wo 2017/131750 A1 | I 00000 T OO 00 A AR

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

(43) International Publication Date WO 2017 /131750 Al
3 August 2017 (03.08.2017) WIPO I PCT

(51) International Patent Classification: (74) Agents: PATEL, Neel K. et al.; Hewlett Packard Enter-
GO6F 17/30 (2006.01) prise, Mail Stop 79, 3404 E. Harmony Road, Fort Collins,

lorado 80528 (US).

(21) International Application Number: Colorado (Us)
PCT/US2016/015674 (81) Designated States (unless otherwise indicated, for every
) I ional Filing Date: kind of national protection available). AE, AG, AL, AM,
(22) Imternational Filing Date:) 2016 (29.01.2016 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
9 January 2016 (29.01.2016) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
L.) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(71) Applicant: ENTIT SOFTWARE LLC [US/US]; 1140 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

(72

Enterprise Way, Building G, Sunnyvale, CA 94089 (US).

Inventors: CHEN, Qiming; 1160 Enterprise Way,
Sunnyvale, California 94089 (US). HSU, Meichun; 1160
Enterprise Way, Sunnyvale, California 94089 (US). CAS-
TELLANOS, Malu G.; 1160 Enterprise Way, Sunnyvale,
California 94089 (US).

(84)

PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

[Continued on next page]

(54) Title: TEXT SEARCH OF DATABASE WITH ONE-PASS INDEXING

(57) Abstract: A system and method
for a text search of a database, includ-

Receive Text Search Expression

¥

Convert Text Search Expression Into Query Plan

¥

Table Associgted with Database

Perform One-Pass Indexing of Inverse Index

¥

Retrieve Data from Database

ing converting a text search expression
e 502 to a query plan and implementing the
text search as the query plan on the
database. The implementing of the text
search includes a one-pass indexing as
a single scan of an inverse index table
o~ 504 associated with the database.
L~ 506
508

500A

FIG. 5A

WO 2017/131°750 A1 IWATK 00PN 000 0 A A AR

DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, ~__ as to applicant’s entitlement to apply for and be granted
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, a patent (Rule 4.17(ii))

SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,

GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published:

Declarations under Rule 4.17: — with international search report (Art. 21(3))

— as to the identity of the inventor (Rule 4.17(i))

WO 2017/131750 PCT/US2016/015674

TEXT SEARCH OF DATABASE WITH ONE-PASS INDEXING

BACKGROUND
[0001] Electronic or digital databases are generally a repository of
information and data. A database may be an organized collection of data, and
may be the collection of schemas, tables, queries, reports, views and other
objects. The data are typically organized to model aspecis that support
processes benefitting from the information. The database may be structured o
facilitaie organizations or entities to access and retrieve information or data from
the database. However, text search of databases can be slow and/or resource
intensive, especially with large databases and the ever-increasing amount of
data. As technology advances with respect to data collection, storage, and
retrieval, there is an ongeing need o provide more reliable and efficient service

irt the provision of data including with respect 1o texi searching of databases.

BRIEF DESCRIPTION OF THE DRAWINGS
(00027 Certain exemplary embodiments are described in the following

detailed description and in reference 1o the drawings, in which:

[0003] FIG. 1is a block diagram of a server having a search portal for a
database in accordance with examples;

(00047 FIG. 2 is a block diagram of a database system having server of FIG.
1 and a database in accordance with examples;

(00057 FIG. 3is a bar chart of exscution time for executed examples of a text
search;

[0006] FIG. 4is a bar chart of execution time for executed examples of a text
search;

(860077 FIG. 5is a block diagram of a method of a text search of a database
in accordance with examples;

(000817 FIG. 5Ais a block diagram of a method of a text search of a database
in which data is retrieved in accordance with examples;

(00091 FIG. 6is a block diagram of a method of one-pass indexing in

accordance with examples; and

WO 2017/131750 PCT/US2016/015674

(0010 FIG. 7 is a block diagram showing a tangible, non-iransitory,
computer-readable medium that stores code configured to direct a processor to
perform a text search of a database including one-pass indexing in accordance

with examples.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
[0011] Examples of the present technigues are generally directed o text

search of a database and, more particularly, to converting a text search
expression into a query or query plan and implementing the query plan via an
inverse index table(s) or inverse word index of the database. The texi search
expression may be converted o a search query plan {e.g., in structured query
language or SQL) to access the index table and base tables of the database. In
other words, a text-search SQL-query generator may provide for {(apply, ulilize,
etc.) direct leveraging of SQL operators in the text search. Further, examples
uniquely employ a single-pass (or single scan or sole scan) of the inverse {or
inverted) index table or inverse word index and, in certain examples, may avoid
multi-pass or self-joins which are typically resource intensive. As discussed
below, the single pass may be a match-count based scan and that may give a
union or bag union. Moreover, some examples may encompass, or interact and
coordinate with, a database management system. In parlicular exampies, such
a search portal in accordance with the present technigues may sit alop a
database management system.

00127 Relational databases store data in tables having columns (fields) and
rows {records or tuples), and such that files or documents can be queried
simultaneously. Thus, the relational database may organize data inlo one or
more tables (or “relations”) of columns and rows, with a unique key identifying
each row. Indeed, a relational database may be a collective set of multiple data
sets organized by tables, records and columns, and establish a relationship
between database tables. Each iable record {or row) may confain a unigque
data instance defined for a corresponding column category, and functional
dependencies may be formed: one to ong; one to many; many to one; and

many to many. The relational database may perform “select”, “project” and

2.

WO 2017/131750 PCT/US2016/015674

“join” database operations, where select is used for data relrieval, project
identifies data attributes, and join combines relations.

[0013] Relational databases may be created, maintained, and accessed
using structured guery language (SQL) or similar language. The SQL standard
specifies the syntax that a conforming database system may implement.
However, the standard’s specification of the semantics of language constructs
may vary. SQL was adopted as a standard by the American National Standards
institute (ANS!) in 1286 as 5QL-86 and the International Organization for
Standardization (IS0} in 1987, The standard is subject to continuous
improvement.

00141 A common operation in SQL, the guery, makes use of the declarative
SELECT statement. SELECT may retrieve data from one or more tables, or
expressions. Standard SELECT statements typically have no persistent effects
on the database. Some non-standard implementations of SELECT can have
persistent effects, such as the SELECT INTO syntax provided in some
databases. Queries allow the user o describe desired data, leaving the
database management system (DBMS) to carry out planning, optimizing, and
performing the physical operations 1o produce that result. A query may include
a list of columns {o include in the final result, normally following the SELECT
keyword. An asterisk (") can be used in some cases to specify that the query
should return all columns of the gueried tables. SELECT is generally the most
complex statement in SQL, with optional keywords and clauses that include
various clauses. The FROM clause indicates the table(s) to retrieve data from.
The FROM clause can include optional JOIN subclauses to specify the rules for
joining tables. The WHERE clause includes a comparison predicate, which
restricts the rows returned by the query. The WHERE clause eliminates all rows
from the result set where the comparison predicate does not evaluate to True.
Several other SQL clauses are applicable.

