(51) International Patent Classification:
G06Q 50/10 (2012.01)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 April 2016 (14.04.2016)

(21) International Application Number:
PCT/US2015/054773

(22) International Filing Date:
8 October 2015 (08.10.2015)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
14/510,481 9 October 2014 (09.10.2014) US
14/710,438 12 May 2015 (12.05.2015) US
62/221,999 22 September 2015 (22.09.2015) US
14/877,691 7 October 2015 (07.10.2015) US

(71) Applicant: THUZZ, INC. [US/US]; 438 Addison Avenue, Palo Alto, California 94301 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

(54) Title: CUSTOMIZED GENERATION OF HIGHLIGHT SHOW WITH NARRATIVE COMPONENT

(57) Abstract: Customized highlight shows for sporting events, entertainment events, and/or the like, having a narrative component, are generated and presented. The events can be sporting events, entertainment events, and/or the like. For example, in the context of sporting events, a determination is made as to what types of sports, teams, leagues, players, plays, and/or the like are of interest to the user. A customized highlight show is then generated and presented, containing those specific portions of the sporting events that are likely to be of interest, arranged in a manner that is likely to be entertaining and interesting to the user and that presents a cohesive narrative.
CUSTOMIZED GENERATION OF HIGHLIGHT SHOW WITH NARRATIVE COMPONENT

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims priority from U.S. Utility Application Serial No. 14/877,691 for “Customized Generation of Highlight Show with Narrative Component” (Attorney Docket No. THU004), filed October 7, 2015, which is incorporated by reference herein in its entirety.

[0002] The present application claims priority from U.S. Utility Application Serial No. 14/510,481 for “Generating a Customized Highlight Sequence Depicting an Event” (Attorney Docket No. THU001), filed October 9, 2014, which is incorporated by reference herein in its entirety.

[0003] The present application claims priority from U.S. Utility Application Serial No. 14/710,438 for “Generating a Customized Highlight Sequence Depicting Multiple Events” (Attorney Docket No. THU002), filed May 12, 2015, which is incorporated by reference herein in its entirety.

[0004] The present application claims priority from U.S. Provisional Application Serial No. 62/221,999 for “User Interface for Interaction with Customized Highlight Sequences” (Attorney Docket No. THU005-PROV), filed September 22, 2015, which is incorporated by reference herein in its entirety.

[0005] The present application is related to U.S. Utility Application Serial No. 13/601,915 for “Generating Excitement Levels for Live Perform-
ances," filed August 31, 2012, which is incorporated by reference herein in its entirety.

TECHNICAL FIELD

[0008] The present document relates to mechanisms for generating and outputting customized highlight shows having a narrative component, for sporting events, entertainment events, news, and/or the like.

DESCRIPTION OF THE RELATED ART

[0009] There are many services that provide game highlights, box scores, and commentary for sporting events. Such services include, for example, news programs, sports channels, websites, and the like. In general, however, such services provide highlights based on some generalized determination as to what sporting events are likely to be of interest to the general viewer, and what portions of a sporting event are most likely to be of interest to the general viewer.

[0010] In general, such services do not take into account the interests, preferences, and context of an individual viewer. What may be of interest to one sports fan may be uninteresting to another sports fan. Currently available services merely broadcast a game's highlights without considering the myriad preferences of individual viewers that can make a sporting event more interesting or less interesting for them. This results in the inefficient use of the sports fans' time, potential loss of viewership, and a concomitant decrease in advertisement revenue.
[0011] In addition, such services do not generally provide any mechanisms for automatically generating customized highlight shows having a narrative component.

SUMMARY

[0012] Various embodiments of the technology described herein provide mechanisms for automatically generating and outputting customized highlight shows for sporting events, entertainment events, and/or the like, having a narrative component. For example, in the context of sporting events, a determination is made as to what types of sports, teams, leagues, players, plays, style of play, and/or the like are of interest to a particular user. Such a determination can be made based on information explicitly provided by the user, and/or automatically by observing user behavior or extracting such information from an external data source, such as an individual’s profile on a social network or the like. Other factors can also be taken into account, such as what the user’s friends may be watching, importance or excitement level of the sporting events or of specific portions of the sporting events, external considerations such as rarity of events, and/or the like.

[0013] In at least one embodiment, the amount of time available to the user can be obtained, so that the length of the highlight show can be tailored to the available time. In at least one other embodiment, the desire for segment transitions that reveal the outcome of the upcoming segment (“spoiler transitions”) vs. transitions that maintain the suspense of the upcoming segment (“discreet transitions”) is elicited from the user to further appeal to the user’s specific preferences. Once the particular interests of the user have been determined, along with the amount of time available, as well as the user’s desire for discreet transitions vs. spoiler transitions, a customized highlight show is generated and presented, containing those specific portions of the events that are likely to be of interest, arranged in a manner that is likely to be entertaining to the user and that comports with the time restrictions.
[0014] In at least one embodiment, the customized highlight show is generated to present a cohesive narrative, and highlight segments are automatically selected that tend to support that narrative. In generating a customized highlight show having a narrative component, the system selects a plurality of segments that together form a narrative. In some embodiments, the highlight show can thus include segments that reinforce a desired narrative structure.

[0015] In generating the customized highlight show, video and/or audio accounts of the events are obtained from any suitable source. This can include live broadcasts, recorded material, material from online sources, and/or the like. Specific segments depicting occurrences within the events are identified and obtained, and are assembled in a manner so as to generate a highlight show that is coherent, possibly relaying a compelling narrative of the desired events, and that reflects the user’s interests. Appropriate effects, such as fade-in and fade-out, can be applied to individual segments as desired. Audio elements can be edited separately from video elements, if desired, for example to provide J-cuts or L-cuts in a manner that is known for editing audiovisual productions.

[0016] The described techniques can be used for sporting and/or non-sporting events, for example to provide highlights of a movie, television program, news broadcast, and/or the like. Such techniques can be used for audio programming, audiovisual programming, text-based content, and/or the like. The techniques can be used to generate a highlight show for a single event or for multiple events of one type or of multiple types.

[0017] Further details and variations are described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The accompanying drawings, together with the description, illustrate several embodiments. One skilled in the art will recognize that the particular embodiments illustrated in the drawings are merely exemplary, and are not intended to limit scope.
[0019] Fig. 1A depicts an example of an interface for presenting a customized highlight show, according to one embodiment.

[0020] Fig. 1B depicts an example of an interface for presenting a highlight show that is customized to suit a fan of one of the competing teams, according to one embodiment.

[0021] Fig. 1C depicts an example of an interface for presenting a highlight show that is customized to suit a fan of one of the competing players, according to one embodiment.

[0022] Fig. 1D depicts an example of an interface for navigating to a customized highlight show, according to one embodiment.

[0023] Fig. 2A is a block diagram depicting a hardware architecture according to a client/server embodiment, wherein event content is provided via a network-connected content provider.

[0024] Fig. 2B is a block diagram depicting a hardware architecture according to another client/server embodiment, wherein event content is stored at a client-based storage device.

[0025] Fig. 2C is a block diagram depicting a hardware architecture according to a standalone embodiment.

[0026] Fig. 2D is a block diagram depicting one embodiment of the software components of an application server according to one embodiment.

[0027] Fig. 2E is a block diagram depicting one embodiment of the software components of an analytical server according to one embodiment.

[0028] Fig. 3 is a block diagram depicting a general purpose computing device that can be used to implement any of the computing devices shown in Figs. 2A through 2C.

[0029] Fig. 4A is a flowchart depicting a method of generating a customized highlight show having a narrative component, according to one embodiment.
[0030] Fig. 4B is a flowchart depicting an iterative method of generating a customized highlight show having a narrative component, according to one embodiment.

[0031] Fig. 4C is a flowchart depicting a method for selecting segments for a customized highlight show having a narrative component, according to one embodiment.

[0032] Fig. 4D is a flowchart depicting a method for loading data in preparation for generating a customized highlight show having a narrative component, according to one embodiment.

[0033] Fig. 4E is a flowchart depicting a method for cleaning data, according to one embodiment.

[0034] Fig. 4F is a flowchart depicting a method for augmenting and reconciling video play data with play-by-play data, according to one embodiment.

[0035] Fig. 4G is a flowchart depicting a method for generating highlight segments, according to one embodiment.

[0036] Fig. 4H is a flowchart depicting a method for creating narrative(s), according to one embodiment.

[0037] Fig. 4J is a flowchart depicting a method for adding tags to highlight segments, according to one embodiment.

[0038] Fig. 4K is a flowchart depicting a method for generating output file(s), according to one embodiment.

[0039] Fig. 5A shows an example of a table including information for a number of possessions during an event in chronological order, in this case a football game, according to one embodiment.

[0040] Fig. 5B shows an example of a table including information for those possessions where the possession priority is greater than or equal to 4, according to one embodiment.
[0041] Fig. 5C shows an example of a table including information for those occurrences (plays) where the occurrence priority is greater than or equal to 180, according to one embodiment.

[0042] Fig. 5D shows an example of a table including information for those occurrences (plays) deemed to be the 10 most exciting occurrences in a game, based on occurrence (play) priority, according to one embodiment.

[0043] Fig. 5E shows an example of a table including information for those occurrences (plays) deemed to be the 15 most exciting occurrences in a game, based on occurrence (play) priority, according to one embodiment.

[0044] Fig. 5F shows an example of a table including information for those occurrences (plays) deemed to be the 20 most exciting occurrences in a game, based on occurrence (play) priority, according to one embodiment.

[0045] Fig. 5G shows an example of a fantasy roster, according to one embodiment.

[0046] Fig. 5H shows an example of a table including information for those occurrences (plays) involving players on a user’s fantasy roster, according to one embodiment.

[0047] Figs. 5I, 5J, and 5K show examples of tables including information for occurrences (plays) involving individual players on a user’s fantasy roster, according to one embodiment.

[0048] Fig. 5L shows an example of a table including information for those occurrences (plays) involving players on a user’s fantasy roster where the fantasy priority is greater than or equal to 180, according to one embodiment.

[0049] Fig. 6A is a block diagram depicting a conceptual architecture wherein a highlight show is generated at a server and transmitted to a client device for presentation to a user, according to one embodiment.

[0050] Fig. 6B is a block diagram depicting a conceptual architecture wherein highlight show generation logic generates time codes for generating
a highlight show, and wherein such time codes are stored in a server-based data store, according to one embodiment.

[0051] Fig. 6C is a block diagram depicting a conceptual architecture wherein highlight show generation logic generates time codes for generating a highlight show, and wherein such time codes are stored in a client-based storage device, according to one embodiment.

[0052] Fig. 6D is a block diagram depicting a conceptual architecture wherein an event is stored in a client-based storage device, and wherein server-based highlight show generation logic generates time codes for generating a highlight show.

[0053] Fig. 6E is a block diagram depicting a conceptual architecture for a stand-alone embodiment, wherein an event is stored in a client-based storage device, and client-based highlight show generation logic generates time codes for generating a highlight show.

DETAILED DESCRIPTION

Definitions

[0054] The following definitions are presented for explanatory purposes only, and are not intended to limit scope.

- **Event**: For purposes of the discussion herein, the term “event” refers to a game, session, match, series, performance, program, concert, and/or the like, or portion thereof (such as an act, period, quarter, half, inning, scene, chapter, or the like). An event may be a sporting event, entertainment event, the specific performance of a single individual or subset of individuals within a larger population of participants in an event, or the like. Examples of non-sporting events include television shows, breaking news, socio-political incidents, natural disasters, movies, plays, radio shows, podcasts, audiobooks, online content, musical performances,
and/or the like. An event can be of any length. For illustrative purposes, the technology is often described herein in terms of sporting events; however, one skilled in the art will recognize that the technology can be used in other contexts as well, including highlight shows for any audiovisual, visual, graphics-based, interactive, non-interactive, or text-based content. Thus, the use of the term “sporting event” and any other sports-specific terminology in the description is intended to be illustrative of one possible embodiment, but is not intended to restrict the scope of the described technology to that one embodiment. Rather, such terminology should be considered to extend to any suitable non-sporting context as appropriate to the technology. For ease of description, the term “event” is also used to refer to an account or representation of an event, such as an audiovisual recording of an event, or any other content item that includes an accounting, description, or depiction of an event.

- **Segment** (or “highlight” or “highlight segment”): An excerpt or portion of an event or of content associated with an event. A highlight segment can be of any length. In general, the techniques described herein provide mechanisms for generating and presenting a set of customized highlight segments (which may be selected based on particular characteristics and/or preferences of the user) for any suitable event. For ease of description, the terms “segment”, “highlight”, and “highlight segment” are used interchangeably herein. Any of these terms can also be used to refer to an account or representation of a segment, such as an audiovisual recording of a segment, or any other content item that includes an accounting, description, or depiction of a segment.
Segments need not be limited to depictions of events themselves, but can include other content associated with an event. For example, for a sporting event, segments can include in-game audio/video, as well as other content such as pre-game, in-game, and post-game interviews, analysis, commentary, and/or the like. Such content can be recorded from linear television (for example, as part of the video stream depicting the event itself), or retrieved from any number of other sources. Different types of segments can be provided, including for example, occurrences (plays), strings, possessions, and sequences, all of which are defined below. Segments need not be of fixed duration, but may incorporate a start offset and/or end offset, as described below.

- **Occurrence**: Something that takes place during an event. Examples include a goal, a play, a down, a hit, a save, a shot on goal, a basket, a steal, a snap or attempted snap, a near-miss, a fight, a beginning or end of a game, quarter, half, period, or inning, a pitch, a penalty, an injury, a dramatic incident in an entertainment event, a song, a solo, and/or the like. Occurrences can also be unusual, such as a power outage, an incident with an unruly fan, and/or the like. As will be discussed in more detail below, detection of such occurrences can be used as a basis for determining whether or not to include a particular highlight that includes a particular occurrence. Occurrences are also referred to herein as “plays”, for ease of nomenclature, although such usage should not be construed to limit scope. Occurrences can be of any length, and the representation of an occurrence can also be of varying length. For example, as mentioned above, an extended
representation of an occurrence may include footage depicting the period of time just before and just after the occurrence, while a brief representation may include just the occurrence itself. Any intermediate representation can also be provided. In at least one embodiment, the selection of a duration for a representation of an occurrence can depend on user preferences, available time, determined level of excitement for the occurrence, importance of the occurrence, and/or any other factors.

- **Offset**: The amount by which a segment length is adjusted. In at least one embodiment, a start offset and/or end offset can be provided, for adjusting start and/or end times of the segment, respectively. For example, if a highlight segment depicts a goal, the segment may be extended (via an end offset) for a few seconds so as to include celebrations and/or fan reactions following the goal. Offsets can be configured to vary automatically or manually, based for example on amount of time available for the highlight show, importance and/or excitement level of the segment, and/or any other suitable factors.

- **String**: A series of occurrences that are somehow linked or related to one another. The occurrences may take place within a possession (defined below), or may span multiple possessions. The occurrences may take place within a sequence (defined below), or may span multiple sequences. The occurrences can be linked or related because of some thematic or narrative connection to one another, or because one leads to another, for any other reason. One example of a string is a set of passes that lead to a goal or basket.
• **Possession:** Any time-delimited portion of an event. Demarcation of start/end times of a possession can depend on the type of event. For certain sporting events wherein one team may be on the offensive while the other team is on the defensive (such as basketball or football, for example), a possession can be defined as a time period while one of the teams has the ball. In sports such as hockey or soccer, where puck or ball possession is more fluid, a possession can be considered to extend to a period of time wherein one of the teams has substantial control of the puck or ball, ignoring momentary contact by the other team (such as blocked shots or saves). For baseball, a possession is defined as a half-inning. For football, a possession can include a number of sequences in which the same team has the ball. For other types of sporting events as well as for non-sporting events, the term “possession” may be somewhat of a misnomer, but is still used herein for illustrative purposes. Examples in a non-sporting context may include a chapter, scene, act, television segment, or the like. A possession can include any number of occurrences.

• **Sequence:** A time-delimited portion of an event that includes one continuous time period of action. For example, in a sporting event, a sequence may begin when action begins (such as a face-off, tipoff, or the like), and may end when the whistle is blown to signify a break in the action. In a sport such as baseball or football, a sequence may be equivalent to a play, which is a form of occurrence. A sequence can include any number of possessions, or may be a portion of a possession.
• **Highlight show:** A set of highlight segments that are arranged for presentation to a user. The highlight show may be presented linearly (such as a video stream), or in a manner that allows the user to select which highlight segment to view and in which order (for example by clicking on links or thumbnails). Presentation of highlight shows can be non-interactive or interactive, for example allowing a user to pause, rewind, skip, fast-forward, communicate a preference for or against, and/or the like. A highlight show can be, for example a condensed game. A highlight show can include any number of contiguous or non-contiguous highlight segments, from a single event or from multiple events, and can even include highlight segments from different types of events (e.g. different sports, and/or a combination of segments from sporting and non-sporting events).

• **User/viewer:** The terms “user” or “viewer” interchangeably refer to an individual, group, or other entity that is watching, listening to, or otherwise experiencing either an event, one or more highlights of an event, or a highlight show. The terms “user” or “viewer” can also refer to an individual, group, or other entity that may at some future time watch, listen to, or otherwise experience either an event, one or more highlights of an event, or a highlight show. The term “viewer” may be used for descriptive purposes, although the event need not have a visual component, so that the “viewer” may instead be a listener or any other consumer of content.

• **Narrative:** A coherent story that links a set of highlight segments.

• **Theme:** A common element, characteristic, or subject for a plurality of segments. A theme can be related to additional
stories that add more context or interest to the overall narrative.

- **Excitement level**: As discussed in more detail in the above-cited related U.S. Utility Applications, an excitement level is a measure of how exciting or interesting an event is at a given time within the event. Excitement levels can also be determined with respect to a particular occurrence or player. Various techniques for measuring or assessing excitement level are discussed in the related Applications. As discussed, excitement level can depend on occurrences within the event, as well as other factors such as overall context or importance of the event (playoff game, pennant implications, rivalries, and/or the like). In at least one embodiment, an excitement level can be associated with each occurrence, string, possession, or sequence within an event. For example, an excitement level for a possession can be determined based on occurrences that take place within that possession. Excitement level can also be measured differently for different users (e.g. a fan of one team vs. a neutral fan), and can depend on personal characteristics of each user.

- **Novelty**: A metric indicating a level of interest for an occurrence, string, possession, or sequence, independent of the context of the occurrence, string, possession, or sequence within the event.

- **Priority**: A derived metric indicating an overall score for an occurrence, string, possession, or sequence, which score can be used to determine whether to include the occurrence, string, possession, or sequence in a customized highlight show. In at least one embodiment, priority can be derived from excitement level, novelty, and/or other factors.
Overview

[0055] In at least one embodiment, the technology disclosed herein relates to generating and outputting a customized highlight show having a narrative component, for events such as sporting events, entertainment events, news events, and/or the like. The highlight show can be automatically generated to convey a narrative, and can also incorporate one or more theme(s) and project a particular perspective.

[0056] The technology disclosed herein is able to obtain or extract segments from any suitable source, whether local or remote, and whether recorded or live. Examples include: live or recorded broadcasts of sporting events; online clips from video-sharing sites such as Vimeo or YouTube; archived video; local media such as a hard drive, optical drive, or magnetic drive; set-top boxes; local or remote servers; mobile computing devices such as smartphones or tablets; cameras; camcorders; or the like. Combinations of any such media can also be used. Source video can include the entire event (such as an entire game), or it can be a pre-curated highlight video from which a customized highlight show can be extracted.

[0057] Source video and/or other source content can come from any available source, whether linear (such as available via a cable box), or on-demand/IP-enabled (such as available from a website or on-demand service).

[0058] In another embodiment, video can be obtained from an online video-sharing website (such as Vimeo or YouTube). Such videos may be identified by title, metadata, and/or other means. In many cases, however, title or metadata for such video-sharing websites may be inaccurate; accordingly, in at least one embodiment, the system analyzes the video coming from such sources and determines correct information from the video analysis before using such video in generating a customized highlight show. In at least one embodiment, the system identifies and associates pre-curated, individual segments with specific occurrences in the event. For example, if the event is a sporting event such as a baseball game, the system can identify a set of videos
that are available via a video-sharing website, depicting individual plays of the game. In order to prioritize these videos correctly, the system associates the videos with individual occurrences (such as plays) that took place in the course of the game. In at least one embodiment, this is done by automated analysis of metadata associated with the videos. In at least one embodiment, such analysis is supplemented by additional techniques to improve accuracy, such as natural language processing and/or fuzzy logic; in this manner, each video can be correctly associated with the correct occurrence within the sporting event.

[0059] In another embodiment, video for a customized highlight show can come from the user's (or another user's) own video capture device, such as a smartphone, camera, or camcorder belonging to someone who attended the event.

[0060] In another embodiment, video from different sources can be used, and can be combined to generate the customized highlight show. In at least one embodiment, the system may include multiple angles of the same occurrence (such as a particularly remarkable occurrence), which angles may come from different video sources. For example, a customized highlight show can include the television feed for a grand slam, followed by a YouTube video of the same grand slam as captured by a fan who attended the game; since the YouTube video captures the occurrence from a different perspective, it may be effective to include it for emphasis and to show the crowd's reaction. In another example, the system can combine the video feed from one source (such as a network broadcast) with the audio feed from another source (such as a local radio commentator for one of the teams); such a combination may be more entertaining or interesting to a fan of that local commentator's team.

[0061] In at least one embodiment, the system takes into account what video sources or other content are available to the user. For example, if the user is a subscriber to a premium sports package, he or she may have access
to on-demand video for certain sporting events that are not available to a non-subscriber. In at least one embodiment, the described system detects this, and uses such on-demand video (or other content) when available to construct the customized highlight show. For non-subscribers, the system looks for other available sources of content.

[0062] In order to effectively customize a highlight show, the technology disclosed herein is able to ascertain preferences and interests of an individual user (or group of users). This can be done, for example, by any of: querying the user; observing his or her behavior; pulling preferences from a profile such as that collected and maintained by a social network, making inferences based on content viewed by the user, demographics, or other factors; observation of the user’s friends or associates; and/or any combination thereof. In short, any suitable mechanism(s) can be used for determining such preferences and interests. In addition, the technology disclosed herein takes into account the amount of time available to the user for viewing a highlight show; this can be specified explicitly by the user, or ascertained based on previous viewing habits, industry standards, and/or any other factors. In addition, the technology disclosed herein takes in to account the desire of the user to see spoiler transitions (which reveal outcomes and/or events before they are displayed) vs. discreet transitions (which do not).

