(11) Application No. Al 2004279189 B2

(19) AUSTRALIAN PATENT OFFICE

(54)

(51)8

Title

System and a method for presenting related items to a user

International Patent Classification(s)

GO6F 13,00 (2006.01)3/14

GO6F 1,00 (2006.01) Z20060101ALIZ2005111
GO6F 3,14 (2006.01) OBMEP GOG6F
GO6F 7,00 (2006.01) 7-00

GO6F 17,00 (2006.01)20060101AL12005111

GO6F 17,30 (2006.01) OBMEF GO6F
GOEF 1300 1700
200B0101AFI 2005111 20060101ALI2006050
OBMER CO6F 6BMEP GO6F
100 17730
20060101ALT 2006050 20060101ALI2007072
6BMEP GO6F 1BMEP
PCTAUS2004-025306
Application No: 2004279189 (22) Application Date: 2004 .07 30
WIPO No: wops5.,045592
Priority Data
Number (32) Date (33) Country
10-691,888 2003 .10 .23 us
Publication Date : 2005 06 23

Publication Journal Date : 5pp5 pg 23

Applicant(s)

Microsoft Corporation

Inventor(s)

Karatal, EKerem B.. Guzak, Chris J.. Sheldon, David Joel, McKee, Timothy P.. Peterson,
Leonard J.. Sierra, Gilampiero, Moore, Jason Fergus, De Worchik, David George
Agent/Attorney

Davies Colliscon Cave, 1 Nicholson Street, Melbourne, VIC, 3000

Related Art

US 5504852 A
US 6008806 A

.34-

ABSTRACT OF THE INVENTION

A system and method for presenting related items to 2 user. A
universal data store is provided which contains a plurality of items. A portion of
the items contain relational information that allows relationships between two or

5 more of the plurality of items to be determined. A shell presents a selected item
to a user and is configured to utilize the relational information to present one or

more items in the data store which are related to the selected item.

2004279189 07 Dec 2009

20

25

PP 3 O

SYSTEM AND A METHOD FOR PRESENTING RELATED ITEMS TO A USER

TECHNICAL FIELD
Described embodiments relate generally to the field of computer software. More
particularly, some embodiments relate to a system and method for displaying items stored

on a computer to a user.

BACKGROUND

Providing users of computers with the ability to quickly find and display a piece of
information, no matter what the information’s format or location, is a challenge that the
computer industry has struggled with for many years. Today this problem is more salient
than ever as increasing numbers of individuals utilize computers in their daily routines
and as the types of information stored on a computer continues 1o diversify.

Traditionally, as in Microsoft Corporation’s WINDOWS® 98™, this stored
information is kept within a data store on the computer in a hierarchical fashion organized
with files of information or media stored within folders, While this method of data
storage has been widely used for many years, it is limited in that some data resides outside
of the file hierarchy and users are constrained to format and locational limitations when
searching for desired pieces of information. Accordingly, providers of computer software
are currently working on data storage alternatives to the traditional file hierarchy.

An example of such a data storage alternative is disclosed in the commonly
owned, co-pending application “SYSTEM AND METHODS FOR REPRESENTING
UNITS OF INFORMATION MANAGEABLE BY A HARDWARE/SOFTWARE
INTERFACE SYSTEM BUT INDEPENDENT OF PHYSICAL REPRESENTATION”, U.S.
Patent Application No. 10/647,054 (published as Publication No 2005-0055354 Al). This
co-pending application was filed on August 21, 2003 and discloses a data store that
unifies storage into a single database. This database is the one place where all the data is
stored; there is only one way to represent data to the database and only one way to query

for

20

25

30

_2.

data. By replacing antiquated file systems with this modem database technology,
the data store will be easily searchable, more reliable, more accessible, and more
resilient.

Once this. unified data store is in place, there becomes a need to
provide users with the appropriate tools and capabilities to interact with the
stored data. Conventional operating systems, such as Microsoft Corporation’s
WINDOWS® 2000™, include a shell utility that provides a user interface for
viewing various information about the computer. The shell typically includes a
file system browser which enables users to navigate through the file system and
locate and open files and folders. For example, Microsoft Corporation's
WINDOWS® EXPLORER™ is a file system browser utility included with
WINDOWS® 2000™.

The shell also enables users to view non-file items such as printers
or forts. This navigation is possible because a typical shell is programmed with
the specific functionality to display these special items as if they were located in
the file system. For example, in WINDOWS® 2000™, a user may open a
“Printers” folder located within the Settings option on the Start Menu. Because
printers are pieces of hardware and not files, this graphical representation of the
printers is accomplished through utilization of custom code directed at displaying
the printers as if they were files residing in the “Printers” folder. However, the
use of custom code and custom drawing exceptions is complex for developers to
implement, can be unreliable, and reduces the resiliency of the shell browser.
Furthermore, if no custom code or custom drawing exceptions are in place for a
type of data, the shell will be unable to display items of that type. Accordingly,
conventional shells are limited in capabilities and in flexibility when displaying
certain items to a user.

Another limitation of conventional shell browsers is a restricted
ability to display items in a relational manner. Typically a shell browser is
operable to display items only in the hierarchical fashion in which they are stored
- organized within files stored within folders. For example, if a user desires to
view all the picture files stored on a computer, that user must first place all such

picture files in the same folder. Because the shell has limited capacity to

20

25

30

-3

determine relationships between items, it is difficult for a user to view files in a
relationship driven context.

Furthermore, conventional shell browsers are limited in their
ability to display sets of items withina contextually tailored environment that
pairs pertinent information and tasks with the set of displayed items. Developers,
by providing such pairings, can provide users with the appropriate information
and tools needed to navigate among the items while facilitating the performance
of commons tasks associated with the items. The prior art, however, does not
allow developers to provide such experiences without the use of custom code.

An cxample of files presented in an enhanced environment
through the utilization of custom code is the My Pictures folder which is included
in Microsoft Corporation’s WINDOWS® XP™ operating, system. When image
files are stored in the My Pictures folder, a user can view images at different
sizes, rotate them, view a slide show, print images, or copy images to a CD. The
shell in WINDOWS ® XP™ has utilized custom cods to incorporate these
image-telated tasks into this folder’s display so that a user, when ¢ hoosing to
store pictures in this particular folder, will easily be able to navigate among the
pictures and to perform common tasks with respect to the files. However, only
files stored in the My Pictures folder are displayed in this environment, and
custom code is utilized to create this functionality. While the My Pictures folder
isan improvement over traditional presentation of items, d evelopers still have
limited ability to define such content-rich environments without utilizing custom
code.

Accordingly, there is a need for an improved shell that is capable
of displaying each item within a universal data store, and further, there is a need
for an improved shell that is configured to present items within a universal data
store in a relationship driven context. There is also a need for improved
capabilities within the shell for developers to create custom environments that
display items with appropriate contextual information and related tasks without

needing custom code.

2004279189 05 Mar 2010

20

25

30

CANRPONbIDCCYI XK2002287) DOC - 271110

SUMMARY

Some embodiments relate to a computer system for presenting related items in a
universal data storage device to a user, the system comprising:

a universal data storage device containing a plurality of items stored in accordance
with a universal data schema and containing relational information corresponding to at
least a portion of said plurality of items, wherein the relational information allows
relationships between two or more of the plurality of items to be determined, wherein said
relational information is utilized to divide at least a portion of said plurality of items into a
plurality of categories, wherein membership of said plurality of categories is determined
by execution of one or more queries that identify items having at least one commonality;
and

a shell for presenting said plurality of items to a user, wherein the shell is
configured to present a category of items to a user and is further configured to present said
category of items in accordance with a display schema stored by said shell in association
with said category of items, wherein said display schema identifies one or more display
attributes selected as appropriate for display with items of said category of items.

Some embodiments relate 1o a computer-implemented method for presenting
related items in a universal data storage device to a user, the method comprising:

accessing data in said universal data storage device, wherein said universal data
storage device stores a plurality of items in accordance with a universal data schema, and
wherein at least a portion of said plurality of items contain relational information which
allows relationships between said plurality of items to be determined;

utilizing said relational information to determine a relationship between a selected
item and one or more of the items containing said relational information in the data
storage device, wherein said relationship has a relationship type; and

displaying said selected item and one or more related items to the user, wherein
said displaying includes presenting the displayed items with a shell view schema, wherein
said displaying further includes presenting one or more item decorations defined by at
least a portion of the displayed items, wherein contlicts between said shell view schema
and said one or more item decorations are resolved in favor of said shell view schema
such that the selected item and one or more related items are displayed using only said
shell view schema and without said one or more item decorations defined by the displayed

items.

