This invention provides a novel dicarboxylic acid salt forms of varenicline, namely varenicline fumarate, and methods for making same. Varenicline salts are useful for treating smoking addition. In one embodiment of the instant invention, the varenicline fumarate shows an XRD pattern (2θ) having characteristic peaks at 10.6, 11.9, 13.2, 16.2, 16.6, 18.0, 21.5, 22.6, 25.7, 28.5 and 29.1°. In another embodiment, the varenicline fumarate is prepared by (i) contacting varenicline with fumaric acid, optionally in the presence of a suitable solvent, and removing the solvent when necessary, or (ii) contacting varenicline fumarate salt with a suitable solvent, and removing the solvent.

4 Claims, 28 Drawing Sheets
Figure 1 (IR Varenicline hemi-adipate Form I)

Figure 2 (XRD Varenicline hemi-adipate Form I)
Figure 3 (IR Varenicline fumarate Form I)

Figure 4 (XRD Varenicline fumarate Form I)
Figure 5 (IR Varenicline glutarate Form I)

Figure 6 (XRD Varenicline glutarate Form I)
Figure 7 (IR Varenicline glycolate Form I)

Figure 8 (XRD Varenicline glycolate Form I)
Figure 9 (IR Varenicline hydrochloride Form I)

Figure 10 (XRD Varenicline hydrochloride Form I)
Figure 11 (IR Varenicline α-ketoglutarate Form I)

Figure 12 (XRD Varenicline α-ketoglutarate Form I)
Figure 13 (IR Varenicline L-malate Form I)

Figure 14 (XRD Varenicline L-malate Form I)
Figure 17 (IR Varenicline malonate Form I)

Figure 18 (XRD Varenicline malonate Form I)
Figure 19 (IR Varenicline DL-mandelate Form I)

Figure 20 (XRD Varenicline DL-mandelate Form I)
Figure 21 (IR Varenicline di-mesylate Form I)

Figure 22 (XRD Varenicline di-mesylate Form I)
Figure 23 (IR Varenicline oxalate Form I)

Figure 24 (XRD Varenicline oxalate Form I)
Figure 25 (IR Varenicline phosphate Form I)

Figure 26 (XRD Varenicline phosphate Form I)
Figure 27 (IR Varenicline pyroglutamate Form I)

Figure 28 (XRD Varenicline pyroglutamate Form I)
Figure 29 (IR Varenicline succinate Form I)

Figure 30 (XRD Varenicline succinate Form I)
Figure 31 (IR Varenicline galactarate Form I)

Figure 32 (XRD Varenicline galactarate Form I)
Figure 33 (IR Varenicline DL-lactate Form I)

Figure 34 (XRD Varenicline DL-lactate Form I)
Figure 35 (IR Varenicline 1,2-ethane disulfonate Form I)

Figure 36 (XRD Varenicline 1,2-ethane disulfonate Form I)
Figure 37 (IR Varenicline hemi-L-lactate Form I)

Figure 38 (XRD Varenicline hemi-L-lactate Form I)
Figure 39 (IR Varenicline gluconate amorphous form)

Figure 40 (XRD Varenicline Gluconate amorphous form)
Figure 41 (IR Varenicline malate Form II)

Figure 42 (XRD Varenicline malate Form II)
Figure 43 (IR Varenicline malate Form III)

Figure 44 (XRD Varenicline malate Form III)
Figure 45 (IR Varenicline malate Form IV)

Figure 46 (XRD Varenicline malate Form IV)
Figure 47 (IR Varenicline phosphate Form II)

Figure 48 (XRD Varenicline phosphate Form II)
Figure 49 (IR Varenicline phosphate Form III)

Figure 50 (XRD Varenicline phosphate Form III)
Figure 51 (IR Varenicline hydrochloride Form II)

Figure 52 (XRD Varenicline hydrochloride Form II)
Figure 53 (IR Varenicline hydrochloride Form III)

Figure 54 (XRD Varenicline hydrochloride Form III)
Figure 55 (simulated XR for single crystal of Varenicline fumarate Form I)

Figure 56 (Molecular structure of varenicline fumarate Form I with the atom-labelling scheme)
1. FUMARIC ACID SALT OF VARENCLINE

PRIORITY CLAIM

This is a U.S. national stage of PCT Application No. PCT/ EP2009/052654, filed on Mar. 6, 2009, which claims priority of U.S. Provisional Patent Application Nos. 61/123,382, filed Apr. 8, 2008, and 61/068,384, filed Mar. 6, 2008, the contents of both of which are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to novel salt forms of varencline base, to processes for their preparation and isolation, and to pharmaceutical compositions comprising the same.

BACKGROUND OF THE INVENTION

Varenicline (Compound 1) is the international commonly accepted name for 7,8,9,10-tetrahydro-6,10-methano-6H-pyrazino[2,3-h][3]benzazepine (which is also known as 5,8,14-triazatetracyclo[10.3.1.0²,11.0⁶,9]hexadeca-2(11),3,5,7,9-pentaene), and has an empirical formula of C_{17}H_{19}N_{4} and a molecular weight of 211.27. Varenicline L-tartrate is a commercially marketed pharmaceutically active substance known to be useful for the treatment of smoking addiction.

Varenicline L-tartrate is a partial agonist selective for α_{4}β_{2} nicotinic acetylcholine receptor subtypes. In the United States, varenicline L-tartrate is marketed under the name Chantix™ for the treatment of smoking cessation.

Varenicline base and its pharmaceutically acceptable acid addition salts are described in U.S. Pat. No. 6,410,550. In particular, Example 26 of U.S. Pat. No. 6,410,550 describes the preparation of varenicline base and its hydrochloride salt using 1-(4,5-dimeto-10-aza-tricyclo[6.1.0²,7]deca-2,4,6-trien-10-yl)-2,2,2-trifluoroethanol as starting compound. In particular, the hydrochloride salt of varenicline described in this reference has been obtained after crystallization from methanol/diethyl ether (The present inventors have reproduced said crystallization, and the varenicline hydrochloride obtained has been denominated herein as Form I). See Comparative Example 1). In addition, Examples 1 and 2 of U.S. Pat. No. 6,787,549B2 describe the preparation of varenicline citrate in different forms (Forms A and B). Also, Examples 1 and 2 of U.S. Pat. No. 6,794,388B2 describe the preparation of varenicline succinate in different forms (i.e. an anhydrous form and a hydrate form). Further, Examples 1 to 4 of U.S. Pat. No. 6,890,927B2 describe the preparation of varenicline tartrate in different forms (Forms A, B, and C).

Different salt forms of the same pharmaceutically active moiety differ in their physical properties such as melting point, solubility, chemical reactivity, etc. These properties may appreciably influence pharmaceutical properties such as dissolution rate and bioavailability.

In addition, polymorphism, which is defined as the ability of a substance to crystallize in more than one crystal lattice arrangement, can also influence many aspects of solid state properties of a drug. Different crystal modifications of a substance may differ considerably from one another in many respects such as their solubility, dissolution rate and finally bioavailability.

There exists a need for salt forms, which in addition might be in crystalline form, of such material that have superior chemical and/or physical properties that are useful in drug delivery applications.

This application sets forth several novel salt forms of varenicline base. These salt forms have been prepared and characterized as described herein.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates the Infrared (IR) spectra of varenicline hemi-adipate Form I obtained in Example 1.

FIG. 2 illustrates the X-ray powder diffractionogram (XRD) of varenicline hemi-adipate Form I obtained in Example 1.

FIG. 3 illustrates the Infrared (IR) spectra of varenicline fumarate Form I obtained in Example 2.

FIG. 4 illustrates the X-ray powder diffractionogram (XRD) of varenicline fumarate Form I obtained in Example 2.

FIG. 5 illustrates the Infrared (IR) spectra of varenicline glutarate Form I obtained in Example 3.

FIG. 6 illustrates the X-ray powder diffractionogram (XRD) of varenicline glutarate Form I obtained in Example 3.

FIG. 7 illustrates the Infrared (IR) spectra of varenicline glycolate Form I obtained in Example 4.

FIG. 8 illustrates the X-ray powder diffractionogram (XRD) of varenicline glycolate Form I obtained in Example 4.

FIG. 9 illustrates the Infrared (IR) spectra of varenicline hydrochloride Form I obtained in Example 5.

