Xaa 520	Xaa	Ser	Xaa	Xaa	Arg 525	Xaa	Xaa	Xaa
Xaa	Xaa 530	Xaa	Xaa	Gly	Xaa	Xaa 535	Xaa	Xaa	Xaa	Leu	Xaa 540	Xaa	Xaa	Xaa	Xaa
Ile 545	Thr	Xaa	Xaa	Xaa	Xaa 550	Xaa	Ala	Lys	Xaa	Xaa 555	Asn	Xaa	Xaa	Thr	Xaa 560
Gly	Xaa	Xaa	Tyr	Xaa 565	Xaa	Xaa	Gly	Xaa	Xaa 570	Xaa	Xaa	Xaa	Xaa	<b>Xaa</b> 575	Asp
Xaa	Xaa	Leu	Xaa 580	Xaa	Xaa	Xaa	Xaa	<b>Xaa</b> 585	Xaa	Xaa	Xaa	Xaa	Xaa 590	Ala	Ala
Xaa	Xaa	Xaa 595	Xaa	Xaa	Xaa	Xaa	Xaa 600	Xaa	Xaa	Ala	Xaa	Xaa 605	Xaa	Xaa	Xaa
Xaa	Xaa 610	Ala	Xaa	Xaa	Xaa	Xaa 615	Xaa	Xaa	Xaa	Xaa	Xaa 620	Xaa	Xaa	Xaa	Xaa
Ser 625	Gly	Xaa	Leu	His	Ile 630	Xaa	Xaa	Ala	Xaa	Xaa 635	Xaa	Xaa	Xaa	Xaa	Xaa 640

-continued	

Gln Xaa Xaa Asn Thr Xaa Leu Xaa Asn Xaa Xaa Xaa Ala Xaa Glu Xaa Xaa Xaa Xaa Xaa Gly Asn Ile <210> SEQ ID NO 185 <211> LENGTH: 622 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: pspA <400> SEQUENCE: 185 Met Asn Lys Arg Cys Tyr Lys Val Ile Phe Asn Lys Lys Arg Ser Cys Met Met Ala Val Ala Glu Asn Val His Arg Asp Gly Lys Ser Met Gln Asp Ser Glu Ala Ala Ser Val Arg Val Thr Gly Ala Ala Ser Val Ser Ser Ala Arg Ala Ala Phe Gly Phe Arg Met Ala Ala Phe Ser Val Met Leu Ala Leu Gly Val Ala Ala Phe Ser Pro Ala Pro Ala Ser Gly Ile Ile Ala Asp Lys Ser Ala Pro Lys Asn Gln Gln Ala Val Ile Leu Gln Thr Ala Asn Gly Leu Pro Gln Val Asn Ile Gln Thr Pro Ser Ser Gln Gly Val Ser Val Asn Arg Phe Lys Gln Phe Asp Val Asp Glu Lys Gly Val Ile Leu Asn Asn Ser Arg Ser Asn Thr Gln Thr Gln Leu Gly Gly Trp Ile Gln Gly Asn Pro His Leu Ala Arg Gly Glu Ala Arg Val Ile Val Asn Gln Ile Asp Ser Ser Asn Pro Ser Leu Leu Asn Gly Tyr Ile Glu Val Gly Gly Lys Arg Ala Glu Val Val Val Ala Asn Pro Ser Gly Ile Arg Val Asn Gly Gly Gly Leu Ile Asn Ala Ala Ser Val Thr Leu Thr Ser Gly Val Pro Val Leu Asn Asn Gly Asn Leu Thr Gly Phe Asp Val Ser Ser Gly Lys Val Val Ile Gly Gly Lys Gly Leu Asp Thr Ser Asp Ala Asp Tyr Thr Arg Ile Leu Ser Arg Ala Ala Glu Ile Asn Ala Gly Val Trp Gly Lys Asp Val Lys Val Val Ser Gly Lys Asn Lys Leu Asp Phe Asp Gly Ser Leu Ala Lys Thr Ala Ser Ala Pro Ser Ser Ser Asp Ser Val Thr Pro Thr Val Ala Ile Asp Thr Ala Thr Leu Gly Gly Met Tyr Ala Asp LysIle Thr Leu Ile Ser Thr Asp Asn Gly Ala Val305310315320

											-	con	tin	ued	
Ile A	Arg	Asn	Lys	Gly 325	Arg	Ile	Phe	Ala	Ala 330	Thr	Gly	Gly	Val	Thr 335	Leu
Ser i	Ala	Asp	Gly 340	Lys	Leu	Ser	Asn	Ser 345	Gly	Ser	Ile	Asp	Ala 350	Ala	Glu
Ile ?	<b>f</b> hr	Ile 355	Ser	Ala	Gln	Thr	Val 360	Asp	Asn	Arg	Gln	Gly 365	Phe	Ile	Arg
	Gly 370	Lys	Gly	Ser	Val	Leu 375	Lys	Val	Ser	Asp	Gly 380	Ile	Asn	Asn	Gln
Ala ( 385	Gly	Leu	Ile	Gly	Ser 390	Ala	Gly	Leu	Leu	Asp 395	Ile	Arg	Asp	Thr	Gly 400
Lys :	Ser	Ser	Leu	His 405	Ile	Asn	Asn	Thr	Asp 410	Gly	Thr	Ile	Ile	Ala 415	Gly
Lys i	Asp	Val	Ser 420	Leu	Gln	Ala	Lys	Ser 425	Leu	Asp	Asn	Asp	Gly 430	Ile	Leu
Thr i	Ala	Ala 435	Arg	Asp	Val	Ser	Val 440	Ser	Leu	His	Asp	Asp 445	Phe	Ala	Gly
	Arg 450	Asp	Ile	Glu	Ala	Gly 455	Arg	Thr	Leu	Thr	Phe 460	Ser	Thr	Gln	Gly
Arg 1 465	Leu	Lys	Asn	Thr	Arg 470	Ile	Ile	Gln	Ala	Gly 475	Asp	Thr	Val	Ser	Leu 480
Thr i	Ala	Ala	Gln	Ile 485	Asp	Asn	Thr	Val	Ser 490	Gly	Lys	Ile	Gln	Ser 495	Gly
Asn i	Arg	Thr	Gly 500	Leu	Asn	Gly	Lys	Asn 505	Gly	Ile	Thr	Asn	Arg 510	Gly	Leu
Ile A	Asn	Ser 515	Asn	Gly	Ile	Thr	Leu 520	Leu	Gln	Thr	Glu	Ala 525	Lys	Ser	Asp
	Ala 530	Gly	Thr	Gly	Arg	Ile 535	Tyr	Gly	Ser	Arg	Val 540	Ala	Val	Glu	Ala
Asp 5 45	<b>F</b> hr	Leu	Leu	Asn	Arg 550	Glu	Glu	Thr	Val	Asn 555	Gly	Glu	Thr	Lys	Ala 560
Ala V	Val	Ile	Ala	Ala 565	Arg	Glu	Arg	Leu	<b>A</b> sp 570	Ile	Gly	Ala	Arg	Glu 575	Ile
Glu A	Asn	Arg	Glu 580	Ala	Ala	Leu	Leu	Ser 585	Ser	Ser	Gly	Asp	Leu 590	His	Ile
Gly :	Ser	Ala 595	Leu	Asn	Gly	Ser	Arg 600	Gln	Val	Gln	Gly	Ala 605	Asn	Thr	Ser
	His 610	Asn	Arg	Ser	Ala	Ala 615	Ile	Glu	Ser	Ser	Gly 620	Asn	Ile		
<2203 <2223 <22213 <2223 <2223 <2223 <2223 <2223 <2223 <2223 <2223 <2223 <2223	<ul> <li>&gt; LE</li> <li>&gt; TY</li> <li>&gt; OF</li> <li>&gt; FE</li> <li>&gt; OT</li> <li>&gt; FE</li> <li>&gt; NA</li> <li>&gt; OT</li> <li>&gt; FE</li> <li>&gt; NA</li> <li>&gt; CT</li> </ul>	ENGTH PE: CGANJ CATUF CHER CATUF CATUF CATUF CATUF CATUF CATUF CATUF CATUF CATUF CATUF	H: 40 PRT SM: E: INFO E: INFO E: CON: INFO E: CON: E: CON: E: CON: INFO	00 Art	FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FION: FI	: De: : pla : pla	ace-h ace-h	otior nolde	er er	Arti	ficia	ll Se	equer	ice:	ORF114a

```
-continued
```