2004279189 05 Mar 2010

20

25

30

C:NRPonb\DCC\TXBZ692287_) DOC - 271110

Some embodiments relate to a method for presenting related items in a universal
data storage device to a user, the method comprising:

accessing data in said universal data storage device, wherein said universal data
storage device stores a plurality of items in accordance with a universal data schema, and
wherein at least a portion of said plurality of items contain relational information which
allows relationships between two or more of said plurality of items to be determined,
wherein at least a portion of said relationships designate one or more source items and one
or more target items;

executing one or more queries to identify items having at least one commonality
S0 as create one or more categories containing one or more of the items containing said
relational information in the data storage device; and

presenting a category of items in accordance with a display schema stored by a
shell in association with at least one of said one or more queries.

Some embodiments relate to a shell for presenting related items in a universal data
storage device to a user, the shell comprising:

a data storage device interaction component which retrieves data associated with
one or more items from the universal data storage device, wherein said one or more items
are stored in accordance with a universal data schema and at least a portion of said one or
more items contain relational information that allows relationships between two or more
items to be determined;

a related item presentation component which utilizes said retrieved data to present
related items to a user, wherein the relationship presentation component is configured to
present a selected item to a user and is further configured to utilize said relational
information to present onc or more items in said data storage device which are related to
said selected item; and

a shell view component that stores a plurality of shell view schemas that are
associated with one or more relationship types, wherein each of at least a portion of said
plurality of shell view schemas identifies one or more visual elements selected as
appropriate for display with items of one of said one or more relationship types,

wherein said related item presentation component presents said related items with
one or more item decorations defined by at least a portion of the related items and with
one of said plurality of shell view schemas, wherein conflicts between a shell view

schema and said one or more item decorations are resolved in favor of said shell view

2004279189 05 Mar 2010

20

25

€ \WRPorbDCCMIXBI2692287_1.DOC - 2711410

schema such that the related items are displayed using only said shell view schema and
without said one or more item decorations defined by the displayed items.

In some embodiments, a system for presenting related items to a user is provided.
A universal data store is included which contains a plurality of items. At least a portion of
the items in the data store contain relational information. A shell utilizes the relational
information to present related items.

Some embodiments relate to computer-implemented methods for presenting
related items to a user. The methods access data in a universal data store thal contains
items including information which allows relationships between items in the data store to
be determined. This relational information is utilized to determine a relationship between

items, and rclated items are displayed to a user.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are described in detail below with reference to the attached drawing

figures, wherein:

FIG. 1 is a block diagram of a computing system environment suitable for use in
implementing some embodiments;

FIG. 2A is a block diagram illustrating a computer system divided into three
component groups: the hardware component, the hardware/software interface system
component, and the application programs component;

FIG. 2B illustrates the traditional tree-based hierarchical structure for files
grouped in folders in a directory in a file-based operating system;

FIG. 3 is a block diagram illustrating a storage platform in accordance with some
embodiments;

FIG. 4 illustrates the structural relationship between ltems, ltem Folders, and
Categories in various embodiments;

FIG. 5 is a diagram of the data contained within an item according to some
embodiments;

FIG. 6 is a flow diagram showing a method for presenting one or more items to a
user in accordance with some embodiments;

FIG. 7 is a flow diagram showing a mcthod for presenting one or more items o a

user in accordance with some embodiments;

2004279189 07 Dec 2009

20

PAOPERISSBI200\1 2591 §20-2004279189A U- 1 5pa Dett9.doc - 12710108

-6A -

FIG. 8 is a diagram showing a view schema hierarchy in accordance with some
embodiments;

FIG. 9 is a diagram showing a view schema hierarchy including an explorer view
schema in accordance with some embodiments;

FIG. 10 is a flow diagram showing a method for presenting items to a user in
accordance with some embodiments; and

FIG. 11 is a flow diagram showing a method for presenting related items to a user

in accordance with some¢ embodiments.

DETAILED DESCRIPTION
L INTRODUCTION

The subject matter of the present invention is described with specificity to meet
statutory requirements. However, the description itself is not intended to limit the scope
of this patent. Rather, the inventors have contemplated that the claimed subject matter
might also be embodied in other ways, to include different steps or combinations of steps
similar to the ones described in this document, in conjunction with other present or future
technologies. Moreover, although the term “step” may be used herein to connote different
elements of methods employed, the term should not be interpreted as implying any
particular order among or between various steps herein disclosed unless and except when
the order of individual steps is explicitly described.

Described embodiments relate to an improved system and method for displaying
items stored on a computer to a user. An exemplary operating environment for the

present invention is described below.

2004279189 07 Dec 2009

20

25

30

POPER\SSBR2009\12591520-2004279189AU- 1spo Oct09.doc - 12/10/09

-6B -

A. EXEMPLARY OPERATING ENVIRONMENT

Numerous embodiments may execute on a computer. FIG. 1 and the following
discussion is intended to provide a brief general description of a suitable computing
environment in which embodiments may be implemented. Although not required, various
embodiments may be described in the general context of computer executable
instructions, such as program modules, being executed by a computer, such as a client
workstation or a server. Generally, program modules include routines, programs, objects,
components, data structures and the like that perform particular tasks or implement
particular abstract data types. Moreover, embodiments may be practiced with other
computer system configurations, including hand held devices, multi processor systems,
microprocessor based or programmable consumer electronics, network PCs,
minicomputers, mainframe computers and the like. Embodiments may also be practiced
in distributed computing environments where tasks are performed by remote processing
devices that are linked through a communications network. In a distributed computing
environment, program modules may be located in both local and remote memory storage
devices.

As shown in FIG. 1, an exemplary general purpose computing system includes a
conventional personal computer 20 or the like, including a processing unit 21, a system
memory 22, and a system bus 23 that couples various system components including the
system memory to the processing unit 21. The system bus 23 may be any of several types
of bus structures including a memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. The system memory includes read
only memory (ROM) 24 and random access memory (RAM) 25. A basic input/output
system 26 (BIOS), containing the basic routines that help to transfer information between
elements within the personal computer 20, such as during start up, is stored in ROM 24.
The personal computer 20 may further include a hard disk drive 27 for reading from and
writing to a hard disk, not shown, a magnetic disk drive 28 for rcading from or writing to
a removable magnetic disk 29, and an optical disk drive 30 for reading from or writing to
a removable optical disk 31 such as a CD ROM or other optical media. The hard disk
drive 27, magnetic disk drive 28, and optical disk drive 30 are connected to the system
bus 23 by a hard disk drive

-10-

10

15

20

25

30

.7-

interface 32, a magnetic disk drive interface 33, and an optical drive interface 34,
respectively. The drives and their associated computer readable media provide
non volatile storage of computer readable instructions, data structures, program
modules and other data for the personal computer 20. Although the exemplary
environment described herein employs a hard disk, a removable magnetic disk 29
and a removable optical disk 31, it should be appreciated by those skilled in the
art that other types of computer readable media which can store data that is
accessible by a computer, such as magnetic cassettes, flash memory cards, digital
video d isks, Bemoulli c artridges, random access memories (RAMs), read only
memories (ROMs) and the like may also be used in the exemplary operating
environment. Likewise, the exemplary environment may also include many
types of monitoring devices such as heat sensors and security or fire alarm
systems, and other sources of information.

A number o f program modules may be stored on the hard disk,
magnetic disk 29, optical disk 31, ROM 24 or RAM 25, including an operating
systern 35, one or more application programs 36, other program modules 37 and
program data 38. A user may enter commands and information into the personal
computer 20 through input devices such as a keyboard 40 and peinting device 42.
Other input devices (not shown) may include a microphone, joystick, game pad,
satellite disk, scanner or the like. These and other input devices are often
connected to the processing unit 21 through a serial port interface 46 that is
coupled to the system bus, but may be connected by other interfaces, such as a
parallel port, game port or universal serial bus (USB). A monitor 47 or other type
of display device is also connected to the system bus 23 via an interface, such as
a video adapter 48. In addition to the monitor 47, persoral computers typically
include other peripheral output devices (not shown), such as speakers and
printers. The exemplary system of FIG. | also includes a host adapter 55, Small
Computer System Interface (SCSI) bus 56, and an external storage device 62
connected to the SCSI bus 56.