FIG. 10 illustrates the X-ray powder diffractionogram (XRD) of varenicline hydrochloride Form I obtained in Example 5.

FIG. 11 illustrates the Infrared (IR) spectra of varenicline α-ketogluturate Form I obtained in Example 6.

FIG. 12 illustrates the X-ray powder diffractionogram (XRD) of varenicline α-ketogluturate Form I obtained in Example 6.

FIG. 13 illustrates the Infrared (IR) spectra of varenicline L-malate Form I obtained in Example 7.

FIG. 14 illustrates the X-ray powder diffractionogram (XRD) of varenicline L-malate Form I obtained in Example 7.

FIG. 15 illustrates the Infrared (IR) spectra of varenicline maleate Form I obtained in Example 8.

FIG. 16 illustrates the X-ray powder diffractionogram (XRD) of varenicline maleate Form I obtained in Example 8.

FIG. 17 illustrates the Infrared (IR) spectra of varenicline maleonate Form I obtained in Example 9.

FIG. 18 illustrates the X-ray powder diffractionogram (XRD) of varenicline maleonate Form I obtained in Example 9.

FIG. 19 illustrates the Infrared (IR) spectra of varenicline DL-mandelate Form I obtained in Example 10.

FIG. 20 illustrates the X-ray powder diffractionogram (XRD) of varenicline DL-mandelate Form I obtained in Example 10.

FIG. 21 illustrates the Infrared (IR) spectra of varenicline di-mesylate Form I obtained in Example 11.

FIG. 22 illustrates the X-ray powder diffractionogram (XRD) of varenicline di-mesylate Form I obtained in Example 11.

FIG. 23 illustrates the Infrared (IR) spectra of varenicline oxalate Form I obtained in Example 12.

FIG. 24 illustrates the X-ray powder diffractionogram (XRD) of varenicline oxalate Form I obtained in Example 12.

FIG. 25 illustrates the Infrared (IR) spectra of varenicline phosphate Form I obtained in Example 13.

FIG. 26 illustrates the X-ray powder diffractionogram (XRD) of varenicline phosphate Form I obtained in Example 13.

FIG. 27 illustrates the Infrared (IR) spectra of varenicline pyroglutamate Form I obtained in Example 14.
SUMMARY OF THE INVENTION

The present invention relates generally to novel salt forms of 7,8,9,10-tetrahydro-6,10-methano-6H-pyrazino[2,3-h]benzazepine, i.e. varenicline base, to processes for their preparation and isolation, and to pharmaceutical compositions comprising the same.

DETAILED DESCRIPTION OF THE INVENTION

It has been found that varenicline can exist in a number of crystalline salt forms.

The novel crystalline salt forms of varenicline of the present invention have been prepared and characterized as described herein and are referred to herein as varenicline hemi-1,2-ethane disulfonate Form I, fumarate (Form I), glutarate (Form I), glycolate (Form I), hydrochloride (Forms I, II, III, and IV), α-keto-glutarate (Form I), L-malate (Form I, II, III, and IV), maleate (Form I), malonate (Form I), DL-mandelate (Form I), di-(methane sulfonate) (Form I), oxalate (Form I), phosphate (Forms I, II, and III), S-2-pyridyldimethyl-5-carboxylate (Form I), galactarate (Form I), DL-lactate (Form I), hemi-1,2-ethane disulfonate (Form I) and hemi-L-lactate (Form I).

Also, it has been found that varenicline can exist in one amorphous salt form.

The novel amorphous salt form of varenicline of the present invention has been prepared and characterized as described herein and is referred to herein as varenicline D-glucanate amorphous Form.

The novel salt forms of varenicline of the present invention exhibit a high solubility profile in water, i.e. higher than approximately 20 mg/mL, which might enhance their pharmaceutical properties such as dissolution rate and bioavailability. Further, the formation of the varenicline salts of the invention might be an efficient way of purifying varenicline base. In addition, a number of the crystalline salt forms of varenicline of the present invention have been found to be highly stable in terms of chemical purity and of polymorphic form after one year of storage, which makes them more suitable for pharmaceutical formulation use.

The solid form salts of varenicline of the present invention have been characterized by means of Fourier Transform Infrared (FTIR) spectra, Powder X-ray diffraction patterns (XRD), Proton Nuclear Magnetic Resonance (1H NMR) and High Performance Liquid Chromatography (HPLC).

A first aspect of the present invention includes varenicline hemi-adipate crystalline salt form (Form I), and processes for its preparation and isolation.

The varenicline hemi-adipate Form I of the present invention shows an IR spectrum having its main peaks at 2947.3, 2933.6, 2916.6, 1596.4, 1472.5, 1444.1, 1385.8, 1365.2, 1270.5, 1253.1, 1029.3, 940.1, 917.6, 884.8, 761.5, 518.3 and 500.7 cm⁻¹ with further peaks at 3399.3, 2761.3, 2546.5, 2371.3, 1951.8, 1720.0, 1412.7, 1305.7, 1196.1, 1185.5, 1160.8, 1149.7, 1128.8, 1091.1, 1060.7, 1013.5, 898.5, 864.6, 797.2, 782.5, 727.0, 634.8, 601.2 and 592.2 cm⁻¹. FIG. 1 illustrates the IR spectrum of varenicline hemi-adipate Form I.

The varenicline hemi-adipate Form I of the present invention shows an XRD pattern (2θ) (±0.2°) having characteristics peaks at 10.8, 14.6, 17.1, 17.7, 18.4, 18.7, 22.0, 23.4 and 25.8° with further peaks at 9.9, 11.8, 14.9, 21.6, 22.8, 25.1, 26.8, 27.8, 28.4, 28.8, 29.0, 30.5, 30.8, 31.5, 32.6 and 36.0°. FIG. 2 illustrates the XRD of varenicline hemi-adipate Form I.

The hemi-salt (2:1) correlation of varenicline hemi-adipate Form I was confirmed by 1H NMR spectrum.

The varenicline hemi-adipate Form I of the invention has a purity higher than about 99.8% relative peak area by HPLC. In addition, the varenicline hemi-adipate Form I of the invention is highly soluble in water. Also, the varenicline hemi-
adipate Form I of the invention has been found to be highly stable in terms of chemical purity and of polymorphic form after one year of storage.

Another aspect of the present invention relates to a process for preparing varenicline hemi-adipate salt Form I, said process comprising contacting varenicline with adipic acid, optionally in the presence of a suitable solvent, and removing the solvent when necessary.

The suitable solvent preferably comprises a C1-C4 alcohol solvent or mixtures thereof. More preferably, the suitable solvent is 2-propanol.

Another aspect of the present invention includes varenicline hemi-1,2-ethanedisulfonate crystalline salt form (Form I), and processes for its preparation and isolation.

The varenicline hemi-1,2-ethanedisulfonate Form I of the invention shows an IR spectrum having its main peaks at 3535.6, 3007.9, 2977.7, 2847.8, 2799.8, 2775.2, 2727.6, 2572.5, 2343.4, 2103.7, 2036.6, 1527.1, 1461.4, 1233.9, 1205.0, 1148.7, 1033.5, 914.6, 873.9, 597.8, 547.6, 526.3 and 498.2 cm⁻¹ with further peaks at 3246.8, 3061.8, 2682.7, 1918.4, 1642.7, 1618.5, 1584.9, 1570.9, 1472.9, 1377.0, 1362.4, 1348.3, 1315.4, 1291.6, 1271.1, 1093.7, 840.2, 794.2, 774.5 and 723.0 cm⁻¹. Fig. 35 illustrates the IR spectrum of varenicline hemi-1,2-ethanedisulfonate Form I.

The varenicline hemi-1,2-ethanedisulfonate Form I of the present invention shows an XRD pattern (20) (±0.2°) having characteristics peaks at 15.0, 16.4, 18.3, 18.4, 19.4, 20.1, 20.6, 21.6, 22.5, 25.6, 28.0 and 32.9° with further peaks at 13.8, 15.0, 17.3, 17.5, 23.9, 24.7, 27.3, 28.9, 30.2 and 34.9°. Fig. 36 illustrates the XRD of varenicline hemi-1,2-ethanedisulfonate Form I.

The hemi-salt (2:1) correlation of varenicline hemi-1,2-ethanedisulfonate Form I was confirmed by 1H NMR spectrum.

The varenicline hemi-1,2-ethanedisulfonate Form I of the invention has a purity higher than about 99.6% relative peak area by HPLC.