[8015] A database index may be a data structure that improves the speed of
data retrieval operalions on a database table at the cost of additional writes and
storage space to mainiain the index daifa structure. Indexes may be are used io
locate data without having to search every row in a database table every time a

3-

WO 2017/131750 PCT/US2016/015674

database table is accessed. indexes can be created using one or more columns
of a database table, providing the basis for both rapid random lockups and
efficient access of ordered records. An index may be a copy of select columns
of data from a table that can be searched efficiently and thal may also include a
low-level disk block address or direct link to the complete row of data.

0018} Aninverted index, also referred o as an inveried index table, inverse
index table, inverse word index, inverted word file, postings file, inveried file,
etc., is an index data structure storing a mapping from content, such as words
or numbers, 1o the content’s locations in a database file, orin a document ora
set of documents. The inverted index is named in contrast to a forward Index
which maps from documenis 1o content. There are at least two variants of
inverted indexes: a record level inverted index (or inverted file index or just
inverted file) that contains 3 list of references to documents for each word. A
word level inverted index (or full inverted index or inverted list) additionally
contains the positions of each word within a document. The latter form offers
more functionality (such as phrase searches), but generally needs more
processing power and space 1o be created.

[0017] The inverted index data struciure may be a ceniral component of a
typical search engine indexing. A goal of a search engine implementation may
be to oplimize the speed of the query in finding the documents where word X
occurs. Once a forward index is developed, which siores lists of words per
document, the forward index may be inverted to develop an inverted index.
Querying the forward index would typically require sequential iteration through
each document and to each word {o verify a matching document. The time,
memory, and processing rescurces to perform such a query are not always
technically realistic. Instead of listing the words per document in the forward
index, the inveried index data structure is developed which lists the documents
per word. With the inveried index crealed, the query can generally be resolved
by jumping to the word identification (id) {via random access) in the inverted
index.

[0018] Examples of the present technigues include a new technique for
query-based (e.g., SQL query-based) text search using an inverse word index.

4

WO 2017/131750 PCT/US2016/015674

Additionally, the search portal or engine may direcily leverage SQL queries to
do text search. This may differ from other text search engines builtin a
fanguage having nothing to do with SQL, or which have search operators,
coded, say in C++ programming, included in the set of SOL operators.
Conventionally, these search operators themselves are not built using SQL
query, and therefore do not leverage the SQL analytics power directly. In
contrasi, certain examples herein may include in the engine a texi-search SQL-
query generator for turning (e.g., automatically) a search expression into the
corresponding search queries in 3QL, for accessing the index tables and base-
iables of the dalabase. In this context, specific issues of “SQL algorithms” may
be addressed. Moreover, as mentioned, some exampies include the new
search portal (text search engine) on top of a database management system.
Lastly, while the discussion herein may focus on SQL, other query procedures
may be emploved.

[0018] Asindicated, to speed up database-based texi search, inverse
indices are often provided as index tables. An index table may contain at least
the fields of search token and document identification (id) “doc_id,” and is
normalized. To find the documents matching M search tokens specified in the
search expression, the search query typically performs M-way self-join of the
index_table. A mulli-way self-join based index search may be referred to as
Multi-Pass indexing (MP). While MP is a basic form of using inverse index, MP
generally has the overhead of scanning the index table multiple times. Because
the index table is typically too large (0 be cached in memory, such overhead
significantly impacts the text search efiiciency.

(60281 To avoid such mulli-pass indexing overhead, examples herein employ
a One-Pass (1P} indexing scheme that may identify the maiched doc_ids {e.g.,
all of the matched doc_ids) in a single index table scan. The 1P scheme
generally does not start with directly checking whether a document maiches all
the search tokens, but instead may start with checking whether a document
matches any search token and then counting the number of maiches. in this
sense, the 1P scheme is match-count based. Because the 1P indexing process
scans the index table typically only once, the 1P generally out-performs the MP

5-

WO 2017/131750 PCT/US2016/015674

procedure that scans the index table multiple times. As shown below with
respect {0 executed examples, the 1P indexing for turning multi-pass index
scans to 1-pass index scan in text search, may provide significant advantage in
enhancing fext search performance.

(00211 To faciiitate correctness of one-pass inverse indexing in text search,
the <token, doc_id> pairs retrieved from the index table should be distinct, as
otherwise the count of matches would be incorrect. For the same reason, the
tokens in the search expression should be “logically distinet” to avoid a word in
the text to match more than one search token. In the case of the search tokens
as words, different words are “logically distinct.”

[00221 Text search in relational databases has been supported by several
database vendors that facilitate users {o retrieve from the database the contents
listed a text field containing specific keywords or phrase within a table. To
speed up text search, inverse indices are often utilized. As mentioned, an
inverse index or a word index table may contain at least two columns: the word
token and the 1D {e.g. doc_id) of the document containing that token. In
general, the inverse index or text index table may coniain the words, case
insensitive or sensilive, appearing in base table's text field. The text index may
be like other tables in the database except the text index table may be linked to
the base table(s) inlernally.

[0023] A search reguest may be expressed by a search expression that
contains a list of words, keywords, keyword tokens or a phrase, sic. To search
a text field in the base table(s) that malches the search expression, the search
may ideniify the doc_ids of the matching documenis through querying the index
table, which may be filtered by the possible conditions defined on the base-
table. Note that each <icken, doc_id> pair may be distinct in the search query.
if this not the case in the index table for some reason, the distinct <token,
doc_id> should be extracted in the search query. For exampie, agsume the

M s

text,” ... eic,

the word indices are stored in the index_table with two fields: “loken” and

“doc_id” with instances:

WO 2017/131750 PCT/US2016/015674

token doc id
fransaction 1
fransaction 324
fransaction 10987

fime 304
fime 9398

[0024] The simple search expression may be a list of keyword tokens. A
document containing all these tokens maiches the search expression which is
tested by querying the index table. If the search is phrasal oriented, the
keyword tokens fokenized from the phrase may be tested initially, andif a
document matches all the tokens, the existence of the phrase containing these
tokens is further validated. In general, using index can reduce the validation
process for enhanced performance. For instance, given a document having
“Resource management transaction response time exceeds the preset limit,”
the document maiches the search expression “iransaction response time”
because all three keywords “transaction,” “response,” and “lime” are contained
in the document. Extended and more complicated search patierns may be
applicable. The keywords list is a common search paitern, and may be a base
for more complicated search patiemns. in the present search expraession,
wildcard tokens may be allowed. A wildcard token may be a siring coniaining
one or more ¥ character, with each representing 0 or more characters. Ina
SOL statement, the maich of a word token, say “time” may be tumed o

condition expression
foken = time’;

the match o a wildcard token, say ““time™”, is turned 1o a condition expression
token ILIKE “Y%lime%’.