The personal computer 20 may operate in a networked
environment using logical connections to one or more remote computers, such as
a remote computer 49. The remote computer 49 may be another personal

computer, a server, a router, a network PC, a peer device or other common

-11-

20

25

30

-8-

network node, and typically includes many or all of the elements described above
relative to the personal computer 20, although only a memory storage device 50
has been illustrated in Fig. 1. The logical connections depicted in Fig. | include a
local area network (LAN) 51 and a wide area netwcrk (WAN) 52. Such
networking environments are commonplace in offices, enterprise wide computer
networks, intranets and the Internet.

When used in a LAN networking environment, the personal
computer 20 is connected to the LAN 51 through a network interface or adapter
53. When used in a WAN networking environment, the personal computer 20
typically includes a modem 54 or other means for establishing communications
over the wide area network 52, such as the Intemet. The raodem 54, which may
be internal or extemal, is connected to the system bus 23 via the serial port
interface 46. In a networked environment, program modules depicted relative to
the personal computer 20, or portions thereof, may be stored in the remote
memory storage device. It will be appreciated that the network conmnections
shown are exemplary and other means of establishing a communications link
between the computers may be used.

As illustrated in the block diagram of FIG. 2A, a computer system
200 can be roughly divided into three component groups: the hardware
component 202, the hardware/software interface system component 204, and the
applications programs component 206 (also referred to as the “user component”
or “software component” in certain contexts herein).

In various embodiments of a computer system 200, and referring
back to Fig. 1, the hardware component 202 may comprise the central processing
unit (CPU) 21, the memory (both ROM 24 and RAM 25), the basic input/output
system (BIOS) 26, and various input/output (1/O) devices such as a keyboard 40,
a mouse 42, a monitor 47, and/or a printer (not shown), among other things. The
hardware component 202 comprises the basic physical infrastructure for the
computer system 200.

The applications programs component 206 comprises various

software programs including but not limited to compilers, database systems, word

processors, business programs, videogames, and so forth. Application programs

provide the means by which computer resources are utilized to solve problems,

-12-

20

25

30

-9-

provide solutions, and process data for various users (machines, other computer
systemns, and/or end-users).

The hardware/software interface system comnponent 204 comprises
(and, in some embodiments, may solely consist of} an operating system that itself
comprises, in most cases, a shell and a kernel. An “operating system™ (OS) is a
special program that acts as an intermediary between application programs and
computer hardware. The hardware/software interface system component 204
may also compris¢ a virtual machine manager (VMM), a Common Language
Runtime (CLR) or its functional equivalent, a Java Virtual Machine (JVM) or its
functional ¢ quivalent, or o ther such s oftware c omponents in the place of orin
addition to the operating system in a computer system. The purpose of a
hardware/software interface system is to provide an environment in which a user
can execute application programs. The goal of any hardware/software interface
system is to make the computer system convenient to use, as well as utilize the
computer hardware in an efficient manner.

The hardware/software interface system is generally loaded into a
computer system at startup and thereafter manages all of the application programs
in the computer system. The application programs interact with the
hardware/software interface system by requesting services via an application
program interface (API). Some application programs enable end-users to interact
with the hardware/software interface system via a user interface such as a
command language or a graphical user interface (GUT).

A hardware/software interface system traditionally performs a
variety of services for applications. In a multitasking hardware/software interface
system where multiple programs may be running at the same time, the
hardware/software interface system determines which applications should run in
what order and how much time should be allowed for each application before
switching to another application for a tum. The hardware/software interface
system also manages the sharing of internal memory among multiple
applications, and handles input and output to and from attached hardware devices
such as hard disks, printers, and dial-up ports. The hardware/software interface
system also sends messages to each application (and, in certain case, to the end-

user) regarding the status of operations and any errors that may have occurred.

13-

20

25

30

-10-

The hardware/software interface system can also offload the management of
batch jobs (e.g., printing) so that the initiating application is freed from this work
and can resume other processing and/or operations. On computers that can
provide parallel processing, a hardware/software interface system also manages
dividing a program so that it runs on more than one processor at a time.

A hardware/software interface system shell (simply referred to
hereinasa “shell™) is an interactive end-user interface to a hardware/software
interface system. (A shell may also be referred to as a “command interpreter” or,
in an operating system, as an “operating system shell”). A shell is the outer layer
of a hardware/software interface system that is directly accessible by application
programs and/or end-users. A “shell browser” provides a user interface allowing
a user to view and to interact with the hardware/software interface. In contrast to
a shell, a kernel is a hardware/software interface system’s innermost layer that
interacts directly with the hardware components.

While it is envisioned that numerous embodiments of the present
invention are particularly well-suited for computerized systems, nothing in this
document is intended to limit the invention to such embodiments. On the
contrary, as used herein the term “computer system” is intended to encompass
any and all devices capable of storing and processing information and/or capable
of using the stored information to control the behavior or execution of the device
itself, regardless of whether such devices are electronic, mechanical, logical, or

virtual in nature

B. TRADITIONAL FILE BASED STORAGE

In most computer systems today, “files” are units of storable
information that may include the hardware/software interface system as well as
application programs, data sets, and so forth, In all modemn hardware/software
interface systems (Windows, Unix, Linux, Mac OS, virtual machine systems, and
so forth), files are the basic discrete (storable and retrievable) units of information
(e.g., dafa, programs, and so forth) that can be manipulated by the
hardware/software interface system. Groups of files are generally organized in
“folders.” In Microsoft Windows, the Macintosh OS, and other

hardware/software interface systems, a folder is a colleciion of files that can be

-14-

20

25

30

«11 -

retrieved, moved, and otherwise manipulated as single units of information.
These folders, in turn, are organized in a tree-based hicrarchical arrangement
called a “directory” (discussed in more detail herein below). In certain other
hardware/software interface systems, such as DOS, z/OS and most Unix-based
operating systems, the terms “directory” and/or “folder” are interchangeable, and
early Apple computer systems (e.g., the Apple lle) used the term “catalog”
instead of directory; however, as used herein, all of these terms are deemed to be
synonymous and interchangeable and are intended to further include all other
equivalent terms for and references to hierarchical information storage structures
and their folder and file components.

Traditionally, a directory (a.k.a. a directory of folders) is a tree-
based hierarchical structure wherein files are grouped into folders and folder, in
turn, are arranged according to relative nodal locations that comprise the
directory tree. For example, as illustrated in FIG. 2B, a DOS-based file system
base folder (or “root directory”) 212 may ¢ omprise a plurality o f folders 214,
each of which may further comprise additional folders (as “subfolders” of that
particular folder) 216, and each of these may also comprise additional folders 218
ad infinium. Each of these folders may have one or more files 220 although, at
the hardware/software interface system level, the individual files in a folder have
nothing in common other than their location in the tree hierarchy. Not
surprisingly, this a pproach o f organizing files into folder hierarchies indirectly
reflects the physical organization of typical storage media used to store these files
(e.g., hard disks, floppy disks, CD-ROMs, etc.).

In addition to the foregoing, each folder is a container for its
subfolders and its files—that is, each folder owns its subfolders and files. For
example, when a folder is deleted by the hardware/software interface system, that
folder’s subfolders and files are also deleted (which, in the case of each
subfolder, further includes its own subfolders and files recursively). Likewise,
each file is generally owned by only one folder and, although a file can be copied
and the copy located in a different folder, a copy of a filz is itself a distinct and
separate unit that has no direct connection to the original (e.g., changes to the
original file are not mirrored in the copy file at the hardware/software interface

system level). In this regard, files and folders are therefore characteristically

-15-

20

25

30

S12-

“physical” in nature because folders are the treated like physical containers, and

files are treated as discrete and separate physical elements inside these containers.

IL A UNIVERSAL DATA STORE

The storage platform utilized by the present invention extends and
broadens the data platform beyond the kinds of existing file systems discussed
above, and is designed to be a store for all types of data. A data store designed to
store all types of data may be referred to as a universal data store. An example of
a universal data store suitable for use with the present invention is described in
the commonly owned, co-pending application “SYSTEM AND METHODS FOR
REPRESENTING UNITS OF INFORMATION MANAGEABLE BY A
HARDWARE/SOFTWARE INTERFACE SYSTEM BUT INDEPENDENT OF
PHYSICAL REPRESENTATION”, U.S. Patent Application No. (not yet
assigned) (Atty. Docket No. MSFT - 1748) filed on August 21, 2003, which is

hereby incorporated by reference.

A. OVERVIEW

Referring to FIG. 3, a storage platform 300 in accordance with the
present invention comprises a universal data store 302 implemented on a database
engine 314. In one embodiment, the database engine 314 comprises a relational
database engine with object relational extensions. In one embodiment, the
relational database engine 314 comprises the Microsoft SQL Server relational
database engine.