Another aspect of the present invention relates to a process for preparing varenicline hemi-1,2-ethanedisulfonate salt Form I, said process comprising contacting varenicline with 1,2-ethanedisulfonic acid, optionally in the presence of a suitable solvent, and removing the solvent when necessary. The 1,2-ethanedisulfonic acid can be optionally prepared in-situ from disodium 1,2-ethanedisulfonate.

The suitable solvent preferably comprises a C1-C4 alcohol solvent or mixtures thereof. More preferably, the suitable solvent is 2-propanol.

Another aspect of the present invention includes varenicline fumarate crystalline salt form (Form I), and processes for its preparation and isolation.

The varenicline fumarate Form I of the present invention shows an IR spectrum having its main peaks at 2972.9, 2978.6, 1703.6, 1612.5, 1475.1, 1392.2, 1355.7, 1259.9, 1172.1, 1086.9, 1026.5, 984.6, 936.3, 916.7, 891.2, 793.3, 637.0, 559.2 and 503.3 cm⁻¹ with further peaks at 3393.5, 2621.8, 1634.3, 777.0, 748.0, 718.4, 667.4, 600.7 and 590.7 cm⁻¹. Fig. 3 illustrates the IR spectrum of varenicline fumarate Form I.

The varenicline fumarate Form I of the present invention shows an XRD pattern (20) (±0.2°) having characteristics peaks at 10.6, 11.9, 13.2, 16.2, 16.6, 18.0, 21.5, 22.6, 25.7, 28.5 and 29.1° with further peaks at 7.1, 11.2, 13.8, 14.4, 19.3, 20.5, 22.3, 24.1, 24.5, 24.9, 27.8 and 31.8°. Fig. 4 illustrates the XRD of varenicline fumarate Form I.

The 1:1 salt correlation of varenicline fumarate Form I was confirmed by 1H NMR spectrum.

The varenicline fumarate Form I of the invention has a purity higher than about 99.8% relative peak area by HPLC.

In addition, the varenicline fumarate Form I of the invention is highly soluble in water. Also, the varenicline fumarate Form I of the invention has been found to be highly stable in terms of chemical purity and of polymorphic form after one year of storage.

Fig. 56 illustrates the molecular structure of varenicline fumarate Form I with the atom-labelling scheme. The basic crystallographic data for single crystal of varenicline fumarate Form I is as follows:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal size</td>
<td>0.60 x 0.45 x 0.45 mm³</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic, P-1</td>
</tr>
<tr>
<td>Unit cell size</td>
<td>a = 8.3288(9) Å</td>
</tr>
<tr>
<td></td>
<td>b = 12.322(2) Å</td>
</tr>
<tr>
<td></td>
<td>c = 15.533(4) Å</td>
</tr>
<tr>
<td></td>
<td>α = 88.06(2)°</td>
</tr>
<tr>
<td></td>
<td>β = 88.589(10)°</td>
</tr>
<tr>
<td></td>
<td>γ = 80.987(10)°</td>
</tr>
<tr>
<td>Volume</td>
<td>1573.4(5) Å</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Calculated density</td>
<td>1.382 Mg/m³</td>
</tr>
</tbody>
</table>

Fig. 55 illustrates a simulated X-ray diffractogram which has been calculated using the crystallographic data for single crystal of varenicline fumarate Form I. The simulated X-ray diffractogram of Fig. 55 is substantially similar to the X-ray powder diffractogram of varenicline fumarate Form I of Fig. 4.

Another aspect of the present invention relates to a process for preparing varenicline fumarate salt Form I, said process comprising contacting varenicline with fumaric acid, optionally in the presence of a suitable solvent, and removing the solvent when necessary.

Another aspect of the present invention relates to a process for preparing varenicline fumarate salt Form I, said process comprising contacting varenicline fumarate salt with a suitable solvent, and removing the solvent.

The suitable solvent of the processes above preferably comprises a C1-C4 alcohol solvent, a ketone solvent, an haloalkane solvent, an ether solvent, an ester solvent, mixtures thereof, or mixtures thereof with water. More preferably, the suitable solvent comprises at least one of the group consisting of acetone, 2-butanol, methyl isobutyl ketone, chloroform, methanol, ethanol, isopropyl alcohol, methyl tert-butyl ether, tetrahydrofuran, isopropyl acetate, and ethanoacetone.

Another aspect of the present invention includes varenicline glutarate crystalline salt form (Form I), and processes for its preparation and isolation.

The varenicline glutarate Form I of the present invention shows an IR spectrum having its main peaks at 2975.7, 2902.5, 2591.9, 1721.7, 1578.8, 1475.4, 1405.9, 1257.2, 1169.8 and 504.6 cm⁻¹ with further peaks at 3412.0, 1798.2, 1614.0, 1462.8, 1358.7, 1319.0, 1152.5, 1089.5, 1068.0, 1034.2, 941.5, 917.6, 896.4, 871.7, 809.8, 779.0, 758.6, 720.3 and 589.0 cm⁻¹. Fig. 5 illustrates the IR spectrum of varenicline glutarate Form I.

The varenicline glutarate Form I of the present invention shows an XRD pattern (20) (±0.2°) having characteristics peaks at 8.9, 10.3, 11.5, 14.1, 14.5, 15.4, 17.2, 17.7, 18.3, 19.7, 21.6, 22.1, 22.6, 24.3, 24.9, 25.7, 27.4 and 28.1° with further peaks at 7.6, 13.3, 29.7, 30.9, 31.5 and 32.3°. Fig. 6 illustrates the XRD of varenicline glutarate Form I.

The 1:1 salt correlation of varenicline glutarate Form I was confirmed by 1H NMR spectrum.
The varenicline glutarate Form I of the invention has a purity higher than about 98.7% relative peak area by HPLC. Another aspect of the invention relates to a process for preparing varenicline glutarate salt Form I, said process comprising contacting varenicline with glutaric acid, optionally in the presence of a suitable solvent, and removing the solvent when necessary.

The suitable solvent preferably comprises a C3 – C6 alcohol solvent or mixtures thereof. More preferably, the suitable solvent is 2-propanol.

Another aspect of the present invention includes varenicline glycolate crystalline salt form (Form I), and processes for its preparation and isolation.

The varenicline glycolate Form I of the invention shows an IR spectrum having its main peaks at 3402, 3266, 2968, 2865, 2835, 1635, 1472, 1427, 1354, 1347, 1280, 1248, 1192, 1043, 915, 874.4 and 597.6 cm⁻¹ with further peaks at 3248, 1914, 1643, 1057, 1057, 1043, 1027, 959, 902, 868, 836, 738, 556 and 426.3 cm⁻¹. FIG. 8 illustrates the IR spectrum of varenicline glycolate Form I.

The 1H NMR correlation of varenicline glycolate Form I was confirmed by 1H NMR spectrum.

The varenicline glycolate Form I of the invention has a purity higher than about 99.9% relative peak area by HPLC.

Another aspect of the invention relates to a process for preparing varenicline glycolate salt Form I, said process comprising contacting varenicline with glycolic acid, optionally in the presence of a suitable solvent, and removing the solvent when necessary.

The suitable solvent preferably comprises a C3 – C6 alcohol solvent or mixtures thereof. More preferably, the suitable solvent is 2-propanol.

Another aspect of the present invention includes varenicline hydrochloride salt in new crystalline forms (Forms I, II, and III), and processes for their preparation and isolation.

The crystalline forms of varenicline hydrochloride obtained by the processes of the invention have been characterized herein and are referred to herein as varenicline hydrochloride Forms I, II, and III.

The varenicline hydrochloride Form I of the invention shows an IR spectrum having its main peaks at 3407, 3353, 3060, 2978, 2845, 2796, 2772, 2727, 2683, 2628, 2571, 2326, 2012, 2055, 1569, 1526, 1427, 1460, 1347, 1204, 1184, 1043, 915, 874.4, and 597.6 cm⁻¹ with further peaks at 3248, 1916, 1643, 1057, 1057, 1043, 1027, 959, 902, 868, 836, 738, 556 and 426.3 cm⁻¹. FIG. 9 illustrates the IR spectrum of varenicline hydrochloride Form I.

