国際特許協力条約に基づいて公開された国際出願

(19) 世界知的財産権関係
国際事務局

(43) 国際公開日 2009年7月9日 (09.07.2009)

(51) 国際特許分類: H04J 11/00 (2006.01)

(54) Title: SEQUENCE NUMBER ESTABLISHING METHOD, WIRELESS COMMUNICATION TERMINAL APPARATUS AND WIRELESS COMMUNICATION BASE STATION APPARATUS

(71) 出願人: (米国についてのみ): 小川 佳彦 (OGAWA, Yoshihiko) 今村 大地 (MINEA, Daichi) 宇佐美 敬 (UZUMAMI, Yoshihiko) 福田 慎司 (FUKUDA, Shinsuke)

(74) 代理人: (米国についてのみ): 小川 佳彦 (OGAWA, Yoshihiko) 今村 大地 (MINEA, Daichi) 宇佐美 敬 (UZUMAMI, Yoshihiko) 福田 慎司 (FUKUDA, Shinsuke)

(72) 発明名: および

(73) 発明番号: PCT/WO/2009/084222

(54) 発明の名称: 系列番号設定方法、無線通信端末装置および無線通信基地局装置

(57) Abstract: A wireless communication terminal apparatus wherein the occurrences of inter-sequence interferences between cells can be reduced, has a sequence number deciding part (105) that has a table in which the sequence numbers of a plurality of Zadoff-Chu sequences having different sequence lengths are associated with the sequence group numbers of a plurality of sequence groups into which the Zadoff-Chu sequences are grouped and with the transmission bandwidths of reference signals. In accordance with a sequence group number and a transmission bandwidth both received from a decoding part (104), the sequence number deciding part (105) refers to the table to decide the sequence number of the Zadoff-Chu sequence. In the table of the sequence number deciding part (105), different sequence-number start-positions are established for the Zadoff-Chu sequences having the different sequence lengths.

(57) 要約: セル間の系列間干渉の発生を低減させることができる無線通信端末装置。この装置において、系列番号決め部（105）は、系列長が異なる複数のZadoff-Chu系列をグループ化した複数の系列グループの系列番号および参照信号の送信帯域幅と、Zadoff-Chu系列の系列番号に対応付けたテーブルを有し、復号部（104）から入力される系
KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG,
CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU,
IE, IS, IT, LT, LU, LV,MC, MT, NL, NO, PL, PT, RO, SE,
SI, SK, TR), OAPI (BF, BJ, CF, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

(84) 指定国 (表示のない限り、全ての種類の広域保護が可
能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD,
添付公開書類： - 国際調査報告書

列グループ番号および送信帯域幅に従ってテーブルを参照して、Zadoff-Chu系列の系列番号を決定する。また、系
列番号決定部（105）が有するテーブルでは、系列長が互いに異なるZadoff-Chu系列に互いに異なる系列番号の
開始位置が設定されている。
明細書

系列番号設定方法、無線通信端末装置および無線通信基地局装置

技術分野
[0001] 本発明は、系列番号設定方法、無線通信端末装置および無線通信基地局装置

にに関する。

背景技術
[0002] 移動体通信システムでは、上回線または下回線の伝搬路推定のために

参照信号（参考信号）が用いられる。3GPP Im（3rd Generation Partnership Project Long-Term Evolution）システムに代表される無線通信システムでは、上回線で用いられる参照信号としてZado rif

したものCI系（以下、ZC系系列という）が採択されている。ZC系系列が参

照信号として採択される理由は、周波数特性が均一であること、また、自己

相関特性および相互相関特性が良好であることなどを含める。このZC系系列は

C A Z A C（Constant Amplitude and Zero Auto-Correlation Code）系列の

一種であり、時間領域で表記すると以下の式（1）で表される。

\[
\begin{align*}
\text{for } (k) &= \begin{cases}
\exp\left(-\frac{j2\pi(k+1)}{N} \frac{k}{2} + pk \right), & \text{when } N \text{ is odd, } k = 0, 1, \ldots, N-1 \\
\exp\left(-\frac{j2\pi k^2}{N} + pk \right), & \text{when } N \text{ is even, } k = 0, 1, \ldots, N-1
\end{cases}
\end{align*}
\]

ここで、Nは系列長、rは時間領域でのZC系列番号であり、Nとrとは

互いに素である。また、pは任意の整数（一般的には、p = 0）を表す。以

下の説明では、系列長Nが奇数の場合のZC系列を用いて説明するが、偶数

の場合のZC系列も同様に適用できる。

[0003] 式（1）のZC系列を時間領域で巡回シフトすることにより得られる巡回

シフトZC系列、あるいはZC Z (Additive-Frequency-Chu Zero Correlation Zone)
系列は、次の式（2）で表される。
ここで、mは巡回シフト番号、λは巡回シフト間隔を表す。±の符号はいずれであってもよい。また、Z C系列では、系列長Nが素数であるZ C系列から、N-1個の相互相関特性が良好な準直交系列を生じることができる。この場合、生成されるN-1個の準直交系列間の相互相関は√Nで一定となる。さらに、式（2）の時間領域Z C系列をフーリエ変換により周波数領域に変換した系列はZ C系列となるため、Z C系列の周波数領域表記は、次の式（3）で表される。

\[F_{\text{N}}(k) \approx \exp \left\{ -\frac{j2^m}{N} \left(\frac{k}{2^m} \right) \right\} + \text{接続} \sum_{n=0}^{N/2} N_{\text{G}} \text{を} 0 \leq k \leq N-1 \cdots \text{(3)} \]

ここで、Nは系列長、uは周波数領域でのZ C系列番号であり、Nとλとは互いに素である。また、qは任意の整数（一般的には、q = 0）を表す。同様に式（2）の時間領域でのZ C-Z C-Z C系列を周波数領域で表記すると巡回シフトと位相回転がフーリエ変換対の関係にあることから、次の式（4）で表される。

\[F(k) \approx \exp \left\{ -\frac{j2^m}{N} \left(\frac{k}{2^m} \right) \right\} + \text{接続} \sum_{h=0}^{N/2} N_{\text{G}} \text{を} 0 \leq k \leq N-1 \cdots \text{(4)} \]

ここで、Nは系列長、uは周波数領域でのZ C系列番号であり、Nとλとは互いに素である。また、mは巡回シフト番号、λは巡回シフト間隔、qは任意の整数（一般的には、q = 0）を表す。
ことになる。例えば、データ送信帯域幅が「RB(Resouce Block)」であれば
DM-RS送信帯域幅も「RBとなり、データ送信帯域幅が2RBであれば
DM-RS送信帯域幅も2RBとなる。なお、「3GPP」において、「
RBは「2サブキャリアで構成されるため、DM-RSは「2サブキャリア
の整数倍の送信帯域幅で送信される。また、「Cシリーズの系列長Nは、送信
帯域幅に相当するサブキャリア数より小さい素数のうち、最大の素数とする。
例えば、DM-RSが3RB（36サブキャリア）で送信される場合、系列長N=3 の「Cシリーズが生成され、DM-RSが4RB（48サブキャリア
）で送信される場合、系列長N=47の「Cシリーズが生成される。

ただし、系列長Nが素数である「Cシリーズは、DM-RSの送信帯域幅に相
当するサブキャリア数（「2の整数倍）に一致しない。そこで、系列長Nが
素数である「CシリーズをDM-RSの送信帯域幅に相当するサブキャリア数に
合わせるため、素数長の「Cシリーズを巡回拡張することにより送信帯域のサブ
キャリア数に一致させる。例えば、「Cシリーズの前半部分を複製して、後半部
分に付加することで、送信帯域幅に相当するサブキャリア数と「Cシリーズの系
列長とを一致させる。具体的には、3RB（36サブキャリア）のDM-R
Sの場合、系列長N=3 の「Cシリーズに5サブキャリア分だけ巡回拡張を施
して系列長N=36の「Cシリーズが生成され、DM-RSが4RB（48サブ
キャリア）で送信される場合、系列長N=47の「Cシリーズに「サブキャリア
分だけ巡回拡張を施して系列長N=48の「Cシリーズが生成される。

上述したように、「3GPP」では、参照信号の送信帯域幅（RB数
）に応じて「Cシリーズの系列長Nが異なる。これに伴い、異なる送信帯域幅で
は、参照信号に用いる「Cシリーズの系列番号も異なる。そこで、「3GPP
では、系列長Nの異なる複数の「Cシリーズを複数の系列グループにグルー
プ化するグループリング方法が検討されている。このグループリング方法により
生成された複数の系列グループが各セルに「ずつずつ割り当てられる。「3GPP
では、系列グループ数は、「Cシリーズを用いる最小の送信帯域幅（
RB数）である3RBで生成することができる系列長N=3 の「Cシリーズ数
分の3 0（＝N-「）とする。また、各送信帯域幅のうち、3 RB ～5 RB までの各 RB では、「系列グループ当たり「系列が割り当てられ、6 RB 以上の各 RB では、「系列グループ当たり 2 系列が割り当てられる。

