
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0198749 A1

Barzilai et al.

US 20090 198749A1

(54)

(76)

(21)

(22)

(63)

100

102

SYSTEMAND METHODS FOREFFICIENTLY
MANAGING INCREMENTAL DATA BACKUP
REVISIONS

Inventors: Yoram Barzilai, Raanana (IL);
Orly Barzilai, Raanana (IL)

Correspondence Address:
DALINA LAW GROUP, PC.
7910 VANHOEAVE. #325
LA JOLLA, CA 92037 (US)

Appl. No.: 12/420,813

Filed: Apr. 8, 2009

Related U.S. Application Data

Continuation of application No. 10/837,847, filed on
May 2, 2004, now Pat. No. 7,536,424.

108

108

106 BACKUP SYTEM

META DATA
STORAGE

K.

(43) Pub. Date: Aug. 6, 2009

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. .. 707/204
(57) ABSTRACT

A system and methods for building an efficient incremental
data backup system capable of managing high frequency
backups sessions, and capable of efficiently expiring backup
revisions and locating the useless data elements is disclosed.
A reduced set of data elements that have a non-zero probabil
ity of becoming redundant when a backup revision expires is
prepared while each backup revision is being processed by
the backup system. The backup system also maintains data
structures, which reduce the number of searches that should
be performed for each such data element before it can be
realized that the data element is exclusively needed to support
the expired backup revision, and therefore could be removed
from the second tier storage.

114 STORAGE
SYSTEM

108

109 108

--X T frt a

TIER
STORAGE

NETWORK
112 CLOUD

CLIENT SYSTEM

Patent Application Publication Aug. 6, 2009 Sheet 1 of 13 US 2009/O198749 A1

106 BACKUP SYTEM | 114 STORAGE
SYSTEM

108
108

META DATA 108
108 STORAGE 109

--X 1. r
TIER

STORAGE
NETWORK

112 CLOUD

CLIENT SYSTEM

S
100

102

FIG. I.

Patent Application Publication Aug. 6, 2009 Sheet 2 of 13 US 2009/O198749 A1

102-1 102-2

202 O 204
A.

A A
M f

A A
? f

A A.

A /
/ FIG. 2A f
f I

f f
| f

I I

I I

I

TB1
TA1 TB2
TA2 TB3

'S 206 TA3 Y 208 TB4
TA4 TB5
TA5 TB6
TA6 TB7

FIG. 2B

Patent Application Publication Aug. 6, 2009 Sheet 3 of 13 US 2009/O198749 A1

305 306-1 / .306-2 /-306-3 /-306.4/-306-5 306-6

314 AABB

FAE2 FAE2 3ECO

304-1

304-2

304-3

304-4

B AA

304-7 r- 318 E63 (4
304-8 320

304-9

304-11 a 326 D43A

FIG. 3A

342 .306-1

340-1 308 42F4

340-3 a- 312 3Eco 350
340-41 . . .
340-5^- 316 T 1D33
340-6/N-1

Patent Application Publication Aug. 6, 2009 Sheet 5 of 13 US 2009/O198749 A1

STORE DATA ELEMENETS FOR DATASETS THAT
HAVE CHANGED SINCE THE LAST BACKUP SESSION

SEND BACKUP SET INVENTORIES TO THE BACKUP
SYSTEM

UPDATE DATA HOLDING MEANS THAT WILL
REDUCE THE LOAD OF IDENTIFYING STORED DATA
ELEMENTS, WHICH WILL BECOME REDUNDANT ASA

RESULT OF A BACKUPREVISION EXPRAION

50

511

512

FIG. 5A

FOREVERY DELETE CANDIDATE
STORED DATAELEMENT THAT

BELONGS TO THE BACKUP GROUP
WHICHONE OF IT BACKUP
REVISION ISABOUT TO GET

EXPRED

YES
OTHER BACKUP
REVISIONSNEED

IT

NO

REDUNDANT STORED DATA
ELEMENT

FIG. 5B

NOTA REDUNDANT
522 STORED DATAELEMENT 524

Patent Application Publication Aug. 6, 2009 Sheet 6 of 13 US 2009/O198749 A1

600

352 354 / 356 / /- $34/
350-1
350-2
350-3
350-4

350

FILTER OUT ADDED
DATASETS 640

w 642

610 86B7

610-1

610-2 ADD TO DELETE
610-3 CANDIDATE DATASET 644

LIST
610-4
610-5
610-6

Patent Application Publication Aug. 6, 2009 Sheet 7 of 13 US 2009/O198749 A1

720
730

720
730

720
730

720
730

720
730

752
752-2
752-3
752-4
752-5
752-6
752-7

Patent Application Publication Aug. 6, 2009 Sheet 8 of 13 US 2009/O198749 A1

720
730
720
730

720
712-01’ 730
712-02
712-03 720

730
712-04 720
712-05 730
712-06
712-07
712-08 720
712-09 730
712-10 720
712-11 730
712-12 720

730

720
730

720
730

752-1
752-2
752-3'
752-4
752-5
752-6

FIG. 7B

Patent Application Publication Aug. 6, 2009 Sheet 9 of 13 US 2009/O198749 A1

800 y GSTART)
MINUS

STORED ELEMENT
ALREADY

REFERENCED FOR
THIS BACKUP
GROUP 806

N-1 CREATE AN ENTRY
FOR THIS STORED

ELEMENT
820 & PRESET COUNT TO

ONE
826 & RECORD BACKUP

DECREMENT YES REVISION ID
COUNT BY

ONE 824- NO

INCREMENT INCREMENT COUNT
COUNT BY ONE BY ONE;

828 COUNT RECORD BACKUP
EQUALS

0.
REVISION ID;

CLEAR FLAG

REFERENCE STORED ELEMENT IN THE
DELETE CANDIDATESTORED ELEMENT

SET,
& ADD REFERENCE TO APPROPRIATE

BACKUPREVISIONS

FIG. 8A

Patent Application Publication Aug. 6, 2009 Sheet 10 of 13 US 2009/O198749 A1

FIG. 8B

STORED ELEMENT
EXISTS FOR OTHER
BACKUP GROUP

810

ADD STORED ELEMENT
REFERENCE

ADD BACKUP
GROUP ID 812

FIG. 8C

Patent Application Publication Aug. 6, 2009 Sheet 11 of 13 US 2009/O198749 A1

EXPRED BACKUP
REVISION NEEDS
THE STORED
ELEMENT 904

REMOVE THE REFERENCE
TO THE EXPRED BACKUP

REVISION

906

OTHERBACKUP
REVISIONSNEED
THE STORED
ELEMENT

YES

910 CLEAR STORED ELEMENT
REFERENCES

OTHER BACKUP
GROUPS NEED
THE STORED
ELEMENT

YES

NO

914 A REDUNDANT NOTA REDUNDANT 916
STORED ELEMENT STORED ELEMENT

FIG. 9A

Patent Application Publication Aug. 6, 2009 Sheet 12 of 13 US 2009/O198749 A1

FIG. 9B

908

CLEAR BACKUP GROUP
REFERENCE

Patent Application Publication

1002-01
1002-02

1002-03
1002-04
1002-05

1002-06
M. p.