(00251 In SQL, such as Hewlett-Packard (HP) Vertica SQL, the symbols %"
and “ " may be used as special wildcards. If sg, to use these characters as

7-

WO 2017/131750 PCT/US2016/015674

regular ones {i.e. not as wildcards) in a search expression they may be escaped

as %" and 7 respectively in certain examples.

(00261 To extract the documents (identified by the unique_id) which contain
the Reywords fransaction’, 'response’, 'time', the typical query, as only an
example, may be the following:

SELECT * FROM base_table WHERE unigue_id IN (BELECT 10.doc_id
FROM index_table 10, index_table t1, index_table 12

WHERE t0.doc_id=t1.doc_id AND t1.doc_id=t2.doc_id

AND 10.1oken = tfransaction’ AND {1.ioken = response’ AND t2.token = time’).

(00277 The above query self-joins the index_iable three times for testing the
matching of the three keywords for each doc_id in the index_table, and then
uses three keywords as the unique_id of the base_table for querying the

base table.

[0028] A difference between the new search engine discussed herein and
other text search engines may consist in that the present engine leverages SQL
gueries o do text search directly, while conventional engines are generally
either buili from scratch, or have search operalors, coded, say in C++
programming, included in the set of SQL operators. These search operators of
other search engines are not built using SQL query and, therefore, do not
leverage the SQL analytics power themselves. In comparison, the advantage of
certain embodiments of the present techniques is that the search portal or text
search engine may directly incorporate with query engine's data management
capability and SQL analysis capability. In cerlain examples, a text-search SQL
guery generator may auiomatically {or at prompting by a user} turn a search
expression to the corresponding search queries in SOL, for accessing the index
iables and base-tables. In this context, specific issues of query generation may
be addresses.

(00281 In SQL query based text search, the search performance may depend
on the shapes of the generated search queries. A query request may typically

WO 2017/131750 PCT/US2016/015674

be fulfilled by muitiple queries with different shapes which deliver the same
guery result but with different performance.

(80301 Inthe index-based text search, a query shape is the muiti-way join of
the inverse index table for identifying the document 1Ds matching the given
search fokens. In the above query listed, given 3 iokens Yransactior’,
response’, 'time’, the query conducts a 3-way self-join of the index table to find
the doc_ids maiching all the 3 tokens. The other way to express such 3-way join

is given below.

SELECT * FROM base_table WHERE

unique_id IN (SELECT unigue_id FROM index_table WHERE foken =
fransaction’)
AND unique_id IN (SELECT unigue_id FROM index_table WHERE token =
‘response’)
AND unique_id IN (SELECT unigue_id FROM index_iable WHERE {oken =
time’)

(00311 Such a mulli-way self-join based index search may be referred to as
Multi-Pass indexing (MP). While MP is a basic form of using inverse index, MP
has the overhead of searching the index table mulliple times. From a
theoretical point of view, MP may be based on set intersection, namely, for M
keyword tokens, to oblain the set of doc_ids meeling each token, and then
takes the intersection of these sets as the final result. Because each setis
obtained by a pass retrieval of the index table, MP requires retrieving the index
table multiple times. Since the index table is usually too large to be cached in
memaory, such overhead significantly impacis the text search efficiency.

[0082] To avoid such multi-pass indexing overhead, the One-Pass (1P}
indexing scheme is introduced and that may be able o identify all the matched
doc_ids in a single index table search. The 1P scheme generally does not start
with directly checking whether a doc matches all the particular search tokens,
but instead may start with checking whether the doc matches any search token,
then counting the number of matches. In other words, the 1P procedure may

worl in the Tollowing way:

WO 2017/131750 PCT/US2016/015674

s (iven m iokens 11, 12,..., tm, in a single scan of the index table, it finds
the bag-union (union-ali, i.e. duplicate elements in the union are allowed)
of doc_ids maiching either {1, 12, ..., or im.
s (ount the occurrence of each doc_id in the result set, and identify the
doc_ids with count reaching M as the resuits.
[0033] Forinstance, if the search tokens are ‘fransactiony, ‘response’, ‘time’,
documents with ids 1,2,3 maiches ‘transaction’, with ids 2,3,4,5 maiches
‘response’, and with ids 2,3,4,5,6 maiches ‘time’, then the union bag contains
{1,2,2,2,3,3,3,4,4,5,5,6}; documents with ids 2 and 3 maiches all the tokens
since they have count 3 in the union.
[0034] Inthis sense, the 1P scheme is maich-count based. The 1P does not
start with finding the document matching all the M tokens in terms M pass index
scans. Instead, the 1P finds the doc_ids matching any of the M tokens as the
candidates, in terms of a single pass index scan, followed by calculating the
count of each doc_id in the (bag) union of the resulting doc_ids candidates. The
1P indexing scheme generally out-perform the MP indexing due to the reduced
index scans. The above text search query, written in the 1P scheme, may have
the following shape, where the condition

WHERE token IN (transaction’, response’, time")
is generally equivalent to

WHERE foken = tfransaction’ OR token = response’ OR ioken = 'time’.

[0035] An exampie of one-pass query or 1F Query may be illustrated as

SELECT * FROM base_table WHERE (unique_id IN
(SELECT doc_id FROM
(SELECT doc_id, COUNT(™) AS count FROM index_lable
WHERE token IN {‘transaction’, response’, time’)
GROUP BY doc_id
)t
WHERE count>=3)
).

10

WO 2017/131750 PCT/US2016/015674

[0038] The use of 1P scheme may employ that all the <token, doc_id> pairs
to be distinct. In case the index table has additional field such as the “position”
of the token appearing in the document, the above query may be modified to
one of the following forms.

SELECT * FROM base_table WHERE (unique_id IN
(SELECT doc_id FROM
(SELECT doc_id, COUNT(DISTINCT token) AS count FROM index_table
WHERE token IN (transaction’, response’, 'time")
GROUP BY doc_id

yr
WHERE count>=3}

);

SELECT * FROM base_table WHERE (unigue _id IN
(SELECT doc_id FROM
(SELECT doc_id, COUNT(™} AS count FROM
(SELECT DISTINCT token, doc_id FROM index_table) rr
WHERE token IN (‘fransaction’, response’; 'time’)
GROUP BY doc_id

yr
WHERE count>=3}

).