[0007] ZC 系列のグループング方法として、各送信帯域幅（RB 数）において、
系列番号がより小さい ZC 系列から順に系列グループに割り当てる方法が提案されている（例えば、非特許文献「参照」）。具体的には、図「に示すように、「系列グループ当たり「系列が割り当てられる送信帯域幅 3 RB ～5 RB では、系列グループ「、2、3、…に対して、系列番号 ri = 「、2、3、…の「つの ZC 系列がそれぞれ割り当てられる。また、図「に示すように、
系列グループ当たり 2 系列が割り当てられる送信帯域幅 6 RB 以上では、系列グループ「、2、3、…に対して、系列番号 ri = 「、2、3、4、5、6、…の 2 つの ZC 系列がそれぞれ割り当てられる。このように、
各送信帯域幅（RB 数）の参照信号に用いる ZC 系列の系列番号を系列番号がより小さい ZC 系列から順に割り当てるため、少ない計算量で系列グループを決定することができる。
発明の開示
発明が解決しようとする課題
[0008] 上記従来技術により複数の系列グループにグループングされた Z C 系列（
図「に示す系列番号 ri の Z C 系列）の ri ／N の分布を図 2 に示す。横軸が ri
／N を表し、縦軸が送信帯域幅（RB 数）を表す。図 2 に示すように、送信
帯域幅（RB 数）が大きい Z C 系列ほど、参照信号に用いる Z C 系列は、u ／N が 0 に近い Z C 系列に偏る。すなわち、上記従来技術では、異なる系列
グループが割り当てられたセル間で、u ／N が 0 に近い Z C 系列間において
ri ／N の差が 0 に近くなる Z C 系列を使用する可能性が高くなる。

[0009] ここで、系列長が異なる Z C 系列では、相互相関が高い系列番号の組合せ
が存在することが知られている。本発明者らが行った計算機シミュレーション
ンによれば、\(u/N \)と相互相関の最大値との関係は図3に示すようになる。
図3は、送信帯域幅「\(R \)の所望波と、送信帯域幅「\(R \sim 2.5 R \)の干渉
波との相互相関を示す。横軸が所望波と干渉波との\(u/N \)の差を表し、縦軸
が所望波と干渉波との相互相関値の最大値を表す。図3より、\(ZC \)系列間の
\(u/N \)の差が0に近くなると（例えば、\(u/N \)の差が0.02以内）、その
\(ZC \)系列間の相互相関の最大値が大きくなることが分かる（例えば、相互相
関の最大値が0.7以上）。すなわち、\(u/N \)の差が0に近い\(ZC \)系列が異
なるセル間で同時に使用されると、自セルの参照信号に用いる\(ZC \)系列に対
して、他セルの参照信号に用いる\(ZC \)系列からの大きな干渉を受けたため、
伝搬路推定結果に誤りが生じる。

【0010】例えば、送信帯域幅3\(\sim R \)の先頭から2番目の\(ZC \)系列を基準として、そ
の\(ZC \)系列との\(u/N \)の差が0.02以内の範囲（図2に示す点線枠）に、
系列長が異なる\(ZC \)系列が多数含まれていることが分かる。これら系列長が
異なる\(ZC \)系列間では、系列間干渉が発生する確率が高くなる。つまり、上
記従来技術のように、ただ単に系列番号が小さい順に\(ZC \)系列をグルービン
グするのでは、異なる系列グループを割り当てられたセル間で系列間干渉が
発生する可能性が高くなってしまう。

【0011】本発明の目的は、セル間の系列間干渉の発生を低減させることができる系
列番号設定方法、無線通信端末装置および無線通信基地局装置を提供するこ
とである。

課題を解決するための手段

【0012】本発明の系列番号設定方法は、参照信号として前記参照信号の送信帯域幅
に応じた系列長のZado ff-Chu系列を用いる系列番号設定方法において、前記
系列長が互いに異なるZado ff-Chu系列に互いに異なる系列番号の開始位置を
設定するようにした。

発明の効果

【0013】本発明によれば、セル間の系列間干渉の発生を低減することができる。

図面の簡単な説明
[0014] [図1] 従来の系列番号決定のためのテーブルを示す図
[図2] 従来の参照信号に用いるZ C系列の\(r_j/N \)分布を示す図
[図3] 系列長が異なるZ C系列間の\(r_j/N \)の差に対する相互相関を示す図
[図4] 本発明の実施の形態「に係る端末の構成を示すブロック図
[図5] 本発明の実施の形態「に係る基地局の構成を示すブロック図
[図6] 本発明の実施の形態「に係る系列番号決定のためのテーブルを示す図
[図7] 本発明の実施の形態1に係る参照信号に用いるZ C系列の\(r_j/N \)分布を示す図
[図8] 本発明の実施の形態「に係る系列番号決定のための他のテーブルを示す図
[図9] 本発明の実施の形態「に係る参照信号に用いる他のZ C系列の\(r_j/N \)分布を示す図
[図10] 本発明の実施の形態「に係る参照信号生成部の他の内部構成を示すブロック図
[図11] 本発明の実施の形態2に係る系列番号決定のためのテーブルを示す図
[図12] 本発明の実施の形態2に係る参照信号に用いるZ C系列の\(r_j/N \)分布を示す図
[図13] 本発明の実施の形態3に係る系列番号決定のためのテーブルを示す図
[図14] 本発明の実施の形態3に係る参照信号に用いるZ C系列の\(r_j/N \)分布を示す図
[図15] 本発明に係る参照信号に用いる他のZ C系列の\(r_j/N \)分布を示す図
発明を実施するための最良の形態

以下、本発明の実施の形態について、図面を参照して詳細に説明する。

（実施の形態「1」）

本実施の形態では、系列長が互いに異なる参照信号に用いるZ C系列の範囲に互いに異なる系列番号の開始位置を設定する。また、基準となる送信帯域幅3 R Bの各\(r_j/N \)（\(u = 1, 2, \ldots, 3 \) 0, \(N = 3 \) 1）の前後\(1/2 \) N（\(= 1/6 \) 2）の範囲に、送信帯域幅4 R B以上の前記参照信号に用いる
Z C系列の範囲を「つ以上含むように開始位置を設定する。

[0017] 本実施の形態に係る端末「00の構成について、図4を用いて説明する。

[0018] 図4に示す端末「00の受信RF部「02は、アンテナ「0を介して受信した信号にダウンコンバート、A／D変換等の受信処理を施し、受信処理を施した信号を復調部「03に出力する。

[0019] 復調部「03は、受信RF部「02から入力される信号に等化処理、復調処理を施し、これらの処理を施した信号を復号部「04に出力する。

[0020] 復号部「04は、復調部「03から入力される信号に復号処理を施し、受信データおよび制御情報を抽出する。そして、復号部「04は、抽出された制御情報のうち、系列グループ番号を系列番号決定部「05に出力し、参照信号の送信帯域幅（RB数）を系列番号決定部「05および系列長決定部「06に出力する。

[0021] 番号番号決定部「05は、系列長が異なる複数のZ C系列をグループビングした複数の系列グループの系列グループ番号および参照信号の送信帯域幅（RB数）と、Z C系列の系列番号とを対応付けたテーブルを有し、復号部「04から入力される系列グループ番号および送信帯域幅（RB数）に従ってテーブルを参照して、Z C系列の系列番号を決定する。また、系列番号決定部「05が有するテーブルでは、系列長が互いに異なるZ C系列に互いに異なる系列番号の開始位置が設定されている。そして、系列番号決定部「05は、決定した系列番号を参照信号生成部「07のZ C系列生成部「08に出力する。

[0022] 番号番号決定部「06は、復号部「04から入力される送信帯域幅（RB数）に基づいてZ C系列の系列長を決定する。具体的には、系列番号決定部「06は、送信帯域幅（RB数）に相当するサブキャリア数よりも小さい素数のうち、最大の素数をZ C系列の系列長に決定する。そして、系列番号決定部「06は、決定された系列長を参照信号生成部「07のZ C系列生成部「08に出力する。

[0023] 参照信号生成部「07は、Z C系列生成部「08、マッピング部「09、
IFFT（Inverse Fast Fourier Transform）部「0」、巡回シフト部「1」を備えている。そして、参照信号生成部「07」は、ZC系列生成部「08」で生成されるZC系列に巡回シフトを与えたZC系列を参照信号として生成する。そして、参照信号生成部「07」は、生成した参照信号を多重化部「2」に出力する。以下、参照信号生成部「07」の内部構成について説明する。

[0024] ZC系列生成部「08」は、系列番号決定部「05」から人力される系列番号と系列長決定部「06」から人力される系列長に基づいてZC系列を生成する。そして、ZC系列生成部「08」は、生成されたZC系列をマッピング部「09」に出力する。

