wo 2016/049576 A1 |1 NPF V0 00O O 00 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/049576 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31 March 2016 (31.03.2016) WIPOIPCT
International Patent Classification: (81)
GO6F 9/50 (2006.01)
International Application Number:

PCT/US2015/052459

International Filing Date:
25 September 2015 (25.09.2015)

Filing Language: English
Publication Language: English
Priority Data:

62/055,575 25 September 2014 (25.09.2014) US
62/055,577 25 September 2014 (25.09.2014) US
62/055,856 26 September 2014 (26.09.2014) US
62/056,427 26 September 2014 (26.09.2014) US
14/864,723 24 September 2015 (24.09.2015) US

Applicant: ORACLE INTERNATIONAL CORPORA-
TION [US/US]; 500 Oracle Parkway, M/S Sop7, Redwood
Shores, California 94065 (US).

Inventors: MORDANI, Rajiv; 1038 Linz Terrace,
Sunnyvale, California 94089 (US). ISLAM, Nazrul; 1555
Vista Club Circle, Apt. 202, Santa Clara, California 95054
(US).

Agents: MEYER, Sheldon, R. et al.; Tucker Ellis LLP,
One Market Plaza, Steuart Tower, Suite 700, San Fran-
cisco, California 94105 (US).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: SYSTEM AND METHOD FOR USE OF A GLOBAL RUNTIME IN A MULTITENANT APPLICATION SERVER
ENVIRONMENT

‘Application Server (.g., Multi-Tenant, MT) Environment 100 51

1 Domain 102

Global Runtime 700

Partition 104

Resource Group 124

Tenant Switching API 702

-

ExecuteAs)
Execution as or on
behalf of Tenant 704

1L

Resuurce Group Template
Reference 126

Excautes{)
Execution as or on
behalf of Tenant 705

FIGURE 17

Partition-Specific
Resource Groups / Applications /
Resources
128

Partition B 710
Partition C 712
Partition D 714

Domain-Level Resource Groups /
Applications / Resources
140

(57) Abstract: In accordance with an embodiment, described herein is a system and method for providing an end-to-end lifecycle in
a multi-tenant application server environment. A lifecycle manager enables configuration integration across different components,
for example application servers, traffic directors or load balancers, and database or other components, which may have their own
partition-specific configurations. In accordance with an embodiment, the end-to-end lifecycle infrastructure includes a plugin-based
mechanism which enables the different components within a multi-tenant application server environment to use a lifecycle plugin to
provide their own component-specific lifecycle functionality. In accordance with an embodiment, the system includes support for a
tenant onboarding functionality, which can be used to onboard a tenant for a service to a particular partition. In accordance with an
embodiment, the system supports the use of a global runtime within the multi-tenant application server environment.

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

SYSTEM AND METHOD FOR USE OF A GLOBAL RUNTIME IN A
MULTITENANT APPLICATION SERVER ENVIRONMENT

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains
material which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by anyone
of the patent document or the patent disclosure, as it appears
in the Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever.

Claim of Priority and Cross-Reference to Related Applications:

[0001] This application claims the benefit of priority to U.S. Provisional Applications
“‘SYSTEM AND METHOD FOR PROVIDING END-TO-END LIFECYCLE IN A
MULTITENANT APPLICATION SERVER ENVIRONMENT” Application No. 62/055,575, filed
September 25, 2014; “SYSTEM AND METHOD FOR TENANT ONBOARDING IN A
MULTITENANT APPLICATION SERVER ENVIRONMENT”, Application No. 62/055,577, filed
September 25, 2014; “SYSTEM AND METHOD FOR DATABASE AND APPLICATION
SERVER LIFECYCLE PLUGINS IN A MULTITENANT APPLICATION SERVER
ENVIRONMENT”, Application No. 62/055,856, filed September 26, 2014; and “SYSTEM
AND METHOD FOR GLOBAL RUNTIME IN A MULTITENANT APPLICATION SERVER
ENVIRONMENT”, Application No. 62/056,427, filed September 26, 2014; and is related to
U.S. Patent Application titled “SYSTEM AND METHOD FOR SUPPORTING MULTI-
TENANCY IN AN APPLICATION SERVER, CLOUD, OR OTHER ENVIRONMENT”,
Application No. 14/601,883, filed January 21, 2015; each of which above applications are

herein incorporated by reference.

Field of Invention:

[0002] Embodiments of the invention are generally related to application servers and
cloud environments, and are particularly related to systems and methods for providing an
end-to-end lifecycle, tenant onboarding, or global runtime, in a multitenant application server

environment.

Background:
[0003] Application servers generally provide a managed computing environment

within which software applications can be deployed and run. Cloud-based computing
environments allow applications to run within and take advantage of the distributed resources
provided by a cloud. Such environments can support large numbers of users or tenants,

some of which may have specific requirements that are particular to that user or tenant.

-1-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

When additional tenants are added to the system, the system must be able to address each
tenant’s needs, including associating other system components with the tenant as
necessary. These are some examples of the type of environments in which embodiments of

the present invention can be used.

Summary:
[0004] In accordance with an embodiment, described herein is a system and method

for providing an end-to-end lifecycle in a multi-tenant application server environment. A
lifecycle manager enables configuration integration across different components, for example
application servers, traffic directors or load balancers, and database or other components,
which may have their own partition-specific configurations. In accordance with an
embodiment, the end-to-end lifecycle infrastructure includes a plugin-based mechanism
which enables the different components within a multi-tenant application server environment
to use a lifecycle plugin to provide their own component-specific lifecycle functionality. In
accordance with an embodiment, the system includes support for a tenant onboarding
functionality, which can be used to onboard a tenant for a service to a particular partition. In
accordance with an embodiment, the system supports the use of a global runtime within the

multi-tenant application server environment.

Brief Description of the Figures:

[0005] Figure 1 llustrates a multitenant application server environment, in
accordance with an embodiment.

[0006] Figure 2 further illustrates a multitenant application server environment, in
accordance with an embodiment.

[0007] Figure 3 further illustrates a multitenant application server environment, in
accordance with an embodiment.

[0008] Figure 4 further illustrates a multitenant application server environment, in
accordance with an embodiment.

[0009] Figure 5 further illustrates a multitenant application server environment, in
accordance with an embodiment.

[00010] Figure 6 illustrates an end-to-end lifecycle in a multitenant application server
environment, in accordance with an embodiment.

[00011] Figure 7 illustrates an end-to-end lifecycle event diagram in a multitenant
application server environment, in accordance with an embodiment.

[00012] Figure 8 illustrates an end-to-end lifecycle topology in a multitenant
application server environment, in accordance with an embodiment.

[00013] Figure 9 illustrates another end-to-end lifecycle topology in a multitenant

-2

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

application server environment, in accordance with an embodiment.

[00014] Figure 10 illustrates a flowchart of method for providing end-to-end lifecycle in
a multitenant application server environment, in accordance with an embodiment.

[00015] Figure 11 illustrates tenant onboarding in a multitenant application server
environment, in accordance with an embodiment.

[00016] Figure 12 further illustrates tenant onboarding in a multitenant application
server environment, in accordance with an embodiment.

[00017] Figure 13 illustrates a flowchart of method for providing tenant onboarding in
a multitenant application server environment, in accordance with an embodiment.

[00018] Figure 14 illustrates lifecycle plugins in a multitenant application server
environment, in accordance with an embodiment.

[00019] Figure 15 further illustrates lifecycle plugins in a multitenant application server
environment, in accordance with an embodiment.

[00020] Figure 16 illustrates a flowchart of method for supporting lifecycle plugins in a
multitenant application server environment, in accordance with an embodiment.

[00021] Figure 17 illustrates use of a global runtime in a multitenant application server
environment, in accordance with an embodiment.

[00022] Figure 18 further illustrates use of a global runtime in a multitenant application
server environment, in accordance with an embodiment.

[00023] Figure 19 illustrates a flowchart of method for supporting a global runtime in a

multitenant application server environment, in accordance with an embodiment.

Detailed Description:

[00024] In accordance with an embodiment, described herein is a system and method
for providing an end-to-end lifecycle in a multi-tenant application server environment. A
lifecycle manager enables configuration integration across different components, for example
application servers, traffic directors or load balancers, and database or other components,
which may have their own partition-specific configurations.

[00025] In accordance with an embodiment, the end-to-end lifecycle infrastructure
includes a plugin-based mechanism which enables the different components within a multi-
tenant application server environment to use a lifecycle plugin to provide their own
component-specific lifecycle functionality.

[00026] In accordance with an embodiment, the system includes support for a tenant
onboarding functionality, which can be used to onboard a tenant for a service to a particular
partition.

[00027] In accordance with an embodiment, the system supports the use of a global

runtime within the multi-tenant application server environment.

-3-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

Application Server (e.g., Multi-Tenant, MT) Environment

[00028] Figure 1 illustrates a system for supporting multi-tenancy in an application
server, cloud, or other environment, in accordance with an embodiment.

[00029] As illustrated in Figure 1, in accordance with an embodiment, an application
server (e.g., multi-tenant, MT) environment 100, or other computing environment which
enables the deployment and execution of software applications, can be configured to include
and operate according to a domain 102 configuration that is used at runtime to define an
application server domain.

[00030] In accordance with an embodiment, the application server can include one or
more partitions 104 that are defined for use at runtime. Each partition can be associated with
a globally unique partition identifier (ID) and partition configuration, and can further include
one or more resource groups 124, together with a reference to a resource group template
126 and/or partition-specific applications or resources 128. Domain-level resource groups,
applications and/or resources 140 can also be defined at the domain level, optionally with a
reference to a resource group template.

[00031] Each resource group template 160 can define one or more applications A 162,
B 164, resources A 166, B 168, and/or other deployable applications or resources 170, and
can be referenced by a resource group. For example, as illustrated in Figure 1, resource
group 124 in partition 104 can reference 190 resource group template 160.

[00032] Generally, a system administrator can define partitions, domain-level resource
groups and resource group templates, and security realms; while a partition administrator
can define aspects of their own partition, for example, by creating partition-level resource
groups, deploying applications to the partition, or referencing specific realms for the partition.
[00033] Figure 2 further illustrates a system for supporting multi-tenancy in an
application server, cloud, or other environment, in accordance with an embodiment.

[00034] As illustrated in Figure 2, in accordance with an embodiment, a partition 202
can include, for example, a resource group 205 which includes a reference 206 to a resource
group template 210, a virtual target (e.g., virtual host) information 207, and a pluggable
database (PDB) information 208. A resource group template (e.g., 210) can define, for
example, a plurality of applications A 211 and B 212, together with resources such as a Java
Message Server (JMS) server 213, store-and-forward (SAF) agent 215, mail session
component 216, or Java Database Connectivity (JDBC) resource 217.

[00035] The resource group template illustrated in Figure 2 is provided by way of
example; in accordance with other embodiments, different types of resource group templates
and elements can be provided.

[00036] In accordance with an embodiment, when a resource group within a partition

(e.g., 202) references 220 a particular resource group template (e.g., 210), information

-4-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

associated with a particular partition can be used in combination with the referenced
resource group template, to indicate a partition-specific information 230, for example a
partition-specific PDB information. The partition-specific information can then be used by the
application server to configure resources, for example a PDB resource, for use by the
partition. For example, partition-specific PDB information associated with partition 202 can
be used, by the application server, to configure 232 a container database (CDB) 236 with an
appropriate PDB 238, for use by that partition.

[00037] Similarly, in accordance with an embodiment, a virtual target information
associated with a particular partition can be used to define 239 a partition-specific virtual
target 240, for use by the partition, e.g., baylandurgentcare.com, which can then be made
accessible via a uniform resource locator (URL), e.g., http://baylandurgentcare.com.

[00038] Figure 3 further illustrates a system for supporting multi-tenancy in an
application server, cloud, or other environment, in accordance with an embodiment.

[00039] In accordance with an embodiment, a system configuration such as a
config.xml configuration file, is used to define a partition, including configuration elements for
resource groups associated with that partition, and/or other partition properties. Values can
be specified per-partition using property name/value pairs.

[00040] In accordance with an embodiment, a plurality of partitions can be executed
within @ managed server / cluster 242, or a similar environment which can provide access to
a CDB 243, and which are accessible via a web tier 244. This allows, for example, a domain
or partition to be associated with one or more of the PDBs (of the CDB).

[00041] In accordance with an embodiment, each of the plurality of partitions, in this
example partition A 250 and partition B 260, can be configured to include a plurality of
resources associated with that partition. For example, partition A can be configured to
include a resource group 251 which contains an application A1 252, application A2 254, and
JMS A 256, together with a datasource A 257 associated with PDB A 259, wherein the
partition is accessible via a virtual target A 258. Similarly, partition B 260 can be configured
to include a resource group 261 which contains an application B1 262, application B2 264,
and JMS B 266, together with a datasource B 267 associated with PDB B 269, wherein the
partition is accessible via a virtual target B 268.

[00042] While several of the above examples illustrate use of CDB and PDBs, in
accordance with other embodiments, other types of multi-tenant or non-multi-tenant
databases can be supported, wherein a particular configuration can be provided for each

partition, for example through the use of schemas, or the use of different databases.

Resources

[00043] In accordance with an embodiment, a resource is a system resource,

-5-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

application, or other resource or object that can be deployed to a domain of the environment.
For example, in accordance with an embodiment, a resource can be an application, JMS,
JDBC, JavaMail, WLDF, data source, or other system resource or other type of object that

can be deployed to a server, cluster, or other application server target.

Partitions

[00044] In accordance with an embodiment, a partition is a runtime and administrative
subdivision or slice of a domain that can be associated with a partition identifier (ID) and
configuration, and can contain applications and/or refer to domain-wide resources through
the use of resource groups and resource group templates.

[00045] Generally, a partition can contain its own applications, refer to domain wide
applications via resource group templates, and have its own configuration. Partitionable
entities can include resources, for example JMS, JDBC, JavaMail, WLDF resources, and
other components, such as JNDI namespace, network traffic, work managers, and security
policies and realms. In the context of a multi-tenant environment, the system can be
configured to provide tenant access to the administrative and runtime aspects of partitions
associated with a tenant.

[00046] In accordance with an embodiment, each resource group within a partition
can optionally reference a resource group template. A partition can have multiple resource
groups, and each of them can reference a resource group template. Each partition can
define properties for configuration data that is not specified in the resource group templates
to which the partition's resource groups refer. This enables the partition to act as a binding of
deployable resources defined in a resource group template, to specific values for use with
that partition. In some cases, a partition can override configuration information specified by a
resource group template.

[00047] In accordance with an embodiment, a partition configuration, as defined for
example by a config.xml configuration file, can include a plurality of configuration elements,
for example: "partition", which contains the attributes and child elements that define the
partition; "resource-group”, which contains the applications and resources deployed to the
partition; "resource-group-template”, which contains applications and resources defined by
that template; "jdbc-system-resource-override", which contains a database-specific service
name, user name, and password; and "partition-properties”, which contains property key
values that can be used for macro replacement in resource group templates.

[00048] Upon startup, the system can use the information provided by the
configuration file to generate partition-specific configuration elements for each resource, from

the resource group template.

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

Resource Groups

[00049] In accordance with an embodiment, a resource group is a named, fully-
qualified collection of deployable resources that can be defined either at a domain or partition
level, and can reference a resource group template. The resources in a resource group are
considered fully-qualified in that the administrator has provided all of the information needed
to start or connect to those resources, for example the credentials for connecting to a data
source, or the targeting information for an application.

[00050] A system administrator can declare resource groups at the domain level, or at
the partition level. At the domain level, a resource group provides a convenient way to group
related resources. The system can manage resources declared in a domain-level resource
group the same as ungrouped resources, so that the resources can be started during system
start-up, and stopped during system shut-down. An administrator can also stop, start, or
remove a resource in a group individually, and can act on all the resources in a group
implicitly by operating on the group. For example, stopping a resource group stops all of the
resources in the group that are not already stopped; starting the resource group starts any
resources in the group that are not already started; and removing the resource group
removes all of the resources contained in the group.

[00051] At the partition level, a system or partition administrator can configure zero or
more resource groups in a partition, subject to any security restrictions. For example, in a
SaaS use case, various partition-level resource groups can refer to domain-level resource
group templates; while in a PaaS use case, partition-level resource groups can be created
that do not refer to resource group templates, but instead represent applications and their
related resources that are to be made available within that partition only.

[00052] In accordance with an embodiment, resource grouping can be used to group
together applications and the resources they use as a distinct administrative unit within the
domain. For example, in the medical records (MedRec) application described below, a
resource grouping defines the MedRec application and its resources. Multiple partitions can
run the same MedRec resource group, each using a partition-specific configuration
information, such that the applications that are part of each MedRec instance are made

specific to each partition.

Resource Group Templates

[00053] In accordance with an embodiment, a resource group template is a collection
of deployable resources that are defined at a domain level, that can be referenced from a
resource group, and some of the information required to activate its resources may not be
stored as part of the template itself, such that it supports the specification of partition level

configuration. A domain can contain any number of resource group templates, each of which

-7-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

can include, for example, one or more related Java applications and the resources on which
those applications depend. Some of the information about such resources may be the same
across all partitions, while other information may vary from one partition to the next. Not all
configuration need be specified at the domain level — partition level configuration can instead
be specified in the resource group template through the use of macros, or property
name/value pairs.

[00054] In accordance with an embodiment, a particular resource group template can
be referenced by one or more resource groups. Generally, within any given partition, a
resource group template can be referenced by one resource group at a time, i.e., not
simultaneously by multiple resource groups within the same partition; however, it can be
referenced at the same time by another resource group in a different partition. The object
containing the resource group, e.g., the domain or partition, can use property name/value
assignments to set the value of any tokens in the resource group template. When the
system activates a resource group template using a referencing resource group, it can
replace those tokens with values set in the resource group's containing object. In some
cases, the system can also use statically-configured resource group templates and partitions
to generate runtime configuration for each partition/template combination.

[00055] For example, in a SaaS use case, the system can activate the same
applications and resources multiple times, including once for each partition that will use
them. When an administrator defines a resource group template they can use tokens to
represent the information that will be supplied elsewhere. For example, the username to use
in connecting to a CRM-related data resource can be indicated in the resource group

template as \${CRMDataUsername}.

Tenants

[00056] In accordance with an embodiment, in a multi-tenant environment, such as a
multi-tenant (MT) application server environment, a tenant is an entity that can be
represented by, or otherwise associated with, one or more partitions and/or one or more
tenant-aware applications.

[00057] For example, tenants can represent distinct user organizations, such as
different external companies, or different departments within a particular enterprise (e.g., HR
and Finance departments), each of which can be associated with a different partition. A
tenant globally unique identity (tenant ID) is the association of a particular user, at a
particular moment in time, with a particular tenant. The system can derive which tenant a
particular user belongs to from the user identity, for example by referring to a user identity
store. The user identity enables the system to enforce those actions that a user is authorized

to perform, including, but not limited to, which tenant the user may belong.

-8-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

[00058] In accordance with an embodiment, the system enables isolation of the
administration and runtime of different tenants from each other. For example, tenants can
configure some behaviors of their applications, and resources to which they have access.
The system can ensure that a particular tenant cannot administer artifacts belonging to
another tenant; and, at runtime, that the applications working on behalf of a particular tenant
refer only to resources associated with that tenant, and not to resources associated with
other tenants.

[00059] In accordance with an embodiment, a tenant-unaware application is one that
contains no logic dealing with tenants explicitly, such that any resources that the application
uses may be accessible regardless of what user submitted a request to which the application
is responding. In contrast, a tenant-aware application includes logic that explicitly deals with
tenants. For example, based on a user’'s identity the application can derive the tenant to
which the user belongs and use that information to access tenant-specific resources.

