US 20130235044A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2013/0235044 A1

Kaleta et al.

43) Pub. Date: Sep. 12, 2013

(54)

(735)

(73)

@

(22)

(60)

MULTI-PURPOSE PROGRESS BAR

Inventors: Damian Kaleta, San Jose, CA (US);
Kevin Decker, San Jose, CA (US);
Chanaka Karunamuni, San Jose, CA
us)

Assignee: Apple Inc., Cupertino, CA (US)
Appl. No.: 13/615,140
Filed: Sep. 13, 2012

Related U.S. Application Data

Provisional application No. 61/609,238, filed on Mar.
9,2012.

Publication Classification

(51) Int.CL

GO6T 13/00 (2011.01)
(52) US.CL

107 G 345/473
(57) ABSTRACT

In addition to conveying a completion status of atask to a user,
an improved progress bar can convey additional information
about the task to the user. For example, some embodiments
can present a type of animation in the progress bar conveying
arate at which the task is being completed. A different type of
animation can represent performance of a task at a different
rate. For example, a different animation may be displayed
when a web page is loading at 5 Mb/s as opposed to when the
web page is loading at 0.5 Gb/s. Further, in some embodi-
ments, different types of animation can represent different
types of tasks.

Fiuid Progress Bar
Generator
118

Rocket Effect

Generator
120

Featwe Enabler

Secondary Progress
Generator
130

o Render Engine

138

Progress Bar System 188 y

140

feb Browser

v

1 Address

x;is:;of

158

Patent Application Publication Sep. 12, 2013 Sheet 1 of 15 US 2013/0235044 A1
~ ™
Fluid Progress Bar Rocket Effect
Generator Generator
115 128
Feature Enabier Secondary Progress
Generator
125 130
Render Engine
g i 135
Progress Bar System 108 y

140

i web Browser

Daily News for
Cider Count

Address

155

WY
€3
agoa

suiBug Jspusy

US 2013/0235044 A1
»
»

USR0S
" sangea UO palapual
NS ssaboid Buswisie
e 10 BOIR (810
i - E...EEIE!iE!EE!E!EE!EEiEEEEm
3 | e e s ST -
5 | v v |
| ey Forccrord f e pror
@ " 022 spmpopy she | oe BNosUD | wee i01Basn m
Y g i §
= | Buiusuonws e | joLOADNH-IOPUMY | e e ;
a " L0I1588.501 M ploysady | M 1084 1o%00Y w
n ! M] |
o ! siejaRIed M)
2 | pjoyssayy, ! !
| “ e
| [oiz M w
“ M JEIIC Yy “ w
| | piousa.y] M |
}
| | i o2
| 51T Fom T s o s s oo s T

00z

Patent Application Publication

Patent Application Publication Sep. 12, 2013 Sheet 3 of 15 US 2013/0235044 A1

()3%

302

Receive a request to perform a task
- 304

Display a progress bar for the task beingy™
performed

¥ -306

Determine a threshold for the task
¥ 308

Receive a progress value

342
Display a progression of a/ccmpietion
status indicator in the progress bar
basad on the progress value

Reached
", treshold?

2

VES] 316

—314

NO

Receive new

Display rocket effect on the progress bar o
S QIOGress value?

" YES

Patent Application Publication Sep. 12, 2013 Sheet 4 of 15 US 2013/0235044 A1

identify a type of animation to display upon 402
gdetermining that a threshold is met

¥
Display the identified type of animationina |~ 404
progress bar

502
Receive a progress value for a task

A

Determine, based on the progress value, another | 504

progress value less than the progress value

¥

Display a completion status indicator in a progressy 306

bar based on the other progress value

¥

Ce)

Patent Application Publication Sep. 12, 2013 Sheet 5 of 15 US 2013/0235044 A1

600
A:
Receive a progress value for lcadinga | 602
web page
%
Determine an estimated load time 804
based on the progress value
¥
Construct a linear equation using the | 506
estimated load time
¥
Compute a next location based onthe | 608
constructed linear eguation
X
. . 810
Animate to the next location

US 2013/0235044 A1

Sep. 12,2013 Sheet 6 of 15

Patent Application Publication

XG +Ul =11

HRRA Y S Xy 4+ 0 =11V

Xg + 0L =13V
g +0L =11y
X 4 c.h_.. =
|05 Flla] IO [T AR | 588.0pY |
UL =33
004

7

T
3,

g

A

TSaRIS SRR i

Patent Application Publication Sep. 12, 2013 Sheet 7 of 15 US 2013/0235044 A1

I

gﬁi)ﬁ

Progress Value Time Estimate
0% < progress value <= 35% 30 seconds
35% < progress value <= 60% 10 seconds
60% < progress value <= 80% 5 seconds
80% < progress value <= 85% 3 seconds
85% < progress vaius 2.5 seconds
A\ v J s v J
805 810

Frogress vaiue = 40% 944
F{ = it Abt= 3, F(3) = .3 or 300 pixels g
| Address] | GO |

| Address

New progress value received at t = 3.4
F{ty = 132t - 1088 Att= 3.6, F{3.6) = .37 or 370 pixals
3 6o |

Att= 3.8, F(3.8) = .38 or 390 pixels

Att =4, F{dy= 42 or 420 phels
Ml 6o |

Patent Application Publication Sep. 12, 2013 Sheet 8 of 15 US 2013/0235044 A1

g;l%ﬁi}

Threshold
Cheacker Feature Enabler 125
Value Rocket Effect
Tracker
1005 | =P

Enable Deteminer

sy 1015

Feature Status

Tracker
1010

Hender Engine

Patent Application Publication Sep. 12, 2013 Sheet 9 of 15 US 2013/0235044 A1

Receive indication that a thraeshold has
been reached

<;100

1102

A Feature to be™~ "o
ves 1106

Display a status hanga fo:*/é user
interface element subsegquent to
dispiaying the rocket effect

&

Patent Application Publication Sep. 12,2013 Sheet 10 of 15 US 2013/0235044 A1

1200

Att:Tg r...,,j

Address: | www.url.com

Att=Ty

Address:

At i= Tihresh

Address:

At t= Ti;".re i

Patent Application Publication Sep. 12,2013 Sheet 11 of 15

US 2013/0235044 A1

<£ 300

Secondary Progress Generator 130

Speed Determiner e
1385

Transiator

18

|
i

Render Engine

Patent Application Publication Sep. 12, 2013 Sheet 12 of 15 US 2013/0235044 A1

<; 460

Start
¥
1402
Display a progress bar for a task being performad §~
X
1404
Receive a progress value for the task B
N 1406
Display, based on the progress value, a e
completion status indicator in the progress bar
. 1408
Determine a speed at which the //
task is being performed at the time
‘ 1410
Determine a type of animation
o represent the speed
kA
: L o 1412
Determine an animation for the type of animation §
associaled with the determined spesd
¥
: . L (1414
Display the associated animation concurrently with§ -
the completion status indicator in the progress bar

¥

o)

Patent Application Publication Sep. 12, 2013 Sheet 13 of 15 US 2013/0235044 A1

1500

Att:T1

Att= Tg_
Address 8

Alt= Tg
Address

1600

Att= T‘|
Address | www url.comyu VU B 6o

Alt= T_}
Address | www.urlLoomis o\ xS S i co

Address | www.url.oom S N

1700
Att= T1

Address i

Att=T,
Address |

Att=T,
Address

Patent Application Publication Sep. 12, 2013 Sheet 14 of 15 US 2013/0235044 A1

1810

f,.,,_./' 1805
STORAGE ,—---)

SUBSYSTEM 1815
r*‘“‘j PROCESS0OR

BROWSER
1840
</ :‘\>
USER USER NETWORK
INPUT QUTPUT INTERFACE
DEVICES DEVICES

— T 7

1820 1825 1835

Patent Application Publication Sep. 12, 2013 Sheet 15 of 15 US 2013/0235044 A1

1902

hrowser

Web
Server

Application
Server

US 2013/0235044 Al

MULTI-PURPOSE PROGRESS BAR

CROSS-REFERENCES TO RELATED
APPLICATIONS

[0001] This application claims priority to and the benefit of
U.S. Provisional Application No. 61/609,238, filed Mar. 9,
2012 and entitled “Progress Bar,” the entire disclosure of
which is herein incorporated by reference for all purposes.

BACKGROUND

[0002] The present disclosure relates generally to progress
bars and in particular to various improvements to progress
bars that enhance a user’s experience.

[0003] A progress bar (also sometimes referred to as a
status bar, or completion status bar, etc.) is commonly used to
visually show a completion status of a task or process.
Progress bars can be used to convey a completion status of
various tasks such as loading of a web page, downloading
information, a file transfer operation, a file operation (e.g.,
copy, delete), and the like. Various different applications may
use progress bars in various different contexts. For example,
aweb browser may use a progress bar to show the completion
status of a web page being loaded. In response to a user
selecting a uniform resource locator (URL) for a web page to
be loaded, the browser may display a progress bar (e.g., in a
popup window) that conveys a completion status related to
the web page loading task. A full completion status is indi-
cated after the entire web page is loaded. As such, a user of the
browser can often rely on such a progress bar to estimate a
completion time for the task.

[0004] A progress bar typically includes a completion sta-
tus indicator that visually shows the completion status of a
task or operation being performed. The completion status
indicator may, for example, be in the form of a slider bar that
moves from a start position towards an end position, where
the end position signals completion of the task or operation.
In such an embodiment, the position of the completion status
indicator conveys the completion status (e.g., a percentage of
the task being completed) of the task or operation to the user.
The user can use the information conveyed by the completion
status indicator to estimate a completion time for the task or
operation.

[0005] Conventional progress bars have a number of prob-
lems. First, due to the complexity of modern computing sys-
tems, varying disk, memory, processor, bandwidth and other
factors can cause existing progress bars to exhibit non-linear
behaviors, such as acceleration, deceleration, and pauses.
This irregular behavior of progress bars can cause the
progress bars to appear slow, clunky, and inaccurate in con-
veying an estimated completion time to the user.