<220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (139) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (179) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (209) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (344)..(355) <223> OTHER INFORMATION: place-holder <400> SEQUENCE: 186 Leu Gln Gly Lys Leu Gln Gly Lys Asn Leu Ala Val Ser Thr Gly Pro 5 10 Gln Lys Val Asp Tyr Ala Ser Gly Glu Ile Ser Ala Gly Thr Ala Ala 25 20 Gly Thr Lys Pro Thr Ile Ala Leu Asp Thr Ala Ala Leu Gly Gly Met 40 Tyr Ala Asp Ser Ile Thr Leu Ile Ala Xaa Glu Lys Gly Val Gly Val 50 55 60 Lys Asn Ala Gly Thr Leu Glu Ala Ala Lys Gln Leu Ile Val Thr Ser 65 70 75 80 70 Ser Gly  $\mbox{Arg}$  Ile Glu As<br/>n Ser Gly $\mbox{Arg}$  Ile Ala Thr $\mbox{Thr}$  Ala As<br/>p $\mbox{Gly}$ 85 90 95 Thr Glu Ala Ser Pro Thr Tyr Leu Xaa Ile Glu Thr Thr Glu Lys Gly 100 105 110 Ala Xaa Gly Thr Phe Ile Ser Asn Gly Gly Arg Ile Glu Ser Lys Gly 115 120 125 Leu Leu Val Ile Glu Thr Gly Glu Asp Ile Xaa Leu Arg Asn Gly Ala 130 135 140 Val Val Gln Asn Asn Gly Ser Arg Pro Ala Thr Thr Val Leu Asn Ala 150 155 160 145 Gly His Asn Leu Val Ile Glu Ser Lys Thr Asn Val Asn Asn Ala Lys 165 170 175 Gly Ser Xaa Asn Leu Ser Ala Gly Gly Arg Thr Thr Ile Asn Asp Ala 180 185 190 Thr Ile Gln Ala Gly Ser Ser Val Tyr Ser Ser Thr Lys Gly Asp Thr 200 195 205 Xaa Leu Gly Glu Asn Thr Arg Ile Ile Ala Glu Asn Val Thr Val Leu 215 220 210 Ser Asn Gly Ser Ile Gly Ser Ala Ala Val Ile Glu Ala Lys Asp Thr 230 225 235 240 Ala His Ile Glu Ser Gly Lys Pro Leu Ser Leu Glu Thr Ser Thr Val 245 250 255 Ala Ser Asn Ile Arg Leu Asn Asn Gly Asn Ile Lys Gly Gly Lys Gln 260 265 270 Leu Ala Leu Leu Ala Asp Asp Asn Ile Thr Ala Lys Thr Thr Asn Leu 275 280 285 Asn Thr Pro Gly Asn Leu Tyr Val His Thr Gly Lys Asp Leu Asn Leu 290 295 300

-continued

-continued
Asn Val Asp Lys Asp Leu Ser Ala Ala Ser Ile His Leu Lys Ser Asp 305 310 315 320
Asn Ala Ala His Ile Thr Gly Thr Ser Lys Thr Leu Thr Ala Ser Lys
325 330 335
Asp Met Gly Val Glu Ala Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xa
Xaa Xaa Xaa Ser Gly Asn Leu His Ile Gln Ala Ala Lys Gly Asn Ile 355 360 365
Gln Leu Arg Asn Thr Lys Leu Asn Ala Ala Lys Ala Leu Glu Thr Thr
370 375 380
Ala Leu Gln Gly Asn Ile Val Ser Asp Gly Leu His Ala Val Ser Ala 385 390 395 400
<210> SEQ ID NO 187
<211> LENGTH: 432 <212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: homology <220> FEATURE:
<pre></pre> <pre>&lt;</pre>
<222> LOCATION: (4)
<223> OTHER INFORMATION: absent or positive <220> FEATURE:
<221> NAME/KEY: SITE
<222> LOCATION: (10)(14)
<223> OTHER INFORMATION: absent or positive <220> FEATURE:
<221> NAME/KEY: SITE
<222> LOCATION: (16)(23)
<223> OTHER INFORMATION: absent or positive <220> FEATURE:
<221> NAME/KEY: SITE
<222> LOCATION: (25)
<223> OTHER INFORMATION: absent or positive
<220> FEATURE: <221> NAME/KEY: SITE
222> LOCATION: (27)
<223> OTHER INFORMATION: absent or positive
<220> FEATURE:
<221> NAME/KEY: SITE <222> LOCATION: (29)(30)
<223> OTHER INFORMATION: absent or positive
<220> FEATURE:
<221> NAME/KEY: SITE
<222> LOCATION: (32)(34) <223> OTHER INFORMATION: absent or positive
<pre>&lt;220&gt; FEATURE:</pre>
<221> NAME/KEY: SITE
<222> LOCATION: (36)(43)
<223> OTHER INFORMATION: absent or positive <220> FEATURE:
<221> NAME/KEY: SITE
<222> LOCATION: (45)(51)
<223> OTHER INFORMATION: absent or positive <220> FEATURE:
<220> FEATURE: <221> NAME/KEY: SITE
<222> LOCATION: (53)
<223> OTHER INFORMATION: absent or positive
<220> FEATURE: <221> NAME/KEY: SITE
<221> NAME/KET: STE <222> LOCATION: (55)(63)
<223> OTHER INFORMATION: absent or positive
<220> FEATURE:
<221> NAME/KEY: SITE <222> LOCATION: (65)
<222> LOCATION: (65) <223> OTHER INFORMATION: absent or positive
<220> FEATURE:
<221> NAME/KEY: SITE
<222> LOCATION: (67)

```
-continued
```