[0063] In at least one embodiment, the disclosed technology is capable of generating different customized highlight shows for different users, based on factors that might make particular sporting events (or occurrences within such events) more exciting or less exciting for different categories of users. In at least one embodiment, the disclosed technology takes into account the degree to which a user is likely to be interested in a particular type of performance, team, league, player, division, conference, game, sport, genre or other variable. In one example, different highlight shows might be generated for home team fans as opposed to visiting team fans or neutral fans. As used herein, a home team fan refers to a subscriber who is a fan of (or otherwise
has an affinity for) the team that hosts the event, the visiting team fan refers to a subscriber who is a fan of (or otherwise has an affinity for) the team opposing the home team, and the neutral fan does not have a preference or affinity for the home team or the visiting team. In some embodiments, the event may involve more than two teams and/or one or more individuals. In some embodiments, the customized highlight shows described herein can be generated separately for home team fans, visiting team fans and neutral fans. When the event involves more than two teams and/or one or more individuals, the customized highlight shows described herein can be generated separately for fans of each of the multiple teams and/or individuals.

[0064] Customized highlight shows can also be generated for other groups of people. For example, customized highlight shows can be generated separately for different users based on user’s affinity for fast-paced games, games with large momentum swings, games with great historical context or importance, or other categories. For example, a customized highlight show can include segments that are of a type that a particular user finds exciting, such as a crash within an auto race or a fight during a hockey game.

[0065] In at least one embodiment, customized highlight shows include segments from a single event. In at least one other embodiment, customized highlight shows can include segments from more than one event, such as a number of games that took place on a given day or over some other period of time, or that are part of a series, or the like. The particular assembly of segments from the different events is selected based on the user’s individual affinities and characteristics.

[0066] In at least one embodiment, customized highlight shows can be automatically constructed to focus on a particular player, team, division, league, playoff series, or the like. Customized highlight shows can be generated which show highlights for all of a user’s favorite players, even if they are on different teams, or for players belonging to a user’s fantasy team in a fantasy league. In such an embodiment, the system obtains information about
which players are in the user’s fantasy team league, so that appropriate selections can be made as to which highlights to include; these selections can be made based on excitement level and/or priority as described below, but can also take into account the degree to which the user’s players were involved in each occurrence (play) of the game.

[0067] In at least one embodiment, customized highlight shows can be automatically constructed so that they present or reinforce a narrative or theme. The narrative may relate to a particular player, team, division, league, playoff series, or the like, or it may be external to any of those entities. Customized highlight shows can be generated which show highlights relating to such a narrative; alternatively, as described the above-cited related applications, such customized highlight shows can relate to a user’s favorite players, even if they are on different teams, or for players belonging to a user’s fantasy team in a fantasy league. In such an embodiment, the system obtains information about which players are in the user’s fantasy team league, so that appropriate selections can be made as to which highlights to include; these selections can be made based on excitement level and/or priority as described below, but can also take into account the degree to which the user’s players were involved in each occurrence (play) of the game.

[0068] In at least one embodiment, customized highlight shows can be accompanied by scores, explanatory text, commentary, or other auxiliary content. Such content may be automatically generated, or may be composed by a human author. Such content can take any suitable form, such as audio (spoken commentary or voice-over), text (caption, title, or heading), graphical (icon or symbol on the screen), or the like. An example is a caption that appears at the beginning of a highlight segment, giving a context (such as a score, on-base situation, pitch count, possession, introductory text, or the like) for the highlight segment. Such auxiliary content may appear within the highlight show itself (such as before each segment of the highlight show), and/or it can appear on a screen that summarizes the overall highlight show,
such as a navigation screen that allows a user to see individual segments within the highlight show, as illustrated in more detail below. Other arrangements are possible.

[0069] In at least one embodiment, such contextual information can be derived from any suitable source, and can include items such as the current game situation, the current ball situation, and/or the like. In at least one embodiment, a transition effect can be used between highlight segments; such transition effect can be informational or non-informational.

[0070] In at least one embodiment, such contextual information can contain spoilers elucidating what is about to be shown in the upcoming highlight segment. In an alternative embodiment, such contextual information can be devoid of spoilers and simply help set up the situation at the time the upcoming highlight initiates. In at least one embodiment, a user can specify whether he or she wishes to see spoilers; in another embodiment, the system can make an automatic determination as to whether or not to include spoilers.

[0071] In at least one embodiment, the user can interact with a customized highlight show as it is being displayed. For example, the user can click on a link or perform some other input operation while a highlight segment is being displayed, to access more information about that portion of the sporting event. Clicking on the link can take the user to a more detailed description of the highlight segment, or to full video of the depicted event, or the like. A user interface can be provided that allows different highlight segments to be accessed, for example via a menu or other user interface element. In this manner, the displayed customized highlight show can be used as a mechanism for navigating within a more complete depiction of an event.

[0072] Customized highlight shows can be provided to users via any suitable mechanism. In at least one embodiment, such highlight shows can be shown via a website, app (mobile or desktop), set-top box, software application, or the like. Any suitable hardware can be used for presenting customized highlight shows, including a desktop computer, laptop computer, televi-
sion, smartphone, tablet, music player, audio device, kiosk, set-top box, game system, wearable device, consumer electronic device, and/or the like. Such devices are generally referred to herein as client devices. Content can be transmitted to client devices via any suitable means, such as for example a computing network, cable network, satellite connection, wireless network, and/or the like. Any suitable video format can be used, such as for example MP4 or HTTP Live Streaming (HLS).

[0073] Content, including customized highlight shows, can be transmitted to a client device from a server, cable provider, on-demand provider, satellite provider, and/or the like. Alternatively, the described technology can be implemented on a stand-alone device, such as a DVR containing a recording of a sporting event, wherein the device generates a customized highlight show from such a locally stored recording and presents it to the user. Thus, the technology can be implemented without requiring a connection to a remote server or other source of content.

User Interface

[0074] Referring now to Fig. 1A, there is shown an example of an interface 100 for presenting a customized highlight show for a particular event, according to one embodiment. In this example, the event is a basketball game between the Warriors and the Timberwolves on November 6, 2013. Graph 103 depicts a dynamic measure of excitement level over the duration of the basketball game, as can be determined using the techniques described in above-referenced U.S. Utility Application Serial No. 13/601,915 for “Generating Excitement Levels for Live Performances,” filed August 31, 2012, which is incorporated by reference herein in its entirety.

[0075] The visual depiction of excitement level is optional, and is presented here for illustrative purposes. Excitement level is one possible factor that can be considered when determining which portions of the event to include in the customized highlight show. Other factors can be used, such as
novelty, as well as personalized factors that relate to an individual user’s affinity for a particular team, player, type of play, and/or the like, and such factors can be combined with the excitement level (or can modify the excitement level) if appropriate to determine which segments to include. In other embodiments, other metrics can be used instead of or in addition to excitement level. In at least one embodiment, a derived metric called “priority” is used to determine which portions of an event to include in the customized highlight show; priority can be derived from excitement level, novelty, and/or other factors, as described in more detail below.

[0076] In the example of Fig. 1A, certain segments are identified for inclusion in the customized highlight show. Thumbnails 101 corresponding to these segments are shown, allowing the user to watch the individual segments by clicking on the thumbnails 101. Graph 103 also contains vertical indicators 104 to provide graphical representations of where each individual segment appears within the sporting event. “Play all” thumbnail 102 allows the user to see the entire customized highlight show.

[0077] In at least one embodiment, a summary caption 107 is shown for each thumbnail 101. In at least one embodiment, the user can choose to omit such captions 107 so as to avoid “spoilers”.

[0078] Interface 100 also contains other controls that can be used to specify parameters for the customized highlight show. Buttons 105 allow the user to specify whether he or she is more interested in a baseline (neutral) view, or is a fan of one team or the other, or is a fan of a particular player on one of the teams; different sets of highlight segments can be selected based on which affinity is specified. Buttons 106 allow the user to specify how long the customized highlight show should be; in at least one embodiment, different sets of highlight segments may be chosen depending on how much time is available. In at least one embodiment, in response to the user clicking on one of buttons 105 or 106, a different customized highlight show is dynamically
generated; accordingly, graph 103 and thumbnails 101, 102 can be automatically updated in response to such an input operation.

[0079] Fig. 1B depicts an example of an update to interface 100 after the user has clicked on button 105A specifying that he or she is a Warriors fan. In response to such a selection, a customized highlight show that emphasizes Warriors plays is generated, as reflected by updated graph 103 and thumbnails 101, 102.

[0080] Fig. 1C depicts an example of an update to interface 100 after the user has clicked on button 105B specifying that he or she is a fan of player Klay Thompson. In response to such a selection, a customized highlight show that emphasizes Thompson’s plays is generated, as reflected by updated graph 103 and thumbnails 101, 102.

[0081] In at least one embodiment, a “why was I shown this” link can be provided (not shown in Figs. 1A through 1C), giving the user access to an explanation of why certain highlight segments were selected for inclusion in the highlight show. The user can also be given an opportunity to adjust any of a number of parameters and thereby change the highlight show.

[0082] Figs. 1A through 1C depict presentation of a highlight show for a single event, such as a game. In at least one embodiment, the described system is able to generate a highlight show that includes any number of events, such as a number of games that took place on a given day, or a number of games for a particular team, or the like. For example, in at least one embodiment, the system can automatically generate a highlight show including instances of a particular type of play (such as a home run, or an interception) over multiple sporting events. In at least one embodiment, the user can select whether the highlight show should include highlight segments for a single event or multiple events.

[0083] Figs. 1A through 1C depict one particular layout for presenting an interface 100 for viewing a customized highlight show and for navigating
among different options. One skilled in the art will recognize that many other layouts and arrangements are possible.

[0084] As described herein, the highlight show can contain highlight segments from a single event or multiple events, and in at least one embodiment can contain highlight segments that describe or reinforce a narrative. Thus, as described herein, highlight segments can be selected in such a way that takes into account the degree to which they reinforce a particular narrative and incorporate one or more themes. The selection mechanism can also take into account other factors at the same time, including for example a determined excitement level for each highlight segment, as well as novelty, and/or priority.

[0085] In other embodiments, the customized highlight show can simply be presented as a video (or audio track), without any graphical representation of levels, and without any indication of a timeline or the like. Such a presentation may be particularly useful in a context where a user is viewing the highlight show on a television rather than on a website. Such a presentation can still allow for user navigation and interaction, for example by allowing a user to press a "forward" or "back" button to skip to the next or previous highlight segment within the highlight show. Such a presentation can also allow a user to obtain more information or see more detailed highlights (or even switch to a view of the unexpurgated event itself, such as the entire game) by pressing an "Enter" button or the like (or performing some other suitable input operation).

[0086] Referring now to Fig. 1D, there is shown an example of an interface 120 for navigating to a customized highlight show, according to one embodiment. Such an interface 120 can be used, for example, in an embodiment where events such as sporting events are stored on a local or server-based DVR. Interface 120 allows the user to navigate to full games, game excerpts, and/or highlight shows. A set of panels 123 are included, allowing navigation to various representations of games. Each panel 123 includes a title, de-
scription of the game, indication of source, overall excitement level 121, and indication 122 as to whether it is a complete game, game excerpt, or highlight show (with specified duration). Excitement levels 121 can be customized for that user based on his or her individual characteristics and preferences, as described herein and in the above-cited related U.S. Utility Applications. The user can tap or click on a panel 123, or use a cursor or remote control to select a panel 123, in order to initiate playback of the corresponding game or highlight show. In at least one embodiment, this causes the device to start playback using locally stored video content; in another embodiment, it causes the device to retrieve the video content from a remote source (such as a server) and start playback. Retrieval can be by download or on a streaming basis.

In the example of Fig. 1D, panel 123A provides access to a full basketball game. Panels 123B, 122C, and 122F provide access to game excerpts; in at least one embodiment, the system can select which excerpts to offer based on which portions of the game are the most exciting (for example, using excitement level(s) and/or priority for various portions of the game). Panel 123E provides access to a customized highlight show generated according to the techniques described herein; panel 123D provides access to a customized highlight show that includes highlight segments likely to be of interest to a participant in a fantasy league.

System Architecture

According to various embodiments, the system can be implemented on any electronic device, or set of electronic devices, equipped to receive, store, and present information. Such an electronic device may be, for example, a desktop computer, laptop computer, television, smartphone, tablet, music player, audio device, kiosk, set-top box, game system, wearable device, consumer electronic device, and/or the like.

Although the system is described herein in connection with an implementation in particular types of computing devices, one skilled in the
art will recognize that the techniques described herein can be implemented in other contexts, and indeed in any suitable device capable of receiving and/or processing user input, and presenting output to the user. Accordingly, the following description is intended to illustrate various embodiments by way of example, rather than to limit scope.

[0090] Referring now to Fig. 2A, there is shown a block diagram depicting a hardware architecture according to a client/server embodiment, wherein event content is provided via a network-connected content provider 224. An example of such a client/server embodiment is a web-based implementation, wherein client device 206 runs a browser or app that provides a user interface for interacting with content (such as web pages, video content, and/or the like) from various servers 202, 214, 216, as well as data provider(s) 222 and/or content provider(s) 224, provided to client device 206 via communications network 204. Transmission of content and/or data in response to requests from client device 206 can take place using any known protocols and languages, such as Hypertext Markup Language (HTML), Java, Objective C, Python, JavaScript, and/or the like.

[0091] Client device 206 can be any electronic device, such as a desktop computer, laptop computer, television, smartphone, tablet, music player, audio device, kiosk, set-top box, game system, wearable device, consumer electronic device, and/or the like. In at least one embodiment, client device 206 has a number of hardware components well known to those skilled in the art. Input device(s) 251 can be any component(s) that receive input from user 250, including, for example, a keyboard, mouse, stylus, touch-sensitive screen (touchscreen), touchpad, gesture receptor, trackball, accelerometer, five-way switch, microphone, or the like. Input can be provided via any suitable mode, including for example, one or more of: pointing, tapping, typing, dragging, gesturing, tilting, shaking, and/or speech. Display screen 252 can be any component that graphically displays information, video, content, and/or the like, including depictions of events, highlights, and/or the like. Such output
may also include, for example, audiovisual content, data visualizations, navigational elements, graphical elements, queries requesting information and/or parameters for selection of content, or the like. Additionally or alternatively, display screen 252 may display status information in a wide variety of formats, including but not limited to status reports, summary reports, comparative reports, and the like. In at least one embodiment where only some of the desired output is presented at a time, a dynamic control, such as a scrolling mechanism, may be available via input device(s) 251 to change which information is currently displayed, and/or to alter the manner in which the information is displayed.

[0092] Processor 257 can be a conventional microprocessor for performing operations on data under the direction of software, according to well-known techniques. Memory 256 can be random-access memory, having a structure and architecture as are known in the art, for use by processor 257 in the course of running software for performing the operations described herein. Client device can also include local storage (not shown), which may be a hard drive, flash drive, optical or magnetic storage device, web-based (cloud-based) storage, and/or the like.

[0093] Any suitable type of communications network 204, such as the Internet, can be used as the mechanism for transmitting data between client device 206 and various server(s) 202, 214, 216 and/or content provider(s) 224 and/or data provider(s) 222, according to any suitable protocols and techniques. In addition to the Internet, other examples include cellular telephone networks, EDGE, 3G, 4G, long term evolution (LTE), Session Initiation Protocol (SIP), Short Message Peer-to-Peer protocol (SMPP), SS7, Wi-Fi, Bluetooth, ZigBee, Hypertext Transfer Protocol (HTTP), Secure Hypertext Transfer Protocol (SHTTP), Transmission Control Protocol / Internet Protocol (TCP/IP), and/or the like, and/or any combination thereof. In at least one embodiment, client device 206 transmits requests for data and/or content via communica-
tions network 204, and receives responses from server(s) 202, 214, 216 containing the requested data and/or content.

[0094] In at least one embodiment, the system of Fig. 2A generates customized highlight shows, including a narrative component, for sporting events; however, as mentioned above, the teachings herein apply to non-sporting events as well, and it is to be appreciated that the technology described herein is not limited to application to sporting events. For example, the technology described herein can be utilized to generate customized highlight shows, including a narrative component, for a television show, movie, news event, game show, political action, business show, drama, and/or other episodic content, or for more than one such event.

[0095] In at least one embodiment, system 200 generates customized highlight shows including a narrative component by analyzing live feeds and/or recordings of events, including any or all of video content, audio content, play-by-play statistics and metrics, closed-captioning, and/or any other available data related to the event.

[0096] In one embodiment, system 200 includes one or more web server(s) 202 coupled via a network 204 to one or more client devices 206. Network 204 may be a public network, a private network, or a combination of public and private networks such as the Internet. Network 204 can be a LAN, WAN, wired, wireless and/or combination of the above. Client device 206 is, in at least one embodiment, capable of connecting to network 204, either via a wired or wireless connection. In at least one embodiment, client device may also include a recording device capable of receiving and recording events, such as a DVR, PVR, or other media recording device. Such recording device can be part of client device 206, or can be external; in other embodiments, such recording device can be omitted. Although Fig. 2A shows one client device 206, system 200 can be implemented with any number of client device(s) 206 of a single type or multiple types.
[0097] Web server(s) 202 include one or more physical computing devices and/or software that can receive requests from client device(s) 206 and respond to those requests with data, as well as send out unsolicited alerts and other messages. Web server(s) 202 may employ various strategies for fault tolerance and scalability such as load balancing, caching and clustering. In at least one embodiment, web server(s) 202 may include caching technology, as known in the art, for storing client requests and information related to events.

[0098] Web server(s) 202 maintain, or otherwise designate, one or more application server(s) 214 to respond to requests received from client device(s) 206. In at least one embodiment, application server(s) 214 provide access to business logic for use by client application programs in client device(s) 206. Application server(s) 214 may be co-located, co-owned, or co-managed with web server(s) 202. Application server(s) 214 may also be remote from web server(s) 202. In at least one embodiment, application server(s) 214 interact with one or more analytical server(s) 216 and one or more data server(s) 218 to perform one or more operations of the disclosed technology.

[0099] In an exemplary operation of system 200, one or more users 250 of client devices 206 make a request to view a customized highlight show for an event or set of events, which may include sporting event(s) or non-sporting event(s). In another embodiment, such customized highlight show can be presented to user 250 without a specific request having been made by user 250. In one embodiment, user 250 can specify, via input device(s) 251 at client device 206, certain parameters for the customized highlight show (such as, for example, what event/games/teams to include, how much time the user 250 has available to view the highlight show, and/or any other parameters). User preferences can also be extracted from storage, such as from user data 255 stored in storage device 253, so as to customize the highlight show without necessarily requiring user 250 to specify preferences. User preferences can be determined based on observed behavior and actions of user 250 (for example, by observing website visitation patterns, television watching pat-
terns, music listening patterns, online purchases, and/or the like); in addition or alternatively, user preferences can be retrieved from previously stored preferences that were provided by user 250. Such user preferences may indicate which teams, sports, players, and/or types of events are of interest to user 250, and/or they may indicate what type of narrative user 250 might be interested in. Such preferences can therefore be used to guide selections of highlight segments for highlight shows.

[0100] Analytical server(s) 216, which may include one or more computing devices, analyze live or recorded feeds of play-by-play statistics related to one or more events from data provider(s) 222. Examples of data provider(s) 222 may include, but are not limited to, providers of real-time sports information such as STATS™, Perform (available from Opta Sports of London, UK), and SportRadar of St. Gallen, Switzerland. In one embodiment, analytical server(s) 216 generate different sets of excitement levels for events; such excitement levels can then be used (possibly in combination with other data) for selecting highlight segments according to the techniques described herein. The operations performed by analytical server(s) 216 are described in more detail in the above-cited related U.S. Utility Applications.

[0101] Application server(s) 214 receive the different sets of excitement levels generated by analytical server(s) 216, and use such data to generate customized highlight shows for user 250 according to the techniques described herein. In at least one embodiment, application server(s) 214 derive a priority metric for each sequence, possession, occurrence, string, or other portion of events; the priority metric can be derived from the excitement level and/or from other information. The priority metric can then be used to select highlight segments for inclusion in a customized highlight show. In other embodiments, application server(s) 214 use excitement level alone, and do not generate a priority. In at least one embodiment, application server(s) 214 takes into account the degree to which various sequences, possessions, occur-
rences, strings, or other portions of events support a particular narrative, in order to determine whether to include such elements in the highlight show.

[0102] Content for highlight shows can come from any suitable source, including from content provider(s) 224 (which may include websites such as YouTube, MLB.com, and the like; sports data providers; television stations; client- or server-based DVRs; and/or the like). Alternatively, content can come from a local source such as a DVR or other recording device associated with (or built into) client device 206. In at least one embodiment, application server(s) 214 makes the customized highlight show available to user 250, either as a download, or streaming content, or on-demand content, or by some other means. In another embodiment, application server(s) 214 sends information to client device 206 to identify specific highlight segments for a highlight show, and client device 206 then retrieves or obtains the identified highlight segments for presentation to user 250. Such an embodiment avoids the need for video content or other high-bandwidth content to be transmitted via network 204 unnecessarily, particularly if such content is already available at client device 206.

[0103] For example, referring now to Fig. 2B, there is shown an example of an embodiment wherein event content 259 is stored at client-based storage device 258, which may be any form of local storage device available to client device 206. An example is a DVR on which events may be recorded, such as for example video content for a complete sporting event. Alternatively, device 258 can be any magnetic, optical, or electronic storage device for data in digital form; examples include flash memory, magnetic hard drive, CD-ROM, DVD-ROM, or other device integrated with device 206 or communicatively coupled with device 206. Based on the information provided by application server(s) 214, client device 206 is able to extract highlight from event content 259 stored at client-based storage device 258, and thereby present a customized highlight show to user 250 without having to retrieve video content from a content provider 224 or other remote source. Such an ar-
rangement can save bandwidth, and can usefully leverage existing hardware that may already be available to client device 206.