SUMMARY

[0006] Certain embodiments of the present invention pro-
vide techniques for displaying an improved progress bar on a
graphical user interface (GUI) that enhances a user’s com-
puting experience.

[0007] In addition to displaying a completion status of a
task or operation, a progress bar in some embodiments can
visually indicate a speed at which the task is being performed
ata point in time. Different types of animations can represent
a speed and/or task at which the task is being performed. For
example, the progress bar may display animated waves or
ripples with the speed of the waves or ripples indicating the

Sep. 12,2013

speed of a particular task or operation being performed. In
this example, waves or ripples of higher frequency (i.e.,
shorter wavelength) indicate a faster speed or higher rate at
which the task is being performed (e.g., when a web page is
loading at 0.5 MB/s the waves or ripples may be displayed at
one animation speed and when the loading rate is at 1 GB/s
the waves or ripples may be displayed at a faster animation
speed). The speed of the animation can provide the user a
visual cue as to the rate at which the task or operation is being
performed.

[0008] The following detailed description together with the
accompanying drawings will provide a better understanding
of the nature and advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 illustrates an example of a progress bar sys-
tem for generating and displaying a user interface (in this
example, web browser) that includes a progress bar in accor-
dance with some embodiments of the present invention.
[0010] FIG. 2 illustrates an example of a more detailed
diagram of fluid progress bar generator and rocket effect
generator according to some embodiments.

[0011] FIG. 3 conceptually illustrates a process for deter-
mining when to display the “rocket effect” in a progress bar in
accordance with some embodiments.

[0012] FIG. 4 illustrates an example process of some
embodiments for displaying the rocket animation.

[0013] FIG. 5 illustrates an example process of some
embodiments for displaying an underreported progress status
for a task in a progress bar.

[0014] FIG. 6 illustrates another example process of some
embodiments for displaying a an underreported progress sta-
tus for a task in a progress bar.

[0015] FIG. 7 illustrates an example of progression of the
completion status indicator in accordance with some embodi-
ments of the invention.

[0016] FIG. 8illustrates an example of atime estimate table
of some embodiments that enables browser application to
obtain a time estimate until a task is complete based on a
progress value.

[0017] FIG.9 illustrates an example sequence of a progress
bar that updates smoothly while underreporting an actual
status of a task in accordance with some embodiments.
[0018] FIG. 10 illustrates an example of a more detailed
diagram of feature enabler that can signal browser application
to display a visual effect in response to a status change for a
feature in accordance with some embodiments.

[0019] FIG. 11 illustrates an example process of some
embodiments for visually modifying a user interface (UI)
element in response to a feature being enabled when the
triviality threshold is met.

[0020] FIG. 12 illustrates an example progression of a
completion status indicator for a task in a progress bar and
visually modifying a Ul element representing a feature in
accordance with some embodiments.

[0021] FIG. 13 illustrates an example of a more detailed
diagram of secondary progress generator and render engine
for rendering a secondary progress indicator in addition to a
completion status indicator for a task in a progress bar accord-
ing to some embodiments.

[0022] FIG. 14 illustrates an example process of some
embodiments for displaying a secondary progress indicator
along with the completion status indicator of the task in a
progress bar.

US 2013/0235044 Al

[0023] FIG. 15 illustrates another example progression for
displaying a secondary progress indicator along with a
completion status indicator of a task in a progress bar accord-
ing to some embodiments.

[0024] FIG. 16 illustrates another example progression for
displaying another type of secondary progress indicator along
with a completion status indicator of a task in a progress bar
according to some embodiments.

[0025] FIG. 17 illustrates another example progression for
displaying a type of secondary progress indicator along with
a completion status indicator of a task in a progress bar
according to some embodiments.

[0026] FIG. 18 illustrates a computer system according to
an embodiment of the present invention.

[0027] FIG. 19 illustrates an example of an environment
that can implement various aspects of the present invention.

DETAILED DESCRIPTION

[0028] In the following description, numerous details,
examples and embodiments are set forth for the purposes of
explanation. However, one of ordinary skill in the art will
recognize that the invention is not limited to the embodiments
set forth and that the invention may be practiced without some
of the specific details discussed. Further, some of the
examples and embodiments, including well-known struc-
tures and devices, are shown in block diagram form in order
not to obscure the description with unnecessary detail.
[0029] Certain embodiments of the present invention pro-
vide techniques for displaying an improved progress bar on a
graphical user interface (GUI) that enhances user computing
experience. A progress bar can display a completion status
indicator that allows a user to visualize a completion status of
an ongoing task or operation. In some embodiments, the user
can use the progress bar to verify that performance of the
operation is proceeding successfully and to estimate a
completion time for the operation by observing the comple-
tion status indicator.

[0030] A progress bar in some embodiments can display a
completion status indicator that underreports the completion
status of an ongoing task. For instance, a web browser can
determine an over-estimated load time for a web page to
prevent the completion status indicator from stalling at the
end of the progress bar. Further, in some embodiments, the
completion status indicator is displayed and updated in a
smooth manner. In such embodiments, linear functions are
used to determine a location to which to animate the progres-
sion of the completion status indicator within certain inter-
vals. This eliminates discrete jumps and adds fluidity to the
progression of the reported status such that the progress bar
can appear more intuitive and responsive to the user.

[0031] Insomeembodiments, a visual cue can be provided
to alert a user when a threshold indicating that a task is
“substantially complete” (also referred to as a triviality
threshold) is met. As such, progress bars can provide a visual
cue to a user to indicate when subtasks of a task of interest to
the user is complete. In some embodiments, the visual cue can
be ananimation of an accelerated progression of a completion
status indicator in a progress bar. In some embodiments, a
triviality threshold refers to a threshold at which an average
person would consider a task to be complete regardless of
whether the task is actually complete. For instance, an aver-
age person may consider the triviality threshold for loading a
particular sports web page met once one or more sports
articles are visible, regardless of whether the rest of the page

Sep. 12,2013

(e.g., including various images, advertisements, hyperlinks,
etc.) is loaded. By providing a visual cue when the triviality
threshold is met, the user can be informed of when portions of
the page is viewable regardless of whether the page is loaded,
instead of having to wait until the entire page is loaded.
[0032] In some embodiments, the manner in which a user
interface (UI) element is displayed may be tied to the display
of'aprogress bar. For example, a GUI element may be visually
enabled in response to the position or completion status indi-
cated by the completion status indicator in a progress bar. In
some instances, the GUI may include a button (e.g., a button
corresponding to a reader function) that is visually enabled
(i.e., its function enabled) upon the triviality threshold being
met and the completion status indicator animated to show
completed status. In this manner, the visual display of a Ul
element may be changed in response to the completion status
indicated by the progress bar in order to highlight the feature
represented by the Ul element. In one embodiment, the Ul
element may be visually displayed and modified in a manner
so as to draw a user’s attention to the Ul element.

[0033] In some embodiments, in addition to showing the
completion status of a task or operation (shown by the
completion status indicator of the progress bar), a progress
bar may also visually indicate (e.g., using an animation) a
speed at which the task is being performed at a point in time.
Conveying to a user the loading rate allows the user to distin-
guish between loading a relatively large web page with a fast
loading rate and loading a relatively small web page with a
slow loading rate. Since in some instances, a slow loading rate
could mean a poor connection between the user and a par-
ticular server, the user may want to cancel his or her requests
for data from that server when the loading rate is unaccept-
ably slow. The user can determine whether to stay on a current
web page or to switch to a different one based on the speed at
which the page is being loaded in some instances.

[0034] Various different animations may be used to display
the speed. For example, the progress bar may display ani-
mated waves or ripples with the speed of the waves or ripples
indicating the speed of the task or operation being performed.
In this example, faster animation of the waves or ripples
indicates faster speed (e.g., when a web page is loading at 0.5
MB/s the waves or ripples may be displayed at one animation
speed and when the loading rate is at 1 GB/s the waves or
ripples may be displayed at a faster animation speed). The
speed ofthe animation provides a visual cue to the user of how
fast the task or operation is being performed.

[0035] The terms “status of task™ or “progress of task™ can
be used herein to refer to the amount or percentage of the task
or operation that is complete at a moment in time. The terms
“progress status indicator,” “completion status indicator,” or
“status indicator” can be used herein to refer to a representa-
tion of a status or progress of a task in a progress bar. The term
“progression of a completion status indicator” can be used
herein to refer to the motion and/or rate at which the comple-
tion status indicator for the task shown in the progress bar is
moving. One of ordinary skill would recognize that although
the description is depicted with respect to a particular type of
progress indicator, namely, a progress bar, other types of
progress indicators that can indicate a status of a task or
operation can be used as well.

[0036] FIG. 1 depicts a simplified high level block diagram
of a progress bar system 100 in accordance with some
embodiments of the invention. As shown in FIG. 1, progress
bar system 100 can include multiple subsystems such as a

US 2013/0235044 Al

fluid progress bar generator 115, a rocket effect generator
120, a feature enabler 125, a secondary progress generator
130, and a render engine 135. One or more communication
paths can be provided to enable one or more of the subsystems
to communicate with and exchange data with one another.
The various components described in FIG. 1 can be imple-
mented in software, hardware, or a combination thereof. In
some embodiments, the software can be stored on a transitory
or non-transitory computer readable storage medium and can
be executed by one or more processing units.

[0037] It should be appreciated that progress bar system
100 as shown in FIG. 1 can include more or fewer compo-
nents than those shown in FIG. 1. In some embodiments,
progress bar system 100 can be a part of an electronic com-
puting device, such as a computer or a handheld device. The
various components in progress bar system 100 can be imple-
mented as a stand-alone application or integrated into another
application (e.g., a web browser application, an e-mail client,
or any other application that can display progress bars), while
in some embodiments the components in progress bar system
100 can be implemented within an operating system.

[0038] Insome embodiments, progress bar system 100 can
generate and display a progress bar to a user such as progress
bar 145 depicted in FIG. 1. In some embodiments, progress
bar 145 can include a completion status indicator 150 where
the position of the completion status indicator indicates the
completion status of a task. By observing a progression of the
completion status indicator in progress bar 145, a user can
identify the completion status of the page loading task in
some embodiments. The various components in progress bar
system 100 can provide visual enhancements to progress bar
145 such that additional useful information is conveyed to the
user using progress bar 145.