The universal data store 302 implements a data model 304 that
supports the organization, searching, sharing, synchronization, and security of
data. Specific types of data are described in schemas, such as schemas 340, and
the storage platform 300 provides tools 346 for deploying those schemas as well
as for extending those schemas, as described more fully below.

A change tracking mechanism 306 implemented within the
universal data store 302 provides the ability track changes to the data store. The
universal data store 302 also provides security capabilities 308 and a
promotion/demotion capability 310. The universal data store 302 also provides a

set of application programming interfaces 312 to expose the capabilities of the

-16-

2004279189 07 Dec 2009

20

25

30

PAOPERISSB\2009112591520-2004279189AU- 15pa Oc109 doc - 12/10/09

-13-

universal data store 302 to other storage platform components and application programs
(e.g., application programs 350A, 350B, and 350C) that utilize the storage platform.

The storage platform of the present invention still further comprises an application
programming interfaces (API) 322, which enables application programs, such as
application programs 3504, 350B, and 350C, to access all of the foregoing capabilities of
the storage platform and to access the data described in the schemas. The storage
platform API 322 may be used by application programs in combination with other APIs,
such as the OLE DB API 324 and the Microsoft Windows Win32 API 326.

The storage platform 300 of the present invention may provide a variety of
services 328 to application programs, including a synchronization service 330 that
facilitates the sharing of data among users or systems. For example, the synchronization
service 330 may enable interoperability with other data stores 340 having the same format
as data store 302, as well as access to data stores 342 having other formats. The storage
platform 300 also provides file system capabilities that allow interoperability of the
universal data store 302 with existing file systems, such as the Windows NTFS files
system 318.

In at least some embodiments, the storage platform 320 may also provide
application programs with additional capabilities for enabling data to be acted upon and
for enabling interaction with other systems. These capabilities may be embodied in the
form of additional services 328, such as an Info Agent service 334 and a notification
service 332, as well as in the form of other utilities 336.

In at least some embodiments, the storage platform is embodied in, or forms an
integral part of, the hardware/software interface system of a computer system. For
example, and without limitation, the described storage platform may be embodied in, or
form an integral part of, an operating system, a virtual machine manager (VMM), a
Common Language Runtime (CLR) or its functional equivalent, or a Java Virtual
Machine (JVM) or its functional equivalent.

Through its common storage foundation, and schematized data, the storage
platform enables more efficient application development for consumers, knowledge
workers and enterprises. It offers a rich and extensible programming surface area that not
only makes available the capabilities inherent in its data model, but also embraces and

extends existing file system and database access methods.

17-

2004279189 07 Dec 2009

20

25

PAOPER\SSB2009412591520-2004279189AU- I spa Oct09 doc - 12/10/09

“14-

B. THE DATA MODEL

The universal data store 302 of the storage platform 300 of the present invention
implements a data model that supports the organization, searching, sharing,
synchronization, and security of data that resides in the store. In the data model, the
fundamental unit of storage information may be referred to as an item. The data model
provides a mechanism for declaring items and item extensions and for establishing
relationships between items and for organizing items in folders and in categories.

In some embodiments, the data model relies on two primitive mechanisms, Types
and Relationships. Types are structures that provide a format which governs the form of
an instance of the Type. The format is expressed as an ordered set of Properties. A
Property is a name for a value or set of values of a given Type. For example, a
USPostalAddress type might have the properties Street, City, Zip, State. Properties may
be required or optional.

Relationships can be declared and represent a mapping between the sets of
instances of two types. For example, there may be a Relationship declared between the
Person Type and the Location Type called LivesAt which defines which people live at
which locations. The Relationship has a name, two endpoints, namely a source endpoint
and a target endpoint. Relationships may also have an ordered set of properties. Both the
Source and Target endpoints have a Name and a Type. For example the LivesAt
Relationship has a Source called Occupant of Type Person and a Target called Dwelling
of Type Location and in addition has properties StartDate and EndDate indicating the
period of time for which the occupant lived at the dwelling. Note that a Person may live
at multiple dwellings over time and a dwelling may have multiple occupants so the most
likely place to put the StartDate and EndDate information is on the relationship itself.

Relationships define a mapping between instances that is constrained by the types
given as the endpoint types. For example the LivesAt relationship cannot be a
relationship in which an Automobile is the Occupant because an Automobile is not a

Person.

-18-

2004279189 07 Dec 2009

20

PAQPER\SSB\2009112591520-2004279 1BOA U-1spa Oci09.dox - 12/10/09

-15-

1. ITEMS

As mentioned above, the fundamental unit of storage information in a universal
data store may be referred to as an item. An item is a unit of storable information that,
unlike a simple file, is an object having a basic set of properties that are commonly
supported across all objects exposed to an end-user or application program by the storage
platform. Those skilled in the art will recognize that the universality of the universal data
store is made possible, in part, because each item in the data store includes data indicating
these basic properties stored in accordance with a data schema that is constant for each
item.

The universal data schema provides a universal foundation that establishes a
conceptual framework for creating and organizing items and properties. The universal
data schema defines certain special types of items and properties, and the features of these
special foundational types from which subtypes can be further derived. The use of this
universal data schema allows a programmer to conceptually distinguish items (and their
respective types) from properties (and their respective types). Moreover, the universal
data schema sets forth the foundational set of properties that all items may possess as all
items (and their corresponding item Types) are derived from this foundational item in the
universal data schema (and its corresponding item Type). By storing each item according
to this universal data schema, a shell browser is able to interpret and present each item in
the data store along with its basic properties to the user. An example of a universal data
schema suitable for use with the present invention is described in the commonly owned,
co-pending application “SYSTEM AND METHODS FOR REPRESENTING UNITS OF
INFORMATION MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE
SYSTEM BUT INDEPENDENT OF PHYSICAL REPRESENTATION®, U.S. Patent

-19-

20

25

30

-16-

Application No. (not yet assigned) (Atty. Docket No. MSFT - 1748) filed on
August 21, 2003, which is hereby incorporated by reference.

Items also have properties and relationships that are commonly
supported across all item types including features that allow new properties and
relationships to be introduced. Those skilled in the art will recognize that this
property and relationship data may be referred to as metadata associated with an
item. As described below, the metadata may be stored in accordance with an
item decoration schema. This item decoration schema may indicate an
appropriate manner which to present the item to a user.

Items are the objects for common operations such as copy, delete,
move, open, print, backup, restore, replicate, and so forth, Items are the units that
can be stored and retrieved, and all forms of storable information manipulated by
the storage platform exist as items, properties of items, or relationships between
items, each of which is discussed in greater detail herein below.

Items are intended to represent real-world and readily-
understandable units of data like Contacts, People, Services, Locations,
Documents (of all various sorts), and so on.

Items are stand-alone objects; thus, if you delete an item, all of the
item’s properties are also deleted. Similarly, when retrieving anitem, whatis
received is the item and all of its properties contained in the item’s metadata.
Certain embodiments of the present invention may enable one to request a subset
of properties when retrieving a specific item; however, the default for many such
embodiments is to provide the item with all of its immediate and inherited
properties when retrieved. Moreover, the properties of items can also be
extended by adding new properties to the existing properties of that item’s type.
These “extensions” are thereafter bona fide properties of the item and subtypes of
that item type may automatically include the extension properties. The

extensions may also be referred to as metadata associated with a file.

2. ITEM FOLDERS AND CATEGORIES

Groups of items can are organized into special items called item
Folders (which are not to be confused with file folders). Unlike in most file

systems, however, an item can belong to more than one item Folder, such that

-20-

20

25

30

-17-

when an item is accessed in one item Folder and revised, this revised item can
then be accessed directly from another item folder. In essence, although access to
an item may occur from different item Folders, what is actually being accessed is
in fact the very same item. However, an item Folder does not necessarily own all
of its member items, or may simply co-own items in conjunction with other
folders, such that the deletion of an item Folder does not riecessarily result in the
deletion of the item.

Items may also belong to Categories based on common described
characteristic such as (a) an item Type (or Types), (b) a specific immediate or
inherited property (or properties), or (c) a specific value (or values)
corresponding to an item property. For example, an item c omprising specific
properties for personal contact information might automatically belong to a
Contact Category, and any item having contact information properties would
likewise automatically belong to this Category. Likewise, any item having a
location property with a value of “New York City” might automatically belong to
a NewYorkCity Category.