(00377 Turning now lo the drawings, FIG. 1 is a compuiing device 100 having
a search porial 106 for a database such as a relational database having tables.
The computing device 100 may be a server, data server, blade server, host
device, client computer, personal computer (PC), lapiop, portable device,
storage controller, siorage array controller, disk array controlier, disk array
system, or cther type of computing system. The search portal 1068 may be a
text search engine that employs one-pass indexing and other techniques
discussed herein in a text search of the database (e.g., dalabase 202 of FIG. 2).
The compuiing device 100 includes a processor 102 and memory 104 storing
the search portal 106 having a 1P 107 for one-pass indexing of an inverse or
inverted index lable of the dalabase. The search portal 106 having the 1P 107
may be a iext search engine siored as instructions {e.g., code, logic) executable
by the processor 102

J1-

WO 2017/131750 PCT/US2016/015674

[0038] The processor 102 may be a microprocessor, a central processing
unit or CPU, a controller, a storage controller, or other type of hardware
processor. Moreover, the processor 102 may be multiple processors and/or
may have muitiple cores, and may have cache memory, integrated graphics,
and so forth. The memory 104 may include nonvolatile memory, volatile
mermnory, a hard drive, read only memory {ROM}, system memory, random
access memory (RAM), cache memory, and the like. Further, the computing
device 100 may include a network interface 108 to couple to a database {not
shown). The network inferface 108 may include a network controller, network
irterface circuitry, a network interface card (NIC), an input/output (HO)
coniroller, a host bust adapter (HBA), disk controlier, disk array controlier,
and/or a storage controller or other controller, and so on.

[0038] As discussed, the executable instruction or code as the search porial
106 or text search engine may provide for a text search of a database and,
more particularly, convert a fext search expression inio a guery or query plan
and implement the query plan via an inverse or inverted index table(s) or
inverse word index of the database. Further, the executable instruction or code
as the search porial 106 (text search engine) may include a text-search query
generator. Thus, the search portal 108 may be executed by the processor 102
to convert {e.q., transform, rewrite, process, etc.), via the text-search query
generator, the received text search expression or received words for the text
search to a search query plan {e.g., in SQL) to access the index table and base
tables of the database. Therefore, in certain examples, the search portal 106
may provide for (apply or ulilize) direct leveraging of SQL operators in the text
search. In cerfain examples, the memory 104 storing a search portal 106
having the 1P 107 to process words for a text search into a query plan
comprising more than one search token, and o implement a one-pass indexing
comprising a scan of an inverted index table of the database to determine
documents in the database having the more than one search token.

[0049] Furthermore, the insiruction or code as the search portal 106 (texi
search engine} may be executed by the processor 102 to employ a single-pass

{scan, single scan, sole scan, elc.) of the inverse or inverted index table

BT

WO 2017/131750 PCT/US2016/015674

{inverse word index). As discussed, the single pass may be a maich-count
based scan and may give a union or bag-union. Moreover, in particular
examples, the search portal 108 (having the 1P 107) as executed via the
processor 102 may interact or coordinate with a database management system
associated with the database.

(0041} In some examples, the computing device 100 may be part of the
database, such as a database server of the dalabase, and with the executable
code composing the search portal 106 (having the 1P 107) incorporated with
database operations software or a database management system, and the like.
Lastly, while FIG. 1 represents a computing device 100 such as a server, the
processor(s) 102 and memory having the stored executable code (including the
search portal 106 or text search engine) may instead or additicnally be in a
distributed computing system such as across mutliple compute nodes.

[0042] A database stores information such thai the information can be
retrieved. As discussed, a relational database may present information in tables
with rows and columns. A table is referred 1o as a relation in the sense that the
table may be a collection of objects of the same type (rows}. Data in a table can
be related according 1o common keys or concepts, and the ability {o retrieve
related data from a table may be a basis for the term relational database.
indeed, a relational dalabase is a collection of data items organized as a set of
tables from which data can be accessed or reassembled. SQL statements may
be used both for interactive queries for information from a relational database
and for gathering data for reports. Each table {sometimes calied a relation)
contains one or more data categories in columns (e.g., fields). Each row (e.g.,
record or tuple) generally contains a unigue instance of data for the categories
defined by the columns.

[0043] Access o these data is usually provided by a "database management
system” (DBMS) which may consist of an integrated set of computer software
that facilitates users to interact with one or more databases and provides
access {o the data coniained in the dalabase (although restrictions may exist
that limit access io particular data). The DBMS may serve as the intermediary
between the user and the database. The DBMS provides various functions that

13-

WO 2017/131750 PCT/US2016/015674

facilitate entry, storage and retrieval of information and provides ways o
manage how that information is organized. Because of the close relationship
between them, the term "database” is often used casually to refer 1o both the
database and the DBMS used to manipulate the database. A database system
may refer collectively to at least the DBMS and the database. In sum, a DBMS
may handle the way data is stored, maintained, and retrieved. In the case of a
relational database, a Relational Database Management System (RDBMS) may
performs these lasks. The term DBMS may be used as a general term thai
includes RDBMS.

[0044] FIG. 2 is a database sysiem 200 having the computing device 100 of
FiG. 1 and a database 202. The computing device 100 is coupled to the
database 202, as indicaled by line 204. The database 202 may be a relational
database and/or other type of database. The database 202 generally includes
multiple storage devices 206 (e.¢., nonvolalile memory, hard drives, disk drives,
solid state drives, eic.). The siorage devices 206 may be at one geographic
focation and/or dispersed across different geographic locations.

(00457 The storage devices 206 may slore the data of the database. The
information and data stored in the database in storage devices 206 may be in
documents and tables (rows, columns). Moreover, the database 202 generally
includes both index tables 208 and the base tables 210 of data. The number of
base tables 210 can range up 1o thousands or greater. The index tables 208
may include inverse (inverted) index tables {inverse word indexes) which are
employ in embodiments of the present techniques.

[0048] The database 202 may include a database computing device 212
{e.9., a database server) that manages and provides an interface io the
database 202 and the database storage devices 206. The database computing
device 212 may include a processor 214 and memory 216. The processor 212
may be multiple processors and/or may have mulliple cores, and may have
cache memory, integrated graphics, and so forth. The memory 216 may include
norvolatile memory, volalile memory, a hard drive, read only memory (ROM),
system memory, random access memory (RAM), cache memory, and the like.

14-

WO 2017/131750 PCT/US2016/015674

(00471 The memory 216 may siore code 218 (e.g., instructions, logic, etc.)
executable by the processor(s} 214. The code 218 may include a DBMS. As
discussed, a DBMS may be a computer software application that interacis with
the user, other applications, and the database itself fo capture and analyze
data. A general-purpose DBMS may facilitate the definition, creation, guerying,
update, and administration of databases. Of course, application software other
than a DBMS may provide access o the data in a database. Also, a DBMS
may employ a standard operating system. Moreover, a DBMS may be referred
to as part of the database. A DBMS may be the software that faciliiates
storage, retrieval, deletion, security, and integrity of data within a database. An
RDBMS is a DBMS which manages a relational database.

(00481 Further, the code 218 may include a conventional search engine as
well as the search portal 206 {unique text search engine} and having the code
to implement text search expression conversion and one-pass indexing
discussed herein. In some examples, the computing device 100 may be
employed as the database computing device 212 having the DBMS. The
database computing device 212 may include a network interface 220 0 couple
with external nefworks, the computing device 100, the slorage devices 206, and
s0 on. The network interface 108 may include a network controller, network
interface circuitry, a network interface card (NIC), an input/output (1/O)
controller, a host bust adapter (HBA), disk controlier, disk array conirolier,
and/or a storage controller or other controller, and so on.

