

(19) **DANMARK**

Patent- og
Varemærkestyrelsen

(10) **DK/EP 2369943 T3**

(12)

Oversættelse af
europæisk patentskrift

(51) Int.Cl.: **A 23 G 1/20 (2006.01)** **A 23 G 3/02 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2017-07-17**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2017-04-05**

(86) Europæisk ansøgning nr.: **09771748.2**

(86) Europæisk indleveringsdag: **2009-12-14**

(87) Den europæiske ansøgnings publiceringsdag: **2011-10-05**

(86) International ansøgning nr.: **EP2009067116**

(87) Internationalt publikationsnr.: **WO2010066910**

(30) Prioritet: **2008-12-12 DE 102008055518**

(84) Designerede stater: **AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR**

(73) Patenthaver: **Bühler AG, Gupfenstrasse 5, 9240 Uzwil, Schweiz**

(72) Opfinder: **BODEN, Hannjo, Oesterhausstrasse 12, 32756 Detmold, Tyskland**
BAUER, Bernhard, Bahnhofstrasse 49, 9242 Oberuzwil, Schweiz

(74) Fuldmægtig i Danmark: **RWS Group, Europa House, Chiltern Park, Chalfont St Peter, Bucks SL9 9FG, Storbritannien**

(54) Benævnelse: **FORBINDELSESSTYKKE**

(56) Fremdragne publikationer:
DE-A1- 1 965 091
DE-B- 1 123 545
DE-U1- 29 905 283
GB-A- 247 063
US-A- 4 168 727
US-A1- 2007 000 943

DK/EP 2369943 T3

Description

The invention relates to a casting machine having a connection piece for fastening the nozzle.

5

Document DE 34 10 302 C2 shows the nozzles fastened in a nozzle plate of a casting machine. The nozzles consist of an inelastic material, for example steel, and are produced by machining. The nozzles are pressed into the nozzle plate or 10 are welded thereto. The mounted nozzles can then be replaced only to a limited degree and with great effort.

DE 1123545 discloses a metering device for chocolate mass, wherein a nozzle is connected via a flexible intermediate 15 piece to the outlet opening of the casting machine, which can be set in vibration by a vibrator.

The US publication US 4168727 shows a mobile whipped cream machine having an output nozzle which is fastened to an output 20 pipe by means of a spout. The nozzle is pressed onto the spout with a union nut and a pulley, the spout for its part being fastened to the output pipe via a nut.

The publication DE 299 05 283 shows a device for portioning 25 pasty materials that are difficult to meter. Provided for metering is a piston, which is connected to the outlet of a mass container via a one-way valve and the piston rod of which is in the form of a pipe. A nozzle is fastened to the pipe by means of a coupler.

30

The publication US2007/0000943 discloses a dispenser for icing. The dispenser comprises a funnel piece which is screwed onto a container. A dispensing nozzle is fastened to the funnel piece with a locking ring.

35

The present invention is based on the object of being able to arrange or fasten an elastic nozzle by way of structurally simple means in a casting machine, and at the same time of

allowing the nozzle to be replaced rapidly in the device by way of simple mounting steps.

This object is achieved according to the invention by a 5 casting machine having the features of Claim 1.

The connection piece is arranged, in particular can be screw-mounted, in a nozzle plate of a casting machine. The casting machine can cast for example liquids, and in particular a 10 chocolate mass. The connection piece preferably has a hollow cylindrical form in order that the liquid can pass through the connection piece into the nozzle and from there to a casting point. A first end of the connection piece has a fastening device, in the form of a thread. This thread is screwed into 15 the nozzle plate so that the connection piece is connected firmly to the nozzle plate. The nozzle is arranged in the connection piece preferably even before the connection piece is mounted in the nozzle plate. In order that the nozzle is held securely in the connection piece, there is provided a 20 clamping unit which can be connected to the second end of the connection piece. The connection piece and/or the clamping unit can have a holder for the nozzle so that the nozzle can be connected to the connection piece. The nozzle is then mounted in the nozzle plate with the aid of the connection 25 piece. A defective elastic nozzle can be replaced easily in that the nozzle connected to the connection piece is removed from the nozzle plate and is replaced by a connection piece which has a new nozzle.

30 The connection piece and the clamping unit are structurally simple components which can be produced cost-effectively, for example on an automatic lathe or as injection-moulded parts.

Advantageously, the inside diameter of the connection piece is 35 smaller than an outside diameter of the nozzle, in order that the nozzle is compressed in the radial direction. This influences the casting properties of the nozzles and allows clean casting of the mass by way of a casting machine.

It is favourable for an internal cylinder of the hollow cylinder to have a conical region at the end having the fastening device of the connection piece, in order that the 5 mass to be cast can run into the connection piece and the nozzle through this funnel shape.

Advantageously, the connection piece has a surface for holding a flange surface of the nozzle, so that the nozzle butts 10 against this surface during mounting and can be fixed precisely.

The connection piece according to the invention has particular advantages when the connection piece has a groove for holding 15 a flange of the nozzle. The nozzle sits in the groove and the clamping unit can ensure that the nozzle is fastened securely.

It is conceivable that one surface of the connection piece, preferably the outer surface, can be connected to the nozzle 20 in order to fix the nozzle in the connection piece by way of the clamping force that occurs between the nozzle and the connection piece. This has the advantage that the additional clamping unit can be dispensed with if there is a sufficiently large clamping force.

25

In a particularly advantageous embodiment of the invention, the outer surface of the connection piece can have a mounting device, in particular a width across flats or a knurl. This mounting device makes it easier to fasten the connection 30 piece, in particular in a nozzle plate of a casting machine, since the width across flats or a knurl represents an optimal engagement surface for a mounting tool or enables the connection piece to be screwed in by hand.

35 It is particularly favourable for the nozzle to be arranged in a recessed manner in the connection piece in order that the nozzle can be fastened securely in the connection piece. Furthermore, the connection piece can support the nozzle

against an inner surface of the connection piece and facilitate the use of the nozzle in a casting machine.

Advantageously, the connection piece can have a fastening device, in particular a thread, at both ends, so that the connection piece can be fastened in a device in a casting machine and furthermore the nozzle can be fastened to the connection piece by way of a device which can be formed for example as a union nut.