Categories are conceptually different form item Folders in that,
whereas item Folders may comprise items that are not interrelated (i.e., without 2
common described characteristic), each item in a Category has a common type,
property, or value (a “commonality”) that is described for that Category, and it is
this commonality that forms the basis for its relationship to and among the other
items in the Category. Moreover, whereas an item’s membership in a particular
Folder is not compulsory based on any particular aspect of that item, for certain
embodiments all items having a commonality categorically related to a Category
might automatically become a member of the Category at the hardware/software
interface system level. Conceptually, Categories can also be thought of as virtual
item Folders whose membership is based on the results of a specific query (such
as in the context of a database), and items that meet the conditions of this query
(defined by the commonalities of the Category) would thus comprise the
Category’s membership.

FIG. 4 illustrates the s tructural relationship between items, item
Folders, and Categories in various embodiments of the present invention. A

plurality of items 402, 404, 406, 408, 410, 412, 414, 416, 418, and 420 are

21-

2004279189 07 Dec 2009

20

25

30

PAOPERISSBI2009112591520-2004279189A U- 1spa Oct09.doc - 12710/0%

-18 -

members of various item Folders 422, 424, 426, 428, and 430. Some items may belong to
more than one item Folder, e.g., item 402 belong to item Folders 422 and 424. Some
items, e.g., item 402, 404, 406, 408, 410, and 412 are also members of one or more
Categories 432, 434, and 436, while other times, e.g., items 414, 416, 418, and 420, may
belong to no Categories (although this is largely unlikely in certain embodiments where
the possession of any property automatically implies membership in a Category, and thus
an item would have to be completely featureless in order not to be a member of any
category in such an embodiment). In contrast to the hierarchical structure of folders, both
Categories and item Folders have structures more akin to directed graphs as shown. In
any event, the items, item Folders, and Categories are all items (albeit of different item
Types).

In contrast to files, folders, and directories, the items, item Folders, and Categories
are not characteristically “physical” in nature because they do not have conceptual
equivalents of physical containers, and therefore items may exist in more than one such
location. The ability for items to exist in more than one item Folder location as well as
being organized into Categories provides an enhanced and enriched degree of data
manipulation and storage structure capabilities at the hardware/software interface level,

beyond that currently available in the art.

3. RELATIONSHIPS

Items may also contain relational information which allows relationships between
two or more items to be determined. Relationships are binary relationships where one
item is designated as source and the other item as target. The source item and the target
item are related by the relationship. Relationships may be classified into: Containment
and Reference relationships. The containment relationships control the life-time of the
target items, while the reference relationships do not provide any life-time management
semantics.

The Containment relationship types are further classified into Holding and
Embedding relationships. A holding relationship controls the life-time of the target
through a reference counting mechanism. Holding relationships do not contain their

targets but control the life-time of the targets.

22-

20

25

30

-19-

When all holding relationships to an item are removed, the item is deleted. The
embedding relationships enable modeling of compound items and can be thought
of as exclusive holding relationships. Anitem canbe a target of one ormore
holding relationships, but an item can be target of exactly one embedding
relationship. An item that is a target of an embedding relationship cannot be a
target of any other holding or embedding relationships. Embedded relationships
contain their targets and control life-time of the targets. Those skilled in the art
will recognize that a single target can be in at most one embedded relationship,
while a single target can be in multiple holding relationships.

Reference relationships do not control the lifetime of the target
item. They may be dangling ~ the target item may not exist. Reference
relationships can be used to model references to items anywhere in the g lobal
item name space (i.e. including remote data stores).

Fetching an item does not automatically fetch its relationships.
Applications or the shell must explicitly request the relationships of an item. In
addition, modifying a relationship does not modify the source or the target item;
similarly, adding a relationship does not affect the source/target item.
Relationships between two items may be declared and stered with an item or the
shell or an application, through utilization of the relational information, may
determine the two items are related.

The Reference relationship does not control life time of the item it
references. Even more, the reference relationships do not guarantee the existence
of the target, nor do they guarantee the type of the target as specified in the
relationship declaration. This means that the Reference relationships can be
dangling. Also, the reference relationship can reference items in other data stores.
Reference relationships can be thought of as a concept similar to links in web
pages.

In at least one embodiment, the storage platform of the present
invention supports ordering of relationships. The ordering is achieved through a
property named “Order.” There is no uniqueness constraint on the Order field.
The order of the relationships with the same “order” property value is not
guaranteed, however it is guaranteed that they may be ordered after relationships

with lower “order” value and before relationships with higher “order” field value.

-23-

20

25

220 -

It should be noted that property “Order” is not in tile base relationship definition.
Rather, this is an extrinsic property which is stored as part of the relationship
between source and target.

As previously mentioned, an item may be a member of anitem
Folder. In terms of Relationships, an item may have a relationship with an item
Folder. In several embodiments of the present invention, certain relationships are

represented by Relationships existing between the items.

4. EXTENSIBILITY

Referring to FIG. 3, the storage platform is provided with an initial
set of schemas 340, as described above. In addition, however, in at least some
embodiments, the storage platform allows customers, including independent

software vendor (ISVs), to create new schemas 344.

C. DATABASE ENGINE

As mentioned above, the data store is implemented on a database
engine. In one embodiment, the database engine comprises a relational database
engine that implements the SQL query language, such as the Microsoft SQL
Server engine, with object relational extensions. It is understood, however, that
different database engines may be employed. Indeed, in addition to
implementing the storage platform conceptual data mode! on a relational database
engine, it can also be implemented on other types of databases, e.g. object-
oriented and XML databases.

II. PRESENTMENT OF ITEMS TO A USER

Items in the universal data store are presented to a user by a shell
browser. Such browsers are well-known inthe art and, as explained above, a
shell browser provides a user interface allowing a user to view and to interact

with the hardware/software interface.

A. DEFAULT DISPLAY VIEW

As noted above, each item in the universal data store is stored in

accordance with a universal data schema. This schema includes a mechanism for

-24-

20

25

30

221 -

describing items called type associations. Each type association has a basic
representation in the shell; by storing an item in accordance with a type
association, the shell is able to display an item according to at least a basic or
default display view.

A type association is a property associated with an item; when
placing data into the universal data store one or more properties associated with
the data must be declared so as to determine what type of item it is. These
properties may be included as metadata associated with the data, The shell has a
set of default type associations which represent the most basic and minimal
properties which must be declared for an item.

FIG. 5 displays an item 500. The item 500 is stored in accordance
with the universal data schema and includes a set of item data 502 and a set of
metadata 504 including property declarations. The item data 502 may be any set
of data appropriate for inclusion within the data store. For example the item data
502 may be associated with a word processing document. The property
declarations metadata 504 includes at least a basic type declaration for the item
500. For example, a default type association may be a Clocument type and the
metadata 504 may set forth that the item 500 is 2 Document type item. Because
the shell includes a default display view for each d efault fype association, the
shell may display the item 500 according the default display view for the
Document type. The default display view for Documents types may, for
example, include an icon used only with Document type items. By presenting the
word processing item with this icon, a user can quickly recognize that the item
500 is a document. Those skilled in the art will recognize that any variety of
default type associations and default display attributes are acceptable for the

present invention.

B. ITEM DECORATION VIEW

Beyond property declarations, metadata associated with an item
may include data indicating how the shell should decorate an item’s presentation.
Decorations, in this case can be though of as “hints” as tc how to represent the
item to a user. This metadata may be stored in accordance with an item

decoration schema. The item decoration schema defines the item decoration view

-25-

20

25

30

_22.

that the shell may utilize to present the item. For example, the item decoration
data may describe the most important declared properties for an item. These
“high value” properties may be the most desirable for presentation in the shell.

Item 500 may optionally include item decoration data 506 stored
in accordance with an item decoration schema. To present the itern 500, the item
decoration data 506 may indicate a set of view fields appropriate for the
presentation of the item 500. View fields are projections of declared properties,
and common view fields may include “title,” “author,” “‘date of creation™ or “last
edited.” The shell includes a set of standard view fields and independent
software venders (ISVs) may define view fields which are appropriate for
presentation of their data. When developing new item types, ISVs can either map
item properties they define to the shell’s view fields or they can provide their
own view fields.

For example, the item data 502 may contain song data. The set of
declared properties 506 may include properties such as song title, artist, date
recorded, album, song length, and other declarations appropriate for such a song
ittem. The item decoration data 506 may indicate that view fields “Title,” “Artist”
and “Album” should be displayed to the user when presenting the item 500 in the
shell,

The item decoration data 506 may describe more truly decorative
items regarding the item data 502 such as text presented with a declared property.
For instance, one of the property declarations 504 may indicate a bitrate value to
describe the quality of the recording. This property may be stored an integer
BITRATE. The item decoration data 506 may request that the bitrate be
displayed and also may decorate this field as “[BITRATE] kilobytes per second.”
In this method the bitrate field is appropriately decorated so that a user can easily
understand the meaning of the bitrate value in a view field.

