My invention relates to the canning of carbonated water, or commonly called charged water, and has for its object the canning of such water in metal cans.

A further object is to provide a canned charged water in combination with a container to dispense the charged water under gas pressure by manually controlled valves for the mixing of beverages.

A still further object is to provide a canned charged water which may be placed in a suitable container, punctured, and the charged water withdrawn in any quantity or at any time desired, until the entire contents are discharged at which time a full can will be placed in the container.

A still further object is to provide a charged water canned in metal cans having gas pressure carried in the top of said cans by which the liquid in the cans may be forced out into any desired receptacle when the can has been punctured.

These objects I accomplish with the device illustrated in the accompanying drawing in which similar numerals and letters of reference indicate like parts throughout the several views and as described in the specification forming a part of this application and pointed out in the appended claims.

In the drawing:

Figure 1 is a side elevation of a container ready for use.

Figure 2 is a section of the cover removed from the container.

Figure 3 is a vertical section of the container with the cover removed and no can therein.

Figure 4 is a side elevation of a modified form of can having a raised conical top and with a dispensing device attached thereto, parts cut away, to show a section of the upper portion of one side of the can and one side of the dispenser.

Figure 5 is a view of a can, partially sectioned, used to contain the charged water such as may be placed in the type of dispenser shown in Figures 1 and 2.

In the drawing I have shown the can in which the beverage is stored as A, with the liquid shown as B, and the gas as C. A container E is then provided for the can which consists of a cylindrical case 5, set on a stand 6, and having a cover or lid 7 thereon. This cover 7 is provided with securing notches 8 adapted to fit down around lugs 9 on the container case 5 to lock the lid onto the container and the top side of the notch 8 is made on a slant 10 similar to the slope or pitch of a thread to lock the cover on with downward pressure. A flexible member 11 such as a chain, as shown, is used to lock the lid to the container so that it will not be misplaced.

Across the bottom of the container from one side into the center there is a conduit 15 extending in an open port 14 in the bottom of the container, with one side of the port 14 made into a perforating point or piercing blade 15 extending up into the container a short distance with the end 16 sharpened to a fine point, the point being adapted to engage and cut out a small triangular portion of the bottom of a carbonated beverage containing can A.

Across the entire bottom of the container E I provide a sealing gasket 17 made preferably of sponge rubber but may be made of any suitable material, said gasket 17 being formed with a flange 18 around the perimeter where it engages the edge of the container and the rim 19 of the can and with an annular sealing groove 20 around the inside of the flange 18 with a raised portion 21 formed to make this sealing groove, said raised rib portion being adapted to grip the rim 19 of the can against the flange 18 in the groove 20 to lock the can in an air tight seal when the point 16 perforates the bottom of the can A. At the top end of the container E adjacent the top edge thereof I provide a sealing ring 23 of similar composition to the gasket 17 to provide a seal around the edges of the can A when in the container E.

Extending from the end of the conduit 13 there is a tube 25 turned up the side of the container E and held in place by a bracket 26. The top end of the tube 25 is engaged in a control valve of faucet F, said faucet adapted to control the flow of carbonated water or beverage from the can through the conduit and out of the valve. The control handles F1 provide the means for controlling the valve and a nozzle 27 directs the flow of carbonated water from the container.

As a means of locking the can A in the container, other than the frictional contact with the sealing ring 23 and the gasket 17, I use the locking cover 7 which cover is internally provided with a ring 28 of gasket rubber or like material around the inner top edge thereof to seal the top end of the can when it is in place in the container and being perforated. This ring 28 is tapered down at the lower edge 29 to fit onto the periphery of the container and onto the upper rim 18a of the can A.

When wishing to use the device, the can A is set in the container and pressed down by hand until the bottom of the can reaches the gasket 17 with the rim 19 engaged in the groove 20. The cover 7 is then placed on the container and
engaged with the locking lugs 9 and by exerting pressure on the handle E1 the can is then forced down into the groove 20 and the piercing point or blade 15 forms a hole in the bottom of the can which establishes communication between the interior of the can A and the conduit 13 and tube 25. Thus, when the can is perforated, the gas C pressing down on the liquid B forces it out of the conduit and tube 25 to the valve F from which it may be dispensed at will. When all of the liquid has been dispensed, the can is removed and a new one inserted.

As a modified form of the device to meet the requirements of a cheaper type of device or another form of can, I have provided a dispensing device G shown in Figure 4 which consists of a conical cover 30 carrying a gasket 31 therein, said cover 30 and gasket 31 adapted to engage the top of a can A1. The top of the inside flat surface 32 of the cover is provided with a piercing point 33 which point is adapted to pierce a hole through the top 34 of the can A1 in direct alignment with a tube or pipe 35 to dispense the liquid from the can. The tube or pipe 35 is formed on the inside of the can when it is made and is an integral part thereof so that when the top end is pierced the pressure of the gas C1 will force the liquid B1 from the bottom end of the tube or pipe 35 and to the dispenser.

A dispenser valve K is provided on the top of the dispenser in the top of a conduit 36, said valve adapted to discharge the fluid from the tube 35, and the conduit 36, through a nozzle 37 into any desired receptacle.

It will be obvious that some other types of tubes may be used to draw the liquid from the bottom of the can such as making a false conduit in the seam of the can and other types of cans and dispensing containers may be used to hold the liquid, the main essential feature of this invention being the producing of a canned carbonated water which may be canned in the conventional manner and then dispensing the carbonated water through a controllable valve in any amounts desired.

Having thus described my invention I desire to secure by Letters Patent, and claim:

1. A dispenser for canned carbonated water beverage comprising, a casing; a conduit leading from the center of the bottom of said casing and extending up one side thereof to a level above the level of the top of the container in which the beverage is canned extends; a valve in the top of said conduit; a piercing point mounted centrally in said casing above the open end of said conduit; a gasket in the bottom of said casing extending to the perimeter thereof and having an annular groove near the perimeter of the casing in which the top flange of the can is adapted to seat when the can is inserted in the casing prior to the puncturing thereof to prevent escape of the fluid therewith; and a cover for said casing to be secured thereto in fixed relation thereto after insertion of the canned beverage.

2. A device as set out in claim 1 including a gasket formed inside the top of the casing permitting the contents to pass into said conduit; a gasket in the bottom of said casing extending to the perimeter thereof; means, by internal pressure, when the can is in the bottom of the casing, to seal the top groove of the can, to prevent escape of fluid; and means to lock the can in the casing.

JOHN G. NELSON.