The varenicline hydrochloride Form I of the present invention shows an XRD pattern (2θ) (+0.2°) having characteristics peaks at 6.8, 12.4, 17.8, 19.5, 23.5, 26.5, 27.6 and 29.5° with further peaks at 10.1, 13.4, 14.5, 15.8, 18.8, 20.6, 22.1, 22.8, 25.2, 29.9, 30.6, 31.8, 33.7, 34.9, 36.1, 37.0 and 39.0°. FIG. 10 illustrates the XRD of varenicline hydrochloride Form I.

The preparation of varenicline hydrochloride salt Form II can be carried out by means of crystallization from methanol/diethyl ether or by contacting varenicline with hydrochloric acid in the presence of methyl tert-butyl ether, and removing the methyl tert-butyl ether from the mixture.

The varenicline hydrochloride Form III of the present invention shows an IR spectrum having its main peaks at 3359, 3027, 2984, 2614, 1605, 1479, 1457, 1356, 1320, 1155, 1033, 943.1, 917.5, 894.4, 859.1, 607.8 cm⁻¹ with further peaks at 1291, 1267, 1207, 1191, 1134.7, 1091.1, 875.2, 850.0, 780.8 cm⁻¹. FIG. 11 illustrates the IR spectrum of varenicline hydrochloride Form III.

Another aspect of the invention relates to a process for preparing varenicline hydrochloride salt Form III, said process comprising contacting varenicline hydrochloride with a suitable solvent, and removing the solvent.

The suitable solvent preferably comprises at least one of the group consisting of acetone, 2-butanone, methyl isobutyl ketone, chloroform, methanol, ethanol, methyl tert-butyl ether, tetrahydrofuran, isopropyl acetate, and ethanol/water 80:20.

Another aspect of the present invention includes varenicline α-ketoglutarate crystalline salt form (Form I), and processes for its preparation and isolation.

The varenicline α-ketoglutarate Form I of the present invention shows an IR spectrum having its main peaks at 2952.6, 2817.0, 2598.6, 1716.7, 1632.6, 1589.0, 1479.6, 1463.9, 1453.2, 1421.4, 1358.9, 1293.1, 1197.2, 1030.5, 943.8 and 919.3 cm⁻¹ with further peaks at 3416.5, 1872.9, 1154.1, 1097.7, 1086.4, 1062.8, 879.3, 844.0, 820.3, 783.5, 742.9, 727.4, 697.3, 638.1, 618.6, 590.4 and 503.5 cm⁻¹. FIG. 12 illustrates the IR spectrum of varenicline α-ketoglutarate Form I.
US 8,440,825 B2

The varenicline L-malate Form II of the invention has a purity higher than about 99.9% relative peak area by HPLC. The varenicline L-malate Form II of the invention has been found to be highly stable in terms of chemical purity and of polymorphic form after one year of storage.

Another aspect of the invention relates to a process for preparing varenicline L-malate salt Form II, said process comprising contacting varenicline L-malate with a suitable solvent, and removing the solvent.

The suitable solvent preferably comprises at least one of the group consisting of 2-butanol, methyl isobutyl ketone, chloroform, methyl tert-butyl ether, tetrahydrofuran, isopropanol, acetone, and mixtures thereof.

The varenicline L-malate Form III of the present invention shows an IR spectrum having its main peaks at 3419, 2970, 2814, 2616, 1717, 1656, 1602, 1479, 1436, 1401, 1356, 1297, 1269, 1205, 1152, 1134, 1105, 1027, 977, 890, 776, 698, 641, 601, 544, 500, and 445 cm⁻¹. FIG. 43 illustrates the IR spectrum of varenicline L-malate Form III.

Another aspect of the invention relates to a process for preparing varenicline L-malate Form III, said process comprising contacting varenicline L-malate with a C₁₋₇₇₇₇ alcohol solvent, and removing the solvent.

Another aspect of the invention relates to a process for preparing varenicline L-malate salt Form II, said process comprising contacting varenicline L-malate with C₁₋₇₇₇₇ alcohol solvent, and removing the solvent.

The varenicline L-malate Form IV of the present invention shows an IR spectrum having its main peaks at 3439, 2974, 2876, 2827, 2620, 2462, 1629, 1475, 1409, 1357, 1323, 1292, 1209, 1189, 1157, 1103, 1029, 937, 891, 776, 664, 604, 546, 504, 483, and 454 cm⁻¹. FIG. 45 illustrates the IR spectrum of varenicline L-malate Form IV.

Another aspect of the invention relates to a process for preparing varenicline L-malate Form IV, said process comprising contacting varenicline L-malate with a mixture of ethanol/water 90:10, and removing the solvent.

Another aspect of the present invention includes varenicline maleate crystalline salt form (I), and processes for its preparation and isolation.

The varenicline maleate Form I of the present invention shows an IR spectrum having its main peaks at 3054.1, 2961.3, 2820.5, 2601.1, 1588.3, 1478.8, 1454.8, 1373.5, 1348.0, 1323.1, 1088.0, 1027.8, 977.9, 936.1, 918.6, 886.3, 855.3, 692.0 and 553.0 cm⁻¹ with further peaks at 3411.9, 2446.7, 1250.7, 1208.6, 1192.9, 1172.9, 1141.2, 794.6 and 777.0 cm⁻¹. FIG. 15 illustrates the IR spectrum of varenicline maleate Form I.

The varenicline maleate Form I of the present invention shows an XRD pattern (2θ) having characteristics peaks at 6.0, 11.2, 13.6, 15.3, 16.1, 17.2, 18.4, 21.0, 22.7, 24.2, 24.7, 26.5, 27.6, and 29.1°. FIG. 46 illustrates the XRD of varenicline maleate Form I.
The 1:1 salt correlation of varenicline maleate Form I was confirmed by 1H NMR spectrum. The varenicline maleate Form I of the invention has a purity higher than about 99.9% relative peak area by HPLC. In addition, the varenicline maleate Form I of the invention is highly soluble in water. Also, the varenicline maleate Form I of the invention has been found to be highly stable in terms of chemical purity and of polymorphic form after one year of storage.

Another aspect of the invention relates to a process for preparing varenicline maleate salt Form I, said process comprising contacting varenicline with maleic acid, optionally in the presence of a suitable solvent, and removing the solvent when necessary.

The suitable solvent preferably comprises a C$_4$-C$_9$ alcohol solvent, a ketone solvent, an haloalkane solvent, an ether solvent, a hydrocarbon solvent, mixtures thereof, or mixtures thereof with water. More preferably, the suitable solvent comprises at least one of the group consisting of acetone, 2-butanone, methyl isobutyl ketone, chloroform, methanol, ethanol, isopropyl alcohol, methyl tert-butyl ether, tetrahydrofuran, isopropyl acetate, and ethanol/water 80:20.

Another aspect of the present invention includes varenicline maleate crystalline salt form (Form I), and processes for its preparation and isolation.

The varenicline maleate Form I of the present invention shows an IR spectrum having its main peaks at 3433.7, 3371.8, 3262.2, 3006.8, 2974.8, 2963.1, 2931.2, 2799.4, 2536.8, 1239.8, 1192.3, 1149.1, 1058.2, 784.5, 598.6, 562.1, 535.9 and 525.3 cm$^{-1}$ with further peaks at 3433.7, 3371.8, 3262.2, 3006.8, 2974.8, 2963.1, 2931.2, 2799.4, 2536.8, 1239.8, 1192.3, 1149.1, 1058.2, 784.5, 598.6, 562.1, 535.9 and 525.3 cm$^{-1}$. FIG. 17 illustrates the IR spectrum of varenicline maleate Form I.

The varenicline maleate Form I of the present invention shows an XRD pattern (20) (±0.2°) having characteristics peaks at 10.7, 13.2, 13.4, 14.5, 15.4, 17.8, 19.4, 19.9, 21.4, 21.7, 22.4, 23.8, 26.5, 26.9, 30.4 and 32.6° with further peaks at 10.7, 13.2, 13.4, 14.5, 15.4, 17.8, 19.4, 19.9, 21.4, 21.7, 22.4, 23.8, 26.5, 26.9, 30.4 and 32.6° with further peaks at 8.0, 12.0, 15.7, 17.2, 18.7, 19.5, 21.9 and 24.2° with further peaks at 4.6, 9.5, 11.4, 13.3, 13.9, 14.8, 16.3, 20.3, 23.4, 26.6, 27.2, 28.0, 28.8 and 30.7°. FIG. 20 illustrates the XRD of varenicline DL-mandelate Form I.