10

It is particularly favourable for the connection piece to consist of metal, in particular a corrosion-resistant steel or stainless steel, or of aluminium or of plastic, in particular POM 6, since these materials are food-compatible.

15

In an advantageous embodiment of the invention, it is possible that the connection piece can be connected, in particular welded, to the nozzle and/or the clamping unit, in order to improve the fastening of the nozzle and to provide the replacement part in a more customer-friendly manner.

It is conceivable that a sleeve can be arranged in the connection piece, in order thereby to improve the stability of the connection piece.

25

In a further embodiment of the invention, at least one securing element can be arranged perpendicularly to the centre axis in the connection piece and the clamping unit in order in this way to allow particularly reliable connection of the parts. These securing elements may be pins or splint pins or threaded pins having a securing means.

The clamping unit facilitates the fastening of the nozzle to a connection piece, wherein the clamping unit is preferably a structurally particularly simple element in the form of a hollow cylinder. One surface of the clamping unit can be connected to the nozzle. The clamping unit allows the nozzle to be replaced rapidly in the device, in particular in the

casting machine, by way of simple mounting steps, since only the clamping unit has to be released from the nozzle and/or the connection piece in order to replace the nozzle.

5 The clamping unit and the seat of the clamping unit on the connection piece can be embodied such that, in order to replace the nozzle, the nozzle and/or the clamping unit have to be destroyed, that is to say the nozzle and/or the clamping unit cannot be removed without being destroyed and in the 10 event of a replacement being made both the nozzle and the clamping unit are renewed.

Alternatively, the clamping unit can be embodied such that, in order to replace the nozzle, said clamping unit has to be removed and reattached using a special tool provided for that 15 purpose. The clamping unit can have for this purpose, for example, recesses which have a particular profile and into which an appropriate tool can be inserted.

20 The nozzle can be exchanged while the connection part remains on the casting machine or after the connection part has been released from the casting machine.

It is favourable for the clamping unit to be able to fasten 25 the nozzle in or to the connection piece, since the nozzle is exposed primarily to a force along the centre axis while it is used in a casting machine and the nozzle can thus be secured optimally in the connection piece.

30 In an advantageous embodiment, the clamping unit is arranged in the connection piece so that the connection piece forms a closed component in which only the nozzle protrudes beyond the edges of the connection piece. This embodiment affords considerable advantages not only for the absorption of force 35 but also for the cleaning of the connection piece.

In a particularly advantageous embodiment of the invention, the outer surface of the clamping unit can have a mounting

device, in particular a thread or a width across flats or a knurl, as a result of which it is possible to accelerate the mounting of the clamping unit with the nozzle on the connection piece.

5

Advantageously, the clamping unit consists of metal, in particular a corrosion-resistant steel or stainless steel, or of aluminium or of plastic, in particular POM 6, since these materials are food-compatible.

10

Further advantageous developments of the invention are defined in the dependent claims.

A number of exemplary embodiments are described in more detail 15 in the following text with reference to the appended figures, in which:

figure 1 shows a vertical section through the connection piece, the clamping unit and the nozzle;

20

figure 2 shows a perspective view of the first embodiment shown in figure 1;

figure 3 shows a vertical section through a second embodiment 25 of the connection piece, the clamping unit and the nozzle;

figure 4 shows a vertical section through a third embodiment of the connection piece, the clamping unit and the nozzle;

30 figure 5 shows a vertical section through a fourth embodiment of the connection piece, the clamping unit and the nozzle;

figure 6 shows a vertical section through a fifth embodiment of the connection piece, the clamping unit and the nozzle;

35

figure 7 shows a vertical section through a sixth embodiment of the connection piece, the clamping unit and the nozzle in a casting machine;

figure 8 shows a vertical section through a seventh embodiment of the connection piece, the clamping unit and the nozzle in a casting machine;

5

figure 9 shows a vertical section through an eighth embodiment of a connection piece, a clamping unit, nozzle and securing elements;

10 figure 10 shows a vertical section through a ninth embodiment of the connection piece, the clamping unit and the nozzle;

15 figure 11 shows a vertical section through a tenth embodiment of the connection piece, the clamping unit and the nozzle in a casting machine;

figure 12 shows a vertical section through an eleventh embodiment of the connection piece, the clamping unit and the nozzle in a casting machine;

20

figure 13 shows a vertical section through a twelfth embodiment of the connection piece, the clamping unit and the nozzle in a casting machine;

25 figure 14 shows a vertical section through a thirteenth embodiment of the connection piece, the clamping unit and the nozzle in a casting machine; and

30 figure 15 shows a vertical section through a fourteenth embodiment of the connection piece, the clamping unit and the nozzle in a casting machine.

Identical components are designated by the same references throughout the figures.

35

Figures 1 and 2 show a first embodiment of the present invention. The connection piece 1 is a hollow cylinder and consists of a plastics material, POM6. A region of the radial

outer surface of the hollow cylinder has a thread 4 for fastening the connection piece 1 in a device, i.e. in a nozzle plate of a casting machine. The thread 4 is adjoined by a cylindrical region 12, the outside diameter of which 5 represents the maximum outside diameter Da of the connection piece 1. On this cylinder 12 that is formed by the maximum outside diameter there are formed four surfaces 13, which represent a width across flats SW for a mounting tool. The maximum outside diameter is adjoined by a cylindrical 10 extension 16a, the outside diameter of which is smaller than the maximum outside diameter Da . Further, the connection piece 1 has, at the end arranged opposite the thread 4, a surface 7 in the form of a circular ring for holding a flange surface of a flange 5 of the nozzle 3. The hollow cylindrical form of the 15 connection piece 1 results from a cylindrical outer form and a coaxially arranged through-hole. At the end of the connection piece with the thread, the hole tapers conically. The funnel shape that is produced thereby inside the connection piece 1 guides a mass to be cast through the connection piece 1 into 20 the nozzle 3.

Furthermore, a clamping unit 2 is present, said clamping unit 2 likewise consisting of a plastics material, for example POM 6, and being connected to the connection piece 1. The two 25 components 1, 2 are welded together, for example ultrasonically welded or laser welded. The outside diameter of the clamping unit 2 corresponds to the maximum outside diameter of the connection piece 1. Furthermore, the clamping unit 2 has a shoulder 15, which is suitable for pushing the 30 flange 5 of the nozzle 3 against the surface 7 of the connection piece 1. Once the components 1, 2 and 3 have been connected, the shoulder 15 of the clamping unit 2 axially fixes the nozzle 3.