[0104] Returning to Fig. 2A, in at least one embodiment, application server(s) 214 may generate different customized highlight shows for different users 250, depending on individual user preferences and/or other parameters. The operations performed by application server(s) 214 are described in more detail below. In at least one embodiment, the customized highlight shows may be presented to user 250 via any suitable output device, such as display screen 252 at client device 206. User 250 can, in at least one embodiment, interact with displayed highlight shows via input device(s) 251, for example to:

- select particular highlight segments for display;
- pause, rewind, fast-forward;
- skip forward to the next highlight segment;
- return to the beginning of a previous highlight segment within the highlight show;
- and/or perform other actions.

[0105] In at least one embodiment, one more data server(s) 218 are provided. Data server(s) 218 respond to requests for data from any of server(s) 202, 214, 216, for example to obtain event data 254 and/or user data 255. In at least one embodiment, such information can be stored at any suitable storage device 253 accessible by data server 218, and can come from any suitable source, such as from client device 206 itself, content provider(s) 224, data provider(s) 222, and/or the like. Event data 254 can include any information describing any number of events, as well as occurrences, excitement levels, and/or other information. User data 255 can include any information describing users 250, including for example, demographics, purchasing behavior, web viewing behavior, interests, preferences, and/or the like.

[0106] Referring now to Fig. 2C, there is shown an alternative embodiment wherein system 200 is implemented in a stand-alone environment.
As with the embodiment shown in Fig. 2B, event content 259 is stored at a client-based storage device 258, such as a DVR or the like. Alternatively, device 258 can be flash memory or a hard drive, or other device integrated with device 206 or communicatively coupled with device 206. User data 255, such as preferences and interests of user 250, can also be stored on device 258. Based on such user data 255, system 200 is able to identify particular segments within event content 259 and thereby present a customized highlight show to user 250 in the manner described herein.

[0107] The specific hardware architectures depicted in Figs. 2A, 2B, and 2C are merely exemplary. One skilled in the art will recognize that the techniques described herein can be implemented using other architectures.

[0108] In one embodiment, the system can be implemented as software written in any suitable computer programming language, whether in a stand-alone or client/server architecture. Alternatively, it may be implemented and/or embedded in hardware.

[0109] Referring now to Fig. 2D, there is shown a block diagram depicting one embodiment of the software components of application server(s) 214. In at least one embodiment, application server(s) 214 include a user preferences module 224, an excitement level results module 226, and a priority determination module 225. User preferences module 224 receives user preferences for user(s) 250. In various embodiments, such preferences can include, for example, a list of user’s 250 favorite sports, favorite teams, favorite players, fantasy team roster, and/or the like.

[0110] In at least one embodiment, excitement level results module 226 receives different sets of excitement levels related to one or more events, from excitement level generation module 230 of analytical server 216 (described below). Priority determination module 225 uses data from excitement level results module 226, along with other data concerning sequences, possessions, strings, or occurrences within the event, to generate priority metrics for each sequence, possession, string, or occurrence. In at least one embodiment,
based on the priority metrics generated by priority determination module 225, along with user preferences obtained by user preferences module 224, highlight show generation module 227 generates customized highlight show(s) for presentation to user 250, according to the techniques described herein. In another embodiment, priority determination module 225 can be omitted, and highlight show generation module 227 generates customized highlight show(s) based on excitement levels received from excitement level results module 226, along with user preferences obtained by user preferences module 224.

[0111] Referring now to Fig. 2E, there is shown a block diagram depicting one embodiment of the software components of analytical server(s) 216. In at least one embodiment, analytical server 216 includes data transformation module 228 and excitement level generation module 230. Data transformation module 228 receives and analyzes data concerning events from one or more data provider(s) 222. Excitement level generation module 230 generates different excitement levels for different categories of users based on the analysis performed by data transformation module 228. Further details concerning the operation of these components are provided in the above-cited related U.S. Utility Patent Applications.

[0112] Referring now to Fig. 3, there is shown a block diagram depicting a general purpose computing device, mobile device, and/or other electronic device that can be used to implement any of the computing devices shown in Figs. 2A through 2C. For example, the general purpose computing device depicted in Fig. 3 can be used to implement computing devices in the web server(s) 202, application server(s) 214, analytical server(s) 216, and/or client device 206.

[0113] In at least one embodiment, device 300 includes memory 256, a processor 257, and a system bus 306 that couples various system components including memory 256 to processor 257. System bus 306 may be any of sev-
eral types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures.

[0114] Memory 256 stores, in part, instructions and data for execution by processor 257 in order to perform the process described herein. Memory 256 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) and random access memory (RAM). A basic input/output system (BIOS), containing the basic routines that help to transfer information between elements within device 300, such as during start-up, is typically stored in the ROM. RAM typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processor 257.

[0115] Device 300 further includes a mass storage device 308. Storage device 308, which may be implemented with a magnetic disk drive, an optical disk drive or flash memory, or the like, is a non-volatile storage device for storing data and instructions for use by processor 257. In one embodiment, storage device 308 stores the system software for implementing the processes described herein for purposes of loading to memory 256. Storage device 308 may be internal or external to device 300.

[0116] A user (such as user 250) may enter commands and information into device 300 through any suitable input device(s) 251. Input device(s) 251 can be any element that receives input from user 250, including, for example, a keyboard, mouse, stylus, touch-sensitive screen (touchscreen), touchpad, trackball, accelerometer, five-way switch, microphone, remote control, or the like. Input can be provided via any suitable mode, including for example, one or more of: pointing, tapping, typing, dragging, gesturing, tilting, shaking, and/or speech. These and other input devices are often connected to processor 257 through a user input interface 310 that is coupled to system bus 306, but may be connected by other interface and bus structures, such as a parallel port, game port or a universal serial bus (USB). A display screen 252 and/or other type of output device are also connected to system bus 306 via an inter-
face, such as a video interface 318. Display screen 252 can be any element that graphically displays information, video, content, and/or the like, including depictions of events, segments, and/or the like. In at least one embodiment, in addition to or instead of display screen 252, device 300 may also include other output devices such as speakers 322, printer 324, which may be connected through an output peripheral interface 320 or other suitable interface.

Device 300 may operate in a networked environment using logical connections to one or more remote devices 330. Remote devices 330 may be a desktop computer, laptop computer, television, smartphone, tablet, music player, audio device, kiosk, set-top box, game system, wearable device, consumer electronic device, and/or the like, and/or other common network node, and typically includes many or all of the elements described above relative to the device 300. In at least one embodiment, when used in a networking environment, device 300 is connected to a remote network (such as network 204) through a network interface or adapter 328.

The components contained in the device of Fig. 3 are those typically found in electronic devices suitable for use with the technology described herein, and are intended to represent a broad category of such components that are well known in the art. Thus, the device of Fig. 3 can be a desktop computer, laptop computer, television, smartphone, tablet, music player, audio device, kiosk, set-top box, game system, wearable device, consumer electronic device, and/or the like. The device can also include different bus configurations, networked platforms, multi-processor platforms, etc. Various operating systems can be used.

Conceptual Architecture

In various embodiments, customized highlight shows including a narrative component can be generated in different ways. In general, as described in more detail below, the techniques involve identifying a number of highlight segments for an event, determining start/end times for the identi-
fied highlight segments, and presenting a customized highlight show including a narrative component to a user, including the identified highlight segments. In some embodiments, the full representation of the event (for example, an audiovisual recording of a sporting event) can be stored at a server; in other embodiments, it is stored at a client or at another location. Further details on the method are provided below.

[0120] Figs. 6A through 6F depict various conceptual architectures for implementing the techniques described herein, wherein different components (either server-based or client-based) perform the various functions and operations involved in generating a customized highlight show. For clarity, certain hardware components are omitted from these Figures.

[0121] Referring now to Fig. 6A, there is shown a block diagram depicting a conceptual architecture wherein a highlight show including a narrative component is generated at a server and transmitted to a client device 206 for presentation to a user 250, according to one embodiment. A representation (such as a recording) of the event is stored at server-based data store 253A; for ease of nomenclature, this representation of the event is referred to simply as “event 602”. Highlight show generation logic 606, which may be located at a server, uses descriptive data 607 about event 602 (such as information about occurrences that took place during event 602) to identify segments 601 of event 602. Event data 607 can come from any suitable source, such as for example, data provider 222. The identification of segments 601 can take into account factors such as particular characteristics of user 250, amount of time available for the highlight show, fan affiliation, and/or the like, as described in more detail below.

[0122] Highlight show generation logic 606 identifies segments 601 by specifying start/end times for each segment 601. In at least one embodiment, such start/end times are measured with respect to a video clock, which measures the actual elapsed time since the beginning of an event. In other embodiments, start/end times may be measured with respect to other time-
keeping measures. Further descriptions of the video clock, along with other
timekeeping measures such as a game clock, are provided below.

[0123] In the example of Fig. 6A, identified segment 601A has a start
time indicated by time code t1 and an end time indicated by time code t2;
other segments 601B through 601E have corresponding start/end times as
indicated. Start/end times can be indicated by any suitable encoding scheme;
for example, start/end time codes can simply indicate an elapsed time since
the beginning of event 602. Alternatively, each end time can be replaced by a
duration of the segment 601, i.e., the elapsed time since the corresponding
start time. Other encoding schemes are possible, whether with respect to a
video clock, game clock, or other timekeeping measure.

[0124] In the embodiment shown in Fig. 6A, highlight show 603 is as-
sembled and stored at server-based data store 253B, which may be the same
data store as 253A or may be a different data store, either in the same location
or in a different location. Highlight show 603, including segments 601A
through 601E, can be stored in any suitable format, including for example as a
video file. Any suitable video format can be used, such as for example MP4
or HTTP Live Streaming (HLS). Once highlight show 603 has been assembled
and stored, it can be retrieved and/or played back in any suitable manner.
For example, in response to a request, highlight show 603 can be transmitted
over communications network 204 to client device 206 for playback to user
250.

[0125] Referring now to Fig. 6B, there is shown a block diagram depict-
ing a conceptual architecture wherein highlight show generation logic 606
uses event data 607 to generate time codes 604 for generating a highlight
show, and wherein such time codes 604 are stored in a server-based data store
253C, according to one embodiment. In this embodiment, rather than gener-
ating a video file including segments 601A through 601E, logic 606 uses event
data 607 to generate a list of time codes 604. Storing time codes 604 rather
than the finished highlight show can save storage space and processing
power, particularly if the original recording of event 602 is readily available. Once time codes 604 have been stored, a highlight show can be assembled and played on-the-fly, by retrieving and playing those portions of event 602 identified by the time codes 604. For example, in response to a request, output stream generator 605 (which may be located at a server or at client device 206) can retrieve time codes 604, and generate streamed output by retrieving the identified portions of event 602. The streamed output is then provided via network 204 to client device 206 for presentation to user 250.

[0126] Any suitable data structure format can be used for storing and delivering time codes 604. For example, a set of discrete playlists can be provided, for serving specific requested highlight segments. Alternatively, a complete playlist for the entire highlight show can be provided, from which time codes 604 for specific highlight segments can be extracted.

[0127] Referring now to Fig. 6C, there is shown a block diagram depicting another embodiment. This embodiment is similar to that of Fig. 6B, except that time codes 604 are stored in client-based storage device 258 instead of at server-based storage. Also, in Fig. 6C, output stream generator 605 is implemented at client device 206. Thus, upon request, output stream generator 605 retrieves time codes 604 from client-based storage device 258, obtains the identified segments 601E of event 602 from server-based data store 253A (based on the time codes 604), and generates a highlight show for presentation to user 250.

[0128] Referring now to Fig. 6D, there is shown a block diagram depicting a conceptual architecture wherein event 602 is stored in a client-based storage device 258, and server-based highlight show generation logic 606 generates time codes 604 for generating a highlight show. For example, client-based storage device 258 may be a local digital video recorder (DVR) or set-top box on which event 602 has been recorded. Highlight show generation logic 606 uses event data 607 to generate list of time codes 604 for use in generating a highlight show. As before, highlight show generation logic 606 can
take into account personal characteristics of user 250, as well as other factors, to generate a customized highlight show. Once the list of time codes 604 has been generated, output stream generator 605 at client device 206 can play back those portions of event 602 identified by the list of time codes 604, to form the highlight show.

[0129] Referring now to Fig. 6E, there is shown a block diagram depicting a conceptual architecture for a stand-alone embodiment, wherein event storage, highlight show generation, time codes, and output stream generation all take place at a single device such as client device 206. Event 602 is stored in client-based storage device 258, and client-based highlight show generation logic 606 generates time codes 604 for generating a highlight show. Event data 607 can be sourced locally as shown, or can come from a remote source such as data provider(s) 222. For example, client-based storage device 258 may be a local DVR or set-top box on which event 602 has been recorded. Highlight show generation logic 606 uses event data 607 to generate list of time codes 604 for use in generating a highlight show. As before, highlight show generation logic 606 can take into account personal characteristics of user 250, as well as other factors, to generate a customized highlight show. Once the list of time codes 604 has been generated, output stream generator 605 at client device 206 can play back those portions of event 602 identified by the list of time codes 604, to form the highlight show. In at least one embodiment, output stream generator 605 includes segment transitions which can include contextual information about each highlight show; such transitions can include spoilers or can be spoiler-free, as described above. Segment transitions can include text, voice-overs, video, audio, graphics, and/or any combination thereof. In another embodiment, transitions may be omitted or may be optional or skippable.
Data Structures

[0130] Any suitable data structures can be used for storing data concerning events. The following are examples of data structures that can be used for various sporting events; however, one skilled in the art will recognize that different types of data may be relevant to different types of events.

- **playData** – contains data describing individual occurrences (plays) within the event; in at least one embodiment, playData describes these occurrences at the smallest suitable unit
 - Examples: each individual pitch in baseball; or each play in basketball; or each shot, steal, block, or turnover in basketball or hockey
 - Can also include video data
- **pbpData** – contains data describing certain types of occurrences; in at least one embodiment this applies primarily to baseball
 - Examples: final pitch; non-batter events such as stolen bases
- **stringData** – contains data describing strings, each including a set of plays relating to a narrative; they may or may not be contiguous
- **posData** – contains data describing a possession
 - Examples: each half-inning in baseball; each drive by a single team in football; a single possession by a particular team in basketball, hockey, or soccer
- **seqData** – contains data describing a sequence, which includes action from whistle to whistle; primarily relevant for sports such as basketball, hockey, and soccer

Method

[0131] For illustrative purposes, methods are described herein in terms of application to a sporting event such as a baseball game. These descriptions
make reference to particular exemplary data structures that are applicable to such sporting events, as described above. However, one skilled in the art will recognize that the claimed system and method can be applied to other types of events, and can use different data structures; therefore, the specifics of the following description are merely exemplary.

[0132] Referring now to Fig. 4A, there is shown a flowchart depicting a method of generating a customized highlight show having a narrative component, according to one embodiment. Referring now to Fig. 4B, there is shown a flowchart depicting an iterative method of generating a customized highlight show having a narrative component, according to one embodiment. The steps shown in Fig. 4A or 4B can be implemented using any of the components shown in Figs. 2A through 2E, either singly or in any combination. Alternatively, the steps shown in Fig. 4A or 4B can be implemented using any other suitable hardware architecture and/or software architecture, either in a stand-alone or client/server environment, or in a distributed computing environment. The steps shown in Fig. 4A or 4B can be performed in any suitable order, and are not limited to the order depicted.

[0133] As shown in Fig. 4A, in at least one embodiment, personal characteristics of user 250 are obtained 410. Personal characteristics can be used to determine what teams, sports, leagues, players, games, television programs, online content streams, other relevant digital assets, etc. user 250 may be interested in, so as to provide a customized highlight show according to such interests. Personal characteristics can be used to determine specific types of occurrences (plays) user 250 may be interested in, such as for example good defensive plays, or spectacular passing, or the like. Personal characteristics can also take into account which programs user 250 has available to him or her; for example, the system may make a determination as to whether a user has subscribed to a particular premium channel that makes certain content available to him or her. Any suitable mechanism can be use for obtaining or inferring such personal characteristics, including for example:
• Querying user 250 (e.g. by prompting the user to fill out a profile or online form to indicate teams, players, etc. of interest);
• Tracking behavior, such as for example website visitation patterns, viewing patterns, purchasing patterns, movement/travel, communications (inbound and/or outbound), and/or the like;
• Identifying team, player, and sport affinity from profiles of user 250, such as from a profile created and maintained by a social network or other third-party source;
• Determining characteristics of friends or other entities with whom user 250 may have an affinity or relationship (e.g. determining that many of user’s 250 Facebook friends are fans of a particular team);
• Determining geographic location of user 250 by GPS tracking, IP address, or other location-tracking technology (making it more likely that user 250 is a fan of a local team);
• Determining demographics of user 250.

[0134] In at least one embodiment, user 250 may be prompted to approve or decline such attempts to automatically obtain information about him or her.

[0135] User information may be obtained at any suitable time. If such information is obtained in advance (for example, when registering upon initial use of the system), such information can be stored, for example in user data 255 of server-based storage device 253. Alternatively, such information can be stored locally at client device 206. Stored user information can be updated as appropriate when new or additional information becomes available (for example, if additional tracking information is available, or if the user updates his or her profile). Alternatively, user information can be obtained at the time that user 250 requests a customized highlight show; in such a case,
step 410 can take place after step 418. In at least one embodiment, no user information is collected, and the system generates the highlight show automatically without taking into account personal characteristics of the user.

[0136] A request is received 418 for a customized highlight show. In at least one embodiment, web server 202 receives the request, and passes the request to application server(s) 214 for processing, although in other embodiments, any suitable component can receive the request. The request can be made by user 250, for example at a website or by activating an app on device 206, or by any suitable means. The request may be for a highlight show for a particular event, or for any number of events. For example, in at least one embodiment, the described system generates a customized highlight show that includes a number of sporting events that took place on a given day; in such an embodiment, user 250 may request a "daily roundup" of sporting events that are determined to be of interest to him or her. Alternatively, user 250 may request a customized highlight show for a particular sport, such as baseball, causing the system to generate a customized highlight show for that sport, including those highlight segments of that sport that are likely to be of interest. Alternatively, user 250 may request a customized highlight show for a particular series, such as a playoff series, causing the system to generate a customized highlight show for that series, including those highlight segments of that series that are likely to be of interest. Alternatively, user 250 may request a customized highlight show for a single game, portion of a game, or other event. Alternatively, user 250 may request a customized highlight show for a single player, across a number of games, for a single game, or for a portion of a game. Alternatively, user 250 may request a customized highlight show relating to user's 250 fantasy team in a fantasy sports league, an opposing fantasy team, multiple fantasy teams or match-ups, and/or the like. Segments can also include non-event coverage for a given event, which may include, for example, pre-game, in-game, and post-game interviews, analysis, commentary, and/or the like. These segments can be appended to an overall
highlight show in much the same way that individual event segments from within a specific event are.

[0137] In another embodiment, wherein “push” technology is enabled, a customized highlight show can be provided to user 250 without user 250 having specifically requested it. For example, the system can be configured to make a customized highlight show available to user 250 on a periodic basis (such as daily, weekly, or according to some other schedule), or automatically at the conclusion of any game that user 250 is likely to be interested in, or in response to some other trigger event. The customized highlight show can be transmitted to user 250 for immediate viewing, or placed on device 206 for viewing at user’s 250 convenience. Alternatively, an email message or other message can be transmitted to user 250 with a link that permits viewing of the highlight show. User 250 may sign up in advance for such customized highlight shows to be provided; alternatively, in at least one embodiment, user 250 may be automatically enrolled based on a determination that user 250 would likely be interested in such customized highlight shows (for example, based on viewing or purchasing behaviors). As with the on-request mechanisms described above, such “push”-based highlight shows can be for a single event or any number of events.

[0138] The length of time available for the customized highlight show is determined 412. In at least one embodiment, user 250 can click on a button or link to select a length of time (as shown in Figs. 1A through 1C), or can enter a value in a field. In another embodiment, a default length can be pre-selected. In yet another embodiment, an initial length can be selected, but the length can be adjusted based on the number of highlight segments of interest. For example, a threshold priority or excitement level can be determined: if an event has too few or too many highlight segments that reach the threshold to fill the allotted time, then the length of the highlight show can be adjusted downwards or upwards accordingly. In at least one embodiment, user 250 can be prompted to indicate whether the allotted time should be adjusted in
this manner, or if the system should simply use the specified length for the customized highlight show, regardless of any threshold priority or excitement level.

[0139] Dynamic excitement level(s) for the selected event(s) is/are determined 413. In at least one embodiment, this step includes generating excitement levels for possessions, occurrences, and/or strings within the event(s), so that the excitement level rises and falls during the course of the event(s). In at least one additional embodiment, this step includes generating excitement levels for interviews, analysis, and/or commentary before, during, and after a given event. The dynamic excitement level(s) can be combined with an excitement level for the event as a whole, which may be based on a determination of how interested a particular user 250 would be in that event. The dynamic excitement level(s) can further be combined with an outline of a storyline, themes, and/or narrative that upwardly adjusts the potential interest level for those occurrences, analysis, and interviews that contribute best to the communicating the drama, intrigue, suspense, and excitement of the given event(s). In this manner, those occurrences that contribute the most to a given narrative will tend to be scored with higher interest levels, and thus be more likely to be included, than those occurrences that do not contribute to the narrative. The result of such combination, which may also take into account other available information about the sequence, possession, string, or event, is a priority value. Additional details concerning generation of priority values are provided below.

[0140] Techniques for determining excitement levels are described in the above-cited related U.S. Utility Applications. In at least one embodiment, the excitement level(s) are determined based on personal characteristics of user 250 as obtained in step 410; for example, if user 250 is a fan of a particular team or player, occurrences involving scoring by that team or player may be deemed to have a higher excitement level for user 250 than occurrences involving scoring by the other team or other players. In embodiments where
the customized highlight show includes highlights from multiple events, the selection of which events to draw highlights from may depend on whether user’s 250 teams are involved in one event or another. Thus, step 413 may involve determining that the overall excitement level for an event may be higher if user 250 is a fan of one of the teams involved in the event.