Those skilled in the art will recognize that the item decoration data
506 and its corresponding i tem d ecoration view may dictate a wide variety of
presentation atributes. Item decorations can be any aspect of the display
supported by the shell. Some common other item decorations are, for example,
data formatting, default sort order, and default icon size. Additionally, the item

decoration data 506 may describe common controls to use in displaying a given

-26-

2004279189 07 Dec 2009

20

25

PAOPER\SSBI2009\ 2591 520-2004279189AU-15pa Oci09 doc - 12/10109

-23-

item. For example, a Ratings field might use a ratings control that represent the rating as
a series of stars. The item decoration data 506 may describe tasks or verbs appropriate for
use with an item. Those skilled in the art will recognize that the terms “task” and “verb”
describe some action to be undertaken with regard to an item and such terms may be used
interchangeable. For example, “Edit” or “Preview” may be appropriate tasks/verbs
associated with an item. The shell may be further configured to launch applications in
support of these tasks upon a user selection to perform the action with respect to the item.

Those skilled in the art will recognize that item decorations will change and grow
over time. This description contemplates that, when the new item decorations are
implemented, new items can utilize these decorations, while older items will continue to
display properly by utilizing the older display attributes provided by the shell.

FIG. 6 displays a flow diagram illustrating a method 600 for presenting items to
the user. At 602, the method 600 accesses a universal data store in response to a request
10 present one or more items to the user. At 604, the method considers one or more items
selected for presentation. Items containing metadata stored in accordance with an item
decoration schema are presented to the user according to an item decoration view as
indicated at 606. Items which do not contain such metadata are presented according to a
default display view as indicated at 608. Those skilled in the art will recognize that, as
discussed above, these schemas and presentation views may include various display

attributes which may be used in the presentation of each item in the data store.

C. SHELL VIEW

As described above, an item decoration view is sufficient to fully present a given
item or a homogeneous set of items, comprised of items having like item decoration
views. To display items with different item decoration schemas, the shell provides shell
view schemas that present items according to shell decoration views. A shell view
schema allows the shell or ISVs to declare appropriate views for given sets of

heterogeneous data.

27-

20

25

30

-24-

Items chosen for representation within a shell decoration view
may include a common characteristic. Those skilled in the art will recognize that
a wide variety of common characteristics may be acceptable for a shell decoration
view. For example, a shell view schema could define a “Picture™ view used to
display common and appropriate fields and metadata for all known picture types
(e.g, .GIF, JPEG, .BMP, .TIFF, etc). The shell view schema ovemrdes
conflicting display attributes for a given item decoration view and presents each
picture item according the shell view schema. As another example, the shell
could provide a “Document” shell view that is optimized around appropriate
columns and metadata for the items produced by typical productivity
applications, such a word processing documents, spreadsheets, or databases, even
though the item decorations for each of these items may vary greatly from each
other. Such a view has value by providing common prcperties among each of
these documents. Those skilled in the art will recognize that, when later
document types are installed, the shell view will be able to present these new
items according to the consistent shell view even though the new type may not
have been considered when the view was first created.

In addition to shaping the view fields appropriate for a given set of
heterogeneous items, shell view schema may define further display attributes.
For example, the view state, including icons properties, the size of the preview
pane, and default sort order may be defined by the shell view schema. The view
schema also contains property decorations, such as data formatting, to apply to
various columns.

In cases where the shell view schema and the item decoration
schema conflict, the shell view schema acts as an override. In cases where a
display element is missing from a shell view schema, the shell view will fall back
to the item decoration view for an appropriate display. In this way, the shell view
can craft an appropriate view when displaying data not originally anticipated.
Additionally, in one embodiment of the present invention, the shell view can
defer to the item decoration view to provide a non-conflicting decorative element,
For example, the shell view may make use of the “high value” metadata from the
set of items it contains to construct an appropriate set of columns and metadata to

display the items.

-28-

20

25

30

-25-

Those skilled in the art will recognize that the shell view schemas
may provide a wide variety of display attributes and that ISVs may want to
provide such shell views. The display attributes may include, without limitation:
the size of the preview pane, metadata to display within the preview pane, custom
controls to be used, and tasks and verbs appropriate for the presented items.

FIG. 7 displays a flow diagram illustrating a method 700 for
presenting items to the user according to the present invention. At 702, the
method 700 accesses the data store in response to a request to present one or
more items to a user. At 704, a determination is made whether each item
selected for presentation includes the same item decoration schema. If all items
have such a common schema, the items are presented according to that schema as
indicated at 706. If the presented items include items having different or no item
display schemas, at 708 the set of items is presented according to a shell
decoration view. As discussed above, such a shell view may be appropriate for
presentation of a heterogeneous set of items. An optional step of presenting one
or more of the selected items with display elements from an item decoration view
is included at 710. While these display elements may not conflict with the shell
decoration view, the elements may enhance the presentation of items by the shell.

Tuming to FIG. 8, a diagram of an exemplary view schema
hierarchy 800 is presented. ~ The bottom layer of the hierarchy is the item view
schema 802. The item view scherna 802 provides the basic display needed to
represent an item or, if no view schema is supplied, provides a default display.
Schemas that are above the item view schema 802 can defer or fall back upon its
display elements when required.

Shell view schema 804 resides above the item view schema 802.
As discussed above, a shell view schema may be utilized to display a set of items
with diverse item views. The shell view schema defines tasks 806, preview pane
characteristics 808, columns 810 and decorations 812 which are used to display
items according to the shell view 804. The shell view may fall back upon the
item view schema 802 to provide non-conflicting item decorations for use with
the shell view 804. Additionally, user view settings 814 may reside within the
shell view. These setting represent a user’s desired presentation format for the

shell items. Those skilled in the art will recognize that any number is display

-29-

2004279189 07 Dec 2009

20

25

30

PAOPER\SSBI2000\12591520-2004279 189 AU- 15pa Grt09.dos - 12/10109

-26-

attributes may be defined within a display schema and that a user may be presented with

numerous options and controls in relation to display settings.

D. EXPLORER DISPLAY VIEW

The shell may also be configured to present items according to an explorer display
view. An “explorer” may be referred to as a storage application and may be provided by
the shell or by an ISVs. In one embodiment of the current invention, an explorer may be
created to provide a holistic experience that aids users managing a large set of items. For
example, the explorer may enable a user to view, query, navigate, launch into tasks, or
organize selected items in a data store. The term “explorer” should not imply a location

"G,

where the displayed items reside, and terms such as “activity center,” “viewer” and
“library” may be used interchangeably with “explorer” to describe a storage application.

FIG. 9 shows an exemplary explorer schema hierarchy 900. The bottom layer of
the hierarchy is the item view schema 902. The item view schema 902 provides the basic
display needed to represent an item, and the explorer view schema 904 can defer or fall
back upon its display elements when required.

The explorer view schema includes a shell view schema 906 and explorer
decorations 908. The explorer decorations 908 decorate the explorer as a whole and
provide display elements such as distinctive colors and branding elements. These
explorer decorations 908 persist among the various views the explorer provides. Those
skilled in the art will recognize that a wide variety of display attributes may be
appropriate for the explorer decorations 908. For example, data queries or tasks/verbs
associated with the explorer items may be appropriate for display with an explorer.
Displayed tasks will preferably be coupled with an application capable of performing the
task.

The explorer view schema may optionally include a shell view schema 906 or
multiple shell view schemas. The shell view schema 906 may be configured to provide a
shell view for a subset of explorer items. For example, an explorer may be configured to
display song items to a user. A first shell view schema may be included to provide a
display of albums and a second shell view schema may be included to provide a display of
song tracks. In this manner, both types of items will have appropriate views within the

explorer. As discussed above, the utilization of shell view relates to the presentation of a

-30-

2004279189 07 Dec 2009

20

25

POl 2591520-2004279189AU- 15pa 0109 doc - 12/10/09

227 -

set of items which, optionally, may share a common characteristic.

The explorer may also rely on shell views included within the shell. If items
selected for presentation within an explorer are not supported by any of the shell views
included by the explorer, the shell may provide an appropriate shell view for use within
the explorer. Similarly and as discussed above, the explorer may also fall back to an item
display view or a default display view provided by the shell. This functionality insures
that any item which can be displayed by the shell is also capable of display within the
explorer. The explorer can be configured to defer to these shell provided display schemas
or may rely upon them to, for example, provide a display for unanticipated data.

