In a method of transporting a workpiece on a carrier, a carrier (20) is provided with a first surface (22). A sealant (44) is placed on the carrier first surface and a workpiece (33) is placed on the carrier such that it contacts the sealant. The sealant is adhered to the workpiece. The workpiece is then removed from the carrier such that the sealant is removed along with the workpiece. Preferably, the sealant is inserted into a sealant groove (42) defined in the carrier (20). The carrier thus forms both a mold for forming the sealant (44) and a transport device for the sealant and the workpiece (33).
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People’s Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d’Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				
SEALANT AND WINDOW CARRIER STRUCTURES

Background of the Invention

This invention relates to a unique method of transporting and storing vehicle fixed modular windows, and sealant for the windows.

In the prior art, windows were delivered to vehicle assembly lines, and often had a sealant placed around their periphery at the assembly line. The window was then inserted into a vehicle body. In modern industrial facilities, a main thrust of inventive effort is to reduce the method steps which are actually performed at the assembly line.

Thus, it would be beneficial to reduce the steps of delivering a window member to an assembly line and then placing a sealant on the window member at the assembly line. To this end, windows having a sealant at their peripheries when delivered to the assembly line are known. It would be desirable to improve the method and manner in which these windows are transported.

Summary of the Invention

The present invention relates to a carrier having a groove which provides a mold to receive a sealant. The groove is dimensioned such that the sealant is formed to a desired shape for use with a particular workpiece. The groove may additionally be dimensioned such that it causes the sealant to form various desirably different profile along the periphery.

The carrier is also used to transport the formed sealant to a location where it receives a workpiece such as a window, and then may also be used to transport the workpiece and the sealant to an assembly location. By transporting the sealant while it is in the groove on the carrier, the groove serves to protect the sealant. Thus, the number of assembly steps in forming the
sealant are substantially reduced, and the sealant is substantially protected during transport.

The carrier preferably has a plurality of pegs on a lower surface panel and peg openings on an upper surface which are generally oblong. Several carriers may be positioned atop each other with the pegs and peg opening rotated by 90 degrees relative to the pegs and peg openings on an adjacent carrier; the carriers then stack with a first relatively great spacing between adjacent carriers. The carriers are stacked in this way when they are carrying a workpiece, such as a window with sealant applied to its periphery or only sealant. Overlapping sides of the carriers may form a protection from dirt and debris for the sealant within the groove of the carrier during transportation to the fixed window manufacturer and later to the fixed window module when it is transported in the stacked carriers to the vehicle manufacturer. When the carriers are empty, the pegs and peg openings on adjacent carriers are rotated such that they are aligned. The spacing between adjacent carriers is reduced, and the required volume for the empty carriers, which are typically being transported back to a location where they will receive new sealant and workpieces, is also reduced.

The carriers may also be stacked such that they are all in the same orientation.

The instant invention relates to the carrier device, and further to a method of utilizing the carrier device to transport workpieces and sealant.

This and other features of the present invention can be best understood from the following specification and drawings, of which the following is a brief description.

Brief Description of the Drawings

Figure 1 is a plan view of a carrier in a first orientation.
Figure 2 is a plan view of the carrier shown in Figure 1 rotated by 90 degrees.

Figure 3 is an enlarged view through a portion of the carrier shown in Figure 1.

Figure 4 is a view similar to Figure 3, but showing the portion of the carrier rotated by 90 degrees as in Figure 2.

Figure 5 shows stacked carriers.

Figure 6 is a cross-sectional view through stacked carriers with sealants.

Figure 7 is a cross-sectional view through stacked carriers with sealants and workpieces.

Figure 8 is a cross-sectional view through stacked carriers with the sealants and workpieces removed.

Figure 9 shows the insertion of a window into a vehicle body.

Figure 10 shows an alternative sealant cross-section.

Figure 11 shows an alternative sealant cross-section.

Figure 12 shows stacked modified carriers.