[0025] マッピング部「09」は、ZC系列生成部「08」から人力されるZC系列を端末「00」の送信帯域に対応した帯域にマッピングする。そして、マッピング部「09」は、マッピングしたZC系列をIFFT部「0」に出力する。

[0026] IFFT部「0」は、マッピング部「09」から人力されるZC系列にIFFT処理を施す。そして、IFFT部「0」は、IFFT処理を施したZC系列を巡回シフト部「1」に出力する。

[0027] 巡回シフト部「1」は、予め設定された巡回シフト量に基づいて、IFFT部「0」から人力されるZC系列に巡回シフトを施す。そして、巡回シフト部「1」は、巡回シフトしたZC系列を多重化部「2」に出力する。

[0028] 符号化部「2」は、送信データを符号化し、符号化データを変調部「3」に出力する。

[0029] 変調部「3」は、符号化部「2」から人力される符号化データを変調し、変調信号をRՀ割当部「4」に出力する。

[0030] RՀ割当部「4」は、変調部「3」から人力される変調信号を端末「00」の送信帯域に対応した帯域（RՀ）に割り当て、端末「00」の送信帯域に対応した帯域（RՀ）に割り当てた変調信号を多重化部「2」に出力する。

[0031] 多重化部「2」は、RՀ割当部「4」から人力される送信データ（変調信号）と参照信号生成部「07」の巡回シフト部「1」から人力されるZC系列（参照信号）を時間多重し、多重信号を送信RF部「6」に出力する。なお
お、多重化部「5における多重化方法は、時間多重に限らず、周波数多重、符号多重、複素空間上のIQ多重であってもよい。

[003] 送信RF部「6は、多重化部「5から入力される多重信号にD／A変換、アップコンバータ、増幅等の送信処理を施し、送信処理を施した信号をアテナ「0から基地局へ無線送信する。

[003] 次に、本実施の形態に係る基地局「50の構成について、図5を用いて説明する。

[004] 図5に示す基地局「50の符号化部「5は、送信データおよび制御信号を符号化し、符号化データを変調部「52に出力する。なお、制御信号には、基地局「50に割り当てられた系列グループを示す系列グループ番号および端末「00が送信する参照信号の送信帯域幅（RB数）が含まれる。

[005] 変調部「52は、符号化部「5から入力される符号化データを変調し、変調信号を送信RF部「53に出力する。

[006] 送信RF部「53は、変調信号にD／A変換、アップコンバータ、増幅等の送信処理を施し、送信処理を施した信号をアテナ「54から無線送信する。

[007] 受信RF部「55は、アテナ「54を介して受信した信号にダウンコンバータ、A／D変換等の受信処理を施し、受信処理を施した信号を分離部「56に出力する。

[008] 分離部「56は、受信RF部「55から入力される信号を参照信号と、データ信号および制御信号とに分離する。そして、分離部「56は、分離した参照信号をDFT (Discrete Fourier transform) 部「57に出力し、データ信号および制御信号をDFT部「67に出力する。

[009] DFT部「57は、分離部「56から入力される参照信号にDFT処理を施し、時間領域から周波数領域の信号に変換する。そして、DFT部「57は、周波数領域に変換した参照信号を伝搬路推定部「58のデマッピング部159に出力する。

[010] 伝搬路推定部「58は、デマッピング部「59、除算部「60、IFFT
部「6」、マスク処理部「62」、DFT部「63」を備え、DTF部「57」から入力される参照信号に基づいて、伝搬路を推定する。以下、伝搬路推定部「58」の内部構成について具体的に説明する。

[0041] デマッピング部「59」は、DTF部「57」から入力される信号から各端末の送信帯域に対応した部分を抽出する。そして、デマッピング部「59」は、抽出した各信号を除算部「60」に出力する。

[0042] 除算部「60」は、デマッピング部「59」から入力される信号を、後述するZC系列生成部「66」から入力されるZC系列で除算する。そして、除算部「60」は、除算結果（相関値）をIFFT部「67」に出力する。

[0043] IFFT部「67」は、除算部「60」から入力される信号にIFFT処理を施す。そして、IFFT部「67」は、IFFT処理を施した信号をマスク処理部「62」に出力する。

[0044] 抽出手段としてのマスク処理部「62」は、入力される巡回シフト量に基づいて、IFFT部「67」から入力される信号にマスク処理を施すことにより、所望の巡回シフト系列の相関値が存在する区間（検出窓）の相関値を抽出する。そして、マスク処理部「62」は、抽出した相関値をDTF部「63」に出力する。

[0045] DFT部「63」は、マスク処理部「62」から入力される相関値にDFT処理を施す。そして、DFT部「63」は、DFT処理を施した相関値を周波数領域等化部「69」に出力する。なお、DFT部「63」から出力される信号は、伝搬路の周波数変動（伝搬路の周波数応答）を表すものである。

[0046] 番号決定部「64」は、端末「100」の系列番号決定部「105」（図4）が有するテーブルと同一の、系列グループ番号および送信帯域幅（RB数）と、系列番号とを対応付けたテーブルを有し、入力される系列グループ番号および送信帯域幅（RB数）に従って、テーブルを参照して、系列番号を決定する。すなわち、系列番号決定部「64」が有するテーブルでは、系列長が互いに異なるZC系列に互いに異なる系列番号の開始位置が設定されている。そして、系列番号決定部「64」は、決定した系列番号をZC系列生成部「61」に入力する。
6に出力する。

[0047] 番列長決定部『6』は、端末00の番列長決定部『0』（図4）と同様にして、人力される送信帯域幅（RB数）に基づいてZC系列の系列長を決定する。そして、系列長決定部『6』は、決定された系列長をZC系列生成部の6に出力する。

[0048] ZC系列生成部の6は、端末00のZC系列生成部の08（図4）と同様にして、系列番号決定部の4から人力される系列番号と系列番号決定部の5から人力される系列長に基づいてZC系列を生成する。そして、ZC系列生成部の6は、生成されたZC系列を伝搬路推定部の58の除算部の0に出力する。

[0049] 一方、DFT部の6は、分離部の56から人力されるデータ信号および制御信号にDFT処理を施し、時間領域から周波数領域の信号に変換する。そして、DFT部の6は、周波数領域に変換したデータ信号および制御信号をデマッピング部の8に出力する。

[0050] デマッピング部の8は、DFT部の6から人力される信号から各端末の送信帯域に対応した部分のデータ信号および制御信号を抽出する。そして、デマッピング部の8は、抽出された各信号を周波数領域等化部の9に出力する。

[0051] 周波数領域等化部の9は、伝搬路推定部の58のDFT部の3から人力される信号（伝搬路の周波数応答）を用いて、デマッピング部の8から人力されるデータ信号および制御信号に等化処理を施す。そして、周波数領域等化部の169は、等化処理を施した信号をIFFT部の170に出力する。

[0052] IFFT部の70は、周波数領域等化部の9から人力されるデータ信号および制御信号にIFFT処理を施す。そして、IFFT部の70は、IFFT処理を施した信号を復調部の7に出力する。

[0053] 復調部の7は、IFFT部の70から人力される信号に復調処理を施し、復調処理を施した信号を復号部の72に出力する。

[0054] 復号部の72は、復調部の7から人力される信号に復号処理を施し、受
信データを抽出する。

次に、端末「0」の系列番号決定部「05（図4）および基地局「5」の
系列番号決定部「64（図5）における系列番号の設定例について説明する
以下の説明では、系列グループ数を30個（系列グループ「～30）とする。
また、参照信号の送信帯域幅（RB数）として、3RB以上あり、かつ、2、3、5の倍数であるRB数を用いる。具体的には、参照信号の送信
帯域幅（RB数）として、3RB、4RB、5RB、6RB、8RB、9RB、10RB、2RB、3RB、4RB、5RB、6RB、7RB、8RB、10RB、24
RB、25RBを用いる。また、「RBは「2サブキャリアで構成される。
また、ZC系列の系列長Nは、各送信帯域幅（RB数）に相当するサブキャ
リア数以内の最大の素数とする。具体的には、図6に示すように、3RB（
36サブキャリア）の場合の系列長N＝3とし、4RB（48サブキャリ
ア）の場合の系列長N＝4とし、5RB（60サブキャリア）の場合の系
列長N＝5とする。送信帯域幅（RB数）が6RB～25RBの場合についても同様である。また、系列グループ「～30に対して、各系列長のZC
系列の系列番号は、系列グループ「から系列グループ30まで昇順に割り当てられる。ここで、送信帯域値3RB～5RBでは、各系列グループに「つの
ZC系列が割り当てられ、送信帯域値6RB以上では、各系列グループに
2つのZC系列が割り当てられる。つまり、送信帯域値3RB～5RBでは、
各送信帯域値（RB数）で30個（＝「個×30グループ）のZC系列が
参照信号として用いられ、送信帯域幅6RB以上では、各送信帯域値（RB
数）で60個（＝2個×30グループ）のZC系列が参照信号として用いられ
る。また、参照信号に用いるZC系列の系列番号は、最大の系列番号Nー「と最小の系列番号Nー「とが連続するものとして扱う。すなわち、系列
グループに系列番号を昇順に割り当てる際、系列番号u＝Nー「の次に割
り当てる系列番号は系列番号Nー「となる。また、図6に示すテーブルは、
系列番号決定部「05および系列番号決定部「64で保持される。
本実施の形態では、系列長が互いに異なるZ C系列に互いに異なる系列番号の開始位置が設定される。具体的には、系列長が互いに異なるZ C系列の系列番号に互いに異なるオフセットを与えて系列番号の開始位置を設定することで、参照信号に用いるZ C系列の系列番号を0〜Nの全体に分散させる。例えば、図6に示すように、送信帯域幅（RB数）が最も小さい3 RBに対応する系列長N＝3のZ C系列には、オフセットが与えられ、系列番号の開始位置が系列番号j＝1（＝1+0）に設定される。すなわち、図6に示すように、送信帯域幅3 RBでは、系列グループ1に系列番号j＝1が割り当てられ、系列グループ2に系列番号j＝2が割り当てられ、系列グループ3に系列番号j＝3が割り当てられる。系列グループ4～系列グループ30についても同様である。