[00060] In accordance with an embodiment, the system enables users to deploy
applications that are explicitly written to be tenant-aware, so that application developers can
obtain the tenant ID of a current tenant. The tenant-aware application can then use the
tenant ID to handle multiple tenants that are using a single instance of the application.
[00061] For example, the MedRec application, which supports a single doctor’s office
or hospital, can be exposed to two different partitions or tenants, e.g., a Bayland Urgent Care
tenant, and a Valley Health tenant, each of which is able to access separate tenant-specific

resources, such as separate PDBs, without changing the underlying application code.

Exemplary Domain Configuration and Multi-Tenant Environment

[00062] In accordance with an embodiment, applications can be deployed to a
resource group template at the domain level, or to a resource group that is scoped to a
partition or scoped to the domain. Application configuration can be overridden using
deployment plans specified per-application, or per-partition. Deployment plans can also be
specified as part of a resource group.

[00063] Figure 4 illustrates a domain configuration for use with an exemplary multi-
tenant environment, in accordance with an embodiment.

[00064] In accordance with an embodiment, when the system starts a partition, it
creates virtual targets (e.g., virtual hosts) and connection pools, including one for each
partition, to respective database instances, according to the provided configuration.

[00065] Typically, each resource group template can include one or more related
applications and the resources on which those applications depend. Each partition can
provide configuration data that is not specified in the resource group templates to which it

refers, by providing a binding of the deployable resources in resource group templates to

-9-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

specific values associated with the partition; including, in some cases, overriding certain
configuration information specified by the resource group template. This enables the system
to activate an application represented by a resource group template differently for each
partition, using the property values each partition has defined.

[00066] In some instances, a partition may contain resource groups that do not refer to
resource group templates, or that directly define their own partition-scoped deployable
resources. Applications and data sources that are defined within a partition are generally
available only to that partition. Resources can be deployed so that they can be accessed
from across partitions using partition:<partitonName>/<resource JNDI name>, or
domain:<resource JNDI name>.

[00067] For example, a MedRec application can include a plurality of Java
applications, a data source, a JMS server, and a mail session. To run the MedRec
application for multiple tenants, the system administrator can define a single MedRec
resource group template 286, declaring those deployable resources in the template.

[00068] In contrast to domain-level deployable resources, the deployable resources
declared in a resource group template may not be fully configured in the template, or cannot
be activated as-is, since they lack some configuration information.

[00069] For example, the MedRec resource group template may declare a data source
used by the applications, but it may not specify a URL for connecting to the database.
Partitions associated with different tenants, for example, partition BUC-A 290 (Bayland
Urgent Care, BUC) and partition VH-A 292 (Valley Health, VH) can reference one or more
resource group templates, by each including a MedRec resource group 293, 294 that
references 296, 297 the MedRec resource group template. The reference can then be used
to create 302, 306, the virtual targets / virtual hosts for each tenant, including a virtual host
baylandurgentcare.com 304 associated with the BUC-A partition, for use by the Bayland
Urgent Care tenant; and a virtual host valleyhealth.com 308 associated with the VH-A
partition, for use by the Valley Health tenant.

[00070] Figure 5 further illustrates an exemplary multi-tenant environment, in
accordance with an embodiment. As illustrated in Figure 5, and continuing the example from
above, in which two partitions reference the MedRec resource group template, in accordance
with an embodiment, a servlet engine 310 can be used to support a plurality of tenant
environments, in this example a Bayland Urgent Care Physician tenant environment 320,
and a Valley Health Physician tenant environment 330.

[00071] In accordance with an embodiment, each partition 321, 331 can define a
different virtual target on which to accept incoming traffic for that tenant environment, and a
different URL 322, 332 for connecting to the partition and to its resources 324, 334, including

in this example either a bayland urgent care database, or a valley health database

-10-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

respectively. The database instances can use compatible schemas, since the same
application code will execute against both databases. When the system starts the partitions,

it can create the virtual targets and connection pools to the respective database instances.

End-to-End Lifecycle

[00072] In accordance with an embodiment, described herein is a system and method
for providing an end-to-end lifecycle in a multi-tenant application server environment. A
lifecycle manager enables configuration integration across different components, for example
application servers, traffic directors or load balancers, and database or other components,
which may have their own partition-specific configurations.

[00073] In accordance with various embodiments, some of the descriptions of the end-
to-end lifecycle process that are provided herein use the following terms:

[00074] Tenancy: a right to use a component of the system, typically obtained for a
limited duration by a tenant, to allow that tenant to customize the behavior of the system to a
certain extent to suit their needs.

[00075] Tenancy context: contextual information, for example security, naming, or
class loading information, which is used to determine the tenancy of a system, so that the
system can then use that tenancy context to provide tenant-specific behavior, such as
generating bills.

[00076] Partition context: a partition identifier (ID) associated with a current thread of
execution, which the system can use to determine platform tenancy.

[00077] Resource tenancy: a similar property as "tenancy", used primarily when
describing Oracle Fusion Middleware (FMW) / Fusion Application (FA) embodiments.

[00078] MT admin code: code that is deployed and activated before any tenant is
onboarded for a multi-tenant system, and which is responsible for lifecycle management of

the system as well as tenant runtimes.

[00079] MT admin runtime: a runtime representation of the MT admin code.

[00080] Tenant code: code that is specifically deployed for a tenant.

[00081] Tenant runtime: a runtime representation of the tenant code.

[00082] Layered products: software products which can interoperate with or otherwise

utilize a multi-tenant application server environment, examples of which can include the
FMW and FA families of products.

[00083] Figure 6 illustrates an end-to-end lifecycle in a multitenant application server
environment, in accordance with an embodiment.

[00084] As illustrated in Figure 6, in accordance with an embodiment, the system can

11-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

include a lifecycle coordination framework 400, including a lifecycle manager (LCM) 410 and
lifecycle interface 411, which enables lifecycle management 412 of partition and other
components, for example a traffic director component 414, database component 415, or
other types of components 416, for use within the multitenant application server environment.
[00085] For example, in addition to enabling an application server (e.g., a WeblLogic,
WLS) component to be multitenant-aware, and to support the use of partitions within the
application server, the system must be able to ensure that other components and products
can interoperate with the application server partitions, for example that database (e.g.,
Oracle Database, DB), and traffic director or load balancer (e.g., Oracle Traffic Director,
OTD) instances can be properly configured and can thereafter similarly support those
partitions.

[00086] To address this, in accordance with an embodiment, as part of creating a
partition for use with an application server, then, in addition to creating the application server
partition, the system allows creation of a slice of runtime in other components that will
ultimately be wired up with the application server partition. The result is a system in which an
application can be entirely run within its own environment from, e.g., an OTD layer, down to a
database layer.

[00087] In accordance with an embodiment, the end-to-end lifecycle infrastructure
includes a plugin-based mechanism which enables a plurality of different components within
a multi-tenant application server environment to use a lifecycle plugin to provide their own
component-specific lifecycle functionality. Any component which will be made available to be
wired up with a partition can provide its own plugin. Lifecycle operations can then call the
plugin interface, which in turn performs the actual creation of the component — for example,
the creation of a ftraffic director instance, or the creation of a database instance, as
appropriate.

[00088] In accordance with an embodiment, in addition to creating application server
and/or component partitions, each tenant can be associated with an environment, as further
described below, wherein the environment acts as a container or container object within
which the tenant of a partition can run their own applications.

[00089] For example, in accordance with an embodiment, the lifecycle manager and
its pluggable extensible mechanism can be used to support the creation of components
within the middleware or database stack, and to also support the wiring of those
components, such as wiring up an application server (e.g., WLS) partition to use a
datasource. The collection of wired components can then be provided within a partition or
tenant environment.

[00090] As another example, in accordance with an embodiment, the system can

enable an application server partition to be associated with a database, and created during a

-12-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

lifecycle, which then creates a datasource in the application server partition and makes it
usable within a partition or tenant environment.

[00091] Similarly, in accordance with an embodiment, the lifecycle manager can be
used to set up OTD routing for a partition, including setting up a URI or host name for use
with the partition, such that a WLS partition running in a cluster is front-ended with an OTD
instance, while the lifecycle manager enables the creation of an OTD instance for the
partition, and its wiring to the WLS partition, for use within a tenant environment.

[00092] Additional advantages provided by the end-to-end lifecycle management
include the ability to detect changes out-of-band.

[00093] For example, an update to an application server partition can be sent to other
components that are wired to that partition. As another example, when a new resource
group is associated with a new target, that updated information can be sent to other layered
products, such that the changes in the partition are propagated to any other wired
components.

[00094] In accordance with an embodiment, orchestration of the lifecycle can be
performed in a variety of ways to create the various components or slices of runtime. For
example, the system can individually create a partition, PDB, and OTD instance as REST
calls to the lifecycle manager, which directs the lifecycle manager to, e.g., create a WLS
partition, and create an OTD instance, or other slices of components. During orchestration, if
a failure occurs, the system can accommodate it by, for example, retrying the REST endpoint
for association and orchestration of its artifacts.

[00095] Exemplary end-to-end lifecycle use cases include providing a lifecycle
manager on an admin server within a cluster, and/or other lifecycle managers on managed
servers within the cluster. For example, in a single domain, a single lifecycle manager can
be provided on the admin server. For multiple domains, or high-availability requirement
models, in which a lifecycle manager can manage, e.g., multiple OTD instances on multiple
servers, the lifecycle manager can be run within a cluster of its own front-ended by a load
balancer, and from that domain the lifecycle manager can manage multiple runtimes.

[00096] In accordance with an embodiment, the end-to-end lifecycle configuration
information can be saved, for example to an XML file in a single domain mode, or more
typically to a database in a high-availability mode.

[00097] In accordance with an embodiment, the lifecycle manager can recognize that
it is operating on behalf of a particular partition by, in response to receiving a call, e.g., via
REST, for use with a registered runtime, determining from the call details an intended
partition, and, based on what that call is attempting to create, calling one or more appropriate
plugins.

[00098] For example, if the call is directed to creating a PDB for a partition, then the

13-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

lifecycle manager can respond by calling the database lifecycle plugin; or if the call is
directed to creating an OTD instance for a partition, then the lifecycle manager can respond
by calling the OTD lifecycle plugin, and so on.

[00099] In a single domain multiple partition environment, when an admin server fails,
which had been providing lifecycle manager functionality, the system can continue to act as a
traditional application server (e.g., WLS) server environment would, although it's
administrative and management functionality may be disabled for a period of time.

[000100] In accordance with an embodiment, the system can use HK2 as a
dependency injection mechanism, for looking up contracts and implementations of those
contracts as services. For example, using HK2, services can be injectable into components,
and, once injected, their HK2 objects can satisfy the dependencies of other classes.
Lifecycle plugins can be implemented as HK2 services and implement their contract at
runtime. The system can look up a contract to find appropriate plugins that have been
plugged in as services.

[000101] For example, in accordance with an embodiment, the system can recognize a
partition plugin contract, or a runtime plugin, or other contract. Each partition or other plugin
can be configured with an understanding of how to operate to create a partition or slice of
partition within that component, so for example, a database partition plugin can be configured
with an understanding of how to operate to create a slice of a database.

[000102] In accordance with an embodiment, the system can receive an indication as to
the type of service required during a call (e.g., “type = database”), and then determine an
appropriate, in this case, database plugin to be used.

[000103] Similarly, in accordance with an embodiment, for application server (e.g.,
WLS) and ftraffic director (e.g., OTD) components, plugins can be provided for those
components that can be implemented as services, and subsequently used during creation or
configuration of a partition.

[000104] Mechanisms such as HK2 also provide support for configuration management
which can be used to define a configuration model stored in XML by, for example, default
store or persistence type.

[000105] In accordance with an embodiment, configuration objects can be used to
define the attributes for a particular component for use with a partition. These objects are
similarly injectable, which allows looking up configuration information of a given partition by,
for example, injecting the configuration object and looking up the information for that

partition.

Environment

[000106] In accordance with an embodiment, a set of partitions across different

-14-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

components can be linked together as an environment, to form a cohesive unit that serves a
tenant's needs. While an environment can have more than one partition of each type,
typically they will only have one of each type of partition. For example, in an FA scenario
there can be more than one WLS partition from each of the domains in the multidomain
topology; in such a scenario there can be multiple associations between WLS and OTD and

Database that must be supported.

Component / Runtime
[000107] In accordance with an embodiment, a component or runtime is a software
component, for example an OTD, WLS, Coherence, or Database component. In accordance

with other embodiments, additional types of software components can also be supported.

Lifecycle Manager

[000108] In accordance with an embodiment, the lifecycle manager enables
configuration integration across different components, for example application servers, traffic
directors or load balancers, and database or other components, which may have their own
partition-specific configurations. The lifecycle manager can be implemented as a library
providing a local API and/or REST access to clients to create lifecycle configurations, update
those configurations, view those configurations, and destroy those configurations across an

environment.

Lifecycle Plugin

[000109] In accordance with an embodiment, a lifecycle plugin is a software module
that provides a bridge between the lifecycle manager and a component, for example an
OTD, WLS, Coherence, or Database component. Lifecycle plugins can include classes that
implement the runtime plugin and partition plugin (where supported) interfaces as HK2
services, which enable the lifecycle plugin to participate in configuration change transaction
and notification events and take whatever action is appropriate to reflect that activity in a
component. The plugin API is generally agnostic of the underlying protocol used to perform
the actual lifecycle operations for a runtime or a partition. The implementation of the plugin
can choose how to connect to the runtime to perform the necessary operations. For
example, in accordance with an embodiment, when an operation is initiated on a runtime via
the runtime manager, such as quiesce, scaleUp or scaleDown, an implementation of the
runtime plugin corresponding to the runtime type can be looked up via HK2, and the
corresponding method of the runtime plugin (e.g, RuntimePlugin) implementation invoked for

the runtime plugin to take appropriate action.

-15-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

Client

[000110] In accordance with an embodiment, a client refers to any client of a lifecycle
manager, which interacts with the lifecycle manager via, e.g., REST APIs or in an embedded
case via Java APIs. Examples of clients include Oracle Fusion Middleware Control (FMWC)
and Enterprise Manager Cloud Control (EMCC), and curl-based scripts. In accordance with
an embodiment, the lifecycle manager REST APIs can be used within products such as
Enterprise Manager when provisioning and updating partition configurations across

components.

Lifecycle Use Cases

[000111] In accordance with an embodiment, the following are examples of lifecycle
use cases: 1. Partition CRUD operations for a component, including the creation, deletion
and updates of a partition; 2. Runtime operations for a component, including registration of
runtimes, updates to the registered runtimes and unregistration of runtimes; and 3.
Association of partitions across different components, so that associating two partitions wires
the two slices of runtimes (for example, a Database with WLS, or an OTD with WLS), so that

the two can be used together.

Lifecycle Interactions

[000112] Figure 7 illustrates an end-to-end lifecycle event diagram in a multitenant
application server environment, in accordance with an embodiment.

[000113] As illustrated in Figure 7, in accordance with an embodiment, the lifecycle
manager can allow orchestration of components associated with one or a plurality of plugins,
such as an application server (e.g., WLS) lifecycle plugin 420, a traffic director (e.g., OTD)
lifecycle plugin 422, a database (e.g., Oracle Database) lifecycle plugin 424, and/or an in-
memory data grid (e.g., Coherence) lifecycle plugin 426.

[000114] In accordance with an embodiment, in response to receiving a request to
create an environment 430 (together with any associated metadata), the lifecycle manager
orchestrates the creation and association of the various component partitions, and returns
the environment 432, for the tenant to use thereafter.

[000115] Figure 8 illustrates an end-to-end lifecycle topology in a multitenant
application server environment, in accordance with an embodiment.

[000116] As illustrated in Figure 8, in accordance with an embodiment, a simple or
single domain usage can include one or more clients 440, an admin server 450, a cluster of
managed servers 452 (here indicated as MS1, MS2 and MS3), a database 454, and a traffic
director / load balancer 460, wherein the lifecycle manager is running in the domain it

manages, along with the other components such as OTD, Database and Coherence.

-16-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

[000117] In this scenario, the end-to-end lifecycle configuration can be stored in an
XML file and is made available on the managed servers to establish the tenancy at runtime.
The lifecycle manager can be enabled out-of-the-box in some application server
environments, where it will be running on the admin server and will not require any additional
setup.

[000118] Figure 9 illustrates another end-to-end lifecycle topology in a multitenant
application server environment, in accordance with an embodiment.

[000119] As illustrated in Figure 9, in accordance with an embodiment and a more
complex scenario, such as FA provisioning using Enterprise Manager (EM) in an enterprise
deployment, wherein the lifecycle manager may be managing a lot of components and may
also have high-availability requirements, the lifecycle manager can run in a separate lifecycle
manager cluster / domain 471, as a plurality of EM/FA provisioning instances 472, 474, 476,
each having lifecycle manager functionality 473, 475, 477.

[000120] In accordance with an embodiment, the lifecycle manager domain can be
used to manage other domains or components, such as domain 490 having a cluster 492 of
managed servers (here indicated as MS1, MS2 and MS3).

[000121] In this scenario, the lifecycle manager can run on the managed servers in the
lifecycle manager cluster, and the end-to-end lifecycle configuration can be persisted in the
database, so that any domains or runtimes that need access to the information can access
the database to obtain that information.

[000122] In both of the above topologies, the components that can be managed within
the lifecycle will be determined by the lifecycle plugins that are registered with the lifecycle
manager, which in addition to configuration and creation can also support an elasticity

functionality for scaling of runtimes as appropriate.

Lifecycle Runtime

[000123] In accordance with an embodiment, a lifecycle runtime (e.g.,
LifecycleRuntime) represents a component or managed service such as WLS, OTD, or
Database. A lifecycle runtime can be managed by the lifecycle manager if an instance of the
runtime plugin is implemented by the component. The runtime plugin provides
implementations that allow operations such as creation, deletion, update, scaling up, scale
down and quiescing operations that can be performed on the runtime that is being managed
via lifecycle manager. A runtime can either be created via the lifecycle manager, or can be
registered with the lifecycle manager if created out of band for use by the lifecycle manager
via a register runtime (e.g., registerRuntime) method in the runtime manager.

[000124] In order to perform any operations on a runtime, an instance of the runtime

must be looked up. In accordance with an embodiment, an instance of a lifecycle runtime

17-

10

15

20

25

WO 2016/049576 PCT/US2015/052459

can be looked up using a runtime manager for the given runtime type as described below. A
lifecycle runtime that represents managed services that support the use of a partition (a slice
of the runtime) allow CRUD operations for that partition on the lifecycle runtime.

[000125] In accordance with an embodiment, in order to create a partition after looking
up a lifecycle runtime, a create partition (e.g., createPartition) method of the lifecycle runtime
can be used to create a partition on the selected runtime. The way the partition is created is
that the partition plugin for the lifecycle runtime will be looked up as a HK2 service for the

runtime type, and the corresponding create method on the partition plugin is invoked.

Runtime Manager

[000126] In accordance with an embodiment, a runtime manager (e.g.,
RuntimeManager) can be provided as a singleton HK2 service that is used to manage
runtimes. A runtime manager can be provided per Java virtual machine (JVM) that will
manage the lifecycle of all runtimes on that JVM. Using a runtime manager, a runtime can
be created or registered. The runtime manager also provides operations to create, delete,
update, scaleUp, scaleDown and quiescing of a runtime. The runtime manager will look up
the runtime plugin as a HK2 service for that runtime type and invoke the corresponding
operation on the plugin.

[000127] In accordance with an embodiment, once a runtime manager is looked up for
a given runtime type, then scaleUp and scaleDown operations on that runtime manager can
be called for the specified runtime. The runtime manager will look up the corresponding
runtime plugin for the service and invoke the scaleUp or scaleDown operation. This runtime
support is particularly useful in addressing elasticity use cases.