35 The outer lateral surface of the clamping unit 2 has surfaces 14 which correspond to the width across flats SW of the connection piece 1 and its surfaces 13, so that, following the mounting of the components 1, 2 and 3, four surfaces 13, 14

are formed jointly on the outside diameters of the connection piece 1 and of the clamping unit 2, on which a mounting tool is positioned for fastening the connection plate in a nozzle plate of a casting machine. In this case, the connection piece 5 1 has in the region of the tool engagement surface four grooves 17a, into which four corresponding claws 17b of the clamping unit 2 engage axially and act in a radially form-fitting manner, in order to introduce the torque of the mounting tool into the thread 4 on the connection piece 1. The 10 clamping unit 2 extends axially beyond the connection piece 1 and supports the nozzle 3 by way of the inside diameter.

The nozzle 3 consists of an elastic material, for example NBR, and has two openings. One opening 18 is surrounded by a flange 15 5. The other opening 19 is closed by at least three elastic nozzle flaps. The nozzle 3 is mounted in a machine, i.e. a casting machine, as follows. The flange 5 of the nozzle 3 is pushed against the surface 7 in the form of a circular ring of the connection piece 1 and is pressed with the clamping unit 2 20 against the connection piece 1. The flange 5 of the nozzle 3 is arranged between the connection piece 1 and the clamping unit 2 and is fixed between the two components by the connection of the clamping unit 2 to the connection piece 1. In the process, the flange 5 is received by a chamber 21 which 25 is formed on the inside and at the top by the connection piece 1 and on the outside and at the bottom by the clamping unit 2.

Figure 3 shows a second embodiment of the connection piece 1 according to the invention, which has at a radially outer end, 30 as described above, a thread 4 for fastening the connection piece 1 in a device. Further, the connection piece 1 has a coaxially arranged hole having a conical countersink 6. The countersink 6 is arranged at that end of the connection piece that has the thread 4. Formed at the opposite end of the 35 connection piece 1 is a surface 7, against which the nozzle flange 5 of the nozzle 3 is pressed. The flange 7 is adjoined in the axial direction by a cylindrical lateral surface 22 of a guide tube 23 arranged on the connection piece 1, the outer

surface of said guide tube 23 coming into contact with and supporting the inner wall surface of the nozzle 3 in the mounted state.

5 The clamping unit 2 has a cylindrical form with an outside diameter which corresponds to the outside diameter of the connection piece 1. The inside diameter of the clamping unit 2 is smaller than the outside diameter of the nozzle 3. As a result, in the mounted state the inside diameter of the 10 clamping unit 2 exerts a pressure on the nozzle flaps 3a and closes the opening 19 in the nozzle 3. The clamping unit 2 furthermore has a shoulder 26 in the form of an L, which holds the cylindrical nozzle flange 5.

15 The nozzle 3 is pressed against the surface 7 of the connection piece 1 and is fixed by the clamping unit 2. The components are connected together by welding. Then, the connection piece 1 is fastened, for example screwed, by way of the fastening device 4 in a device, for example a nozzle 20 plate, of a casting machine. The material to be cast first of all flows through the conical opening 6 or the countersink in the connection piece 1 and through the hole into the nozzle 3. The nozzle has nozzle flaps 3a, which are opened by the pressure of the mass and are bounded and stabilized by the 25 connection piece 1 and/or clamping unit 2 during the open state.

Figure 4 shows a third embodiment, wherein the connection piece 1, as described above, has a conical opening 6 with an 30 adjacent hole and also an external thread 4. The outside diameter of the connection piece 1 is provided with a width across flats or a knurl 9, so that the connection piece 1 can be mounted manually. Further, the connection piece 1 has a surface 7 for holding a nozzle surface 5a. The nozzle 3 is 35 pushed against this surface 7 and fixed by a clamping unit 2 which is fitted in a surface 27 of the connection piece 1. Thus, the connection piece 1 has not only a surface 7 for holding the nozzle flange 5, but also a cylindrical surface 27

for holding the clamping unit 2. The mounted clamping unit 2 does not protrude beyond the connection element 1, but terminates flush with the connection piece 1. The connection piece 1 and the clamping unit 2 consist of metal, in 5 particular a corrosion-resistant steel or stainless steel. The components are welded or adhesively bonded together.

Figure 5 shows a fourth embodiment, wherein the connection piece 1 has at one end an external thread 4 and a flat 10 countersink 29 that adjoins the hole 28. The clamping unit 2 is inserted into the inside diameter, i.e. the hole 28, of the connection piece 1. The clamping unit 2 has a terminating flange 31 which is positioned in a flush manner in the flat countersink 29 in the connection piece 1. The connection piece 15 also has a groove 8 which adjoins the inside diameter of the hole 28. The nozzle 3 is placed by way of its flange in this groove 8 in the connection piece 1 so that the nozzle 3 is placed partially in the connection piece 1.

20 In order that the nozzle 3 can be mounted in the casting machine, it is first of all inserted by way of the flange 5 into the groove 8 in the connection piece 1 and subsequently the clamping unit 2 is inserted into the hole 28 in the connection piece 1 until the terminating flange 31 of the 25 clamping unit 2 sits in the flat countersink 29 in the connection piece 1. The clamping unit 2 presses by way of its outer lateral surface 32 against the inner lateral surface 33 of nozzle 3 and braces it to the connection piece 1. In addition, the connection piece 1 is connected, in particular 30 adhesively bonded or welded, to the clamping unit 2. The connection piece 1, which is formed here from metal, has a knurl 9 in its outside diameter region.

Figure 6 shows a construction similar to figure 5. However, 35 the connection piece 1 does not have a flat countersink in the region with the fastening device 4, but rather a conical region 34. The clamping unit 2 likewise has a conical region 35 at one end. Once the nozzle 3 has been inserted into the

groove 8 in the connection piece 1, as already described in figure 5, the clamping unit 2 is pushed into the connection piece 1. The two conical ends 34, 35 are then braced together and the clamping unit 2 pushes furthermore against the nozzle 3 and braces the latter to the connection element 1. The conical region 35 of the clamping unit 2 conveys the inflow of mass to be cast into the nozzle 3.