The 1:1 salt correlation of varenicline DL-mandelate Form I was confirmed by 1H NMR spectrum. The varenicline DL-mandelate Form I of the invention shows an IR spectrum having its main peaks at 3433.7, 3371.8, 3262.2, 3006.8, 2974.8, 2963.1, 2931.2, 2799.4, 2536.8, 1239.8, 1192.3, 1149.1, 1058.2, 784.5, 598.6, 562.1, 535.9 and 525.3 cm$^{-1}$ with further peaks at 3399.8, 3328.7, 3119.4, 2960.3, 2918.0, 2695.6, 1928.1, 1396.3, 1269.4, 1200.9, 1090.5, 1060.0, 1030.2, 946.3, 938.1, 917.0, 906.6, 875.2, 778.4, 748.5, 656.6, 621.4 and 586.5 cm$^{-1}$. FIG. 17 illustrates the IR spectrum of varenicline maleate Form I.

The varenicline DL-mandelate Form I of the present invention shows an XRD pattern (20) (±0.2°) having characteristics peaks at 10.7, 13.2, 13.4, 14.5, 15.4, 17.8, 19.4, 19.9, 21.4, 21.7, 22.4, 23.8, 26.5, 26.9, 30.4 and 32.6° with further peaks at 10.7, 13.2, 13.4, 14.5, 15.4, 17.8, 19.4, 19.9, 21.4, 21.7, 22.4, 23.8, 26.5, 26.9, 30.4 and 32.6° with further peaks at 10.7, 13.2, 13.4, 14.5, 15.4, 17.8, 19.4, 19.9, 21.4, 21.7, 22.4, 23.8, 26.5, 26.9, 30.4 and 32.6° with further peaks at 10.7, 13.2, 13.4, 14.5, 15.4, 17.8, 19.4, 19.9, 21.4, 21.7, 22.4, 23.8, 26.5, 26.9, 30.4 and 32.6° with further peaks at 10.7, 13.2, 13.4, 14.5, 15.4, 17.8, 19.4, 19.9, 21.4, 21.7, 22.4, 23.8, 26.5, 26.9, 30.4 and 32.6° with further peaks at 10.7, 13.2, 13.4, 14.5, 15.4, 17.8, 19.4, 19.9, 21.4, 21.7, 22.4, 23.8, 26.5, 26.9, 30.4 and 32.6° with further peaks.
US 8,440,825 B2

at 16.9, 18.6, 25.2, 28.6 and 34.9°. FIG. 24 illustrates the XRD of varenicline oxalate Form I. The varenicline oxalate Form I of the invention has a purity higher than about 99.9% relative peak area by HPLC.

Another aspect of the invention relates to a process for preparing varenicline oxalate salt Form I, said process comprising contacting varenicline with oxalic acid, optionally in the presence of a suitable solvent, and removing the solvent when necessary.

The suitable solvent preferably comprises a C₁₋₄ alcohol solvent or mixtures thereof. More preferably, the suitable solvent is 2-propanol.

Another aspect of the present invention includes varenicline phosphate salt in different crystalline forms (Forms I, II, and III), and processes for their preparation and isolation. The crystalline forms of varenicline phosphate obtained by the processes of the invention have been characterized herein and are referred to herein as varenicline phosphate Form I, II, or III.

The varenicline phosphate Form I of the present invention shows on an IR spectrum having its main peaks at 2834.2, 2381.8, 1613.4, 1474.1, 1208.7, 1107.1, 986.2, 942.8, 913.6 and 890.9 cm⁻¹ with further peaks at 1523.6, 1455.9, 1361.3, 1321.7 and 590.1 cm⁻¹. FIG. 25 illustrates the IR spectrum of varenicline phosphate Form I.

The varenicline phosphate Form I of the present invention shows on an XRD pattern (2θ) (±0.2°) having characteristics peaks at 10.1, 15.7, 17.4, 19.2, 19.5, 20.1, 20.7, 21.4, 22.9 and 26.8° with further peaks at 6.3, 9.3, 11.0, 12.1, 13.3, 13.9, 14.6, 15.1, 16.5, 16.7, 20.3, 21.8, 24.0, 24.8, 25.4, 26.5, 27.7, 28.5, 29.1, 30.7 and 31.8°. FIG. 26 illustrates the XRD of varenicline phosphate Form I.

The varenicline phosphate Form I of the present invention has a purity higher than about 99.9% relative peak area by HPLC. In addition, the varenicline phosphate Form I of the invention is highly soluble in water. Also, the varenicline phosphate Form I of the invention has been found to be highly stable in terms of chemical purity and in terms of polymorphic form after one year of storage.

Another aspect of the invention relates to a process for preparing varenicline phosphate salt Form I, said process comprising contacting varenicline with phosphoric acid, optionally in the presence of a suitable solvent, and removing the solvent when necessary.

The suitable solvent preferably comprises a C₁₋₄ alcohol solvent or mixtures thereof. More preferably, the suitable solvent is 2-propanol.

The varenicline phosphate Form II of the present invention shows an IR spectrum having its main peaks at 3392.7, 3040.3, 2835.1, 2367.5, 1635.6, 1558.9, 1476.4, 1457.0, 985.3, 942.9, 890.4, 507.0, 448.0, and 419.8 cm⁻¹. FIG. 27 illustrates the IR spectrum of varenicline phosphate Form II.

The varenicline phosphate Form II of the present invention shows an XRD pattern (2θ) (±0.2°) having characteristics peaks at 7.2, 7.5, 11.1, 15.7, 16.2, 16.8, 18.2, 18.7, 19.0, 19.3, 19.6, 19.8, 20.3, 21.7, 22.7, 23.0, 23.5, 23.9, 25.0, 25.3, 26.5, and 27.5° and with further peaks at 9.9, 11.8, 12.6, 13.1, 13.5, 14.6, 15.0, 17.4, 20.7, 21.1, 21.4, 22.0, 26.0, 27.1, 28.7, 29.9, 30.3, and 32.0°. FIG. 28 illustrates the XRD of varenicline phosphate Form II.

The varenicline phosphate Form II of the invention has a purity higher than about 99.8% relative peak area by HPLC. The varenicline phosphate Form II of the invention has been found to be highly stable in terms of chemical purity and in terms of polymorphic form after one year of storage.

Another aspect of the invention relates to a process for preparing varenicline succinate salt Form II, said process comprising contacting varenicline with succinic acid, in the presence of isopropanol, to obtain a mixture i) heating the mixture at about 40°C for 1 hour, ii) cooling the mixture at room temperature and stirring for 16 hours, and iii) removing the isopropanol from the mixture.

The varenicline succinate obtained by the process of the invention has a purity higher than about 99.9% relative peak area by HPLC.
Another aspect of the present invention includes varenicline galactarate crystalline salt form (Form I), and processes for its preparation and isolation.

The varenicline galactarate Form I of the present invention shows an IR spectrum having its main peaks at 3428.7, 3286.6, 3030.5, 2931.1, 2955.5, 2937.5, 2867.8, 2819.5, 2766.3, 2721.9, 2500.8, 1720.1, 1613.9, 1584.3, 1471.9, 1415.0, 1380.8, 1352.4, 1317.6, 1296.0, 1095.5, 1050.0, 1034.0, 1027.0, 937.1, 914.3, 895.0, 663.0, 519.6 and 505.7 cm$^{-1}$ with further peaks at 2454.1, 2393.0, 1457.2, 1441.7, 1239.1, 1206.9, 1185.1, 1151.7, 1108.7, 959.8, 882.3, 860.2, 824.6, 798.7, 779.6, 637.7, 603.6 and 592.2 cm$^{-1}$. FIG. 31 illustrates the IR spectrum of varenicline galactarate Form I.

The varenicline galactarate Form I of the present invention shows an XRD pattern (2θ) (±0.2°) having characteristics peaks at 7.2, 10.5, 12.1, 12.5, 13.0, 14.2, 16.8, 17.6, 18.2, 19.6, 21.2, 21.5, 21.8, 25.3, 29.3, 30.7 and 34.4° with further peaks at 22.9, 24.5, 26.0, 26.7, 27.2, 31.8 and 37.6°. FIG. 32 illustrates the XRD of varenicline galactarate Form I.

The 1:1 salt correlation of varenicline galactarate Form I was confirmed by 1H NMR spectrum.