Detailed Description of a Preferred Embodiment

Figure 1 illustrates a carrier 20 having a top surface 22 and, at each of its four corners, a peg member 24 which consists of a peg 29, described below, and a peg opening 25. As shown, peg openings 25 each have a central portion 23 which is generally oblong. The pegs extend from a lower surface and are configured similar to central portion 23. A workpiece or window 33 is received on top surface 22.

Figure 2 shows a carrier 20 identical to that shown in Figure 1, but having been rotated by 90 degrees relative to the position shown in Figure 1. Oblong central portions 23 are now not aligned with the position shown in Figure 1. As will be described below, a corresponding oblong peg 29 extends from a bottom surface of carrier 20. Peg openings 25 are adapted to
receive the pegs extending from the bottom surface of an adjacent stacked carrier 20. When the pegs 29 and peg openings 25 are aligned, the pegs 29 move into central portions 23 of a lower stacked carrier 22. If the pegs 29 are rotated by 90 degrees to the position shown in Figure 2, then the pegs will only be able to move downwardly into central portions 23 through a limited extent.

As shown in Figure 3, the peg opening 25 consists of an upper enlarged portion 26 which is generally frusto-conical, and a central portion 23. As shown in Figure 4, peg opening 25 is rotated by 90 degrees relative to the peg opening 25 shown in Figure 3. The outer surface of the peg is of generally the same cross-section as the inner surface of central portion 23. Thus, if two carriers 20 are positioned offset by 90 degrees, as shown in Figure 5, then a peg 29 associated with an upper stacked carrier 20 would not extend downwardly all the way into the central portions 23 of peg opening 25 associated with the adjacent lower stacked carrier 20. The carriers 20 are preferably aligned in this way should there be sealant in the sealant groove and/or workpiece such as window 33 mounted on the carrier 20.

As shown in Figure 6, a plurality of carriers 20 may be stacked as shown by the structure 40. An endless sealant groove 42 provided in top surface 22 receives a sealant 44. By rotating the adjacent stacked carriers 20, such that the pegs 29 do not extend downwardly into the central portions 23 (as is shown in this figure), there is a relatively great spacing between top surface 22 of a carrier 20, and the lower surface 46 of the next adjacent upper carrier 20. In this way, the lower surface 46 does not contact the sealant 44. When the carriers 20 are transported with sealant, they are preferably stacked in this way. The sealant may be inserted by a robotic manipulator, or any other type of
sealant dispensing unit. The sealant may be inserted into the groove 42 at a first location, and stacked carriers 20 may then be moved to a location wherein the windows 33 are placed on the carriers.

A skirt 43 is formed around the entire outer periphery of each of the carriers. Skirts 43 are only illustrated on one edge of the carrier in Figures 6-8, but it should be understood they preferably extend around the entire periphery of the carrier 20. Skirts 43 extend downwardly to an extent such that they extend vertically beyond the top surface 22 of the next lower adjacent carrier 20. In this way, the skirts 43 serve to seal off the interior of the space between the adjacent carriers 20. Thus, the endless sealing groove 42 and workpiece 33 are protected while transported in this way. Note that the skirts 43 are angled outwardly. This feature allows the skirts 43 to nest, as is shown in Figure 8.

The stacked carriers 20 protect the sealant 44 from dust or other impurities, but do not contact the sealant, other than at groove 42. Preferably a release agent is used at the grooves 42 such that the sealant 44 is easily removed.

A plurality of stacked carriers 20 are shown by the structure 50 in Figure 7. The carriers 20 are carrying windows 33. The pegs 29 and peg openings 25 on adjacent carriers 20 are still offset. A boss 52 extends downwardly from lower surface 46 and contacts window 33, holding it in place. The window 33 contacts sealant 44.

The release agent utilized in sealant groove 42 ensures that sealant 44 is easily removed from sealant groove 42. That is, window 33 is pressed downwardly onto sealant 44. Sealant 44 then becomes adhered to window 33, and easily leaves the sealant groove 42 when window 33 is removed from the carrier top surface 22.