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (69)..(71) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (73)..(75) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (77)..(81) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (83)..(91) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (93)..(94) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (97)..(108) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (110) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (112)..(116) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (118) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (120)..(123) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (126) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (128) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (130)..(140) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (142)..(147) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (149)..(158) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (160)..(163) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (165) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (168)..(171) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (173)..(181)

```
-continued
```

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (183)..(186) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (188)..(190) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (192) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (195)..(200) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (202)..(205) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (208)..(218) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (220)..(223) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (225)..(231) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (234)..(244) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (246)..(252) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (254)..(263) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (265)..(272) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (274)..(275) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (277)..(280) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (283)..(285) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (287)..(294) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (296)..(297) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (299)..(301) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (303)..(309)

```
279
```

```
-continued
```

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (311)..(318) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (321)..(323) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (325)..(329) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (331)..(337) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (339) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (341)..(349) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (351) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (353) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (355)..(356) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (358)..(363) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (365) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (367)..(369) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (371)..(391) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (394)..(403) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (406)..(408) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (410)..(411) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (413)..(419) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (421)..(428) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (430)..(431)

<223	3> 01	HER	INFO	ORMAJ	CION:	ab:	sent	or p	posit	ive					
<400	)> SH	QUEI	ICE :	187											
Leu 1	Gln	Gly	Xaa	Leu 5	Gln	Gly	Lys	Asn	Xaa 10	Xaa	Xaa	Xaa	Xaa	Gly 15	Xaa
Xaa	Xaa	Xaa	Xaa 20	Xaa	Xaa	Xaa	Gly	Xaa 25	Ile	Xaa	Ala	Xaa	Xaa 30	Ala	Xaa
Xaa	Xaa	Lys 35	Xaa	Xaa	Xaa	Xaa	Xaa 40	Xaa	Xaa	Xaa	Ala	Xaa 45	Xaa	Xaa	Xaa
Xaa	Xaa 50	Xaa	Ser	Xaa	Thr	Xaa 55	Xaa	Xaa	Xaa	Xaa	Xaa 60	Xaa	Xaa	Xaa	Val
Xaa 65	Asn	Xaa	Gly	Xaa	Xaa 70	Xaa	Ala	Xaa	Xaa	Xaa 75	Leu	Xaa	Xaa	Xaa	Xaa 80
Xaa	Gly	Xaa	Xaa	Xaa 85	Xaa	Xaa	Xaa	Xaa	Xaa 90	Xaa	Ile	Xaa	Xaa	Thr 95	Ala
Xaa	Xaa	Xaa	Xaa 100	Xaa	Xaa	Xaa	Xaa	Xaa 105	Xaa	Xaa	Xaa	Glu	Xaa 110	Thr	Xaa
Xaa	Xaa	Xaa 115	Xaa	Gly	Xaa	Thr	Xaa 120	Xaa	Xaa	Xaa	Gly	Gly 125	Xaa	Ile	Xaa
Ser	Xaa 130	Xaa	Xaa	Xaa	Xaa	Xaa 135	Xaa	Xaa	Xaa	Xaa	Xaa 140	Ile	Xaa	Xaa	Xaa
Xaa 145	Xaa	Xaa	Val	Xaa	Xaa 150	Xaa	Xaa	Xaa	Xaa	Xaa 155	Xaa	Xaa	Xaa	Thr	Xaa 160
Xaa	Xaa	Xaa	Gly	Xaa 165	Asn	Leu	Xaa	Xaa	Xaa 170	Xaa	Lys	Xaa	Xaa	Xaa 175	Xaa
Xaa	Xaa	Xaa	Xaa 180	Xaa	Val	Xaa	Xaa	Xaa 185	Xaa	Gly	Xaa	Xaa	Xaa 190	Leu	Xaa
Ala	Gly	Xaa 195	Xaa	Xaa	Xaa	Xaa	Xaa 200	Asp	Xaa	Xaa	Xaa	Xaa 205	Ala	Gly	Xaa
Xaa	Xaa 210	Xaa	Xaa	Xaa	Xaa	Xaa 215	Xaa	Xaa	Xaa	Tyr	Xaa 220	Xaa	Xaa	Xaa	Gly
Xaa 225	Xaa	Xaa	Xaa	Xaa	Xaa 230	Xaa	Thr	Arg	Xaa	Xaa 235	Xaa	Xaa	Xaa	Xaa	Xaa 240
Xaa	Xaa	Xaa	Xaa	Gly 245	Xaa	Xaa	Xaa	Xaa	Xaa 250	Xaa	Xaa	Ile	Xaa	Xaa 255	Хаа
Xaa	Хаа	Xaa	Xaa 260	Xaa	Xaa	Xaa	Gly	Xaa 265	Хаа	Xaa	Xaa	Xaa	Xaa 270	Xaa	Хаа
Thr	Xaa	Xaa 275	Ser	Xaa	Xaa	Xaa	Xaa 280	Asn	Asn	Xaa	Xaa	Xaa 285	Lys	Xaa	Xaa
Xaa	Xaa 290	Xaa	Xaa	Xaa	Xaa	Ala 295	Xaa	Xaa	Asn	Xaa	Xaa 300	Xaa	Lys	Xaa	Хаа
Xaa 305	Xaa	Xaa	Xaa	Xaa	Gly 310	Xaa	Xaa	Xaa	Xaa	Xaa 315	Xaa	Xaa	Xaa	Lys	Asp 320
Xaa	Xaa	Xaa	Asn	Xaa 325	Xaa	Xaa	Xaa	Xaa	Ser 330	Xaa	Xaa	Xaa	Xaa	Xaa 335	Хаа
Xaa	Ser	Xaa	Asn 340	Xaa	Xaa	Xaa	Xaa	Xaa 345	Xaa	Xaa	Xaa	Xaa	His 350	Xaa	Thr
Xaa	Thr	Xaa 355	Xaa	Thr	Xaa	Xaa	Xaa 360	Xaa	Xaa	Xaa	Asp	Xaa 365	Gly	Xaa	Хаа
Xaa	Gly 370	Xaa	Xaa	Xaa	Xaa	Xaa 375	Xaa	Xaa	Xaa	Xaa	Xaa 380	Xaa	Xaa	Xaa	Хаа