[000128] In accordance with an embodiment, the runtime manager provides the

following operations for use with runtimes:

gcreateRuntime SRuntime can be created if the runtime plugin for the component§
: gsupports creating the runtime. :
deIeteRuntlme ... Runtlmecanbedeleted|ftheruntlmepluglnforthecomponent
| gsupports deleting the runtime. |
?dbdéiéﬁdﬁﬁfﬁé"'WWW”W”””””'"'E'R'Ljh't'i'rﬁé”ééh"bé”[jbdé‘t‘éd"'i'f"t'h'é"r”u'h't”i'r'h'é"bl”u'g'i”h"fb'r"tﬁé”ébfﬁbb'héﬁté
gsupports updating the runtime. 5
gregisterRuntime ?Registers a pre-created runtime with LCM. At a minimum a

| gruntime MUST be registered with LCM in order to perform

gsubsequent operations on the runtime.

gunregisterRuntime ?Unregisters a runtime. A runtime can only be unregistered

18-

WO 2016/049576

quiesceRuntime

scaleUp

scaleDown

San UnsupportedOperationException MUST be thrown.

§If a runtime supports scaling operations, the scaleDown method§

PCT/US2015/052459

gwhen LCM isn't managing any artifacts that reference the :
gruntime. All partitions on the runtimes MUST be deleted before
a runtime can be unregistered. If an attempt is made to |
gunregister a runtime when there are references to it from LCM

gartifacts, an lllegalStateException MUST be thrown.

§If a runtime supports quiescing, the quiesceRuntime method on§
gruntime manager will invoke the corresponding method for
gquiescing a runtime on the runtime plugin. If a runtime supports§
gmore than one phase for quiescing, for example start_quiesce
gand end_quiesce, the quiesce method could be called more |
;than once with a phase. If a runtime doesn't have phases for _
gquiescing, a null value for phase MUST be passed. If a runtime
gdoes not support quiescing, an |

§UnsupportedOperationException MUST be thrown.

§If a runtime supports scaling operations, the scaleUp method
Son runtime manager will scale the runtime up by invoking the
Scorresponding runtime plugin to perform the operation of

éscaling up the runtime. If a runtime does not support scaleUp,

éon runtime manager will scale the runtime down by invoking the%
gcorresponding runtime plugin to perform the operation of :
gscaling down the runtime. If a runtime does not support
gscaIeDown, an UnsupportedOperationException MUST be
;thrown.

" Returns the runtime object with the specified name. If there is
?no runtime with the specified name, null will be returned.

;Returns a list of runtimes for the specified runtime type. If there

éare no runtimes registered or created for the runtime type, null

gwill be returned.

getRuntimes() §Returns a list of all the runtimes that LCM is managing. If no
?runtimes have been registered or created using LCM, null will
?be returned.
[000129] In accordance with an embodiment, the following pseudo code illustrates how

a WLS runtime and a Database runtime, which have been pre-created, are registered with

lifecycle manager and are then subsequently used by lifecycle manager to create partitions

on the runtimes:

-19-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

@Inject

private RuntimeManager rtmMgr;

// Database is the type of the Runtime and DBl is the actual instance
rtmMgr.registerRuntime ("Database™, "DB1", dbProps);

// WebLogic is the type of Runtime and WLSMTRuntimel is the actual instance
rtmMgr.registerRuntime ("WebLogic", "WLSMTRuntimel", wlsProps):;

// You can lookup a specific Runtime or have RuntimeManager select

// one based on the type of the Runtime and some internal heuristics to
determine

// which one to pick.

LifecycleRuntime wlsRuntime = rtmMgr.getRuntime ("WLSRuntimel™) ;

// Create a WLS Partition and a Slice/Partition of a Database
LifecyclePartition wlsPartition =

wlsRuntime.createPartition ("cokeCRMWLSProdPartition”, wlsPartitionProps) ;
// Get the Database runtime

Runtime dbRuntime = rtmMgr.getRuntime ("DB1") ;

// Create a Database Partition (PDB in 12c¢ Database case)

LifecyclePartition pdb = dbRuntime.createPartition ("cokeCRMPDBProd", pdbProps):;

Quiescing of Runtimes

[000130] In accordance with an embodiment, components such as WLS, which can
include support for quiescing / graceful shutdown of runtimes, can support the quiescing
capabilities via the lifecycle manager by implementing the quiescing support in the runtime
plugin. Quiescing a runtime may have different phases. In such a scenario, the quiesce
method of a runtime plugin may be invoked more than once, indicating the quiescing phase
via the phase parameter in the quiesce method.

[000131] For example, there may be a "start_quiesce" phase, indicating that the server
is beginning its quiescing phase thus notifying that no new requests be forwarded to the
server that is being quiesced. After the quiescing is done, the subsequent call will have a
phase "end_quiesce" phase indicating that the server is now ready to start accepting new
requests again. If a component supports additional phases, those phases can be supported
by the runtime plugin to ensure complete functionality.

[000132] The "start_quiesce", "end_quiesce" are examples of phases that a component
might support and not a normative list of phases that every component must support. If a
component does not support quiescing then an UnsupportedOperationException must be

thrown. If a component does not support phases, a null value is a valid value that would be

-20-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

passed to the quiesce method.

Runtime Scaling

[000133] One of the advantages of a multi-tenant environment is to share hardware,
resources and services across multiple applications and user groups, achieving economies
of scale and allowing administrators to have the flexibility in assigning capacity as the needs
of these users vary over time.

[000134] In accordance with an embodiment, lifecycle manager APIs provide the
capability for other elasticity frameworks to be able to scale up and scale down runtimes.
The runtime manager and runtime plugin provide scaleUp and scaleDown methods for users
to call to scale a runtime.

[000135] In accordance with an embodiment, when scaleUp or scaleDown is called in
runtime manager, the runtime plugin corresponding to the runtime type is looked up and the
scaling operation is invoked on the instance of the runtime plugin. If a component does not
support scaling operations, the implementation of the runtime plugin must throw an

UnsupportedOperationException.

Runtime Plugin Implementation
[000136] In accordance with an embodiment, illustrated below is a pseudo code for a

runtime plugin (for readability, this example does not implement all the abstract methods):

package com.oracle.weblogic.lifecycle.plugin.wls;
import com.oracle.weblogic.lifecycle.core.LifecyclePartitionImpl;
import org.jvnet.hk2.annotations.Service;

import com.oracle.weblogic.lifecycle.*;

@Service (name = "Weblogic™")

public class WLSRuntimePlugin extends RuntimePlugin {

public void create (String runtimeName, LifecycleContext ctx) throws
LifecycleException

// If a component wants to support creation of Runtimes via LCM,

// then the implementation of create for a Runtime will need to be provided

}

public void delete (String runtimeName, LifecycleContext ctx) throws
LifecycleException
// If a component wants to support deleting of Runtimes via LCM,

// then the implementation of delete for a Runtime will need to be provided

-21-

10

15

20

25

WO 2016/049576 PCT/US2015/052459

public void update (String runtimeName, LifecycleContext ctx) throws
LifecycleException

// If a component wants to support updating of Runtimes via LCM,

// then the implementation of update for a Runtime will need to be provided

}

public void scaleUp(String runtimeName, int scaleFactor, LifecycleContext ctx)
throws LifecycleException

// If a component wants to support scaleUp of Runtimes via LCM,

// then the implementation of scaleUp for a Runtime will need to be provided

}

Partition Plugin

[000137] In accordance with an embodiment, runtimes that support partitions (for
example, slices of runtimes such as WLS, 12¢ Database etc) must provide an
implementation of a partition plugin. When an operation on a runtime is invoked, such as
createPartition, the implementation of partition plugin corresponding to the runtime type will
be looked up as an HK2 service, and the corresponding create method will be invoked on the
partition plugin implementation class. It is up to the implementation class to connect to the
runtime and create the slice of the runtime. Once created, the partition is registered with
lifecycle manager and persisted in the lifecycle- config.xml. In accordance with an

embodiment, the runtime provides the following functions for partitions:

gcreatePartition ;Create a partition on the runtime that supports creation of a slice
| gof a runtime. Throws UnsupportedOperationException if the :
gruntime does not support slicing a runtime.
édéié‘t‘é‘lf"é‘r‘t“i‘t‘i‘dhw‘”””””"""""‘”””W‘E‘I‘Z‘)‘él‘é‘t‘é"é"béft“ifi‘dh”bﬁ‘fh‘é”fdh‘t“i‘rﬁé‘“t‘hé‘t“é‘t‘jbbb‘r“t‘é‘dé‘léfi‘dh“bfé‘él‘iéé“E
| gof a runtime. Throws UnsupportedOperationException if the |
: gruntime does not support slicing a runtime.
?updatePartition ?Update a partition on the runtime that supports updating of a _
: gslice of a runtime. Throws UnsupportedOperationException if the§
gruntime does not support slicing a runtime. :
§féé'i'é't'é'f'l':"'é'ffi'fib'h"'WW”WW”””””'éR”éQ'i'é't'é'f"é"bé"r't'i't'i'b'h"if'”t'h”é"b'é'ffit'ib'r'i"\'/'\'/éé"c'ﬁfé'é't'é'd'”r'ib't”dé'i'hé'I:C'I'\)I
| ;but some other mechanism. Throws

;UnsupportedOperationException if a runtime does not support

10

15

20

25

WO 2016/049576 PCT/US2015/052459

: Spartitions / slicing a runtime.

?getPartition ?Get a partition by the name specified on the runtime that

5 gsupports creation of a slice of a runtime. If the runtime supports
gpartitions but does not have a partition with the specified name, _
a null value is returned. If the runtime does not support partitions%
/ slicing of a runtime, this method MUST throw 5
;UnsupportedOperationException.

getPartitions ;Returns a list of all partitions that have been created on the

gruntime. If the runtime supports partitions but does not have any
épartitions created on the runtime, a null value is returned. If the ‘
éruntime does not support partitions / slicing of a runtime, this

gmethod MUST throw UnsupportedOperationException.

[000138] In accordance with an embodiment, illustrated below is a pseudo code for a
partition plugin. All operations in the plugin make a JMX connection to the actual WLS

Runtime to perform the operations on the WLS Runtime in this example:

package com.oracle.weblogic.lifecycle.plugin.wls;

import com.oracle.weblogic.lifecycle.core.LifecyclePartitionImpl;
import org.jvnet.hk2.annotations.Service;

import com.oracle.weblogic.lifecycle.*;

@Service (name = "Weblogic™")

public class WLSPartitionPlugin extends PartitionPlugin {

@Override

public LifecyclePartition create(String partitionName, LifecycleContext ctx,
Lifecycle LifecycleException {

// Implementation of creating a WLS partition.

}

@Override

public abstract LifecyclePartition migrate (String partitionName, String phase,
LifecycleContext ctx,LifecycleRuntime runtime) throws LifecycleException

{

//Implementation of migration of a WLS Partition / Resource Group.

}

@Override

public abstract LifecyclePartition quiesce (String partitionName, String phase,
LifecycleContext ctx, LifecycleRuntime runtime) throws LifecycleException

{

//Implementation of migration of a WLS Partition / Resource Group.

-23-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

}

@Override

public void delete (String partitionName, LifecycleContext ctx, LifecycleRuntime
runtime) throws LifecycleException

//Implementation of delete of a WLS Partition

}

@Override

public LifecyclePartition update (String partitionName, LifecycleContext ctx,
Lifecycle LifecycleException {

// Implementation of update of a WLS Partition configuration

}

@Override

public void associate (LifecycleContext ctx, LifecyclePartition wlsPartition,
LifecyclePartition otherPartition, LifecycleRuntime runtime) throws
LifecycleException

// Associate two partitions (WLS partition with DB for example or WLS with

OTD) .

}

@Override

public void dissociate (LifecycleContext ctx, LifecyclePartition wlsPartition,
LifecyclePartition otherPartition, LifecycleRuntime runtime) throws
LifecycleException

//Dissociate previously associated partitions

}

}

Plugin Registration

[000139] As described above, in accordance with an embodiment, runtime plugins and
partition plugins can be defined as an HK2 contract, with an implementation of these plugins
as HK2 services. The HK2 service name must match the name of the service for which the
plugin is registered. Plugin registration can be done in two ways: The plugins are packaged
as a jar file and registered with lifecycle manager via REST commands; or drop the plugin
implementation jars in a directory specified by lifecycle manager implementation which must
be configurable by the, e.g., WLS System Administrator. The lifecycle manager will scan the
directory at startup to load the plugins and register with lifecycle manager implementation.
The default directory for placing the plugins is

oracle_home/wlserver/common/lifecycle/plugins.
Environment

[000140] In a typical production system, there will generally be more than one artifact

like a WLS partition, a Database partition, and others that will be required to run an

-24-

10

15

20

WO 2016/049576 PCT/US2015/052459

application. In accordance with an embodiment, an environment provides a grouping
construct for all the associated pieces of an application. The lifecycle manager allows the
user to create an environment, which can then be used by the system administrator to group
partitions for a given tenant. In accordance with an embodiment, an environment provides

the following functions for partitions:

Operation ?Description

i EAddé”t'h'é"g'i\'/'é'r'i”b'éft'i'fib e
e o '\}éé”tﬁé"g' e partition from the snvirenment.
ég‘é‘t“lf"éft‘i‘t“i ons(type) é‘R‘ét“L‘J‘f‘hé”é list of ail partitions of ‘t‘h‘é"g"i‘\)é”hmt‘ybé”i‘h”t‘hé

genvironment. If the environment does not have any partitions of

;the specified type, null will be returned.

ggetPartitions ;Returns a list of all partitions in the environment. If the

| genvironment does not have any partitions null will be returned.
;éé”sbéié”té ... ;Aé'éb'c':'i'é't'éé”('\'/'\'/'i'fé'sm)'”t'\'/'\'lb”bé'r”t'i't”ib'r'ié”'i'h”'t'ﬁé'é'r'i'\)i”r'dh'r'ﬁé'h't”."if&”r'ﬁb'féw':
: ;details see section below.

éd'i'é'éb'c':'i'é't'é ... éb'i'é'éb'c':'i'é't'éé'”t'\'/'\b”bé'r”t'i't”ibﬁé'”i'h”'t”h'é"éﬁ'\'/'i”r'c')”r'i'r'ﬁé'h't”.'ﬁ&r”fﬁ'(')”r'é'dé't'é'i'l'é
| gsee section below.

é'r'h'i'g”r'é't'é .. ?I'h'i'fiéfé'é”r'r'i'ié'r'éfib'r'i"6'f”'é"b'é'f't'i”t'ib'h'."'F”d'r”'r”h'b”r'é"d'é't'é'ii's””s”é'é”éé'é't'i'dh
| ?below.

Association of Partitions with Environments

[000141] In accordance with an embodiment, once a partition is added to an
environment, it can be associated with the other partitions that were added to the
environment.

[000142] For example, if an environment has a WLS partition and a database,
associating the two will result in a DataSource being created in WLS referring to the
database with which it is being associated. To associate two partitions, the partitions first
need to be added to an environment. Once added to an environment, then an associate
(e.g., Associate) method can be called on the environment passing in the two partitions that
need to be associated. When associate is called on an environment, the corresponding
plugin's associate method is called along with a lifecycle context (e.g., LifecycleContext)
object. The lifecycle context should have the necessary information that is passed to the
plugins to be able to do the necessary wiring of the two partitions. The associate method of
partition plugins are invoked in the order in which they are passed into the environment’s

associate method call.

-25-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

Dissociation of Partitions from Environments

[000143] In accordance with an embodiment, if a partition is no longer being used,
references to that partition from other partitions in the environment need to be removed
before it can be deleted. Dissociation provides a mechanism to un-wire two partitions in an
environment. When dissociation is called, the partition plugin's corresponding dissociate
method is invoked and it is the responsibility of the plugin to remove the configuration that
wire the two partitions together.

[000144] For example, if a WLS partition is dissociated from an OTD partition
configuration, the routing information that was configured in OTD will be removed and no
traffic to the partition will be routed via OTD. The dissociate method of partition plugins are

invoked in the order in which they are passed into the method call.

Partition Migration

[000145] In accordance with an embodiment, runtimes that support migration of
partitions, need to implement the migrate method of partition plugin. When migrating a
partition, the other partitions that are associated with it may also need to take action. To
address this, a migrate method acts on the environment. The lifecycle manager
infrastructure must invoke the migrate method of the partition that is being migrated first, and
then call the migrate method of the other partitions that are in the environment.

[000146] In accordance with an embodiment, the migrating of a partition may have
different phases. In such a scenario, the migrate method of a partition plugin may be
invoked more than once, indicating the migration phase via the phase parameter in the
migrate method.

[000147] For example, there may be a "start_migration" phase, indicating that the
partition migration phase is beginning. After the migration is done, the subsequent call will
have a phase "end_migration" phase indicating that the partition has been migrated. If a
partition supports additional phases, those phases can be supported by the partition plugin to
ensure complete functionality.

[000148] The "start_migration”, "end_migration" are examples of phases that a
partition might support and not a normative list of phases that every partition must support. If
a partition does not support migration then an UnsupportedOperationException must be
thrown. If a partition does not support phases, a null value is a valid value that would be

passed to the migrate method.

Quiescing of Partitions
[000149] In accordance with an embodiment, runtimes that support quiescing of

partitions will need to implement the quiesce method of partition plugin. The lifecycle

-26-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

manager will check the state of partition to ensure that the partition is in a compatible state

before trying to quiesce the partition.

Configuration Module

[000150] In accordance with an embodiment, the lifecycle manager includes a
configuration module that manages the various configuration elements needed for its
operation. The configuration module provides the necessary configuration infrastructure for
various scenarios described here. The configuration module works in two modes: local - in
which the lifecycle runs on admin server, configuration is persisted in an XML file in the WLS
config directory; and HA - in which the lifecycle can run on a cluster, configuration is
persisted in a database. In either case, lifecycle configuration uses the HK2 framework to

manage configurations.

Lifecycle Configuration File Propagation

[000151] In accordance with an embodiment, when changes are made to the
configuration file on the admin server, those changes must be propagated to all managed
servers. The managed servers use the lifecycle configuration to establish the right tenant
context for applications running on the managed server. HK2 config objects do not allow a
reparsing of the xml configuration file. Instead, a new object must be instantiated and the
updated xml file parsed fresh. When a configuration change is committed, the XML file

is saved into a special directory, namely, the pending directory for the domain.

File Transfer to Managed Servers

[000152] In accordance with an embodiment, a LifecycleConfigDocument save()
method is called by HK2 whenever a change has been committed. This method also saves
a copy of the file to the pending directory, and then calls the following AP| which triggers the

uploading of the changed file to managed servers:

ConfigurationManagerMBean.startEdit (...)

ConfigurationManagerMBean.activate(...)

Watching for changes

[000153] In accordance with an embodiment, a FileWatcher daemon, started on the first
parse of the configuration file, will detect that the xml file has changed. It will then create a
new config object and parse the xml file. Any callers will be blocked trying to access
information during the parsing. As soon as the parsing is complete, the modified data will be

available for callers.

-27-

10

15

20

25

30

WO 2016/049576 PCT/US2015/052459

Accessing the Configured Data
[000154] In accordance with an embodiment, the HK2 configuration can be exposed

with with LifecycleConfigFactory class, for example:

@Service

public class LifecycleConfigFactory implements PostConstruct {
public LifecycleConfig getLifecycleConfig();

public synchronized void reloadLifecycleConfig () ;

}

Edit Sessions
[000155] In accordance with an embodiment, for REST requests, that require a change
in WLS configuration, each REST call creates and manages edit sessions on behalf of a

user. This is similar to the 'implicit changes' in development mode in the console.

LifecycleTask

[000156] There are certain operations performed via lifecycle manager that are
naturally long running asynchronous operations. Examples of such operations are: quiescing
Server (runtime manager.quiesce); or starting a Server (runtime manager.quiesce). In such
scenarios the semantic of lifecycle manager APl can be made asynchronous, to return a

LifecycleTask object from these APIs.