Figure 7 shows a sixth embodiment, wherein the connection piece 1 is fastened in a device, in particular a nozzle plate 40 of a casting machine. One end of the connection piece 1 is provided with a turned groove or flat countersink, in which the flange 5 of a nozzle 3 is arranged. The clamping unit 2 is arranged on the surface of the connection piece 1 and pushes 15 against the nozzle flange of the nozzle 3. The components are connected together, in particular welded. A sleeve 10 consists of a tubular material and is pushed into the connection piece 1 until the sleeve 10 terminates flush with the connection piece 1 and at least partially supports the nozzle 3. The 20 sleeve 10 establishes a radial pressure on the nozzle 3 and additionally braces the nozzle 3 in the connection piece 1. The sleeve 10 consists of a material which has a favourable effect on the mass to be cast while it is introduced into the nozzle 3 and reduces, for example, turbulence and the 25 generation of heat.

Figure 8 shows a seventh embodiment, wherein the connection piece 1 has a stop flange 41 which adjoins a fastening device 4, in particular a thread. The thread 4 is screwed into the 30 device, for example the nozzle plate 40, until the stop 41 butts against the device 40. The connection piece 1 has a holder 21 for a nozzle flange 5 at an end arranged opposite the thread 4. This holder 21 is a turned portion in the connection piece 1 so that a thin-walled hollow cylinder 42 remains at this end. A nozzle flange of a nozzle 3 is pushed 35 via this thin-walled hollow cylinder into the holder 21 in the connection piece 1, wherein the outside diameter of the hollow cylinder pushes against the inside diameter of the nozzle 3

and stabilizes or clamps the nozzle 3. A clamping unit 2 pushes against the nozzle flange 5 and a sub-region of the outside diameter of the nozzle 3 and holds the latter in the mounted position.

5

Figure 9 shows an eighth embodiment. The connection piece 1 has a thread 4, which is screwed into the device, in particular a casting machine. The connection piece 1 has a hole which forms an internal hollow cylinder. That end of the 10 connection piece 1 that is opposite the thread 4 has an outside diameter which is smaller than the outside diameter of the rest of the connection piece 1, with the inside diameter of the connection piece 1 forming with the outer region a thin-walled hollow cylinder 42. A groove 8 for holding a 15 nozzle flange 5 is turned into the turned-in surface. Furthermore, the connection piece 1 has at least two radially arranged holders for securing elements 11.

The clamping unit 2 consists of a hollow cylinder having two 20 different inside diameters. A sub-region of the clamping unit 2 has an inside diameter which is adapted to the connection piece 1. The adjoining smaller inside diameter is adapted to the diameter of the nozzle 3. In order to mount the nozzle 3 in the casting device, first of all the nozzle 3 is inserted 25 into the groove 8 in the connection piece 1. The clamping unit 2 is pushed over the nozzle 3 and a region of the connection piece 1 so that an inner flange of the clamping unit 2 pushes against the nozzle flange 5 and fixes the latter. Then, the securing elements 11 are attached, said securing elements 11 30 preventing axial displacement of the clamping unit 2 against the connection piece 1. The securing elements 11 are firmly connected, for example adhesively bonded, to the connection piece 1. When the mass to be cast enters the connection piece 1 and passes through the internal cylinder of the connection piece 1 into the nozzle 3, a pressure is exerted on the nozzle 3 and would decouple the latter from the connection piece 1 35 without countermeasures being taken. Since the flange of the nozzle 3 is pressed by the clamping unit 2 against the groove

8 in the connection piece 1 and is held in this position by the securing elements 11, the pressure of the mass to be cast cannot remove the nozzle 3 from its position.

5 Figure 10 shows a ninth embodiment of the connection piece 1 according to the invention. One end of the connection piece 1 has a thread 4 for fastening the connection piece 1 in a nozzle plate of a casting machine. The thread 4 is adjoined by a cylindrical region which has a mounting device 9, in particular a knurl. This cylindrical region is adjoined by a further thread 43 which extends to the other end of the connection piece 1. This thread 43 on the connection piece 1 is connected to a thread 43 on a clamping unit 2.

10 15 The clamping unit 2 has an internal thread 43, a holder 44 for a nozzle flange 5 and also a conical outlet opening 45. The nozzle 3 is mounted in the device in such a way that it is first of all inserted into the clamping unit 2 and is fastened to the clamping unit 2 on the connection piece 1. On account 20 of the axial thread movement of the clamping unit 2 on the connection piece 1, the flange 5 of the nozzle 3 is pressed against the holder 44 for the nozzle flange 5 in the clamping unit 2 and the nozzle 3 is securely fixed.

Patentkrav

1. Støbemaskine med et forbindelsesstykke (1), især egnet til fastgørelse af en elastisk dyse (3) i en støbemaskine, en klemenhed (2) og en dyse (3),
5 hvor forbindelsesstykket (1), som foretrukket har en hulcylinderform, på en første ende har en fastgørelsesanordning (4) i form af et gevind, og klemenheden (2) kan forbindes med forbindelsesstykkets (1) anden ende,
- 10 hvor forbindelsesstykket (1) og/eller klemenheden (2) har en optagelse for dysen (3), og dysen (3) kan forbindes med forbindelsesstykket (1) og kan fastholdes i eller på forbindelsesstykket.
- 15 2. Støbemaskine ifølge krav 1, kendetegnet ved, at en indvendig diameter af forbindelsesstykket (1) er mindre end en udvendig diameter af dysen (3).
- 20 3. Støbemaskine ifølge et af de foregående krav, kendetegnet ved, at en indvendig cylinder i hulcylinderen har et konisk område (6) på enden med forbindelsesstykkets (1) fastgørelsesanordning (4).
- 25 4. Støbemaskine ifølge et af de foregående krav, kendetegnet ved, at forbindelsesstykket (1) har en flade (7) og/eller en not (8) til optagelse af en flangeflade på en flange (5) på dysen (3), og/eller at en radial og/eller aksial flade på forbindelsesstykket (1) kan forbindes med dysen (3).
- 30 5. Støbemaskine ifølge et af de foregående krav, kendetegnet ved, at en udvendig flade på forbindelsesstykket (1) har en montageanordning (9), især en nøglevidde eller en roulet.
- 35 6. Støbemaskine ifølge et af de foregående krav, kendetegnet ved, at dysen (3) kan anbringes forsænket i forbindelsesstykket (1).
7. Støbemaskine ifølge et af de foregående krav, kendetegnet

ved, at forbindelsesstykket (1) på begge ender har en fastgørelsesanordning (4), især et gevind.