## -continued

Xaa Xaa Xaa Xaa Xaa Xaa Lys Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa 385 390 395 400 Xaa Xaa Xaa Asn Thr Xaa Xaa Xaa Ala Xaa Xaa Ala Xaa Xaa Xaa Xaa 405 410 415 Xaa Xaa Xaa Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ala Xaa Ala 420 425 430 <210> SEQ ID NO 188 <211> LENGTH: 402 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: pspA <400> SEQUENCE: 188 Leu Gln Gly Asp Leu Gln Gly Lys Asn Ile Phe Ala Ala Ala Gly Ser 5 10 Asp Ile Thr Asn Thr Gly Ser Ile Gly Ala Glu Asn Ala Leu Leu Leu 25 20 Lys Ala Ser Asn Asn Ile Glu Ser Arg Ser Glu Thr Arg Ser Asn Gln 40 Asn Glu Gln Gly Ser Val Arg Asn Ile Gly Arg Val Ala Gly Ile Tyr 50 55 60 Leu Thr Gly Arg Gln Asn Gly Ser Val Leu Leu Asp Ala Gly Asn Asn 65 70 75 80 70 75 Ile Val Leu Thr Ala Ser Glu Leu Thr Asn Gln Ser Glu Asp Gly Gln 85 90 95 85 Thr Val Leu Asn Ala Gly Gly Asp Ile Arg Ser Asp Thr Thr Gly Ile 100 \$105\$ 110 \$110\$Ser Arg Asn Gln Asn Thr Ile Phe Asp Ser Asp Asn Tyr Val Ile Arg 115 120 125 Lys Glu Gln Asn Glu Val Gly Ser Thr Ile Arg Thr Arg Gly Asn Leu 130 135 140 Ser Leu Asn Ala Lys Gly Asp Ile Arg Ile Arg Ala Ala Glu Val Gly 150 145 155 Ser Glu Gln Gly Arg Leu Lys Leu Ala Ala Gly Arg Asp Ile Lys Val 165 170 175 Glu Ala Gly Lys Ala His Thr Glu Thr Glu Asp Ala Leu Lys Tyr Thr 180 185 190 Gly Arg Ser Gly Gly Gly Ile Lys Gln Lys Met Thr Arg His Leu Lys 195 200 205 Asn Gln Asn Gly Gln Ala Val Ser Gly Thr Leu Asp Gly Lys Glu Ile 220 215 210 Ile Leu Val Ser Gly Arg Asp Ile Thr Val Thr Gly Ser Asn Ile Ile 230 225 235 240 Ala Asp Asn His Thr Ile Leu Ser Ala Lys Asn Asn Ile Val Leu Lys 250 245 255 Ala Ala Glu Thr Arg Ser Arg Ser Ala Glu Met Asn Lys Lys Glu Lys 260 265 270 Ser Gly Leu Met Gly Ser Gly Gly Ile Gly Phe Thr Ala Gly Ser Lys 280 275 285 Lys Asp Thr Gln Thr Asn Arg Ser Glu Thr Val Ser His Thr Glu Ser 295 290 300

## -continued

Val Val Gly Ser Leu Asn Gly Asn Thr Leu Ile Ser Ala Gly Lys His 305 310 315 320 Tyr Thr Gln Thr Gly Ser Thr Ile Ser Ser Pro Gln Gly Asp Val Gly 325 330 335 Ile Ser Ser Gly Lys Ile Ser Ile Asp Ala Ala Gln Asn Arg Tyr Ser 340 345 350 Gln Glu Ser Lys Gln Val Tyr Glu Gln Lys Gly Val Thr Val Ala Ile 355 360 365 Ser Val Pro Val Val Asn Thr Val Met Gly Ala Val Asp Ala Val Lys 380 370 375 Ala Val Gln Thr Val Gly Lys Ser Lys Asn Ser Arg Val Asn Ala Met 385 390 395 400 Ala Ala <210> SEQ ID NO 189 <211> LENGTH: 497 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: ORF116 <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (25) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (59)..(74) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (78)..(83) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (129) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (160)..(174) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (183)..(191) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (227) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (282) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (315) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (328)..(339) <223> OTHER INFORMATION: place-holder <400> SEQUENCE: 189 Glu Ala Val Gly Ser Asn Ile Gly Gly Gly Lys Met Ile Val Ala Ala 10 5 1 15 Gly Gln Asp Ile Asn Val Arg Gly Xaa Ser Leu Ile Ser Asp Lys Gly 20 25 30

-continued
------------

											-	con	tin	ued		
Ile	Val	Leu 35	Lys	Ala	Gly	His	Asp 40	Ile	Asp	Ile	Ser	Thr 45	Ala	His	Asn	
Arg	Tyr 50	Thr	Gly	Asn	Glu	<b>Ty</b> r 55	His	Glu	Ser	Xaa	Xaa 60	Xaa	Xaa	Xaa	Xaa	
Xaa 65	Xaa	Xaa	Xaa	Xaa	Xaa 70	Xaa	Xaa	Xaa	Xaa	Asn 75	Arg	Lys	Xaa	Xaa	Xaa 80	
Xaa	Xaa	Xaa	Arg	Thr 85	Asn	Ile	Val	His	Thr 90	Gly	Ser	Ile	Ile	Gly 95	Ser	
Leu	Asn	Gly	Asp 100	Thr	Val	Thr	Val	Ala 105	Gly	Asn	Arg	Tyr	Arg 110	Gln	Thr	
Gly	Ser	Thr 115	Val	Ser	Ser	Pro	Glu 120	Gly	Arg	Asn	Thr	Val 125	Thr	Ala	Lys	
Xaa	Ile 130	Asp	Val	Glu	Phe	Ala 135	Asn	Asn	Arg	Tyr	Ala 140	Thr	Asp	Tyr	Ala	
His 145	Thr	Gln	Glu	Gln	Lys 150	Gly	Leu	Thr	Val	Ala 155	Leu	Asn	Val	Pro	Xaa 160	
Xaa	Xaa	Xaa	Xaa	Xaa 165	Xaa	Xaa	Xaa	Xaa	Xaa 170	Xaa	Xaa	Xaa	Xaa	Gly 175	Lys	
Ser	Lys	Asn	L <b>y</b> s 180	Arg	Val	Xaa	Xaa	Xaa 185	Xaa	Xaa	Xaa	Xaa	Xaa 190	Xaa	Trp	
Gln	Ser	<b>Ty</b> r 195	Gln	Ala	Thr	Gln	Gln 200	Met	Gln	Gln	Phe	Ala 205	Pro	Ser	Ser	
Ser	Ala 210	Gly	Gln	Gly	Gln	Asn 215	Tyr	Asn	Gln	Ser	Pro 220	Ser	Ile	Ser	Val	
Ser 225	Ile	Xaa	Tyr	Gly	Glu 230	Gln	Lys	Ser	Arg	Asn 235	Glu	Gln	Lys	Arg	His 240	
Tyr	Thr	Glu	Ala	Ala 245	Ala	Ser	Gln	Ile	Ile 250	Gly	Lys	Gly	Gln	Thr 255	Thr	
Leu	Ala	Ala	Thr 260	Gly	Ser	Gly	Glu	Gln 265	Ser	Asn	Ile	Asn	Ile 270	Thr	Gly	
Ser	Asp	Val 275	Ile	Gly	His	Ala	Gly 280		Xaa	Leu	Ile	Ala 285	Asp	Asn	His	
Ile	<b>A</b> rg 290	Leu	Gln	Ser	Ala	Lys 295	Gln	Asp	Gly	Ser	Glu 300	Gln	Ser	Lys	Asn	
L <b>y</b> s 305	Ser	Ser	Gly	Trp	Asn 310	Ala	Gly	Val	Arg	Xaa 315	Lys	Ile	Gly	Asn	Gly 320	
Ile	Arg	Phe	Gly	Ile 325	Thr	Ala	Xaa	Xaa	Xaa 330	Xaa	Xaa	Xaa	Xaa	Xaa 335	Xaa	
Xaa	Xaa	Xaa	Ser 340	Thr	Thr	His	Arg	His 345	Thr	His	Val	Gly	Ser 350	Thr	Thr	
Gly	Lys	Thr 355	Thr	Ile	Arg	Ser	Gly 360	Gly	Asp	Thr	Thr	Leu 365	Lys	Gly	Val	
Gln	Leu 370	Ile	Gly	Lys	Gly	Ile 375	Gln	Ala	Asp	Thr	<b>A</b> rg 380	Asn	Leu	His	Ile	
Glu 385	Ser	Val	Gln	Asp	Thr 390	Glu	Thr	Tyr	Gln	Ser 395	Lys	Gln	Gln	Asn	Gly 400	
Asn	Val	Gln	Val	Thr 405	Val	Gly	Tyr	Gly	Phe 410	Ser	Ala	Ser	Gly	Ser 415	Tyr	
Arg	Gln	Ser	L <b>y</b> s 420	Val	Lys	Ala	Asp	His 425	Ala	Ser	Val	Thr	Gly 430	Gln	Ser	
Gly	Ile	Tyr	Ala	Gly	Glu	Asp	Gly	Tyr	Gln	Ile	Lys	Val	Arg	Asp	Asn	