As shown in Figure 8, once the window has been removed at an assembly line, the carriers 20 may be
aligned. In this configuration, the pegs 29 extend downwardly into the central portions 23 of peg openings 25. Thus, the distance between lower surface 46, and upper surface 22 is greatly reduced over the alignments shown by the stacked structures in Figures 6 and 7. Moreover, bosses 52 are aligned within the bosses 52 in the underlying carriers 20. Skirts 43 nest in this position.

As shown in Figure 9, window 33 may be inserted onto a vehicle body 55. When window 33 is removed from the carrier 20 it will carry the sealant 44 along therewith.

After the windows are removed, the carriers 20 are restacked as shown in Figure 8. The carriers 20 are then returned to a sealant dispensing location. At the sealant dispensing location, new sealant 44 is dispensed into sealant grooves 42. The carriers 20 are then stacked again as shown in Figure 6. The carriers 20 then move to a window dispensing location wherein windows 33 are placed on the carriers 20. It is possible that the windows 33 and sealant 44 could be placed onto the carriers 20 at the same location. The carriers 20 with windows 33 are stacked as shown in Figure 7.

Figures 10 and 11 show that the sealant grooves can be configured in different ways to form different sealant cross-sections 60, 62. As shown in these figures, the sealant groove could be formed by easily removable inserts 64, 66, such that the cross-section of the sealant could be changed for various applications. A uniform carrier 22 could be utilized for the various sealant cross-sections. Additionally, the sealant cross-section could change along the periphery of the sealant groove if desired.

Figure 12 shows another carrier embodiment 70, wherein a top face 72 (shown partially) received a sealant groove, not shown. A stand-off 74 is formed
round the entire periphery, and is received on stand-off 74 from a lower stacked carrier 70. In this embodiment carriers 70 are always stacked aligned from an upper carrier 70. An outer wall 76 has legs 78 bent outwardly at spaced locations. Legs 78 each includes a foot 80 that rests on top 82 of a lower carrier 70 to support an upper carrier 70.

The sealant 44, 60, 62 may be formed as a continuous gasket within the sealant groove by any known process, particularly including extrusion, injection molding, and/or casting sealant deposition techniques. The release agent may be coated on the groove, or may be included in the material of which the carrier is constructed. As an alternative, the carrier may simply be formed of any material which has a lower adhesion characteristic than the workpiece which is to be carried on the carrier. The shape of the groove is configured to correspond to the desired shape of the seal and gasket to be placed on the workpiece. To this end, the groove can be varied along all three dimensions, including its thickness and curvature.

The fundamental feature of this invention is the combined sealant groove which provides both a mold and a carrier to transport the sealant. The sealant may thus be formed in the carrier, and transported on the carrier in its formed state. The sealant groove not only serves to protect the sealant, it also reduces the number of steps over prior art systems which form the sealant in one location and then transported it in some other fashion.

Although preferred embodiments of the present invention have been disclosed, a worker of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. For that reason the following claims should be studied in order to determine the true scope and content of this invention.
We claim:

1. A method of transporting a workpiece on a carrier comprising:
 providing a carrier having a first surface;
 placing a sealant on the carrier first surface;
 placing a workpiece on the carrier such that it contacts the sealant;
 adhering the sealant to the workpiece;
 and,
 removing the workpiece from the carrier such that the sealant is removed along with the workpiece.

2. The method of claim 1 wherein said step of adhering the sealant to the workpiece comprises the subsidiary step of positioning a release agent between said carrier and said sealant.

3. The method of claim 1 further comprising the steps of:
 repeating said steps of providing a carrier, placing a sealant and placing a workpiece; and,
 stacking adjacent ones of said carriers, said step of stacking occurring before said step of removing the workpiece.
4. The method of claim 3 wherein each of said carriers includes a peg opening on an upper surface, and a peg extending downwardly from a lower surface, said peg and said peg opening being configured such that in a first non-aligned orientation, said peg extends downwardly into said opening for a first depth, and when said carriers are rotated by 90 degrees from said first position to an aligned second position, said pegs extending downwardly into said peg opening by a second depth which is greater than said first depth.