[0039] Insome embodiments, render engine 135 is config-
ured to render and display content on a display of an elec-
tronic computing device. In some instances, render engine
135 can be embedded in a web browser that can retrieve a
document (e.g., HTML, XML, image files, etc.) correspond-
ing to a URL (e.g., input by a user) and cause render engine
135 to render a graphical representation of it on the display of
the electronic computing device. In addition to generating a
display of a web page, render engine 135 in some embodi-
ments can generate a progress bar for display. In some
embodiments, a web browser can determine progress values
that indicate a total loaded percentage of a web page and
provide those progress values to various subsystems in
progress bar system 100. These subsystems can then use these
progress values to perform various operations in relation to
the progress bar.

[0040] In some embodiments, fluid progress bar generator
115 is configured to underreport of a status of an ongoing task
(e.g., the loading of a web page). Since it is difficult to accu-
rately determine how much of the task remains to be com-
pleted, underreporting the progress values to the users can
manage the user’s expectations. Further, underreporting the
completion status up front would permit more space within
the progress bar for the completion status indicator to
progress such that stalling towards the end of the progress bar
can be minimized or prevented. In some embodiments, fluid
progress bar generator 115 can receive progress values from
render engine 135 and determine a location in the progress bar
to which to increment the completion status indicator for the
task. The determined location can correspond to an underre-
ported value of the status of the task.

Sep. 12,2013

[0041] As described above, fluid progress bar generator
115 is configured to smoothen the manner in which the
completion status indicator in a progress bar is displayed and
updated. This is done so as to reduce the clunky updates
typically associated with conventional progress bars.
Smoothening the display and update of the completion status
indicator in a progress bar enhances the user’s visual experi-
ence with respect to progress bars.

[0042] In one embodiment, fluid progress bar generator
115 uses one or more linear functions to achieve the smooth-
ening. Fluid progress bar generator 115 may construct a linear
function and use a computation performed using the linear
function to determine each new location for the completion
status indicator within the progress bar to increment to within
the time interval. In some embodiments, using a linear func-
tion to compute each next location allows the progression of
the completion status indicator to appear to be incrementing
smoothly and at a constant speed.

[0043] Insomeembodiments, a progress value can indicate
a completion status of a task. Browser application in some
embodiments can receive a progress value from render engine
135. When fluid progress bar generator 115 receives a new
progress value, fluid progress bar generator 115 can use the
progress value to estimate a new time until the task is com-
pleted (e.g., using a lookup table). Fluid bar generator 115 can
then construct a new linear function using the newly esti-
mated time. As such, the progression of completion status
indicator continues to increase at a steady rate, although at a
different rate from before. Regardless of the change in pro-
gression rate, constructing multiple linear equations to deter-
mine locations to increment for each time interval allows the
progression of the completion status indicator to appear
smooth and soothing to the user’s eye. Incrementing the
completion status indicator to steadily and within short time
intervals causes its appearance to be smoothly increasing to a
user.

[0044] Insome embodiments, rocket effect generator 120 is
configured to cause the progression of the completion status
indicator in the progress bar to “rocket” or accelerate from its
current position to a position indicative of completion of the
task when a triviality threshold is met. For example, for
progress bar 145 depicted in FIG. 1, when the triviality
threshold is met, the completion status indicator is animated
to advance from its current position to it end position 155,
which indicates completion of the task to the user.

[0045] The triviality threshold for a task identifies a thresh-
old at which a task, even though not fully completed, can be
indicated as completed for purposes of the user. The triviality
threshold is configurable and, for a task, is generally set to a
threshold less than the full completion of the task. It should be
appreciated in some embodiments, the triviality threshold can
be set to the full completion of the task.

[0046] Thetriviality threshold may be application and task-
context specific. For example, if the task is loading of a web
page, the triviality threshold can be set to a threshold percent-
age ofthe web page being loaded, for example, when the page
is deemed “substantially loaded” or “visually complete.” In
some embodiments, rocket effect generator 120 can deter-
mine a triviality threshold using a set of criteria. For example,
the triviality threshold can be met when 30% of a web page
has been loaded.

[0047] In some embodiments, rocket effect generator 120
can produce an animation that shows an accelerated progres-
sion of the completion status indicator from a current location

US 2013/0235044 Al

in progress bar 105 to one end of progress bar 105. This would
serve as a visual cue to the user that the page would appear
complete to the user regardless of whether the page loading is
complete. The user can use this visual cue as a signal that he
or she may now start viewing the page.

[0048] Some embodiments can provide a visual modifica-
tion of a user interface element in response to a completion
status indicator indicating that the task is complete. In some
embodiments, feature enabler 125 is configured to cause a
visual modification of a user interface element representing a
feature. In response to determining that the triviality thresh-
old is met and a “rocket effect” being enabled, feature enabler
125 can determine whether a particular feature is “to be
enabled” subsequent to the display of the “rocket effect.”
When feature enabler 130 determines that the feature (e.g.,
specified by the user) is enabled, render engine 115 in some
embodiments can highlight the enabled feature or visually
modify a user interface element representing the feature. In
some embodiments, render engine 115 can display the visual
modification to the user interface element immediately fol-
lowing the accelerated progression of the completion status
indicator or “rocket effect” caused by rocket effect generator
120 in order to further highlight the enabled feature.

[0049] In some embodiments, secondary progress genera-
tor 135 is configured to cause an animation effect to be dis-
played by the progress bar, where the animation indicates a
speed at which a task is being performed. In some embodi-
ments, secondary progress generator 135 can monitor a speed
at which the task, such as the loading of a web page, is
currently being performed. Secondary progress generator
135 can determine an animation to be displayed in the
progress bar to represent the speed. Secondary progress gen-
erator 135 can then cause render engine 115 to display the
animation. The animation effect allows the user to identify the
speed at which the task is being performed such that the user
can determine.

[0050] FIG. 2 illustrates an example of a more detailed
diagram 200 of fluid progress bar generator 115 and rocket
effect generator 120 according to some embodiments. In FIG.
2, fluid progress bar generator 115 can include a threshold
checker 205, a threshold determiner 210, an under-reporter
215, and a progression smoothening module 220. Rocket
effect generator 120 in some embodiments can include a
threshold checker 205, a threshold determiner 210, and a
rocket effect creator 225. It should be appreciated that fluid
progress bar generator 115 and rocket effect generator 120 as
shown in FIG. 2 can include more or fewer components than
those shown in FIG. 2. Further, one or more components in
fluid progress bar generator 115 and rocket effect generator
120 (e.g., threshold checker 205 and threshold determiner
210) can be implemented as a single function or application
shared by both subsystems or integrated into one of the sub-
systems where it can be accessible by the other subsystem.
[0051] One or more communication paths can be provided
to enable one or more of the components to communicate
with and exchange data with one another. The various com-
ponents described in FIG. 2 can be implemented in software,
hardware, or a combination thereof.

[0052] In some embodiments, threshold determiner 215 is
configured to determine a triviality threshold for a task being
performed. As mentioned, the triviality threshold can be the
threshold at which an average person would deem the task as
being “complete” while the task may be only “substantially
complete.” For instance, an average person may deem a web

Sep. 12,2013

page loading task as appearing “complete” or the web page as
being “visually complete” when key components of the web
page (e.g., the leading news article) are loaded. Hence, the
triviality threshold is determined to be met when the key
components of the web page are loaded.

[0053] The triviality threshold in some embodiments can
be different from task to task. In some embodiments, the
triviality threshold for different tasks can be met upon satis-
fying a different set of criteria. For instance, the triviality
threshold for the loading of a web page on a news website can
be set at when the articles on the page have been loaded while
the triviality threshold for the loading of a web page on a retail
website can be set at when the product images have been
loaded. In another instance, the triviality threshold relating to
a particular website can be met when a threshold percentage
of the total area of elements rendered on the web page is
loaded. In even another instance, the triviality threshold can
be met when everything in the page from different URLs
aside from objects from a particular URL has been loaded.
The triviality threshold for each task can be user configurable
(e.g., via a preferences setting) or set by a system administra-
tor or web developer to a default setting.

[0054] In some embodiments, threshold determiner 210
can determine the triviality threshold for threshold checker
205 to use in checking whether the threshold is met. Thresh-
old checker 205 can receive various information relating to a
task (e.g., information necessary for determining whether the
triviality threshold for the task is met) from render engine
135. In this example, threshold checker 205 can obtain a
percentage of the total area of elements rendered on the web
page from render engine 135 and determine whether the
received percentage passes the threshold percentage deter-
mined by threshold determiner 210. Upon determining that
the received percentage passes the threshold percentage,
threshold checker 205 determines that the triviality threshold
is met.

[0055] In some embodiments, in response to determining
that the triviality threshold is met, rocket effect creator 225 in
rocket effect generator 120 can determine a visual cue or a
type of animation and visually display the visual cue on the
progress bar. Rocket effect creator 225 in some embodiments
can cause render engine 135 to display a “rocket effect ani-
mation” where the progression of the completion status indi-
cator in the progress bar accelerates toward one end of the
progress bar that makes it look as if the completion status
indicator of a task “rocketed” to completion.