また、例えば、送信帯域幅4 RBに対応する系列長N＝47のZ C系列に対するオフセットを5とし、送信帯域幅5 RBに対応する系列長N＝59のZ C系列に対するオフセットを「0」とし、送信帯域幅6 RBに対応する系列長N＝7のZ C系列に対するオフセットを5とし、送信帯域幅8 RBに対応する系列長N＝89のZ C系列に対するオフセットを35とし、送信帯域幅9 RBに対応する系列長N＝7のZ C系列に対するオフセットを65とし、送信帯域幅「0 RBに対応する系列長N＝「3のZ C系列に対するオフセットを85とする。

すなわち、図6に示すように、送信帯域幅4 RBに対応する系列長N＝47のZ C系列では、オフセットが与えられるため、参照信号に用いるZ C系列の系列番号の開始位置は6（＝「+5」）に設定される。よって、送信帯域幅4 RBでは、系列グループ1に系列番号j＝6が割り当てられ、系列グループ2に系列番号j＝7が割り当てられ、系列グループ3に系列番号j＝8が割り当てられる。系列グループ4～系列グループ30についても同様である。

同様に、図6に示すように、送信帯域幅5 RBに対応する系列長N＝59のZ C系列では、オフセットが与えられるため、参照信号に用いるZ
C系列の系列番号の開始位置は「（二十0）に設定される。よって、
送信帯域幅5 RBでは、系列グループ「に系列番号リニ「が割り当てられ
、系列グループ2に系列番号リニ「2が割り当てられ、系列グループ3に系
列番号リニ「3が割り当てられる。系列グループ4～系列グループ30につ
いても同様である。

[0061]また、図6に示すように、送信帯域幅6 RBに対応する系列長N＝7「の
ZC系列では、オフセットは5が与えられるため、参照信号に用いるZC系
列の系列番号の開始位置は6（二＋5）に設定される。よって、送信帯域
幅6 RBでは、「系列グループあたりのZC系列数は2つであるので、系列
グループ「に系列番号リニ6およびリニ7が割り当てられ、系列グループ2
に系列番号リニ8およびリニ9が割り当てられ、系列グループ3に系列番号
リニ「0およびリニ「が割り当てられる。系列グループ4～系列グループ
30についても同様である。

[0062]また、送信帯域幅が8 RB～25 RBの場合についても同様にして系列番
号の開始位置が設定される。

[0063]なお、連続する送信帯域幅（RB数）では異なるオフセットを設定するこ
とが好ましい。例えば、送信帯域幅4 RBおよび送信帯域幅5 RBのように
連続する送信帯域幅（RB数）では、それぞれのオフセットを5、「0と異
なせる。

[0064]また、系列番号に与えられるオフセットは、例えば、より小さい送信帯域
幅（RB数）に対応する系列長のZC系列から順に設定されてもよい。例え
ば、送信帯域幅4 RBにおけるオフセットは、送信帯域幅3 RBに与えられ
たオフセットに基づいて設定され、送信帯域幅5 RBにおけるオフセットは
、送信帯域幅3 RBおよび4 RBに与えられたオフセットに基づいて設定さ
れ、送信帯域幅6 RBにおけるオフセットは、送信帯域幅3 RB、4 RBお
よび5 RBに与えられたオフセットに基づいて設定されてもよい。

[0065]そして、端末「00の系列番号決定部「05（図4）および基地局「50の
系列番号決定部「64（図5）は、上述したようにして参照信号に用いる
Z C系列の系列番号を割り当てた図6に示すテーブルを有し、系列グループ番号および送信帯域幅（R B数）に基づいて、系列番号iを決定する。例えば、基地局「0に系列グループ2が割り当てられ、基地局「0の系列番号決定部「05（図4）および基地局「5 0の系列番号決定部「6 4（図5）は、図6に示すテーブルを参照して、送信帯域幅5R Bと系列グループ2に対応する系列番号u＝12を出力する。

[0066]次いで、図7に、参照信号に用いるZ C系列（図6に示すテーブルで割り当てられたZ C系列）のi/Nの分布を示す。

[0067]例えば、送信帯域幅4R Bにおける系列番号のオフセットは5であり、系列番号u＝6であるので、図7に示す送信帯域幅4R Bの先頭のi/Nは、u/N＝6/47＝0.「3となる。よって、図7に示すように、送信帯域幅4R Bでは、u/N＝6/47から「N（＝「47）間隔で30個のZ C系列のi/Nが分布する。すなわち、送信帯域幅4R Bでは、u/N＝5/47＝0.「（図7に示す矢印）のオフセット（図7に示す実線矢印）が見られることになる。同様に、送信帯域幅5R Bでは、u/N＝「0/59＝0.「9のオフセットが与えられ、送信帯域幅6R Bでは、u/N＝5/77＝0.「8のオフセットが与えられる。送信帯域幅8R B～25R Bについても同様である。

[0068]ここで、図2に示すi/Nの分布と、図7に示すi/Nの分布とを比較する。図2に示すi/Nの分布は、上述した通り送信帯域幅（R B数）が大きくなるほどi/Nが0付近に偏るのに対し、図7に示すi/Nの分布は、異なる送信帯域幅（3R B～25R B）に渡って、0～「の全体に分散している。そのため、u/Nが0に近いZ C系列においても、異なる送信帯域幅（異なる系列番号のZ C系列間のi/Nの差が0に近くなる確率が小さくなる。例えば、送信帯域幅3R Bの先頭から2番目のZ C系列を基準として、そのZ C系列とのi/Nの差が0.「2以上の範囲（図7に示す点線枠）に含まれるZ C系列の数は、図2の場合よりも少なくなる。これにより、異なるセ
ルに割り当てられる異なる系列グループのZC系列間のij/Nの差が0に近くなる確率が小さくなるため、セル間の系列干渉が発生する確率が小さくなる。

なお、Nの分散の判断基準として、例えば、基準となる送信帯域幅3RBの各ij/N（N＝3「、「＝「.2…30）の後前「/2N（＝「/62）の範囲に、送信帯域幅4RB以上の参照信号に用いるZC系列の範囲を「以上含むことが挙げられる。ここで、参照信号に用いるZC系列の範囲とは、各RBの参照信号に用いるZC系列の最初の系列番号から最後の系列番号までを意味し、その一部が基準となる送信帯域幅3RBの各ij/N（N＝3「、「＝「.2…30）の後前「/2N（＝「/62）の範囲に含まれていればよい。

基準送信帯域幅3RBでは、生成できる系列数30個を全て用いるため、

u/Nは0～「の全体に等間隔に分布される。よって、送信帯域幅4RB以上のZC系列において、基準送信帯域幅3RBの各ij/N近付（「/2Nの範囲内）のij/Nとなる系列番号が参照信号に用いられることで、全送信帯域幅に渡って、u/Nを0～「に分散することができる。ただし、送信帯域幅4RB以上であっても、参照信号に用いるZC系列の範囲が全系列となる送信帯域幅（RB数）は、送信帯域幅4RB以上の定義に含めないものとすら。

さらに、基準となる送信帯域幅3RB（系列長N＝3「）のZC系列の各系列番号ijに対して、u/Nの後前「/2N（＝「/62）の範囲に含まれる他の送信帯域幅（RB数）のZC系列の個数の比率を分散の判断基準としてもよい。例えば、基準となる送信帯域幅3RBのZC系列間のZ記ZC系列の個数の比が所定の割合以内（例えば50%以内）になるようにしてもよい。これにより、参照信号に用いる各送信帯域幅（RB数）のZC系列は、基準となる送信帯域幅3RB（系列長N＝3「）の各ZC系列付近に分散、つまり、u/Nが0～「の全体に分散する。