1002-07

1002-08 N-N 7E.63
1002-09 B7 OA

1002-10 ECE5
1002-11 D43A

1002-12 - ...
1002-13 N-- 4A36
1002-14 747B

1002-15
1002-16 D1CC

N--
1010

Aug. 6, 2009 Sheet 13 of 13

1004

206 1004

N
206 1004

206 1004

1004

208 1004

208 1004

208 1004

FIG. I.0

US 2009/O198749 A1

US 2009/O 198749 A1

SYSTEMAND METHODS FOREFFICIENTLY
MANAGING INCREMENTAL DATA BACKUP

REVISIONS

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 10/837,847, filed May 2, 2004, now
issued as U.S. Pat. No. , which is hereby incorporated
by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH ORDEVELOPMENT

0002. Not Applicable

FIELD OF THE INVENTION

0003. This invention relates to software that protects data.
More specifically it offers improved methods and processes
for managing incremental backup and restore operations that
involve multiple backup revisions.

BACKGROUND OF THE INVENTION

0004. In the current art there are solutions that offer
backup systems that are designed to handle the backup of
multiple clients. Each backup client can define a single or
multiple backup sets, where a backup-set is a predefined
collection offiles and folders to be backed up during a backup
Session
0005. A data set is the basic unit of data for which the
incremental change is recognized by the backup system.
Backup systems of the current art can recognize an incremen
tal change on a file level, file fraction level (block level) such
as a predefined 4K blocks, or a change to the basic physical
storage unit (allocation unit). These systems will copy every
data set within the backup set during the first backup session,
and during Subsequent backup sessions will copy only the
data sets that have changed since the last backup run. This
method reduces the amount of required storage space and
communication bandwidth.
0006 Another technique that is used to further reduce the
amount of communication bandwidth and storage space
requirements is to store on the backup destination a single
copy of each unique data set content, which will be referred to
in this document hereafter as stored data element. Each Such
data set serves as the backup copy for every data set that has
an identical content. The identical data sets content can
belong to the data set located on the same backup set, or they
may belong to data sets located on different backup sets that
are either located on the same computer or they can be located
on different computers. In the terminology of this document
hereunder each data that is stored on the backup system to
serve as the backup copy of a data set will be referred to as
stored data element.
0007. In an ordinary backup system, in each backup ses
sion every data set that belongs to the backed up backup set is
copied to the backup storage. In this kind of backup systems
there is no problem to reconstruct the backup set, since in
every backup session every data set is backed up and the data
sets preserve their original relative position on the backup set
(directory structure). However, some incremental backup
systems of the current art store a data element only for a data
set that has changed since the previous backup session, and
some as described earlier will also share a stored data ele

Aug. 6, 2009

ment. Therefore, the structure of the backup set cannot be
recovered from the actual copied data sets. Hence, for each
backup session a full inventory of the backup set is produced
and is sent to the backup system as the metadata of the backup
SSS1O.

0008. These backup set inventories include several param
eters that define the data set position and content during the
backup session. These parameters include for each data set,
the data set address within the backup set and a unique sig
nature that represents the content of the data set with a smaller
amount of data (signature). In a case where the incremental
backup is done on a file level, the address will include the path
to the file. If the incremental backup is done on a block level
the above-mentioned address will include the path to the file
and the block position within this file. When the incremental
backup is done on the basic physical storage unit, the above
mention address will include the path to the file and informa
tion Such as plate, track and sector location where the data set
is located.
0009 Recently the backup market presents a strong
demand to perform very frequent backup sessions, so if a
misfortunate event strikes—the amount of lost data will be
minimal. Market led requirement demands to hold for every
backup set several backup Snapshots on the backup system
(second tier storage) before they will be deleted or removed to
Some longer-term archive (third tier storage). (Each backup
Snapshot is referred to in this invention as a backup revision.).
This is required in order to enable a fast restore from a choice
of several backup revisions. Each backup session produces a
backup revision that is stored on the backup system. The
collection of backup revisions that were taken for a specific
backup set and are saved on the second tier storage is consid
ered a backup group.
0010. A life cycle management of the stored data is
required in order to keep the second tier storage space from
growing endlessly. Therefore a backup revisions retention
strategy should be employed. This strategy necessitates the
expiration of a backup revision from the second tier storage
according to the backup revisions retention strategy. The
expired backup revision will have to be deleted from the
second tier storage, and in some cases will have to be copied
as well to a third tier storage. In most retention strategies, after
taking several backup sessions for a certain backup group
there will be a need to expire some older backup revision after
each new backup session is taken. This is needed to keep the
second tier storage space from growing endlessly
0011. If for example a backup session needs to be taken for
a certain backup set in 30 minutes intervals, and the backup
revision retention strategy is set to hold the last 20 backup
revisions, then after 10 hours the backup system will have to
expire the oldest backup revision whenever a new backup
session is taken. During Such backup revision expiration pro
cess, there is a need to locate the stored data elements that are
no longer needed by any of the other non-expired backup
revisions that are stored on the second tier storage. This
means that on average the backup system will be engaged in
each backup session with both accepting the new backup
revision, and with expiring an older backup revision from the
second tier backup destination.
0012. In an ordinary backup system that backs up the
entire data of a backup set in each backup session, there is no
problem to identify the files that can be deleted when a certain
backup revision is expired. This is because each backup revi
sion has its own storage place on the backup destination, and

US 2009/O 198749 A1

no other backup revision depends on data backed up during
another backup session. However, in the incremental backup
system of the current art not every data set content that exists
on the backup set is copied to the backup destination during
each backup session, and stored data elements that were
backed up during a certain backup session could be needed
for restoring other backup revisions. As a result of that, it is
not simple to locate the stored data elements that are no longer
needed to Sustain the non-expired backup revisions, and
therefore can be deleted.
0013 When the backup system should expire a certain
backup revision that is located on the second tier storage,
either because of a predetermined retention schedule, or
because of an explicit user request, the stored data elements
that are exclusively needed by the expired backup revision
should be identified as redundant data elements. The redun
dant stored data elements can then be deleted from the second
tier storage to free storage space, or deleted and further
archived in another storage (third tier storage).
0014) To implement a solution for this problem, the
backup system should check whether every data set that is
referenced in the expired backup revision's backup set inven
tory, exists in any of the full backup set inventories that
belongs to the other non-expired backup revisions. Only data
sets that have a unique content can have their stored data
element deleted from the second tier storage, as they are
exclusively needed by the backup revision that is getting
expired. This is a very heavy operation that soon becomes a
serious bottleneck that limits the backup frequency and the
number of data sets that can be backed up by the backup
system.
0015 To exemplify the enormity of this task we can look
at a medium size backup server that stores 100 backup groups
that each holds 10 backup revisions and each backup revision
backs up 10,000 data sets on average. That means that it holds
10x100-1000 backup revisions. Then, when a certain backup
revision should be expired, and the stored data elements that
no longer are needed by any of the remaining backup revi
sions should be deleted, the backup system should check
whether each one of the 10,000 data set content that belongs
to the expired backup revision exists in any of the remaining
999 backup revisions by comparing its signature to each one
of the 10,000 data set signatures of eachbackup revision. This
will give us 10,000x999x10,000–99,900,000,000 opera
tions. If the backup set inventory is sorted, it will reduce the
number of operations to 10,000x999xlog10,000–10,000x
999x13.3=132,867,000 operations, which is still enormous
load. Backup system of the current art do not detail the
method in which they discard of backup revisions, and they
usually suggest to run a clean cycle during non-busy hours.
0016 Reference to existing patent that can further
enlighten the current art relevant to our invention include US
Publication number US2003/0182301 A1 Sep. 25, 2003,
Patterson et al., and U.S. Pat. No. 5,778,395 Jul. 7, 1998
Whiting et al.