[0141] Some events may have high levels of excitement even for non-fans of one of the teams. For example, if an event is a World Series game, the game may be of interest because of the importance of the game, even if user 250 is not a fan of either team competing in the event.

[0142] One skilled in the art will recognize that priority is merely one possible metric for determining which highlight segments should be included in a particular highlight show. Other metrics can also be used, either instead of or in addition to priority. In at least one embodiment, for example, excitement level alone is used, without taking into account other factors.

[0143] Segments (including possessions, occurrences, and/or strings having high priority (based on excitement level and/or other factors)) are then identified 414 and selected 415. These steps may be performed by, for example, setting a threshold priority and determining which possessions, occurrences, and/or strings in the selected event(s) have a priority (for user 250) that meets or exceeds the threshold. The threshold priority can be selected in such a manner as to ensure that the generated highlight show is of the correct length. Alternatively, the steps may be performed by, for example, selecting a certain number of possessions, occurrences, and/or strings in the selected event(s) that have the highest priorities (for user 250).

[0144] Once segments have been selected 415, a determination is made 416 as to the start/end times the selected segments. For example, if an occurrence is a goal, the few seconds or minutes preceding the goal, wherein the play is set up, may be included in the highlight segment, and a few seconds or minutes of celebration after the goal may also be included. The determination as to when the highlight segment should stop and start can be made based on
any suitable factors, including for example a determination of when the particular possession began, or when the play began, or the most recent clock stoppage, inning, at-bat, video analysis of camera cuts or angle changes, end of a sentence in the audio feed, or any other suitable demarcation. A change in excitement level may be used to determine suitable start/end points for the highlight segment. In at least one embodiment, start/end times for highlight segments are chosen based on the duration of a possession, or on some portion of a possession. Where appropriate, an instant replay of the occurrence may be included, which may show a different angle than the primary angle, or may be in slow motion; such instant replay may be extracted from the event content in the same manner as primary content. In addition, where appropriate, independent analysis of a given occurrence or one or more relevant interviews of a player, coach, analyst, fan, etc. may be included.

[0145] In at least one embodiment, start/end times can be identified 416 before segments have been selected, so that demarcations of segments that include occurrences may be made in advance. For example, a video of a sporting event may be available, along with start/end times for various possessions, plays, occurrences, innings, time-outs, and the like. Such data can be available from any suitable source, such as for example data provider(s) 222. Such data can be generated manually or in an automated fashion. In at least one embodiment, data available from data provider(s) 222 can be supplemented with derived data. For example, if data from data provider(s) 222 includes raw data such as descriptions, event text, event identifiers, and the like, additional information can be derived by applying natural language processing or other automated techniques to event text and/or descriptions.

[0146] In at least one embodiment, in some situations, the system adjusts start/end times based on the available time for the customized highlight show. For example, if it is determined that a particular occurrence has very high priority, but the start/end times of the occurrence are too long to reasonably fit in the allotted time for the customized highlight show, a shorter
excerpt of the event (still including the occurrence but having shorter duration than the specified start/end times indicate) may be included in the customized highlight show. Conversely, start/end times can be adjusted to lengthen the highlight segment if more time is needed to fill the allotted time for the customized highlight show.

[0147] Further details and variations concerning the determination of start/end times for segments are described below.

[0148] Highlight segments are then assembled 417 to generate the highlight show. In at least one embodiment, highlight segments are assembled in chronological order, although in certain situations it may be preferable to use a different order. The highlight show can be supplemented, for example with automatically or manually generated segment transitions, and/or with captions, titles, descriptions, voice-overs, contextual information, and/or the like, for example to indicate the score, possession, game situation, or the like. Such supplemental information can be visual, text-based, graphical, audio, spoken word, or any combination thereof. User 250 may have the option to turn on or off such supplemental information. Spoiler and spoiler-free supplemental information can be provided, giving user 250 a choice as to which he or she prefers.

[0149] The highlight show is presented 418 to user 250. In at least one embodiment, this is done by displaying a video (with accompanying audio) to user 250, containing the highlight show. In another embodiment, user 250 may be presented with a screen that allows him or her to navigate to individual highlight segments or to see the entire highlight show via a "play all" function; examples of such screens are shown in Figs. 1A, 1B, and 1C. Any other suitable explanatory or contextual information can be displayed on such screen, if desired, and user 250 can be given an option to turn on or off the display of such information. In at least one embodiment, as shown in Figs. 1A, 1B, and 1C, user 250 can adjust the customized highlight show by clicking on links, for example to change the team affinity or length of the highlight
show or turn on or off spoilers; this can cause any or all of steps 412 through 418 to be repeated in response to such changes.

[0150] The method then ends 499.

[0151] In at least one embodiment, as depicted in Fig. 4B, an iterative process is performed. Steps 410, 418, 411, 412, and 413 are performed as described above. An initial threshold priority is established 419, and steps 414 through 417 are performed as described above. Once the highlight show has been assembled 417, its length is checked 420 to determine whether it comports with the length of time available for the highlight show, as determined in step 412. As described above, in certain situations, this determined length of time can be adjusted upwards or downwards. Also, in at least one embodiment, a tolerance may be established, wherein the assembled highlight show may deviate from the specified length by up to some predetermined amount.

[0152] If, despite any adjustments and/or tolerances, the generated highlight show is not of the correct length, the threshold priority is adjusted 421, and steps 414 through 417, along with step 420, are repeated with the new threshold priority. In this manner, an iterative process is performed and, if necessary, repeated until a highlight show of acceptable length has been assembled.

[0153] Referring now to Fig. 4C, there is shown a flowchart depicting a method for selecting segments for a customized highlight show having a narrative component, according to one embodiment. In at least one embodiment, the method depicted in Fig. 4C is used to perform step 415 as depicted in Fig. 4A or 4B, although one skilled in the art will recognize that the steps shown in Fig. 4C can be implemented in the context of other methods than those depicted in Fig. 4A or 4B.

[0154] Once the parameters of the event have been acquired, and all variables have been initialized, data associated with the event is loaded 452 so as to enable selection of segments. Such data can come from any suitable
source, and can include any data that is or may be useful in selecting seg-
ments for inclusion in the highlight show. Examples of such data can be play-
by-play data and/or the like. Such data can include anything relevant to the
event or the segment, and may come from any source. For example, if the
event is a baseball game, such data can include a current score, current inning,
how many runners are on base, how many tweets have been communicated
about this game and what was said, the current excitement level, the current
novelty level, how the current segment fits a particular narrative, and the like.

[0155] Referring now to Fig. 4D, there is shown a flowchart depicting a
method for loading data 452 in preparation for generating a customized high-
light show having a narrative component, according to one embodiment. As
shown in Fig. 4D, step 452 can include the following steps:

- load 465 play-by-play (PBP) data (such as data obtained from
 any suitable source that describes what took place during the
 event; this can include data from websites that describe
 sporting events, excitement data, twitter data, and/or the
 like) and create pData, a representation of PBP data;
- load 466 player data (such as data obtained from external
 sources such as stats websites) and create rosters;
- load 467 video data (such as optical character recognition
 (OCR) data obtained by reading and interpreting on-screen
 graphics), and create videoData (ocrData);
- load 468 audio data (such as by performing speech recogni-
 tion on an audio feed) and create audioData.

[0156] Loaded data is then cleaned 453. This step can include correct-
ing errors and reconciling inconsistencies in the data loaded in step 452. This
can include, for example, determining that multiple occurrences (plays)
should actually be combined into a single occurrence, or correcting OCR data
that indicates an inconsistent score. It can also include, for example, correct-
ing an error that may be introduced due to a video transition, such as a blur
or fade, that was present in the video feed, or ensuring that the current score is correct when a play is reviewed and a goal is disallowed after it previously appeared on the on-screen scoreboard.

[0157] Referring now to Fig. 4E, there is shown a flowchart depicting a method for cleaning data 453, according to one embodiment. As depicted in Fig. 4E, cleaning data 453 can include steps for cleaning the various types of data loaded in step 452. This can include, for example, cleaning 469 pbpData, cleaning 470 videoData, and cleaning 485 audioData. Additional steps can be included, for cleaning other types of data.

[0158] Next, occurrences (plays) are identified 454. Depending on the nature of the event, this can include, for example, determining when a whistle is blown, or a pitch is thrown, or a batter has completed an at-bat, or a change of possession takes place, or the like. Any available information can be used for this step. Data from pbpData, videoData, audioData, and/or any combination thereof can be used to identify 454 occurrences.

[0159] Once occurrences have been identified 454, play data is augmented and reconciled 455 with play-by-play data (for example, from pbpData). This can include, for example, correlating the play data to the play-by-play data from pbpData. If any discrepancies are found, they can be reconciled; for example if videoData or pbpData is missing an occurrence, and the other data source includes that occurrence, the discrepancy can be resolved by using information from the source that includes the occurrence. In addition, such discrepancies can be noted so that modifications can be made to the detection algorithms to improve detection in the future.

[0160] Step 454 can also include reconciling the game clock with elapsed time on the game video, and performing other reconciliation tasks.

[0161] Referring now to Fig. 4F, there is shown a flowchart depicting a method for augmenting and reconciling 455 play data with play-by-play data, according to one embodiment. As shown in Fig. 4F, step 455 includes automatically looping through pbpData. The next occurrence in the pbpData is
considered 471, and automatically matched 472 to a corresponding identified occurrence. The data from pbpData is stored 473, for example in data store 253 or any other suitable location, and associated with the corresponding occurrence. If, in step 474, there are more PBP occurrences in pbpData, the method returns to step 471. Otherwise, it proceeds to the next step.

[0162] Next, the play data is corrected 456; this can include correcting pbpData, videoData, and/or the like. Play data can be corrected based on some detected discrepancy, for example, between the OCR data and the play-by-play data. In at least one embodiment, this step can be a manual step, performed by a user, or it can be performed semi-automatically.

[0163] Next, highlight segments are identified 457 from the available data, using information such as the start and stop points of all occurrences, possessions, sequences, strings, and the like, within the video stream. In at least one embodiment, highlight segments can have different ingress/egress points; for example, if a highlight segment depicts a goal, the segment may be extended for a few seconds so as to include celebrations and/or fan reactions following the goal. Accordingly, certain attributes can be used for different types of segments, such as for example, a start-of-sequence extension, start-of-play attenuation, end-of-play attenuation, end-of-inning extension, end-of-game extension, and the like. The start and end of any segment can be automatically adjusted, via a “start offset” and/or “end offset”, based on any number of conditions or parameters, including overall duration of the highlight show and/or other factors. Thus, for example, depending on duration constraints for the highlight show, segments can be automatically extended or attenuated as appropriate. Other techniques can also be used for determining start and end points for highlight segments.

[0164] Referring now to Fig. 4G, there is shown a flowchart depicting a method for generating 457 highlight segments, according to one embodiment. As depicted, the method includes the following steps:
- Verify occurrences (plays) 486 and modify playData accordingly;
- Identify possessions 487 and create posData accordingly;
- Identify sequences 488 and create seqData accordingly;
- Identify strings 489 and create stringData accordingly;

[0165] As mentioned above, each possession is a time-delimited portion of an event. An example is a set of occurrences in sequential order by one specific team.

[0166] As mentioned above, a sequence is a time-delimited portion of an event that includes one continuous time period of action, for example from a face-off or tip-off to the next whistle.

[0167] As mentioned above, a string is a series of occurrences that are somehow linked or related to one another. The occurrences may take place within a possession (defined below), or may span multiple possessions. The occurrences may take place within a sequence (defined below), or may span multiple sequences. In at least one embodiment, the occurrences within a string are in sequential order by one specific team.

[0168] Not every occurrence need be part of a possession, sequence, or string. Some occurrences, such as free throws, do not take part during any sequence or string.

[0169] Once highlight segments have been generated 457, one or more narrative(s) are created 458. Referring now to Fig. 4H, there is shown a flowchart depicting a method for creating 458 narrative(s), according to one embodiment. A theme or themes is/are identified 475. This includes identifying a beginning, middle, and end of a narrative that relates to the event or to a series of events. For example, the narrative can be a particular storyline that relates to certain salient points within a sporting event or the like, and can relate to a theme.
[0170] For example, if a particular pitcher was recently traded to a team, his pitches can be emphasized as reinforcing the narrative highlighting his performance with his new team.

[0171] As another example, if a particular part of the game was very interesting for some reason, plays from that portion of the game can be emphasized as fitting the narrative.

[0172] Additional narratives that could be used, for example for a baseball game, include:

- a no-hitter;
- a perfect game;
- an unusually high number of strikeouts;
- a particular statistic, such as number of hits or strikeouts;
- a particular player having an unusually good or bad game;
- novel plays such as double plays or grand slams

[0173] Whichever narrative(s) are identified, the system can determine a "narrative bonus" for each occurrence in the event(s), indicating a degree to which the excitement level for the occurrence should be boosted because it relates to narrative. The narrative bonus can be different for different narratives (depending on their relative interest level or importance), and can also be different depending on whether a particular occurrence is closely or tangentially related to the narrative.

[0174] Any number of narratives can take place simultaneously, and the final highlight show can include more than one narrative, or can offer the viewer a choice among several narratives.

[0175] Then, segment priorities are calculated. Here, based on the narrative bonus as well as other factors (such as excitement level), particular segments are identified as being the best choices for inclusion in the highlight show. Segment priorities can be determined for occurrences (plays), strings, possessions, and/or sequences.
Next, play novelty is stored 478. As mentioned above, novelty is a metric indicating a level of interest for an occurrence, independent of the context of the occurrence within the event. Thus, for example, novelty can be a measure of how unusual an occurrence is, as described in more detail below.

Tags are then added 459 to selected segments, to indicate that they should be included in the highlight show. In at least one embodiment, these tags are a type of metadata that flags a segment for inclusion, and also indicates the order in which the segments should appear within the highlight show.

In at least one embodiment, the tags define a highlight show that is assembled based on the segment priorities and on the play novelty. In this manner, the highlight show includes particular occurrences based on the excitement of the game at that point, as well as the importance of the occurrence to the narrative, and the novelty of the occurrence. For sporting events, different highlight shows can be assembled for a neutral fan, for a fan of one team or the other, or for fans of particular players; in each case, excitement level, narrative bonuses, and novelty may differ depending on the disposition of the fan (viewer). For example, a fan of one team may be interested in different narratives than a fan of the other team. In this manner, the techniques described herein allow the system to provide different highlight shows, and thereby tell different types of stories for different fans, providing a truly customized experience.

In at least one embodiment, other factors can be considered in assembling the highlight show. For example, so as to provide a suitable beginning and ending for the highlight show, it may be desirable to include the beginning and end of the event in the highlight show, even if the first and last occurrences of the event are not particularly exciting or would not otherwise be selected for inclusion.
[0180] In at least one embodiment, a narrative may dictate that the highlight show not be chronological. For example, a highlight show might include all double plays shown in a row, followed by all strikeouts, even though such an assembly would not be in chronological order.

[0181] Referring now to Fig. 4J, there is shown a flowchart depicting a method for adding tags 459 to highlight segments, according to one embodiment. First, timed tags are created 479, to indicate which highlight segments should be included in a highlight show. These timed tags can, for example, represent selections of highlight segments to assemble a highlight show of any desired duration, based on the selection criteria described above. The duration of the highlight show can be selected by the user or can be determined automatically. The tags can leverage a single type of highlight segment (such as occurrences, strings, possessions, and sequences) or a variety of types of highlight segments, so as to optimize the overall excitement value and narrative flow for the highlight show at whatever duration is selected. The highlight segments can be of varying length.

[0182] Segment tags, which provide descriptors of segments, are then added 480 to the various highlight segments that may be included in the highlight show. Such tags represent various types of metadata that can be useful in constructing the highlight show or modifying it (for example, if the selected duration changes). Examples of segment tags include:

- Segment ID
- General tags
- Score tags
- Theme tags

[0183] Next, output file(s) are generated 460, using the segment tags added in step 459. The file(s) may be stored locally, transmitted to a playback device, made available via cloud services, or the like. Referring now to Fig. 4K, there is shown a flowchart depicting a method for generating output file(s) 460, according to one embodiment. For illustrative purposes, the
method is described in terms of JavaScript Object Notation (JSON) files, although any other file format or protocol can be used.

[0184] First, individual segment profiles are created 481; these can include, for example, profiles for plays, strings, possessions, and sequences. These are sorted 482 by segment start time, and a default JSON file is created 483 and saved, containing ordered segments and summary information for the event.

[0185] Then, customer-specific file format(s) are created 484 from the default file. In at least one embodiment, different file formats may be made available to different industry partners, according to their particular needs. These can be derived from the default file(s) saved in step 483, and can be used to orchestrate consumer-specific highlight shows in a server-side or client-side environment.

[0186] Once step 484 is complete, user-specific highlight shows can be generated by assembling highlight segments 417. In at least one embodiment, users can be given a list of highlight shows from which to select, or they can be provided with a user interface including controls to customize highlight shows to their individual specifications. As described herein, highlight shows can be presented to users via any suitable means, such as for example by streaming from a server-side video delivery platform, selective playback from a client device (such as a set-top box) on which the video has been previously recorded, or the like.

[0187] In at least one embodiment, highlight shows can be created on-the-fly by intelligently sequencing through specific portions of the full recording of an event, based on the information contained in the default JSON file generated in step 483 and/or the preferences specified by the industry partner or customer in the file format(s) generated in step 484. In at least one embodiment, individual, discrete highlight shows can also be created by the industry partner.
[0188] In at least one embodiment, the system provides a mechanism by which a single highlight segment is presented. For example, based on a determination of user interests, excitement levels, event analysis, and the like, the system determines a recommended excerpt of an event (or multiple events). The recommended excerpt may be defined, for example, in terms of start and end times (measured according to a video clock or other clock), or in terms of a start time and playing through to the end of the event. The system can then present the recommended excerpt to the user, either as a selectable clip or in connection with other excerpts for other events. In at least one embodiment, such a technique allows the system to present a particularly exciting or interesting set of occurrences that take place within an event.

Occurrences, Strings, Possessions, and Sequences

[0189] In at least one embodiment, step 416 of the above-described method involves identifying start/end times for highlight segments to be included in the highlight show. In at least one embodiment, an event is subdivided into a series of segments, which can include occurrences (plays), strings, possessions, and sequences.

[0190] As mentioned above, an occurrence is something that takes place during an event; a string is a series of occurrences that are somehow linked or related to one another; a possession is a time-delimited portion of an event; and a sequence is a time-delimited portion of an event that includes one continuous time period of action.

[0191] Possessions can be defined as beginning with a specific action within an event and ending with another specific action; this definition yields a start and end time for the possession. Demarcation of start/end times of possessions can depend on the type of event. For example, for certain sporting events wherein one team may be on the offensive while the other team is on the defensive (such as basketball or football, for example), a possession can be defined as a time period while one of the teams has the ball. In sports such
as hockey or soccer, where puck or ball possession is more fluid, a possession can be considered to extend to a period of time wherein one of the teams has substantial control of the puck or ball, ignoring momentary contact by the other team (such as blocked shots or saves). For baseball, possessions are clearly defined as corresponding to a half-inning. For other types of sporting events as well as for non-sporting events, the term "possession" may be somewhat of a misnomer, but is still used herein for illustrative purposes. One skilled in the art will recognize that the term is intended to apply broadly to any time-delimited portion of an event. Examples in a non-sporting context may include a chapter, scene, act, television segment, or the like. A possession can include any number of occurrences.

[0192] Similarly, sequences can also be defined as beginning with a specific action within an event and ending with another specific action, but including a continuous time period of action. For example, in a sporting event, a sequence may begin when action begins (such as a face-off, tipoff, or the like), and may end when the whistle is blown to signify a break in the action. In a sport such as baseball or football, a sequence may be equivalent to a play, which is a form of occurrence. A sequence can include any number of possessions, or may be a portion of a possession.

[0193] For illustrative purposes, the following are examples of ways in which possessions and sequences can be defined for various types of sporting events:

- **Baseball:** Each half-inning is a possession. Each pitch or play is a sequence.

- **Football:** A possession includes a series of downs where a single team is in offensive possession of the ball. A possession can end with a score, turnover, punt, end of half, end of regulation, or end of overtime. Each play is a sequence.

- **Basketball:** A possession includes a series of plays where a single team is predominantly in offensive possession of the ball and the
opposing team is not in possession of the ball. For clarity, this means that a jump ball (no possession) in the middle of a possession that is received by the offensive team keeps the prior possession going. In addition, the defensive team is not acknowledged to have possession of the ball until a first defensive team member controlling the ball has maintained control of the ball for at least two seconds (or some other period of time), or a second defensive player has received or played the ball in receipt from the first. In other words, a defensive player poking the ball away from an offensive player straight into another offensive player does not constitute a change of possession. In basketball, is a continuous time period beginning with a tip-off or free throw and ending with a whistle.

- Hockey: Same as basketball, except with reference to a puck rather than a ball, and a face-off rather than a tip-off.
- Soccer: Same as basketball except with reference to a kick-off, corner kick, throw-in, or the like, rather than a tip-off.
- Rugby: Same as football.
- Cricket: Each over is a possession. Each play is a sequence.
- Tennis: Each game is a possession. Each point is a sequence.
- Golf: Each hole is a possession. Each stroke is a sequence.

Identification of strings, possessions, and sequences can help construct a narrative in the context of generating a customized highlight show. Excitement levels, novelty levels, and priorities can be determined for strings, possessions, and sequences, and such excitement levels, novelty levels, and priorities (which may be customized for a particular user 250) can be used as factors in selecting which segments to include in the customized highlight show. Thus, in an embodiment where excitement levels can be determined for entire events (such as games), strings, possessions, sequences, and/or individual occurrences, and wherein such excitement levels can be
customized for a particular user 250, a more coherent narrative that is more likely to be interesting to user 250 can be constructed.

[0195] For example, in some situations, a less exciting occurrence may be selected for inclusion because it is part of a string, possession, or sequence that is judged, on the whole, to have a high level of excitement. Such a methodology facilitates improved narrative cohesion, for example by showing a number of plays (occurrences) that led up to an exciting scoring opportunity at the end of a string, possession, or sequence. The individual plays may not individually have high excitement levels, but they are included because they lead up to an exciting conclusion of the string, possession, or sequence. In at least one embodiment, the priority value takes into account such situations, as described in more detail below.