このように、本実施の形態によれば、系列長が互いに異なる参照信号に用
いるZC系列の範囲に互いに異なる系列番号の開始位置を設定する。また、基準となる送信帯域幅3RBの各u／N (u = 0, 2, ..., 3, 0, N = 3)
の前後「/2N (＝「/62)の範囲に、送信帯域幅4RB以上の前記参照信号に用いるZC系列の範囲を「つ以上含むように開始位置を設定する。
これにより、異なる送信帯域幅（異なる系列長）において、参照信号に用いるZC系列のu／Nを0～7の全体に分散させることができる。よって、ZC系列のu／Nが0に近い場合であっても、異なる系列グループの、系列長が異なるZC系列間のu／Nの差が0に近くなる確率が小さくなる。よって、本実施の形態によれば、異なる系列グループが割り当てられたセル間の系列間干渉の発生を低減することができる。さらに、本実施の形態では、オフセットを設定するのみであるため、計算量を増やすことなく、セル間の系列間干渉の発生を低減することができる。

[0073] なお、本実施の形態では、図6に示すテーブルを用いる場合について説明したが、本発明に用いることができるテーブルは、図6に示すテーブルに限定されない。例えば、図8に示すテーブルを用いてもよい。図8に示すテーブルでは、例えば、送信帯域幅5RBに対して系列番号にオフセット0が与えられ、送信帯域幅6RBに対して系列番号にオフセット0が与えられ、送信帯域幅8RBに対して系列番号にオフセット46が与えられる。すなわち、送信帯域幅5RBでは、系列長59のZC系列（系列番号リニ「～58）のうち、系列番号リニ「～30を参照信号に用いるのに対し、送信帯域幅6RBでは、系列長77のZC系列（系列番号リニ「～70）のうち、系列番号リニ「～70を参照信号に用いる。同様に、送信帯域幅8RBでは、系列長89のZC系列（系列番号リニ「～88）のうち、系列番号リニ「～60を参照信号に用いるのに対し、送信帯域幅9RBでは、系列長807のZC系列（系列番号リニ「～06）のうち、系列番号リニ「47～「06を参照信号に用いる。つまり、ある送信帯域幅（図8に示す5RB、8RB、...、24RB）では、参照信号に用いるZC系列の系列番号の開始位置を先頭のリニ「
に設定する。これに対して、その他の送信帯域幅（図8に示す6 RB, 9 RB, 20 RB, 25 RB）では、参照信号に用いるZ C系列の系列番号の最後尾が、そのZ C系列の最大の系列番号（つまり、系列長NのZ C系列の系列番号\(R \equiv N - r \)）となるように系列番号の開始位置を設定する。これにより、図9に示すように、Z C系列の\(r/N \)が0付近となる送信帯域幅と、Z C系列の\(r/N \)が「付近となる送信帯域幅とに分散される。よって、本実施の形態と同様、上述した\(r/N \)の分散の判断基準を満たし、\(r/N \)を0～「に分散させて分布させることができる。

また、本実施の形態では、端末「00における参照信号生成部「07を図4に示すものとして説明したが、図「0に示すような構成でもよい。図「0に示す参照信号生成部「07は、巡回シフト部の代わりに位相回転部を1「M部の前段に備えた。この位相回転部は、巡回シフトを時間領域で実施する代わりに、その等価な処理としての位相回転を周波数領域で実施するものである。すなわち、巡回シフト量に対応する位相回転量を各サブキャリアに割り当てるものである。これらの構成でも系列間干渉を低減することができる。

また、本実施の形態では、周波数領域のZ C系列（式（3））を生成する場合について説明したが、時間領域のZ C系列（式「r）を生成し、その後にDFT処理を行ってもよい。

また、本実施の形態では、系列グループ「〜3 0に対して、各系列長のZ C系列の系列番号が、系列グループ「から系列グループ3 0まで昇順に割り当てられる場合について説明した。しかし、本発明はこれに限定するものではない。例えば、各R Rの参照信号に用いるZ C系列の最初の系列番号から最後の系列番号までを参照信号として用いる系列番号の範囲とし、参照信号として用いる系列番号の範囲内の系列番号を系列グループ「〜3 0に対してランダムに割り当ててもよく、規則に基づいて割り当ててもよい。

（実施の形態２）

実施の形態「で説明したように、参照信号に用いるZ C系列のうち、系列
長が異なるZC系列に互いに異なる系列番号の開始位置を設定するのみでは、図7に示すように、N/2が0～7の全体に分散して分布するものの、各
N/2で均一に分布していない。これより、各系列グループにおいて、他の
系列グループからの系列間干渉を受ける確率が異なってしまう。

[0078] 上述したように、送信帯域幅（RB数）が異なるZC系列間、すなわち、
系列長が異なるZC系列間のN/2の差が0に近くなると、相互関係が高くなる。よって、系列グループ間で系列間干渉を受ける確率が均一に近くなる
系列番号の開始位置を設定する必要がある。

[0079] そこで、本実施の形態では、互いに隣接する送信帯域幅（RB数）におい
て、一方の送信帯域幅（RB数）での参照信号に用いるZC系列の系列番号
の開始位置を、他方の送信帯域幅（RB数）での最後尾のZC系列のN/2
付近の値となる系列番号とする。

[0080] 以下、本実施の形態に係る端末「O 0（図4）」の系列番号決定部「O 05お
よび地局「5 0（図5）」の系列番号決定部「0 4における系列番号の設定
例について説明する。以下の説明では、実施の形態「の図6に示す送信帯域
幅（RB数）、系列長N、系列グループと同一の送信帯域幅（RB数）、系
列長N、系列グループを用いる。

[0081] 系列番号決定部「O 5および系列番号決定部「0 4が有するテーブルでは
、互いに隣接する送信帯域幅（RB数）において、一方の送信帯域幅（RB
数）での参照信号に用いるZC系列の開始位置が、他方の送信帯域幅（RB
数）での最後尾のZC系列のN/2より大きい値であり、かつ、そのN/2
に最も近い値となる系列番号に設定されている。

[0082] 例えば、送信帯域幅（例えば、4RB、5RB、6Rb、8RB、9RB
、「0RB、…」に対して、系列番号にオフセット（45、36、9、86
、69、24、…）がそれぞれ与えられる。すなわち、図「に示すように
、参照信号に用いるZC系列として、送信帯域幅3RBでは、系列番号Nに
「~3 0が割り当てられるのに対し、送信帯域幅4RBでは、系列番号Nに
46（＝「+45」、「~29が割り当てられる。同様に、図「に示すよ
うに、参照信号に用いるZC系列として、送信帯域幅5RBでは、系列番号\(r = 3\) 7（＝「36」）～58。～8が割り当てられ、送信帯域幅6RBでは、系列番号\(r = 0\)（＝「9」）～69が割り当てられ、送信帯域幅8RBでは、系列番号\(r = 8\)（＝「6」）～88。～58が割り当てられ、送信帯域幅9RBでは、系列番号\(r = 7\) 0（＝「69」）～「06」。～23が割り当てられ、送信帯域幅0RBでは、系列番号\(r = 25\)（＝「24」）～84が割り当てられる。送信帯域幅2RB～25RBについても同様である。

[0083] ここで、参照信号に用いるZC系列（図「2に示すテーブルに設定されたZC系列）の\(r/N\)の分布を図「2に示す。図「2に示すように、送信帯域幅3RBにおいて、参照信号に用いるZC系列の\(r/N\)は、0.03～0.97となる。また、送信帯域幅4RBでは、参照信号に用いるZC系列の\(r/N\)は、0.98.0.02～0.62となる。つまり、送信帯域幅4RBでは、系列番号の開始位置は、送信帯域幅4RBに隣接する送信帯域幅3RBでの最後尾のZC系列（系列番号\(r = 3\) 0）の\(r/N\)（＝0.97）より大きく、かつ、最も近い\(r/N\)（＝0.98）である系列番号46となる。

[0084] 同様にして、送信帯域幅5RBにおいて、参照信号に用いるZC系列の\(r/N\)は、0.63～0.98.0.02～0.4となる。つまり、送信帯域幅5RBでは、系列番号の開始位置は、送信帯域幅5RBに隣接する送信帯域幅4RBでの最後尾のZC系列（系列番号\(r = 29\)）の\(r/N\)（＝0.62）より大きく、かつ、最も近い\(r/N\)（＝0.63）である系列番号37となる。送信帯域幅6RB～25RBについても同様である。