SUMMARY OF THE INVENTION

0017. The present invention disclose system and methods
for efficiently managing incremental data backup revisions,
capable of running high frequency backup sessions, and to
efficiently maintain the second tier storage space. The system
and methods disclosed in this invention are able to add and
expire backup revisions efficiently, while identifying the
stored data elements that become redundant as a result of

Aug. 6, 2009

expiring a backup revision. It updates for each new backup
session data structures that help to efficiently identify a
reduced set of stored data elements that are candidate for
delete when a certain backup revision expires. In the preferred
embodiment of this invention, a method of managing addi
tional data structure that reduces the load of checking whether
a certain delete candidate stored element is redundant indeed
is disclosed.
0018. The present invention discloses methods that reduce
the number of stored data elements that have to be examined
in order to find the redundant stored data elements. This is
achieved by identifying, for each backup group a set of delete
candidate data elements, where each Such delete candidate
data element has a non-Zero probability of becoming a redun
dant stored data element as a result of an expiration of a
backup revision that belongs to that backup group. This set of
delete candidate data elements is managed by several meth
ods that are disclosed in this invention, which require a num
ber of operations proportional to the number of data sets that
have changed from one backup revision to the other.
0019. This invention also discloses a method, which
reduces the search complexity that each delete candidate data
element has to undergo in order to verify whether it is redun
dant. This is done by associating with each delete candidate
data element of a certain backup group, a set of backup
revisions that belong to the same backup group, which need
the delete candidate data element. And by updating a mean
that holds for each stored data element, every backup group
that one of its non-expired backup revisions needs it. The
methods disclosed in this invention to manage these means
also requires number of operations proportional to the num
ber of data sets that have changed from one backup revision to
the other.
0020. Then when there is a need to check if a certain delete
candidate data element of a certain backup group is redundant
indeed, a process consistent with this invention is employed.
In the first step, the delete candidate stored data element is
checked to verify that no backup revision of the same backup
group needs it by using the set of backup revisions that need
it. And if during the first step no backup revision was found to
need it, the delete candidate data element will be further
checked to see that no other backup group needs it by using
the set of backup groups that need it.
0021. These methods reduce the load on the backup server
considerably, which allow increasing the backup frequency
and the number of supported backup sets. Another result of
the increased number of backup sets that can be managed by
the same backup system is the decrease of the overall required
second tier storage. The overall storage requirement is
decreased because the backup system can discard in a timely
manner of redundant stored data elements. Other aspects and
advantages of the invention will be apparent from the follow
ing description and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0022. The invention will be better understood by reference
to the following drawings:
0023 FIG. 1 is a block diagram of an exemplary environ
ment of the present invention
0024 FIG. 2A is an illustration of two backup sets in
accordance with the preferred embodiment of the present
invention.
0025 FIG. 2B is an illustration of two backup groups, in
accordance with the present invention.

US 2009/O 198749 A1

0026 FIG. 3A is a detailed illustration of an exemplary
backup set over six backup revisions, in accordance with the
present invention.
0027 FIG. 3B is an illustration of a backup set inventory
produced for the exemplary backup set of FIG. 3A during
TA1, in accordance with the present invention.
0028 FIG. 3C is an illustration of the change backup set
inventory produced for the exemplary backup set of FIG. 3A
TA6, in accordance with the present invention.
0029 FIG. 4 is a detailed illustration of another exemplary
backup set over seven backup revisions, in accordance with
the present invention.
0030 FIG. 5A is a general view of the backup system
process during a backup session, in accordance with the
present invention.
0031 FIG. 5B is a general view of the backup system
process during backup revision expiration, in accordance
with the present invention.
0032 FIG. 6 illustrates for one embodiment, the process
of producing delete candidate data sets for an exemplary
change backup set inventory of TA6, in accordance with the
present invention.
0033 FIG. 7A is an exemplary illustration during TA6, of
the data structures that are used in a second embodiment in
accordance with the present invention.
0034 FIG. 7B is an exemplary illustration during TA5, of
the data structures that are used in a second embodiment in
accordance with the present invention.
0035 FIGS. 8A, 8B, and 8C details the indexation process
the data structures of FIG. 7B, as would be performed is
several embodiment inaccordance with the present invention.
0036 FIGS.9A,9B, and 9C details the expiration process
of a backup session, as would be performed in several
embodiments in accordance with the present invention.
0037 FIG. 10 illustrates an exemplary data structure that
further improves the search for redundant stored data ele
ments that is used in the preferred embodiment, in accordance
with the present invention.
0038. It should be noted that identical features in different
drawings are shown with the same reference numeral.

DETAILED DESCRIPTION OF THE INVENTION

1. Environment

0039. In accordance with an embodiment of the present
invention, a new system and methods for building a backup
system that efficiently manage incremental data backup revi
sions, capable of running high frequency backup sessions,
and efficiently maintain the second tier storage space, is dis
closed here. FIG. 1 is an exemplary environment in which the
principle of the present invention can be implemented. A
client machine 100, the client's data residing on local storage
mean 102 (first tier storage). The client machine is connected
over a network cloud 112, to a backup system 106, which is
attached to at least one random access storage mean 108
(second tier storage), which can be located in the same
backup system or in a separate interconnected storage Volume
114.
0040. The backup system 106 has a metadata storage 109.
The metadata storage 109 can be saved in one of the storage
means 108 or it can be saved in a separate storage mean. The
network cloud 112 can be any combination of LAN, SAN, or
WAN, it can also be a connection within a digital processing
apparatus, or a local bus that connects peripheral devices Such

Aug. 6, 2009

as USB, and SCSI bus. Other client machines 100 may be
connected over the network cloud 112. The backup system
106 and the client machine 100 may be different parts of the
same machine, wherein such a case the network cloud 112
represents the internal bus of the machine. A tape system or
any other long-term storage media 118 may serve as a third
tier storage, which can be used to archive selected backup
revisions. The third tier storage system 118 can be directly
connected to the backup system 106 or it can be connected to
the network cloud 112.