LifecycleTaskManager

[000157] Generally, when a user performs an asynchronous operation and receives a
LifecycleTask object back, they can do one of two things with that object: get a status of the
Asynchronous operation represented by the lifecycle task; or cancel the asynchronous
operation represented by the lifecycle task. In accordance with an embodiment, the above

operations are performed by the interfaces exposed by LifecycleTaskManager:

‘Operation Description
getTaSkStatus Get th e . Status Of an async Operation . repre Sented . by . LifeCyCIeTaSk
?canceITask ?Cancel the async operation represented by LifecycleTask.

Lifecycle APIs and Classes
[000158] In accordance with various embodiments, examples of lifecycle interfaces and

classes are described below. In accordance with other embodiments, other types of

-28-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

interfaces and classes can be provided.

Lifecycle Manager

[000159] In accordance with an embodiment, an exemplary Lifecycle Manager interface

is described below:

package com.oracle.weblogic.lifecycle;
import java.util.List;

import org.jvnet.hk2.annotations.Contract;

@Contract

public interface LifecycleManager {

/‘k‘k

* @param environmentName

* @return object Environment

* This interface for creating a named logical Entity called Environment
*/

public Environment createEnvironment (String environmentName) ;

/‘k‘k
* @param environmentName

*

*/

public void deleteEnvironment (String environmentName) ;

Jxx

* @param environmentName

* @return object Environment

* This interface for getting Environment object given its name
*/

public Environment getEnvironment (String environmentName) ;
/‘k‘k

* @param partitionId

@param runtimeName

@return object Environment
* This interface for getting Environment object partition Id and

*/

public Environment getEnvironment (String partitionId, String runtimeName) ;
/‘k‘k
* @return List of Environment

* This interface has responsibility for getting all Environments.

*/

-29-

This interface for deleting a named logical Entity called * Environment

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

public List<Environment> getEnvironments () ;

/‘k‘k

* This interface has responsibility for syncing all Environments.

* This call force sync partitions in an environment for all Environments
*/

public void syncEnvironments() ;

/‘k‘k

* This interface has responsibility for syncing a named Environment.

® This call force sync partitions in an environment for given named
Environment

*/

public void syncEnvironment (String environmentName) ;
}
Runtime Manager.Java

[000160] In accordance with an embodiment, an exemplary Runtime Manager.Java

interface is described below:

package com.oracle.weblogic.lifecycle;
import java.util.List;
import java.util.Map;

import org.jvnet.hk2.annotations.Contract;

@Contract

public interface RuntimeManager {

/x*
* @param runtimeType The type of runtime for which the runtime is being
created

* @param runtimeName The name of the runtime for the runtime being created
* @param properties Properties to be passed to the runtime plugin

* @return

* @throws LifecycleException is thrown if the operation fails.

*/

public LifecycleRuntime createRuntime (String runtimeType, String runtimeName,

Map<String, PropertyValue> properties) throws LifecycleException
Jxx
* @param runtimeType The type of runtime being deleted (not sure if we
need this . if we can determine the type from the runtime)
@param runtimeName The name of the Runtime being deleted

* @throws LifecycleException thrown if the operation fails.

*/

public void deleteRuntime (String runtimeType, String runtimeName)

-30-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

throws LifecycleException;
Jxx
* @param runtimeType The type of runtime being updated (not sure if we
need this . if we can determine the type from the runtime)

@param name The name of the Runtime being updated

@param properties Properties to be passed to the runtime plugin
@return

® @throws LifecycleException thrown if the operation fails.

*/

public LifecycleRuntime updateRuntime (String runtimeType, String name,
Map<String, PropertyValue> properties) throws LifecycleException

/x*
* @param runtimeType The type of runtime being operated on

@param name The name of the Runtime being operated on

@param phase Phase for operation

@param properties Properties to be passed to the runtime plugin
@return

@throws LifecycleException thrown if the operation fails.

*/

public LifecycleTask quiesceRuntime (String runtTimeType, String name, String
phase, M

/x*

@param runtimeType The type of runtime being operated on

@param name The name of the Runtime being operated on

@param phase Phase for operation

@param properties Properties to be passed to the runtime plugin
@return

@throws LifecycleException thrown if the operation fails.

*/

public LifecycleTask startRuntime (String runtTimeType, String name, String
phase, Map

/x*

@param runtimeType The type of runtime being registered

@param runtimeName The name of the runtime being registered

@param properties Properties to be passed to the runtime plugin

@throws LifecycleException if the register operation fails
*/

public void registerRuntime (String runtimeType, String runtimeName,
Map<String, PropertyValue> properties) throws LifecycleException
/‘k‘k

-31-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

¥

*/

@param runtimeType The type of runtime being unregistered
@param runtimeName The name of the runtime being unregistered

@throws LifecycleException if the register operation fails

public void unregisterRuntime (String runtimeType, String runtimeName)

throws LifecycleException;

/**

&

*

*/

@param runtimeType The type of runtime being scaled up

(not sure if we need this . if we can determine

the type from the runtime)

@param runtimeName The name of the Runtime being scaled up

@param scaleFactor The factor by which it is being scaled up.

@param properties Properties to be passed to the runtime plugin
@throws LifecycleException thrown if the operation fails.

@throws UnsupportedOperationException if the operation isn't supported

by the runtime type

public LifecycleTask scaleUp(String runtimeType, String runtimeName, int

scaleFactor,

Map properties) throws LifecycleException;

/**

ES

*

*/

@param runtimeType The type of runtime being scaled down

(not sure if we need this . if we can determine

the type from the runtime)

@param runtimeName The name of the Runtime being scaled down

@param scaleFactor The factor by which it is being scaled down.

@param properties Properties to be passed to the runtime plugin
@throws LifecycleException thrown if the operation fails.

@throws UnsupportedOperationException if the operation isn't supported

by the runtime type

public LifecycleTask scaleDown (String runtimeType, String runtimeName, int

scaleFactor

Map properties) throws LifecycleException;

/**

*

*/

Get the specified Runtime

@param runtimeName Get the specific runtime by name.

@return

-32-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

public LifecycleRuntime getRuntime (String runtimeName) ;
/**

* Get a List of runtimes for the specified runtime type.

*

* @param runtimeType Get all the runtimes for the given runtime type

* @return List of LifecycleRuntimes

*/

public List<LifecycleRuntime> getRuntimes (String runtimeType) ;
/‘k‘k
* Get a list of all the runtimes.

*

* @return List of Runtimes.

*/
public List<LifecycleRuntime> getRuntimes () ;

}

Lifecycle Runtime

[000161] In accordance with an embodiment, an example Lifecycle Runtime interface is

described below:
package com.oracle.weblogic.lifecycle;
import java.io.File; import java.util.List; import java.util.Map;

import java.util.Properties;

public interface LifecycleRuntime {

/‘k‘k

* Get the name of the Runtime

* @return the name of the runtime

*/

public String getRuntimeName () ;

/‘k‘k

* The type of service of the runtime
* @return the type of the runtime

*/

public String getRuntimeType () ;

public void applyPartitionTemplate (File partitonTemplate);
/**
B

The properties that represent the runtime

@return the type of the runtime

-33-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

*/

public Properties getRuntimeProperties();

/**

® Create a partition on this Runtime

* @param partitionName The name of the partition

* @param properties Properties passed to the plugin.
* @return

*/

public LifecyclePartition createPartition(String partitionName, Map properties)
throws

/**

* Delete the specified Partition

* @param partitionName The specified named Partition to be deleted
*/
public void deletePartition(String partitionName, Map properties) throws

LifecycleException

/**

* Update the specified Partition

* @param partitionName The specified named Partition being updated
* @param properties Properties passed to the plugin.

* @return

*/

public LifecyclePartition updatePartition (String partitionName, Map properties)
throws

/**

* @return List of Partitions on this Runtime

*/

public List<LifecyclePartition> getPartitions();

/**

* Get the specific named Partition.

@param partitionName The name of the Partition to get.

* @return

*/

public LifecyclePartition getPartition (String partitionName) ;
Jx*
® Register a partition on this Runtime with LCM
@param partitionName The name of the partition
@param partitionId The ID of the partition

@return

@throws com.oracle.weblogic.lifecycle.LifecycleException

*/

-34-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

public void registerPartition(String partitionName, String partitionId);

Jxx
® UnRegister a partition on this Runtime with LCM

* @param partitionName The name of the partition

* @return

* @throws com.oracle.weblogic.lifecycle.LifecycleException
*/

public void unregisterPartition(LifecyclePartition partition);

}

Lifecycle Partition
[000162] In accordance with an embodiment, an exemplary Lifecycle Partition package
is described below:

package com.oracle.weblogic.lifecycle;

public interface LifecyclePartition {

public String getName (); public String getType (); public String getId():;
public String getRuntimeName () ;

}

Runtime Plugin
[000163] In accordance with an embodiment, an exemplary Runtime Plugin class is

described below:

package com.oracle.weblogic.lifecycle;

import org.jvnet.hk2.annotations.Contract;

@Contract

public abstract class RuntimePlugin {

Jxx
* @param runtimeName

* @param ctx

* @throws com.oracle.weblogic.lifecycle.LifecycleException

* Implementation of method should facilitate creation of runtimes using
runtime

*/

public abstract void create (String runtimeName, LifecycleContext ctx) throws

LifecycleException

-35-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

/x*
® @param runtimeName

* @param ctx

* @throws com.oracle.weblogic.lifecycle.LifecycleException

* Implementation of method should facilitate deletion of runtimes using
runtime

*/

public abstract void delete (String runtimeName, LifecycleContext ctx)

throws LifecycleException

/x*
® @param runtimeName

* @param ctx

* @throws com.oracle.weblogic.lifecycle.LifecycleException

® Implementation of method should facilitate updates of runtimes using
runtimelN

*/

public abstract void update (String runtimeName, LifecycleContext ctx) throws

LifecycleException

/x*
* @param runtimeName

* @param scaleFactor

* @param ctx

® @throws com.oracle.weblogic.lifecycle.LifecycleException

* Implementation of this method should facilitate scaleUp of runtime
*/

public abstract LifecycleTask scaleUp(String runtimeName, int scaleFactor,
Lifecycle

/x*

* @param runtimeName

@param scaleFactor
@param ctx

@throws com.oracle.weblogic.lifecycle.LifecycleException
® Implementation of this method should facilitate scaleDown of runtime
*/

public abstract LifecycleTask scaleDown (String runtimeName, int scaleFactor,
LifecycleContext

/**

* @param runtimeName

@param ctx

* @throws com.oracle.weblogic.lifecycle.LifecycleException

-36-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

¥

*/

Implementation of this method should facilitate quiesce of runtime

public abstract LifecycleTask quiesce (String runtimeName, String phase,

LifecycleContext

/**

¥

*/

@param runtimeName
@param ctx
@throws com.oracle.weblogic.lifecycle.LifecycleException

Implementation of this method should facilitate start of runtime

public abstract LifecycleTask start (String runtimeName, String phase,

LifecycleContext

}

Partition Plugin

[000164]

In accordance with an embodiment, an exemplary Partition Plugin class is

described below:

package com.oracle.weblogic.lifecycle;

import org.jvnet.hk2.annotations.Contract;

@Contract

public abstract class PartitionPlugin {

/x*
* @param partitionName

* @param ctx

* @param runtime

* @return

* @throws com.oracle.weblogic.lifecycle.LifecycleException

* Implementation of method should facilitate creation of a Partition for a
specific

* Component that the Plugin represents.

*/

public abstract LifecyclePartition create(String partitionName,

LifecycleContext ctx, LifecycleRuntime runtime)

/**

throws LifecycleException;

*

@param partitionName

@param phase

-37-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

@param ctx
@param runtime
@return

@throws com.oracle.weblogic.lifecycle.LifecycleException
* Implementation of method should facilitate migration of a Partition for a
specific

* Component that the Plugin represents.

*/

public abstract LifecyclePartition migrate (String partitionName,
String phase, LifecycleContext ctx, LifecycleRuntime runtime)
/x*

throws LifecycleException;

* @param partitionName

@param ctx

@param runtime
* @throws com.oracle.weblogic.lifecycle.LifecycleException

* Implementation of method should facilitate deletion of a Partition for a

specific
* Component that the Plugin represents.

*/

public abstract void delete (String partitionName,

LifecycleContext ctx, LifecycleRuntime runtime)

throws LifecycleException;

/x*
* @param partitionName

* @param ctx

® @param runtime

* @return

* @throws com.oracle.weblogic.lifecycle.LifecycleException

* Implementation of method should facilitate update of a Partition for a
specific

® Component that the Plugin represents.

*/

public abstract LifecyclePartition update (String partitionName,
LifecycleContext ctx, LifecycleRuntime runtime)

Jxx

throws LifecycleException;

* @param partitionName

@param ctx

@param runtime

-38-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

@return List<LifecycleTask>

* @throws com.oracle.weblogic.lifecycle.LifecycleException

* Implementation of method should facilitate quiesce of a Partition.
*/

public abstract List<LifecycleTask> quiesce (String partitionName,

String phase, LifecycleContext ctx, LifecycleRuntime runtime)

/**

throws LifecycleException;

* @param partitionName

@param ctx
@param runtime
@return List<LifecycleTask>

@throws com.oracle.weblogic.lifecycle.LifecycleException
* Implementation of method should facilitate start of a Partition.
*/

public abstract List<LifecycleTask> start (String partitionName,

String phase, LifecycleContext ctx, LifecycleRuntime runtime)

throws LifecycleException;

/**

¥

@param ctx

@param partitionl
@param partition2
@param runtime

@throws com.oracle.weblogic.lifecycle.LifecycleException

* Implementation of this method should facilitate association of two

Partitions.

*/

public abstract void associate (LifecycleContext ctx,
LifecyclePartition partitionl, LifecyclePartition partition2,
/‘k‘k

throws LifecycleException;

LifecycleRuntime runtime)

® @param ctx

@param partitionl

@param partition2

@param runtime

@throws com.oracle.weblogic.lifecycle.LifecycleException

¥

Implementation of method should facilitate disassociation of two
Partitions.

*/

-39-

WO 2016/049576 PCT/US2015/052459

public abstract void dissociate (LifecycleContext ctx,

LifecyclePartition partitionl, LifecyclePartition partition2, LifecycleRuntime

10

15

20

25

30

35

40

runtime)
throws LifecycleException;

}

Environment

[000165] In accordance with an embodiment, an exemplary Environment interface is

described below:

package com.oracle.weblogic.lifecycle;
import java.util.List;

import java.util.Map;

public interface Environment {

/**

*

* @return Name of environment
*/

public String getName () ;

/‘k‘k

*

* @param partition

*/

public void addPartition(LifecyclePartition partition);
/‘k‘k

*

* @param partitionType

* @param partitionName

*/

public void removePartition (String partitionType,
String partitionName) ;
/**

*

* @return

*/

public List<LifecyclePartition> getPartitions();
/**

*

* @param partitionType

@return

-40-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

*/
public List<LifecyclePartition> getPartitions (String partitionType) ;
/**

* Migrate the specified Partition

@param partition The specified named Partition being updated

@param runtime . the runtime on which the partition exists

* @param properties Properties passed to the plugin.

*/

public void migratePartition(LifecyclePartition lifecyclePartition,
LifecycleRuntime runtime, String phase, Map properties) throws
LifecycleException;

/x*

*

* @param partitionl

ES

@param partition2

*/

public void associate (LifecyclePartition partitionl, LifecyclePartition
partition2, Map partitionProperties) throws LifecycleException;

Jxx

*

* @param partitionl

* @param partition2

*/

public void dissociate (LifecyclePartition partitionl, LifecyclePartition
partition2, Map partitionProperties) throws LifecycleException;

/**

*

¥

@param lifecyclePartition

@param phase
* @param properties

*/

public Map<String, List<LifecycleTask>> quiesce (LifecyclePartition
lifecyclePartition, String phase, Map properties) throws LifecycleException
/**

*

* @param lifecyclePartition

* @param phase

* @param properties
*/
public Map<String, List<LifecycleTask>> start(LifecyclePartition

lifecyclePartition,String phase, Map properties)

-41-

WO 2016/049576 PCT/US2015/052459

throws LifecycleException ;

}

Lifecycle Context
[000166] In accordance with an embodiment, an exemplary Lifecycle Context interface

is described below:

package com.oracle.weblogic.lifecycle;
import java.util.Map;

public interface LifecycleContext {

/**
* Map of properties that are passed from the client to the plugin

* @return

*/
public Map getProperties () ;
}

Lifecycle Operation Type
[000167] In accordance with an embodiment, an example Lifecycle Operation Type

enumerator is described below:

package com.oracle.weblogic.lifecycle;

public enum LifecycleOperationType { CREATE RUNTIME, DELETE RUNTIME,
UPDATE RUNTIME, SCALE UP RUNTIME, SCALE DOWN RUNTIME, CREATE PARTITION,
DELETE PARTITION, UPDATE PARTITION, MIGRATE PARTITION

}

Lifecycle Task
[000168] In accordance with an embodiment, an example Lifecycle Task interface is

described below:

import java.util.Map;

public interface LifecycleTask
{
/**
® Get the type of component the task represents

*

-42-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

@return the type of the task (ex:wls)

* @includeapi forpublicapi

*/

public String getComponentType () ;

/**

* The properties that represent the task

*

* @return the Properties of the task

* Example: used to store things like servername in case of server operation
*/

public Map getProperties () ;
}

Lifecycle Task Manager
[000169] In accordance with an embodiment, an exemplary Lifecycle Task Manager

interface is described below:

import org.jvnet.hk2.annotations.Contract;

import java.util.Map;

@Contract

public interface LifecycleTaskManager {

public String getTaskStatus (String runtimeName, String taskType, Map properties
) throw public void cancelTask (String runtimeName, String taskType, Map
properties) throws LifecycleException

}

[000170] Figure 10 illustrates a flowchart of method for providing end-to-end lifecycle in
a multitenant application server environment, in accordance with an embodiment.

[000171] As illustrated in Figure 10, at step 510, an application server environment is
provided at one or more computers, including a domain for execution of software
applications, which supports one or more partitions, wherein each partition provides an
administrative and runtime subdivision of the domain, and wherein a partition can optionally
include one or more resource groups having a collection of deployable applications or
resources and/or referencing a resource group template.

[000172] At step 512, a lifecycle manager is provided, which enables configuration
integration across different components, for example application servers, traffic directors or

load balancers, and database or other components, which may have their own partition-

-43-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

specific configurations.

[000173] At step 514, a plurality of components are provided, each of which includes a
lifecycle plugin thatprovides a bridge between the lifecycle manager and that component.
[000174] At step 516, during creation or configuration of a partition, the lifecycle
manager performs lifecycle operations that can call a plugin interface, which in turn performs
the actual creation or configuration of a component, for example, the creation of a traffic

director instance, or the creation of a database instance, for use with the partition.

Tenant Onboarding

[000175] In accordance with an embodiment, the system includes support for a tenant
onboarding functionality, which can be used to onboard a tenant for a service to a particular
partition.

[000176] For example, in accordance with an embodiment that includes Fusion
applications (FA), the system can provide a mechanism to onboard an FA tenant for a
service to a given partition. In accordance with an embodiment, each environment can be
associated with a service in the upper stack. When onboarding the tenant, information such
as which partition is the FA service using, the tenant's database associated with the service,
as well as the top-level tenant directory, can be specified.

[000177] In accordance with an embodiment, the system provides an API to map a
tenant to a given partition. For incoming requests, the system can determine the tenant from
the configuration and use that information to establish a tenancy context at runtime. When
queried using, e.g., a Java Required Files (JRF) API, the appropriate tenancy context can
then be made available to the application.