8. Støbemaskine ifølge et af de foregående krav, kendtegnet ved, at forbindelsesstykket (1) består af metal, især et rustfrit ædelstål, eller af aluminium eller af kunststof, især POM 6.

9. Støbemaskine ifølge et af de foregående krav, kendtegnet ved, at forbindelsesstykket (1) kan forbindes, især sammensvejses, med dysen (3) og/eller klemenheden (2).

10. Støbemaskine ifølge et af de foregående krav, kendtegnet ved, at der kan anbringes et hylster (10) i forbindelsesstykket (1).

11. Støbemaskine ifølge et af de foregående krav, kendtegnet ved, at der er anbragt i det mindste et sikringselement (11) i forbindelsesstykket (1) og klemenheden (2).

20 12. Støbemaskine ifølge et af kravene 1-11, hvor forbindelsesstykket (1) på begge ender har en fastgørelsesanordning (4), især et gevind, idet dysen kan fastgøres med en klemenhed (2) på forbindelsesstykket, der er udformet som en omløbermøtrik.

13. Støbemaskine ifølge et af kravene 1-12, hvor klemenheden og et sæde for klemenheden på forbindelsesstykket er udført sådan, at til en udskiftning af dysen skal dysen og/eller klemenheden ødelægges, altså dysen og/eller klemenheden ikke kan fjernes ikke-destruktivt.

14. Anvendelse af et forbindelsesstykke (1), en klemenhed (2) og en dyse (3) i en støbemaskine,
35 hvor forbindelsesstykket (1), som foretrukket har en hulcylinderform, på en første ende har en fastgørelsesanordning (4) i form af et gevind, og klemenheden (2) kan forbindes med forbindelsesstykets (1) anden ende,

hvor forbindelsesstykket (1) og/eller klemenheden (2) har en optagelse for dysen (3), og dysen (3) kan forbindes med forbindelsesstykket (1) og kan fastholdes i eller på forbindelsesstykket.

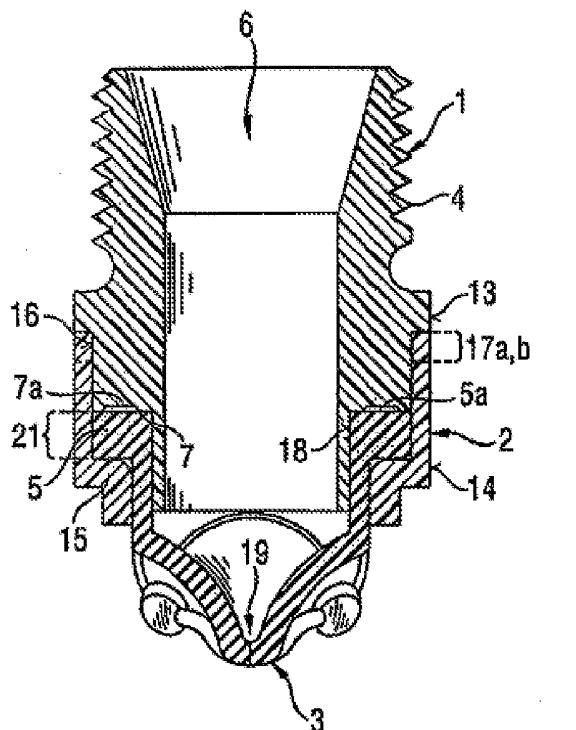


Fig. 1

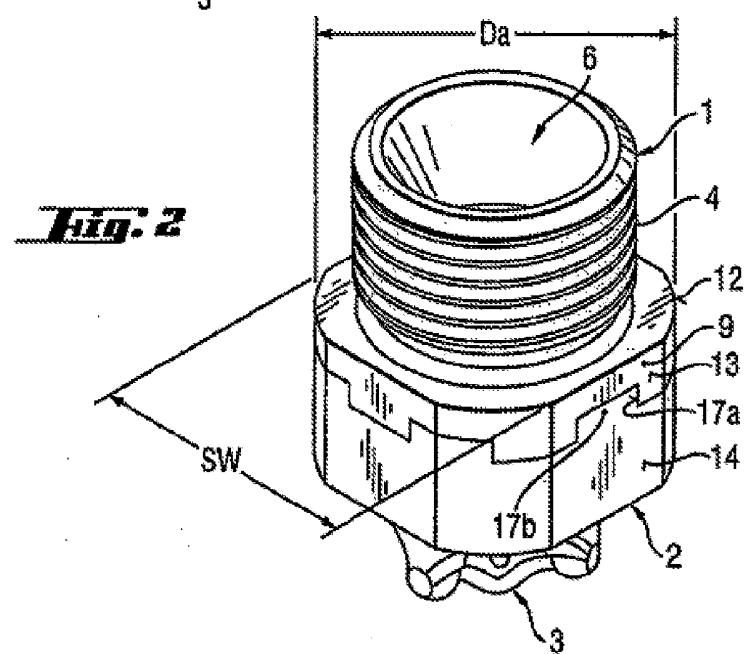
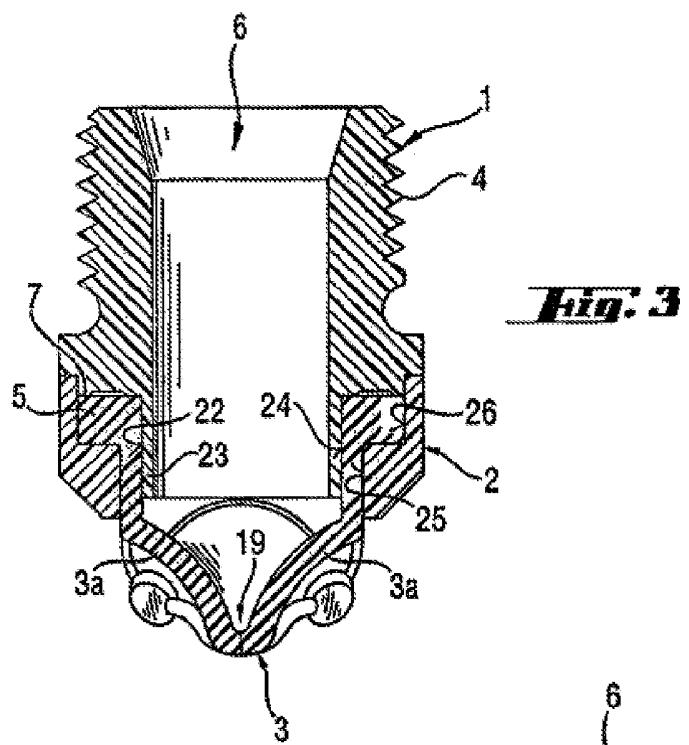