2. Preparing a Backup Revision
0041. The backup user defines a backup set, the backup
set may include for example several data sets from within one
folder, data sets from several folders, the whole machine's
drive, or several computer drives. To each backup set several
filters, which reduce the number of data sets belonging to the
backup set, can be defined. These filters for example—can
filter data sets based on their file type, file size, file creation
date, and so forth.
0042 Each backup set has it own unique backup set iden

tification. FIG. 2A illustrates the local storage 102 of two
backup clients 102-1 and 102-2. For each one of these backup
clients a backup set 202 and 204 is defined respectively.
0043. The backup system tags each backup session with a
unique identifier. The backup session identifier is composed
of the backup-set identifier and a unique sequence based
identifier, which can be used to determine the sequence in
which the backup sessions were taken. In the preferred
embodiment the backup session's unique sequenced based
identifier is set by calculating the number of seconds that have
past since Dec. 1, 2000 01:00 AM. However any other accept
able embodiment of such a measure can be used to determine
the sequence in which the backup revisions were taken. A
backup session can be invoked by a predetermined schedule,
by a user request, or by a change to the backup set. Invoking
a backup session is well known to those familiar in the art and
will not be detailed here.
0044) The backup system can be configured to hold sev
eral backup revisions for each backup set. FIG. 2B illustrates
two backup groups 206 and 208; each one of these backup
groups holds several backup revisions, which belong to
backup sets 202 and 204 respectively. Backup group 206,
holds backup revisions TA1-TA6, and backup group 208,
holds backup revisions TB1-TB7.
0045. In on embodiment consistent with this invention, for
every backup session a fullbackup set inventory is produced
along with a change backup set inventory. The fullbackup
set inventory contains entries (references) for each data set
that was a part of the backup set during the backup session.
Each entry contains the data set address, and a signature that
uniquely represents the data set. A signature of a data set is a
high probability unique representation of the data set with
Smaller amount of data. A 16-bit (4 bytes) signature is used in
the illustrations of this invention in order to simplify the
drawings. However, in the preferred embodiment of this
invention a 32bit (8 bytes) signature is used by employing the
well-known CRC32 algorithm. However, in another embodi
ment other types signatures can be used to represent the
content of a data set. The change backup set inventory con
tains only entries detailing the changes to the backup set since
the previous backup session. Both types of backup set inven
tories are tagged with the backup session identifier, and are
stored on the metadata storage 109.

US 2009/O 198749 A1

0046 FIG. 3B is an illustration of a full backup set inven
tory that belongs to a certain backup session. Each one of the
lines 340-1-340-6 represent entries of the data sets that are
present on the backup set 202. Each item in column 342 holds
the address of the corresponding data set, and each item in
column 306-1 is the signature of the corresponding data set
during the backup session. Producing an inventory for a
backup session is well known to those familiar in the art and
will not be detailed here. Note that fullbackup set inventory
may include additional fields, which are not material for
understanding this invention, Such as data set creation date,
and data set attributes.
0047 FIG. 3A illustrates the signatures of data sets 304
1-304-13 that are part of backup set 202 in several backup
sessions. Each one of the columns 306-1-306-6 represents the
data sets signature during backup sessions TA1-TA6 respec
tively. Each item in column 305 indicates the address of the
corresponding data set within the backup set.
0048. As can be noted, data sets 304-1, 304-2, and 304-3
did not change over the six backup sessions TA1-TA6, and
their signatures were 42F4. AAEB, and 3ECO respectively.
Data set 304-4 did not exist during TA1, and during TA2-TA6
had a signature identical to data set 304-2. The content of data
set 304-6 changed twice in TA3 and TA6, where its signature
changed from 1D33 to FAE2 and to 3EC0. Data sets 304-7,
304-9, 304-11, 304-12 existed on the backup set only during
TA3 (406-3), while data sets 304-8 and 304-10 existed during
TA2 and TA3. Data set 304-13 existed and deleted interme
diately during several backup session.
0049. Data sets 304-2, 304-4, and 304-12 have the same
content as can be seen from their identical signature (AAEB),
and data sets 304-9 and 304-10 also have an identical content
(ECE5 is the signature of both). Data set 304-6 has during
TA6 the same signature (3ECO) as data set 304-3. Note that
although there are several data sets that have the same content
(signature of AAEB for example), the backup system as will
be detailed below, may holds only a single copy of a data set
with a signature of AAEB. Line 304-5 represents other data
sets, which their content did not change during TA1-TA6.
0050. The fullbackup set inventory illustrated in FIG.3B
represents the backup session TA1. Note that line 340-4 rep
resent all the other data set that are part of backup set 202 as
illustrated in line 304-5 of FIG. 3A.
0051 FIG. 4 illustrates the signatures of data sets 404-1-
404-9 that are part of backup set 204 during seven backup
sessions TB1-TB7 (as presented in columns 406-1-406-7
respectively). Column 405 represents the addresses of each
such data set. Note that data set 404-5 has the same content as
data set 304-11 of backup set 202, and that data set 404-6 has
the same content as data sets 304-2, 304-4, and 304-12. Also
note that data set 404-4 and 404-8 has the same content during
TB4-TB6, and that data set 404-9 was introduced to the
backup set only during TB7.
0052. If for example the backup revision TA3 of backup
group 206 needs to be expired, the stored data elements that
are exclusively needed to Sustain this backup revision should
be identified as redundant stored data elements, which can be
deleted from the second tier storage. By evaluating the data
sets content during TA3 (FIG. 3 column 306-3), it can be
reasoned that except for data sets 304-11 and 304-7, which
have the signatures of D43A and 7E63 respectively, all other
data set signatures during TA3 appear in other backup revi
sions. For example the signature of data set 304-10 is ECE5
and it appears also at TA2. So the stored data elements that are

Aug. 6, 2009

needed by the data sets bearing the signatures D43A and 7E63
seems as if they are redundant, as they are exclusively needed
by backup revision TA3. However, the stored data elements
that is needed by a data set with the signature of DA43 is also
needed to sustain the backup revisions TB1-TB6 of backup
group 208 (FIG. 4) for data set 404-5, which means that only
the stored data element which is needed by a data set with the
signature 7E63 is redundant, as it is only needed by data set
304-7 for backup revision TA3, which is getting expired.
0053 FIG. 5A illustrates a top-level outlook of the incre
mental backup process of this invention, as performed after
the first full backup session has already been carried out. In
Step 510 the backup system stores data elements for a data
sets that have changed since the last backup session. A data set
is considered, for this matter, to have changed if it has been
modified or created since the previous backup session. In the
preferred embodiment of storing the data elements consistent
with this invention, the stored data element is equal to the
content of the data set that has changed. In another embodi
ment of storing the data element consistent with this inven
tion, which is geared toward a more secure environment, the
content of the data set is stored encrypted. Encryption of a
data element is well knownto those familiar in the art and will
not be detailed here.