{00487 The database system 200 depicted in the lliustrated embodiment of
FIG. 2 may employ the techniques discusses herein. As noted, the search
portal 106 may provide for a text search of the database 202 and, more
particutarly, convert a received text search expression info a query or query plan
and implement the query plan via an inverse index table(s) 208 or inverse word
index of the database 202. The search portal 108 may include a text-search
guery generator that when executed by the processor 102 or 214 {0 convert or
transform the received text search words or expression to a search guery plan
{e.g.. in SQL) to access the inverse index fables 208 and base tables 210 of the
database 202. Thus, as mentioned, the search portal 106 may provide for

15

WO 2017/131750 PCT/US2016/015674

direct leveraging of SO operators in the text search. Further, the search portal
106 having the 1P 107 may be executed by the processor 102 or 214 o employ
a single-pass (e.g., a match-count based scan) of the inverse index table 208.
in certain examples, Multi-Pass indexing (MP) or a mulli-way self-join based
index search, which may be resource intensive, may be avoided.

(00507 One embodiment includes a computing device for a text search of a
database (e.g., a relational database)} having documents. The computing
device includes a processor, a network interface (o couple the computing device
to a database, and memory storing a search portal executable by the processor.
The search portal receives a text search expression {e.9., having muitiple
words) for a text search of the database. The search portal converts {e.g., via a
text-search SQL-query generator) the text search expression to a query plan
{e.9., a SQL query plan) involving mulliple search tokens. Further, the search
portal implemenis the texd search as the query plan on the database, including
to perform a one-pass indexing comprising a singlie scan of an inverse index
table associated with the database 1o identify documents in the database having
the multiple search tokens. Additionally, the search portal may relrieve the
documents having the multiple search tokens. Moreover, in certain examples,
performing the one-pass indexing does not include performing a mulli-pass
scan or a self-join of the inveried index table.

[0051] in a particular example, the multiple search tokens inciude a first
search token and a second search token. The first search token is a first word
of the text search expression, and the second search token is a second word of
the text search expression. To perform the one-pass indexing includes o
identify and count documents of the database matching the first search token to
give a first set of a list of documents, and to identify and count documents of the
database matching the second search token 1o give a second set of list of
documenis. The one-pass index scan may further include to combine the first
set with the second set t¢ give a union bag 1o identify documents that contain
the first search token and the second search token.

(00521 Another embodiment includes a computing device for a text search of
a database, the computing device comprising: a processor; a network interface

Ji6-

WO 2017/131750 PCT/US2016/015674

to couple the computing device to a database; and memory storing a search
portal. The search portal (8.¢., code or instructions executed by the processor)
to process words for a text search into a query plan comprising more than one
search token, and implement a one-pass indexing comprising a scan of an
inverted index table of the database to determine documents in the database
having the more than one search token. The search portal may be a text
search engine. The search portal may retrieve the documenis having the more
than one search token, wherein in examples, 10 implement the one-pass
indexing does not comprise performing a multi-pass scan or a self-join of the
inverted index table. The more than one search token comprise a first search
token and a second search foken, wherein to implement the one-pass indexing
comprises to determine and count documents of the database matching the first
search token to give a first set of a list of documents, and 1o determine and
count documents of the database matching the second search token {0 give a
second set of list of documents. The one-pass indexing scan may combine the
first set with the second set to give a union bag to determine documenis that
contain the first search token and the second search token. The words for the
fext may comprise two words, wherein the first search token is a first word of the
two words, and the second search token is a second word of the two words, and
if so, wherein documents listed in the union bag having a count of two are
documents that contain the firsi search foken and the second search ioken. In
certain examples, the database comprises a relational database, wherein the
query plan comprises a structured query language (SQL) query plan, wherein
the search portal comprises a texi-search SQl-guery generator to process the
words for the text search into the SQL guery plan that directly applies SQL
operators in the text search implemented as the SQL query plan on the
database.

(00531 FIG. 3is a bar chart 300 of execution time 302 for Examples 304
which include three executed Examples 306, 308, 310 of a text search (fwo
words) on a relational database. In the implementation of the Examples 306,
308, 310, the base table is calied log_msg with aitributes unique_msg_id,

timestamp, message, cluster_id, elc, where the text field is named "message”

A7-

WO 2017/131750 PCT/US2016/015674

and the document D field is named “unique_msg_id”. The index table is named
1,337,207,103 {1.3B8) rows, and the table log_index has 25,868,757,546 (258)
rows. Two Examples 3086, 308 are Multi-Pass (MP) Indexing. One Example
310 is One-Pass (1P) Indexing. Compared is the performance of 1P indexing
with MP indexing on keywords search for two words. The 1P query is given
below. Again, the 1P is a single scan of the inverted index table and while
internal joins may be employed, the 1P generally does not employ a self-join of
the inverted index table. The 1P indexing scheme generally identifies all the
maiched doc_ids in a single index table scan. The 1P scheme typically does not
start with directly checking whether a document matches all the search iokens,
but instead starts with checking whether a document maiches any search token
and then counts the number of matches. In this sense, the 1P scheme is

match-count based.

Example 310 [1P Keywords Search Query Shape] execution time: 7.04 sec

SELECT unigue_msg_id, timestamp, message, cluster_id FROM log_msg
WHERE (unigue_msg_id IN (SELECT unique_id FROM

(SELECT unique_id, COUNT(DISTINCT word} AS count FROM log_index

WHERE unique_id IN/(SELECT DISTINCT unigue_msg_id FROM log_msg
WHERE timestamp BETWEEN '2015-08-09 04:17:43+00'
AND '2015-08-10 04:17:43+00")

AND word IN (lnvalid, 'database’, 'user’, ‘creation’)

GROUP BY unigue_id) rr WHERE count>=4})

LIMIT 500;

(00841 Two MP queries with different shapes with respect to the Examples
306 and 308, respectively, are presented. The MP two shapes are Iogically the
same but implemented with different operators. Shape 2 includes a seli-join of
the inverted index table. The execution of the shape 1 or shape 2 may be faster
or slower with respect to each other, depending on the circumsiances.