[000178] For example, as described above, the system can be used to create an
environment, so that an e.g., FA tenant can be onboarded, and so that upper stack
components, such as Oracle Platform Security Services (OPSS), and Service Oriented
Architecture (SOA) can then obtain access to provision that environment, so that the finally-
configured environment will have all of the components that the tenant will need.

[000179] In accordance with an embodiment, a tenant can have one or more different
services. For example, a tenant can have a Customer Relationship Management (CRM)
service and/or a SOA service. Generally, each service in the upper stack can be associated
with one or more environment in the application server, which means that a tenant signing up
for two services in the upper stack will generally receive two environments, with the
environments being linked at the tenant level.

[000180] For example, if a tenant signs up for SOA and Business Process Management

-44-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

(BPM) services, then the tenant will receive a SOA environment and a BPM environment,
and these environments will both be linked by that tenant. Each application within an
environment can use a remote call, e.g., as an HTTP or a T3 call, to another environment
associated with that tenant, if necessary.

[000181] As described above, in accordance with an embodiment, the system
recognizes the concepts of tenancy context and partition context, with the former generally
containing more information. A particular service may include several slices or partitions of
various components, for example an application server (e.g., WebLogic, WLS), database
(e.g., Database), and traffic director or other load balancer (e.g., Oracle Traffic Director,
OTD). A tenant context maps to a partition context for a particular tenant, in the manner of
indicating a service and how that service maps to the partition context.

[000182] Figure 11 illustrates tenant onboarding in a multitenant application server
environment, in accordance with an embodiment.

[000183] As illustrated in Figure 11, in accordance with an embodiment, a tenant
onboarding API 550 and configuration interface 560 allows an administrator 562 to provide a
tenant configuration 564. The tenant onboarding process can then use that information to
create a tenant 565 having a UUID and environment 566, and map that tenant’s environment
570 to the appropriate partition or domain-level resources.

[000184] In accordance with an embodiment, each tenant can be associated with a
globally unique ID (UUID), and each service can be similarly associated with a UUID. This
allows the system to operate in the context of whichever service is being called to look up the
tenant context. The system also provides the ability to switch between different tenant
contexts to execute a particular task, which is generally referred to herein in various
embodiments as ExecuteAs functionality.

[000185] For example, in an application server (e.g., WLS) environment, a global or
domain level runtime can be provided, as further described below. A product or component
in the upper stack (e.g, FA, SOA, or BPM) may want to switch to a given tenant context, for
example for onboarding a particular tenant to a particular service. When that tenant is
onboarded, the upper stack software running at the global or domain level can temporarily
switch to that tenant, and perform any necessary tasks e.g., with the traffic director, or the
database.

[000186] Generally, the system can switch from a global level context to a tenant
context only, and not the other way around, such that an executeAs operation can only be

executed from a global to tenant contexts, but not from a tenant to tenant context.

Switching of Tenancy Context

[000187] In accordance with an embodiment, the system can determine a partition

-45-

10

15

20

25

30

WO 2016/049576 PCT/US2015/052459

context automatically based on request attributes such as a target component that may be
currently handling the request. The partition context of the thread generally changes
whenever the request enters a component that is deployed to a different partition.

[000188] For example, when a servlet running in one partition calls a remote
component such as an Enterprise Java Bean (EJB) or a servlet or a web service deployed in
another partition, the remote call is executed in the partition hosting the target component.
[000189] In this case, the underlying platform takes care of setting the appropriate
partition context before calling the business method of the target component. An application
developer can make use of this facility when they want to execute code under a different
partition context.

[000190] In accordance with an embodiment, tenancy context switching also supports
simple use cases, for example where an application sets the context before making a call to
a shared service which may run in the same thread sharing the component context of the

caller. In such cases partition context switching is neither required nor desired.

Tenancy Context Switching as a Privileged Operation

[000191] In accordance with an embodiment, only privileged application code, such as
the global runtime, can switch tenancy context. Therefore, the APl must enforce appropriate
security permission checks before allowing access. Permissions can be granted that include

the target tenancy being set.

Protection against lllegal Tenancy Switching
[000192] In accordance with an embodiment, the table below describes which context

switches are allowed, subject to security privileges of the code:

§Current Application Tenancy New Application Tenancy Possible or Not

GLOBAL .. Anyva“dtenancycontext POSS|b|e ...
GLOBAL GLOBAL Possible
e T T R I“rﬁ‘bbé‘é‘i‘b‘l‘é ...
e e ioasaibie
e 'T'é'r'iéh'tﬁj .. |mpOSSIb|e
s Any tenancy context impossible

[000193] In accordance with an embodiment, in, for example, an FA scenario, the

process of tenant onboarding can be initiated by communicating with the provisioning
system. In some situations, such as the case of FA running on a multi-tenant application

server such as a WLS server, the process of tenant onboarding requires creation of partitions

-46-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

on runtimes which are setup by the provisioning sub-system.

[000194] In accordance with an embodiment, prior to onboarding a tenant, an
environment representing the service for which the tenant is signing up for has to be created.
The FA provisioning sub-system can call into the lifecycle manager API to first create an
environment. Once an environment has been created, a tenant can be onboarded via a
tenant admin (e.g., TenantAdmin) class, an example of which is illustrated below. The tenant
admin can then expose an API (e.g., registerTenant) to register a tenant.

[000195] Once a tenant is registered, a database created by the provisioning
infrastructure can be registered with the tenant admin for a given tenant. At this point, the
system can onboard a tenant to its environment. Onboarding a tenant requires the service
name and service type (available from FA) to be passed, in order to maintain a mapping for
the tenant to an environment. The tenant mapping can be stored in lifecycle-config.xml.
[000196] In accordance with an embodiment, below is an exemplary code for tenant

mapping stored in the lifecycle- config.xmil:

<tenants>
<tenant name="coke" 1d="123" top-level-dir="coke/top/level/dir">
<service type="CRMService" name="CRMProd"
environment-ref="coke-crmenv-prod" />
<service type="CRMService name="CRMTest"
environment-ref="coke-crmenv-test"/>
name="HCMProd" <service type="CRMService
environment-ref="coke-hcmenv-prod" />
</tenant>
<tenant name="pepsi" 1id="456" top-level-dir="pepsi/top/level/dir">
<service type="HCMService" name="HCMProd"
environment-ref="pepsi-hcmenv-prod"/>
</tenant>

</tenants>

[000197] In accordance with an embodiment, at runtime, the tenant context (e.g.,
TenantContext) is available via a TenantContext / TenantContextFactory. An API to get a
TenantContext for a given partition or tenant database is defined in the TenantManager class
defined below. All of the tenant admin APIs for registering a tenant and the corresponding
tenant database and environment can be exposed via a REST API when running in WLS.
When running on Java SE the Java APls can be used directly. An exemplary pseudo code is

shown below describing the process above to onboard a tenant on WLS environment:

@Inject

47-

10

15

20

25

30

35

40

WO 2016/049576 PCT/US2015/052459

TenantAdmin tenantAdmin

@Inject

RuntimeManager rtmMgr;

@Inject

LifecycleManager lcmMgr;

// Database is the type of the Runtime and DBl is the actual instance
rtmMgr.registerRuntime ("Database”™, "DB1", props);

rtmMgr.registerRuntime ("WebLogic", "WLSMTRuntimel", props);

// You can lookup a specific Runtime or have RuntimeManager select one based on

type

// and some internal heuristics to determine which one to pick.

Runtime wlsRuntime = rtmMgr.getRuntime ("WLSRuntimel") ;
or
Runtime wlsRuntime = rtmMgr.selectRuntime ("WebLogic");

//Create a WLS Partition and a PDB

LifecyclePartition wlsPartition =

wlsRuntime.createPartition ("cokeCRMWLSProdPartition", Runtime dbRuntime =
rtmMgr .getRuntime ("DB1") ;

LifecyclePartition pdb = dbRuntime.createPartition ("cokeCRMPDBProd", props):;

Environment cokeEnv = lcmMgr.createEnvironment ("coke-crmenv-prod") ;
cokeEnv.addPartition (wlsPartition) ;

cokeEnv.addPartition (pdb) ;

//Tenant ID and name are provided by Provisioning to LCM Tenant tenant =
tenantAdmin.registerTenant ("111", "coke"); tenantAdmin.onBoard (tenant,

"CRMService", "CRMProd", cokeEnv);

[000198] In the code above, if the DB partition is not created using a lifecycle manager,
but instead performed by provisioning, then provisioning will call registerDatabase as

opposed to createPartition on the DB1 runtime object.

LifecycleRuntime runtime = rtmMgr.getRuntime ("DB1") ;

runtime.registerDatabase ("111", "cokeCRMPDBProd") ;

Tenant Context

-48-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

[000199] In accordance with an embodiment, in FA / SaaS and similar scenarios where
the applications themselves may be expected to be multi-tenant aware, then in addition to
the partition 1D and partition name, they need to know the tenant on behalf of which a certain
operation is being performed. A tenant context (e.g., TenantContext) APl can be made
available in the JRF layer for upper stack FMW / FA to use to get the appropriate tenant

context.

TenantContextFactory tcFactory =
TenantContextFactory.getTenantContextFactory(); TenantContext tenantContext =

tcFactory.getTenantContext () ;

[000200] Once a tenant context is determined, a component can lookup the partition(s)

associated with the environment for a given service.

Environment env = tenantContext.getEnvironment () ;
List<Partitions> partitions = env.getPartitions(); Iterator iterator =

partitions.iterator();

while (iterator.hasNext ()) {
LifecyclePartition partition = iterator.next():;
if (partition.getType.equals ("WebLogic")) {

String partitionId = partition.getId(); String partitionName =
partition.getName () ;

}

}

Support for Java SE for tenant mapping.
[000201] In accordance with an embodiment, the following is an exemplary code which

can be used in SE to retrieve a tenant context;

TenantContextFactory tcFactory =

TenantContextFactory.getTenantContextFactory(); TenantContext tenantContext

tcFactory.getTenantContext () ;

[000202] For Java SE, a method can be exposed in TenantManager which will fetch a
tenant context based on a tenant ID, service name and service Type. The setting up of
tenant context can be done implicitly by the TenantContextFactory when getTenantContext()

is called for the first time.

Config File Bootstrap in SE

-49-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

[000203] In accordance with an embodiment, the tenant mapping can be stored in
lifecycle-config.xml as mentioned in previous section. In SE, the system can look for this file
in (a) a location pointed to by environment variable lifecycle.configDir; or (b) if a
lifecycle.configDir variable is not set, then the user working directory, which can be read

using:

System.getProperty ("user.dir") ;

Specifying Tenant Information in SE

[000204] In accordance with an embodiment, when running in JAVA SE mode, the
information identifying a tenant can be read using the following system properties.
lifecycle.tenantld lifecycle.serviceName lifecycle.serviceType; or by specifying the service
UUID via system property lifecycle.serviceld

[000205] The above information uniquely identifies a tenant, and can be used to identify
a unique tenant plus service combination present in the lifecycle configuration. The SE
application assumes the identity and that is represented when

TenantContextFcatory.getTenantContext is called.

Tenant Context in SE

[000206] In accordance with an embodiment, the tenant context in SE is stored on
InheritableThreadLocal. When getTenantContext() method is called for the first time, it uses
the system properties to compute the tenant context and stores it also on
InheritableThreadlLocal.

[000207] Upon further calls to same method, the system checks to see if at tenant
context is stored on Inheritable ThreadLocal and will return what has been saved. If in the
middle of the program execution, the system properties are changed, these changes may or

may not be detected and used to refresh the tenant context on the Inheritable Thread Local.

Switching with switchTenantContext (aka executeAs)

[000208] Figure 12 further illustrates tenant onboarding in a multitenant application
server environment, in accordance with an embodiment.

[000209] As illustrated in Figure 12, in accordance with an embodiment, the runtime
view of FA-MT includes an admin runtime 580, which in turn provides access to one or more
global data sources 582 or proxy data sources 584, a plurality of tenant runtimes 590, 600,
each with their own global data source 592, 602, and tenant data source 594, 604, a global
PDB 610 and several tenant PDBs 612, 614. Each of these component can be made

accessible to upper stack components via a plurality of URIs, for example http://tenant1.opc,

-50-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

http://tenant2.opc, and http://internal.opc.

[000210] In accordance with various embodiments, there are several different usages of
tenancy in FAMT runtime, a few examples of which are described below: used by
MetaDataService to select the tenant database partition to use to pick tenant-specific
customization of some metadata.

[000211] For example, it can be used by OPSS to select the tenant database partition
to pick security policies that need to be enforced. It can also be used by Audit Service to
determine the audit policy for a tenant and select the tenant database partition to store the
audit log. In all such cases, there is a need for the correct tenancy to be associated with the
thread of execution before the shared service is invoked.

[000212] When tenancy context is not explicitly set, it is derived from the current
partition context of the thread as described below: When a request enters WLS, an
appropriate container determines various details of the request's target component, and
creates a ComponentinvocationContext object to represent the invocation. Similarly, when
WLS invokes a callback object as part of some asynchronous operation like timer expiration,
it sets the correct invocation context in the thread. As part of ComponentinvocationContext,
partition information is also maintained. The onboarding process described above provides
the necessary mapping for the current partition to the current tenant value which is available

via the tenancy context.

Global Tenancy

[000213] Typically, the system’s administration code usually has a need to run in the
context of an MT Administrator who represents all tenants. In accordance with an
embedment, this special state is represented by a special tenant ID called "GLOBAL", which
is different from the null tenant ID that indicates there is no tenant context associated with the
current request.

[000214] Any software code that wants to use GLOBAL Database must maintain a fixed
reference to a DataSource that always connects to GLOBAL Database. Code running in the
GLOBAL runtime does not have a fixed binding to a particular tenant DB, but instead
accesses the data from a tenant DB that is dependent on the operational context. Since
tenant DBs are not pre-provisioned in the system, a proxy data source (e.g.,
ProxyDataSource) can be used, in which the code can continue to have a fixed JNDI
reference to the proxy data source, which selects a particular underlying DB based on the
current tenant context.

[000215] There are two distinct use cases requiring FMW/FA code to run outside WLS
as described below: Certain life cycle operations and administrative operations happen in

Java SE environment. As part of business process management, the server code

-51-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

sometimes fork a long running Java process that's working on a specific tenant's context.

[000216] Having a single reference to a proxy data source which is made available via
JNDI and the proxy data source takes care of delegating the calls to appropriate underlying
database using tenancy context. For the above to work, the tenancy context must be set
correctly in the thread in Java SE process. The Java SE process must be launched by
passing in the GLOBAL tenant context using the system properties for tenant name and
tenant id. The forked Java process uses this information and calls switchTenantContext to

establish the tenancy context in the thread of execution.

Global Tenancy check in Java SE
[000217] In accordance with an embodiment, in order to be able to executeAs, the
system must ensure that the current tenant context is Global. This can be done by checking

that for a current tenant context, that the tenant ID is equal to 0.

[000218] Figure 13 illustrates a flowchart of method for providing tenant onboarding in
a multitenant application server environment, in accordance with an embodiment.

[000219] As illustrated in Figure 13, at step 630, an application server environment is
provided at one or more computers, including a domain for execution of software
applications, which supports one or more partitions, wherein each partition provides an
administrative and runtime subdivision of the domain, and wherein a partition can optionally
include one or more resource groups having a collection of deployable applications or
resources and/or referencing a resource group template.

[000220] At step 632, a lifecycle manager is provided, which enables configuration
integration across different components, for example application servers, traffic directors or
load balancers, and database or other components, which may have their own partition-
specific configurations.

[000221] At step 634, a tenant onboarding and/or configuration interface are provided,
which allows for definition of a tenant configuration for a tenant to be onboarded to the
system.

[000222] At step 636, during tenant onboarding, the system uses the tenant
configuration information to create a tenant having a unique identifier, an environment, and a
tenant context that maps a partition context for a particular tenant.

[000223] At step 638, the system can optionally switch to the context of the tenant via a
tenant switching interface, and execute functions as or on behalf of that tenant, during the

tenant onboarding.

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

Component Lifecycle Plugins

[000224] In accordance with an embodiment, the end-to-end lifecycle infrastructure
includes a plugin-based mechanism which enables the different components within a multi-
tenant application server environment to use a lifecycle plugin to provide their own
component-specific lifecycle functionality.

[000225] Figure 14 illustrates lifecycle plugins in a multitenant application server
environment, in accordance with an embodiment.

[000226] As described above, in accordance with an embodiment, the system can
include a lifecycle coordination framework, including a lifecycle manager (LCM) and lifecycle
interface, which enables lifecycle management of the partition and other components, such
as a traffic director component, database component, or other components.

[000227] For example, as illustrated in Figure 14, the lifecycle interface can support the
use of a partition lifecycle plugin 650, an application server lifecycle plugin 652, a traffic
director lifecycle plugin 654, and a database lifecycle plugin 656, or other types of plugin.
[000228] Each lifecycle plugin can encapsulate the lifecycle needs for, for example, an
application server, e.g., WeblLogic, WLS; or traffic director or other load balancer, e.g.,
Oracle Traffic Director, OTD instance lifecycle. The lifecycle interface provides a common or
generic process for each plugin to manage the lifecycle of its given component.

[000229] Figure 15 further illustrates lifecycle plugins in a multitenant application server
environment, in accordance with an embodiment.

[000230] As illustrated in Figure 15, the lifecycle plugins can contribute to a partition
lifecycle management 660, or a database lifecycle management, 662.

[000231] For example, an OTD instance can request the lifecycle manager to create a
WLS runtime, for use in creating a partition on a particular domain. The lifecycle manager
delegates to each plugins create method, in effect providing an indication of the domain, and
requesting the plugin to create a partition on that domain.

[000232] In accordance with various embodiments, similar plugin functionality can be
provided to support, e.g., other database, traffic director, or other components, and to create,
delete, stop, start, quiesce, migrate servers where available. Each plugin can be

implemented for each component supported through the lifecycle manager.

A. Application Server Plugin
[000233] In accordance with an embodiment, the system can include an application
server (e.g., WebLogic, WLS) lifecycle plugin implements the lifecycle APls and manages the

creation or configuration of application server (e.g., WLS) partitions.

-53-

10

15

WO 2016/049576 PCT/US2015/052459

Interaction with Lifecycle Manager

[000234] In accordance with an embodiment, the application server plugin can be
registered with the lifecycle manager using a register-plugin operation. Subsequently, upon
registration of an application server (e.g., WLS) runtime with the lifecycle manager, the client
interacting with lifecycle manager can make a REST call to the lifecycle manager to
create/update/delete partition on the specified runtime registered with lifecycle manager.
The application server (e.g., WLS) plugin can then be invoked to perform lifecycle operations

on that particular application server (e.g., WLS) runtime.