0054. In one embodiment of storing the data elements on
the backup system consistent with this invention, each data
element is stored in the backup system in a location that can
be found by hashing the data set signature. An example of an
hash function to produce the storage location of a data ele
ment is: a folder name which comprise of the first letter of the
data set signature; and a stored element name that comprise of
the data set signature. This enables to keep the stored ele
ments in a generic format that enable sharing a stored ele
ment. In the preferred embodiment of storing the data ele
ments on the backup system consistent with this invention,
each data element is stored in the backup system in a location
that can be found by hashing the data set signature, provided
that it is not already located on the backup system in a place
which corresponds to the hash value of the data set's content.
0055. In one embodiment of step 511 both the fullbackup
set inventory and the change backup set inventories are sent to
the backup system.
0056. In step 512 a data holding means, which catalogues
references to stored data elements, backup revisions, and
backup groups in a novel structure, is updated. This update is
performed in a method, as will be disclosed in this invention,
which requires a number of operations (complexity) that is
proportional to the number of data sets that has changed
during the current backup session. This step is performed for
each backup revision that is stored on the backup system in
order to decrease the load of locating the stored data elements
that will become redundant as a result of expiring a backup
revision from the second tier storage 108.
0057. One of said means is a set of delete candidate data
elements that exists for each backup group. This set is
updated during step 512 by any backup session that belongs to
the same backup group. Each item in the delete candidate data
elements set of a certain backup group has a non-Zero prob
ability of becoming a redundant stored data element—when
any backup revision, which is not the most recently taken for
that backup group, expires. By Supporting a delete candidate
data elements set the complexity of locating redundant stored
data elements is reduced, because only the stored data ele
ments that are referenced in the delete candidate data element

US 2009/O 198749 A1

set will have to be considered thr delete when a backup
revision that belongs to that backup group expires. This is
instead of having to consider every stored data element that
was needed by the expired backup revision.
0058. In the first embodiment of step 512, set of 'delete
candidate data elements are managed Such as to include any
stored data element, which is needed by a certain data set in
any backup revision and that data set has changed in the
Subsequent backup session. (A Stored data element is said to
be needed by a certain data set, if the stored data element was
stored for a data set that has an identical signature. A data set
that has changed its signature, is any data set that was present
on the backup set during a backup session and in a Subsequent
backup session its content has changed, or that was com
pletely removed from the backup set.) It is clear that a stored
data element which is needed by a data set that has not
changed in any backup session, cannot become redundant
when a backup revision expires, as it is Surely needed by the
other backup revisions that will be left in the backup group
after the expiration of that backup revision.
0059. As can be reasoned from FIG. 3A, the delete candi
date data elements set of backup group 206, after TA6 has
been taken, will include references to the stored data elements
which is needed by the data sets with the signatures: 1D33,
FAE2 that were part of data set 304-6, and to the stored data
elements which are needed by the data sets with the signatures
7E63, B70A ECE5, ECE5, D43A, AAEB, 86B7 that were
part of data sets 304-7,304-8,304-9,304-10,304-11,304-12,
and 304-13 respectively. Every such stored data element is
needed by a data set that has changed during any of the backup
sessions TA1-TA6. This set of delete candidate data elements
is considerably smaller than the entire list of stored data
elements that are needed by backup revision TA6, which can
include tens or even hundreds of thousands of stored data
elements.

0060. As described above this document, in accordance
with one embodiment of this invention, for each backup ses
sion a changed backup set inventory is produced by the
backup client 100 to portrait the data sets that have changed
within the backup set from one backup revision to the follow
ing one. Each entry contains the data set address, the signature
that uniquely represents the data set, and an attribute indicat
ing the type of change.
0061 FIG. 3C illustrates a change backup set inventory
350 as would be produced for TA6. It contains four change
entries 350-1-350-4. Column 352 indicates the address of the
data set that have changed, column 354 is the attribute field of
the change, and column 356 indicates the data set signature
associated with the change. In line 350-1 a minus sign in the
attribute column 354 indicates that a data set with a signature
as appears on column 356 no longer exists as it did in the
previous backup session (TA5) on the data set address as
indicated by column 352. A plus sign in the attribute column
354 indicates that during TA6 a data set with a signature as
appears on column 356 was found to be added to the backup
set 202 in the data set address as indicated by column 352.
When a data set content has changed two entries will appear
in the change backup set inventory. Both entries will have the
same data set address, while the first address will have a
minus sign in the attribute column 354 and the old signature
of the data set in column 356, and the second item will have a
plus sign in the attribute column 354 and the new signature of
the data set in column 356. Note that entries 350-1 and 350-2
illustrate such a change.

Aug. 6, 2009

0062 FIG. 6 illustrates process 600 consistent with the
first embodiment of step 512, for producing a set of delete
candidate data elements with an exemplary change backup set
inventory 350. From the change backup set inventory 350, in
step 640—every data set signature that was added is filtered
out, and only the data sets signature, that belongs to data sets
which have been deleted, are extracted, as shown in list 642.
Then list 642 is added in step 644 to the list of delete candidate
data elements 610-1-610-7, to produce a newer version 611
1-611-9 of the delete candidate data elements.

0063. When TA3, for example, expires; only the stored
data element that is referenced in 611-1 (signature 7E63) can
actually be deleted, as it is not required by any of the remain
ing backup revisions (TA1, TA2, TA4, TA5, TA6 of backup
group 206, and of TB1-TB7 of backup group 208). Stored
data element referenced in 611-5 (signature D43A) is not
redundant and cannot be deleted, although it is not required
by any of the remaining backup revisions of backup group
206 (TA1, TA2, TA4, TA5, TA6), it is required by TB1-TB6 of
backup group 208.
0064. When the most recently taken backup revision avail
able for a certain backup group needs to get expired, another
set is considered as the delete candidate data elements. This
set includes all the stored data elements, which are needed by
new data sets that have been added to the backup set during
the recently taken backup revision available for this backup
group. In one embodiment this set is produced by comparing
the previously taken backup revision's fullbackup set inven
tory to the currently taken backup session's backup set inven
tory, which are available for this backup group, and extracting
all the new data set signatures. Comparing items in a sorted
list is well known to those familiar in the art and will not be
detailed here. In another embodiment this set is produced by
filtering out from the change backup set inventory of the
current backup session, every data set that was removed (mi
nus sign on the attribute field).
0065. A stored data element which is needed by a data set
that was added to the most recently taken backup revision
available for a certain backup group has a chance of becoming
redundant when that backup revision expires as it may not be
needed to sustain the other backup revisions available for that
backup revision. FIG. 4 illustrates data set 404-9 with the
signature 617B, which was introduced to the backup set 204
during TB7. Therefore, when TB7 needs to get expired, then
only the stored data element with the signature 617B is con
sidered as a delete candidate data element.

0066. When the only backup revision available for a cer
tain backup group needs to get expired, then every stored data
element that is needed by any data set that is referenced in the
fullbackup set inventory of this backup revision is considered
as candidate for delete.