FIG. 10 presents a method 1000 for presenting items in an explorer display. At
1002, the method 1000 accesses the data store and, at 1004, selects items to be displayed
in the explorer. The selection of explorer items may rely on consideration of item
declarations also referred to as field entries. As discussed above, items in a data store
may contain property information. This information is declared when an item is placed in
the data store and may be updated throughout the life of the item. Such declarations may
be considered field entries corresponding to a set of property fields. For example entries
in a property field “author” may contain the authorship information for a given item.

It may be desirable to present items sharing one or more field entries. For
example, an explorer including each item authored by a particular person may be desired.
By considering the field entries of the author field, the explorer is able to select such
explorer items authored by that particular person from the data store. Those skilled in the
art will recognize that the mechanics of such a database query are well known.

At 1006, a determination is made whether the explorer includes a shell view which
is appropriate for the presentation of an explorer item, If no such appropriate shell view is
found in the explorer, the method 1008 utilizes a view contained in the shell as indicated

at 1008. If a proper shell view is

-31-

20

25

30

-28 -

included in the explorer, the method 1000, at 1010, utilizes that shell view to
present the item. At 1012, an optional step of utilizing decorative elements from
an item display schema is performed. As described above, the explorer may use
non-conflicting decorations from an item view schema to enhance the
presentation of an item. At 1014, the explorer item is presented to the user
according to the shell and items views. The explorer decorative properties are
presented at 1016. These properties may be a wide variety of display attributes

and may include data queries or task associated with the explorer items.

E. EXPLORER DEVELOPMENT

Explorers may be created for a wide variety of item types. In one
embodiment of the present invention, explorers can be defined with little or no
programming. By allowing explorers to be created in a data-driven way, case of
development is enhanced while providing a consistent look and feel across
explorers.

In certain embodiments, explorers may allow restrictions on what
types (including item extensions and file extensions) of items they can present or
explorers can choose to allow items of all types. Also explorers can choose to
allow items types with a specific set of item extensions. For example, a Legal
Item Explorer may display all items with a “LegalltemExtension” attached.
Explorers can choose to allow items of a certain type and any file extension that
maps to that type. For example, a Music Item Explorer can show all music file
extensions such as mp3 or wma. Furthermore, explorers can choose to allow
items of a certain set of file extensions only. If an explorer is restricted to a
certain set of types, then items of other types cannot be saved or dropped into this
explorer. Explorers can redefine type associations for the types that they allow,
and explorers may choose to selectively disallow overrides or may choose to
disallow addition of new commands. Furthermore explorers can decide whether
they will let end-usets override type associations within the explorer.

Considering the foregoing, those skilled in the art will recognize
that by providing data-driven development techniques for creating an explorer for
use within an item-type environment, explorers may be defined a declarative

manner and without the use of custom code.

-32-

20

25

30

-29-

FIG. 11 displays a method 1100 for presenting items according to
an explorer display schema. At 1102, the method 1100 selects a desired field
entry. As discussed above, this desired field entry may correspond to a declared
property associated with an item. For example, a “photo album™ explorer may
have a desired field entry requiring inclusion of items containing picture data.

At 1104, an explorer display schema is defined. This display
schema may include a shell view schema and explorer decorations. The explorer

decorations decorate the explorer as a whole and provide display elements such

- as distinctive colors and branding elements, These explorer decorations persist

among the various views the explorer provides. A wide variety of display
attributes may be appropriate for the explorer decorations. For example, data
queries or tasks/verbs associated with the explorer items may be appropriate for
display with an explorer. Displayed tasks will preferably be coupled with an
application capable of performing the task. The explorer view schema may
include a shell view schema or multiple shell view schemas. The shell view
schema may be configured to provide a shell view for a subset of explorer items.

At 1106, the method 1100 accesses the data store to select the
explorer items. The explorer items are associated with the desired field entry.
Those skilled in the art will recognize that the selection of such items in a
database are well known in the art. Those skilled in the art will further recognize
that developers may create explorers configured for such interaction.
Development of explorers capable of accessing a data store is contemplated by
the instant invention.

At 1108, the explorer items are displayed according to an explorer
display schema. The explorer display schema is described above, and this
display may also include interaction with a shell browser. For example the shell
may provide one or more shell views. In addition, item decoration elements from
an item decoration schema may be utilized to enhance the presentation of the
explorer items.

As those skilled in the art will recognize, the explorer storage
application may be considered an application and/or an extension of the shell
browser. Consequently, the foregoing description is appropriate for both

depictions of the present invention. As an application, the explorer program may

-33-

2004279189 07 Dec 2009

20

25

30

P AOPERISSBAZ009\12591520-2004279189AU- 15pa Get09.doc - 12/10/09

-30-

include a shell interaction module that is configured to interact with the shell browser.
Such interaction allows the program to communicate information with the shell and
allows the software to work together to present items. The shell interaction module may
facilitate the accessing of the data store and may provide display attributes. Such

interaction between an application and the shell is well known in the art.

F. PRESENTATION OF RELATED ITEMS

The present invention may also display related items in the data store to the user.
As described above, the items in a data store may include items having one or more
declared properties. An item may have declared relationships which elucidate the other
items in the data store which share a relationship. For instance, an item containing an
email address may declare a relationship to an item containing other contact information
for the owner of the email address. The shell may utilize this declared relationship to
present the other contact information upon a user request. The shell may also determine
relationships by considering an item’s declared properties. For example, a set of
documents may be related if they share a common property; items with an extension
“LegalltemExtension” may be related if a common value is stored as part of the
extension. Such a relationship may be determined by a data query well known in the art.

FIG. 12 displays a method 1200 for presenting related items. At 1202, the method
1200 accesses the data store and, at 1204, relationships between items in the data store are
determined. As described above, such a determination utilizes the declared properties
included with an item. This determination may be in response to a user input. For
example, an item having a set of declared item characteristics may be displayed to a user.
The item characteristic and relational information may be displayed with the item. The
user may select one of the characteristics and input a request to see other items sharing the
item characteristic. At 1206, the method 1200 presents related items to the user. Such
presentation may include any display schema known in the art.

Alternative embodiments and implementations within the spirit and scope of the
present invention may become apparent to those skilled in the art to which it pertains
upon review of the specification, including the drawing figures.

Throughout this specification and claims which follow, unless the context requires

otherwise, the word "comprise”, and variations such as "comprises" and "comprising",

-34-

2004279189 07 Dec 2009

P\OPER\SSBI2009112561520-2004279189AU-1s5pa Oct09.doc - 12/10/09

231 -

will be understood to imply the inclusion of a stated integer or step or group of integers or
steps but not the exclusion of any other integer or step or group of integers or steps.

The reference in this specification to any prior publication (or information derived
from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that that prior publication (or
information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

-35-

2004279189 05 Mar 2010

C\NRPorbA\DCCATXBA692287_1 DOC - 27/1/10

-32-

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented method for presenting related items in a universal data
storage device to a user, the method comprising:

accessing data in said universal data storage device, wherein said universal data
storage device stores a plurality of items in accordance with a universal data schema, and
wherein at least a portion of said plurality of items contain relational information which
allows relationships between said plurality of items to be determined,

utilizing said relational information to dcetermine a relationship between a selected
item and one or more of the items containing said relational information in the data
storage device, wherein said relationship has a relationship type; and

displaying said selected item and one or more related items to the user, wherein
said displaying includes presenting the displayed items with a shell view schema, wherein
said displaying further includes presenting one or more item decorations defined by at
least a portion of the displayed items, wherein conflicts between said shell view schema
and said one or more item decorations are resolved in favor of said shell view schema
such that the selected item and one or more related items are displayed using only said
shell view schema and without said one or more item decorations defined by the displayed

items.

2. The method of claim 1, wherein the displaying of said selected item and one or
more related items includes displaying at least a portion of said relational information 1o a

user.

3. The method of claim 1 or claim 2, wherein said method further comprises
receiving a user inpul representing a sclection to view one or more items in the data

storage device which are related to said selected item.

4. The method of claim 3, wherein the displaying of said selected item and one or

more related items is responsive to said input.

-36-

2004279189 05 Mar 2010

C:\NRPonb\DCCVTXB\2692287_1.DOC - 221/10

233-

S. The method of any one of claims 1 to 4, further comprising when a display
element is missing from the shell view schema, displaying a corresponding item

decoration for the missing display element.