[0056] In some embodiments, before threshold checker
205 determines that the triviality threshold is met, fluid
progress bar generator 115 can determine how progression in
the progress bar is to be displayed. Under-reporter 215 in fluid
progress bar generator 115 can receive progress values indi-
cating a completion status of the task from render engine 135
and cause render engine 135 to display a completion status
indicator that underreports the actual progress status of the
task. In some embodiments, upon receiving a progress value,
under-reporter 215 can determine an estimated completion
time for the task at hand (e.g., using a lookup table). The
estimated completion time can be an over-estimate of the
amount of time necessary to complete the task. As such, the
completion status indicator shown by the progress bar would
indicate a slower progression (e.g., by incrementing in
smaller increments) than the actual progress of the task.
[0057] Progression smoothening module 220 in some
embodiments can construct a linear equation using the esti-

US 2013/0235044 Al

mated completion time. Progression smoothening module
220 can use the constructed linear equation to determine a
next location to which the completion status indicator of the
task should increment in the progress bar. Upon determining
the next location, progression smoothening module 220 can
cause render engine 135 to display the incremental progress
of the task using the completion status indicator in the
progress bar. In some embodiments progression smoothening
module 220 can continue to determine the next location to
which to increment the completion status indicator based on
the progress values from render engine 135 and the con-
structed linear equations. Progression smoothening module
220 can continue to cause render engine to display a smooth
progression of the completion status indicator of the task in
the progress bar until threshold checker 205 determines that
the triviality threshold is met and rocket effect creator 225
causes render engine 135 to display a “rocket effect.”

[0058] FIG. 3 conceptually illustrates a process 300 for
determining when to display the “rocket effect” in a progress
bar in accordance with some embodiments. As described,
render engine 135 in some embodiments can render a visual
cue such as a “rocket effect” upon determining that a triviality
threshold is met. Some or all of the process 300 (or any other
processes described herein, or variations and/or combina-
tions thereof) may be performed under the control of one or
more computer systems configured with executable instruc-
tions and may be implemented as code (e.g., executable
instructions, one or more computer programs, or one or more
applications) executing collectively on one or more proces-
sors, by hardware, or combinations thereof. The code may be
stored on a computer-readable storage medium, for example,
in the form of a computer program to be executed by process-
ing unit(s), such as a browser application. The computer-
readable storage medium may be non-transitory.

[0059] At block 302, process 300 can receive a request to
perform a task such as loading a particular web page. For
example, a browser application can receive a request upon a
user entering a URL for a web page or upon the user activating
a hyperlink embedded in a page. At block 304, process 300
can display a progress bar for the task being performed. The
progress bar can display a completion status indicator in the
progress bar that represents a progress status of a task using a
such that the user can visualize the status of the ongoing task.

[0060] Atblock 306, process 300 can determine a triviality
threshold for the task. The triviality threshold in some
embodiments can be a static threshold preconfigured by a
user or by an administrator. For instance, the static threshold
can be a percentage of the task that is complete. In the instance
for loading a web page, the triviality threshold can be a
percentage of the total area of elements rendered on the web
page. In some embodiments, the triviality threshold can be
dynamically determined using a set of metrics. For instance,
some embodiments can determine the triviality threshold by
determining a type of web page to be loaded and determining
the amount and/or types of objects in the page that need to be
loaded (e.g., using a lookup table) based on the type of web
page for the page to be deemed “visually complete” to a user.

[0061] At block 308, process 300 can receive a progress
value for the task. During the web page loading process,
render engine in some embodiments can periodically send
progress values indicating a total loaded percentage of a page
to the browser application. At block 310, process 300 can
determine whether the triviality threshold is reached.

Sep. 12,2013

Browser application in some embodiments can determine
whether the triviality threshold is met using the progress
value.

[0062] When process 300 determines that the triviality
threshold is reached, process 300 displays a rocket effect in
the progress bar at block 316. When process 300 displays the
rocket effect, the process ends. On the other hand, when
process 300 determines that the triviality threshold is not
reached, at block 312, process 300 displays a progression of
completion status indicator of the task in the progress bar
based on the progress value. In order to display the progres-
sion of the completion status indicator for the task, web
browser in some embodiments can determine a next location
to which to increment the completion status indicator using
the progress value.

[0063] Atblock 314, process 300 can determine whether a
new progress value has been received. When process 300
determines that a new progress value has been received, pro-
cess 300 returns to block 310 and determines whether the
threshold is reached. When process 300 determines that a new
progress value has not been received, process 300 returns to
block 312 to continue displaying the progression of the
completion status indicator of the task in the progress bar. As
such, browser application can resume computing the next
location to which to increment the completion status indicator
in the progress bar.

[0064] In some embodiments, upon determining that a
threshold is met, browser application can display a visual cue
or a type of animation to indicate to the user that the task is
“substantially complete” or that the web page is “visually
complete to auser.” FIG. 4 illustrates an example process 400
of some embodiments for displaying the rocket animation.
One of ordinary skill will recognize that process 400 can be
performed at block 316 of process 300 in some embodiments.
[0065] At block 402, process 400 can identify the type of
animation to show when the threshold is met. In response to
determining that the threshold is met, browser application can
identify the type of animation to show as a visual cue to the
user. In some embodiments, the type of animation can be user
configurable or pre-configured by the system administrator as
a default setting. The type of animation can include one or
more accelerated progression of a completion status indicator
in the progress bar from a current position to another position
in the progress bar in one embodiment. In some embodi-
ments, the type of animation can include a “rocket effect” or
“rocket animation” where the completion status indicator in
the progress bar accelerates to one end of the progress bar. At
block 404, process 400 can display the identified type of
animation in the progress bar.

[0066] In some embodiments, before the threshold is met,
browser application can provide a progress bar that displays a
completion status indicator for the task that underreports the
actual status of the task. Some embodiments underreport the
completion status of an ongoing task in the progress bar to
avoid the completion status indicator being stalled at the end
of the progress bar due to miscalculation in the completion
status. FIG. 5 illustrates an example process 500 of some
embodiments for displaying an underreported progress status
indicator for a task in a progress bar. One of ordinary skill will
recognize that process 500 can be performed at block 312 of
process 300 in some embodiments. At block 502, process 500
canreceive a progress value for a task. In some embodiments,
browser application can periodically receive a progress value
from a render engine such as render engine 135 in FIG. 1.

US 2013/0235044 Al

[0067] At block 504, process 500 can determine, based on
the progress value, another progress value less than the
progress value received at block 502. In some embodiments,
browser application can receive a progress value for a task
from a render engine and determine an estimated time until
the task would be complete (e.g., via a lookup table). Browser
application in some embodiments can construct a linear equa-
tion based on the estimated completion time. Using the linear
equation, browser application can determine the next location
to where the completion status indicator in the progress bar
should animate after the period of time. The period of time
can be preconfigured by the user or pre-selected by an admin-
istrator.

[0068] At block 506, process 500 can display the comple-
tions status indicator for the task in the progress bar based on
the other value that underreports the actual completion status
of the task. Browser application in some embodiments can
display an incremented progress bar where the completion
status indicator of the task indicates the other progress value
calculated from the linear equation at block 504.

[0069] FIG. 6 illustrates an example process 600 of some
embodiments for displaying a progression of the completion
status indicator for a task in a progress bar. One of ordinary
skill will recognize that process 600 can be performed at
block 312 of process 300 in some embodiments. Process 600
can be executed, e.g., in a browser application. In some
embodiments, a browser application can provide a progress
bar that allows a user to visualize a completion status of a task
(e.g., via a completion status indicator) and a status progres-
sion along the progress bar. Some embodiments can generate
a smooth progression using linear equations constructed
using a time estimate until completion of the task. At the same
time, web browser in some embodiments can display a pro-
gression of the completion status indicator for the task that
underreports the actual status of the task.

[0070] At block 602, process 600 can receive a progress
value for a task such as loading a web page. In response to
receiving a user request to load a web page, browser applica-
tion in some embodiments can receive progress values from a
render engine such as render engine 135 in FIG. 1. In some
embodiments, the progress values can indicate a total per-
centage of the web page that has been loaded at a current time.
[0071] At block 604, process 600 can determine an esti-
mated load time based on the progress value received at block
602. Browser application in some embodiments can deter-
mine the amount of time required to load the rest of the web
page based at least in part on the percentage of the web page
that has already been loaded and the amount of time it took to
load that amount. In some embodiments, browser application
can determine the amount of time required to load the rest of
the web page using a lookup table. Browser application in
some embodiments can map the progress value to an esti-
mated time in the lookup table. The lookup table can be
configurable by a user or a system administrator.

[0072] Insomeembodiments, the system administrator can
configure and fine tune the lookup table such that the esti-
mated would be more accurate. Browser application in some
embodiments can use other attributes in addition to the
progress value for the task, such as the type of web page being
loaded, to compute the estimated load time. Further, in some
embodiments, browser application can determine the esti-
mated load time in such a way that over-estimates the amount
of'time it could possibly take to load the rest of the web page.
By estimating a longer duration for the web page to finish

Sep. 12,2013

loading, browser application in some embodiments can incre-
ment the completion status indicator in the progress bar in
smaller increments such that it would cause an underreport-
ing of the actual status for the task.

[0073] At block 606, process 600 can construct a linear
equation using the estimated load time determined from
block 604. The linear function F(t) would allow the browser
application to determine a location within the progress bar to
where the completion status indicator should be incremented
based on time. In some embodiments, the linear function F(t)
can take as an argument the time since the beginning of a page
load and return a value with an X position that indicates the
position where the completion status indicator in the progress
bar should be at time t.

[0074] Browser application can use two known points to
construct linear function F(t). In one example, the domain is
the amount of time that has elapsed since the beginning of a
load and the range is an X location along the fluid progress
bar. One of ordinary skill would be able to determine the
linear progression between two identified points by using
F(t)=mt+b.

[0075] Inthis example, one can set the first point to include
the current information: T1=elapsed time since the beginning
of'aload and X1=current X position (represented as a fraction
of the location field’s width). Then, one can determine the
second point to include where the completion status should be
when the task is completed, that is, T2=estimated load time
and X2=1 (representing 100% of'the location field’s width or
fluid progress final destination).

[0076] The linear equation F(t) can then be computed
where
_X2-X1
T
and b=0:
Fio =

X2-X1 _ 100% of the location fields width — current X position[

72-T1 = estimated remaining load time —
elapsed time since the beginning of a load
[0077] Forinstance, if the location field has a width of 1000

pixels, and browser application estimates it will take 10 sec-
onds for the page load to complete and if 3 seconds have
already passed, indicating that the current location is 300,
then T1=3, X1=300/1000=0.3, T2=10, X2=1000/1000=1,
which would yield a function F(t)=0.1 t. In some embodi-
ments, the function is recomputed every time browser appli-
cation receives a new progress value from render engine since
the time estimate changes every time a new progress value is
received.