The varenicline galactarate Form I of the present invention has a purity higher than about 99.9% relative peak area by HPLC. In addition, the varenicline galactarate Form I of the invention is highly soluble in water. Also, the varenicline galactarate Form I of the invention has been found to be highly stable in terms of chemical purity and of polymorphic form after one year of storage.

Another aspect of the invention relates to a process for preparing varenicline galactarate salt Form I, said process comprising contacting varenicline with galactaric acid, optionally in the presence of a suitable solvent, and removing the solvent when necessary.

The suitable solvent preferably comprises a C$_1$-C$_4$ alcohol solvent or mixtures thereof. More preferably, the suitable solvent is 2-propanol.

Another aspect of the present invention includes varenicline hemi-L-lactate crystalline salt form (Form I), and processes for its preparation and isolation.

The varenicline hemi-L-lactate Form I of the present invention shows an IR spectrum having its main peaks at 3276.0, 3025.3, 2982.7, 2956.2, 2925.3, 2867.4, 1628.6, 1583.0, 1478.6, 1467.2, 1446.4, 1417.0, 1398.0, 1361.3, 1346.6, 1320.6, 1254.6, 1117.8, 1090.9, 1028.6, 941.0, 919.3, 636.5, 592.0 and 503.2 cm$^{-1}$ with further peaks at 2566.2, 2447.0, 2389.6, 2334.6, 1724.8, 1296.9, 1276.5, 1215.3, 1190.8, 1154.6, 1139.6, 1132.1, 1042.8, 884.1, 855.8, 842.4, 780.8, 770.6, 665.5, 607.4, 568.6 and 524.5 cm$^{-1}$. FIG. 33 illustrates the IR spectrum of varenicline DL-lactate Form I.

The varenicline DL-lactate Form I of the present invention shows an XRD pattern (2θ) (±0.2°) having characteristics peaks at 9.8, 14.8, 15.5, 17.3, 19.3, 19.8, 21.5, 21.8, 23.2, 25.1, 25.5 and 27.3° with further peaks at 15.9, 18.3, 26.9, 28.8, 29.7, 31.3 and 34.1°. FIG. 34 illustrates the XRD of varenicline DL-lactate Form I.

The 1:1 salt correlation of varenicline DL-lactate Form I was confirmed by 1H NMR spectrum.

The varenicline DL-lactate Form I of the invention has a purity higher than about 99.8% relative peak area by HPLC.

Another aspect of the invention relates to a process for preparing varenicline DL-lactate salt Form I, said process comprising contacting varenicline with DL-lactic acid, optionally in the presence of a suitable solvent, and removing the solvent when necessary.

The suitable solvent preferably comprises a C$_1$-C$_4$ alcohol solvent or mixtures thereof. More preferably, the suitable solvent is methyl tert-butyl ether.

Another aspect of the present invention includes varenicline hemi-l-lactate crystalline salt form (Form I), and processes for its preparation and isolation.

The varenicline hemi-l-lactate Form I of the present invention shows an IR spectrum having its main peaks at 3246.7, 2977.0, 1616.8, 1568.8, 1478.5, 1423.5, 1370.1, 1239.7, 1129.8, 1090.6 and 1037.9 cm$^{-1}$ with further peaks at 1732.0, 942.1, 921.8, 899.4, 860.3, 823.4, 771.2, 620.7, 593.9 and 540.4 cm$^{-1}$. FIG. 37 illustrates the IR spectrum of varenicline hemi-L-lactate Form I.

The varenicline hemi-l-lactate Form I of the present invention shows an XRD pattern (2θ) (±0.2°) having characteristics peaks at 6.4, 9.8, 17.6, 18.3, 19.9, 22.6 and 25.2° with further peaks at 9.0, 11.2, 12.8, 13.6, 14.9, 15.6, 16.2, 19.1, 21.2, 23.1 and 29.0°. FIG. 38 illustrates the XRD of varenicline hemi-l-lactate Form I.

The hemi-salt (2:1) correlation of varenicline hemi-L-lactate Form I was confirmed by 1H NMR spectrum.

The varenicline hemi-L-lactate Form I of the invention has a purity higher than about 91.5% relative peak area by HPLC.

Another aspect of the invention relates to a process for preparing varenicline hemi-L-lactate salt Form I, said process comprising contacting varenicline with L-lactic acid, optionally in the presence of a suitable solvent, and removing the solvent when necessary.

The suitable solvent preferably comprises an ether solvent or mixtures thereof. More preferably, the suitable solvent is methyl tert-butyl ether.

Another aspect of the present invention includes varenicline D-glucanate salt in amorphous form, and processes for its preparation and isolation.

The varenicline D-glucanate amorphous form of the present invention shows an IR spectrum having its main peaks at 3383.6, 1600.0, 1477.8, 1408.9, 1358.2, 1087.1, 1032.2, 941.2 and 504.3 cm$^{-1}$ with further peaks at 1131.7, 916.4, 892.6 and 778.4 cm$^{-1}$. FIG. 39 illustrates the IR spectrum of varenicline D-glucanate Form I.

The varenicline D-glucanate of the present invention is substantially amorphous as characterized by XRD. FIG. 40 illustrates the XRD of varenicline D-glucanate amorphous form.

The 1:1 salt correlation of varenicline D-glucanate amorphous form was confirmed by 1H NMR spectrum.

The varenicline D-glucanate amorphous form of the invention has a purity higher than about 99.8% relative peak area by HPLC.

Another aspect of the invention relates to a process for preparing varenicline D-glucanate salt amorphous form, said process comprising contacting varenicline with D-gluconic acid, optionally in the presence of a suitable solvent, and removing the solvent when necessary.

The suitable solvent preferably comprises an ether solvent or mixtures thereof. More preferably, the suitable solvent is methyl tert-butyl ether.

The suitable solvents for carrying out the processes of the invention above can be at least one of the group consisting of dichloromethane, methyl tert-butyl ether (MTBE), n-butyl acetate, isopropyl acetate, toluene, heptane, dimethylformamide, tetrahydrofuran (THF), ethanol, 2-butanol, isopropanol, n-butanol, acetonitrile, methanol, methyl isobutyl ketone, and ethyl acetate.

Another aspect of the invention includes a formulation including the varenicline salts obtained according to the processes of the invention.
General Experimental Conditions: X-ray Powder Diffraction (XRD)

The XRD diffractograms were obtained using a RX SIEMENS D5000 diffractometer with a vertical goniometer, a copper anodic tube, and radiation CuKα, λ=1.54056 Å.

Infrared Spectra (IR)

Fourier transform IR spectra were acquired on a Thermo Nicolet Nexus spectrometer, and samples were characterized in potassium bromide pellets.

Proton Nuclear Magnetic Resonance (1H NMR)

Proton NMR spectra were determined at room temperature on Varian Mercury 400 MHz NMR spectrometer. All samples were prepared in CDCl3 solution, with the exception of the varenicline gluconate salt which was prepared in d6-DMSO.

HPLC Method

The chromatographic separation was carried out with a ZORBAX Eclipse XDB-C18 5 μm 4.6×150 mm column with ZORBAX Eclipse XDB-C18 (4.6×12.5 mm) guard column at room temperature (20-25°C). Mobile phase A was prepared by dissolving 1.3 g of ammonium formate in 1000 mL of water and adjusting the pH of the solution to 8.0±0.1 with ammonia 25%. The solution was then filtered through a 0.22 μm nylon membrane under vacuum. Mobile phase B was acetonitrile and filtered through a 0.22 μm nylon membrane under vacuum.

The flow rate was 1 mL per minute and the chromatogram was recorded at 230 nm. Test samples (10 μL) were prepared by dissolving the appropriate amount of sample in a 1:1 mixture of mobile phases A and B in order to obtain 1 mg of sample per mL. The following gradient was used:

<table>
<thead>
<tr>
<th>Time (min.)</th>
<th>% A</th>
<th>% B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>95</td>
<td>5</td>
</tr>
</tbody>
</table>

Single Crystal X-Ray Analysis

X-ray data for single crystal of varenicline fumarate form I was collected at 293(2)K on an Enraf-Nonius CAD4 diffractometer using Mo-Kα radiation.

SPECIFIC EXAMPLES

Comparative Example 1

Preparation of Varenicline Hydrochloride Known Form II

This example has been carried out following the teachings of Example 26 of U.S. Pat. No. 6,410,550.