[0196] In at least one embodiment, any of strings, possessions, or sequences are used as the time unit by which excitement levels and priorities are assessed and compared. For example, step 414 described above, in which occurrences having high priority are identified, can be performed by ranking strings, possessions, or sequences to identify those having the highest priority; then selecting individual occurrences within those identified strings, possessions, or sequences, based on the determined priority. Other techniques can be used for combining priority for strings, possessions, or sequences with priority for occurrences.

[0197] Referring now to Fig. 5A, there is shown an example of a table 500 including information for a number of possessions during an event in chronological order, in this case a football game. Similar techniques can be used for strings or sequences.

[0198] Table 500 is an example of the output of step 413 according to at least one embodiment, and includes the following columns:

- Drive ID 501: an identifier of each possession, in this case corresponding to a drive of the football game.
• Team in possession 502: an indication of which team has possession for this drive.

• Novelty drive 503: a metric that indicates how interesting or novel the drive was.

• EQ final 504: the excitement level for the possession. In this example, the excitement level is given as a score from 0 to 100. The excitement level may or may not be customized to a particular user 250.

• Delta EQ 505: the change in excitement level from the previous possession.

• Delta comeback 506: a metric that indicates the likelihood that a comeback is in progress and the magnitude of said comeback.

• Nail biter 507: a metric that indicates the tension level in the game, based for example on how close the score is, how close to the end of the game we are, excitement level, and/or the like.

• Score 508: Current score of the game during this possession.

• Score change 509: Change in score since the previous possession.

• Lead change 510: An annotation indicating that the lead changed during this possession.

• Possession priority 511: An overall indication of how important this possession is to the over-arching narrative of the event. In at least one embodiment, possession priority 511 is derived from other values for this possession. In at least one embodiment, possession priority 511 is used in determining which segments to include in a customized highlight show.

[0199] Data such as that shown in Fig. 5A can be obtained from any suitable source. In at least one embodiment, at least a portion of this data is obtained from provider(s) 222 of real-time sports information such as STATS™, Perform (available from Opta Sports of London, UK), and SportRa-
dar of St. Gallen, Switzerland. Some or all of the data shown in Fig. 5A can be derived from such data obtained from provider(s) 222.

Excitement Level

[0200] Any suitable mechanism can be used for determining excitement level for an event, possession, string, sequence, or occurrence. In at least one embodiment, techniques as described in the above-cited related U.S. Utility Application Serial No. 13/601,915 for "Generating Excitement Levels for Live Performances," filed August 31, 2012, are used. In general, in order to customize the generation of highlight shows for a user 250, the described system determines excitement levels based on particular characteristics of that user 250.

[0201] In at least one embodiment, various factors are considered when determining excitement level. Such factors, may include, for example:

- **Pace of the event:** for example, this may include a determination of the energy level of the play in a sporting event.
- **Parity:** A measure of how close the teams are. Overall score of the game may be taken into account, as well as time of possession, yards/down, and the like.
- **Novelty:** a measure of how unusual an occurrence, possession or game was, and/or whether any particularly interesting events took place during the possession or game.
- **Momentum:** an indication as to whether a shift in balance or control has taken place as a result of a specific occurrence or during the possession or game.
- **Context:** takes into account factors such as whether the teams are rivals, possible impact on playoffs or standing, series score for a playoff game, leaderboard, and the like.
- **Social:** a measure of activity in social networks concerning the game, for example by detecting spikes in Twitter activity or the like.
Any or all of the above factors can be used, singly or in any suitable combination, to determine excitement level for an event, possession, string, sequence, or occurrence.

Priority

In various embodiments, priority can be determined for events, possessions, strings, sequences, and/or occurrences, and can be used by components of the described system to determine which segments to include in a customized highlight show. Any suitable and available data can be used for deriving priority, including for example data available from data provider(s) 222.

At a high level, priorities for occurrences are a function of the novelty of a specific occurrence, the novelty and excitement level of the possession in which the occurrence took place, the excitement level of the event (for example, from the perspective of a neutral fan) at the time that the occurrence took place, and the contribution of the specific occurrence to the overall narrative of the event.

Priority for possessions and/or occurrences can be modified by the overall excitement level of the event as a whole. For example, in the context of sporting events, priority for possessions and/or occurrences can be modified by the excitement level of the game at the time that the occurrences took place. Such modifications can take into account a particular team or player as well as an affinity for that team or player on the part of user 250. For specific teams, priority can be modified based on the effect of the occurrence or possession on that team. For specific players, priority can be modified by the contribution of the player to a particular occurrence.

In some embodiments, other types of priority can also be used, including team priority, player priority, and/or fantasy priority. Each of these different categories of priorities is discussed in turn.
One skilled in the art will recognize that there are many ways to calculate priorities. Thus, the particular methodologies described below are intended to be illustrative, but not limiting of scope. Additional methodologies can be derived to suit different situations or individual preference profiles.

Possession Priority

Possession priority refers to a priority, or rank, for a given possession within an event such as a game. In at least one embodiment, this priority can be generated from the perspective of a neutral fan, but can be adjusted based on user affinity to one or other of the teams involved. The following is an example of a possession priority calculation for football:

- Possession priority is the sum of a number of individual bonus elements that are set by specific possession stats calculated by the main game excitement algorithms:

<table>
<thead>
<tr>
<th>Stat</th>
<th>Description</th>
<th>Possession Bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>novelty_drive</td>
<td>novelty of the current drive</td>
<td>+1 if novelty_drive >= 5, +2 if novelty_drive >= 8</td>
</tr>
<tr>
<td>EQ_neutral</td>
<td>current game excitement rating</td>
<td>+1 if game EQ >= 75, +2 if EQ >= 90, +3 if EQ >= 99</td>
</tr>
<tr>
<td>abs(delta EQ)</td>
<td>change in excitement from prior drive</td>
<td>+1 for delta EQ >= 7, +2 if delta EQ >= 10</td>
</tr>
<tr>
<td>delta comeback</td>
<td>change in comeback novelty</td>
<td>+1 for a comeback >= 0.08, +2 if comeback >= 0.10</td>
</tr>
<tr>
<td>nail_biter</td>
<td>close game near end of regulation</td>
<td>+2 for any nail_biter</td>
</tr>
<tr>
<td>lead change/new tie</td>
<td></td>
<td>+1 for any lead change or new tie</td>
</tr>
<tr>
<td>abs(score change)</td>
<td></td>
<td>+1 for any field goal, +2 for all other score changes</td>
</tr>
</tbody>
</table>

Thus, in this example, possession priority is calculated as:

\[
\text{possession_priority} = \text{Sum(Possession Bonus)}
\]
Referring again to Fig. 5A, there is shown table 500 which includes these elements for various possessions in columns 504 through 510, and also shows derived possession priority in column 511.

In at least one embodiment, possession priority can be used for generating customized highlight shows, without necessarily computing occurrence priority (see below). For example, a customized highlight show can be generated by applying one or more of the following parameters:

- all occurrences in all possessions where Possession Priority > Possession Priority Threshold
- all occurrences in all possessions where Possession Priority > Possession Priority Threshold and the aggregate time of these plays is \(\leq \) Time Allowance
- all occurrences with an Occurrence Novelty > Novelty Threshold where Possession Priority > Possession Priority Threshold
- all occurrences with an Occurrence Novelty > Novelty Threshold where the aggregate time of these occurrences is equal to a given Time Allowance

Occurrence Priority (or Play Priority)

Occurrence priority refers to a priority, or rank, for a given occurrence, such as a play within a sporting event. In at least one embodiment, this priority can be generated from the perspective of a neutral fan. In at least one embodiment, occurrence priority is generated for the following:

- those occurrences that take place within possessions that exceed a threshold possession priority; and
- those occurrences that have a novelty value exceeding a pre-determined novelty threshold, regardless of the possession priority.

In at least one embodiment, if an occurrence qualifies in both categories, the segment bonus values assigned to this individual occurrence within each qualifying category are added together to produce an aggregate.
bonus value for the occurrence. This aggregate bonus value is then multiplied by the current excitement rating (EQ) of the game to generate an occurrence priority value. This particular calculation is merely exemplary; one skilled in the art will recognize that occurrence priority can be calculated in other ways.

[0214] In at least one embodiment, the bonus value for each occurrence is the sum of the occurrence’s calculated novelty value, plus any bonus modifier an occurrence might receive from being within a key possession. For occurrences that are not in a key possession, a bonus value is not calculated unless the individual occurrence novelty is greater than or equal to 2.

[0215] In summary:

- Bonus Modifier for occurrences within possessions where possession_priority >= 4 (Key Possessions):
 - Bonus Modifier = +4 for the scoring occurrence in drives that result in the last lead change or the game winning score.
 - Bonus Modifier = +2 for all other occurrences in drives that result in either the last lead change or the game winning score.
 - Bonus Modifier = +1 for occurrences in all other key possessions.

[0216] Thus, in this example, occurrence priority (also referred to as play priority) is calculated as:

\[
\text{play_priority} = (\text{Bonus Value} + \text{Bonus Modifier}) \times \text{EQ_neutral}
\]

[0217] In at least one embodiment, occurrence priority can be used for generating customized highlight shows, once occurrence priority has been calculated. For example, a customized highlight show can be generated by applying one or more of the following parameters:

- all occurrences where Occurrence Priority > Occurrence Priority Threshold
all occurrences with a Occurrence Priority > Occurrence Priority Threshold where Possession Priority > Priority Threshold
all occurrences with a Occurrence Priority > Occurrence Priority Threshold where the aggregate time of these occurrences is equal to a given Time Allowance

Similar techniques can be used to determine sequence priority (referring to a priority, or rank, for a given sequence), and/or string priority (referring to a priority, or rank, for a given string).

Team Priority

Team priority refers to a priority, or rank, for a given occurrence, possession, string, or sequence within an event from the perspective of a fan of one or the other teams playing. In other words, the priority takes into account user affinity to one or other of the teams involved. In at least one embodiment, team priority is calculated in the same manner as occurrence priority or possession priority, except that a fan perspective excitement rating (referred to as EQ_away or EQ_home) is used to compute occurrence priority and possession priority, rather than neutral perspective statistic, EQ_neutral. Further adjustments can also be made; for example, in at least one embodiment, a +2 Possession_Bonus is added to any score by the fan’s favorite team.

The following is an example of a team possession priority calculation for football:

Team possession priority is the sum of a number of individual bonus elements that are set by specific possession stats calculated by the main game excitement algorithms:

<table>
<thead>
<tr>
<th>Stat</th>
<th>Description</th>
<th>Possession Bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>novelty_drive</td>
<td>novelty of the current drive</td>
<td>+1 if novelty_drive >= 5, +2 if novelty_drive >= 8</td>
</tr>
<tr>
<td>EQ_team</td>
<td>current game excitement rating from perspective of _away or _home team</td>
<td>+1 if team EQ >= 75, +2 if EQ >= 90, +3 if EQ >= 99</td>
</tr>
<tr>
<td>abs(delta EQ_team)</td>
<td>change in excitement from prior</td>
<td>+1 if delta EQ >= 7, +2 if delta EQ >= 10</td>
</tr>
</tbody>
</table>
Thus, in this example, team possession priority is calculated as:

\[
\text{possession_priority} = \text{Sum(Possession Bonus)}
\]

In at least one embodiment, team occurrence priority is generated for the following:

- those occurrences that take place within possessions that exceed a threshold team possession priority; and
- those occurrences that have a team novelty value exceeding a predetermined novelty threshold, regardless of the possession priority.

In at least one embodiment, if an occurrence qualifies in both categories, the segment bonus values assigned to this individual occurrence within each qualifying category are added together to produce an aggregate bonus value for the occurrence. This aggregate bonus value is then multiplied by the current excitement rating (EQ) of the game (from the perspective of that team) to generate a team occurrence priority value. This particular calculation is merely exemplary; one skilled in the art will recognize that team occurrence priority can be calculated in other ways.

In at least one embodiment, the bonus value for each occurrence is the sum of the occurrence’s calculated novelty value, plus any bonus modifier an occurrence might receive from being within a key possession (team_possession_priority >= 4). For occurrences that are not in a key possession, a bonus value is not calculated unless the individual occurrence novelty is greater than or equal to 2.
In summary:
Bonus Modifier for occurrences within possessions where \(\text{team_possession_priority} \geq 4 \) (Key Possessions):

- Bonus Modifier = +4 for the scoring occurrence in drives that result in the last lead change or the game winning score.
- Bonus Modifier = +2 for all other occurrences in drives that result in either the last lead change or the game winning score.
- Bonus Modifier = +2 for key possessions that result in a favorite team score.
- Bonus Modifier = +1 for occurrences in all other key possessions.

Thus, in this example, occurrence priority (also referred to as play priority) is calculated as:

\[
\text{team_play_priority} = (\text{Bonus Value} + \text{Bonus Modifier}) \times \text{EQ_team}
\]

In at least one embodiment, team occurrence priority can be used for generating customized highlight shows based on team occurrences, once occurrence priority has been calculated. For example, a customized highlight show based on specific team occurrence priorities can be generated by applying one or more of the following parameters:

- all occurrences where Team Occurrence Priority > Occurrence Priority Threshold
- all occurrences with a Team Occurrence Priority > Occurrence Priority Threshold where Possession Priority > Priority Threshold
- all occurrences with a Team Occurrence Priority > Occurrence Priority Threshold where the aggregate time of these occurrences is equal to a given Time Allowance
Player Priority

[0229] Player priority refers to a priority, or rank, for a given occurrence, possession, string, or sequence within an event involving a specific player from the perspective of a fan of the player’s team or a neutral fan, i.e., a user who is a fan of a specific player but not the team on which the player plays. In other words, the priority can take into account user affinity for the player’s team, if that preference happens to be relevant. In at least one embodiment, player priority is calculated as the product of player novelty (novelty_player_offense or novelty_player_defense) and the current team excitement rating (EQAway, EQHome, or EQNeutral), as follows:

\[
\text{player_priority} = \text{novelty_player} \times \text{EQ_team}
\]

[0230] In at least one embodiment, player priority can be used for generating customized highlight shows, once player priority has been calculated. For example, a customized highlight show based on specific player priorities can be generated by applying one or more of the following parameters:

- all occurrences involving specific players of interest
- all occurrences where Player Priority > Player Priority Threshold
- all occurrences with a Player Priority > Player Priority Threshold where the aggregate time of these occurrences is equal to a given Time Allowance

Fantasy Priority

[0231] Fantasy priority refers to a priority, or rank, for a given occurrence or possession within an event involving a specific fantasy player (i.e. a player belong to a user’s team in a fantasy league), from the perspective of a fan of the player’s team or a neutral fan. In at least one embodiment, fantasy priority is calculated as the product of abs(player priority) and occurrence priority (i.e. play priority) divided by 100, as follows:

\[
\text{fantasy_priority} = \frac{\text{abs(player_priority)} \times \text{play_priority}}{100.0}
\]
In at least one embodiment, fantasy priority can be used for generating customized highlight shows for a specific roster of fantasy players, once fantasy priority has been calculated. For example, a customized highlight show based on specific fantasy priorities can be generated by applying one or more of the following parameters:

- all occurrences involving fantasy players on a given roster
- all occurrences where Fantasy Priority > Fantasy Priority Threshold
- all occurrences with a Fantasy Priority > Fantasy Priority Threshold where the aggregate time of these occurrences is equal to a given Time Allowance

Similar rules can be applied to fantasy players on the opponent’s team roster to create a fantasy highlight show that includes segments for both teams and yields a highlight show of a virtual fantasy game.

In various embodiments, any or all of the above types of priority can be used to determine which segments to include in a highlight show. Figs. 5B through 5F provide various examples of tables resulting from filtering and ranking possessions and occurrences in various ways. These examples refer to the same event (game) that was summarized by the table 500 in Fig. 5A.

Referring now to Fig. 5B, there is shown an example of a table 520 including information for those possessions where the possession priority is greater than or equal to 4. This example illustrates the process of filtering possessions to only include those of high priority.

Referring now to Fig. 5C, there is shown an example of a table 525 including information for those occurrences (plays) where the occurrence priority is greater than or equal to 180. This example illustrates the process of filtering occurrences to only include those of high priority.

In at least one embodiment, rather than using a threshold priority to determine which segments to include, the system may select the N most
exciting occurrences (plays) for inclusion in a highlight show, based on occurrence priority, possession priority, or any other priority. Referring now to Figs. 5D, 5E, and 5F there are shown examples of tables 530 including information for those occurrences (plays) deemed to be the 10, 15, or 20 most exciting occurrences in the game, based on occurrence (play) priority.

[0238] As described above, the system can use fantasy priority to determine which segments to include. A fantasy roster can be consulted or generated, indicating which players are included in a user’s fantasy league team. An example of an excerpt of such a roster is shown in table 535 of Fig. 5G. Referring now to Fig. 5H, there is shown an example of a table 540 including information for occurrences (plays) involving players on the fantasy roster; fantasy priority is included in table 540, allowing occurrences to be filtered accordingly. Tables can also be constructed for individual players on the fantasy roster, as shown in the example tables 545 of Figs. 5I, 5J, and 5K.

[0239] Referring now to Fig. 5L, there is shown an example of a table 550 including information for those occurrences (plays) involving players on a user’s fantasy roster where the fantasy priority is greater than or equal to 180, according to one embodiment. This example illustrates the process of filtering occurrences to only include those of high fantasy priority. Although the occurrences on table 550 involve multiple players on multiple actual teams, they can be assembled into a single highlight show customized to a particular user 250 who has a fantasy team including these players.

Narrative and Theme

[0240] As described above, in at least one embodiment, the system constructs the customized highlight show so that it provides a cohesive narrative depicting an event (or set of events). The narrative provides a structural framework for presenting highlight segments in a manner that navigates from a beginning to a middle to an end. For example, the narrative can follow a journey from introduction to storyline development to suspenseful chal-
lenge(s) to challenge resolution(s) to closure with any number of “surprising developments” layered throughout. Such narrative can be automatically or manually constructed, and can be based, for example, on availability of particular segments, external factors, historical context, and/or the like. Individual segments are automatically selected so that they support the narrative; in at least one embodiment, a determination as to whether to include a particular segment is based, at least in part, on its ability to support the narrative.

[0241] In at least one embodiment, the system identifies those occurrences, possessions, strings, and/or sequences, that precede an exciting occurrence, possession, string, or sequence and are part of the set-up to that exciting occurrence, possession, string, or sequence. An example is a baseball player who gets walked immediately before a home run. These precedent plays may not necessarily be exciting in-and-of-themselves, but they may be included in the customized highlight show based on a determination that they contribute to the narrative of the overall sporting event, and in particular are precursors to an exciting event such as a home run. Accordingly, in at least one embodiment, the system described herein takes into account such narrative contributions by making associations between exciting occurrences and those occurrences that precede the exciting occurrence and are part of the narrative that leads up to the exciting occurrence.

[0242] Various techniques can be used for improving and enhancing the narrative quality of the customized highlight show. One approach is to take into account a notion of theme when constructing the highlight show. For example, a theme may emerge when a particular type of play appears several times within a single sporting event, or if a player has a particularly good game, or if some unusual event or coincidence occurs. Such identification of a theme can affect the selection of segments for the highlight show: for example, if a player has a particularly good game, the highlight show may be constructed so that it includes several occurrences (plays) involving that player. In at least one embodiment, this is accomplished by adjusting priori-
ties for occurrences, possessions, strings, and/or sequences that reinforce the identified theme.

[0243] In at least one embodiment, theme can be identified in an automated way, by analyzing statistics associated with the event. Alternatively, theme can be specified manually. Unusual or remarkable patterns can be identified by virtue of their divergence from normally expected statistical distributions. Once a theme has been identified, priorities are automatically adjusted to emphasize the theme.

[0244] In at least one embodiment, the determination as to whether an identifiable theme should be used in constructing a highlight show can depend on any of several factors. For example, if the specified allotted time for the highlight show is insufficient to effectively construct a narrative including a theme, the theme can be abandoned for that highlight show.

Game Clock and Video Clock

[0245] As described above, in at least one embodiment, start/end times for highlight segments can be defined in terms of elapsed time since the beginning of an event. Such a measure is referred to herein as a “video clock”, although it can also be referred to as a “real-time clock”. Such video clock, which measures actual elapsed time since the beginning of an event, is in contrast to a game clock. Many sports (such as basketball, hockey, or football) have a game clock that indicates the time remaining in the game, but such a game clock does not correspond to real elapsed time because of stoppages, time-outs, intermissions, and/or the like. In other sports, such as baseball, there is no game clock.

[0246] In many situations, event data from sources such as data provider(s) 222 is specified in terms of game time (for sports such as basketball, hockey, soccer, or football), or in terms of inning (for baseball). It is beneficial, therefore, to develop a correlation between such identifications of game time or inning with actual elapsed time, so that start/end times for highlight seg-
ments can accurately be determined. Any of a number of techniques can be used for determining such correlations, including the following, either singly or in any combination:

- In some situations, data provider(s) 222 may provide a time-stamp indicating actual elapsed time for each occurrence.
- Video analysis and/or optical character recognition can be applied to the real-time or recorded video or digital stream of an event, particularly if an on-screen game clock is present. The on-screen clock can thus be reconciled with elapsed time.
- Audio or closed-caption analysis can be applied to the real-time or recorded video or digital stream of an event, leveraging natural language processing to take cues from the spoken word to synchronize the game clock with the video clock.
- Detection of when actual play is taking place as opposed to a stoppage, for example by analysis to detect motion on the playing surface, commercials or time-outs, or the like.
- Determination of elapsed time based on when data became available from data provider(s) 222, on the assumption that data becomes available just after each occurrence takes place. If there is a delay in receiving such data, but such delay is consistent, then a determination of elapsed time in this manner can still be relatively accurate.

Real-Time Catch-up

[0247] In at least one embodiment, the described system provides a mechanism by which a user can watch highlights of an event while the event is still in progress. For example, a user may be interested in watching a sporting event that is currently in progress. However, instead of watching the event live, the user may wish to start watching highlights of the first part of
the event, and then catch up to the live event, so that he or she can watch the latter part of the event live. This format allows the user to view important occurrences from the first part of the event, which he or she would otherwise have missed had he or she merely started watching live.