[0078] Atblock 608, process 600 can compute a next loca-
tion using the linear equation constructed in block 606. In
some embodiments, browser application is set to increment
every time interval set by a user or administrator, such as
every 200 ms or every 250 ms. If web browser is set to animate
a single animation every 200 ms, the next location for the
completion status indicator in the progress bar can be deter-
mined by solving F(3 s+0.2 5)=0.1(3.2)=0.32 or 320 pixels.
At block 610, process 600 can animate to the next location

US 2013/0235044 Al

computed in block 608. In some embodiments, browser appli-
cation can animate the completion status indicator in the fluid
progress bar from location X=300 to X=320 within 200 ms.
[0079] Process 600 then ends. In embodiments where pro-
cess 600 is performed atblock 312 in FIG. 3, after process 600
ends, process 300 proceeds to block 314 to determine whether
a new progress value has been received. If a new progress
value has not been received, process 300 returns to block 312
where process 600 can be again be performed to calculate and
animate the progress bar indicator to a next location within
the progress bar.

[0080] FIG. 7 illustrates an example of progression 700 of
a completion status indicator for a task in a progress bar in
accordance with some embodiments of the invention. As
described, browser application in some embodiments can
determine a threshold at which to set off the “rocket effect.” In
response to determining that the threshold is met (e.g., when
a progress value indicates that a threshold percentage of the
task has been completed), browser application can display a
visual cue that alerts the user that the threshold has been met.
In some instance, the visual cue can be a “rocket effect” where
the progression of the completion status indicator in the
progress bar accelerates dramatically to the end of the
progress bar. As described, the threshold can often be set at a
point in time or at a loading percentage at which the user can
deem a web page to be “visually complete” in terms of load-
ing.

[0081] InFIG.7,auserhas requested a browser application
to load a web page. Upon receiving the user request (e.g.,
when the user types in www.url.com in the address field of the
web browser), browser application in some embodiments can
display a GUI including a progress bar that can indicate a
status indicator for the loading of the web page. As shown at
t=T0, the progress bar shows that nothing in the web page has
been loaded so far. The completion status indicator for the
task reflects 0% at this time. At t=T0+x, the completion status
indicator of the task as indicated in the progress bar has
increased to approximately 20% of the progress bar. As
described, browser application in some embodiments can
display an underreported status of the task in the progress bar.
This can account for and minimize the chances for pauses in
the progression of the completion status indicator in the
progress bar. In some embodiments, browser application can
display an initial boost in response to receiving the user
request in loading a web page. For instance, the status in the
progress bar can display a 10% increase upon the user’s
request regardless of whether 10% of the web page or any of
the web page has already been loaded. This makes the
progress bar feel more responsive to user interaction and
provides improved user experience.

[0082] In some embodiments, browser application can
compute the next location to which to increment the status
indicator in the progress bar and animate the progression
(e.g., using process 600 in FIG. 6). At t=T0+2x, the comple-
tion status has increased to approximately 15% of the
progress bar. At t=T0+3x, the completion status has increased
to approximately 40% of the progress bar. In some embodi-
ments, the progress bar can display a smooth increase in the
completion status indicator of the task. The rate at which the
web page is being loaded can vary depending on various
factors, such as the transfer rate, the bandwidth of the com-
puting device on which the browser application is running,
the servers from which information must be retrieved, etc. As
browser application receives additional progress values,

Sep. 12,2013

browser application can determine a different rate which the
web page is being loaded and display a constant increase in
between each receipt of a new progress value (e.g., using
linear functions to compute each new location).

[0083] Upon reaching the triviality threshold at t=T0+
4x=Tthresh (time at which the triviality threshold is met), the
progression in the completion status indicator as shown in
FIG. 7 accelerates towards the end of the progress bar to
convey completion of the task in loading the web page,
regardless of whether the task is actually completed. This
acceleration in the progression of completion status indicator
serves as a visual cue to indicate to a user that the web page is
“visually complete” at this moment. Att=T0+5x, the progress
bar shows completion of the task. In some embodiments, as
browser application determines that the threshold has been
reached, browser application can accelerate the progression
to arate at which the progress bar would immediately indicate
that the task has been completed. Different embodiments may
display the visual cue to the user differently. For instance,
some embodiments can display the visual cue by displaying
multiple spurts of accelerations instead of a single accelerated
progression all the way to the end of the progress bar.
[0084] FIG. 8illustrates an example of atime estimate table
800 of some embodiments that enables browser application to
obtain a time estimate until a task is complete based on a set
of parameters. In this example, time estimate table 800 pro-
vides time estimate values 810 for different progress values
805 that browser application receives from a render engine
such as render engine 135 in FIG. 1. While in this example,
browser application can determine a time estimate using a
single parameter (i.e., a progress value), in some embodi-
ments, browser application can determine the time estimate
using multiple parameters that are not included in time esti-
mate table 800.

[0085] As shown in this example, the estimated time until a
task is complete for a progress value that is between 0% and
35% is 30 seconds. While some embodiments can provide an
estimated time for a progress value, some embodiments can
provide a location in the progress bar for the progress value.
In some embodiments, time estimate table 800 can be stored
remotely or locally in a data storage accessible to browser
application. Time estimate table 800 can also be stored in
filesystem of an electronic computing device in a properly list
format (e.g., as an eXtensible Markup Language (XML) file)
in some embodiments.

[0086] Inresponse to receiving a progress value each time,
browser application can retrieve an estimated page load time
from time estimate table 800 based on the progress value.
Browser application can then use the estimated time to con-
struct a linear function and increment the completion status
indicator in the progress bar based on the linear function.
Browser application can continually increment the comple-
tion status indicator in the progress bar based on the con-
structed linear function until another progress value is
received. In response, browser application can construct a
new linear function based on the new progress value and
increment the completion status indicator in the progress bar
based on the new linear function.

[0087] In some embodiments, the estimated load time can
over-estimate the amount of time necessary for the task to
complete. As such, the linear function constructed based on
the over-estimated time can cause the completion status indi-
cator in the progress bar to increment in smaller increments
such that the progress bar would essentially underreport the

US 2013/0235044 Al

actual completion status of the task. Further, while browser
application in some embodiments uses static mapping and a
set of linear functions to determine new locations in the
progress bar to increment the reported status, some embodi-
ments can determine the new location using other attributes
that would also serve to underreport the status of the task.

[0088] FIG. 9 illustrates an example sequence 900 of a
progress bar that updates smoothly while underreporting an
actual status of a task in accordance with some embodiments.
In some embodiments, a browser application can display a
fluid progress bar that updates a completion status indicator
for a task in a manner that appears “smooth” or “fluid” to a
user, instead of appearing “clunky.” The browser application
can over-estimate an amount of time required to complete the
task such that the progression of the status indicator displayed
in the progress bar would make smaller increments and, in
turn, underreport the actual status progression of the task.

[0089] As described, the browser application can receive a
progress value from a render engine, compute an estimated
page load time (e.g., by mapping the progress value to an
estimated time using time estimate table 800 in FIG. 8),
construct a linear function using the estimated page load time,
and determine a new location in the progress bar to increment
the progress status indicator for a time interval. The browser
application in some embodiments can then animate the pro-
gression of the task to the new location. By designating short
time intervals (e.g., 200 ms, 250 ms) for determining and
incrementing to a new location allows the progression of
completion status indicator in the progress bar to appear
smooth to a user.

[0090] In FIG. 9, browser application can receive a
progress value of 40% from a render engine within a short
period of time (e.g., after 5 milliseconds, 50 milliseconds, 3
seconds, 10 seconds) after receiving a user request for a
particular web page. After receiving the progress value,
browser application in some embodiments can determine a
time estimate for the page loading to complete using time
estimate table 800 in FIG. 8. Using time estimate table 800,
the estimated time until the web page finishes loading is 10
seconds.

[0091] Again, as described in block 606 in process 600,
browser application can construct a linear function using two
known points. If the location field of the progress bar has a
width of 1000 pixels and browser application (e.g., render
engine) estimates that it will take 10 seconds for the load to
complete, browser application can construct a linear function
F(t) upon determining that 3 seconds have passed and that the
current location is at X=300. In such an instance, browser
application can construct linear function F(t) in a way such
that the progression in the progress bar can complete within
the estimated time (i.e., 10 seconds). Using

Foy=mi+b=

X2-X1 ‘e 100% of the location fields width — current X position[
T2-T1 "~

estimated remaining load time—

elapsed time since the beginning of a load

Sep. 12,2013

in this example,

1-03

10_31:.11.

Fo) =

[0092] In this case, if the time it takes to animate the status
from a current position to a next position is set at 200 ms, then
F(1)=F(3+0.2)=0.32, or around 320 pixels. As described, the
time it takes to animate the status for a current position to a
new position is configurable by a user or administrator in
some embodiments. Further, browser application continues
to update the status in the progress bar until a new progress
value is received. As such, at t=3.4, since a new progress value
has not been received, browser application uses the previ-
ously constructed linear equation and determines another
new location. Using F(1)=0.1 t, F(3.4)=0.34 of the progress
bar, or 340 pixels in the progress that has a width of 1000
pixels. Browser application can continually update the
completion status indicator in the progress bar using the lin-
ear function in a linear manner until a new progress value is
finally received. By updating the status within short time
intervals (e.g., 200 milliseconds), the progression of the
completion status indicator in the progress bar can appear
smooth to the user.

[0093] Subsequently, a new progress value 60% is received
at t=3.4 s where the new time estimate until the page load is
complete is 5 seconds according to table 800 in FIG. 8.
Browser application can reconstruct a new linear function
using two new points and F(t)=mt+b. One of ordinary skill
would be able to determine the linear function upon identify-
ing two known points. Therefore, in this example,

1-.34 1-.34
(

F@) = Tl—3.4)+0.34=0.132[—0.1088.