Fig. 2

Fig. 3

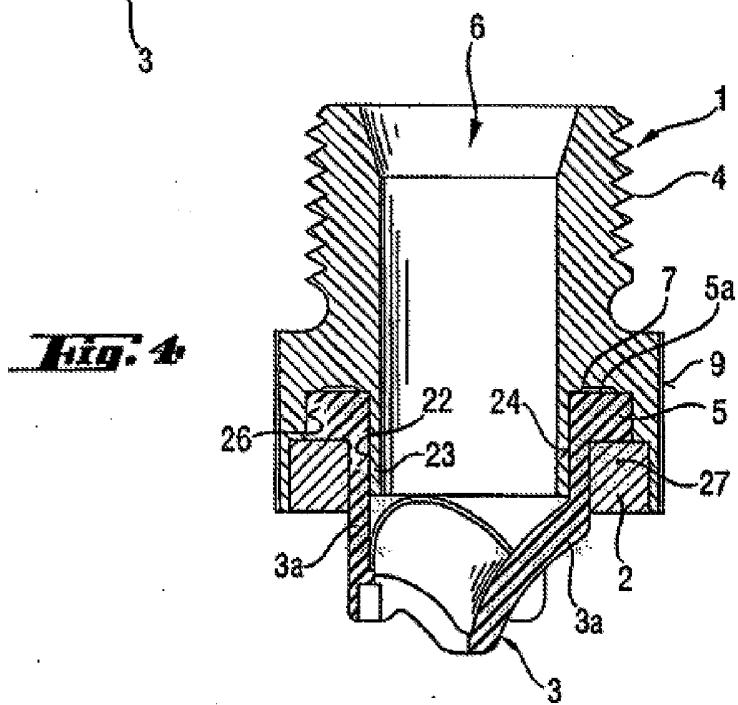
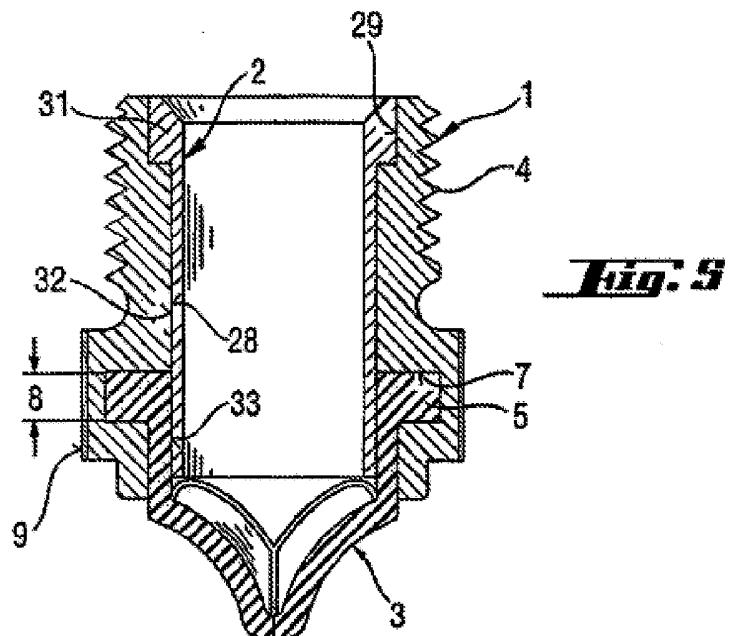
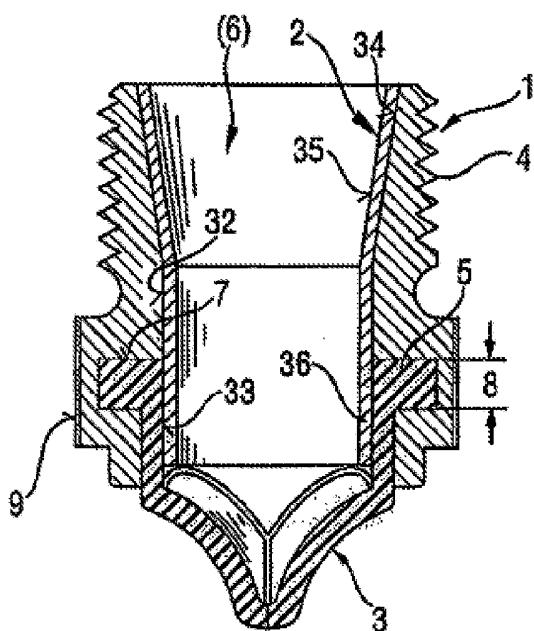
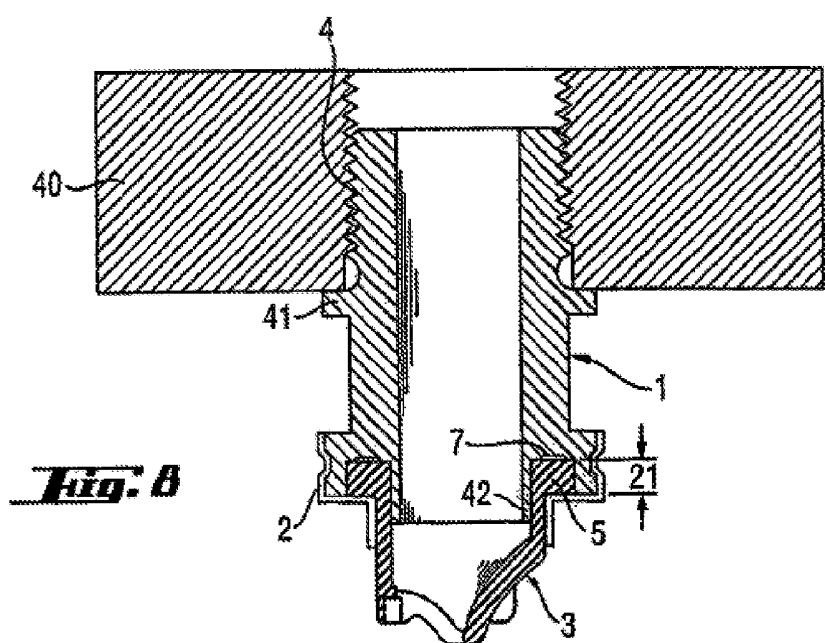
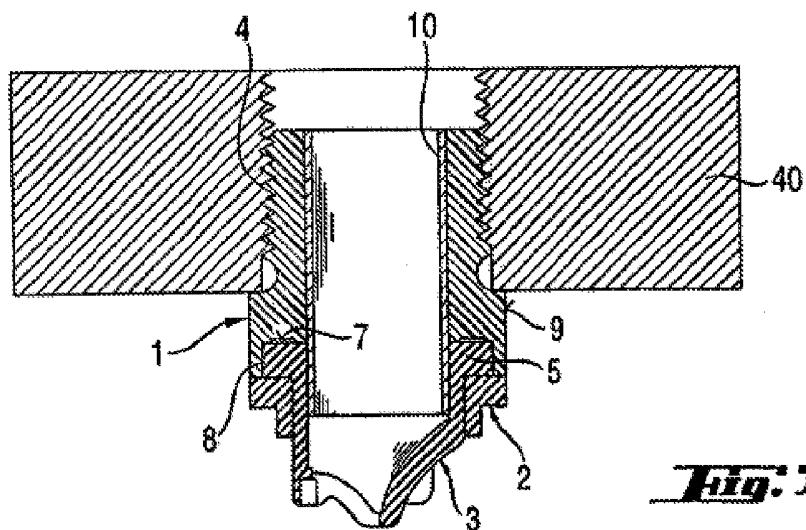
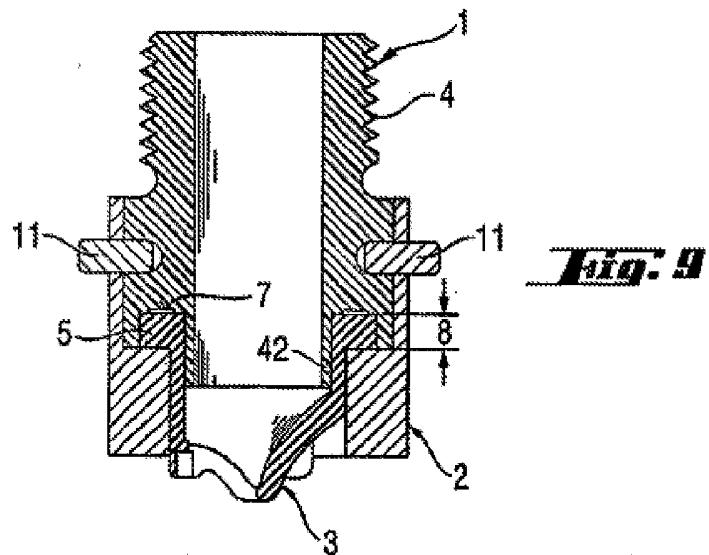