[0248] In at least one embodiment, the described system provides an option for real-time catch-up viewing, wherein a highlight show is presented for a first part of an event, transitioning to a full (unexpurgated) version from a certain point until the end of the event. The user selects an event to watch. If the event is currently in progress, the system generates and displays a customized highlight show for the event up to that point in time, using any or all of the techniques described above. Upon conclusion of the highlight show, a transition may be presented and the system can then begin showing the unedited event from that point on, either live or delayed/recorded.

[0249] As described above, the user can be prompted to specify a total length of time for the highlight show; alternatively, the system can automatically select the length of time based on any suitable factors, such as for example the amount of time remaining in the live event.

[0250] Additional occurrences may take place in the event while the user is still watching the highlight show. In at least one embodiment, the system can dynamically add highlight segments depicting such additional occurrences to the highlight show, even as the highlight show is being viewed. In at least one embodiment, the system continues to analyze occurrences as they take place to determine whether highlight segments depicting such occurrences should be added to the highlight show. Dynamically adding such highlight segments extends the length of the highlight show; thus, in at least one embodiment, newly added highlight segments can replace previously selected highlight segments that are deemed to be of less interest (assuming the previously selected highlight segments have not yet been shown to the user). Alternatively, the user can be prompted as to whether he or she would like
the highlight show to be extended by the dynamic addition of selected highlight segments.

[0251] Such an embodiment allows a user to watch a condensed version of a game or other event to a certain point, and then to see the remainder of the event live. Such a technique can be used even if the event is not currently in progress: the user can watch the highlight show that covers the event to a certain point, and can then transition to an unedited version of the event from that point on, whether in a live format or in a delayed/recorded format.

[0252] In at least one embodiment, the user can be presented with multiple highlight shows for events in progress. For example, he or she can choose to see a highlight show for every game that is currently available for him or her to watch, or every game within a particular sport or league, or for teams in a particular geographic area. Then, after viewing some or all of the highlight shows, the user can make a decision as to which game to watch live. Other variations are possible.

[0253] The present system and method have been described in particular detail with respect to possible embodiments. Those of skill in the art will appreciate that the system and method may be practiced in other embodiments. First, the particular naming of the components, capitalization of terms, the attributes, data structures, or any other programming or structural aspect is not mandatory or significant, and the mechanisms and/or features may have different names, formats, or protocols. Further, the system may be implemented via a combination of hardware and software, or entirely in hardware elements, or entirely in software elements. Also, the particular division of functionality between the various system components described herein is merely exemplary, and not mandatory; functions performed by a single system component may instead be performed by multiple components, and functions performed by multiple components may instead be performed by a single component.
Reference in the specification to "one embodiment" or to "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least one embodiment. The appearances of the phrases "in one embodiment" or "in at least one embodiment" in various places in the specification are not necessarily all referring to the same embodiment.

Various embodiments may include any number of systems and/or methods for performing the above-described techniques, either singly or in any combination. Another embodiment includes a computer program product comprising a non-transitory computer-readable storage medium and computer program code, encoded on the medium, for causing a processor in a computing device or other electronic device to perform the above-described techniques.

Some portions of the above are presented in terms of algorithms and symbolic representations of operations on data bits within the memory of a computing device. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps (instructions) leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic or optical signals capable of being stored, transferred, combined, compared and otherwise manipulated. It is convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. Furthermore, it is also convenient at times, to refer to certain arrangements of steps requiring physical manipulations of physical quantities as modules or code devices, without loss of generality.

It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are
merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as "processing" or "computing" or "calculating" or "displaying" or "determining" or the like, refer to the action and processes of a computer system, or similar electronic computing module and/or device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system memories or registers or other such information storage, transmission or display devices.

[0258] Certain aspects include process steps and instructions described herein in the form of an algorithm. It should be noted that the process steps and instructions can be embodied in software, firmware and/or hardware, and when embodied in software, can be downloaded to reside on and be operated from different platforms used by a variety of operating systems.

[0259] The present document also relates to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computing device. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, DVD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, flash memory, solid state drives, magnetic or optical cards, application specific integrated circuits (ASICs), or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus. The program and its associated data may also be hosted and run remotely, for example on a server. Further, the computing devices referred to herein may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
[0260] The algorithms and displays presented herein are not inherently related to any particular computing device, virtualized system, or other apparatus. Various general-purpose systems may also be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will be apparent from the description provided herein. In addition, the system and method are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings described herein, and any references above to specific languages are provided for disclosure of enablement and best mode.

[0261] Accordingly, various embodiments include software, hardware, and/or other elements for controlling a computer system, computing device, or other electronic device, or any combination or plurality thereof. Such an electronic device can include, for example, a processor, an input device (such as a keyboard, mouse, touchpad, track pad, joystick, trackball, microphone, and/or any combination thereof), an output device (such as a screen, speaker, and/or the like), memory, long-term storage (such as magnetic storage, optical storage, and/or the like), and/or network connectivity, according to techniques that are well known in the art. Such an electronic device may be portable or non-portable. Examples of electronic devices that may be used for implementing the described system and method include: a desktop computer, laptop computer, television, smartphone, tablet, music player, audio device, kiosk, set-top box, game system, wearable device, consumer electronic device, server computer, and/or the like. An electronic device may use any operating system such as, for example and without limitation: Linux; Microsoft Windows, available from Microsoft Corporation of Redmond, Washington; Mac OS X, available from Apple Inc. of Cupertino, California; iOS, available from Apple Inc. of Cupertino, California; Android, available from Google, Inc.
of Mountain View, California; and/or any other operating system that is adapted for use on the device.

[0262] While a limited number of embodiments have been described herein, those skilled in the art, having benefit of the above description, will appreciate that other embodiments may be devised. In addition, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the subject matter. Accordingly, the disclosure is intended to be illustrative, but not limiting, of scope.
CLAIMS

What is claimed is:

1. A computer-implemented method for generating a customized highlight show having a narrative, for presentation to a user, comprising:
 at a processor, obtaining source content comprising a representation of at least a portion of at least one event;
 at the processor, identifying at least one narrative relating to at least a portion of the source content;
 at the processor, identifying occurrences within the at least one event;
 at the processor, automatically prioritizing the identified occurrences based at least in part on the degree to which they support the identified at least one narrative;
 at the processor, automatically generating a customized highlight show based on the identified and prioritized occurrences; and
 at an output device, outputting the customized highlight show.

2. The computer-implemented method of claim 1, wherein automatically prioritizing the identified occurrences comprises:
 at the processor, obtaining auxiliary data describing the occurrences;
 at the processor, augmenting the source content with the obtained auxiliary data;
 at the processor, generating highlight segments based on the augmented source content;
 at the processor, selecting highlight segments based on the degree to which they relate to the identified at least one narrative;
 at the processor, tagging the selected highlight segments; and
 at the processor, generating at least one output file comprising a representation of the tagged highlight segments;
and wherein automatically generating a customized highlight show
comprises automatically generating a customized highlight show based on
the at least one output file.

3. The computer-implemented method of claim 2, wherein obtaining
auxiliary data describing the occurrences comprises at least one selected from
the group consisting of:

- at the processor, loading play-by-play data;
- at the processor, loading player data;
- at the processor, loading data extracted from a video feed; and
- at the processor, loading data extracted from an audio feed.

4. The computer-implemented method of claim 2, wherein obtaining
auxiliary data describing the occurrences comprises:

- at the processor, loading the auxiliary data; and
- at the processor, automatically determining whether there are any er-
 rors in the loaded data;
- at the processor, responsive to a determination of at least one error,
 automatically correcting the at least one error;
- at the processor, automatically determining whether there are any in-
 consistencies in the loaded data;
- at the processor, responsive to a determination of at least one inconsis-
 tency, automatically reconciling the at least one inconsis-
 tency.

5. The computer-implemented method of claim 2, wherein augmenting
the source content with the obtained auxiliary data comprises:
identifying a plurality of occurrences represented in the obtained auxil-
ary data;
for each of the identified occurrences, automatically matching the identified occurrence to an occurrence within the source content; and associating a portion of the auxiliary data describing the occurrence with the occurrence within the source content.

6. The computer-implemented method of claim 2, wherein automatically prioritizing the identified occurrences further comprises:

 at the processor, automatically determining whether there are any discrepancies between the source content and the obtained auxiliary data; and
 at the processor, responsive to a determination that there is at least one discrepancy between the source content and the obtained auxiliary data, automatically reconciling the at least one discrepancy.

7. The computer-implemented method of claim 2, wherein generating highlight segments based on the augmented source content comprises performing at least one selected from the group consisting of:

 at the processor, automatically verifying occurrences within the augmented source content and storing data describing the identified occurrences;
 at the processor, automatically identifying possessions within the augmented source content and storing data describing the identified possessions;
 at the processor, automatically identifying sequences within the augmented source content and storing data describing the identified sequences; and
 at the processor, automatically identifying strings within the augmented source content and storing data describing the identified strings.
8. The computer-implemented method of claim 2, wherein selecting highlight segments based on the degree to which they relate to the identified at least one narrative comprises:
 at the processor, automatically determining a narrative bonus for each identified occurrence;
 at the processor, automatically determining segment priorities for the identified occurrences, based at least in part on the narrative bonuses; and
 at the processor, automatically selecting highlight segments, based on the determined segment priorities.

9. The computer-implemented method of claim 8, wherein selecting highlight segments based on the degree to which they relate to the identified at least one narrative further comprises:
 at the processor, automatically determining a novelty for each of at least a subset of the identified occurrences;

 and wherein selecting highlight segments comprises automatically selecting highlight segments based at least in part on the determined novelty.

10. The computer-implemented method of claim 2, wherein tagging the selected highlight segments comprises:
 at the processor, automatically creating timed tags representing selections of highlight segments for the highlight show; and
 at the processor, automatically adding segment tags to the selected highlight segments.

11. The computer-implemented method of claim 2, wherein generating at least one output file comprises:
 at the processor, automatically creating individual segment profiles;
at the processor, automatically sorting the segment profiles;
at the processor, automatically generating a default file containing the
sorted segment profiles; and
at a storage device, automatically storing the generated default file.

12. The computer-implemented method of claim 11, wherein generating at least one output file further comprises:
at the processor, automatically generating at least one customer-specific file format from the default file; and
at the storage device, automatically storing the customer-specific file using the customer-specific file format.

13. The computer-implemented method of claim 1, further comprising:
at the processor, automatically determining at least one characteristic of the user;
wherein automatically prioritizing the identified occurrences comprises automatically prioritizing the identified occurrences based at least in part on the determined at least one characteristic of the user.

14. The computer-implemented method of claim 13, wherein each event comprises a sporting event, and wherein determining at least one characteristic of the user comprises automatically determining the user’s affinity for at least one of a team, sport, player, and league.

15. The computer-implemented method of claim 13, wherein determining at least one characteristic of the user comprises automatically determining at least one selected from the group consisting of:
a geographic characteristic;
a demographic characteristic; and
a social network profile.
16. The computer-implemented method of claim 13, wherein automatically prioritizing the identified occurrences comprises automatically determining priorities based at least in part on excitement level that takes into account at least one determined characteristic of the user.

17. The computer-implemented method of claim 1, wherein each event comprises a sporting event.

18. The computer-implemented method of claim 1, wherein each event comprises a non-sporting event.

19. The computer-implemented method of claim 1, wherein automatically prioritizing the identified occurrences comprises automatically determining priorities based at least in part on a determined excitement level.

20. The computer-implemented method of claim 1, wherein outputting the customized highlight show comprises displaying video of the customized highlight show on a display device.

21. The computer-implemented method of claim 1, wherein outputting the customized highlight show comprises outputting audio of the customized highlight show.

22. The computer-implemented method of claim 1, wherein the steps of obtaining source content, identifying at least one narrative, identifying occurrences, prioritizing the identified occurrences, and automatically generating a customized highlight show are performed at a server;

and wherein outputting the customized highlight show comprises transmitting the customized highlight show from the server to a client device.
23. The computer-implemented method of claim 1, wherein obtaining source content comprising a representation of at least portion of a plurality of events comprises obtaining source content selected from the group consisting of:

- a live broadcast;
- a recorded broadcast;
- a video archive;
- content from a website;
- content from a video-sharing site;
- content stored on a server;
- content stored on a mobile computing device;
- content stored on a camera;
- on-demand content;
- content stored locally;
- content captured by a device associated with the user; and
- pre-curated content.

24. A non-transitory computer-readable medium for generating a customized highlight show having a narrative, for presentation to a user, comprising instructions stored thereon, that when executed by a processor, perform the steps of:

- obtaining source content comprising a representation of at least a portion of at least one event;
- identifying at least one narrative relating to at least a portion of the source content;
- identifying occurrences within the at least one event;
- automatically prioritizing the identified occurrences based at least in part on the degree to which they support the identified at least one narrative;
- automatically generating a customized highlight show based on the identified and prioritized occurrences; and
causing an output device to output the customized highlight show.

25. The non-transitory computer-readable medium of claim 24, wherein automatically prioritizing the identified occurrences comprises:
 obtaining auxiliary data describing the occurrences;
 augmenting the source content with the obtained auxiliary data;
 generating highlight segments based on the augmented source content;
 selecting highlight segments based on the degree to which they relate to the identified at least one narrative;
 tagging the selected highlight segments; and
 generating at least one output file comprising a representation of the tagged highlight segments;

 and wherein automatically generating a customized highlight show comprises automatically generating a customized highlight show based on the at least one output file.

26. The non-transitory computer-readable medium of claim 25, wherein obtaining auxiliary data describing the occurrences comprises at least one selected from the group consisting of:
 loading play-by-play data;
 loading player data;
 loading data extracted from a video feed; and
 loading data extracted from an audio feed.

27. The non-transitory computer-readable medium of claim 25, wherein obtaining auxiliary data describing the occurrences comprises:
 loading the auxiliary data; and
 automatically determining whether there are any errors in the loaded data;
responsive to a determination of at least one error, automatically cor-
recting the at least one error;
automatically determining whether there are any inconsistencies in the
loaded data; and
responsive to a determination of at least one inconsistency, automatic-
cally reconciling the at least one inconsistency.

28. The non-transitory computer-readable medium of claim 25,
wherein generating highlight segments based on the augmented source con-
tent comprises performing at least one selected from the group consisting of:
automatically verifying occurrences within the augmented source con-
tent and storing data describing the identified occurrences;
automatically identifying possessions within the augmented source
content and storing data describing the identified possessions;
automatically identifying sequences within the augmented source con-
tent and storing data describing the identified sequences;
and
automatically identifying strings within the augmented source content
and storing data describing the identified strings.

29. The non-transitory computer-readable medium of claim 25,
wherein selecting highlight segments based on the degree to which they relate
to the identified at least one narrative comprises:
automatically determining a narrative bonus for each identified occur-
rence;
automatically determining segment priorities for the identified occur-
rences, based at least in part on the narrative bonuses; and
automatically selecting highlight segments, based on the determined
segment priorities.
30. The non-transitory computer-readable medium of claim 29, wherein selecting highlight segments based on the degree to which they relate to the identified at least one narrative further comprises:

- automatically determining a novelty for each of at least a subset of the identified occurrences;

and wherein selecting highlight segments comprises automatically selecting highlight segments based at least in part on the determined novelty.

31. The non-transitory computer-readable medium of claim 24, further comprising:

- automatically determining at least one characteristic of the user;

wherein automatically prioritizing the identified occurrences comprises automatically prioritizing the identified occurrences based at least in part on the determined at least one characteristic of the user.

32. The non-transitory computer-readable medium of claim 31, wherein each event comprises a sporting event, and wherein determining at least one characteristic of the user comprises automatically determining the user's affinity for at least one of a team, sport, player, and league.

33. The non-transitory computer-readable medium of claim 24, wherein automatically prioritizing the identified occurrences comprises automatically determining priorities based at least in part on a determined excitement level.

34. The non-transitory computer-readable medium of claim 24, wherein obtaining source content comprising a representation of at least portion of a plurality of events comprises obtaining source content selected from the group consisting of:
a live broadcast;

a recorded broadcast;

a video archive;

content from a website;

content from a video-sharing site;

content stored on a server;

content stored on a mobile computing device;

content stored on a camera;

on-demand content;

content stored locally;

content captured by a device associated with the user; and

pre-curated content.

35. A system for generating a customized highlight show having a narrative, for presentation to a user, comprising:

a processor, configured to perform the steps of:

obtaining source content comprising a representation of at least a portion of at least one event;

at the processor, identifying at least one narrative relating to at least a portion of the source content;

identifying occurrences within the at least one event; and

automatically prioritizing the identified occurrences based at least in part on the degree to which they support the identified at least one narrative;

automatically generating a customized highlight show based on the identified and prioritized occurrences; and

an output device, communicatively coupled to the processor, configured to output the customized highlight show.

36. The system of claim 35, wherein automatically prioritizing the identified occurrences comprises:
obtaining auxiliary data describing the occurrences;
augmenting the source content with the obtained auxiliary data;
generating highlight segments based on the augmented source content;
selecting highlight segments based on the degree to which they relate
to the identified at least one narrative;
tagging the selected highlight segments; and
generating at least one output file comprising a representation of the
tagged highlight segments;

and wherein automatically generating a customized highlight show
comprises automatically generating a customized highlight show based on
the at least one output file.

37. The system of claim 36, wherein obtaining auxiliary data describing
the occurrences comprises at least one selected from the group consisting of:
loading play-by-play data;
loading player data;
loading data extracted from a video feed;
loading data extracted from an audio feed.

38. The system of claim 36, wherein obtaining auxiliary data describing
the occurrences comprises:
loading the auxiliary data; and
automatically determining whether there are any errors in the loaded
data;
responsive to a determination of at least one error, automatically cor-
recting the at least one error;
automatically determining whether there are any inconsistencies in the
loaded data;
responsive to a determination of at least one inconsistency, automati-
cally reconciling the at least one inconsistency.
39. The system of claim 36, wherein generating highlight segments based on the augmented source content comprises performing at least one selected from the group consisting of:

- automatically verifying occurrences within the augmented source content and storing data describing the identified occurrences;
- automatically identifying possessions within the augmented source content and storing data describing the identified possessions;
- automatically identifying sequences within the augmented source content and storing data describing the identified sequences; and
- automatically identifying strings within the augmented source content and storing data describing the identified strings.

40. The system of claim 36, wherein selecting highlight segments based on the degree to which they relate to the identified at least one narrative comprises:

- automatically determining a narrative bonus for each identified occurrence;
- automatically determining segment priorities for the identified occurrences, based at least in part on the narrative bonuses; and
- automatically selecting highlight segments, based on the determined segment priorities.

41. The system of claim 40, wherein selecting highlight segments based on the degree to which they relate to the identified at least one narrative further comprises:

- automatically determining a novelty for each of at least a subset of the identified occurrences;
and wherein selecting highlight segments comprises automatically selecting highlight segments based at least in part on the determined novelty.

42. The system of claim 35, wherein the processor is further configured to automatically determine at least one characteristic of the user;

and wherein automatically prioritizing the identified occurrences comprises automatically prioritizing the identified occurrences based at least in part on the determined at least one characteristic of the user.

43. The system of claim 42, wherein each event comprises a sporting event, and wherein determining at least one characteristic of the user comprises automatically determining the user’s affinity for at least one of a team, sport, player, and league.

44. The system of claim 35, wherein automatically prioritizing the identified occurrences comprises automatically determining priorities based at least in part on a determined excitement level.

45. The system of claim 35, wherein the output device comprises a display device configured to display video of the customized highlight show.

46. The system of claim 35, wherein the output device comprises an audio device configured to output audio of the customized highlight show.