Using the newly constructed linear function, browser appli-
cation can then determine the new endpoints at which to
increment (animate) the completion status indicator after
each time interval. Again, if the time interval is at 200 ms, then
att=3.6, F(3.6)=0.37 or 370 pixels. After another 200 ms, the
completion status indicator is calculated to be at F(3.8)=0.39
or 390 pixels, so on and so forth.

[0094] In some embodiments, in response to receiving the
user request to load a new web page, browser application can
perform an increase in the completion status indicator (e.g., to
10% or 20% of the progress bar) regardless of the actual status
for the task. Including this feature can make the progress bar
feel responsive to user interaction.

[0095] Browser application in some embodiments can
visually modify a Ul element on the GUI or display a visual
effect when a status of a feature changes (e.g., when the
feature becomes enabled). For example, browser application
can display a change in the manner a particular Ul element
(representing a feature) is displayed by modifying the color of
the particular Ul element. In another example, the browser
application can display a visual appearance of a Ul element
representing the feature on the GUI to indicate the status
change. To provide additional visibility that the status of the
feature is changed, some embodiment can visually modify the
UT element at the same time or immediately following the
“rocket effect” described above. For example, some embodi-
ments can modify a Ul element (e.g., present a visual appear-

US 2013/0235044 Al

ance or highlight a Ul element) or provide a visual effect next
to one end of a progress bar following the completion of the
“rocket effect” such that the animation of the rocket effect
(i.e., where the progress status indicator advances from a
current position to an end of a progress bar) would direct the
user’s attention to the modified Ul element or visual effect.

[0096] FIG. 10 illustrates an example of a more detailed
diagram 1000 of feature enabler 125 (e.g., feature enabling
subsystem 125 in FIG. 1) that can signal browser application
to display a visual effect in response to a status change for a
feature in accordance with some embodiments. In some
embodiments, feature enabling subsystem 125 can include a
rocket effect tracker 1005 that determines when the “rocket
effect” is triggered (i.e., when the triviality threshold is met),
a feature status tracker 1010 that determines whether the
status for a feature has changed, and an enabler determiner
1015 that determines whether to visually modify the UI ele-
ment representing the feature to convey the change in status.

[0097] In FIG. 10, rocket effect tracker 1005 can receive a
signal from rocket effect generator 120 in FIG. 1 that indi-
cates whether a triviality threshold is met and therefore the
“rocket effect” triggered. In some embodiments, upon receiv-
ing the signal indicating that the threshold is met, rocket effect
tracker 1005 can send a signal to enable determiner 1015 that
causes enable determiner 1015 to determine whether to visu-
ally modify the UI element.

[0098] In some embodiments, in response to receiving the
signal from rocket effect tracker 1005 indicating that the
threshold is met, enable determiner 1015 can send a request to
feature status tracker 710 to determine whether the status of
the feature is changed. If the status of the feature is deter-
mined to have been modified, enable determiner 1015 can
send a request to render engine 115 to visually modify the Ul
element.

[0099] In some embodiments, feature status tracker 1010
can determine that the status of the feature has been changed
prior to the triviality threshold being met. Feature status
tracker 1010 in some embodiments can send a signal to enable
determiner 1015 indicating that the feature is enabled. Enable
determiner 1015 can then send a signal to render engine 135
to visually modify the Ul element upon receiving a signal
from rocket effect tracker 1005 indicating that the triviality
threshold has been met.

[0100] Insome embodiments, render engine 135 can visu-
ally modify the Ul element immediately following the
“rocket effect” (i.e., as the completion status indicator arrives
atone end of the progress bar from a current position when the
threshold is determined to have met). Modifying the UI ele-
ment following the “rocket effect” can direct the user’s atten-
tion to the modified Ul element. Some embodiments display
the visual cue at the same time as the “rocket effect” (i.e., the
animation of the accelerated progress status indicator in the
progress bar).

[0101] FIG. 11 illustrates an example process 1100 of some
embodiments for visually modifying a Ul element in
response to a feature being enabled when the triviality thresh-
old is met. As described, in some embodiments, feature
enabler 125 of FIG. 1 can determine whether the status of a
feature is changed (e.g., a feature is ready to be enabled) when
the threshold is met and thereby cause render engine 135 to
display a change in the visual state of a Ul element represent-
ing the feature’s status. One of ordinary skill will recognize

Sep. 12,2013

that process 1100 can be performed after process 300 deter-
mines that the threshold has been met at block 310 in some
embodiments.

[0102] At block 1102, browser application can receive an
indication that a the triviality threshold has been reached. At
block 1104, browser application can determine whether a
status of a feature is changed or whether the feature is to be
enabled. Some embodiments can determine whether a feature
status is changed or whether the feature is to be enabled by
inquiring a module that is responsible for rendering the fea-
ture when it is enabled. In some embodiments, browser appli-
cation can determine that a feature status is changed when the
feature becomes functional from being non-functional. For
instance, a feature that allows readers to view a web page in a
different manner is changed or enabled when the different
view is populated and ready for viewing.

[0103] If browser application determines that the feature
status is modified, at block 1106, browser application can
visually modify a state of a Ul element representing the
feature status subsequent to displaying the “rocket effect.” If
web browser determines that the feature is not to be enabled,
process 1100 ends. In some embodiments, after process 1100
ends, browser application displays the “rocket effect” without
visually modifying the Ul element.

[0104] FIG. 12 illustrates an example progression 1200 of a
completion status indicator for a task in a progress bar 1205
and visually modifying a Ul element 1210 representing a
feature in accordance with some embodiments. At t=T0,
progress bar 1205 displays a completion status indicator indi-
cating a 0% completion status for a task. Ul element 1210
representing a status for a feature can be dotted as shown in
FIG. 12, indicating that the feature is currently disabled. At
t=T1, the completion status indicator shows that the status of
the task is approximately 20% complete. As described, in
some embodiments the completion status indicator displayed
in progress bar 1205 can be an underreported status of the
task. Ul element 910 remains disabled at this stage.

[0105] At t=Tthresh, progression of the completion status
indicator accelerates toward one end of the progress bar to
indicate completion of the task. In some embodiments,
browser application can determine whether the feature is
enabled when the threshold is met. In this instance, the feature
is ready to be enabled when the threshold is met. Before the
completion status indicator reaches the end of the progress
bar, Ul element 1210 remains disabled in this example.
[0106] In some embodiments, Ul element 1210 can be
enabled when browser application determines that the thresh-
old is met. In this instance, the visual cue indicating the status
change for the feature (represented by Ul element 1210) is
enabled when the progression of the completion status indi-
cator reaches the end of the progress bar. Changing a visual
state of Ul element 1210 as the progression of the completion
status indicator reaches the end of the progress bar allows the
user’s attention to be directed to the Ul element 1210.
[0107] FIG. 13 illustrates an example of a more detailed
diagram 1300 of secondary progress generator 130 and ren-
der engine 135 for rendering a secondary progress indicator
in addition to a status of a task in a progress bar according to
some embodiments. In some embodiments, a browser appli-
cation can provide a progress bar that displays a secondary
progress indicator along with the completion status indicator
for the task. The secondary progress indicator can convey
additional information about a task including a speed at
which the task is currently being performed. Secondary

US 2013/0235044 Al

progress generator 130 can determine a current speed at
which a task is being performed and a type of animation
corresponding to the determined speed, while render engine
135 can display the type of animation corresponding to the
determined speed.

[0108] In some embodiments, secondary progress genera-
tor can include a speed determiner 1305 that can determine a
current speed at which the task is being performed, and a
translator 1310 that can determine a type of animation asso-
ciated with a speed. When speed determiner 1305 determines
a current speed at which a task is being performed (e.g., a
download rate, a transfer rate), the current speed can be sent
to translator 1310. Translator 1310 can then determine the
type of animation associated with the current speed. Second-
ary progress generator 130 can then send the type of anima-
tion to render engine 135 for display to the user.

[0109] FIG. 14 illustrates an example process 1400 of some
embodiments for displaying a secondary progress indicator
along with the completion status indicator for the task in a
progress bar. In some embodiments, the secondary progress
indicator can convey additional information about the task
undergoing completion, such as a current speed at which the
task is being performed. At block 1402, process 1400 can
display a progress bar for a task being performed. Browser
application can display the progress bar for a web page load-
ing in some embodiments. At block 1404, process 1400 can
receive a progress value for the task. As described, browser
application can receive a progress value for loading a web
page from a render engine in some embodiments.

[0110] At block 1406, browser application can display a
completion status indicator for the task in the progress bar
based on the progress value. As mentioned, in some embodi-
ments, the completion status indicator displayed in the
progress bar can underreport the completion status of the task.
At block 1408, process 1400 can determine a speed at which
the task is being performed. In some embodiments, browser
application (e.g., speed determiner 1305 in FIG. 13) can
determine a speed at which the page is loading at the particu-
lar moment, based at least in part on the network connection,
the transfer rate, location of the web server, number and size
of objects to be loaded for the web page, etc.

[0111] Atblock 1410, process 1400 can determine a type of
animation to be used to represent the speed determined at
block 1408. In some embodiments, browser application (e.g.,
translator 1310 in FIG. 13) can determine a type of animation
from alist of different types of animation including a spinning
wheel animation where the wheel spins faster when the deter-
mined speed is faster, a wave frequency animation where the
waves displayed in a progress bar is at a high frequency when
the determined speed is faster, etc. In some embodiments, the
user can select the different types of animation to be used to
represent the speed.

[0112] At block 1412, process 1400 can determine an ani-
mation for the type of animation associated with the deter-
mined speed. In some embodiments, browser application
(e.g., translator 1310) can map the determined speed to a
corresponding animation in the type of animation. For
instance, browser application can determine that a level three
speed corresponds to a wave animation that is medium fre-
quency using a lookup table. At block 1414, process 1400 can
display the associated animation concurrently with the
completion status indicator in the progress bar. In some
embodiments, browser application can cause render engine

Sep. 12,2013

135 in FIG. 1 to display the associated animation simulta-
neously along with progression of the completion status indi-
cator in the progress bar.