Communication with the Application Server

[000235] In accordance with an embodiment, the application server plugin can use
JMX/REST APIs exposed by the application server (e.g., WLS) to interact with the server.
The plugin can implement the partition plugin contract from lifecycle manager to allow
lifecycle operations on targeted application server runtimes to do CRUD operation on
application server partitions. Following are some exemplary operations which can be done

on a, e.g., WLS runtime for partitions:

§Lifecyc|e Operation ;Description §Contract implemented by App Server
;Plugin

?createPartition ;Creates WLS partition ?public abstract LifecyclePartition

: ;based on information gcreate(String partitionName,

éprovided in lifecycle context ;LifecycIeContext ctx,
| ;LifecycIeRuntime runtime) throws
;LifecycIeException'
éu'b'dé't'é'l':"'éffl't'ibh'WW”””””'Ubd'é't'éé'V'\/LS"b'é'f't'l'tb'h""""""'ébﬁbl'l‘é"é'b'é't'fé‘éf'L'l'féé')'/éI'éF"é'r”t'it'ibﬁ”L'j'b'dé't'é
| based on information ;(String partitionName, LifecycleContext ctx,
prowded in lifecycle context LlfecycIeRuntlme runtime) throws |
: LlfecycIeExceptlon
édéié‘t‘é‘lf"é‘r‘t‘i‘t‘idh I‘Z‘)‘é‘l‘éfé‘é"\‘/‘V‘L‘S“bé‘r“t‘l‘t‘ibﬁ p ublic abstract void delete(Sting
| based on information partltlonName LifecycleContext ctx,
prowded in lifecycle context LlfecycIeRuntlme runtime) throws
' LlfecycIeExceptlon
éééébé'|'éféi55ft'|'tibﬁ Aé's”béiéfé'é"\'/'V'L'S"bé'r"t'l't'ibﬁ b'L'j'b”I'l'é"é'bé'tféét”\')bid ...
: wlth a partition of other §assomate(LlfecycIeContext partition1Ctx
;Type. [Example of other ;,LifecycIeContext partition2Ctx,
;Type being OTD, database, ;LifecycIePartition partition1,
getc] ;LifecycIePartition

gpartition2,LifecycIeRuntime runtime)

-54-

10

WO 2016/049576

Sthrows LifecycleException;

;dissociatePartition ?Dissociate WLS partition

migratePartition

[000236]

implement the runtime plugin contract from the lifecycle manager to allow lifecycle operations

;from a partition of

gotherType.

igrates WLS partition to

§the newly available targets

In accordance with an embodiment, the application server plugin can

PCT/US2015/052459

gpublic abstract void
gdissociate(LifecycIeContext partition1Ctx
;,LifecycIeContext partition2Ctx,
;LifecycIePartition partition1,
;LifecycIePartition -
gpartition2,LifecycIeRuntime runtime) throws
;LifecycIeException;
‘public abstract LifecyclePartition migrate
;(String partitionName, LifecycleContext ctx,
;LifecycIeRuntime runtime) throws |

;LifecycIeException;

on targeted application server (e.g., WLS) runtimes, for example:

Runtime
?Operation

scaleup

'scaledown

Description

Scales up weblogic server

éinstance present in the

;Contract implemented by App Server
éPlugin
épublic abstract void scaleUp(String

runtimeName, int scaleFactor,

épre-configured dynamic cluster in%LifecycIeContext ctx) throws

éthis weblogic domain
;Scales down weblogic server

éinstance present in the

§LifecycIeException;

Spublic abstract void scaleDown(String

§runtimeName, int scaleFactor,

épre-configured dynamic cluster in?LifecycIeContext ctx) throws

this weblogic domain
‘Quiesces a weblogic server

instance

LifecycleException;
public abstract void quiesce(String
?runtimeName, LifecycleContext ctx) throws

;LifecycIeException;

Runtime properties for Lifecycle Operations on Partitions

[000237]

following properties to connect to an application server, e.g., WLS runtime. These properties

are passed on to the lifecycle operation via lifecycle runtime object as specified in the

In accordance with an embodiment, the application server plugin uses the

contract above:

Properties runtimeProperties = runtime.getRuntimeProperties|():;

-55-

10

15

20

WO 2016/049576 PCT/US2015/052459

Property Description Property key

?Host ?Weblogic host éruntimeProperties.getProperty("hostname")

;Port ;Weblogic port ?runtimeProperties.getProperty("port")
"L'jé'é”r'r'ié'r'ﬁém””””H:Ad”rﬁ'i'r'i”ij'ééfh'é'rﬁé ﬁj'r'i't'i'f'h”éF"'r”dbé”r't'iéé'.'éét'l':’mrbbé'r”ty(""ﬁééf'h'é'r'ﬁé"")""WW”WW”:
R Ad'r'ﬁi'h”bééé\)\'/'d'rd'”””””"""":f'u”h't'ifh'é'l"-"”r'b'bé'r”t'i'é'é'.'g'éﬂ:"'r'bbé”r't'y'('"ibééév'\}d'rd""')'

Lifecycle Context for WLS Plugin

[000238] In accordance with an embodiment, any CRUD operation done using an
application server plugin can be customized based on the information/data provided to the
plugin in the lifecycle context. The client can specify the properties as part of REST call.
The lifecycle manager populates the data into the lifecycle context and passes the property
back to the plugin. For example, when a client makes a REST call for createPartition for

WLS partition, they can specify the properties to specify the attributes of partition.

Lifecycle Context for create/update partition
[000239] In accordance with an embodiment, following are some exemplary properties
which can be specified by the client while create/update partition operation. These

configurations are created as part of partition creation/update and are specific to the partition:

Property Description

?resourcegroup ?Resource group Name.

éféébﬁr‘c‘iééfbﬁbfé”rﬁbié't'é éR”é'éb'Ljfé'é"”gfb't'jb"'fé”rﬁ'bl'é”t'é'.""A's”éh'r'ﬁb't”ibﬁmié"'t”h'é'Wr'é'ébd'r'ééméfbﬁb;

| ;template specified should be existing in the domain. |

"béft'i't'ibh'lf’béi'hfb Plu'g'g'é'b'l'é"d'é't'ébé”é'é'”h'é'fh”é”fb”r"t'h”i'é"bé”r”t'i't'ibﬁ'.""""""'m"""""WWWW

e datasoures name for this specific DB,

urI ... ?L'j'r'l'"f'df”t'h'ié'ébé'c':'i'f'i'c'i”l"-"'b'é'. ..

?username ?username for this specific PDB.

‘bé‘é‘s”\‘/‘\‘l‘d‘fd .. ébé‘é‘s”\‘)\‘/‘b‘fd‘fbf“t‘h‘i‘é“ébé‘c‘:‘i‘f‘i‘c‘i B

:‘béft‘i‘t‘ibh‘b‘r‘c‘)“bé‘r”ty ?béffi‘t‘i‘d‘h"‘b‘r‘db‘é‘ff‘y"k‘é‘y‘/“/‘r‘ié‘r‘r‘i‘é‘. ...

'béﬁi't'i'b'r'i'b'r'bbé”r't'y'\'/'él'L]é ébé'ffi”t'i'dh"b'rb'béfty'\}élﬂé; ..
[000240] In accordance with an embodiment, following are some exemplary properties

which can be specified by the client while create/update partition. Failure to find these
entities in the application server (e.g., WLS) Server would result in exception being thrown

from the application server plugin:

Property Description

10

15

20

25

30

WO 2016/049576 PCT/US2015/052459

resourcegroup:target §Target to be associated with this resourcegroup. [Comma§
: ?separated list of targets] :

gsecurityrealm ;Security realm to be associated with this partition

part|t|ondefau|ttarg p— Comma separatedhst ot rgets ...
pa it |onava||ab|etarget Aaiabie targets . [Co mmasepara ted it of ta rgets]

Lifecycle Context for Delete Partition
[000241] In accordance with an embodiment, no additional property other than partition

name is needed to delete an application server (e.g., WLS) partition.

Lifecycle Context for Associate Partition

[000242] In accordance with an embodiment, association of an application server
instance with another component may involve updating the application server (e.g., WLS)
partition with some new properties, or may involve providing the necessary properties to the
other component for association.

[000243] Any component which wants to participate in association needs to make sure
to pass in the correct set of properties in lifecycle context in the format specified above.
[000244] In the case of WLS-OTD association, in this case, the OTD partition expects
the cluster-name, cluster-members and target information to do the association. The
application server plugin makes a JMX/REST call to the application server runtime to fetch
the correct targeting information based on the partition name. These properties are added to
the application server's lifecycleContext as part of associatePartition implementation. As part
of an association call to the plugin, a complete snapshot of target configuration will be added
to the lifecycle context. Then, the lifecycle manager calls the associatePartition
implementation of OTD plugin, which uses the lifecycle context (which has the properties of
WLS targets) to do the wiring of origin server pool and the application server partition.
[000245] In accordance with an embodiment, when an application server (e.g., WLS)
partition is associated with an OTD partition, and if the partition is targeted to a configured
cluster, if server is no running then the lifecycle manager will get configuration information
available for Server's ListenAddress and Port and send it to OTD. If servers are running,
then we will get the runtime information for Server available from RuntimeMBean and pass
that to OTD via context information.

[000246] In a dynamic cluster, there is no configuration information available for
ListenAddress, although the configuration time information is available for ports for dynamic
servers. If dynamic servers are not running when an associate call happens then the
lifecycle manager will get the configured port and the node manager's ListenAddress (if

dynamic servers are associated with a machine) and send this to other plugins. If dynamic

-57-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

servers are running when associate call happens then the lifecycle manager will get the
server listen address and port from runtime Mbean and send it to the OTD plugins.

[000247] In the case of WLS-DB Association, in this case, the application server (e.g.,
WLS) plugin's associatePartition method uses the DB Partition's lifecycleContext to populate
PDB Info and update the WLS partition with the PDB info.

Lifecycle Context for Dissociate Partition

[000248] In accordance with an embodiment, dissociation of the application server
(e.g., WLS) with another component may involve removing/updating certain WLS partition
configuration. Any component which wants to participate in dissociation needs to make sure
to pass in the correct set of properties in lifecycle context in the format specified above.
Following is an example which explains dissociation between WLS and DB partitions.
[000249] WLS-DB Dissociation: In this case, the WLS plugin's dissociatePartition
method uses the DB partition's lifecycleContext to populate PDB Info name and update the
WLS partition by removing the PDB info. The WLS plugin expects the PDB Info name in the
lifecycleContext.

[000250] WLS-OTD Dissociation: In this case, the OTD partition expects the
cluster-name, cluster-members and target information to do the dissociation. WLS plugin
makes JMX/REST call to the WLS runtime to fetch the correct targeting information based on
the partition name. These properties are added to the WLS's lifecycleContext as part of

dissociatePartition implementation of WLS plugin.

WLS Partition Configuration Discovery and Association in an LCM Environment

[000251] In accordance with an embodiment, the partition configuration may be
created/updated/deleted outside of the lifecycle manager environment/scope. For example,
an Administrator might invoke WLST command to create a partition, or use a WLS admin
console to update a partition. In any circumstance, it needs to be made sure that the

partition information present with the lifecycle manager is recent and the most updated one.

Effect of Lifecycle Manager Runtime Scaling on Application Server Configurations
[000252] In accordance with an embodiment, a ScaleUp and scaleDown operation in
the application server (e.g., WLS) plugin can be used to provide the functionality of starting
and stopping the server instances which are part of the dynamic cluster. The WLS plugin
might use node manager to interact with the machines/servers to start/stop the servers.
[000253] Elasticity frameworks can make a scale up or scale down call to lifecycle
manager with the cluster information, scale factor, runtime type (i.e. WLS) Interceptors

which are registered with the scaleUp/scaleDown are invoked before the scaleup/scaledown

-58-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

operation to validate and perform the necessary infrastructure needed for the cluster to scale
up.

[000254] For example, to make the necessary calls to WLS runtime to determine/create
the number of datasources needed for the new servers to be brought up in the cluster. Once
the pre-requisites to scaleup/scaledown the cluster is satisfied (i.e., any pre-invoke of the
interceptors is satisfied), the real scaleup or scale down happens. The interceptors are
called again after the operation has completed in the plugin to satisfy the post-invoke
requirements.

[000255] For example, assuming that a number of interceptors will be used in order to
scale a WLS cluster, described below is one such sequence.

[000256] Assume that the following interceptors have been added: WLS Interceptor,
OTD Interceptor, JMS Interceptor, DataSource Interceptor when WLSScaleDownAction from
Elasticity module calls Icm.scaleDown(clusterName, factor, payload): 1. WLS Interceptor
checks if scaling will be within cluster limits. It then calls ctx.proceed(); 2. OTD Interceptor
will make the necessary OTD config changes to mark the selected targets to be drained.
OTD Interceptor will wait till OTD metrics indicate that the requests have been drained. It
then calls ctx.proceed(); 3. JMS Interceptor will wait for the JMS backlogs to drain. It then
calls ctx.proceed(); 4. DataSource Interceptor will ensure that all JDBC Connections have
been returned to the pool. It then calls ctx.proceed(); 5. The service is scaled down
(called by ElasticServiceManager after the last interceptor).

[000257] On the return path of Interceptor call chain: 1. DataSourcelnterceptor will
increase the max-connection-pool-size appropriately for the remaining alive managed
servers; 2. JMS Interceptor does nothing; 3. OTD Interceptor does nothing; 4. WLS

Interceptor does nothing.

Invocation of Application Sever Plugin using REST Requests

[000258] In accordance with an embodiment, lifecycle manager clients can use REST
requests to do operations on the WLS, including for example: 1. Register a WLS runtime
and the properties to be passed in the REST request; 2. Create empty WLS partition; 3.
Create WLS partition with resource group and targeting; 4. Add WLS Partition to environment
(assuming environment test1 is already created); 5. Associate WLS Partition with another
partition; 6. Dissociate WLS Partition with another partition; 6. Delete WLS Partition; 7.
Update WLS Partition.

B. Database Plugin
[000259] In accordance with an embodiment, the system can include a database (e.g.,

an Oracle Database) lifecycle plugin which implements the lifecycle APls and manages the

-59-

10

15

20

25

30

WO 2016/049576 PCT/US2015/052459

creation or configuration of database (e.g., Database) partitions.

[000260] In accordance with an embodiment, the multitenant-aware architecture of a
database component such as the Oracle Database enables it to function as a multitenant
container database (CDB) that includes customer-created pluggable databases (PDBs).
Each PDB acts as a portable collection of schemas, schema objects, and nonschema
objects. From the perspective of the lifecycle manager module, the database component
manages its own partition configuration using the PDB features built into the database
machinery. The database lifecycle plugin can leverage this functionality to perform PDB

management operations when called upon by the lifecycle manager.

Interaction with Lifecycle Manager

[000261] In accordance with an embodiment, the database plugin is an implementation
of the lifecycle manager partition plugin interface, and is registered with lifecycle manager
before it can perform any operations. Subsequently, upon registration of a database runtime
with the lifecycle manager, the client interacting with lifecycle manager would make a REST
call to the lifecycle manager to perform PDB operations on the specified runtime registered
with lifecycle manager.

Runtime Registration

[000262] In accordance with an embodiment, before an operation can be performed on
a database, it has to be registered with the lifecycle manager. The registration process
requires information which is used to connect to the database. For example, a database

runtime can be registered with the following properties:

Name Description
T T T P

Username User that has administrative privileges to perform PDB
: émanagement operations on the database.

gpassword ;Password for the database user.

Lifecycle operations on the database

[000263] In accordance with an embodiment, the database lifecycle plugin
communicates with the database using a remote SQL connection via JDBC. Properties
specified during the runtime registration are used to connect to the database. A number of
lifecycle operations map to corresponding SQL commands, various clauses of which are

determined from the properties passed on in the lifecycle context object, and passed to the

-60-

10

15

20

25

WO 2016/049576 PCT/US2015/052459

plugin, for example:

create Execute the CREATE PLUGGABLE DATABASE SQL

| ;Command

delete ... ExecutetheDROPPLUGGABLEDATABASESQLcommand

éu‘bd”a‘”t‘é .. S‘E‘k‘éédt‘é"t“h‘é"AL"‘I;E‘R”P‘LU‘G‘G‘AB‘L‘E"I‘Z‘)‘A"I‘"A‘B‘A”S”E"SQL“Cb‘r‘ﬁfﬁéh‘dmé

?associate ?Associate the database partition with a WLS partition |

gquiesce ;Execute the ALTER PLUGGABLE DATABASE CLOSE

gcommand :

G = ‘k‘éédt“é“t‘h‘é"AL"‘I;E‘R”#LU‘G‘G‘AB‘L‘E“I‘Z‘)‘A"I"‘A‘B‘A“S“E"O‘I‘:"E‘N“‘c‘:‘b‘r‘ﬁ”rﬁéh‘dé
[000264] In accordance with an embodiment, the following are details of the above

operations, with examples:

Create

[000265] In accordance with an embodiment, the create operation performs the
following tasks: (1) Create a pluggable database on the specified database runtime. The
partition ID of the newly created PDB is obtained from the V§PDBS table. The partition
name is the same as the PDB name; (2) Optionally, create a database user; (3) Optionally,
create a CDB plan directive for the PDB using an existing CDB plan. A number of options are
available for the above tasks. These options are passed as properties in the lifecycle context

object to the plugin.

Delete

[000266] In accordance with an embodiment, the delete operation can perform the
following tasks: (1) drop the pluggable database, using the PDB name. PDB users will also
be dropped automatically; (2) Optionally, drop CDB plan directive for the PDB Sample SQL

executed by the plugin for above tasks:

Update
[000267] In accordance with an embodiment, the update operation modifies the
attributes of a pluggable database, by executing an ALTER PLUGGABLE DATABASE

command to perform the updates to the PDB.

Associate

[000268] In accordance with an embodiment, the associate operation is relevant when

-61-

10

15

20

WO 2016/049576 PCT/US2015/052459

a WLS partition is associated with a PDB. The database plugin passes on the database
connection URL to the WLS plugin, during association. If a user was created while creating
the PDB by lifecycle manager, then the username and password of that user is also passed

to the WLS partition plugin.

Quiesce
[000269] In accordance with an embodiment, the quiesce operation closes the specified
PDB using the ALTER PLUGGABLE DATABASE command.

Start
[000270] In accordance with an embodiment, the start operation starts the specified
PDB using the ALTER PLUGGABLE DATABASE command.

Lifecycle Context Schema
[000271] In accordance with an embodiment, various SQL clauses can be formed from
properties passed to the plugin via a lifecycle context object. Some of the common

properties include the following:

Property Description

L N‘é‘r‘h‘é‘bf”t‘h”é"b‘l‘u‘g‘g‘é‘b‘lé"d‘é‘t‘ébé‘é‘é‘. ..
i Usor mams for the PR,
'idéh't”ifi'é'd”by ... T
"é‘t‘c‘j‘r‘ég‘é .. s ;I‘"‘O‘RA'G”E"E:'I'édéé"f'df'fh'é"S'O'L"é't'étéfﬁé'hf'E:”r'ééfi'h'g'”t'h'é”F"bB'.'
default tablespace DEFAULT TABLESPACE clause for the SQL ’été’t’érh’éh’t”’é’r’éét’ihgf
?the PDB.
;file_name_convert ;FILE_NAME_CONVERT clause for the SQL statement creating
the PDB. |
;tempfile_reuse ;TEMPFILE_REUSE clause for the SQL statement creating the

| PDB

R R”O'L'ESMC':'I'é'L'jéé'fbf”t'h”é"Sdl;"é't'é't'é'rﬁéﬁ't'”c':'féé't'i'h'g"tﬁé”l"-"'bé'.
?ffb'r”h ... ?F'ROM'E:'I'é'déé'fdf”t'h'é"S”Q'L"éfé't”é'rﬁ'é'h't'E:”r'éé't'i”h';cj'”t'h”é"I':"‘bB'.”:I"'h'i'é”i'é

?used when cloning a PDB.

[000272] In accordance with an embodiment, the SQL commands and various clauses
can be specified as lifecycle context properties. Depending on support in the database, most

of these can be used when altering the PDB as well.

Resource Manager Properties

-62-

10

15

20

25

WO 2016/049576 PCT/US2015/052459

[000273] In accordance with an embodiment, when creating a PDB, a CDB plan
directive can also be created. Properties related to this should be specified under the key

"resourceManager”. Following are exemplary properties for the "resourceManager”

Property Description

gplan ;Name of the existing CDB plan. This is required.

é'é'h'é”r'é'é ... é'ébé'é'ifi'ééwt'ﬁé"'é'Héfé'"6f"'fé§6df6é'”é'l'l'b'c'ﬁé't'i'b'r'imfbf'Hfhéwb'l't'jééébl'éé
| ?database. |

utilization_limit Specifies the maximum percentage of CPU that the pluggable
‘ édatabase can utilize. 5

§para||el_server_limit §Specifies the maximum percentage of parallel servers that the§

?pluggable database can use.