-continued

435 440 445 Thr Asp Leu Lys Gly Gly Ile Ile Thr Ser Ser Gln Ser Ala Glu Asp 450 455 460 Lys Gly Lys Asn Leu Phe Gln Thr Ala Thr Leu Thr Ala Ser Asp Ile 465 470 475 480 Gln Asn His Ser Arg Tyr Glu Gly Arg Ser Phe Gly Ile Gly Gly Ser 485 490 495 Phe <210> SEQ ID NO 190 <211> LENGTH: 502 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: overlap identity <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (1) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (4)..(8) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (10)..(12) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (14)..(16) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (18) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (21) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (23) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (25)..(27) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (29) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (31)..(34) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (36) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (38)..(40) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (42)..(45) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (47)..(48)

```
-continued
```

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (50)..(53) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (55)..(76) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (78)..(88) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (91) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (93)..(94) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (100) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (102)..(104) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (107)..(108) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (110) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (116) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (120) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (122)..(129) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (131)..(134) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (136) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (140)..(147) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (152) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (156)..(157) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (160)..(177) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (183)

```
-continued
```

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (186)..(207) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (209)..(210) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (212)..(214) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (219)..(226) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (231)..(232) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (238)..(240) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (242)..(246) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (248)..(253) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (255) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (257) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (259)..(261) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (263) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (265) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (267) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (269)..(270) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (272) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (274) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (281) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (283)..(284)

```
-continued
```

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (287) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (289) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (291) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (293)..(298) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (300) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (302)..(304) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (306) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (308) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (312) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (314) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (319)..(321) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (323)..(324) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (327) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (330) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (333)..(345) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (347)..(348) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (350)..(351) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (353) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (356)..(359)

```
-continued
```

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (361) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (363) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (369)..(370) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (373) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (376) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (380)..(386) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (392) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (396)..(400) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (403) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (405)..(407) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (417)..(418) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (422)..(423) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (426)..(428) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (430) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (434)..(435) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (440) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (443) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (447) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (449)

```
-continued
```

80

<223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (451)..(453) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (455) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (457) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (459)..(462) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (464)..(468) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (471) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (475)..(476) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (478)..(483) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (489)..(496) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (498)..(499) <223> OTHER INFORMATION: absent or positive <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (501) <223> OTHER INFORMATION: absent or positive <400> SEOUENCE: 190 Xaa Ala Val Xaa Xaa Xaa Xaa Gly Xaa Xaa Ile Xaa Xaa Xaa 5 10 15 1 Gly Xaa Asp Ile Xaa Val Xaa Gly Xaa Xaa Xaa Ile Xaa Asp Xaa Xaa 20 25 Xaa Xaa Leu Xaa Ala Xaa Xaa Xaa Ile Xaa Xaa Xaa Ala Xaa Xaa 35 40 45 55 50 60 65 70 75 Xaa Xaa Xaa Xaa Xaa Xaa Xaa His Thr Xaa Ser Xaa Xaa Gly Ser 85 90 95 Leu Asn Gly Xaa Thr Xaa Xaa Xaa Ala Gly Xaa Xaa Tyr Xaa Gln Thr 105 100 110 Gly Ser Thr Xaa Ser Ser Pro Xaa Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa 115 120 125 Xaa Ile Xaa Xaa Xaa Ala Xaa Asn Arg Tyr Xaa Xaa Xaa Xaa Xaa 135 140 130 Xaa Xaa Xaa Glu Gln Lys Gly Xaa Thr Val Ala Xaa Xaa Val Pro Xaa