Example 306 [MP Keywords Search Query Shape 1] execution time: 86.56 sec

18-

WO 2017/131750 PCT/US2016/015674

WHERE timestamp BETWEEN 2015-08-09 04:17:43+00" AND '2015-08-10 04:17:43+00'
AND unique_msg_id IN (SELECT unique_id FROM log_index WHERE word = 'invalid’)
AND unigue_msg_id IN (SELECT unigue_id FROM log_index WHERE word = 'database’)
AND unigue_msg_id IN (SELECT unique_id FROM log_index WHERE word = 'user’
AND unigue_msg_id IN (SELECT unigue_id FROM log_index WHERE word = 'creation’)
LIMITR 500;

Example 308 [MP Keywords Search Query Shape 2] execution time: 62.24 sec

SELECT unigue_msg_id, timestamp, message, cluster_id FROM log_msg
WHERE timestamp BETWEEN '2015-08-08 04:17:43+00" AND '2015-08-10 04:17:43+00
AND unigue _msg_id IN
(SELECT t.wnigue_id FROM log_index 10, log_index 11, log_index 12, log_index 13
WHERE (0.unique_id=11.unigue_id AND t1.unigue_id=i2.unigque_id
AND 12 unigue_id=t3.unigue_id
AND t0.word = 'Invalid’ AND t1.word = 'database’
AND 12 word = 'user’ AND 13.word = ‘creation’
}

J
LIMIT 500,

{8055 The comparison results show that 1P query (Example 310)
outperforms the MP queries (Examples 306 and 308) by about ten times (10X).
As mentioned, FIG. 3 is a bar chart 300 of execution time 302 for the three
executed Examples 306, 308, 310 of the text search. The execution time 302
for the MP Query Shape 1 was 66.56 seconds, as indicated by reference
numeral 306. The execution time for MP Cuery Shape 2 was 62.24 seconds,
as indicated by reference numerai 308. The execution time for 1P in
accordance with an embodiment was 7.04 seconds, as indicted by reference
numeral 310.

[3056] FIG. 4 is a bar chart 400 of execution time 402 for additional executed
Examples 404 and 406 of a text search, as a phrasal search, on a database.
The lines 408 and 410 of the execution time 402 for the bar chart 400 are 0
second and 1000 seconds. The two additional Examples 404 and 406
{presented below) are MP and 1P, respeclively, in phrasal search. Phrasal
search aims to find the maiched phrase, not only the keywords appearing in the
fext. In general, phrasal search includes at least two actions: indexing and
validation. In the indexing, the maich of the keywords may be checked. Inthe
validation, the maich of the phrase may be checked using LIKE or ILIKE
operations. The order of the execution of the two actions may lead the index

18-

WO 2017/131750 PCT/US2016/015674

search o reduce the workload of validation. If the keyword does not exist in the
phrase, it is generally unnecessary o check the entire phrase. When all the
keywords are found, their order and positions in the phrase may be verified.
[0057] Because one-pass results are an aggregate associated to multiple
dacuments, which typically cannot be paired with the validation guery condition
on the tuple-by-tuple basis. As a result, the query engine tends 1o materialize
the aggregate before the validation, facilitating the count-based indexing to
perform only once, which makes the one-pass approach considerably out-
perform the muiti-pass approach, as shown by the comparison depicted in FIG.
4 and described below.

Example 404 [MP Phrasal Search Query Shape] execution time: 1000+ sec

SELECT unique_msg_id, timestamp, message, cluster_id FROM log_msg
WHERE timestamp BETWEEN '2015-08-08 04:17:43+00'
AND '2015-08-10 04:17:43+00
AND unique_msg_id IN (SELECT unique_id FROM log_index WHERE word = "Invaiid’)
AND unique_msg_id IN (SELECT unique_id FROM log_index WHERE word = 'database’)
AND unigue_msg_id IN (SELECT unigue_id FROM log_index WHERE word = 'user’)
AND unique_msg_id IN (SELECT unique_id FROM log_index WHERE word = log
AND unigue_msg_id IN (SELECT unigue_id FROM log_index WHERE word = 'creation’)
AND unique_msg_id IN (SELECT unique_id FROM log_index WHERE word = 'lime’)
AND message ILIKE “%invalid database user log creation time%’
LIMIT 500;

Example 406 [1P Phrasal Search Query Shape] execution time: 19.21 sec

SELECT unique_msg id, timestamp, message, cluster_id FROM log_msg
WHERE (unigue_msg_id IN (SELECT unigue_id FROM
(SELECT unique_id, COUNT{DISTINGT word) AS count FROM log_index
WHERE unigue_id IN(SELECT DISTINCT unique_msg_id FROM log_msg
WHERE timestamp BETWEEN '2015-08-09 04:17:43+00°
AND '2015-08-10 04:17:43+00%
AND word IN (Invalid, 'database’, ‘user’, log’, ‘creation’, Time’)
GROUP BY unigue_id) rr WHERE count>=6))
AND message ILIKE %invalid database user log creation ime%’
LIMIT 500;

(00587 The comparison result shows that 1P query is orders of magnitude
faster than the MP query. Again, FIG. 4 is a bar chart 400 of execution time 402

20-

WO 2017/131750 PCT/US2016/015674

for the additional executed Examples 404, 406. The MP phrasal search
Example 404 had an execution time of 1000+ seconds. The 1P phrasal search
Example 406 in accordance with an embodiment had an execution time of
18.21 seconds. In summary, embodiments for text search may turn multi-pass
index scan to 1-pass index scan in text search to enhance the search
performance.

[0059] FIGS. 5 and 5A are methods 500 and 500A, respectively, of a text
search of a database (e.q., a relational database)} having documents. At block
502, the method includes receiving a text search expression for a text search of
ihe database. The iext search expression may include one or more words. In
some examples, the text search expression includes at least two words. Al
block 504, the method converts the text search expression o a query plan {e.g.,
a SQL query plan) including multiple search tokens. Each search token may
correspond 1o a respeclive word in the received text search expression. In
some exampies, the converting of the text search expression to a query plan
includes converting, via a text-search SQL-query generator, the text search
expression into the SQL guery plan and which may thus provide for direct
leveraging of SQL operators in the texi search.

(00687 Al block 508, the meathod includes implementing the text search as
the query plan on the dalabase, including performing a one-pass indexing
comprising a single scan of an inverse index table associated with the
database. The single scan identifies documents in the database having the
multiple search tokens. In some example, performing the one-pass indexing
does not include performing a multi-pass scan or a self-join of the inveried index
fable. At block 508, the method includes retrieving the documents having the
multiple search tokens.

[0061] In a particular example, the multiple search tokens include a first
search token and a second search token, wherein the text search expression
has multiple words, wherein the first search token is a first word of the text
search expression, and the second search token is a second word of the text
search expression. In this example, performing the one-pass indexing inciudes

identifying and counting documents of the database matching the first search

2.

WO 2017/131750 PCT/US2016/015674

token to give a first sei of a list of documents, and identifying and counting
documents of the database matching the second search token to give a second
set of list of documents. Further, implementing the text search and performing
the one-pass index scan may include combining the first set with the second set
i give a union bag. In a specific example, the text search expression includes
two words, wherein documents in the union bag having a count of two are
documents that contain the first search token and the second search foken.
[0062] FIG. 6is an example method 506 of the one-pass indexing of an
inverted index table. At block 600, the method 506 of performing the one-pass
indexing in this ilusirated embodiment includes performing a single scan {and
not additional or multi-pass scans) of the inverted index fable. Indeed, in this
embodiment, no more than one single scan is performed for the given text
search. Al block 602, the single scan includes documents that include any of
the search tokens of the query plan. At block 604, the single scan includes
counting the documents per maiched foken. Thus, the one pass indexing
provides for a maich-count scan in the single scan.