47. The system of claim 35, wherein:

the processor is at a server;

the output device is at a client device; and

the server is configured to transmit the customized highlight show to the client device.
48. The system of claim 35, wherein obtaining source content comprising a representation of at least portion of a plurality of events comprises obtaining source content selected from the group consisting of:

- a live broadcast;
- a recorded broadcast;
- a video archive;
- content from a website;
- content from a video-sharing site;
- content stored on a server;
- content stored on a mobile computing device;
- content stored on a camera;
- on-demand content;
- content stored locally;
- content captured by a device associated with the user; and
- pre-curated content.
FIG. 2C
Start

Obtain personal characteristics of user

Receive request for highlight show

Select event(s) for highlight show generation

Determine length of time available for highlight show

Determine dynamic excitement level(s) and priority for possessions, occurrences, and/or strings within event(s)

Identify possessions, occurrences and/or strings having high priority, based on excitement level and/or other factors

Select possessions, occurrences and/or strings

Identify start/end times for highlight segments including selected possessions, occurrences and/or strings

Assemble highlight segments to generate highlight show

Present highlight show to user

End

FIG. 4A

SUBSTITUTE SHEET (RULE 26)
400 Start

410 Obtain personal characteristics of user

418 Receive request for highlight show

411 Select event(s) for highlight show generation

412 Determine length of time available for highlight show

413 Determine dynamic excitement level(s) and priority for possessions, occurrences, and/or strings within event(s)

419 Establish initial threshold priority

421 Adjust threshold priority

414 Identify possessions, occurrences and/or strings having high priority, based on excitement level and/or other factors

415 Select segments

416 Identify start/end times for selected segments

417 Assemble segments to generate highlight show

420 Is length correct?

418 Present highlight show to user

499 End

FIG. 4B
FIG. 4C

SUBSTITUTE SHEET (RULE 26)
452

465
Load PBP data and create pbpData

466
Load Player data and create rosters

467
Load Video data and create videoData (ocrData)

468
Load Audio data and create audioData

FIG. 4D
453

469
Clean pbpData

470
Clean videoData

485
Clean audioData

FIG. 4E
455

471
Next PBP occurrence

472
Match PBP occurrence to corresponding identified occurrence

473
Store PBP data with each relevant occurrence

474
More PBP occurrences?

Yes

No

(Continue to next step)

FIG. 4F
FIG. 4G

486 Verify occurrences and modify playData

487 Identify possessions and create posData

488 Identify sequences and create seqData

489 Identify strings and create stringData
475 Identify theme(s)

476 Determine narrative bonuses

477 Calculate segment priorities

478 Store play novelty

FIG. 4H
460

481
Create individual segment profiles

482
Sort by segment start time

483
Create and save default file

484
Create and save customer-specific file format(s) from default file

FIG. 4K
<table>
<thead>
<tr>
<th>drive_id</th>
<th>team_in_possession</th>
<th>novelty_drive</th>
<th>EQ_final</th>
<th>delta_EQ</th>
<th>delta_comback</th>
<th>nail_biter</th>
<th>score</th>
<th>score_change</th>
<th>lead_change</th>
<th>possession_priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chiefs</td>
<td>10.90113</td>
<td>68</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>-7</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Colts</td>
<td>8.966667</td>
<td>73</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>-7</td>
<td>-7</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Chiefs</td>
<td>9.666667</td>
<td>90</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>-7</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Colts</td>
<td>1.416667</td>
<td>86</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>-7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Chiefs</td>
<td>10.4</td>
<td>90</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>-7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Chiefs</td>
<td>3.7</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>-7</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Chiefs</td>
<td>4.3376</td>
<td>82</td>
<td>-8</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>-7</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Colts</td>
<td>5.462436</td>
<td>75</td>
<td>-7</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>-10</td>
<td>-3</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>Chiefs</td>
<td>8.994533</td>
<td>64</td>
<td>-11</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>-10</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>Colts</td>
<td>6.3604</td>
<td>58</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>-10</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Chiefs</td>
<td>-0.25</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>-10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Chiefs</td>
<td>2.7</td>
<td>61</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>-10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Chiefs</td>
<td>4.55</td>
<td>55</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>-10</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Colts</td>
<td>8.608667</td>
<td>72</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>-17</td>
<td>-7</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>Chiefs</td>
<td>3.366667</td>
<td>82</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>-17</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>Colts</td>
<td>5.8</td>
<td>98</td>
<td>16</td>
<td>0.071429</td>
<td>0</td>
<td>38</td>
<td>-24</td>
<td>-7</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>Chiefs</td>
<td>0.2</td>
<td>98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>-24</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>Colts</td>
<td>3.05</td>
<td>99</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>-24</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>Chiefs</td>
<td>1.14386</td>
<td>95</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>-24</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>Colts</td>
<td>9.354267</td>
<td>99</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>-31</td>
<td>-7</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>Chiefs</td>
<td>3.0376</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>-31</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>Colts</td>
<td>8.522933</td>
<td>100</td>
<td>1</td>
<td>0.071429</td>
<td>0</td>
<td>41</td>
<td>-38</td>
<td>-7</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>Chiefs</td>
<td>7.731902</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>44</td>
<td>-38</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>24</td>
<td>Colts</td>
<td>14.54842</td>
<td>100</td>
<td>0</td>
<td>0.142857</td>
<td>24</td>
<td>44</td>
<td>-45</td>
<td>-7</td>
<td>14</td>
</tr>
<tr>
<td>25</td>
<td>Chiefs</td>
<td>6.40528</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>44</td>
<td>-45</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>26</td>
<td>Colts</td>
<td>-0.02272</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>44</td>
<td>-45</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>drive_id</td>
<td>team in novelty_dr</td>
<td>final EQ</td>
<td>delta_EQ</td>
<td>delta_connai_r</td>
<td>hitler</td>
<td>score</td>
<td>chan lead chang</td>
<td>possession_priority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>--------</td>
<td>-------</td>
<td>-----------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiefs</td>
<td>10.90113</td>
<td>68</td>
<td>-2</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colts</td>
<td>8.966667</td>
<td>73</td>
<td>5</td>
<td>0</td>
<td>7-7</td>
<td>0</td>
<td>7-7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiefs</td>
<td>9.666667</td>
<td>80</td>
<td>7</td>
<td>0</td>
<td>10-7</td>
<td>0</td>
<td>10-7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiefs</td>
<td>10.4</td>
<td>90</td>
<td>4</td>
<td>0</td>
<td>17-7</td>
<td>0</td>
<td>17-7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiefs</td>
<td>4.3376</td>
<td>82</td>
<td>-8</td>
<td>0</td>
<td>24-7</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colts</td>
<td>5.462435</td>
<td>75</td>
<td>-7</td>
<td>0</td>
<td>24-10</td>
<td>0</td>
<td>3-7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colts</td>
<td>8.994533</td>
<td>64</td>
<td>-11</td>
<td>0</td>
<td>31-10</td>
<td>0</td>
<td>10-31</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colts</td>
<td>8.606667</td>
<td>72</td>
<td>17</td>
<td>0</td>
<td>38-17</td>
<td>0</td>
<td>17</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colts</td>
<td>9.366667</td>
<td>82</td>
<td>10</td>
<td>0</td>
<td>38-17</td>
<td>0</td>
<td>17</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colts</td>
<td>5.8</td>
<td>96</td>
<td>16</td>
<td>0.071429</td>
<td>38-24</td>
<td>0</td>
<td>24</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colts</td>
<td>9.354267</td>
<td>99</td>
<td>4</td>
<td>0</td>
<td>41-31</td>
<td>0</td>
<td>31</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colts</td>
<td>8.522933</td>
<td>100</td>
<td>1</td>
<td>0.071429</td>
<td>41-38</td>
<td>0</td>
<td>38</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiefs</td>
<td>7.311902</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>24-44</td>
<td>0</td>
<td>24</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colts</td>
<td>14.54842</td>
<td>100</td>
<td>0</td>
<td>0.142857</td>
<td>24-44</td>
<td>0</td>
<td>44</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiefs</td>
<td>6.40525</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>25-44</td>
<td>0</td>
<td>44</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 5B
Most exciting plays with priority >= 180

<table>
<thead>
<tr>
<th>EVENT ID</th>
<th>time_in_minutes</th>
<th>game_clock_string</th>
<th>period</th>
<th>ball_clock</th>
<th>event_team</th>
<th>drive</th>
<th>down</th>
<th>to go</th>
<th>yardline</th>
<th>event_id</th>
<th>EQ_final</th>
<th>players</th>
<th>key_players</th>
<th>novelty</th>
<th>approcf</th>
<th>player_hype</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>6:15</td>
<td>Chiefs with</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>Pass</td>
<td>1</td>
<td>168</td>
<td>217357</td>
<td>225 retro</td>
<td>7.80</td>
<td>530.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7:00</td>
<td>Colts with</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>57</td>
<td>Pass</td>
<td>1</td>
<td>69</td>
<td>461175</td>
<td>468 retro</td>
<td>2.90</td>
<td>200.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4:37</td>
<td>Colts with</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>Pass</td>
<td>1</td>
<td>74</td>
<td>461175</td>
<td>468 retro</td>
<td>4.50</td>
<td>333.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3:26</td>
<td>Chiefs with</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>Rush</td>
<td>4</td>
<td>79</td>
<td>495184</td>
<td>323 retro</td>
<td>3.00</td>
<td>237.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1:53</td>
<td>Chiefs with</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>70</td>
<td>Pass</td>
<td>1</td>
<td>89</td>
<td>217357</td>
<td>225 retro</td>
<td>11.90</td>
<td>1050.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1:48</td>
<td>Chiefs with</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>70</td>
<td>Pass</td>
<td>1</td>
<td>89</td>
<td>217357</td>
<td>225 retro</td>
<td>11.90</td>
<td>1050.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>14:38</td>
<td>Trent Richardson</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>10</td>
<td>80</td>
<td>Fumble</td>
<td>14</td>
<td>90</td>
<td>506859</td>
<td>409 novel</td>
<td>4.20</td>
<td>378.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>14:28</td>
<td>Chiefs with</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>10</td>
<td>17</td>
<td>Rush</td>
<td>4</td>
<td>90</td>
<td>495184</td>
<td>221 retro</td>
<td>2.44</td>
<td>219.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>13:10</td>
<td>Chiefs with</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>Pass</td>
<td>1</td>
<td>84</td>
<td>217357</td>
<td>400 retro</td>
<td>4.25</td>
<td>357.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>12:32</td>
<td>Chiefs with</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>77</td>
<td>Pass</td>
<td>1</td>
<td>78</td>
<td>161681</td>
<td>461 retro</td>
<td>2.70</td>
<td>210.60</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>10:47</td>
<td>Chiefs with</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>Rush</td>
<td>4</td>
<td>76</td>
<td>461175</td>
<td>334 retro</td>
<td>3.78</td>
<td>287.81</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>3:29</td>
<td>Chiefs with</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>38</td>
<td>Pass</td>
<td>1</td>
<td>76</td>
<td>217357</td>
<td>334 retro</td>
<td>2.90</td>
<td>220.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>1:55</td>
<td>Chiefs with</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>Rush</td>
<td>4</td>
<td>66</td>
<td>405184</td>
<td>retro</td>
<td>4.44</td>
<td>263.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>0:33</td>
<td>Chiefs with</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>17</td>
<td>50</td>
<td>Intercept</td>
<td>9</td>
<td>461175</td>
<td>246 novel</td>
<td>3.85</td>
<td>223.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>0:00</td>
<td>Chiefs with</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>10</td>
<td>60</td>
<td>Intercept</td>
<td>9</td>
<td>461175</td>
<td>214 novel</td>
<td>3.20</td>
<td>165.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>13:44</td>
<td>Chiefs with</td>
<td>3</td>
<td>0</td>
<td>13</td>
<td>3</td>
<td>10</td>
<td>Pass</td>
<td>1</td>
<td>53</td>
<td>217357</td>
<td>495 novel</td>
<td>4.00</td>
<td>212.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>12:29</td>
<td>Chiefs with</td>
<td>3</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>10</td>
<td>56</td>
<td>Pass</td>
<td>1</td>
<td>59</td>
<td>461175</td>
<td>542 retro</td>
<td>5.10</td>
<td>300.90</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>11:52</td>
<td>Chiefs with</td>
<td>3</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>Rush</td>
<td>4</td>
<td>70</td>
<td>297031</td>
<td>retro</td>
<td>5.04</td>
<td>352.80</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>9:10</td>
<td>Chiefs with</td>
<td>3</td>
<td>0</td>
<td>15</td>
<td>2</td>
<td>6</td>
<td>48</td>
<td>Fumble</td>
<td>14</td>
<td>82</td>
<td>217357</td>
<td>323 retro</td>
<td>6.80</td>
<td>557.60</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>8:08</td>
<td>Chiefs with</td>
<td>3</td>
<td>1</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>22</td>
<td>Pass</td>
<td>1</td>
<td>79</td>
<td>397975</td>
<td>461 retro</td>
<td>2.40</td>
<td>189.60</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>7:36</td>
<td>Chiefs with</td>
<td>3</td>
<td>1</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>Pass</td>
<td>1</td>
<td>97</td>
<td>461175</td>
<td>297 retro</td>
<td>4.15</td>
<td>402.55</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>5:50</td>
<td>Chiefs with</td>
<td>3</td>
<td>1</td>
<td>18</td>
<td>1</td>
<td>10</td>
<td>72</td>
<td>Intercept</td>
<td>9</td>
<td>99</td>
<td>461175</td>
<td>214 novel</td>
<td>3.05</td>
<td>301.95</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>4:07</td>
<td>Chiefs with</td>
<td>3</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>10</td>
<td>60</td>
<td>Pass</td>
<td>1</td>
<td>94</td>
<td>461175</td>
<td>297 retro</td>
<td>3.00</td>
<td>262.00</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>3:35</td>
<td>Chiefs with</td>
<td>3</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>10</td>
<td>55</td>
<td>Pass</td>
<td>1</td>
<td>93</td>
<td>461175</td>
<td>400 retro</td>
<td>3.50</td>
<td>325.50</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>3:00</td>
<td>Chiefs with</td>
<td>3</td>
<td>1</td>
<td>20</td>
<td>2</td>
<td>10</td>
<td>25</td>
<td>Rush</td>
<td>4</td>
<td>91</td>
<td>297031</td>
<td>334 retro</td>
<td>1.99</td>
<td>180.87</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>2:34</td>
<td>Chiefs with</td>
<td>3</td>
<td>1</td>
<td>20</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td>Pass</td>
<td>1</td>
<td>99</td>
<td>461175</td>
<td>399 retro</td>
<td>4.70</td>
<td>465.30</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>14:14</td>
<td>Chiefs with</td>
<td>4</td>
<td>1</td>
<td>22</td>
<td>3</td>
<td>10</td>
<td>90</td>
<td>Pass</td>
<td>1</td>
<td>99</td>
<td>461175</td>
<td>468 retro</td>
<td>2.60</td>
<td>257.40</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>14:06</td>
<td>Chiefs with</td>
<td>4</td>
<td>1</td>
<td>22</td>
<td>1</td>
<td>10</td>
<td>74</td>
<td>Pass</td>
<td>1</td>
<td>99</td>
<td>461175</td>
<td>468 retro</td>
<td>1.90</td>
<td>168.10</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>12:31</td>
<td>Chiefs with</td>
<td>4</td>
<td>1</td>
<td>22</td>
<td>2</td>
<td>4</td>
<td>35</td>
<td>Rush</td>
<td>4</td>
<td>98</td>
<td>461175</td>
<td>161 retro</td>
<td>1.88</td>
<td>184.49</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 5C
10 most exciting plays in chronological order

<table>
<thead>
<tr>
<th>event_id</th>
<th>event_text</th>
<th>period</th>
<th>game_id</th>
<th>sit</th>
<th>clock_string</th>
<th>drive_id</th>
<th>down</th>
<th>logo</th>
<th>yardline</th>
<th>key_play_id</th>
<th>team</th>
<th>event_type</th>
<th>novelty</th>
<th>play_priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>6:75 8:15 rem Alex Smith</td>
<td>1</td>
<td>Chiefs w</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>Pass</td>
<td>1</td>
<td>68</td>
<td>[217357, retro]</td>
<td>7.80</td>
<td>530.40</td>
</tr>
<tr>
<td>30</td>
<td>11:56:57 3:26 rem Alex Smith</td>
<td>1</td>
<td>Chiefs w</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>65</td>
<td>Pass</td>
<td>1</td>
<td>81</td>
<td>[217357, retro]</td>
<td>6.80</td>
<td>550.80</td>
</tr>
<tr>
<td>42</td>
<td>15:18:33 14:48 rem Alex Smith</td>
<td>2</td>
<td>Chiefs w</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>79</td>
<td>Pass</td>
<td>1</td>
<td>89</td>
<td>[217357, retro]</td>
<td>11.90</td>
<td>1059.10</td>
</tr>
<tr>
<td>114</td>
<td>35:81:67 9:10 rem Alex Smith</td>
<td>3</td>
<td>Chiefs w</td>
<td>0</td>
<td>15</td>
<td>2</td>
<td>6</td>
<td>48</td>
<td>Fumble</td>
<td>14</td>
<td>82</td>
<td>[217357, retro]</td>
<td>6.80</td>
<td>557.60</td>
</tr>
<tr>
<td>139</td>
<td>42:43:33 2:34 rem Andrew Lu</td>
<td>3</td>
<td>Colts w</td>
<td>1</td>
<td>20</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>Pass</td>
<td>1</td>
<td>99</td>
<td>[461175, retro]</td>
<td>4.70</td>
<td>465.30</td>
</tr>
<tr>
<td>161</td>
<td>49:25 10:45 rem Donald Brc</td>
<td>4</td>
<td>Colts w</td>
<td>1</td>
<td>22</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>Fumble</td>
<td>14</td>
<td>100</td>
<td>[297031, retro]</td>
<td>4.54</td>
<td>454.00</td>
</tr>
<tr>
<td>171</td>
<td>52:6 7:23 rem Alex Smith</td>
<td>4</td>
<td>Chiefs w</td>
<td>0</td>
<td>23</td>
<td>3</td>
<td>7</td>
<td>56</td>
<td>Pass</td>
<td>1</td>
<td>100</td>
<td>[217357, retro]</td>
<td>4.40</td>
<td>440.20</td>
</tr>
<tr>
<td>181</td>
<td>55:51:67 4:29 rem Andrew Lu</td>
<td>4</td>
<td>Colts w</td>
<td>1</td>
<td>24</td>
<td>1</td>
<td>10</td>
<td>64</td>
<td>Pass</td>
<td>1</td>
<td>100</td>
<td>[461175, retro]</td>
<td>17.81</td>
<td>1780.98</td>
</tr>
<tr>
<td>184</td>
<td>55:65 4:21 rem Alex Smith</td>
<td>4</td>
<td>Chiefs w</td>
<td>0</td>
<td>25</td>
<td>1</td>
<td>10</td>
<td>80</td>
<td>Pass</td>
<td>1</td>
<td>100</td>
<td>[217357, retro]</td>
<td>4.13</td>
<td>413.00</td>
</tr>
<tr>
<td>190</td>
<td>58:20 rem Alex Smith</td>
<td>4</td>
<td>Chiefs w</td>
<td>0</td>
<td>25</td>
<td>4</td>
<td>11</td>
<td>43</td>
<td>Incomplete Pas</td>
<td>2</td>
<td>100</td>
<td>[217357, retro]</td>
<td>4.15</td>
<td>415.00</td>
</tr>
</tbody>
</table>

FIG. 5D
<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
<th>Play</th>
<th>Description</th>
<th>Home</th>
<th>Score</th>
<th>Opponent</th>
<th>Score</th>
<th>Down</th>
<th>Yardline</th>
<th>Field Goal Info</th>
<th>Touchdown Info</th>
<th>Play Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>6:75</td>
<td>8:15</td>
<td>rema Alex Smith pass</td>
<td>1</td>
<td>68</td>
<td>Chiefs w</td>
<td>65</td>
<td>6</td>
<td>Pass</td>
<td>217357, retro</td>
<td>7.80</td>
<td>530.40</td>
</tr>
<tr>
<td>30</td>
<td>11.57</td>
<td>3:26</td>
<td>rema Alex Smith pass</td>
<td>1</td>
<td>81</td>
<td>Chiefs w</td>
<td>65</td>
<td>6</td>
<td>Pass</td>
<td>217357, retro</td>
<td>6.80</td>
<td>550.80</td>
</tr>
<tr>
<td>42</td>
<td>15.18</td>
<td>14:48</td>
<td>rema Alex Smith pass</td>
<td>2</td>
<td>89</td>
<td>Chiefs w</td>
<td>79</td>
<td>10</td>
<td>Pass</td>
<td>217357, retro</td>
<td>11.90</td>
<td>1059.10</td>
</tr>
<tr>
<td>45</td>
<td>15.35</td>
<td>14:38</td>
<td>rem Trent Richardson</td>
<td>2</td>
<td>90</td>
<td>Colts w</td>
<td>80</td>
<td>10</td>
<td>Fumble</td>
<td>508659, novelty</td>
<td>4.20</td>
<td>378.00</td>
</tr>
<tr>
<td>49</td>
<td>16.83</td>
<td>13:10</td>
<td>rem Alex Smith pass</td>
<td>2</td>
<td>94</td>
<td>Chiefs w</td>
<td>5</td>
<td>5</td>
<td>Pass</td>
<td>217357, retro</td>
<td>4.25</td>
<td>357.00</td>
</tr>
<tr>
<td>107</td>
<td>33.13</td>
<td>11:52</td>
<td>rem Donald Brown rec</td>
<td>3</td>
<td>70</td>
<td>Colts w</td>
<td>10</td>
<td>10</td>
<td>Rush</td>
<td>297031, retro</td>
<td>5.04</td>
<td>520.80</td>
</tr>
<tr>
<td>114</td>
<td>35.82</td>
<td>9:10</td>
<td>rema Alex Smith sack</td>
<td>3</td>
<td>82</td>
<td>Chiefs w</td>
<td>46</td>
<td>2</td>
<td>Fumble</td>
<td>217357, retro</td>
<td>6.00</td>
<td>557.60</td>
</tr>
<tr>
<td>120</td>
<td>37.40</td>
<td>7:36</td>
<td>rema Andrew Luck pas</td>
<td>3</td>
<td>97</td>
<td>Colts w</td>
<td>3</td>
<td>3</td>
<td>Pass</td>
<td>461175, retro</td>
<td>4.15</td>
<td>402.55</td>
</tr>
<tr>
<td>139</td>
<td>42.43</td>
<td>2:34</td>
<td>rema Andrew Luck pass</td>
<td>3</td>
<td>99</td>
<td>Colts w</td>
<td>12</td>
<td>12</td>
<td>Pass</td>
<td>461175, retro</td>
<td>4.70</td>
<td>465.30</td>
</tr>
<tr>
<td>161</td>
<td>49.25</td>
<td>10:45</td>
<td>rem Donald Brown rec</td>
<td>4</td>
<td>100</td>
<td>Colts w</td>
<td>2</td>
<td>2</td>
<td>Fumble</td>
<td>297031, retro</td>
<td>4.54</td>
<td>454.00</td>
</tr>
<tr>
<td>171</td>
<td>52.60</td>
<td>7:23</td>
<td>rema Alex Smith pass</td>
<td>4</td>
<td>100</td>
<td>Chiefs w</td>
<td>56</td>
<td>7</td>
<td>Pass</td>
<td>461175, retro</td>
<td>4.40</td>
<td>440.20</td>
</tr>
<tr>
<td>180</td>
<td>55.03</td>
<td>4:58</td>
<td>rema Andrew Luck pass</td>
<td>4</td>
<td>100</td>
<td>Colts w</td>
<td>75</td>
<td>5</td>
<td>Pass</td>
<td>461175, retro</td>
<td>3.65</td>
<td>365.37</td>
</tr>
<tr>
<td>181</td>
<td>55.52</td>
<td>4:29</td>
<td>rema Andrew Luck pass</td>
<td>4</td>
<td>100</td>
<td>Colts w</td>
<td>64</td>
<td>10</td>
<td>Pass</td>
<td>461175, retro</td>
<td>17.81</td>
<td>1780.98</td>
</tr>
<tr>
<td>184</td>
<td>55.65</td>
<td>4:21</td>
<td>rema Alex Smith pass</td>
<td>4</td>
<td>100</td>
<td>Chiefs w</td>
<td>80</td>
<td>10</td>
<td>Pass</td>
<td>217357, retro</td>
<td>4.13</td>
<td>413.00</td>
</tr>
<tr>
<td>190</td>
<td>58.00</td>
<td>2:00</td>
<td>rema Alex Smith inco</td>
<td>4</td>
<td>100</td>
<td>Chiefs w</td>
<td>43</td>
<td>11</td>
<td>Incomplete</td>
<td>217357, retro</td>
<td>4.15</td>
<td>415.00</td>
</tr>
</tbody>
</table>