-continued

145 (aa X (aa G (aa X (aa X 2 25	ly : (aa :	Lys		165			Xaa	Xaa	Xaa 170	155 Xaa	Xaa	Xaa	Xaa	Xaa	160 Xaa				
{aa G {aa X {aa X 2 {aa X	ly : (aa :	Lys	Ser	165			Xaa	Xaa		Xaa	Xaa	Xaa	Xaa	Xaa	Xaa				
<pre>{aa X {aa X 2 </pre>	(aa i	-		Lys	Asn	<b>1</b> 7								175					
<pre>{aa X 2 </pre>		Vaa				хаа	Arg	Val 185	Xaa	Xaa	Xaa	Xaa	Xaa 190	Xaa	Xaa				
2 Kaa X		195	Xaa	Xaa	Xaa	Xaa	Xaa 200	Xaa	Xaa	Xaa	Xaa	Xaa 205	Xaa	Xaa	Ala				
Kaa X	(aa ) 210	Pro	Xaa	Xaa	Xaa	Ala 215	Gly	Gln	Gly	Xaa	Xaa 220	Xaa	Xaa	Xaa	Xaa				
		Ile	Ser	Val	Ser 230	Xaa	Xaa	Tyr	Gly	Glu 235	Gln	Lys	Xaa	Xaa	Xaa 240				
Glu X	(aa	Xaa	Xaa	Xaa 245		Thr	Xaa	Xaa	Xaa 250		Xaa	Xaa	Ile	Xaa 255	_				
Kaa G	;ly :	Xaa			Leu	Xaa	Ala			Xaa	Gly	Xaa			Xaa				
Ile X			260 Thr	Gly	Ser	Asp		265 Xaa	Gly	Xaa	Xaa		270 Thr	Xaa	Leu				
{aa A	ala :	275 Xaa	Asn	Xaa	Xaa		280 Xaa	Xaa	Xaa	Ala		285 Gln	Xaa	Xaa	Xaa				
2 Glu X	90 (aa )	Ser	Xaa	Asn	Lys	295 Ser	Xaa	Gly	Xaa	Asn	300 Ala	Gly	Val	Xaa	Xaa				
305 Kaa I	le :	Xaa	Xaa	Gly	310 Ile	Xaa	Phe	Gly	Xaa	315 Thr	Ala	Xaa	Xaa	Xaa	320 Xaa				
Kaa X				325					330					335					
			340					345				-	350						
<aa g<="" td=""><td></td><td>355</td><td></td><td></td><td></td><td></td><td>360</td><td></td><td></td><td></td><td></td><td>365</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></aa>		355					360					365							
	870	-				375		-	-	_	380								
Kaa X 385	(aa )	Leu	His	Ile	Glu 390	Ser	Xaa	Gln	Asp	Thr 395	Xaa	Xaa	Xaa	Xaa	Xaa 400				
Lys G	;ln :	Xaa	Asn	Xaa 405	Xaa	Xaa	Gln	Val	Thr 410	Val	Gly	Tyr	Gly	Phe 415	Ser				
Kaa X	(aa )	Gly	Ser 420	Tyr	Xaa	Xaa	Ser	L <b>y</b> s 425	Xaa	Xaa	Xaa	Asp	Xaa 430	Ala	Ser				
/al X		Xaa 435	Gln	Ser	Gly	Ile	Xaa 440	Ala	Gly	Xaa	Asp	Gly 445	Tyr	Xaa	Ile				
Kaa V 4	7al : 150	Xaa	Xaa	Xaa	Thr	Xaa 455	Leu	Xaa	Gly	Xaa	Xaa 460	Xaa	Xaa	Ser	Xaa				
Kaa X 165	(aa )	Xaa	Xaa	Asp	L <b>y</b> s 470	Xaa	Lys	Asn	Leu	Xaa 475	Xaa	Thr	Xaa	Xaa	Xaa 480				
Kaa X	(aa	Xaa	Asp	Ile 485	Gln	Asn	His	Xaa	Xaa 490	Xaa	Xaa	Xaa	Xaa	Xaa 495	Xaa				
Gly X	(aa	Xaa	Gly 500	Xaa	Phe														

<400>	> SE	QUEN	ICE :	191											
Gln <i>I</i> 1	Ala	Val	Ser	Gly 5	Thr	Leu	Asp	Gly	Lys 10	Glu	Ile	Ile	Leu	Val 15	Ser
Gly A	Arg	Asp	Ile 20	Thr	Val	Thr	Gly	Ser 25	Asn	Ile	Ile	Ala	Asp 30	Asn	His
Thr ]	[le	Leu 35	Ser	Ala	Lys	Asn	Asn 40	Ile	Val	Leu	Lys	Ala 45	Ala	Glu	Thr
Arg S	Ser 50	Arg	Ser	Ala	Glu	Met 55	Asn	Lys	Lys	Glu	L <b>y</b> s 60	Ser	Gly	Leu	Met
Gly 8 65	Ser	Gly	Gly	Ile	Gly 70	Phe	Thr	Ala	Gly	Ser 75	Lys	Lys	Asp	Thr	Gln 80
Thr A	Asn	Arg	Ser	Glu 85	Thr	Val	Ser	His	Thr 90	Glu	Ser	Val	Val	Gly 95	Ser
Leu A	Asn	Gly	Asn 100	Thr	Leu	Ile	Ser	Ala 105	Gly	Lys	His	Tyr	Thr 110	Gln	Thr
Gly S	Ser	Thr 115	Ile	Ser	Ser	Pro	Gln 120	Gly	Asp	Val	Gly	Ile 125	Ser	Ser	Gly
Lys ]	[]e [30	Ser	Ile	Asp	Ala	Ala 135	Gln	Asn	Arg	Tyr	Ser 140	Gln	Glu	Ser	Lys
Gln N 145	/al	Tyr	Glu	Gln	L <b>y</b> s 150	Gly	Val	Thr	Val	Ala 155	Ile	Ser	Val	Pro	Val 160
Val A	Asn	Thr	Val	Met 165	Gly	Ala	Val	Asp	Ala 170	Val	Lys	Ala	Val	Gln 175	Thr
Val (	Gly	Lys	Ser 180	Lys	Asn	Ser	Arg	Val 185	Asn	Ala	Met	Ala	Ala 190	Ala	Asn
Ala I	Leu	Asn 195	Lys	Gly	Val	Asp	Ser 200	Gly	Val	Ala	Leu	<b>Ty</b> r 205	Asn	Ala	Ala
Arg A	Asn 210	Pro	Lys	Lys	Ala	Ala 215	Gly	Gln	Gly	Ile	Ser 220	Val	Ser	Val	Thr
<b>Ty</b> r ( 225	Jy	Glu	Gln	Lys	Asn 230	Thr	Ser	Glu	Ser	Arg 235	Ile	Lys	Gly	Thr	Gln 240
Val (	Gln	Glu	Gly	L <b>y</b> s 245	Ile	Thr	Gly	Gly	Gl <b>y</b> 250	Lys	Val	Ser	Leu	Thr 255	Ala
Ser (	Gly	Ala	Gly 260	Lys	Asp	Ser	Arg	Ile 265	Thr	Ile	Thr	Gly	Ser 270	Asp	Val
Tyr (	Gly	Gly 275	Lys	Gly	Thr	Arg	Leu 280	Lys	Ala	Glu	Asn	Ala 285	Val	Gln	Ile
Glu # 2	Ala 290	Ala	Arg	Gln	Thr	His 295	Gln	Glu	Arg	Ser	Glu 300	Asn	Lys	Ser	Ala
Gly H 305	?he	Asn	Ala	Gly	Val 310	Ala	Ile	Ala	Ile	Asn 315	Lys	Gly	Ile	Ser	Phe 320
Gly H	?he	Thr	Ala	Gly 325	Ala	Asn	Tyr	Gly	Lys 330	Gly	Tyr	Gly	Asn	Gly 335	Asp
Glu 7	[hr	Ala	<b>Ty</b> r 340	Arg	Asn	Ser	His	Ile 345	Gly	Ser	Lys	Asp	Ser 350	Gln	Thr
Ala 1	[le	Glu 355	Ser	Gly	Gly	Asp	Thr 360	Val	Ile	Lys	Gly	Gly 365	Gln	Leu	Lys
Gly I	<b>'y</b> s 370	Gly	Val	Gly	Val	Thr 375	Ala	Glu	Ser	Leu	His 380	Ile	Glu	Ser	Leu
Gln # 385	Asp	Thr	Ala	Val	Phe 390	Lys	Gly	Lys	Gln	Glu 395	Asn	Val	Ser	Ala	Gln 400