[0083] An embodiment includes a method of texd search of a database,
comprising: receiving a text search expression for a text search of a database;
converting the text search expression to a query plan comprising muitiple
search tokens; and performing, based on the guery plan, a one-pass indexing
comprising a single scan of an inverse index table associated with the database
to identity documents in the database having the multiple search tokens. The
method may include retfrieving the documents having the multiple search
tokens, wherein performing the one-pass indexing does not comprise
performing a multi-pass scan or a seif-join of the inverse index table. The
multiple search tokens may comprise a first search token and a second search
token, wherein the text search expression comprises mulliple words, wherein
the first search token is a first word of the iext search expression, and the
second search token is a second word of the text search expression, wherein
performing the one-pass indexing comprises identifying and counting
documents of the database maiching the first search token to give a first set of a
list of documents, and identifying and counting documents of the database

a0,

WO 2017/131750 PCT/US2016/015674

matching the second search token o give a second set of list of documenis.
The method may include implementing the texi search on the database,
wherein implementing the text search includes performing the one-pass index
scan comprising combining the first set with the second sei to give a union bag.
The text search expression may comprise two words, wherein documents in the
union bag having a count of two are documents that contain the first search
token and the second search token. The database may comprise a relational
database, wherein the query plan may comprise a structured gquery language
(5QL) query plan, wherein converting the text search expression to a query plan
may comprise converting, via a text-search SQL-query generalor, the text
search expression into the SQL guery plan to provide for direct leveraging of
SQL operators in the text search.

[6064] FIG. 7 is a block diagram showing a tangible, non-transitory,
computer-readable medium that stores code including a search porta o perform
a text search of a database including one-pass indexing. The computer-
readable medium is referred o by the reference number 700. The computer-
readable medium 700 can include BAM, a hard disk drive, an array of hard disk
drives, an optical drive, an array of optical drives, a non-volatile memaory, a flash
drive, a digital versatile disk (DVD), or a compact disk (CD), among others. The
computer-readable medium 700 may be accessed by a processor 702 over a
computer bus 704. Furthermore, the compuler-readable medium 700 may
include code configurad to perform the methods and technigues described
herein. The various software components discussed herein may be stored on
the computer-readable medium 700. A portion 706 of the computer-readable
medium 700 can include a text search portal or text search engine, which may
be executable code that directs a processor or controller in performing a text
search on a database, including one-pass indexing 708 of an inverted index
table or inverse word index of the database. The computer readable medium
700 may be the memory 104 in the computing device 100 of FIGS. 1 and 2,
and/or the memory 216 in the computing device 212 of FIG. 2, and so forth.
The computer readable medium 700 may include the code 106 and 107 and/or
218 executed by a processor 102 or 214 of FIGS. 1 and 2.

23

WO 2017/131750 PCT/US2016/015674

[0065] An example includes a tangible, non-transitory, computer-readable
medium having instructions including a search porial that direct a processor 1o
receive a text search expression for a text search of a database (e.q., relational
database) having documents. The instructions as the search porial direct the
processor 1o convert the text search expression to a query plan (e.g., a SQL
guery plan} involving mulliple search tokens. The instructions as the search
portal may include a text-search SQL-guery generator to direct the processor to
convert the text search expression into the SQL query plan such that when the
guery plan is implemented, SQL operators are directly applied in the text search
execuled as the SQL query plan. The instructions as the search portal may
direct the processor to implement the text search as the query plan on the
database, including to perform a one-pass indexing comprising a single scan of
an inverse index table associated with the database {0 identify documents in the
database having the multiple search tokens. The instructions including the
search portal may direct the processor o retrieve the documents having the
multiple search tokens. Moreover, in certain examples, performing the one-
pass indexing does not comprise performing a multi-pass scan or a self-join of
the inveried index table,

(60867 Another exampie includes a tangible, non-transitory, computer-
readable medium comprising instructions comprising a text search engine
{search portal) that direct a processor {o: transform a texi search expression
comprising multiple words info a guery plan; and apply the query plan on the
database, including executing a one-pass indexing comprising a sole scan of an
inverse word index of the database 1o note documents in the database having
the multiple words. The instructions comprising the text search engine may
direct the processor io retrieve the documents having the multiple search
tokens, and wherein the one-pass indexing in some examples does not
comprise a mulli-pass scan or a self-join of the inverse word index. In certain
examples, the database comprises a relational dalabase, wherein the query
plan comprises a structured query language (SGL) query plan, wherein the
instructions comprising the text search engine comprise a fext-search SQL-
query generator {o direct the processor (o transform the text search expression

24

WO 2017/131750 PCT/US2016/015674

info the SQL query plan that directly ulilizes SQL operators in a text search of
the database based on the text search expression and applied as the SQL
query plan.

[00687] While the present techniques may be susceptibie 1o various
maodifications and alternative forms, the exemplary examples discussed above
have been shown only by way of example. it is to be undersiood that the
technigue is not intended to be limited to the particular examples disclosed
herein. indeed, the present techniques include all alternatives, modifications,
and equivalents falling within the true spirit and scope of the appended claims.

25

WO 2017/131750 PCT/US2016/015674

CLAINS
What is claimed is;

1. A methed of text search of a database, comprising:

receiving a text search expression for a text search of a database;

converting the text search expression 10 a guery plan comprising multiple
search tokens; and

performing, based on the query plan, a one-pass indexing comprising a
single scan of an inverse index table associated with the database to identify
documents in the database having the multiple search tokens.

2. The method of claim 1, comprising retrieving the documenis
having the multiple search tokens, wherein performing the one-pass indexing
does not comprise performing a multi-pass scan or a self-join of the inverse

incex table.

3. The method of claim 1, wherein the multiple search tokens
comprise a first search token and a second search token, wherein the text
search expression comprises multiple words, wherein the first search tokenis a
first word of the text search expression, and the second search token is a
second word of the text search expression, wherein performing the one-pass
indexing comprises identifying and counting documenis of the dalabase
matching the first search token {o give a first set of a list of documents, and
identifying and counting documents of the database matching the second
search token to give a second set of list of documents.

4 The method of claim 3, comprising implementing the text search
on the database, wherein implementing the text search includes performing the
one-pass index scan comprising combining the first set with the second sel o

give a union bag.

26

WO 2017/131750 PCT/US2016/015674

a. The method of claim 4, wherein the text search expression
comprises two words, wherein documents in the union bag having a count of
two are documents that contain the first search token and the second search
foken.

8. The method of claim 1, wherein the database comprises a
relational database, wherein the guery plan comprises a struciured query
language (SQGL) gquery plan, wherein converting the text search expressionio a
guery plan comprises converting, via a text-search SQL-query generator, the
text search expression into the SQL query plan to provide for direct leveraging
of SQL operators in the text search.