User Properties
[000274] In accordance with an embodiment, when creating a PDB, a user can also be
created. The properties related to the user should be specified under the key

"databaseUser".

[000275] Figure 16 illustrates a flowchart of method for supporting lifecycle plugins in a
multitenant application server environment, in accordance with an embodiment.

[000276] As illustrated in Figure 16, at step 680, an application server environment is
provided at one or more computers, including a domain for execution of software
applications, which supports one or more partitions, wherein each partition provides an
administrative and runtime subdivision of the domain, and wherein a partition can optionally
include one or more resource groups having a collection of deployable applications or
resources and/or referencing a resource group template.

[000277] At step 682, a lifecycle manager is provided, which enables configuration
integration across different components, for example application servers, traffic directors or
load balancers, and database or other components, which may have their own partition-
specific configurations.

[000278] At step 684, a plurality of components are provided, each of which includes a
lifecycle plugin thatprovides a bridge between the lifecycle manager and that component.
[000279] At step 686, during creation or configuration of a partition, the plurality of
lifecycle plugins implement an interface that allows the lifecycle manager to perform lifecycle
operations that can call a plugin, so that the plugin can operate with its associated

component to perform an actual creation or configuration of the component.

-63-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

Global Runtime

[000280] In accordance with an embodiment, the system supports the use of a global
runtime within the multi-tenant application server environment.

[000281] As described above, in accordance with various embodiments, such as those
that use Fusion Apps or Fusion Middleware, there may be requirements for running things in
a global context for all partitions.

[000282] For example in a Metadata Services (MDS) component which is provided as
part of Fusion Middleware (FMW), there is a requirement that there be one global cache for
all of the shared documents and then partition specific caches for the customizations that are
specific to the tenants. In addition to having such a global cache, there is also the
requirement for notifying all the partitions when the cache has been purged or updated, so
that the MDS instance running in the partitions can apply the customizations on the updated
cache.

[000283] Additionally, at a high level in a multi-tenant environment there may be
artifacts or other components that need to be shared across the entire domain, including any
partitions, referred to herein as global artifacts. These artifacts reside or run at the global or
domain level in a multitenant container which is referred as the global runtime. The partition
specific artifacts or components are the ones that are reside or run in the context of a
partition.

[000284] In accordance with an embodiment, the global runtime does not run in any
specific partition, but is instead scoped to a domain. When running in, for example, a Java
Required Files (JRF) domain, with the tenant mapping for Fusion Applications (FA) and
multi-tenancy flag enabled, code running in the global runtime can switch to the context of a
tenant and execute something on behalf of a tenant via a tenant switching (e.g.,
switchTenant) API.

[000285] In accordance with an embodiment, one or more resource groups can also be
specified at the domain level for use in the global runtime. Targeting of domain-level
resource groups is set at the resource group, not at the individual resources within the
resource group. All resources in the group will be targeted to all targets specified for the
resource group. When targeted to a cluster, the applications run on all the managed servers
in the cluster.

[000286] In accordance with an embodiment, at the domain level the resource group is

a convenient way to group related resources. The system manages the resources declared

-64-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

in a domain-level resource group the same as ungrouped resources: for example, they are
started during system start-up and stopped during system shut-down. Further, an
administrator can stop, start, or remove any single resource in a group individually and can
also act on all the resources in a group implicitly by operating on the group.

[000287] For example, stopping the group stops all the resources in the group that are
not already stopped. Starting the group starts any resources in the group that are not
already started. Removing the group removes all the resources contained in the group.
[000288] In accordance with an embodiment, the global runtime resource group(s) must
be started before all the other resource groups defined in partition(s). This allows the global
runtime to be initialized before any of the partitions and, if necessary to load shared classes
using the shared class loader to share among partitions or other applications / resource
groups it can do so before initializing the partitions.

[000289] In accordance with an embodiment, when running in the global runtime, the
partition name will return GLOBAL, and the id will be 0.

[000290] When running in a JRF domain with the multi-tenancy flag enabled, the tenant
context will be have tenancy set as GLOBAL, and the tenant id will also be 0.

[000291] In accordance with an embodiment, resource groups defined at the global
runtime must be targeted to the same managed servers / clusters as the partitions that
applications running in the global runtime may want to operate upon or share classes with.
When migrating a partition (resource groups) from one cluster to another, the global runtime
must either be running on the global runtime where the partition is being migrated, or, the
migration feature must ensure that the resource groups defined at the global runtime are
migrated prior to migrating the resource group of a partition.

[000292] Figure 17 illustrates use of a global runtime in a multitenant application server
environment, in accordance with an embodiment.

[000293] In accordance with an embodiment, the global runtime can be used for those
applications which are intended to run at the domain level. If a particular component or
application wants to use executeAs, it must run at the domain level in the global runtime,
wherein the global runtime is the same as or acts as the domain runtime.

[000294] In accordance with an embodiment, the ExecuteAs and tenant onboarding are
provided as a JRF type functionality, for upper stack usage. An application running in the
global runtime can be seen by the various partitions depending on the security settings
afforded those partitions. Similarly, an application running at the domain (global) level with
its own UUID can be made available to the partitions.

[000295] For example, a global PDB can be shared across tenants, wherein the global
PDB is set up by the upper stack, which is a common configuration setup used with SaaS

usecases, and not as commonly with consolidation or PaaS use cases.

-65-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

[000296] As illustrated in Figure 17, in accordance with an embodiment, the global
runtime 700 can include one or more applications, and can use a tenant switching APl 702 to
perform an executeAs operation 704, 705 on behalf of a tenant, to access or operate on
behalf of, one or more partitions 710, 712, 714.

[000297] In Fusion Apps and Fusion Middleware scenarios there are requirements for
running things in the global context for all Partitions. For example, as described above in the
context of Metadata Services (MDS), there is a requirement that there be one global cache
for all the shared documents and then partition specific caches for the customizations that
are specific to the tenants; and also that all of the partitions be notified when the cache has
been purged or updated so that the MDS instance running in the partitions can apply the

customizations on the updated cache.

Partition and Tenant Name and ID

[000298] As described above, in accordance with an embodiment, when running in the
global runtime, the partition name will return GLOBAL, and the ID will be 0. When running in
a JRF domain with the multitenancy flag enabled, the tenant context will be have tenancy set
as GLOBAL, and the tenant ID will also be 0.

Migration and Global Runtime

[000299] As described above, in accordance with an embodiment, resource groups
defined at the global runtime must be targeted to the same managed servers / clusters, since
the partitions that applications running in the global runtime may want to operate upon or
share classes with.

[000300] In accordance with an embodiment, when migrating a partition (or its
resource groups) from one cluster to another, the global runtime must either be running on
the cluster where the partition is being migrated, or, the migration feature must ensure that
the resource groups defined at the global runtime are migrated prior to migrating the
resource group of a partition.

SaaS scenario Example

[000301] The example below shows use of resource group at the domain level in the
SaaS scenario where a Customer Relationship Management (CRM) application is deployed
to the global runtime. The resource group template defined at the domain level can be used
by both the global runtime as well as partitions. For readability, the example below shows

just the resource group at the domain level:

<domain>

<resource-group-template>

-66-

WO 2016/049576 PCT/US2015/052459

<name>CRMResourceGroupTemplate</name>

<app-deployment>

<name>CRM</name>

</app-deployment>

<app-deployment>

<name>physician</name>

</app-deployment>
<app-deployment>

<name>browser-starter</name>

</app-deployment>

<app-deployment>

<name>SamplesSearchWebApp</name>

</app-deployment>

<jms-server>

<name>CRMJMSServer</name>
</jms-server>

<mail-session>
<name>mail/CRMMailSession</name>

<jndi-name>mail/CRMMailSession</jndi-name>

<properties>mail.user=joe;mail.host=mail.mycompany.com</properties>
</mail-session>

<jms-system-resource>

<name>CRM-jms</name>

<sub-deployment>

<name>CRMJMSServer</name>

</sub-deployment>
<descriptor-file-name>jms/CRM-jms.xml</descriptor-file-name>
</Jjms-system-resource>

<jdbc-system-resource>

<name>CRMGlobalDataSourceXA</name>
<descriptor-file-name>jdbc/CRMGlobalDataSourceXA-9669-jdbc.xml</descriptor-file-n
ame

</jdbc-system-resource>

<saf-agent>

-67-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

<name>WsrmAgent</name>

<service-type>Both</service-type>

</saf-agent>

</resource-group-template>

<resource-group>

<name>CRM</name>
<resource-group-template>CRMResourceGroupTemplate</resource-group-template>

</resource-group>

</domain>

[000302] In accordance with an embodiment, applications and shared libraries can be

deployed to a resource group at the domain level as well.

Global PDB and Tenant-Specific PDB

[000303] In accordance with an embodiment, when running, e.g., an Oracle 12¢
Database, many PDBs can run in one container database (CDB). With the creation of a
partition for a tenant, a PDB will be created and the data source configured for the partition to
use.

[000304] In accordance with an embodiment, in addition to the tenant-specific PDB
there can optionally be a global PDB that is shared across all tenants. For example, the
metadata (documents) in MDS can be stored in a global PDB and the tenant-specific
customizations in the tenant-specific PDBs.

[000305] In accordance with an embodiment, in order to be able to use the shared data
from the global PDB, the partitions need access to both the PDBs (global and tenant-
specific). Each partition can be configured with an additional, read only data source to the
global PDB to be able to access the shared data, and also a data source to the tenant-
specific PDB that will be used to store tenant-specific data. The shared application code that
is running in the global runtime will be able to write to the global PDB and will be configured
with a read / write data source to the global PDB.

[000306] Figure 18 further illustrates use of a global runtime in a multitenant
application server environment, in accordance with an embodiment.

[000307] As illustrated in Figure 18, in accordance with an embodiment, each partition
can be configured with one or more data sources 701, 711, 721, including, for example, that
the global runtime has access to the global PDB 702 via data source DS2.

[000308] As further illustrated in Figure 18, the tenants that run in Partition 1 (710) and
Partition 2 (720) have read / write access via DS1 to their specific PDBs (712, 722

respectively) and a read only DS2 (same data source shared across all partitions) to access

-68-

10

15

20

25

30

WO 2016/049576 PCT/US2015/052459

the read only data in the global PDB.

DataSources

[000309] In accordance with an embodiment, each partition will have a data source that
points to its PDB instance for writing tenant-specific data. When running in a partition in an
application server, e.g., WLS, the name of the data source does not have to change for each
partition. Instead, the application server isolates the data source in the JNDI tree on a per
partition basis. These datasources can be defined in the resource group template, which will

be referenced from the resource group for each tenant's partition.

Executing at Global Runtime and Partition

[000310] In accordance with an embodiment, applications or shared libraries that re
deployed to the global runtime can be shared with all tenant-specific applications running in a
partition. In addition to being shared across the partition, applications running in the global
runtime can also execute in the context of a partition running in a specified tenant's context.
However the reverse is not true; a tenant-specific application running in a partition cannot

execute in the context of the global runtime. The table below shows which context switching

is allowed:
§Source Scope of application ;Target scope of application ;Permit/ Denied
i T éél'b'bé'lmrﬁhfi”rﬁé .. T
Global rurgies éﬁé'r”t'i't'ibh ... T
T .
§'I5é”r't'i”t'i6h”1 .. ?Péft'i't'ibh”ﬁ .. AIIowed
;Partition 1 ?Partition 2 ?Denied

[000311] Figure 19 illustrates a flowchart of method for supporting a global runtime in a

multitenant application server environment, in accordance with an embodiment.

[000312] As illustrated in Figure 19, at step 740, an application server environment is
provided at one or more computers, including a domain for execution of software
applications, which supports one or more partitions, wherein each partition provides an
administrative and runtime subdivision of the domain, and wherein a partition can optionally
include one or more resource groups having a collection of deployable applications or
resources and/or referencing a resource group template.

[000313] At step 742, a global runtime is provided, which does not run in any specific

partition, but is instead scoped to a domain, wherein one or more resource groups can

-69-

10

15

20

25

WO 2016/049576 PCT/US2015/052459

optionally be specified at the domain level for use by the global runtime.

[000314] At step 744, upon receiving a request to execute a function by the global
runtime on behalf of a tenant, the global runtime can switch to the context of the tenant via a
tenant switching interface, and execute the function as or on behalf of that tenant.

[000315] The present invention may be conveniently implemented using one or more
conventional general purpose or specialized digital computer, computing device, machine, or
microprocessor, including one or more processors, memory and/or computer readable
storage media programmed according to the teachings of the present disclosure.
Appropriate software coding can readily be prepared by skilled programmers based on the
teachings of the present disclosure, as will be apparent to those skilled in the software art.
[000316] In some embodiments, the present invention includes a computer program
product which is a non-transitory storage medium or computer readable medium (media)
having instructions stored thereon/in which can be used to program a computer to perform
any of the processes of the present invention. The storage medium can include, but is not
limited to, any type of disk including floppy disks, optical discs, DVD, CD-ROMs, microdrive,
and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMSs, flash
memory devices, magnetic or optical cards, nanosystems (including molecular memory ICs),
or any type of media or device suitable for storing instructions and/or data.

[000317] The foregoing description of the present invention has been provided for the
purposes of illustration and description. It is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. Many modifications and variations will be apparent
to the practitioner skilled in the art. The modifications and variations include any relevant
combination of the disclosed features. The embodiments were chosen and described in
order to best explain the principles of the invention and its practical application, thereby
enabling others skilled in the art to understand the invention for various embodiments and
with various modifications that are suited to the particular use contemplated. It is intended

that the scope of the invention be defined by the following claims and their equivalents.

-70-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

Claims:

What is claimed is:

1. A system for supporting a global runtime in a multitenant application server
environment, comprising one or more computers, comprising an application server
environment executing thereon, together with

a plurality of resources which can be used within the application server environment;

one or more partitions, wherein each partition provides a subdivision of a domain, that
can be associated with a tenant; and

a global runtime which is scoped to the domain so that one or more resources or

resource groups can be specified at the domain level for use in the global runtime.

2. The system of claim 1, wherein one or more resource group templates are used to

define groupings of deployable resources within the domain.

3. The system of any of claims 1 to 2, wherein targeting of domain-level resource groups
can be set at a resource group, so that all resources within that resource group will be

targeted to all targets specified for that resource group.

4. The system of any of claims 1 to 3, wherein, when a resource group is targeted to a

cluster, applications within that resource group are run on all managed servers in that cluster.

5. A method for supporting a global runtime in a multitenant application server
environment, comprising:

providing, at one or more computers, comprising an application server environment
executing thereon,

a plurality of resources which can be used within the application server environment,

one or more partitions, wherein each partition provides a subdivision of a domain, that
can be associated with a tenant; and

providing a global runtime which is scoped to the domain so that one or more
resources or resource groups can be specified at the domain level for use in the global

runtime.

6. The method of claim 5, wherein one or more resource group templates are used to

define groupings of deployable resources within the domain.

-71-

10

15

20

25

30

35

WO 2016/049576 PCT/US2015/052459

7. The method of any of claims 5 to 6, wherein targeting of domain-level resource
groups can be set at a resource group, so that all resources within that resource group will be

targeted to all targets specified for that resource group.

8. The method of any of claims 5 to 7, wherein, when a resource group is targeted to a

cluster, applications within that resource group are run on all managed servers in that cluster.

9. A non-transitory computer readable storage medium, including instructions stored
thereon which when read and executed by one or more computers cause the one or more
computers to perform the method comprising:

providing an application server environment, together with

a plurality of resources which can be used within the application server environment,

one or more partitions, wherein each partition provides a subdivision of a domain, that
can be associated with a tenant; and

providing a global runtime which is scoped to the domain so that one or more
resources or resource groups can be specified at the domain level for use in the global

runtime.

10. The non-transitory computer readable storage medium of claim 9, wherein one or
more resource group templates are used to define groupings of deployable resources within

the domain.

11. The non-transitory computer readable storage medium of any of claims 9 to 10,
wherein targeting of domain-level resource groups can be set at a resource group, so that all

resources within that resource group will be targeted to all targets specified for that resource

group.

12. The non-transitory computer readable storage medium of any of claims 9 to 11,
wherein, when a resource group is targeted to a cluster, applications within that resource

group are run on all managed servers in that cluster.

13. A computer program comprising program instructions for execution on one or more
computer systems, wherein the program instructions when executed causes the one or more

computer systems to perform the method of any of claims 5 to 8.

14. A computer program product comprising the computer program of claim 13 stored in a

non-transitory machine readable data storage medium.

-72-

PCT/US2015/052459

WO 2016/049576

1/19

L 34NOI4

0Ll
$90.N0SaYy J0/pue

suoneo||ddy Jay10

891
g 924n0saYy

291
\ 90.N0S8Y

791
g uopeolddy

291
v uojjeoljddy

091 9jejdwa] dnolg 991n0S9Y

A/

0rl
$90.4N0S3Y / suoljeolddy

/ $dnoJg) 804n0SaY [9A8T-UIBWOQ

06}
g1e|dws] dnoig 80Inosay ™ |

0] 90UB.39Y

8¢l
$90UN0s9Y

/ suoneolddy / sdnoug) 89.nosay
oj108dg-uonijied

97| 9ousJlajey
gje|dwa] dnolg 89.n0say

$Z| dnolo 80inosay

v0l uoniied

201 ulewoq

001 JUSWUOAUT (LN ‘Juua -y B-9) Jan1ag Uojjeo)iddy:

PCT/US2015/052459

WO 2016/049576

2/19

¢ 34NOI4

\
L1Z

(ngar 679) 80un0soy

91¢
(uoissag |iep ‘678) 80un0soYy

Gle
(lusby 4yg "6°9) 80un0soYy

€ie
(JonJ9g SN “'6°9) 90un0s9Y

4%4
g uopeolddy

¥4
v uojjeoljddy

0l 91e|dwa] dnolo 991n0S9Y

A4 —
|__uoneinbiyuos gad 9¢z (9@0) eseqejeq Joulejuo)

8€¢ add
A

0%Z 186Je] [enjip

*

6€Z uonulyaq yebie [enyip

0€2
uoljeuLioju|
oyjoadg-uopiyed

/

/0Z uonewuojul 196.1e] |enuip

80¢ uoiewuoju| gdd

90z 9ouaJlajey
gje|dwa] dnolg 89.n0say

0¢c
———a1e(dwa) dnosg s0inosey—]

0] 90UB.39Y

G0z dnolo 8oinosay

¢0¢ uoniied

201 ulewoq

100} JuswuouAug (LN ‘Jueus-ninp 68) Jaaieg uoneol|ddy:

PCT/US2015/052459

WO 2016/049576

3/19

€

JdNOI4

69¢ 9 8dd

A

¢vz (9a9)

aseqejeq Jaulejuo)

65 V 9dd

A

(g 90.nosejeq “"69)

197 789 99.nosay

(g Sr ““6-9)
097 19 991n0say

v92

zq uopeo|jddy

292

19 uopeoljddy

90.N0S8Y

19¢
dnoug

A

092

g uonied

89z g 19bue] [enuip

A

(v 90.nosereq “69)

/G2 7V 921n0say

(Vv Sr ““B-8)
0GZ LY 92in0say

1414

Zv uopesi|ddy

(414

|y uopesl|ddy

90.n0s9Yy

1G¢
dnoig

A

062

v uonied

86z v 196ue | [enuIA

A

Z¥z 1918n|D | Joaleg pabeuepy

144

¢ 4911 99M

100} JuswuouAug (LN ‘Jueus-ninp 68) Jaaieg uoneol|ddy:

PCT/US2015/052459

WO 2016/049576

4/19

vy 34N9id4

80 (woo yeayks|ea -679) 196181 [BNUIA

708 (woorateoyuabinpuejfeq 69) 19618 |BNUIA

*

c0¢

¥6¢
dnous) 801n0say 99YPIN

XXX=TYN 99.N0S BlE(Q

(HA ‘wesH Asjiep)
762 V-HA uoniJed

dnous) 801n0say 99YPIN

(ong ‘aen usbin pueikeg)
06¢ ¥-0N4g uoljied

16¢

ale|dwe |
dnoic) 921n0saYy
ORCRITEYETEN

96¢
ale|dwe |

£6¢ dnoig) 92inosay

0] @dualajay

T~

rad

90In0S eje(q
uoISsag |IB|y
19A9S SNP
“* 994pawW ‘ueloiskyd :sjuswhojdaq ddy

08z 09ypa| 9ie|dwa] dnolg 824n0say

Z8¢ g 91ejdwa] dnoig 921n0say

08¢ V 9jejdwa] dnoig 921n0say

201 ulewoq

100} JuswuouAug (LN ‘Jueus-ninp 68) Jaaieg uoneol|ddy:

PCT/US2015/052459

WO 2016/049576

5/19

g 34NOI4

vee
(9a yiesH Asjiep “6-9)
$90IN0S9Y g JueUs |

1443
(gq suen usbin puelheg “69)
$90.N0S9Y VY JUBUS |

(HA ‘yllesH Asjlep)
L€ V-HA uonijed

hecccacaccaad

(ueioishyd yyjesH Asjjep *69)
0£¢€ JuswuoliAUg (HA) g Jueus]

(Ong ‘aied yusbin pueifeq) :
1Z€ ¥-ONg uonied §

(ueioishyg a1en usbin puejheg +69)
0Z¢€ Juswuoliaug (ONg) ¥ Jueusy

A

A

01 auibug 189|188

Z¥z 1918n|D | Joaleg pabeuepy

A%

(

woa-yyjeayhajjea//:diy 6-9) TyN g jueusy

44

(wooraseaquabinpuefeq/:dny 6°9) 79N v 1UBUS |

100} JuswuouAug (LN ‘Jueus-ninp 68) Jaaieg uoneol|ddy:

PCT/US2015/052459
6/19

WO 2016/049576

9 34NOI4

£z (9aD) eseqejeQ Jsuiejuo)

65 V 9dd
A

sjusuodwon Jsyio - : (v 8oJnosejeq “'B9)
/GZ 7V 92.n0say

Gl [cly

aseqgejeq juswabeuepy (v SWP “679)
- TRY ST

Ly 967 LV 99in0osay
1010011q oljjed]

214
Zv uopesi|ddy

314
A4
dnoig
uoneordd
v UORESNICY 92In0s9Y

| Ly 99BUBIU| 8]9A98)17 7'y

0G¢ v uoniled

0L¥ (WD7) Jebeuely 8j9kosyI

86z v 196ue | [enuIA
A

00% YJomawe. 4 uoljeuIpJoo) 89498

Z¥z 1918n|D | Joaleg pabeuepy

vy 1911 G9M

5001 uswuodAug (L “ueus-ninp 6:9) Jonieg co:mo__%/m

PCT/US2015/052459

WO 2016/049576

719

4 34N9OI4

e

AN Hcmc._co.h_\>cm_ uinay

[EESRERRETP I e

el

aseqeleq
pUB S\ 91eI00SsY

¥)

uoniued aouaisyo)
PUB S/ S1BI00SSY

(

o
=
©
)3

uonived Sm
puB QL0 818100Ssy

£
3
3
:
3
$
:
H
3
$
3
$
3
3
$
1
1
7

uonied 90UaJIayoy) 9jeal)

< on g e o e .\[

3
3

uoljied aseqeje(91esai)

&

..................... uoliued gLo syesu ‘ AMHMUEQ_\/_ c”__>>v

UsWwuoJIAUg B)eal
uomHeq ST areaig | JPEY OO BIESI0

9¢Y 1444 ey 0cy
uibnig uibnid ubnig uibnig
(9ouaisyog “69) (9@ speiQ “69) (@Lo “69) (SMm "6'9) (Wo1)
pbeieqg Alows -y aseqeieqg 1010811 o148l | 19AJ9G uoeolddy Jabeuey 919403817

¢0} urewoq

5001 uswuodAug (L “ueus-ninp 6:9) Jonieg co:mo__%/m

PCT/US2015/052459

WO 2016/049576

8/19

8 F4NOI4

14517
aseqeleq

€S

Janioag pabeuepy 199G pabeuepy 1oAI9G pabeuepy

¢S S

ﬂ 257 J2isn|)

/K/

0ly
(IND7) Jebeuepy 8j0kos)1q

0S¥ JonIBS C_EU<\

201 c_meon_ :

09y Jadue|eg peon / 1019alig oled|

S|[eQ / ®dejivju| ._.wm_m

PCT/US2015/052459
9/19

WO 2016/049576

6 34NSOI4

¢ddd

ESN ¢S LSIN
evz 900 Janiag pabeuepy Janiag pabeuepy Janiag pabeuepy

5 m 26y oo .
06+ utewoq (1ay1Q) |:

aseqeleq

N\

L1y WOT Gy WO €Ly WO

9.1 Buiuoisinold V4/N3 ¥, Buiuoisinold v4/N3 ZLy Buoisinod v4/N3

A

0Ly Jaisn|o Jsbeuepy 910403y

\ 201 utewiog

09y J9duejeg peoT /10309.IQ dijel] 0¥y Jusl|D

PCT/US2015/052459

WO 2016/049576

10/19

01 34N9Id4

916G N4

uoiyed sy yym
9SN 10} ‘90UB)SUI 9SBJRIEP B JO UONESID 3} JO ‘90UB)SUl J0J08UIP 1.l B JO UOIESID 8y} ‘ajdWwexs 1o}
“uauodwos e Jo uone.nBiuod Jo uoiea.d [enjoe ayy swopad wny ul yoiym ‘eoepayul uibnd e |jeo ues
18y suoneJsado ajpkoay| swuouad Jabeuew 994oa1 ay; ‘uonied e Jo uonenbijucs 1o uonesss bulng

vLG N\

Jusuodwos 1ey) pue sobeuew d[pA29)I| By USOMIS]
abpuig e sopinoad 1eyy uibnid ajpAosy| B $apnpul Yyoiym JO yoes ‘sjusuodwos Jo Aieind e apiaoid

LG NA

suope.nbiyuoo oyoads-uoned umo Jisyy aaey Aew yolym
‘SjuauodwWod J8Y)0 IO aSeqelep puUe ‘sisdue|eq peo| Jo SI0j0alp olel ‘siaalas uonedldde ajdwexs
10} *sjusuodwios JussapIp $soloe uonelbaul uonenbijuco $sjgeus yoiym ‘Jebeuew aj0Ao9)1| € SpIACId

0L N4

aje|dway dnoub 891n0sal e BuousI88I JO/PUB $82IN0SA JO
suoneodde ajgeiojdap 10 uonda|j0o e Buirey sdnolb 921n0sa. s1ow I0 suo apnjoul Ajleuondo
ued uonJed e ujaIaym pue ‘ulewop ay JO UOISIAIPGNS SWIjUNJ PUB SAJeSIUIWPE Ue $3pIAc.d
uonied yoes uialaym ‘suonned aiow Jo suo suoddns yoiym ‘suonesijdde asemyjos JO UoNIaxs
10} uiewop e Buipnjoul ‘JuswWuoIIAUS JaAIBS uoljeol|dde ue ‘siaindwod 810w J0 U0 Je ‘BpIAcId

PCT/US2015/052459

WO 2016/049576

11/19

LE 34NOI4

0rl
$80.4N0S3Y / suoljeolddy

/ sdnoJg) 804n0SaY [9A8T-UIBWOQ

8¢l
$90UN0s9Y

| suoneolddy / sdnoug) 89.nosay
olj108dg-uolyiied

97| 9ousJa)ay
gje|dwa] dnolo 89in0say

$Z| dnolo 80inosay

v0} uoljled

201 ulewoq

™ uopeunbyuog jueus |,

/

A%
Jojessiuiwpy

RO

PCT/US2015/052459

WO 2016/049576

1219

¢l 34N9Id

V19
gdd ¢ jueusy

Zl9
gdd | jueusy

019
ddd [eqo19

09 (S@L) 82in0g 209 (s@9) 9ainog
ele(jueus] ereq [eqo|9

009 SWRUNY g jueus] /

¥6S (S@L) 824n0g 765 (S@D) 90.n0g

ele(JUBUS|

ejeq (eqo|9

0BG dwpuny | JueUS|

-

86 (Sa9 Axoid)
99.n08g

B1eQq Axo0.d

86
(S@9) 8ainog
ejeq [eqo|9

085 dlpuNy ulwpy /

adozyueusy;/:diny odojeulsyuly/:dny

odo-|jueusy//:dny

201 ulewoq

PCT/US2015/052459

WO 2016/049576

13/19

€L 34N9OId

869 N\

BuipJeoquo jueus) ay Bulinp ‘JueuS) 1BY) JO Jleyaq uo Jo
SB SUOIoUN) 81NJ8X8 pue ‘9oeLIaUl BUIYOJIMS JUBUS) B BIA JUBUS) BY) JO IX8)U0D 8y} 0) yoyms Ajleuondo

9€9 ™\

Jueus; Jejnoied e o} 1xajuod uonied e sdew Jey) IX8jU00 JUBUS] B PUB ‘JUSLUUOIIAUS UE ‘Jaljijuapl
anbiun e Buiaey JueUd) B 818910 0] UONBULIOJUI UONBINBIU0D JURUS] 8Y) 8sn ‘Bulpeoquo jueud) buung

V€9 N\

Wa1SAS ay] 0] papJeOgUO 8q O] JUBUS] B 10) Uoie.nBIjuoo
JUBUS) B JO UORIULBP IO} SMO|[E YoIym ‘@oeLiajul uoie.nBiucd Jojpue BuipJeoquo jueus) e apincid

€9 ™\

suope.nbiyuoo oyoads-uoned umo Jisyy aaey Aew yolym
‘SjuauodwWod J8Y)0 IO aSeqelep puUe ‘sisdue|eq peo| Jo SI0j0alp olel ‘siaalas uonedldde ajdwexs
10} *sjusuodwios JussapIp $soloe uonelbaul uonenbijuco $sjgeus yoiym ‘Jebeuew aj0Ao9)1| € SpIACId

0€9 ™/

aje|dway dnoub 891n0sal e BuousI88I JO/PUB $82IN0SA JO
suoneodde ajgeiojdap 10 uonda|j0o e Buirey sdnolb 921n0sa. s1ow I0 suo apnjoul Ajleuondo
ued uonJed e ujaIaym pue ‘ulewop ay JO UOISIAIPGNS SWIjUNJ PUB SAJeSIUIWPE Ue $3pIAc.d
uonied yoes uialaym ‘suonned aiow Jo suo suoddns yoiym ‘suonesijdde asemyjos JO UoNIaxs
10} uiewop e Buipnjoul ‘JuswWuoIIAUS JaAIBS uoljeol|dde ue ‘siaindwod 810w J0 U0 Je ‘BpIAcId

PCT/US2015/052459

WO 2016/049576

14/19

vi 34NOId

¢vz (9a9)

aseqejeq Jaulejuo)

969
uibnid
9190917 9sBQRIE(Q

¥G9
uibnig
919A0917 10308.41Q O14BI L

2%9
ubnig
9190917 JaAIag ddy

059
uibnid
9104984/ uolijed

| L 99eLu| 81949317

0L¥ (WD7) Jebeuely 8j9kosyI

00% YJomawe. 4 uoljeuIpJoo) 89498

0G¢ v uoniled

Z¥z 1918n|D | Joaleg pabeuepy

vy 1911 G9M

001 JusWUOJIAUT

(LN ueua]-nn '69) Joniag co:mo__%/m

PCT/US2015/052459
15/19

WO 2016/049576

S 34N9I4

£z (9aD) eseqejeQ Jsuiejuo)

65 V 9dd
A

Juswsabeuep
::9|0K08)17 eseqejeq::

(v 90.nosereq “69)
/GZ 7V 99In0say

99 09 (v Sr *69)
uibnig Juswabeuep 9GZ LV 92n0say
ajokoay7 aseqeieq| 59 91040917 uopied:
uibnig 1414
sjohosyT J0p08aq o | zgg ZY uoneaddy
ubnig

910hosy7 JoMas ddy | g9 ¢se dd %%@m
ubnig v uojeoljddy 804N0SaYy
910498417 uonijed 7y

0G¢ v uoniled

0Ly
(WD) 1ebeuep 819408417 8GZ v 1obie] [enpIp

A
00 Y4OMBWE.I4 UOIBUIPI00T 8]0A08)IT Zvz 181sn|n | 1an1ag pabeuepy

vy 1911 G9M

00| uswuodAUug (LN ‘ueus]-niny "6 9) Joaiag co:mo__%/m

PCT/US2015/052459

WO 2016/049576

16/19

91 34N9I4

989 N\A

jusuodwod
3} JO UONBINBIUOD JO UONLaId [BNoe Ue wiouad 0) Juauodwod payedosse sy yim aelado ued uibnid
ay11ey 0s ‘uibnid e |[es ued 1ey) suonessdo apkoa) wiopad o) Jsbeuew 91940311 Y1 SMO|IE 1BY)
goepsul ue Juswaidwi suibnid ajpAoay 1o Aneinid sy ‘uoniued e Jo uoneinbijuod 1o uonesss buLng

789 N\

Jusuodwos 1ey) pue sobeuew d[pA29)I| By USOMIS]
abpuig e sopino.d 1eyy uibnid ajpAoa)| B $apnpul YoIym JO yoes ‘siusuodwos Jo Aljeinid e apiaoid

A

289 ™\

suope.nbiyuoo oyoads-uoned umo Jisyy aaey Aew yolym
‘SjuauodwWod J8Y)0 IO aSeqelep puUe ‘sisdue|eq peo| Jo SI0j0alp olel ‘siaalas uonedldde ajdwexs
10} *sjusuodwios JussapIp $soloe uonelbaul uonenbijuco $sjgeus yoiym ‘Jebeuew aj0Ao9)1| € SpIACId

089 N\

aje|dway dnoub 891n0sal e BuousI88I JO/PUB $82IN0SA JO
suoneodde ajgeiojdap 10 uonda|j0o e Buirey sdnolb 921n0sa. s1ow I0 suo apnjoul Ajleuondo
ued uonJed e ujaIaym pue ‘ulewop ay JO UOISIAIPGNS SWIjUNJ PUB SAJeSIUIWPE Ue $3pIAc.d
uonied yoes uialaym ‘suonned aiow Jo suo suoddns yoiym ‘suonesijdde asemyjos JO UoNIaxs
10} uiewop e Buipnjoul ‘JuswWuoIIAUS JaAIBS uoljeol|dde ue ‘siaindwod 810w J0 U0 Je ‘BpIAcId

PCT/US2015/052459
17/19

WO 2016/049576

Ll 34N9I4

$80.4N0S3Y / suoljeolddy
/ $dnoJ9) 82IN0S8Y |9A87-UlBWO(Q

vl. @ uohijed

G0/ jueus] o jleysq

¢lL D uoniied Uo J0 $B uonNOaX3
01. g uoniued (Jsyainosx3

8¢l
$90UN0s9Y

| suoneolddy / sdnoug) 89.nosay
olj108dg-uolyiied

¥0. Jueus] Jo jjeysq Z0/ 1dY Bulyoums jueus|
S YARERIETETEN| uo 10 SEe uoljno8x3

gje|dws] dnoig 821n0say ()syanooxg

$Z| dnolo 80inosay X

v0} uoljled 00£ swnuny [eqo|9

¢0} urewoq

5001 uswuodAug (L “ueus-ninp 6:9) Jonieg co:mo__%/m

PCT/US2015/052459

WO 2016/049576

18/19

81 34N9Id

(Aluo-pesy) zsa

204
add [Bqo19

1SQ (Aluo-peay) 2sd

10/ (s)a0.noseleq

00/ swnuny [eqo|o

acl
ddd ¢ jueusy

T

-

47
add | jueusy

Aluo-peay) zsa 1Sa

o~

L/ (s)s0inoseleq

0¢. ¢ uonijed

L1/ (8)s0inoseleq

0L. | uonied

A

()syeynoex3

odo-ziueuay//:dny

odo"jeussjul/zdpy

odoueusy;diy

Z0} ulewo(

PCT/US2015/052459

WO 2016/049576

19/19

6L 34NOId

127,

JUBUS) JBY) JO J|BYSq Uo Jo
SE LoIjoun) 8y} 8)n0axa pue ‘adeuiajul Buiyoms JUeUS) B BlA JUBUS) 8Y) JO IX8JU0D 8y} 0) swiun [eqo|d
U} YoUMS ‘JUBUS) B JO Jleyaq uo swijun. [eqo|B ayy Ag uonounj e)noaxs 0} jsenbal e Buiaigoas uodn

YL N\A

awnunu [eqolb ay) Aq
9SN 10} [9AS] UlBLIOP 8y} Je palioads aq Ajjeuondo ueds sdnoib 82un0Sal 810 IO BUO UIBJaYM ‘UIBWIOpP
e 0] padoos peaisul s11ng ‘uoniied o110ads Aue ul uns J0u $80p YoIym ‘awnunt [2qolb e apincid

0rL N\

aje|dway dnoub 891n0sal e BuousI88I JO/PUB $82IN0SA JO
suoneodde ajgeiojdap 10 uonda|j0o e Buirey sdnolb 921n0sa. s1ow I0 suo apnjoul Ajleuondo
ued uonJed e ujaIaym pue ‘ulewop ay JO UOISIAIPGNS SWIjUNJ PUB SAJeSIUIWPE Ue $3pIAc.d
uonied yoes uialaym ‘suonned aiow Jo suo suoddns yoiym ‘suonesijdde asemyjos JO UoNIaxs
10} uiewop e Buipnjoul ‘JuswWuoIIAUS JaAIBS uoljeol|dde ue ‘siaindwod 810w J0 U0 Je ‘BpIAcId

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/052459

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 2014/039918 Al (ORACLE INT CORP [US]) 1-14
13 March 2014 (2014-03-13)
paragraphs [0008], [0044], [0056],
[0057], [06005], [0040], [0043],
[0039], [0137]
X WO 2014/039892 Al (ORACLE INT CORP [US]) 1-14
13 March 2014 (2014-03-13)
paragraphs [0033], [0029], [0026],
[0007], [0040], [0034], [0032], [0052]
X WO 2014/039919 Al (ORACLE INT CORP [US]) 1-14
13 March 2014 (2014-03-13)
paragraphs [0035], [0040], [0053],
[0073], [0139], [0133], [0134], [0137]
_/ -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

16 December 2015

Date of mailing of the international search report

04/01/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Simion, C

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/052459

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

US 2014/280975 Al (MORDANI RAJIV [US] ET
AL) 18 September 2014 (2014-09-18)
paragraphs [0022], [0023], [0025],
[0030], [0032], [0041], [0059]

1-14

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/052459
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2014039918 Al 13-03-2014 CN 104737517 A 24-06-2015
EP 2893683 Al 15-07-2015
WO 2014039918 Al 13-03-2014
WO 2014039892 Al 13-03-2014 US 2014075412 Al 13-03-2014
WO 2014039892 Al 13-03-2014
WO 2014039919 Al 13-03-2014 CN 104756460 A 01-07-2015
EP 2893684 Al 15-07-2015
JP 2015529366 A 05-10-2015
US 2014075032 Al 13-03-2014
WO 2014039919 Al 13-03-2014
US 2014280975 Al 18-09-2014 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - claims
	Page 73 - claims
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - wo-search-report
	Page 94 - wo-search-report
	Page 95 - wo-search-report