-continued

Val Thr Val Gly Tyr Gly Phe Ser Val Gly Gly Ser Tyr Asn Arg Ser 410 405 415 Lys Ser Ser Ser Asp Tyr Ala Ser Val Asn Glu Gln Ser Gly Ile Phe 420 425 430 Ala Gly Gly Asp Gly Tyr Arg Ile Arg Val Asn Gly Lys Thr Gly Leu 435 440 445 Val Gly Ala Ala Val Val Ser Asp Ala Asp Lys Ser Lys Asn Leu Leu 460 455 450 Lys Thr Ser Glu Ile Trp His Lys Asp Ile Gln Asn His Ala Ser Ala 465 470 475 480 470 475 Ala Ala Ser Ala Leu Gly Leu Ser Gly Gly Phe 485 490 <210> SEQ ID NO 192 <211> LENGTH: 310 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: ORF41 <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (19) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (33) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (47) <223> OTHER INFORMATION: place-holder <400> SEQUENCE: 192 Tyr Arg Arg His Leu Leu Cys Lys Tyr Ile Tyr Arg Phe Pro Ile Tyr 1 5 10 15 Cys Pro Xaa Ala Cys Val Ala Glu Asp Thr Pro Tyr Ala Cys Tyr Leu 20 25 30 Xaa Gln Leu Gln Val Thr Lys Asp Val Asn Trp Asn Gln Val Xaa Leu 35 40 45 Ala Tyr Asp Lys Trp Asp Tyr Lys Gln Glu Gly Leu Thr Gly Ala Gly 50 55 60 Ala Ala Ile Ile Ala Leu Ala Val Thr Val Val Thr Ala Gly Ala Gly65707580 Ala Gly Ala Ala Leu Gly Leu Asn Gly Ala Ala Ala Ala Ala Thr Asp 85 90 95 Ala Ala Phe Ala Ser Leu Ala Ser Gln Ala Ser Val Ser Leu Ile Asn 100 105 110 Asn Lys Gly Asn Ile Gly Asn Thr Leu Lys Glu Leu Gly Arg Ser Ser 120 115 125 Thr Val Lys Asn Leu Met Val Ala Val Ala Thr Ala Gly Val Ala Asp 135 130 140 Lys Ile Gly Ala Ser Ala Leu Asn Asn Val Ser Asp Lys Gln Trp Ile 145 150 155 160 Asn Asn Leu Thr Val Asn Leu Ala Asn Ala Gly Ser Ala Ala Leu Ile 170 165 175 Asn Thr Ala Val Asn Gly Gly Ser Leu Lys Asp Asn Leu Glu Ala Asn 190 180 185

```
-continued
```

Ile Leu Ala Ala Leu Val Asn Thr Ala His Gly Glu Ala Ala Ser Lys 195 200 205 Ile Lys Gln Leu Asp Gln His Tyr Ile Thr His Lys Ile Ala His Ala 210 215 220 Ile Ala Gly Cys Ala Ala Ala Ala Ala Asn Lys Gly Lys Cys Gln Asp 225 230 235 240 Gly Ala Ile Gly Ala Ala Val Gly Glu Ile Val Gly Glu Ala Leu Thr 250 255 245 Asn Gly Lys Asn Pro Asp Thr Leu Thr Ala Lys Glu Arg Glu Gln Ile 260 265 270 Leu Ala Tyr Ser Lys Leu Val Ala Gly Thr Val Ser Gly Val Val Gly 275 280 285 Gly Asp Val Asn Ala Ala Ala Asn Ala Ala Glu Val Ala Val Lys Asn 290 295 300 Asn Gln Leu Ser Asp Lys 305 310 <210> SEQ ID NO 193 <211> LENGTH: 330 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: ORF41a <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (61) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (122) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (158) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (280) <223> OTHER INFORMATION: place-holder <220> FEATURE: <221> NAME/KEY: SITE <222> LOCATION: (297) <223> OTHER INFORMATION: place-holder <400> SEOUENCE: 193 Tyr Leu Lys Gln Leu Gln Val Ala Lys Asn Ile Asn Trp Asn Gln Val 5 10 15 Gln Leu Ala Tyr Asp Arg Trp Asp Tyr Lys Gln Glu Gly Leu Thr Glu 20 25 30 Ala Gly Ala Ala Ile Ile Ala Leu Ala Val Thr Val Val Thr Ser Gly 40 35 45 Ala Gly Thr Gly Ala Val Leu Gly Leu Asn Gly Ala Xaa Ala Ala Ala 55 50 Thr Asp Ala Ala Phe Ala Ser Leu Ala Ser Gln Ala Ser Val Ser Phe 65 70 75 80 Ile Asn Asn Lys Gly Asp Val Gly Lys Thr Leu Lys Glu Leu Gly Arg 85 90 Ser Ser Thr Val Lys Asn Leu Val Val Ala Ala Ala Thr Ala Gly Val 100 105 110