0067 FIG. 5B illustrates a top-level summary of the pro
cess that locates the stored data elements that become redun
dant as a result of the expiration of a backup revision. Every
item, in the delete candidate data elements set that belongs to
same backup group as the expiredbackup revision, is checked
in step 520 to verify that it is not needed by any other backup
revision which is available on the second tier storage 108. If
the delete candidate data element is needed by any other
backup revision, it is not a redundant stored data element, as
illustrated at 524, and therefore it cannot be deleted from the
second tier storage. If, however no other backup revision
needs this delete candidate data element, it is a redundant

US 2009/O 198749 A1

stored data element, as illustrated at 522, and therefore it
could be deleted from the second tier storage 108.
0068 To locate which of the delete candidate data ele
ments 611-X become redundant stored data elements as a
result of expiring a backup revision TA3, for example, each
such delete candidate data element should be checked at step
520 (FIG.5B) to verify that no other fullbackup set inventory
that belongs to the backup revisions TA1, TA2, TA4, TA5,
TA6 and TB1-TB7 references a data set with the same content
(signature). Searching for an item in a list of items is a well
known process for those who are familiar in the art an will not
be detailed here. If such a stored data element is not needed by
any other backup revision it can actually be deleted from the
second tier storage 108, and its reference should also be
cleared from the delete candidate data elements set.

0069. In a second embodiment of step 512, a data struc
ture, which is illustrated in FIG. 7A, is used to further reduce
the number of delete candidate data elements for each backup
group. This is achieved by including only stored data ele
ments that are needed by at least one of the backup revisions
that belongs to the same backup group, and which are not
needed by the recent backup revision available for this backup
group. The set of delete candidate stored elements that is
produced by the second embodiment is clearly smaller than
the same set produced by the first embodiment, as if only one
of two data sets that have an identical content changes, the
stored data element which is needed by this changed data set
will not become a candidate for delete as it would have
became in the first embodiment.

0070 FIG. 4 illustrates such a condition where the stored
data element with the signature D11C would have become a
part of the stored data elements delete candidate in the first
embodiment, as during TB7 it did not appear in data set 404-8
as it did in TB6. However, in the second embodiment of 512,
it will not be a part of the delete candidate data elements, as it
is needed by the recent backup session (TB7) for the data set
404-4.

0071. A stored data element signature index' exists for
each backup group, and it is used to hold the signatures of
every unique stored data element that is saved on the second
tier storage 108 to sustain any backup revision available in its
backup group. Note that in an embodiment where the stored
elements are encrypted this index will hold the signatures of
the non-encrypted Stored elements. The exemplary stored
data element signature index 710 holds the signatures of
stored data elements that are needed by the backup revisions
that are available for backup group 206 (TA1-TA6). The
signatures 712-01-712-12 correspond to the situation after
backup revision TA6 has been indexed. A stored data element
signature is held on this index as long as a backup revision is
available for backup group 206, which bears at least one data
set that has the same signature.
0072 Each stored data element 712-01-712-12 in the
exemplary stored data element signature index 710 points at
a separate structure that has two items: 720 and 730. Item 720
holds the number of data sets on backup set 202, which in the
recent backup revision (TA6) need the pointing stored data
elements. While item 730 holds a reference to the first backup
session, in which a data set that needs the pointing Stored data
element turned out recently in the backup set. A data set is said
to turn out in the backup set in one of two cases: either it is the
first backup session in which a data set that bears such a
signature is part of the backup set; or if a the last data set
bearing such signature ceased to be a part of the backup set in

Aug. 6, 2009

at least one backup revision, and then in another backup
session a data set which bears this signature once again
became a part of the backup set.
0073. As can be seen from FIG. 3A, the data set 304-13
bore signature 86B7 during TA1 and TA2; however during
TA3 it disappeared from the backup set and turned out again
in data set 304-13 during backup revision TA4. This is why
Item 730, which is pointed by the stored data element that has
a signature 86B7 (712-03), holds a reference to backup revi
sion TA4.
(0074) Item 730, which is pointed by the stored data ele
ment signature B70A (712-09), holds reference to backup
revision TA2. As can be seen from FIG. 3A, the content of
data set 304-8 bearing the signature B70A turned out in
backup revision TA2. Item 720, which is pointed by the stored
data element B70A, holds a zero, as during the backup revi
sion TA6 no data set bore the signature B70A.
(0075. Item 730, which is pointed by stored data element
AAEB (712-05), holds reference to backup revision TA1. As
can be seen from FIG. 3A, backup revision TA1 was the first
to hold a data set bearing the signature AAEB (in data set
304-2), and in the Subsequent backup revisions a data set
bearing this signature was always a part of the backup set.
Item 720, which is pointed by the same stored data element
signature B70A, holds 3, as during the backup revision TA6 a
data set bearing the signature AAEB existed on the backup set
in three different data sets, 304-2, 304-4 and 304-12.
(0076 An exemplary structure 750 includes items 752-1-
752-7, wherein items that their flag in column 754 is set
(holds F), are holding the signatures in column 756 of the
delete candidate stored data elements set. This exemplary set
of delete candidate data elements reflects the situation after
backup revision TA6 has been indexed. Each such stored
element, points at an associated set of non-expired backup
revisions (704-x) that still needs the stored data element.
(0077. When flag 754 is in reset condition (empty) for item
752-X, the item is not considered as delete candidate data
element. The entries with the reset flag, are used to hold
reference to stored data elements that have used to be candi
date for delete for a while, but then in a subsequent backup
revision a data set was found to need this stored data elements,
and therefore the stored data element is not considered as
candidate for delete any more. The references to these stored
data elements are kept in structure 750 together with the
references to the backup revisions that needed them in 704-X,
for the possibility that in a future backup revision these stored
data element will become once again delete candidates; then
these backup revisions which have already been found to be
needing the stored data element, will be appended to the new
backup revisions that will be found to need this stored data
element.
0078. When there will not be any backup revision listed in
the associated set 704-X, it means that backup group 206 no
longer needs the stored data element that points at this set. As
an example, after backup revision TA3 expires, the stored
data elements which bear the signatures 7E63 and D43A, will
not be needed any more by backup group 206. This is indi
cated by delete candidate item 752-2 and 752-5, which points
at the associated sets 704-2 and 704-5 respectively, and each
one of this set holds only TA3 as the backup revision that
needs said stored data elements.