7. A computing device for a text search of a database, the
computing device comprising:
a processor;
a network interface to couple the computing device to a database;
and
memory storing a search portal to:
process words for a text search into a query plan
comprising more than one search token; and
implement a one-pass indexing comprising a scan of an
inverted index table of the database to determine documents in the database

having the more than one search token.

8. The computing device of claim 7, wherein the search portal to
refrieve the documents having the more than one search token, wherein 1o
implement the one-pass indexing does not comprise performing a multi-pass

scan or a self-join of the inverted index table.

9. The computing device of claim 7, wherein the more than one
search token comprise a first search loken and a second search token, wherein

o implement the one-pass indexing comprises o determine and couni

a7

WO 2017/131750 PCT/US2016/015674

documentis of the database matching the first search token to give a first set of a
fist of documents, and to determine and count documents of the database
matching the second search token 1o give a second set of list of documents.

10. The computing device of claim 2, wherein the one-pass indexing
scan comprises to combine the first set with the second set 1o give a union bag
to determine documents that contain the first search token and the second
search token.

1. The computing device of claim 10, wherein the words for the text
comprise two words, wherein the first search token is a first word of the two
words, and the second search token is a second word of the two words, and
wherein documents listed in the union bag having a count of two are documents

that contain the first search token and the second search token.

i2. The computing device of claim 7, wherein the database comprises
a relational database, wherein the query plan comprises a structured query
language (SQL) query plan, wherein the search portal comprises a text-search
SQl-query generator to process the words for the text search into the SCGL
query plan that directly applies SQL operators in the text search implemented
as the SQL query plan on the database.

13 A tangible, non-transitory, computer-readable medium comprising
instructions comprising a text search engine that direct a processor to:

fransform a text search expression comprising multiple words into a
query plan; and

apply the gquery plan on the database, including execuling a one-pass
indexing comprising a sole scan of an inverse word index of the database to

note documents in the database having the multiple words.

i4. The computer-readable medium of claim 13, wherein the

instructions comprising the {ext search engine to direct the processor 1o refrieve

28

WO 2017/131750 PCT/US2016/015674

the documents having the multiple search tokens, and wherein the one-pass
indexing does not comprise a muiti-pass scan or a self-join of the inverse word
index.

15, The computer-readable medium of claim 13, wherein the database
comprises a relational database, wherein the query plan comprises a structured
query language (SQL) query plan, wherein the instructions comprising the text
search engine comprise a text-search SQlL-guery generator to direct the
processor o transform the text search expression into the SQL gquery plan that
directly utilizes SQL operators in a text search of the database based on the text
search expression and applied as the SQL query plan.

2G-

WO 2017/131750 PCT/US2016/015674

1/8

Computing Device

102 Processor

108 Natwork
""\\ interface
Memory
104 ™
Search Porial P 1086
1P
/

’i(’)?"/

PCT/US2016/015674

WO 2017/131750

2/8

abeioig

e
flcsvnl.nlillfgiﬁll-s-liu‘ﬁiﬁx!\
e

abeioig

T
—
P ————

aseq

Xapu|

A
-

abrioig
e
/ii.ﬂnaxnaeii:iiilsﬁ\\\.\

— 907
8lzN 9T %m‘\%

1

n
L~ Q08

022

p17

L. 012
e Q07 f/.NwN
N 002

- 202

N30}

- P01

~ 001

44"

WO 2017/131750 PCT/US2016/015674

3/8
302 .
100 ——
{ 306
Exacution 308
Time (
(Seconds) o0 1
FLMO
0
MPI MP2 iR \\._ 304
Example
300

FIG. 3

WO 2017/131750 PCT/US2016/015674

4/8

404

Execution
Time
{Seconds)

MP P

400

FIG. 4

WO 2017/131750 PCT/US2016/015674

5/8

Receive Text Search Expression 502
¥
Convert Text Search Expression Into Query Plan | 504
v
Perform One-Pass Indexing of Inverse index |~ 506
Table Associated with Database

500

FIG. 5

WO 2017/131750 PCT/US2016/015674

6/8

Receive Text Search Expression ~502
Convert Text Search Expression Into Query Plan ¥~ 504
¥
Perform One-Pass Indexing of Inverse Index |~ 506
Table Associated with Database

¥

Retrieve Data from Database

L~ 508

S00A

FIG. 5A

WO 2017/131750 PCT/US2016/015674

7/8

Perform Single Scan of Inverse Index Table ¢~ 600
¥

ldentify Documents -~ 602
¥

Count Documents ~ 604

506

FIG. 6

WO 2017/131750 PCT/US2016/015674
8/8
700 '\}
704
702 ™~ i
Processor Text Search Engine — 706

1P

o

— 708

FIG. 7

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2016/015674

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 17/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOO6F 17/30; GO6F 12/02; GOGF 7/00; GOOF 3/0484

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: database, text search expression, query plan, one-pass indexing, single scan, inverse index
table, search tokens, and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2010-0211560 A1 (ZHEN HUA LIU et al.) 19 August 2010 1-15
See paragraphs [0001], [0006], [0010]-[0012], [0021], [0026], [0048], [0055],
[0081], and [0086];
claim 1; and figure 3.

A US 2015-0370908 A1 (YANDEX EUROPE AG) 24 December 2015 1-15
See paragraphs [0006], [0026], [0153], and [0167]; and figure 32.

A US 2003-0140035 A1 (MICHAEL BURROWS) 24 July 2003 1-15
See paragraphs [0003], [0024], [0038], [0042], and [0046].

A US 2010-0223268 A1 (YANNIS PAPAKONSTANTINOU et al.) 02 September 2010 1-15
See paragraphs [0019], [0029], [0099], [0140], and [0165].

A US 2010-0082633 A1 (JURGEN HARBARTH et al.) 01 April 2010 1-15
See paragraphs [0016], [0020], [0038], and [0049].

. . . . N .
|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referting to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
22 September 2016 (22.09.2016) 23 September 2016 (23.09.2016)
Name and mailing address of the [SA/KR Authorized officer

International Application Division
¢ Korean Intellectual Property Office NHO, Ji Myong
Y 189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea

inb;imile No. +82-42-481-8578 Telephone No. +82-42-481-8528

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2016/015674
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2010-0211560 Al 19/08/2010 US 8312030 B2 13/11/2012
US 2015-0370908 Al 24/12/2015 RU 2014107354 A 20/11/2015
US 2014-0207815 Al 24/07/2014
WO 2014-113041 Al 24/07/2014
US 2003-0140035 Al 24/07/2003 US 6963869 B2 08/11/2005
US 2010-0223268 Al 02/09/2010 US 2007-0192306 Al 16/08/2007
US 7698267 B2 13/04/2010
US 8862594 B2 14/10/2014
US 2010-0082633 Al 01/04/2010 AT 535874 T 15/12/2011
EP 2172853 Al 07/04/2010
EP 2172853 Bl 30/11/2011
US 8825665 B2 02/09/2014

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - wo-search-report
	Page 41 - wo-search-report