Fig. 4.

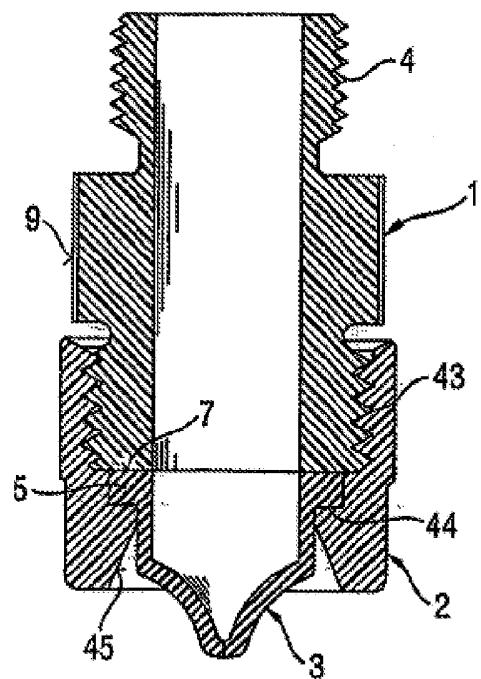

Fig. 6

Fig. 10

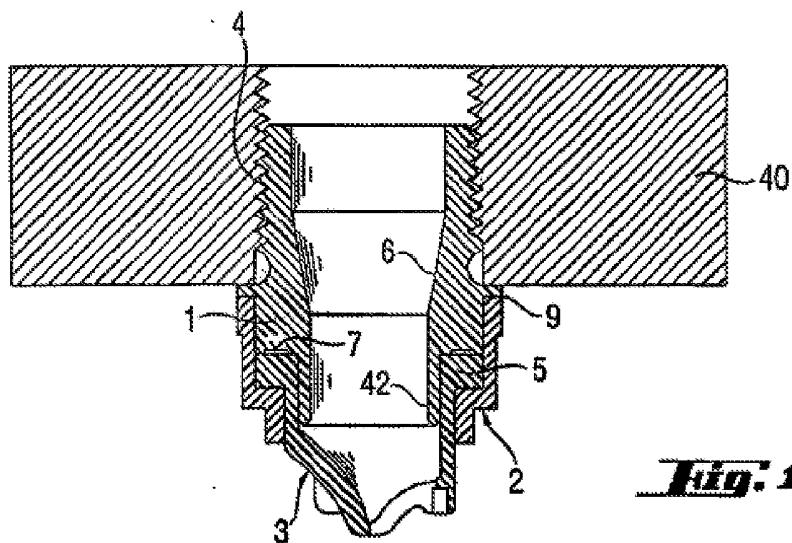


Fig. 11

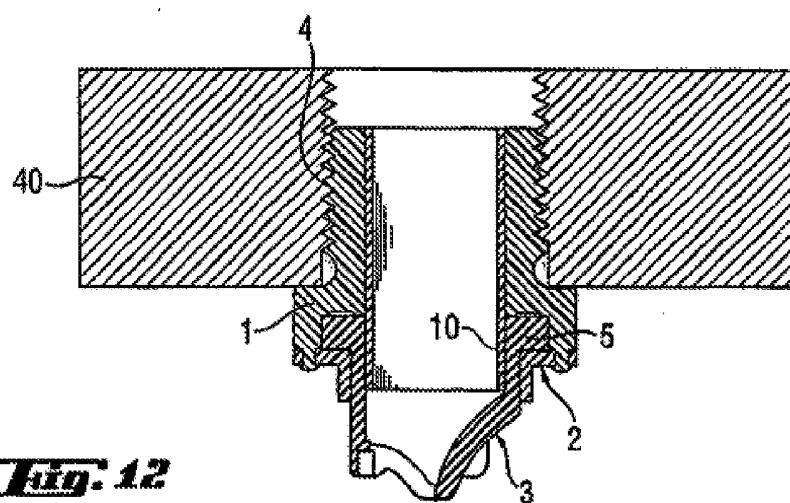