6. The method of any one of claims 1 to S, further comprising displaying a non-
conflicting item decoration in the shell view in addition to the display elements defined by

the shell view schema.

7. A shell for presenting related items in a universal data storage device to a user. the
shell comprising:

a data storage device interaction component which retrieves data associated with
one or more items from the universal data storage device, wherein said one or more items
are stored in accordance with a universal data schema and at least a portion of said one or
more items contain relational information that allows relationships between two or more
items to be determined;

a related item presentation component which utilizes said retrieved data 1o present
related items to a user, wherein the relationship presentation component is configured to
present a selected item to a user and is further configured to utilize said relational
information to present one or more items in said data storage device which are related to
said selected item; and

a shell view component that stores a plurality of shell view schemas that are
associated with one or more relationship types, wherein each of at least a portion of said
plurality of shell view schemas identifies one or more visual elements selected as
appropriate for display with items of one of said one or more relationship types,

wherein said related item presentation component presents said related items with
one or more item decorations defined by at least a portion of the related items and with
one of said plurality of shell view schemas, wherein conflicts between a shell view
schema and said one or more item decorations are resolved in favor of said shell view
schema such that the related items are displayed using only said shell view schema and

without said one or more item decorations defined by the displayed items.

-37-

2004279189 05 Mar 2010

€ WRPorbRDCCVTXI3N2602247_) 1DIOC - 231710

234-

8. The shell of claim 7, wherein the relational information corresponding to one or

more of said plurality of items includes a set of item characteristics.

9. The shell of claim 8, wherein said related item presentation component is

configured to present one or more of said set of item characteristics to a user.

10. The shell of claim 8 or claim 9, wherein said related item presentation component
is configured to present one or more items in the data storage device which share one of

said item characteristics.

11. The shell of any one of claims 7 to 10, wherein the related item presentation

component is configured to present at least a portion of said relational information.

12. The shell of any one of claims 7 to 11, wherein the shell is configured to accept a
user input representing a selection to view items in the data storage device which are

related to said selected item.

13. The shell of claim 12, wherein said relational information corresponding to the
selected item includes a set of item characteristics associated with the selected item and
wherein said user input represents a selection to view one or more items in the data

storage device which share one of said set of item characteristics with the selected item.

14. A method substantially as hereinbefore described with reference to the

accompanying drawings.

15. A shell substantially as hereinbefore described with reference to the accompanying

drawings.

16. Computer-readable storage storing program instructions for performing the
method of any one of claims 1 to 6 and 14 or implementing the shell components of any

one of claims 7to 13.

-38-

2004279189 05 Mar 2010

CANRPonbNDCCVIXI312692287_1 DOC - 271710

235

17. A system comprising means for performing the method of any one of claims 1 to 6

and 14 or implementing the shell components of any one of claims 7 10 13.

18. A system substantially as hereinbefore described with reference to the

accompanying drawings.

-39-

9¢
suonenddy

Ov preogha)|

IC U

Zt asnopy

e e e

LS NV

o

0€ dAUQ jeANdO

'
62 abeioig ajgeroway
8¢ €leq | Zc sboid i
% wesboig _ Y10 —om sddy _ SE SO _
9z amQ Addo)y .

e —— _ 1z enud pieH _
y A

b

¥

111

i
'
'
n €S 471 yomisN d/ivod (elag
'
'
1
1
)

e
471 @AuQ 1endo

€€ 4/l AU FAET] Eviva
¥siq onaubep 3ALQ YSIQ PreH E

I

¥3HLO

ﬁ H 1E SWVNDOud

b T €Z sng WajsAS

l

i 9€ SWVHOOMd
NOILVOINddY

9§ sng ISOS

aoinaQ abesols

Ly JOJUON

T T

SS

J3)depy 1soH

’i4 34 5€ SO

19)depy 09pIA nun Buissasoly (5Z Wv)

9z sO1g

vz WoH)
Z
AICWa Y WaISAS

1
1
b
1
I
!
!
{
!
)
)
L 1 I
I
|
|
’
|
1
1
|
§
1
1

0Z Jendwoy

-40-

Ve 'Old

AININOJWOD FUVYMAUVYH

\[4 fdord

2111

\
LININOJWOD INILSAS FOVANILNI FHVMLIOS / IUVYMANVH

— $0C

1NINOJIWOD NYVAUOOUd NOILLYIITddY

902

00c

-41-

4/11

[543
SEwsyog
ASI MBN

ZvE
sewayag
WwioJiE|d papualxy

\
w/

§22 e ovE
aoedsaweN al0lg ejeq a10]g ejleq
ZEUM jeuniod 18Y10 JBULO UOWIWOY
$ BEE SIYOLS VLVG ILOWIN
I
S
weans
8IE oIt
S4IN Biols 108 PIE 3NIONS
(155 Joe
uojowaq e_M,on Bunioes) o cﬂo..w e € e
Juonowiold Hno3s abueyn 12POW ElEQ sicoL
) swioldaq
ewayos
T0E IHOLS YLVa
L et
Mmo SUOHEOUHON uoneziuoIyouAs
IdV 31015 QI_
waby oju) 92€ S30IAM3S
00¢
oZe vZe ZTE AV
|dV 2€ NIM 830 3710 wioye|4 abeio)s

BZE€ S3OVAHILINI ONINWYHOOHd NOILYIIddY

¢

$

Y

}

X

J0S€E

weiboid uonesyddy

g05¢t
weiboig uonesyddy

VosE
weiboug uonesnddy

ovE
SEWIYOS WIojeld

-43-

CATORGORIES

ITEM FOLDERS

6/11

g 'OI1d

20s _

viva w3t

V1VQ NOILY¥Y103Q
AL¥3dONd

905§

/

005

-45-

7M1

809

P

9 "Old

MIIA AVILSIC ANvY43aa MIIA NOILYHODIA WAL N
OL ONIQHOOIV LNIS3Hd - NY HLIM W31l LIN3S3¥d _\ 9209
008

¢ VW3HOS
NOILYYH0O03a
W3all

S3A v\

- 209

JYOLS v1vQa SS300V

-46-

8/11

902

M3IA NOILYH0O3a

W31 OL ONIGYOOOV LNISTud

S3A

M3IIA NOILYHOD3a WL
NV (WOHH INIWIT3 AVIdSIa
V HLIM W3LlI INISTNd I/

oL

- V HLIM SW3LI LNIST¥d l/

802

MIIA NQILYHNODAQ 113G

& YW3HOS
NOILYHO23a
W31l 3NVS

L 002

z0s JAROTE]
3¥O1S V.1va SSIO0V

47-

911

6 "OId

006
\\\|

B0B

SNOILYH0D30 ¥38OdX3

YIWIHOS M3IA 113HS

YWIHOS M3IA ¥3H01dXZ

8 'Old
L oo

I

25

SONILLIS MIIA ¥3ISN

SNOILVH003a

YWIHOS MIIA W3LI

SNANTOD W
ANVd MIIAINd |
G0e W

SISVL

YWIHIS MIIA TI3HS

YINIHIS MIIA W3LI

-48-

10/11

1
ACCESS DATA STORE t—\
; 1002
}
Y
SELECT EXPLORER ITEMS

1004
FIG. 10
R 1006
DOES EXPLORER NO SH%TL'LL'GEW
INCLUDE —
SHELL VIEW ? CONTAINED
IN THE SHELL
1008
UTILIZE SHELL VIEW
CONTAINED IN THE
EXPLORER
1010
l e 1012
UTILIZE DECORATIVE ELEMENTS FROM AN
ITEM DISPLAY SCHEMA
PRESENT EXPLORER ITEM
ACCORDING TO SHELLAND F——
ITEM VIEWS 1014
o 1016
PRESENT EXPLORER
DECORATIVE PROPERTIES
1000

-49-

ooct /

[49TE]

90¢t

SWALI A31V13d ONIAVIGSIA

1111

yoclL
SW3LI NI3IMLIE
dIHSNOILYI3d ONININY313Q

JHOLS v1iva ONISSIOOY IA

VIW3IHOS Avidsia
HIHO1dX3 OL ONIQHODDY
3

P T gy N~
= SW3Li U3HOTdX3 ONIAVASIO

804

90LL

SW3LI ¥340T1dX3 10313S
OL 3H01S ¥1VQa Vv ONISSIOOV

YW3IHOS
AVdSIA 43HO01dX3 NY ONINIFIA

voL1

oL

’.».m._.zm a71314 Q3HIS3IA ONILDIT3S

]

-50-

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