[0113] FIG. 15 illustrates another example progression
1500 for displaying a secondary progress indicator along with
a completion status indicator for a task in a progress bar
according to some embodiments. In some embodiments, a
browser application can display multiple indicators in a
progress bar to convey different types of information to the
user. As shown in FIG. 15 at t=T1, progress bar displays the
completion status indicator to be at approximately ¥4 of the
progress bar, along with a secondary progress indication rep-
resented by the density of the completion status indicator. In
this case, the density of the completion status indicator is
fairly low (as the dots are spaced sparsely), indicating that the
speed at which the task is being performed is fairly slow.

[0114] At t=T2, progress bar displays a completion status
indicator to be at approximately %5 of the progress bar, along
with a secondary progress indication with high density. At
t=T3, progress bar displays a completion status indicator to be
at around ' of the progress bar, along with a secondary
progress indication at medium density. The lessened density
indicates that the speed at which the task is being performed
has decreased from t=T2. In some embodiments, textual data
can accompany the density display to convey the exact speed
at which the task is being performed. In some instances, the
secondary progress indicator can appear only if the user’s
cursor hovers over the progress bar or the progress bar indi-
cator, indicating that the user would like to have additional
information about the task. Further, browser application can
display the secondary progress indicator in the portion of the
progress bar that is not occupied by the completion status
indicator such as not to obstruct the web address to the viewer.

[0115] FIG. 16 illustrates an example progression 1600 for
displaying another type of secondary progress indicator along
with a completion status indicator of a task in a progress bar
according to some embodiments. In some embodiments, a
browser application can display another type of indicator,
such as ripples emanating from the edge of the completion
status indicator in a progress bar to convey additional infor-
mation to the user. At t=T1, progress bar displays a comple-
tion status around %5 of the progress bar, along with a second-
ary progress indication represented by ripples emanating
from the edge of the completion status indicator/bar that is
inching forward. In this case, the frequency of the ripples are
high, indicating that the speed at which the web page is being
loaded is fast.

[0116] Att=T2, progress bar displays the completion status
indicator to occupy around % of the progress bar, along with
a secondary progress indication displaying medium fre-
quency ripples. In this case, the speed at which the web page
is being loaded is currently at a higher speed than the speed at
t=T1. At t=T3, progress bar displays a completion status
indicator to occupy around %3 of the progress bar, along with
a secondary progress indication displaying low frequency
ripples. The lowered frequency indicates that the speed at
which the task is being performed has decreased from t=T2.
In some embodiments, additional animation effects can be
shown in the progress bar. For example, browser application
can display another type of animation in addition to second-
ary progress indicator simultaneously in order to convey a
speed at which a subtask (e.g., loading a particular object for
the web page) is being performed.

US 2013/0235044 Al

[0117] FIG. 17 illustrates another example progression
1700 for displaying a type of secondary progress indicator
along with a completion status indicator for a task in a
progress bar according to some embodiments. In some
embodiments, a browser application can display another type
of indicator, such as a spinning wheel, in a progress bar to
convey a current speed at which a task is being performed to
the user. At t=T1, progress bar displays a completion status
indicator to be around %5 of the progress bar, along with a
secondary progress indication represented by a spinning
wheel in the progress bar. In this case, the speed at which the
wheel is spinning is fast (indicated by the three arrows),
indicating that the rate at which the web page is being loaded
at the moment is high.

[0118] At t=T2, progress bar displays a completion status
indicator to occupy around % of the progress bar, along with
a secondary progress indication of a slowly spinning wheel.
In this case, the speed at which the web page is being loaded
is currently at a higher speed than the speed at t=T1. At =13,
progress bar displays a completion status indicator to occupy
around %3 of the progress bar, along with a secondary progress
indication of a wheel that is spinning faster than at T=T2. The
double arrows indicate that the speed at which the task is
being performed has increased from t=T2. Different types of
animation can be used in different embodiments. In some
embodiments, the types of animation is configurable by the
user and/or the system administrator.

[0119] Many of the above-described features and applica-
tions can be implemented as software processes that are
specified as a set of program instructions encoded on a com-
puter readable storage medium. When these program instruc-
tions are executed by one or more processing units, the pro-
gram instructions cause the processing unit(s) to perform the
actions indicated in the instructions. Examples of computer
readable storage media include CD-ROMs, flash drives,
RAM chips, hard drives, EPROMs, etc. The computer read-
able storage media does not include carrier waves and elec-
tronic signals passing wirelessly or over wired connections.
“Software” refers generally to sequences of instructions that,
when executed by processing unit(s) cause one or more com-
puter systems to perform various operations, thus defining
one or more specific machine implementations that execute
and perform the operations of the software programs.

[0120] FIG. 18 illustrates a computer system 1800 accord-
ing to an embodiment of the present invention. Progress bar
system 100 can be implemented within a computer system
such as computer system 1800 shown here. Computer system
1800 can be implemented as any of various computing
devices, including, e.g., a desktop or laptop computer, tablet
computer, smart phone, personal data assistant (PDA), or any
other type of computing device, not limited to any particular
form factor. Computer system 1800 can include processing
unit(s) 1805, storage subsystem 1810, input devices 1820,
display 1825, network interface 1835, and bus 1840.

[0121] Processing unit(s) 1805 can include a single proces-
sor, which can have one or more cores, or multiple processors.
In some embodiments, processing unit(s) 1805 can include a
general-purpose primary processor as well as one or more
special-purpose co-processors such as graphics processors,
digital signal processors, or the like. In some embodiments,
some or all processing units 1805 can be implemented using
customized circuits, such as application specific integrated
circuits (ASICs) or field programmable gate arrays (FPGAs).
In some embodiments, such integrated circuits execute

Sep. 12,2013

instructions that are stored on the circuit itself In other
embodiments, processing unit(s) 1805 can execute instruc-
tions stored in storage subsystem 1810.

[0122] Storage subsystem 1810 can include various
memory units such as a system memory, a read-only memory
(ROM), and a permanent storage device. The ROM can store
static data and instructions that are needed by processing
unit(s) 1805 and other modules of electronic device 1800. The
permanent storage device can be a read-and-write memory
device. This permanent storage device can be a non-volatile
memory unit that stores instructions and data even when
computer system 1800 is powered down. Some embodiments
of the invention can use a mass-storage device (such as a
magnetic or optical disk or flash memory) as a permanent
storage device. Other embodiments can use a removable stor-
age device (e.g., a floppy disk, a flash drive) as a permanent
storage device. The system memory can be a read-and-write
memory device or a volatile read-and-write memory, such as
dynamic random access memory. The system memory can
store some or all of the instructions and data that the processor
needs at runtime.

[0123] Storage subsystem 1810 can include any combina-
tion of computer readable storage media including semicon-
ductor memory chips of various types (DRAM, SRAM,
SDRAM, flash memory, programmable read-only memory)
and so on. Magnetic and/or optical disks can also be used. In
some embodiments, storage subsystem 1810 can include
removable storage media that can be readable and/or write-
able; examples of such media include compact disc (CD),
read-only digital versatile disc (e.g., DVD-ROM, dual-layer
DVD-ROM), read-only and recordable Blue-Ray® disks,
ultra density optical disks, flash memory cards (e.g., SD
cards, mini-SD cards, micro-SD cards, etc.), magnetic
“floppy” disks, and so on. The computer readable storage
media do not include carrier waves and transitory electronic
signals passing wirelessly or over wired connections.

[0124] Insome embodiments, storage subsystem 1810 can
store one or more software programs to be executed by pro-
cessing unit(s) 1805, such as a browser application 1845. As
mentioned, “software” can refer to sequences of instructions
that, when executed by processing unit(s) 1805 cause com-
puter system 1800 to perform various operations, thus defin-
ing one or more specific machine implementations that
execute and perform the operations of the software programs.
The instructions can be stored as firmware residing in read-
only memory and/or applications stored in magnetic storage
that can be read into memory for processing by a processor.
Software can be implemented as a single program or a col-
lection of separate programs or program modules that interact
as desired. Programs and/or data can be stored in non-volatile
storage and copied in whole or in part to volatile working
memory during program execution. From storage subsystem
1810, processing unit(s) 1805 can retrieve program instruc-
tions to execute and data to process in order to execute various
operations described herein.

[0125] A userinterface can be provided by one or more user
input devices 1820, display device 1825, and/or and one or
more other user output devices (not shown). Input devices
1820 can include any device via which a user can provide
signals to computing system 1800; computing system 1800
can interpret the signals as indicative of particular user
requests or information. In various embodiments, input
devices 1820 can include any or all of a keyboard touch pad,

US 2013/0235044 Al

touch screen, mouse or other pointing device, scroll wheel,
click wheel, dial, button, switch, keypad, microphone, and so
on.

[0126] Display 1825 can display images generated by elec-
tronic device 1800 and can include various image generation
technologies, e.g., a cathode ray tube (CRT), liquid crystal
display (LCD), light-emitting diode (LED) including organic
light-emitting diodes (OLED), projection system, or the like,
together with supporting electronics (e.g., digital-to-analog
oranalog-to-digital converters, signal processors, or the like).
Some embodiments can include a device such as a touch-
screen that function as both input and output device. In some
embodiments, other user output devices can be provided in
addition to or instead of display 1825. Examples include
indicator lights, speakers, tactile “display” devices, printers,
and so on.

[0127] In some embodiments, display 1825 can provide a
graphical user interface, in which visible image elements in
certain areas of display 1825 are defined as active elements or
control elements that the user selects using user input devices
1820. For example, the user can manipulate a user input
device to position an on-screen cursor or pointer over the
control element, then click a button to indicate the selection.
Alternatively, the user can touch the control element (e.g.,
with a finger or stylus) on a touchscreen device. In some
embodiments, the user can speak one or more words associ-
ated with the control element (the word can be, e.g., a label on
the element or a function associated with the element). In
some embodiments, user gestures on a touch-sensitive device
can be recognized and interpreted as input commands; these
gestures can be but need not be associated with any particular
array indisplay 1825. Other user interfaces can also be imple-
mented.