5. The method of claim 4 further comprising the step of returning said carriers in said second position.

6. The method of claim 4 further comprising the step of rotating said carriers to said second aligned orientation in which said carriers are stacked in a smaller volume.

7. The method of claim 1 further comprising the steps of:
 providing a slot in the carrier first surface; and,
 placing an insert into the slot, wherein said step of placing a sealant comprises the subsidiary step of placing the sealant on the insert.
8. A carrier assembly for transporting a sealant and a workpiece, comprising:
 a body with corners and having upper and lower surfaces, said upper surface including means
defining a sealant groove adapted to receive a sealant for a workpiece, said groove corresponding to the shape of the sealant;
 a sealant held in said means for defining a sealant groove; and,
 a workpiece held on said body, said workpiece contacting said sealant.

9. The carrier of claim 8 wherein said body further comprises:
 a peg opening located on said upper surface of said body at each of the corners thereof;
 a peg extending downwardly from said lower surface of said body at each of the corners thereof;
 each peg and peg opening having similar shapes which have a greater dimension along one direction than along another;
 said peg opening being generally oblong;
 and,
 said pegs and peg openings cooperating to allow a plurality of bodies to be vertically stacked.
10. The carrier assembly of claim 9 further comprising:

a boss located on said lower surface of said body, said boss extending downwardly and being adapted to contact a workpiece carried on a lower adjacent stacked carrier, said boss being adapted to urge the workpiece downwardly onto a sealant received in a sealant groove in the lower adjacent stacked carrier.

11. The carrier assembly of claim 8 further comprising a skirt extending vertically downwardly from an outer edge of an upper face of said body.

12. A carrier assembly including a plurality of carriers as defined in claim 9, one carrier being stacked upon an adjacent carrier, such that one carrier may be rotated 90° relative to an adjacent carrier wherein in a first position the pegs of one carrier do not extend downwardly into peg openings of an adjacent carrier and provide a first distance between a stacked upper surface of one carrier and the lower surface of a stacked adjacent carrier, and wherein said carriers are rotatable to a second position in which the carriers are aligned with each other, and wherein in the second position the pegs of one carrier extend downwardly into the peg openings of a subjacent carrier such that the space difference between the upper surface on one
carrier and the lower surface on the adjacent carrier is less than said first distance.

13. The carrier assembly of claim 8 wherein said means for defining a sealant groove comprises:
 a slot in said body; and,
 an insert selectively removable from said slot, said insert comprising a groove for receiving said sealant.

14. The carrier assembly of claim 8 wherein said means for defining a sealant groove comprises an integral groove formed in said body upper surface.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) : B 32 B 31/04
US CL : 156/230

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 156/232, 247, 249, 289, 538, 540

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US,A, 4,834,824 (TIEDECK) 30 MAY 1989, SEE ENTIRE DOCUMENT</td>
<td>1-3</td>
</tr>
<tr>
<td>X</td>
<td>US,A, 4,273,604 (PAUL) 16 JUNE 1981 SEE ENTIRE DOCUMENT</td>
<td>1-3</td>
</tr>
</tbody>
</table>

*Further documents are listed in the continuation of Box C. See patent family annex.

<table>
<thead>
<tr>
<th>*</th>
<th>Special categories of cited documents:</th>
<th>"T"</th>
<th>later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>document defining the general state of the art which is not considered to be of particular relevance</td>
<td>"X"</td>
<td>document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</td>
</tr>
<tr>
<td>E</td>
<td>earlier document published on or after the international filing date</td>
<td>"Y"</td>
<td>document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art</td>
</tr>
<tr>
<td>L</td>
<td>document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason</td>
<td>"Z"</td>
<td>document member of the same patent family</td>
</tr>
<tr>
<td>O</td>
<td>document referring to an oral disclosure, use, exhibition or other reason</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>document published prior to the international filing date but later than the priority date claimed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search: 19 APRIL 1994

Date of mailing of the international search report: 3 MAY 1994

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks

Box PCT
Washington, D.C. 20231

Authorized officer: CALEB WESTON
Telephone No. (703) 308-1980

Form PCT/ISA/210 (second sheet)(July 1992)*