0079 Process 800 as illustrated in FIG. 8A details one
embodiment of the indexation process of the data structures
used in the second embodiment of step 512. This process 800

US 2009/O 198749 A1

is performed for each entry in the change backup set inventory
of a new backup session. At step 802 the entry's attribute is
checked, if it is a plus, then in step 804 the data set signature
of this entry is searched in the stored data elements signature
index. If the data set signature is not found in the stored data
elements signature index, then at step 806 the stored data
element signature is added to the stored data element signa
ture index in a new node, the number of data sets on backup
set is preset to one, and the current backup revision identifi
cation is recorded for the stored data element as will be
exemplified below.
0080. In this embodiment after performing step 806 the
process continues in FIG. 8B where no action is taken before
the process stops.
0081. If during step 804 the data set signature is found in
the stored data element signature index 710, then at steps 822
and 824 the number of data sets with the same signature,
which is hosted at item 720 is incremented. If at step 820 the
number of data sets with a signature equals to the pointing
stored data element is tested to be zero, it means that this
stored data element was a delete candidate. Then, at step 822
the backup revision identification will be updated in item 730
to hold the identification of the current backup session, and
the flag 754 of this item is set to indicate that this stored data
element is no longer a delete candidate, as it is needed by the
current backup session.
0082 If during step 802 the attribute of the change backup
set inventory entry is found to be a minus, then the number of
data sets with the same signature, which is hosted at item 720
is decremented during step 826. If this number is verified to be
Zero during step 828, which seems (the final judgment can be
made only when all the change backup set inventory entries
will be processed) that a data set with Such a signature is not
apart of the backup set during this backup session, then at step
830 the stored data element that has the same signature is
added to the delete candidate data element set 750, and a set
of every non-expired backup revision that belongs to the
backup group, and which needs this stored data element is
referenced to this element at 704-X.

0083. This backup revisions set 704-X includes every
backup revision that was taken since the backup revision had
been recorded at step 806, and therefore they need this stored
data element. If a previous set of backup revisions that needs
this stored data element may already have existed for this
stored data element (as can be verified by a non-flagged item
of set 750 that have the same signature), it will be appended to
the new set of backup revisions that needs the stored data
element.

0084. Data set 304-13 as illustrated in FIG. 3A had a
signature 86B7 during TA1 and TA2, then during TA3 this
data set did not bore this signature, and in fact no other data set
during TA3 bore this signature. Therefore the stored data
element that bears the signature 86B7 became a candidate for
delete during TA3, and the backup revisions TA1 and TA2
should be recorded as the backup revisions that need this data
set. Then at TA4 data set 304-13 bearing the signature 86B7
has turned out. Therefore, the flag at item 752-6 (FIG. 7A)
should be set to indicate that this stored data element is no
longer a delete candidate, and TA4 should be recorded in item
730 that belongs to the stored data element bearing the sig
nature 86B7 (indexed at 712-03). At TA6 the data set 304-13
disappears from the backup set which causes its count to drop
to Zero again. Therefore the stored data element bearing the
same signature will be noted as a delete candidate data ele

Aug. 6, 2009

ment again and the former backup revisions TA1, TA2 will be
appended to TA4 and TA6 as backup revisions that need it, as
the final result can be seen at 704-6 of FIG. 7A.
I0085 FIG. 7B illustrates stored data element signature
index 710' and set 750', after backup revision TA5 has been
indexed. FIG. 7A illustrates stored data element signature
index 710 and set 750, after backup revision TA6 has been
indexed. FIG. 3C, as mentioned above this document, illus
trates the change backup set inventory 350 for TA6. The first
entry 350-1 for example, indicates that the data set 316 does
not bear the signature of FAE2 anymore as determined by the
minus sign in its attribute field. During step 826 the number of
data set bearing the signature FAE2 will be decremented from
one to Zero as can be seen in item 720 pointed by items 712-07
and 712-07 respectively (FIGS. 7B and 7A). Therefore, in
step 830 entry 752-7 is added to the delete candidate data
element set 750 with the signature FAE2, and a set of backup
revisions TA3, TA4, and TA5 are referenced at 704-7. These
backup revisions are added since backup revision TA3 was
the first to bear a data set with Such signature, as recorded in
FIG. 7B item 730 that is associated to 712-07 of the Stored
data element signature index 710'.
I0086. In the second embodiment of step 512, to locate
which of the delete candidate data elements for a certain
backup group become redundant stored data elements as a
result of expiring a backup revision that belongs to that
backup group, each Such delete candidate data element
should be checked at step 520 (FIG.5B) to verily that no other
backup revision needs it before it can be realized as a redun
dant data element.
I0087 FIG. 9A illustrates process 900 which details the
process of FIG. 5B as would be performed for locating the
redundant stored data elements from the delete candidate data
elements as produced by the second embodiment of step 512.
Process 900 is performed for each item in the delete candidate
data element set. In step 902 it is checked whether the expired
backup revision needs the stored data element (in 704-X) and
if it does, then at step 904 its reference is removed from the
associated set of backup revisions that need the data set.
I0088. Then in step 906, it is checked if any other backup
revision, which belongs to this backup group, needs this
stored data element. This step 906 is done by verifying that
the associated set (704-X) of backup revisions that need the
data set is empty. If there are backup revisions that need the
stored data element, the process ends for this stored data
element with the result, as can be seen in step 916, that it is not
a redundant stored data element, and therefore it cannot be
deleted from the second tier storage 108.
I0089. If in step 906 it is found that no other backup revi
sion that belongs to this backup group needs the stored data
element, then in this embodiment process 900 continues to
step 910 as can be seen by FIG.9B. At step 910 the stored data
element reference is cleared from both the stored data element
signature index 710, and from the delete candidate data ele
ment set. At step 912 it is tested whether other backup groups
need this stored data element. This is done by verifying that a
stored data element with Such a signature does not existin any
other backup group's stored data element signature index
710. If such a stored data element is not found, then it is clear
that there is no other backup revision that needs this stored
data element, and as can be seen by step 914 it is a redundant
stored data element which could be deleted.

(0090. If in step 912 it is found that there is at least one
backup group that needs a stored data element with Such a

US 2009/O 198749 A1

signature, then at step 916 it can be realized that this stored
data element cannot be deleted.

0091. In the preferred embodiment of step 512 an addi
tional mean that further improves the search for redundant
stored data element is added. This mean holds for each stored
data element the backup groups that need it. A backup group
is said to need a stored data element, if there is at least one
non-expired backup revision that belongs to this backup
group that needs the stored data element. This will improve
step 912 of process 900 by reducing the search load for other
backup groups that might still need the stored data element.
Instead of searching through every stored data element sig
nature index 710 of every backup group, it is enough to verify
whether the stored data element has no backup group associ
ated with it, which means the stored data element is not
needed by any backup group and therefore can be deleted.
0092 FIG. 10 illustrates for each one of the stored data
elements 1002-1-1002-16, a set 1004 that contains the backup
groups, which need the pointing stored data element. The
actual data in this illustration exemplifies the situation after
TA6 and TB7 was taken for both backup sets 202 and 204.
Stored data element 1002-01, 1002-02, 1002-03, 1002-04,
1002-07, 1002-08, 1002-09, 1002-10 are needed only by
backup group 206 as can be seen from FIG. 3 and FIG. 4,
while 1002-13-1002-16 are needed only by backup group
208, and stored data elements 1002-05, 1002-11 are needed
by both backup groups 206 and 208.
0093. In this preferred embodiment of step 512 process
800 is modified. After performing step 806 the process con
tinues as described by FIG. 8C where at step 808 it is checked
whether the stored data element already referenced in the
central stored data element signature index 1010. If it does
not, then at step 810 it is added to the central stored data
element signature index 1010, and at step 812 the backup
group identification is added to the set 1004 of the backup
groups that are associated with it.
0094. In this preferred embodiment of step 512 process
900, which locates the stored data element that can be deleted
as a result of expiring a certain backup revision, is also modi
fied. From step 906 it continues to step 908 as illustrated in
FIG. 9C. In step 908 the backup group reference, which the
current backup session belongs to, is removed from the set
1004 of the backup groups that need the stored data element.
Step 912 is preformed by verifying whether the stored data
element has no backup group identification associated with it
in index 1010. This greatly reduces the load on the backup
system as mentioned above.
0095. In an alternative embodiment of step 511 a full
backup set inventory is sent for the first backup session, and
then for every Subsequent backup session only a change
inventory is sent. This reduces the communication bandwidth
needed, as only the references to the changes are sent for each
backup session. Then, the backup system can reconstruct the
full inventory for a certain backup revision, by integrating to
the first backup set inventory—every change backup set
inventory taken between the first backup and until the desired
backup point.