[0128] Network interface 1835 can provide voice and/or
data communication capability for electronic device 1800. In
some embodiments, network interface 1835 can include radio
frequency (RF) transceiver components for accessing wire-
less voice and/or data networks (e.g., using cellular telephone
technology, advanced data network technology such as 3G,
4G or EDGE, WiFi (IEEE 802.11 family standards, or other
mobile communication technologies, or any combination
thereof), GPS receiver components, and/or other compo-
nents. In some embodiments, network interface 1835 can
provide wired network connectivity (e.g., Ethernet) in addi-
tion to or instead of a wireless interface. Network interface
1835 can be implemented using a combination of hardware
(e.g., antennas, modulators/demodulators, encoders/decod-
ers, and other analog and/or digital signal processing circuits)
and software components.

[0129] Bus 1840 can include various system, peripheral,
and chipset buses that communicatively connect the numer-
ous internal devices of electronic device 1800. For example,
bus 1840 can communicatively couple processing unit(s)
1805 with storage subsystem 1810. Bus 1840 also connects to
input devices 1820 and display 1825. Bus 1840 also couples
electronic device 1800 to a network through network inter-
face 1835. In this manner, electronic device 1800 can be a part
of a network of multiple computer systems (e.g., a local area
network (LAN), a wide area network (WAN), an Intranet, or
a network of networks, such as the Internet. Any or all com-
ponents of electronic device 1800 can be used in conjunction
with the invention.

[0130] Someembodiments include electronic components,
such as microprocessors, storage and memory that store com-

Sep. 12,2013

puter program instructions in a computer readable storage
medium. Many of the features described in this specification
can be implemented as processes that are specified as a set of
program instructions encoded on a computer readable storage
medium. When these program instructions are executed by
one or more processing units, they cause the processing unit
(s) to perform various operation indicated in the program
instructions. Examples of program instructions or computer
code include machine code, such as is produced by a com-
piler, and files including higher-level code that are executed
by a computer, an electronic component, or a microprocessor
using an interpreter.

[0131] Through suitable programming, processing unit(s)
1805 can provide various functionality for electronic device
1800. For example, processing unit(s) 1805 can execute
browser application 1845. Browser application 1845 can pro-
vide various functionality such as the ability to retrieve and
display content items from local or remote sources (e.g.,
using HTTP or other data transfer protocols to retrieve and
display web pages) in rendering a web page and the ability to
receive and interpret user input pertaining to the content
items, such as selection of a hyperlink, selection of an item to
view, submission of data by the user in response to a particular
content item (e.g., filling out a form on an interactive web
page), and so on. In some embodiments, browser application
1845 can provide a progress bar that displays a completion
status indicator representing a completion status of a task
such as loading a web page. Various additional information
can be display within the progress bar e.g., via animation
effects. For example, a speed at which a web page is being
loaded at a particular moment in time can be presented by
browser application 145 through animating ripples with vary-
ing frequencies.

[0132] It will be appreciated that computer system 1800 is
illustrative and that variations and modifications are possible.
Computer system 1800 can have other capabilities not spe-
cifically described here (e.g., mobile phone, global position-
ing system (GPS), power management, one or more cameras,
various connection ports for connecting external devices or
accessories, etc.). Further, while computer system 1800 is
described with reference to particular blocks, it is to be under-
stood that these blocks are defined for convenience of
description and are not intended to imply a particular physical
arrangement of component parts. Further, the blocks need not
correspond to physically distinct components. Blocks can be
configured to perform various operations, e.g., by program-
ming a processor or providing appropriate control circuitry,
and various blocks might or might not be reconfigurable
depending on how the initial configuration is obtained.
Embodiments of the present invention can be realized in a
variety of apparatus including electronic devices imple-
mented using any combination of circuitry and software.
[0133] Different approaches canbe implemented in various
environments in accordance with the described embodi-
ments. FIG. 19 illustrates an example of an environment 1900
that can implement various aspects of the present invention.
Although a Web-based environment is used for purposes of
explanation, one of ordinary skill would recognize that dif-
ferent environments can be used to implement various
embodiments of the invention.

[0134] Environment 1900 includes an electronic client
device 1902, a Web server 1906, and at least one application
server 1908. Electronic client device 1902 can include any
appropriate electronic device operable to send and receive

US 2013/0235044 Al

requests, messages, and/or data over a network and convey
information to a user of the device. Examples of such client
devices include personal computers, mobile phones, laptop
computers, personal data assistances and the like. Electronic
client device 1902 can communicate with a Web server 1906
through at least one network where Web server 1906 can
receive requests from electronic client device 1902 and serve
content in response to communications over the network.

[0135] One of ordinary skill would recognize that there can
be several application servers, layers or other elements, pro-
cesses or components, which can be linked or otherwise con-
figured and can interact to perform tasks such as obtaining
data from a data store (not shown here). As used herein, the
term “data store” can refer to any device or combination of
devices capable of storing, accessing, and retrieving data,
such as one or more data servers, databases, data storage
devices, and/or data storage media. Application server(s)
1908 can include hardware and/or software to execute aspects
of'one or more applications for the client device and is capable
of generating content such as text, graphics, audio and/or
video to be sent to the user through Web server 1906 in the
form of HTML, XML, or any other appropriate structured
language. The handling of all requests and responses, as well
as the delivery of content between client device 1902 and
application server 1908, can be handled by Web server 1906.
It should be understood that Web and application servers are
not required and are merely examples components of envi-
ronment 1900.

[0136] Insomeembodiments, Web server 1906 can run any
of a variety of server or mid-tier applications, including
HTTP servers, FTP servers, CGI servers, data servers, Java
servers and business application servers. Web server(s) 1906
can also be capable of executing programs or scripts in
response to requests from client device 1902, such as by
executing one or more Web applications that can be imple-
mented as one or more scripts or programs written in any
programming language, such as Java®, C, C# or C++ or any
scripting language, such as Perl, Python or TCL, as well as
combinations thereof.

[0137] Eachofthe client devices 1902 can include a display
1910 where messages and/or data received over a network can
be locally rendered and displayed to the user. While browser
application can cause a local render engine to display content
(e.g., a web browser including content and a progress bar) to
the user, processing can be performed “in the cloud” 1904 via
Web server 1906 and one or more application servers 1908 in
some embodiments. For example, the data transfer rate, the
completion status of a task, the underreporting of a progress
status of a task, the speed at which the web page is being
loaded can be determined “in the cloud” 1904. Environment
1900 can be a distributed computing system using several
computer systems and components interconnected through
various communication links (e.g., computer networks).

[0138] While the invention has been described with respect
to specific embodiments, one skilled in the art will recognize
that numerous modifications are possible: different ways to
display a secondary progress indicator for progress bar, dif-
ferent types of animation for conveying the “rocket effect,”
different ways to smoothen the progression of a completion
status in the progress bar, different features can be enabled
(aside from Safari reader button), etc. Thus, although the
invention has been described with respect to specific embodi-

Sep. 12,2013

ments, it will be appreciated that the invention is intended to
cover all modifications and equivalents within the scope of
the following claims.
What is claimed is:
1. A method comprising:
displaying, by a computing device, a progress bar visually
displaying a completion status indicator for a task being
performed, the completion status indicator representing
a completion status for the task; and

displaying a secondary indicator associated with the
progress bar, the secondary indicator visually identify-
ing a speed at which the task is being performed.

2. The method of claim 1 further comprising:

receiving a progress value; and

determining a value for the completion status indicator

based on the progress value, wherein the displayed
completion status indicator underreports the completion
status of the task.

3. The method of claim 1 further comprising:

determining the speed at which the task is being per-

formed;

determining a type of animation associated with the task;

determining a particular animation in the type of animation

corresponding to the received speed, wherein displaying
the secondary indicator includes displaying the particu-
lar animation in the progress bar.

4. The method of claim 3 further comprising:

determining another speed at which the task is being per-

formed;
determining another particular animation in the type of
animation corresponding to the other speed; and

transitioning the secondary indicator from displaying the
particular animation to the other particular animation in
the progress bar.

5. The method of claim 3, wherein the types of animation
includes at least one of a wheel spinning animation or a ripple
effect.

6. The method of claim 3, wherein the type of animation
associated with the task is determined by mapping the task to
the type of animation using a lookup table.

7. The method of claim 3, wherein the type of animation is
user configurable.

8. The method of claim 3 the particular animation corre-
sponding to the received speed is determined using a lookup
table.

9. The method of claim 3, wherein the secondary indicator
is displayed in the progress bar.

10. The method of claim 3, wherein the secondary indicator
is displayed within the completion status indicator, wherein
the secondary indicator is represented by an intensity within
the completion status indicator.

11. A method, comprising:

displaying, by a computing device, a progress bar that

concurrently displays (i) a first visual indication of a
completion status of a task and (ii) a second visual indi-
cation of a speed at which the task is being performed.

12. The method of claim 11, wherein the second visual
indication is updated in real-time.

13. The method of claim 11, wherein the second visual
indication is determined by mapping the task to a type of
animation using a lookup table.

14. The method of claim 13, wherein the type of animation
is user configurable.

US 2013/0235044 Al Sep. 12,2013
14

15. The method of claim 13, wherein the type of animation
is determined based on a type of the task.
16. A computer readable storage medium
displaying, by a computing device, a progress bar visually
displaying a completion status indicator for a task being
performed, the completion status indicator representing
a completion status for the task; and

displaying a secondary indicator associated with the task in
the progress bar, the secondary indicator visually iden-
tifying a speed at which the task is being performed.

17. The computer readable storage medium of claim 16,
wherein the method further comprises:

determining, based at least in part on the speed at which the

task is being performed, the secondary indicator associ-
ated with the task.

18. The computer readable medium of claim 17, wherein
determining the secondary indicator comprises:

mapping the speed to a type of animation using a lookup

table, wherein displaying the secondary indicator
includes displaying the type of animation in the progress
bar.

19. The computer readable storage medium of claim 16,
wherein the secondary indicator is a type of animation deter-
mined based at least in part on a type of the task.

20. The computer readable storage medium of claim 16,
wherein the completion status indicator and the secondary
indicator are both graphical user interface elements displayed
within the progress bar.

#* #* #* #* #*