[0085] このように、図「2に示すテーブルでは、送信帯域幅3RBでの先頭のZC系列の系列番号から送信帯域幅25RBでの最後尾のZC系列の系列番号までが、図「2に示すように、\(u/N\)が「から「まで昇順に分布するように設定される（図「2に示す点線矢印）。ただし、\(u/N = 0\)～「は巡回シフトするものとし、\(u/N = 0\)の次を\(N = 0\)としている。すなわち、送信帯域幅3RB～25RBに渡って、\(u/N\)が「から「まで昇順に分布する
るように系列番号の開始位置が設定される。また、u/N=0になると、再びu/N=0から昇順に系列番号の開始位置が設定される。これにより、送信帯域幅3RB〜25RBの複数のZC系列のu/Nは、0〜7の間で比較的均一に近い分布となる。よって、異なる送信帯域幅（RB数）のZC系列のu/Nが重なる数、つまり、異なる送信帯域幅（RB数）のu/Nの差が0に近くなる数を低減することができる。

また、送信帯域幅（RB数）がより大きいほど、同一系列長の隣接する系列番号のZC系列間のu/Nの間隔はより小さくなる。つまり、送信帯域幅（RB数）がより大きいほど、同一系列長のZC系列のu/Nの範囲が狭くなる。このため、例えば、図2に示すように、送信帯域幅の大きい8RB〜25RBでは、異なる送信帯域幅（RB数）間でu/Nが重ならない。よって、「8RB〜25RBでは、異なる送信帯域幅に対応する系列長のZC系列間での系列間干渉が発生しないことになる。

このようにして、本実施の形態によれば、互いに隣接する送信帯域幅（RB数）において、一方の送信帯域幅（RB数）での参照信号に用いるZC系列の開始位置を、他方の送信帯域幅（RB数）での最後尾のZC系列のu/Nより大きい値であり、かつ、そのu/Nに最も近い値となる系列番号に設定する。これより、参照信号に用いるZC系列のu/Nを0〜7に渡って均一に分散することができるため、セル間の系列間干渉を最小限に抑えることができる。

なお、本実施の形態では、送信帯域幅3RB〜25RBに渡って、本発明を適用する場合について説明した。しかし、本発明は、全ての送信帯域幅に渡って適用する必要はなく、例えば、送信帯域幅3RB〜25RBと送信帯域幅6RB〜25RBとにグループ分けし、それぞれのグループに対して本発明を適用してもよい。

また、本発明は、全ての送信帯域幅に対して適用する必要はなく、一部の送信帯域幅にのみ本発明を適用してもよい。例えば、送信帯域幅3RB〜25RBのうち、u/Nが比較的分散する3RB〜5RBでは本実施の形態
を適用せず、Nが一部に偏りやすい「6 R ～2 5 Rで本実施の形態を適用してもよい。

[0090] また、本実施の形態では、系列番号の開始位置を、隣接する送信帯域幅での最後尾のZ C系列の時間Nより大きい値であり、かつ、最も近い値である系列番号とした。しかし、本発明は、系列番号の開始位置を、隣接する送信帯域幅での最後尾のZ C系列の時間N付近の値となる系列番号としてもよい。具体的には、隣接する送信帯域幅でのZ C系列のうち最後尾のZ C系列の時間N付近として、u ／Nの前後「／2 N の範囲内としてもよい。これにより、参照信号に用いるZ C系列の時間Nが本実施の形態と同様、0 －「に比較的均一に近い分布となるため、本実施の形態と同様の効果を得ることができる。

[0091] （実施の形態3）
実施の形態「のように、系列長が異なるZ C系列に互いに異なる系列番号の開始位置を設定する場合、参照信号の送信帯域幅（RB数）に対応するサブキャリア数を記憶する必要がある。例えば、送信帯域幅4 RB（4 8サブキャリア）では、系列番号の開始位置として最大4 8が設定されることを考慮する必要があるのに対し、送信帯域幅2 5 RB（3 0 0サブキャリア）では、系列番号の開始位置として最大3 0 0が設定されることを考慮する必要がある。すなわち、参照信号の送信帯域幅が異なるほど、開始位置を記憶するための情報量（メモリ量）が増加してしまう。

[0092] そこで、本実施の形態では、参照信号に用いるZ C系列の系列番号の開始位置を、各系列長のZ C系列数を複数範囲に分割したそれぞれの範囲の先頭に位置する複数のZ C系列の系列番号のいずれかとする。

[0093] 以下、本実施の形態に係る端末「0 0（図4）の系列番号決定部「0 5および基地局「5 0（図5）の系列番号決定部「6 4における系列番号の設定例について説明する。

[0094] 以下の説明では、実施の形態「の図6に示す送信帯域幅（RB数）、系列長N、系列グループと同一の送信帯域幅（RB数）、系列長N、系列グループ
プを用いる。また、各系列長のZC系列の分割数を「0とする。また、各送信帯域幅（RB数）に対応する系列長NのZC系列の系列番号に与えるオフセットをfloor（系列数（N-1）/分割数 x 情報削減オフセット）より算出する。ここで、floor（x）は、xの小数点以下を切り捨てることを意味する。また、情報削減オフセットは、分割数と同一数からなる値であり、ここでは、情報削減オフセットは0〜9の値となる。そして、系列長が異なるZC系列に対して互いに異なる情報削減オフセットを設定する。

例えば、送信帯域幅（4RB, 5RB, 6RB, 8RB, 9RB, ...)の情報削減オフセットを（「、「、「、「、「、「、「、「?(')とする。よって、送信帯域幅4RBでは、系列番号に与えるオフセットがfloor（47/「0x'?）より、4に設定される。同様に、送信帯域幅5RBでは、系列番号に与えるオフセットがfloor（59/「0x'?）より、5に設定され、送信帯域幅6RBでは、系列番号に与えるオフセットがfloor（77/「0x0）より、0に設定され、送信帯域幅8RBでは、系列番号に与えるオフセットがfloor（89/「0x4）より、35に設定され、送信帯域幅9RBでは、系列番号に与えるオフセットがfloor（「07/「0x6）より、64に設定される。

これより、図3に示すように、送信帯域幅4RBでは系列番号の開始位置が系列番号j=5（=「＋4）に設定され、参照信号に用いるZC系列として系列番号j=5〜35のZC系列が割り当てられる。また、送信帯域幅5RBでは系列番号の開始位置が系列番号j=6（=「＋5）に設定され、参照信号に用いるZC系列として系列番号j=6〜36が割り当てられる。同様にして、送信帯域幅6RBでは系列番号の開始位置が系列番号j=「（=「＋0）に設定され、参照信号に用いるZC系列として系列番号j=「〜60が割り当てられる。送信帯域幅8RB〜25RBについては同様である。

ここで、参照信号に用いるZC系列（図3に示すテーブルに設定されたZC系列）のj/Nの分布を図4に示す。図4に示すように、j/Nが
0 ～ 「の範囲で「0個の範囲に分割される。すなわち、ZC系列のrij/Nを等間隔に分割し、等間隔の各 rij/N にそれぞれ対応する複数の系列番号をオフセット候補とし、参照信号に用いるZC系列の開始位置をそのオフセット候補のいずれかとする。よって、送信帯域幅4RB～25RBの参照信号に用いるZC系列の系列番号のrij/Nの開始位置（μ/Nの最小値）は、分割したそれぞれの範囲の先頭の位置（図「4に示す開始位置 0 ～ 9）のいずれかとなる。また、系列番号のオフセットを設定する情報削減オフセット0 ～ 9と図「4に示すZC系列の開始位置 0 ～ 9が対応する。例えば、送信帯域幅8RBの情報削減オフセットは4であるので、送信帯域幅8RBの参照信号に用いる先頭のZC系列のrij/Nは、図「4に示すように、開始位置4（μ/N=0.4）付近の0.404となる。また、送信帯域幅9RBの情報削減オフセットは6であるので、送信帯域幅9RBの参照信号に用いる先頭のZC系列のrij/Nは、図「4に示すように、開始位置6（μ/N=0.6）付近の0.67となる。

[0098] このように、送信帯域幅（RB数）が異なる参照信号に用いるZC系列、つまり、系列長が異なるZC系列に対して、図「4に示す開始位置 0 ～ 9のいずれかが割り当てられる。つまり、系列長が異なるZC系列のうち先頭のZC系列のrij/Nは、0, 0, 2, ..., 0, 9のいずれかとなる。よって、実施の形態「と同様にして、系列長が異なるZC系列のrij/Nを0 ～ 「の全体に分散して分布させることができる。また、系列番号の開始位置は、分割数（本実施の形態では「0）により決定する。つまり、各送信帯域幅（RB数）では、「0通りのZC系列の開始位置のいずれかが設定されるため、送信帯域幅（RB数）の増減に関わらず、記憶する必要がある情報量は一定となる。

[0099] このようにして、本実施の形態によれば、実施の形態「と同様の効果を得つつ、ZC系列の系列番号の開始位置を記憶するメモリ量をさらに低減することができる。