-continued

												con	tin	uea	
Ala	Asp	L <b>y</b> s 115	Ile	Gly	Ala	Ser	Ala 120	Leu	Xaa	Asn	Val	Ser 125	Asp	Lys	Gln
Trp	Ile 130	Asn	Asn	Leu	Thr	Val 135	Asn	Leu	Ala	Asn	Ala 140	Gly	Ser	Ala	Ala
Leu 145	Ile	Asn	Thr	Ala	Val 150	Asn	Gly	Gly	Ser	Leu 155	Lys	Asp	Xaa	Leu	Glu 160
Ala	Asn	Ile	Leu	Ala 165	Ala	Leu	Val	Asn	Thr 170	Ala	His	Gly	Glu	Ala 175	Ala
Ser	Lys	Ile	L <b>y</b> s 180	Gln	Leu	Asp	Gln	His 185	Tyr	Ile	Val	His	L <b>y</b> s 190	Ile	Ala
His	Ala	Ile 195	Ala	Gly	Cys	Ala	Ala 200	Ala	Ala	Ala	Asn	Lys 205	Gly	Lys	Сув
Gln	Asp 210	Gly	Ala	Ile	Gly	Ala 215	Ala	Val	Gly	Glu	Ile 220	Val	Gly	Glu	Ala
Leu 225		Asn	Gly	Lys	Asn 230		Asp	Thr	Leu	Thr 235	Ala	Lys	Glu	Arg	Glu 240
	Ile	Leu	Ala	<b>Ty</b> r 245		Lys	Leu	Val	Ala 250		Thr	Val	Ser	Gly 255	
Val	Gly	Gly	Asp 260	Val	Asn	Ala	Ala	Ala 265		Ala	Ala	Glu	Val 270		Val
Lys	Asn	Asn 275		Leu	Ser	Asp	Xaa 280		Gly	Arg	Glu	Phe 285		Asn	Glu
Met	Thr 290		Cys	Ala	Lys	Gln 295		Xaa	Pro	Gln	Leu 300		Arg	Lys	Asn
Thr 305		Lys	Lys	Tyr	Gln 310		Val	Ala	Asp	Lys 315		Leu	Ala	Ala	Ser 320
_	Ala	Ile	Суз	Thr 325		Ile	Ser	Arg	Ser 330	515					
-010	). CT	ю т							550						
<211	.> LE	EQ II ENGTH (PE:	H: 18												
<220	)> FE	EATUR	RE:	Art			-		_						
		UHER EQUEN			LION	: Des	scriț	ptior	1 OI	Art	Incla	al Se	equer	nce:	DRF51a
Tyr 1	Lys	Leu	Leu	Ala 5	Ile	Gly	Ser	Val	Val 10	Gly	Ser	Ile	Leu	Gly 15	Val
Lys	Leu	Leu	Leu 20	Ile	Leu	Pro	Val	Ser 25	Trp	Leu	Leu	Leu	Leu 30	Met	Ala
Ile	Ile	Thr 35	Leu	Tyr	Tyr	Ser	Val 40	Asn	Gly	Ile	Leu	Asn 45	Val	Сув	Ala
Lys	Ala 50	Lys	Asn	Ile	Gln	Val 55	Val	Ala	Asn	Asn	Lys 60	Asn	Met	Val	Leu
Phe 65		Phe	Leu	Ala	Gly 70		Ile	Gly	Gly	Ser 75		Asn	Ala	Met	Ser 80
	Ile	Leu	Leu	Ile 85		Leu	Leu	Ser	Glu 90		Glu	Asn	Lys	Asn 95	
Ile	Ala	Lys	Ser 100	Ser	Asn	Leu	Cys	<b>Ty</b> r 105		Leu	Ala	Lys	Ile 110		Gln
Ile	Tyr	Met 115		Arg	Asp	Gln	<b>Ty</b> r 120		Leu	Leu	Asn	L <b>y</b> s 125		Glu	Tyr
		113					120					123			

## -continued

Gly Leu Ile Phe Leu Leu Ser Val Leu Ser Val Ile Gly Leu Tyr Val 130 135 140 Gly Ile Arg Leu Arg Thr Lys Ile Ser Pro Asn Phe Phe Lys Met Leu 150 145 155 160 Ile Phe Ile Val Leu Leu Val Leu Ala Leu Lys Ile Gly Tyr Ser Gly 165 170 Leu Ile Lys Leu 180 <210> SEQ ID NO 195 <211> LENGTH: 180 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: ORF82a <400> SEQUENCE: 195 Met Arg His Met Lys Asn Lys Asn Tyr Leu Leu Val Phe Ile Val Leu 1 5 10 15 His Ile Thr Leu Ile Val Ile Asn Ile Val Phe Gly Tyr Phe Val Phe 25 Leu Phe Asp Phe Phe Ala Phe Leu Phe Phe Ala Asn Val Phe Leu Ala 35 40 45 Val Asn Leu Leu Phe Leu Glu Lys Asn Ile Lys Asn Lys Leu Leu Phe 55 Leu Leu Pro Ile Ser Ile Ile Ile Trp Met Val Ile His Ile Ser Met 70 65 75 80 Ile Asn Ile Lys Phe Tyr Lys Phe Glu His Gln Ile Lys Glu Gln Asn 85 90 Ile Ser Ser Ile Thr Gly Val Ile Lys Pro His Asp Ser Tyr Asn Tyr 100 105 110 Val Tyr Asp Ser Asn Gly Tyr Ala Lys Leu Lys Asp Asn His Arg Tyr 115 120 Gly Arg Val Ile Arg Glu Thr Pro Tyr Ile Asp Val Val Ala Ser Asp 135 130 140 Val Lys Asn Lys Ser Ile Arg Leu Ser Leu Val Cys Gly Ile His Ser 150 155 145 160 Tyr Ala Pro Cys Ala Asn Phe Ile Lys Phe Ala Lys Lys Pro Val Lys 165 170 Ile Tyr Phe Tyr 180

1-17. (canceled)

**18**. An isolated polypeptide comprising a member selected from the group consisting of

(a) the amino acid sequence of SEQ ID NO: 4; and

(b) an immunogenic fragment of at least 15 contiguous amino acids of SEQ ID NO: 4, wherein the immunogenic fragment, when administered to a subject in a suitable composition which can include an adjuvant, or a suitable carrier coupled to the polypeptide, induces an antibody or T-cell meditated immune response that recognizes the isolated polypeptide SEQ ID NO: 4.

**19**. The isolated polypeptide of claim 18, wherein the polypeptide is according to (a).

**20**. The isolated polypeptide of claim 18, wherein the polypeptide is according to (b).

**21**. The isolated polypeptide of claim 18, wherein the immunogenic fragment of (b) comprises at least 20 contiguous amino acids of SEQ ID NO:4; wherein the immunogenic fragment, when administered to a subject in a suitable composition which can include an adjuvant, or a suitable carrier coupled to the polypeptide, induces an antibody or T-cell meditated immune response that recognizes the polypeptide SEQ ID NO: 4.

**22**. The isolated polypeptide of claim 18, wherein the isolated polypeptide consists of SEQ ID NO: 4.

**23**. A fusion protein comprising the isolated polypeptide of claim 18.

**24**. An immunogenic composition comprising the polypeptide of claim 18, and a pharmaceutically acceptable carrier.

**25**. The isolated polypeptide of claim 18, wherein the isolated polypeptide is a recombinant polypeptide.

26. The isolated polypeptide of claim 19, wherein the isolated polypeptide is a recombinant polypeptide.

27. The isolated polypeptide of claim 20, wherein the isolated polypeptide is a recombinant polypeptide.

**28**. An immunogenic composition comprising the isolated polypeptide of claim 19.

**29**. An immunogenic composition comprising the isolated polypeptide of claim 20.

**30**. A fusion protein comprising the isolated polypeptide of claim 19.

**31**. A fusion protein comprising the isolated polypeptide of claim 20.

* * * * *