3. Backup Revision Retention Management

0096. The backup system 106 can also manage the reten
tion of the backup revisions on the second tier storage 108,
and then when a certain backup revision needs to get expired,

Aug. 6, 2009

it will engage the above mention methods to locate the stored
data elements that can be deleted from the second tier storage
108.
0097. In one embodiment every backup revision can be set
up to be held on the second tier storage 108 for a certain period
of time before it gets expired. In another embodiment each
backup group can be set up to hold several backup revisions
before the eldest backup revision get expired. In yet another
embodiment each backup set can have several types of
backup revisions such as daily, weekly and monthly. And
each backup revision can be set up to hold several backup
revisions for each such type of a backup revision before the
eldest backup revision of each type get expired.

4. Relocating Backup Revisions to Third Tier
Storage

0098. The backup system 106 can also move or copy a
certain backup revision to the third tier storage 118 in a
predefined schedule. When a certain backup revision is
moved to the third tier storage every stored data element that
is referenced in the appropriate full backup set inventory is
copied to the third tier storage. With methods disclosed above
this document, then, the backup system 106 can locate every
stored data element, which is uniquely needed to Sustain this
backup revision, and mark it for an immediate or later dele
tion from the second tier storage 108. The full backup set
inventory of this archived backup revision will continue to be
held on the backup system 106 as a reference to the content of
every backup revision that is archived on the third tier storage
118.

5. Restore Operation

0099. During a restore operation the fullbackup set inven
tory, as exemplified in FIG. 3B, is used as a reference for
restoring a single file, a folder or a whole drive.
0100. When a file needs to be restored to a certain version
that is stored on the second tier storage 108, the differences
between the corresponding data sets that composed the file
during the backup session and the data sets that currently
compose the file are located. Every data set that is found to be
different is replaced with the corresponding data set that is
stored in the second tier storage 108 for this revision. This is
a standard operation in many backup systems and will not be
detailed here.

What is claimed is:
1. A method for managing incremental backup revisions in

a computer system, said method using a computer executable
program running on a computer, said computer executable
program comprising instructions for managing said incre
mental backup revisions comprising:

identifying a backup set comprising a data set that changed
since a previous backup session;

storing at least one data element for said data set;
producing meta data that portraits said data set changes

during said previous backup session; and
identifying said at least one stored data elementina backup

group comprising backup revisions as a delete candidate
data element.

2. The method of claim 1 wherein said delete candidate
data element is needed by said data set and is a part of said
backup set during a non-expired backup revision belonging to

US 2009/O 198749 A1

said backup group, provided that said content of said data set
has changed in a Subsequent backup session to said non
expired backup revision.

3. The method of claim 1 wherein said delete candidate
data element is needed by said data set and a part of said
backup set during a non-expired backup revision belonging to
said backup group, provided that said content of said data set
is inconsistent over said other non-expired backup revision
available for said backup group.

4. The method of claim 1 wherein said identifying step
results in adding to said delete candidate data element each
data element needed by a data set from said previous backup
revision available for said backup group, provided that said
content of said data set has changed in said current backup
session.

5. The method of claim 1 further comprising:
adding to said identified delete candidate data elements

each data element which needs a data set and that was
part of said backup set during said previous backup
session of said backup set, provided that its content has
changed in said current backup revision;

removing from said previously identified delete candidate
data elements each data element that needs a data set that
was a part of said backup set during said current backup
session.

6. The method of claim 5 wherein said step of adding to
said previously identified delete candidate data elements fur
ther comprises identifying each data element that references
a data set that was part of said backup set during said previous
backup session; and

adding said delete candidate data element when said data
set is unique to said backup set during said current
backup session.

7. The method of claim 1 further comprising a step of:
associating to each identified delete candidate data element

a set of backup revisions belonging to said same backup
group as said backup revision, provided that said group
requires said delete candidate data element.

8. The method of claim 7 wherein said step of:
associating to each identified delete candidate data element

a set of backup revisions belonging to said backup group
as said currently taken backup revision, provided that
said delete candidate stored element, which results in:
appending references to every backup revision that was

taken since said recent backup revision in which a
data set that need said delete candidate stored element
turned out in said backup set.

9. The method of claim 1 wherein for every backup group
a set of data elements is managed, said set of data elements

Aug. 6, 2009

comprising every data element required by each previous
version of said backup revisions belonging to said backup
group.

10. The method of claim 9 wherein said management com
prises updates that result from said changes to said data sets in
said backup set, further wherein changes to said data sets are
in comparison to said previous backup session.

11. The method of claim 9 wherein said number of data
element is used to determine whether a data set bearing a
certain signature was removed from said backup set during
said current backup session.

12. The method of claim 1 further
wherein for each backup group, managing a set of data

elements needed by said backup revisions that belong to
said backup group; and

for each said data element, managing said number of said
data sets that need it among those data sets that were
present on said backup set during said current backup
session.

13. The method of claim 1 further comprising a step of
managing for each data element a set of backup groups that
need it.

14. The method of claim 13 wherein results for every stored
data element that is needed by a data set that was added to said
backup set during said current backup session in said follow
ing step:

adding a reference of said backup group to said stored data
element.

15. The method of claim 1 wherein said produced metadata
that portraits said backup set during said backup session
comprises both a full backup set inventory and a change
backup set inventory.

16. The method of claim 1 wherein said produced metadata
that portraits said backup set during a backup session further
comprises a change backup set inventory.

17. The method of claim 16 wherein said change backup set
inventory details said data sets that have been either added,
modified, or deleted in said current backup session in com
parison to said previous backup session.

18. The method of claim 1 wherein said step of storing a
data element for each data set further comprises storing each
such data element to a location that reflects a result of a hash
function performed on said data set content.

19. The method of claim 18 further includes storing said
data element when said data element is absent from said
backup system at a location corresponding to said hash result.

20. The method of claim 1 wherein said stored data element
in said step of storing data element for each data set is an
encrypted representation of said data set.

c c c c c