[0100] なお、本実施の形態では、系列番号に与えるオフセットを算出するために
\(\text{floor}(x) \) を用いた。しかし、本発明は、\(\text{floor}(x) \) に限定されず、例えば、\(\text{ceil}(x), \text{round}(x) \) を用いてもよい。ここで、\(\text{ceil}(x) \) は、\(x \) の小数点以下を切り上げることを意味し、\(\text{round}(x) \) は、\(x \) の小数点以下を四捨五入することを意味する。

[例 01] 以上、本発明の各実施の形態について説明した。

[例 02] なお、上記実施の形態では、参照信号の送信帯域幅に 2, 3, 5 の倍数の \(R_B \) を用いる場合について説明した。しかし、本発明では、参照信号の送信帯域幅に用いる \(R_B \) 数は、2, 3, 5 の倍数に限定されない。

[例 03] また、上記実施の形態では、参照信号に用いる \(Z_C \) 系列のうち、系列長が異なる \(Z_C \) 系列に互いに異なる系列番号の開始位置を設定する場合について説明した。しかし、本発明では、参照信号に用いない \(Z_C \) 系列、つまり、参照信号に用いる \(Z_C \) 系列以外の \(Z_C \) 系列のうち、系列長が異なる \(Z_C \) 系列に互いに異なる系列番号の開始位置を設定してもよい。

[例 04] また、上記実施の形態では、各送信帯域幅（\(R_B \) 数）の参照信号に用いる \(Z_C \) 系列の先頭の系列番号から最後尾の系列番号まで系列番号が連続する場合の \(Z_C \) 系列を参照信号として用いる場合について説明した。しかし、本発明では、「\(Z_C \) 系列が複数ある場合（\(Z_C \) 系列の開始位置における送信帯域幅 \(R_B \) に \(\overline{Z_c} \) の実施の形態における送信帯域幅 \(R_B \) に \(\overline{Z_c} \) ）には、参照信号に用いる \(Z_C \) 系列の範囲は、複数の範囲に分散してそれぞれの範囲で \(Z_C \) 系列を割り当ててもよい。具体的には、一方の参照信号に用いる \(Z_C \) 系列の範囲には \(3 \) 個の連続する系列番号が含まれるものとし、他方の参照信号に用いる \(Z_C \) 系列の範囲にも \(3 \) 個の連続する系列番号が含まれるものとする。ここで、これらの \(2 \) 個の範囲は不連続とする。そして、各送信帯域幅（\(R_B \) 数）の参照信号に用いる \(Z_C \) 系列が複数（2 個）ある場合には、これら2つの範囲から「つずつ選択するものとする。

[例 05] また、上記実施の形態では、参照信号に用いる \(Z_C \) 系列の開始位置である系列番号は、系列番号にオフセットを与えることにより設定される場合について説明した。しかし、本発明では、参照信号に用いる \(Z_C \) 系列の終了位置
である系列番号が、系列番号にオフセットを与えることにより設定されてもよい。

[0056] また、上記実施の形態において、各送信帯域幅（RＢ数）に対する系列番号の開始位置をランダムに設定してもよい。

[0057] また、上記実施の形態では、使用頻度が高い送信帯域幅（RＢ数）の参照信号に用いるZC系列の系列番号のリ／Nの範囲を、他の送信帯域幅（RＢ数）の参照信号に用いるZC系列のリ／Nの範囲と重ならないように系列番号の開始位置を設定してもよい。使用頻度が高い送信帯域幅（RＢ数）の参照信号としては、例えば、送信帯域幅がより小さい参照信号がある。

更に、使用頻度が高い送信帯域幅（RＢ数）の参照信号としては、上記実施の形態において、RＢ単位で隣接する帯域幅が参照信号として使用されない送信帯域幅（RＢ数）の参照信号がある。具体的には、送信帯域幅「ORＢ」に隣接する帯域幅である送信帯域幅「RＢが参照信号に使用されない場合、送信帯域幅「ORＢの参照信号の使用频度が高くなる。

[0058] また、上記実施の形態において、系列グループを生成するさらなる条件として、Cubic Metric（CM）値がより大きいZC系列を参照信号として用いないてもよい。これにより、系列グループ間でのCM値の偏りを小さくすることができ、本発明の効果をより得ることができる。

[0059] また、上記実施の形態では、端末「00」および基地局「50」が同一のテーブルを予め有し、送信帯域幅および系列グループと、系列番号とが対応付けられている場合について説明した。しかし、本発明は、端末「00」と基地局「50」とが同一のテーブルを予め有する必要はなく、送信帯域幅および系列グループと、系列番号との対応付けと等価の対応付けを行えれば、テーブルを用いなくてもよい。

[0060] また、上記実施の形態では、同一の送信帯域幅（RＢ数）で、参照信号に用いるZC系列の範囲として系列番号が連続するZC系列を割り当てる場合について説明した。しかし、本発明は、参照信号として、系列番号が連続するZC系列を割り当てなくてもよい。例えば、同一の送信帯域幅（RＢ数）
の参照信号に用いるZC系列の範囲として、等間隔の系列番号のZC系列を
用いてもよい。図5に示す帯域幅「5RB〜25RBに対応する系列番号の
ZC系列において、参照信号に用いる系列番号の間隔を3とした場合の
Nの分布を示す。例えば、参照信号に用いるZC系列は、系列番号
「6（＝「＋「5）、「9（＝「＋3間隔）、「22（＝「＋3
間隔）、…、「88、「4、「03となる。つまり、参照信号に
用いるZC系列の範囲は、系列番号「6〜「88および系列番号「0
〜「03となる。そして、上記実施の形態と同様に、各送信帯域幅（RB
数）での参照信号に用いるZC系列の範囲に対して異なるオフセットを与
える。これにより、各送信帯域幅では、u/Nを0〜「の間でより分散させる
ことができる。よって、本発明と同様にして、系列長が異なるZC系列間の
系列間干渉を低減することができる。

[0111] また、上記実施の形態では、端末から基地局に対してデータおよび参照信
号を送信する例を挙げたが、基地局から端末への送信の場合でも同様に適用
できる。

[0112] また、上記実施の形態では、ZC系列を伝搬路推定用の参照信号として用
いる場合について説明した。しかし、本発明は、ZC系列をPUSCH（Physi-
ical Uplink Shared Channel）の復調用参照信号であるDM-RS（Demodu-
lation RS）として用いてもよく、PUCCH（Physical Uplink Control Ch-
nnel）の復調用参照信号であるDM-RSとして用いてもよく、受信品質測
定用のSounding RSとして用いてもよい。また、参照信号は、パ
イロット信号、基準信号、リファレンス信号、リファレンスシグナルなどに
置き換えてもよい。

[0113] また、基地局「50の処理方法は上記に限定するものではなく、所望波と
干渉波を分離できる方法であればよい。例えば、ZC系列生成部「66で
生成されるZC系列の代わりに、巡回シフトさせたZC系列を除算部「60
に出力してもよい。具体的には、除算部「60は、デマッピング部「59か
ら人力される信号を、巡回シフトしたZC系列（送信側で送信された巡回シフトZC系列と同じ系列）で除算し、除算結果（相関値）をIF部「6」に出力する。そして、マスク処理部「6」は、IF部「6」から人力される信号にマスク処理を施すことにより、所望の巡回シフト系列の相関値が存在する区間の相関値を抽出し、抽出した相関値をDF部「63」に出力する。ここで、マスク処理部「62」は、所望の巡回シフト系列の相関値が存在する区間を抽出する際、巡回シフト量を考慮する必要はない。これらの処理によっても、受信波から希望波と所望波を分離することができる。

また、上記実施の形態では、系列長が奇数のZC系列を例に説明したが、系列長が偶数となるZC系列にも適用可能である。また、ZC系列を内包するGC」(Generalized Chirp Like)系列にも適用可能である。以下、GC」系列について式を用いて示す。系列長NのGC」系列は、Nが奇数の場合、式（5）によって表され、Nが偶数の場合、式（6）によって表される。

[数5]
\[c_m(\cdot) = \exp\left\{ \frac{-2 \pi i}{N} \sum_{k=0}^{N-1} \frac{1}{k} \right\} \]

[数6]
\[c_{rm} = \exp\left\{ \frac{-2 \pi i m (\cdot \mod N)}{N} \right\} \]

ここで、\(k = 0, 1, \ldots, N-1 \)であり、Nとrとは互いに素であり、rはNより小さい整数である。また、pは任意の整数（一般的には、p = 0）を表す。また、\(b_i (k \mod m) \)は任意の複素数であり、\(i = 0, 1, \ldots, m-1 \)である。GC」系列間の相互相関を最小にする場合、\(b_i (k \mod m) \)は振幅の任意の複素数を用いる。このように、式（5）および式（6）に示すGC」系列は、式（1）および式（2）に示すZC系列に\(b_i (k \mod m) \)を乗算した系列である。