FIG. 5E
<table>
<thead>
<tr>
<th>Fantasy Roster</th>
<th>game</th>
<th>datetime</th>
<th>game_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis, Ken</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Martin, Jos</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>McCluster, KC</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Parker, Ro</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Poe, Donte</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Robinson, KC</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Sherman, jK</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Smith, Alex</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Smith, See</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Succop, Ry</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Zombo, Fr</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Bethea, Ar</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Brazill, La</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Brown, Dor</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Brown, Ser</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Butler, Dar</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Castonzo, Ind</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Chapman, Ind</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Choice, Ta</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Conner, Ks</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Davis, Von</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Fleener, C</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Freeman, j</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Gordy, Jos</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Havili, Star</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Heyward-B</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Jean Francis</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Landry, La</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Luck, Andr</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Lynch, Cor</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Mathews, Fl</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>Mathis, Ro</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>McAfee, P</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
<tr>
<td>McNary, Jc</td>
<td>0104.KC.Ir</td>
<td>1/4/2014 21:35</td>
<td>1321956</td>
</tr>
</tbody>
</table>
All fantasy plays in chronological order

<table>
<thead>
<tr>
<th>game_id</th>
<th>player_id</th>
<th>event</th>
<th>time_in_minutes</th>
<th>game</th>
<th>sit</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1321956</td>
<td>[184558, 2]</td>
<td>0.08 14:54</td>
<td>Re Jamaal</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1321956</td>
<td>[300346, 3]</td>
<td>0.68 14:19</td>
<td>Re Jamaal</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1321956</td>
<td>[225224, 4]</td>
<td>1.37 13:37</td>
<td>Re Alex Sm</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1321956</td>
<td>[495184, 5]</td>
<td>1.97 13:01</td>
<td>Re Alex Sm</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1321956</td>
<td>[225224, 6]</td>
<td>2.65 12:21</td>
<td>Re Alex Sm</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1321956</td>
<td>[300346, 7]</td>
<td>3.33 11:39</td>
<td>Re Jamaal</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1321956</td>
<td>[495184, 8]</td>
<td>3.67 11:20</td>
<td>Re Knile Da</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1321956</td>
<td>[334726, 9]</td>
<td>4.13 10:52</td>
<td>Re Alex Sm</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1321956</td>
<td>[495184, 10]</td>
<td>4.57 10:26</td>
<td>Re Knile Da</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1321956</td>
<td>[334726, 11]</td>
<td>5.22 09:46</td>
<td>Re Alex Sm</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1321956</td>
<td>[495184, 12]</td>
<td>5.83 09:09</td>
<td>Re Knile Da</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1321956</td>
<td>[406506, 13]</td>
<td>6.57 08:26</td>
<td>Re Alex Sm</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1321956</td>
<td>[225679, 14]</td>
<td>6.63 08:22</td>
<td>Re Alex Sm</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1321956</td>
<td>[225224, 15]</td>
<td>6.75 08:15</td>
<td>Re Alex Sm</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1321956</td>
<td>[334724, 16]</td>
<td>6.90 08:06</td>
<td>Re Andrew</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1321956</td>
<td>[468655, 17]</td>
<td>7.98 07:00</td>
<td>Re Andrew</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1321956</td>
<td>[334724, 18]</td>
<td>7.98 07:00</td>
<td>Re Andrew</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1321956</td>
<td>[214423, 19]</td>
<td>8.40 06:36</td>
<td>Re Andrew</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1321956</td>
<td>[397975, 20]</td>
<td>9.08 05:54</td>
<td>Re Andrew</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1321956</td>
<td>[334724, 21]</td>
<td>9.75 05:15</td>
<td>Re Andrew</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1321956</td>
<td>[468655, 22]</td>
<td>10.37 04:37</td>
<td>Re Andrew</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1321956</td>
<td>[225224, 23]</td>
<td>10.55 04:27</td>
<td>Re Alex Sm</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1321956</td>
<td>[406110, 24]</td>
<td>10.97 04:01</td>
<td>Re Knile Da</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1321956</td>
<td>[225224, 25]</td>
<td>11.57 03:25</td>
<td>Re Alex Sm</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1321956</td>
<td>[217357, 26]</td>
<td>12.40 02:56</td>
<td>Re Alex Sm</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1321956</td>
<td>[495184, 27]</td>
<td>12.50 02:30</td>
<td>Re Knile Da</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

FIG. 5H

Substitute Sheet (Rule 26)
row	time_in_minutes	game	description	period	game_clock_string	ball_on_field	event_team	down	logo	yardline	event_id	EQ_final	players	key_play_type	player_name	player_priority	player_novelty	event_priority	fantasy_priority		
5	1.97	13:01	re Alex Sm	1	13:01	Chiefs w	0	1	1	10	59	Pass	68	[217357, retro]	1.20	81.60	0.20	15.60	12.73		
8	3.67	11:20	re Knile Da	1	11:20	Chiefs w	0	1	2	3	32	Rush	4	[495184, retro]	1.23	83.46	0.48	37.24	31.08		
10	4.57	10:26	re Knile Da	1	10:26	Chiefs w	0	1	2	5	21	Rush	4	[495184, retro]	1.11	74.64	0.36	28.03	20.92		
12	5.83	9:09	re Knile Da	1	9:09	Chiefs w	0	1	2	3	9	Rush	4	[495184, retro]	1.25	82.50	0.15	11.40	9.41		
29	10.97	4:01	re Knile Da	1	4:01	Chiefs w	0	3	1	10	69	Rush	4	[495184, retro]	1.00	71.00	0.00	0.00	0.00		
32	12.50	2:30	re Knile Da	1	2:30	Chiefs w	0	3	2	2	2	Rush	4	[495184, retro]	2.10	165.90	-1.30	-114.40	189.79		
33	13.10	1:53	re Knile Da	1	1:53	Chiefs w	0	3	3	1	1	Rush	4	[495184, retro]	3.00	237.00	-2.70	-237.60	563.11		
46	15.53	14:26	re Knile Da	2	14:26	Chiefs w	0	7	1	10	17	Rush	4	[495184, retro]	2.44	219.38	1.69	156.95	344.32		
47	16.20	13:47	re Knile Da	2	13:47	Chiefs w	0	7	1	4	4	Rush	4	[495184, retro]	0.90	81.00	-0.50	-46.50	37.67		
65	20.85	9:08	re Knile Da	2	9:08	Chiefs w	0	9	1	10	81	Rush	4	[495184, retro]	1.34	100.47	0.34	31.58	31.73		
66	21.30	8:42	re Knile Da	2	8:42	Chiefs w	0	9	2	3	74	Rush	4	[495184, retro]	1.30	97.50	0.55	51.15	49.87		
70	24.02	5:59	re Alex Sm	2	5:59	Chiefs w	0	9	1	10	54	Pass	1	[217357, retro]	1.05	79.80	0.05	4.70	3.75		
73	25.80	4:12	re Alex Sm	2	4:12	Chiefs w	0	9	1	10	43	Rush	4	[495184, retro]	1.11	84.66	0.11	10.83	9.17		
77	27.07	2:56	re Alex Sm	2	2:56	Chiefs w	0	9	1	10	19	Rush	1	[217357, retro]	1.15	87.40	0.15	14.25	12.45		
81	28.08	1:55	re Knile Da	2	1:55	Chiefs w	0	9	1	4	4	Rush	4	[495184, retro]	4.44	293.04	1.44	138.24	405.10		
100	31.27	13:44	re Alex Sm	3	13:44	Chiefs w	0	13	3	2	10	Pass	1	[217357, novelty]	4.00	212.00	1.50	136.50	289.38		
112	34.48	10:30	re Alex Sm	3	10:30	Chiefs w	0	15	1	10	63	Pass	1	[217357, retro]	1.80	129.60	1.05	102.90	133.36		
113	35.10	9:53	re Knile Da	3	9:53	Chiefs w	0	15	1	10	50	Rush	4	[495184, retro]	1.00	72.00	0.00	0.00	0.00		
165	50.05	9:57	re Knile Da	4	9:57	Chiefs w	0	23	1	10	70	Rush	4	[495184, retro]	1.11	111.46	0.11	11.46	12.77		
Event	Time	Description	Period	Game Clock String	Ball	Event Text	Event	Event Id	Event Type	Players	Key Play Type	Fantasy	Play Priority	Player Priority	Player Novelt	Player Novelty	Fantasy Novelty	Player Novelty	Player Priority	Fantasy Priority	
-------	--------	---------------------	--------	-------------------	------	-------------	--------	----------	------------	---------	---------------	---------	---------------	-----------------	----------------	----------------	-----------------	---------------	-----------------	-----------------	----------------
8	3:67	11:20 re Knile Da	1	11:20 Chiefs w	0	1	Rush	4	68	[495184, retro]	1.23	83.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
30	11:57	3:26 Alex Sm	1	3:26 Chiefs w	0	1	Pass	1	81	[217357, retro]	6.80	550.80	-6.05	-538.45	2965.78	0.00	0.00	0.00	0.00		
46	15:53	14:28 re Knile Da	2	14:28 Chiefs w	0	1	Rush	4	90	[495184, retro]	2.44	219.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
66	21:30	8:42 re Knile Da	2	8:42 Chiefs w	0	2	Rush	4	75	[495184, retro]	1.30	97.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
71	24:62	5:22 Alex Sm	2	5:22 Chiefs w	0	2	Pass	1	76	[217357, retro]	1.25	95.00	-0.25	-17.00	16.15	0.00	0.00	0.00	0.00		
111	33:35	11:08 re Alex Sm	3	11:08 Chiefs w	0	15	Pass	1	73	[217357, retro]	2.20	160.60	-1.45	-88.45	142.05	0.00	0.00	0.00	0.00		
168	51:20	8:47 Cyrus G	4	8:47 Chiefs w	0	23	Rush	4	100	[449183, retro]	0.70	70.13	0.28	28.00	19.64	0.00	0.00	0.00	0.00		
173	53:18	6:49 Dexter H	4	6:49 Chiefs w	0	23	Rush	4	100	[334726, retro]	0.82	82.42	0.33	32.96	27.16	0.00	0.00	0.00	0.00		
185	56:28	3:43 Alex Sm	4	3:43 Chiefs w	0	25	Pass	1	100	[221518, retro]	2.30	230.27	-1.71	-170.98	393.70	0.00	0.00	0.00	0.00		

FIG. 5J
<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
<th>Description</th>
<th>Game</th>
<th>Period</th>
<th>Yardline</th>
<th>Event Id</th>
<th>EQ Final</th>
<th>Players</th>
<th>Key Play Type</th>
<th>Novelty</th>
<th>Play Priority</th>
<th>Play Duration</th>
<th>Player Priority</th>
<th>Priority</th>
<th>Bravery</th>
<th>Astuteness</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>6:00</td>
<td>8:06 Pass</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>74</td>
<td>68</td>
<td>[461175, retro]</td>
<td>1.70</td>
<td>115.60</td>
<td>0.95</td>
<td>74.10</td>
<td>35.66</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>7:00</td>
<td>7:30 Pass</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>62</td>
<td>[461175, retro]</td>
<td>1.25</td>
<td>85.00</td>
<td>0.25</td>
<td>19.50</td>
<td>16.58</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>7:00</td>
<td>7:00 Pass</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>57</td>
<td>[461175, retro]</td>
<td>2.90</td>
<td>200.10</td>
<td>2.15</td>
<td>169.85</td>
<td>339.87</td>
<td>2.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>8:00</td>
<td>6:36 Pass</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>33</td>
<td>[461175, retro]</td>
<td>1.00</td>
<td>68.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>8:00</td>
<td>5:54 Pass</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>33</td>
<td>[461175, retro]</td>
<td>2.30</td>
<td>158.70</td>
<td>1.55</td>
<td>122.45</td>
<td>194.33</td>
<td>2.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>8:00</td>
<td>5:15 Pass</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>15</td>
<td>[286361, retro]</td>
<td>1.25</td>
<td>85.00</td>
<td>0.25</td>
<td>19.50</td>
<td>16.58</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>8:00</td>
<td>4:37 Pass</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>[461175, retro]</td>
<td>4.50</td>
<td>333.00</td>
<td>1.50</td>
<td>126.00</td>
<td>419.58</td>
<td>4.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>8:00</td>
<td>14:38 Fumble</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>10</td>
<td>80</td>
<td>[508659, novelty]</td>
<td>4.20</td>
<td>378.00</td>
<td>-4.20</td>
<td>-386.40</td>
<td>1460.59</td>
<td>4.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>9:33</td>
<td>12:40 Pass</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>77</td>
<td>Incomplete</td>
<td>2</td>
<td>76</td>
<td>[461175, retro]</td>
<td>0.75</td>
<td>57.00</td>
<td>-0.25</td>
<td>18.25</td>
<td>10.40</td>
</tr>
<tr>
<td>000</td>
<td>12:32</td>
<td>12:32 Pass</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>77</td>
<td>[161861, retro]</td>
<td>2.70</td>
<td>210.60</td>
<td>2.15</td>
<td>163.40</td>
<td>344.12</td>
<td>2.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>11:29</td>
<td>11:29 Pass</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>Incomplete</td>
<td>2</td>
<td>74</td>
<td>[461175, retro]</td>
<td>0.75</td>
<td>55.50</td>
<td>-0.25</td>
<td>17.25</td>
<td>9.57</td>
</tr>
<tr>
<td>000</td>
<td>11:23</td>
<td>11:23 Pass</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>[461175, retro]</td>
<td>1.70</td>
<td>124.10</td>
<td>0.20</td>
<td>13.60</td>
<td>16.88</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>10:47</td>
<td>10:47 Pass</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>51 Rush</td>
<td>4</td>
<td>76</td>
<td>[461175, retro]</td>
<td>3.78</td>
<td>287.61</td>
<td>6.15</td>
<td>430.50</td>
<td>1238.18</td>
</tr>
<tr>
<td>000</td>
<td>10:01</td>
<td>10:01 Pass</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>10</td>
<td>30 Pass</td>
<td>1</td>
<td>76</td>
<td>[461175, retro]</td>
<td>1.60</td>
<td>121.60</td>
<td>0.85</td>
<td>59.50</td>
<td>72.35</td>
</tr>
<tr>
<td>000</td>
<td>9:30</td>
<td>9:30 Pass</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>10</td>
<td>19 Incomplete</td>
<td>2</td>
<td>73</td>
<td>[461175, retro]</td>
<td>0.75</td>
<td>54.75</td>
<td>-0.25</td>
<td>-16.75</td>
<td>9.17</td>
</tr>
<tr>
<td>000</td>
<td>9:26</td>
<td>9:26 Pass</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>10</td>
<td>19 Incomplete</td>
<td>2</td>
<td>71</td>
<td>[461175, retro]</td>
<td>0.75</td>
<td>53.25</td>
<td>-0.25</td>
<td>-16.25</td>
<td>8.65</td>
</tr>
<tr>
<td>000</td>
<td>9:21</td>
<td>9:21 Pass</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>10</td>
<td>19 Incomplete</td>
<td>2</td>
<td>68</td>
<td>[461175, retro]</td>
<td>1.25</td>
<td>85.00</td>
<td>-0.25</td>
<td>-15.50</td>
<td>13.18</td>
</tr>
<tr>
<td>000</td>
<td>0:33</td>
<td>0:33 Pass</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>10</td>
<td>50</td>
<td>Intercep</td>
<td>9</td>
<td>58</td>
<td>[461175, novelty]</td>
<td>3.85</td>
<td>223.30</td>
<td>-3.85</td>
<td>-180.95</td>
<td>404.06</td>
</tr>
</tbody>
</table>
Most exciting fantasy plays with priority >= 180

| game_id | player_id | player | time_in_minutes | game_time | description | game_clock_string | period | play_id | drive_id | down | team | yardline | event_id | EQ_final | players | key_play_type | novelty | play_priority | player_novelty | player_priority | fantasy_priority |
|---------|-----------|--------|----------------|-----------|-------------|------------------|--------|---------|----------|------|------|----------|----------|----------|---------|---------------|---------|---------------|---------------|---------------|----------------|}
1321595	264796	28	9.90	5:06	remDrew Br	1	5:06	Saints w	0 5 1	10 49	incep	9 61	25596, novelty	4.20	256.20	4.20	296.20	1527.98
1321595	456813	93	33.17	11:50	retMark Ing	3	11:50	Saints w	0 13	1 10 40	Rush	4 67	456813, retro	2.49	167.14	1.74	139.57	232.27
1321595	456813	113	41.02	3:59	retMark Ing	3	3:59	Saints w	0 15	1 4 4	Rush	4 51	456813, retro	4.44	226.44	1.44	120.96	273.90
1321595	397945	123	44.42	0:35	retLeSean	3	0:35	Eagles v	1 16	4 1	Rush	4 69	397945, retro	5.14	354.66	-0.76	-52.44	185.98
1321595	461175	20	7.98	7:00	remAndrew	1	7:00	1 3	2 5 5 57	Pass	1 69	461175, retro	2.90	200.10	2.15	169.85	679.74	
1321595	461175	22	9.08	5:54	remAndrew	1	5:54	1 2	2 10 33	Pass	1 69	461175, retro	2.30	158.70	1.55	122.45	194.33	
1321595	461175	24	10.37	4:37	remAndrew	1	4:37	1 2	2 5 5 10	Pass	1 74	461175, retro	4.50	333.00	1.50	126.00	838.16	
1321595	184568	33	13.10	1:53	remKnile Da	1	1:53	Chiefs w	0 3	3 1	Rush	4 79	495184, retro	3.00	237.00	2.70	237.60	563.11
1321595	461175	45	15.35	14:38	retTrent Rav	2	14:38	1 6	1 10 80	Fumble	14 90	508659, novelty	4.20	378.00	-4.20	-366.40	1400.59	
1321595	461175	54	17.45	12:32	remAndrew	2	12:32	1 8	3 7 7 77	Pass	1 78	161681, retro	2.70	210.60	2.15	163.40	344.12	
1321595	461175	58	19.20	10:47	remAndrew	2	10:47	1 8	4 1 51	Rush	4 78	461175, retro	3.78	287.61	6.15	430.50	1238.16	
1321595	28349	63	20.70	9:17	remAdam Vi	2	9:17	1 8	4 10 19	Made Fk	17 75	23849, retro	1.95	146.05	1.95	136.32	199.09	
1321595	334726	76	28.52	3:29	remAlex Sm	2	3:29	Chiefs w	0 9	3 5 36	Pass	1 78	217357, retro	2.90	220.40	2.15	204.25	450.17
1321595	461175	91	29.45	0:33	remAndrew	2	0:33	1 10	2 17 50	incep	9 58	461175, retro	3.85	223.30	-3.85	-180.95	808.12	
1321595	461175	97	30.00	3:29	retAndrew	3	3:29	1 12	1 10 80	Rush	9 61	461175, novelty	3.20	195.20	3.20	310.40	911.97	
1321595	214423	97	30.00	3:29	retAndrew	3	3:29	1 12	1 10 80	Rush	9 61	461175, novelty	3.20	195.20	3.20	310.40	911.97	
1321595	461175	108	32.52	12:29	retAndrew	3	12:29	1 14	1 10 56	Pass	1 59	461175, retro	5.10	300.90	4.35	200.10	602.10	
1321595	461175	116	38.12	8:52	remAndrew	3	8:52	1 16	1 15 48	Pass	1 82	461175, retro	2.10	172.20	1.35	108.00	371.95	
1321595	461175	118	38.85	8:08	remAndrew	3	8:08	1 16	2 22 22	Pass	1 79	397945, retro	2.40	169.60	1.65	127.05	240.89	
1321595	461175	120	37.40	7:36	remAndrew	3	7:36	1 16	2 3 3	Pass	1 97	461175, retro	4.15	402.55	1.15	111.55	449.04	

FIG. 5L
A. CLASSIFICATION OF SUBJECT MATTER
G06Q 50/10(2012.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
G06Q 50/10; G06F 17/30; G06F 17/21; G06F 17/27; A63F 13/10; H04N 21/20; G06F 3/01

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: narrative story, highlight, content, reconcile, prioritize

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 8688434 B1 (LAWRENCE A. BIRNBAUM et al.) 01 April 2014</td>
<td>1-48</td>
</tr>
<tr>
<td></td>
<td>See column 2, lines 16-20, column 3, lines 58-65, column 8, lines 42-46, column 12, lines 7-12, 46-49 and claims 1, 22, 45, 47.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>WO 2013-166456 A2 (MOCAP ANALYTICS, INC.) 07 November 2013</td>
<td>1-48</td>
</tr>
<tr>
<td></td>
<td>See abstract, page 9, lines 2-30, page 15, lines 15-16, page 20, lines 11-20, page 42, lines 9-17 and claims 1, 12, 27, 32, 97, 103, 198, 206.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 8793579 B2 (ANDREW HALLIDAY et al.) 29 July 2014</td>
<td>11-12</td>
</tr>
<tr>
<td></td>
<td>See abstract, column 3, lines 60-67, column 7, line 57-column 8, line 6, claim 19 and figure 4A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See abstract, claims 1-3, 5-6 and figures 2-3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See abstract, claim 1 and figures 1-3, 5.</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search: 22 January 2016 (22.01.2016)

Date of mailing of the international search report: 22 January 2016 (22.01.2016)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongna-ro, Seo-gu, Daejeon, 35208, Republic of Korea

Authorized officer
LEE, Myung Jin

Facsimile No. +82-42-742-7400

Telephone No. +82-42-481-8474

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 8688434 B1</td>
<td>01/04/2014</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012-0324373 A1</td>
<td>20/12/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014-0304623 A1</td>
<td>09/10/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8775851 B2</td>
<td>08/07/2014</td>
</tr>
<tr>
<td>US 2013-0160051 A1</td>
<td>20/06/2013</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8515737 B2</td>
<td>20/08/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 9146904 B2</td>
<td>29/09/2015</td>
</tr>
</tbody>
</table>