Varenicline hydrochloride (150 mg) was dissolved in methanol (0.7 mL) at reflux. Then, diethyl ether (2 mL) was added. The suspension was allowed to cool to ambient temperature and the solid was filtered.

XRD Analysis: Form II.

Examples 1-17

Preparation of Varenicline Salts

General procedure: varenicline base (100 mg) was stirred with isopropanol (1 mL) and one equivalent of acid was added before heating to 40°C for 1 hour. The mixture was then allowed to cool to ambient temperature, stirred for 16 hours at this temperature before filtration and drying under vacuum at 40°C. Results are summarized in Table 1.

<table>
<thead>
<tr>
<th>Example</th>
<th>Acid</th>
<th>quantity of acid (mg)</th>
<th>Purity (HPLC)</th>
<th>Solubility in water</th>
<th>Salt correlation (1H NMR)</th>
<th>XRD Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adipic acid</td>
<td>69</td>
<td>99.89%</td>
<td>>20 mg/mL</td>
<td></td>
<td>Form I</td>
</tr>
<tr>
<td>2</td>
<td>Fumaric acid</td>
<td>55</td>
<td>99.84%</td>
<td>>20 mg/mL</td>
<td></td>
<td>Form I</td>
</tr>
<tr>
<td>3</td>
<td>Glutaric acid</td>
<td>63</td>
<td>98.77%</td>
<td>>20 mg/mL</td>
<td></td>
<td>Form I</td>
</tr>
<tr>
<td>4</td>
<td>Glycolic acid</td>
<td>36</td>
<td>99.95%</td>
<td>>20 mg/mL</td>
<td></td>
<td>Form I</td>
</tr>
<tr>
<td>5</td>
<td>Hydrochloric acid 37 wt % (1M)</td>
<td>47</td>
<td>99.77%</td>
<td>>20 mg/mL</td>
<td>n.d. "</td>
<td>Form I</td>
</tr>
<tr>
<td>6</td>
<td>α-Ketoglutaric acid</td>
<td>69</td>
<td>99.71%</td>
<td>>20 mg/mL</td>
<td>1:1 salt</td>
<td>Form I</td>
</tr>
<tr>
<td>7</td>
<td>L-Malic acid</td>
<td>64</td>
<td>99.95%</td>
<td>>20 mg/mL</td>
<td></td>
<td>Form I</td>
</tr>
<tr>
<td>8</td>
<td>Maleic acid</td>
<td>55</td>
<td>100.00%</td>
<td>>20 mg/mL</td>
<td></td>
<td>Form I</td>
</tr>
<tr>
<td>9</td>
<td>Malonic acid</td>
<td>49</td>
<td>99.91%</td>
<td>>20 mg/mL</td>
<td></td>
<td>Form I</td>
</tr>
<tr>
<td>10</td>
<td>DL-Mandelic acid</td>
<td>72</td>
<td>99.93%</td>
<td>>20 mg/mL</td>
<td>1:1 salt</td>
<td>Form I</td>
</tr>
<tr>
<td>11</td>
<td>Methane Sulfonic acid</td>
<td>46</td>
<td>99.99%</td>
<td>>20 mg/mL</td>
<td>2:1 salt</td>
<td>Form I</td>
</tr>
<tr>
<td>12</td>
<td>Oxalic acid anhydrous</td>
<td>43</td>
<td>99.91%</td>
<td>>20 mg/mL</td>
<td>n.d. "</td>
<td>Form I</td>
</tr>
</tbody>
</table>
TABLE 1-continued

<table>
<thead>
<tr>
<th>Example</th>
<th>Acid</th>
<th>quantity of acid (mg)</th>
<th>Purity (HPLC)</th>
<th>Solubility in water</th>
<th>Salt correlation (by (^1)H NMR)</th>
<th>XRD Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Phosphoric acid 85% wt</td>
<td>55</td>
<td>100.00%</td>
<td>>20 mg/mL</td>
<td>n.d.*</td>
<td>Form I</td>
</tr>
<tr>
<td>14</td>
<td>S-2-Pyrrolidin-5-carboxylic acid</td>
<td>61</td>
<td>99.99%</td>
<td>>20 mg/mL</td>
<td>1:1 salt</td>
<td>Form I</td>
</tr>
<tr>
<td>15</td>
<td>Succinic acid</td>
<td>56</td>
<td>100.00%</td>
<td>>20 mg/mL</td>
<td>1:1 salt</td>
<td>Form I</td>
</tr>
<tr>
<td>16</td>
<td>Galactaric acid</td>
<td>100</td>
<td>99.91%</td>
<td>>20 mg/mL</td>
<td>1:1 salt</td>
<td>Form I</td>
</tr>
<tr>
<td>17</td>
<td>DL-Lactic acid 85% aq solution</td>
<td>50</td>
<td>98.98%</td>
<td>>20 mg/mL</td>
<td>1:1 salt</td>
<td>Form I</td>
</tr>
</tbody>
</table>

* Not determined value.

Example 18

Preparation of Varenicline Hemi-1,2-Ethane Disulfonate

Varenicline base (100 mg) was stirred with iso-propyl alcohol (1 mL) and one equivalent of disodium 1,2-ethane disulfonate (111 mg) and hydrochloric acid (37% aq, 93 mg) were added before heating to 40°C for 1 hour. The mixture was then allowed to cool to ambient temperature, stirred for 16 hours at this temperature before filtration. The filtrates were concentrated and dried under vacuum at 40°C to give the product. HPLC purity: 99.61%; Solubility in water: >20 mg/mL; The hemi-salt (2:1) correlation of hemi-1,2-ethane disulfonate was confirmed by \(^1\)H NMR spectrum.

Examples 19-20

Preparation of Varenicline Salts

General procedure: varenicline base (100 mg) was stirred with methyl tert-butyl ether (1 mL) and one equivalent of acid was added before heating to 40°C for 1 hour. The mixture was then allowed to cool to ambient temperature, stirred for 16 hours at this temperature before filtration and drying under vacuum at 40°C. Results are summarized in Table 2.

<table>
<thead>
<tr>
<th>Example</th>
<th>Acid</th>
<th>quantity of acid (mg)</th>
<th>Purity (HPLC)</th>
<th>Solubility in water</th>
<th>Salt correlation (by (^1)H NMR)</th>
<th>XRD Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>L-Lactic acid 85% aq solution</td>
<td>50</td>
<td>91.58%</td>
<td>>20 mg/mL</td>
<td>2:1 salt</td>
<td>Form I</td>
</tr>
<tr>
<td>20</td>
<td>D-Gluconic Acid, 50% in water</td>
<td>186</td>
<td>99.89%</td>
<td>>20 mg/mL</td>
<td>1:1 salt</td>
<td>Amorphous form</td>
</tr>
</tbody>
</table>

Examples 21-30

Preparation of Varenicline Fumarate Form I

General procedure: varenicline fumarate (140 mg) was suspended in the solvent (quantity as indicated in Table 3), and heated to reflux. In the case of methanol and water/ethanol complete dissolution was observed. The mixture was allowed to cool to ambient temperature, and stirred for 24 hours at this temperature before evaporation of the solvent. Results are summarized in Table 3.

<table>
<thead>
<tr>
<th>Example</th>
<th>Solvent</th>
<th>Quantity (mL)</th>
<th>XRD Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>acetone</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>22</td>
<td>chloroform</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>23</td>
<td>methanol</td>
<td>2 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>24</td>
<td>MTBE</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>25</td>
<td>THF</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>26</td>
<td>ethanol</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>27</td>
<td>2-butanone</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>28</td>
<td>Methyl i-butylketone</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>29</td>
<td>water/ethanol (20-80)</td>
<td>0.8 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>30</td>
<td>i-propyl acetate</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
</tbody>
</table>

Examples 31-40

Preparation of Varenicline Maleate Form I

General procedure: varenicline maleate (140 mg) was suspended in the solvent (quantity as indicated in Table 4), and heated to reflux. In the case of ethanol, methanol and water/ethanol complete dissolution was observed. The mixture was allowed to cool to ambient temperature, and stirred for 24 hours at this temperature before evaporation of the solvent. Results are summarized in Table 4.