また、符号系列に対して巡回シフト系列またはZCZ系列を用いる他のCAZAC系列やバイナリ系列に対しても同様に適用可能である。
さらに、ZC系列をパンクチャリング（Puncturing）、巡回拡張（Cycle Extension）またはトラункーション（ truncation）したModified ZC系列が適用されてもよい。

また、上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。

また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に「チップ化されてもよいし、一部または全てを含むように「チップ化されてもよい。ここでは、JSIとしたが、集積度の違いにより、IC、システムJSI、スーパーJSI、ウルトラJSIと呼称されることもある。

また、集積回路化の手法はJSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。JSI製造後に、プログラムすることが可能なFPGA（Feld Programmable Gate Array）や、JSI内部の回路セルの接続や設定を再構成可能なリコンフィギュレブル・プロセッサを利用してもよい。

さらには、半導体技術の進歩または派生する別技術によりJSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてある。

2007年2月27日出願の特願2007－33724の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。

産業上の利用可能性

本発明は、移動体通信システム等に適用することができる。
請求の範囲

[1] 参照信号として前記参照信号の送信帯域帯幅に応じた系列長のZ_{ab} ff-Chu系列を用いる系列番号設定方法において、
前記系列長が互いに異なるZ_{ab} ff-Chu系列に互いに異なる系列番号の開始位置を設定する
系列番号設定方法。

[2] 前記系列長が互いに異なるZ_{ab} ff-Chu系列の系列番号に互いに異なるオフセットを与えて前記開始位置を設定する
請求項「記載の系列番号設定方法。

[3] 基準となる送信帯域帯幅3Rの各N（N : 系列番号）をR0、N（系列長） = 3 0の前後「/ 2 N（= 「/ 6 2）の範囲に、送信帯域幅4R以上の前記参照信号を用いるZ_{ab} ff-Chu系列の範囲を「つ以上含むように前記開始位置を設定する
請求項「記載の系列番号設定方法。

[4] 互いに隣接する送信帯域帯幅において、一方の送信帯域帯幅での前記開始位置を、他方の送信帯域帯幅での最後尾のZ_{ab} ff-Chu系列のN（N : 系列番号、N : 系列長）付近の値となる系列番号とする
請求項「記載の系列番号設定方法。

請求項「記載の系列番号設定方法。

[6] 前記開始位置を、各系列長のZ_{ab} ff-Chu系列数を複数範囲に分割したそれぞれの範囲の先頭に位置する複数のZ_{ab} ff-Chu系列の系列番号のいずれかとする
請求項「記載の系列番号設定方法。

[7] Z_{ab} ff-Chu系列のN（N : 系列番号、N : 系列長）の値を等間隔に分割し、前記等間隔の各Nの値にそれぞれ対応する複数の系列番号をオフセット候補とし、前記開始位置を前記オフセット候補のいずれかとする。
請求項「記載の系列番号設定方法。

[8] 参照信号の送信帯域幅とZado ff-Chu系列の系列番号との対応付けに基づいてZado ff-Chu系列の系列番号を決定する決定手段と、

決定された前記系列番号に基づいてZado ff-Chu系列を生成する生成手段と、を具備し、

前記系列長が互いに異なるZado ff-Chu系列に互いに異なる系列番号の開始位置が設定されている、

無線通信端末装置。

[9] 参照信号の送信帯域幅とZado ff-Chu系列の系列番号との対応付けに基づいてZado ff-Chu系列の系列番号を決定する決定手段と、

決定された前記系列番号に基づいてZado ff-Chu系列を生成する生成手段と、を具備し、

前記系列長が互いに異なるZado ff-Chu系列に互いに異なる系列番号の開始位置が設定されている、

無線通信基地局装置。
<table>
<thead>
<tr>
<th>手番</th>
<th>N</th>
<th>接続番号</th>
<th>送信</th>
<th>DL</th>
<th>HD</th>
<th>速度</th>
<th>調整器</th>
<th>RMB</th>
<th>送信</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>31</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>59</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>71</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>89</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>107</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>239</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>24</td>
<td>283</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>293</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
図2
【図3】
<table>
<thead>
<tr>
<th>番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>31</td>
<td>3</td>
<td>4</td>
<td>47</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>71</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>89</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>107</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>239</td>
<td>171</td>
<td>172</td>
<td>173</td>
<td>174</td>
<td>175</td>
<td>176</td>
<td>177</td>
<td>178</td>
</tr>
</tbody>
</table>

データの詳細は、以下の通りです。

- 番号列

詳細な解釈は、実際の内容に基づいて行う必要があります。
<table>
<thead>
<tr>
<th>系列番号</th>
<th>#1</th>
<th>#2</th>
<th>#1</th>
<th>#2</th>
<th>#1</th>
<th>#2</th>
<th>#1</th>
<th>#2</th>
<th>#1</th>
<th>#2</th>
</tr>
</thead>
<tbody>
<tr>
<td>グループ1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>グループ2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>グループ3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>グループ4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

...
[図10]
<table>
<thead>
<tr>
<th>系列番号u</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>系列長N</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>汎用度RB</td>
<td>6</td>
<td>71</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>47</td>
<td>46</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>69</td>
<td>87</td>
<td>88</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>23</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>24</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
</tbody>
</table>

[図11]
<table>
<thead>
<tr>
<th>系列番号</th>
<th>系列長</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>番号1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>番号2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>番号3</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>番号4</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>番号5</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>番号6</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>番号7</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>番号8</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>番号9</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>番号10</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>番号11</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>番号12</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>番号13</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>番号14</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>番号15</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>番号16</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>番号17</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>番号18</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>番号19</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>番号20</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>番号21</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>番号22</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>番号23</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>番号24</td>
<td>25</td>
<td>30</td>
</tr>
</tbody>
</table>

[図13]
INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2008/004000

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H04J11/00, H04B1/707

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Panasonic, Further consideration on uplink RS hopping and grouping, 3GPP TSG RAN WGL Meeting #50bis Rl-074397, 2007.10.12</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>Huawei, Sequence Grouping Rule for UL DM RS, 3GPP TSG RAN WGL Meeting #50 Rl-073518, 2007.08.24</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>Texas Instruments, Uplink Reference Signal Sequence Assignments in E-UTRA, 3GPP TSG RAN WGL Meeting #51 Rl-074675, 2007.11.09</td>
<td>1-9</td>
</tr>
<tr>
<td>P, A</td>
<td>Panasonic, RS sequence grouping for E-UTRA uplink, 3GPP TSG RAN WGL Meeting #51bis Rl-080145, 2008.01.18</td>
<td>1-9</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

Date of the actual completion of the international search
09 February, 2009 (09.02.09)

Name and mailing address of the ISA/
Japanese Patent Office

Facsimile No.

International Search Report

Form PCT/ISA/210 (second sheet) (April 2007)
国際調査報告
国際出願番号 PCT/JP2008/004000

A. 発明の属する分野の分類（国際特許分類（IPC））
 Int Cl H04J 1/00 (2006.01)i, H04B 1/707 (2006.01)i

B. 調査を行った分野
 調査を行った最小限資料（国際特許分類（IPC））
 Int Cl H04J 1/00, H04B 1/707

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1996年
日本国公開実用新案公報 1971-2009年
日本国実用新案登録公報 1996-2009年
日本国登録実用新案公報 1994-2009年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用途）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Panasonic, Further consideration on uplink RS hopping and grouping, 3GPP TSG RAN WGL Meeting #50bis R1-074397, 2007.10.12</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>Huawei, Sequence Grouping Rule for UL DM RS, 3GPP TSG RAN WGL Meeting #50 R1-073518, 2007.08.24</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>Texas Instruments, Uplink Reference Signal Sequence Assignments in E-UTRA, 3GPP TSG RAN WGL Meeting #51 R1-074675, 2007.11.09</td>
<td>1-9</td>
</tr>
</tbody>
</table>

洋 C欄の続きにも文献が列挙されている。

バーティファミリーに関する別紙を参照。

※ 引用文献のカテゴリー
IA 特に関連のある文献でなく、一般的な技術水準を示すもの
IE 国際出願日以前の出願または特許であるが、本願出願日以后に公表されたもの
IL 優先権主張に関係なく、他の文献の発行日に若しくは他の特別な理由を考慮するために引用する文献
IQ 口頭による開示、使用、展示等に言及する文献
rp 国際出願日以前で、かつ優先権の主張の基礎となる出願

国際調査を完了した日 09.02.2009
国際調査報告の発送日 24.02.2009

特許庁審査官（権限のある職員） 5K 3250
菊地 陽一

電話番号 03-3581-1101 内線 3556
C（続き）

<table>
<thead>
<tr>
<th>引用文献のテコリー</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, A</td>
<td>Panasonic, RS sequence grouping for E-UTRA uplink, 3GPP TSG RAN WG1 Meeting #51bis R1-080145, 2008.01.18</td>
<td>1-9</td>
</tr>
</tbody>
</table>