Fig. 12

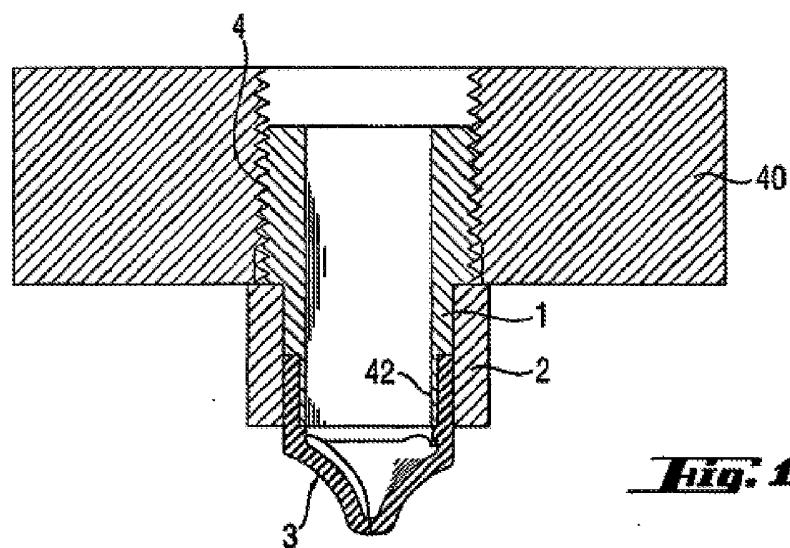


Fig. 13

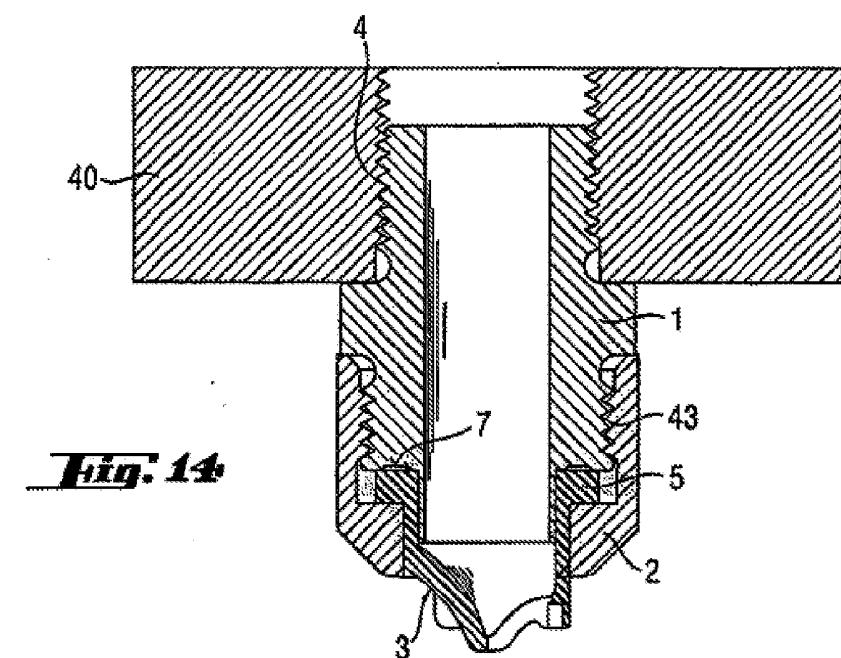
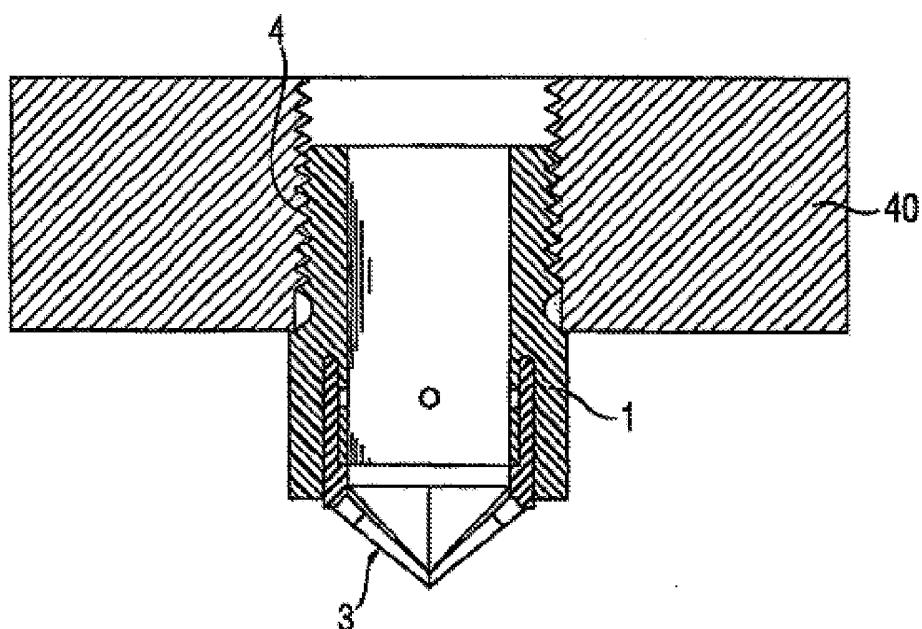



Fig. 14

Fig. 15