<table>
<thead>
<tr>
<th>Example</th>
<th>Solvent</th>
<th>Quantity (mL)</th>
<th>XRD Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>acetone</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>32</td>
<td>chloroform</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>33</td>
<td>methanol</td>
<td>0.5 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>34</td>
<td>MTBE</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>35</td>
<td>THF</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>36</td>
<td>ethanol</td>
<td>1.5 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>37</td>
<td>2-butanone</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
</tbody>
</table>
TABLE 4-continued

<table>
<thead>
<tr>
<th>Example</th>
<th>Solvent</th>
<th>Quantity (mL)</th>
<th>XRD Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Methyl i-butylketone</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>39</td>
<td>water: ethanol (20:80)</td>
<td>0.2 mL</td>
<td>Form I</td>
</tr>
<tr>
<td>40</td>
<td>i-propyl acetate</td>
<td>3 mL</td>
<td>Form I</td>
</tr>
</tbody>
</table>

Examples 41-46

Preparation of Varenicline Malate Form II

General procedure: Varenicline malate (140 mg) was suspended in the solvent (quantity as indicated in Table 5), and heated to reflux. The mixture was allowed to cool to ambient temperature, and stirred for 24 hours at this temperature before evaporation of the solvent. Results are summarized in Table 5.

TABLE 5

<table>
<thead>
<tr>
<th>Example</th>
<th>Solvent</th>
<th>Quantity (mL)</th>
<th>XRD Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>chloroform</td>
<td>3 mL</td>
<td>Form II</td>
</tr>
<tr>
<td>42</td>
<td>MTBE</td>
<td>3 mL</td>
<td>Form II</td>
</tr>
<tr>
<td>43</td>
<td>THF</td>
<td>3 mL</td>
<td>Form II</td>
</tr>
<tr>
<td>44</td>
<td>2-butanone</td>
<td>3 mL</td>
<td>Form II</td>
</tr>
<tr>
<td>45</td>
<td>Methyl i-butylketone</td>
<td>3 mL</td>
<td>Form II</td>
</tr>
<tr>
<td>46</td>
<td>i-propyl acetate</td>
<td>3 mL</td>
<td>Form II</td>
</tr>
</tbody>
</table>

Example 47

Preparation of Varenicline Malate Form III

To a solution of Varenicline base (1 g) in 2-propanol (15 mL) at 40°C, malic acid (1.55 g) was added. The resulting suspension was heated at 40°C for 1 h and allowed to cool to ambient temperature for 5 h. Finally, the solid was filtered and dried at 40°C under vacuum. HPLC purity: 99.70%; XRD Analysis: Form III.

Example 48

Preparation of Varenicline Malate Form III

Varenicline malate (150 mg) was dissolved in methanol (2.5 mL) at reflux. The solution was allowed to cool to ambient temperature overnight. The solid was filtered and analysed by XRD. HPLC purity: 99.73%; XRD Analysis: Form III.

Example 49

Preparation of Varenicline Malate Form IV

Varenicline malate (150 mg) was dissolved in a mixture of ethanol/water 90:10 (0.5 mL) at reflux for 1 h. The solution was allowed to cool to ambient temperature overnight. The solid was filtered and analysed by XRD. HPLC purity: 99.5%; XRD Analysis: Form IV.

Examples 50-54

Preparation of Varenicline Phosphate Form II

Varenicline phosphate (150 mg) was suspended in the solvent (quantity as indicated in the Table 6), and heated to reflux. The mixture was allowed to cool to ambient temperature, and stirred for 24 hours at this temperature before evaporation of the solvent. Results are summarized in Table 6.

TABLE 6

<table>
<thead>
<tr>
<th>Example</th>
<th>Solvent</th>
<th>Quantity (mL)</th>
<th>XRD Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>chloroform</td>
<td>3 mL</td>
<td>Form II</td>
</tr>
<tr>
<td>51</td>
<td>MTBE</td>
<td>3 mL</td>
<td>Form II</td>
</tr>
<tr>
<td>52</td>
<td>2-butanone</td>
<td>3 mL</td>
<td>Form II</td>
</tr>
<tr>
<td>53</td>
<td>Methyl i-butylketone</td>
<td>3 mL</td>
<td>Form II</td>
</tr>
<tr>
<td>54</td>
<td>i-propyl acetate</td>
<td>3 mL</td>
<td>Form II</td>
</tr>
</tbody>
</table>

Example 55

Preparation of Varenicline Phosphate Form III

Varenicline phosphate (100 mg) was suspended in methanol (3 mL), and heated to reflux for 1 h. The suspension was allowed to cool to ambient temperature overnight. The solid was filtered and analysed by XRD. HPLC purity: 99.96%; XRD Analysis: Form III.

Example 56

Preparation of Varenicline Hydrochloride Form II

Varenicline hydrochloride (150 mg) was suspended in 20 mL of MTBE. Hydrochloric acid (1.1 g of 37% aqueous solution) was added and the mixture was stirred for 3 h at room temperature. The mixture was filtered and dried under vacuum at 40°C. XRD Analysis: Form II.

Examples 57-66

Preparation of Varenicline Hydrochloride Form III

Varenicline hydrochloride (150 mg) was suspended in the solvent (quantity as indicated in Table 9), and heated to reflux. In the case of ethanol, methanol and water/ethanol complete dissolution was observed. The mixture was allowed to cool to ambient temperature, and stirred for 24 hours at this temperature before evaporation of the solvent. Results are summarized in Table 7.

TABLE 7

<table>
<thead>
<tr>
<th>Example</th>
<th>Solvent</th>
<th>Quantity (mL)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>acetone</td>
<td>3 mL</td>
<td>Form III</td>
</tr>
<tr>
<td>58</td>
<td>chloroform</td>
<td>3 mL</td>
<td>Form III</td>
</tr>
<tr>
<td>59</td>
<td>methanol</td>
<td>0.7 mL</td>
<td>Form III</td>
</tr>
<tr>
<td>60</td>
<td>MTBE</td>
<td>3 mL</td>
<td>Form III</td>
</tr>
<tr>
<td>61</td>
<td>THF</td>
<td>3 mL</td>
<td>Form III</td>
</tr>
<tr>
<td>62</td>
<td>ethanol</td>
<td>3 mL</td>
<td>Form III</td>
</tr>
<tr>
<td>63</td>
<td>2-butanone</td>
<td>3 mL</td>
<td>Form III</td>
</tr>
<tr>
<td>64</td>
<td>Methyl i-butylketone</td>
<td>3 mL</td>
<td>Form III</td>
</tr>
<tr>
<td>65</td>
<td>water/ ethanol (20:80)</td>
<td>0.7 mL</td>
<td>Form III</td>
</tr>
<tr>
<td>66</td>
<td>i-propyl acetate</td>
<td>3 mL</td>
<td>Form III</td>
</tr>
</tbody>
</table>

Example 67

Stability Studies of Varenicline Crystalline Salts

The varenicline crystalline salts were stored under standard conditions (i.e. room temperature, normal pressure, ambient atmosphere). The samples were analyzed after one year by HPLC and XRD. Results are summarized in Table 8.
The invention claimed is:

1. A dicarboxylic acid salt form of varenicline wherein said dicarboxylic acid salt form is varenicline fumarate Form I, which shows an x-ray diffraction pattern (20) (± 0.2°) having characteristics peaks at 10.6, 11.9, 13.2, 16.2, 16.6, 18.0, 21.5, 22.6, 25.7, 28.5 and 29.1°.

2. The dicarboxylic acid salt form of varenicline of claim 1, wherein said varenicline fumarate Form I shows an x-ray diffraction pattern (20) (± 0.2°) having further characteristic peaks at 7.1, 11.2, 13.8, 14.4, 193, 20.5, 22.3, 24.1, 24.5, 24.9, 27.8 and 31.8°.

3. A process for preparing the varenicline fumarate Form I of claim 1, said process comprising contacting varenicline with fumaric acid in the presence of a solvent comprising (i) a C1-C2 alcohol, a ketone, a halocarbon, an ether, an ester, or a mixture thereof, or (ii) a mixture of solvent of one or more of a C1-C4 alcohol, a ketone, a halocarbon, an ether, and an ester, and optionally removing the solvent.

4. The process of claim 3, wherein the solvent is selected from the group consisting of acetone, 2-butane, methyl isobutyl ketone, chloroform, methanol, ethanol, isopropyl alcohol, methyl tert-butyl ether, tetrahydrofuran, isopropyl acetate and ethanol/water (80:20).

* * * *