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(57) Abstract: Method and apparatus for sending packets using optimized PIO write sequences without sfences. Sequences of Pro -
grammed Input/Output (PIO) write instructions to write packet data to a PIO send memory are received at a processor supporting out
of order execution. The PIO write instructions are received in an original order and executed out of order, with each PIO write in-
struction writing a store unit of data to a store buffer or a store block of data to the store butfer. Logic is provided for the store buffer
to detect when store blocks are filled, resulting in the data in those store blocks being drained via PCle posted writes that are written
to send blocks in the PIO send memory at addresses defined by the PIO write instructions. Logic is employed for detecting the fill
size of packets and when a packet's send blocks have been filled, enabling the packet data to be eligible for egress.
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SENDING PACKETS USING OPTIMIZED PIO WRITE SEQUENCES WITHOUT SFENCES

BACKGROUND INFORMATION

High-performance computing (HPC) has seen a substantial increase in usage and interests in
recent years. Historically, HPC was generally associated with so-called “Super computers.”
Supercomputers were introduced in the 1960s, made initially and, for decades, primarily by
Seymour Cray at Control Data Corporation (CDC), Cray Research and subsequent companies
bearing Cray’s name or monogram. While the supercomputers of the 1970s used only a few
processors, in the 1990s machines with thousands of processors began to appear, and more
recently massively parallel supercomputers with hundreds of thousands of "off-the-shelf”
processors have been implemented.

There are many types of HPC architectures, both implemented and research-oriented, along with
various levels of scale and performance. However, a common thread is the interconnection of a
large number of compute units, such as processors and/or processor cores, to cooperatively
perform tasks in a parallel manner. Under recent System on a Chip (SoC) designs and proposals,
dozens of processor cores or the like are implemented on a single SoC, using a 2-dimensional
(2D) array, torus, ring, or other configuration. Additionally, researchers have proposed 3D SoCs
under which 100’s or even 1000’s of processor cores are interconnected in a 3D array. Separate
multicore processors and SoCs may also be closely-spaced on server boards, which, in turn, are
interconnected in communication via a backplane or the like. Another common approach is to
interconnect compute units in racks of servers (e.g., blade servers and modules). IBM’s Sequoia,
alleged to have once been the world’s fastest supercomputer, comprises 96 racks of server
blades/modules totaling 1,572,864 cores, and consumes a whopping 7.9 Megawatts when
operating under peak performance.

One of the performance bottlenecks for HPCs is the latencies resulting from transferring data
over the interconnects between compute nodes. Typically, the interconnects are structured in an
interconnect hierarchy, with the highest speed and shortest interconnects within the
processors/SoCs at the top of the hierarchy, while the latencies increase as you progress down
the hierarchy levels. For example, after the processor/SoC level, the interconnect hierarchy may
include an inter-processor interconnect level, an inter-board interconnect level, and one or more
additional levels connecting individual servers or aggregations of individual servers with
servers/aggregations in other racks.

Recently, interconnect links having speeds of 100 Gigabits per second (100 Gb/s) have been
introduced, such as specified in the IEEE 802.3bj Draft Standard, which defines Physical Layer
(PHY) specifications and management parameters for 100 Gb/s operation over backplanes and

copper cables. Mesh-like interconnect structures including links having similar (to 100 Gb/s)
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speeds are being developed and designed for HPC environments. The availability of such high-
speed links and interconnects shifts the performance limitation from the fabric to the software
generation of packets and the handling of packet data to be transferred to and from the

interconnect.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become more
readily appreciated as the same becomes better understood by reference to the following detailed
description, when taken in conjunction with the accompanying drawings, wherein like reference
numerals refer to like parts throughout the various views unless otherwise specified:

Figure 1 is a schematic diagram of a system including a Host Fabric Interface (HFI), according
to one embodiment;

Figure 2 is a schematic diagram illustrating various aspects of a PIO send memory and an
SDMA memory, according to one embodiment;

Figure 3 is a block diagram illustrating an example of PIO Send physical address space;

Figure 4 is a block diagram illustrating exemplary address mappings between a virtual address
space, device physical address space, and PIO send memory address space;

Figure 5 is a block diagram illustrating a layout of a send buffer, according to one embodiment;
Figure 6a is a schematic diagram illustrating further details of selective elements of the system of
Figure 1;

Figure 6b is a schematic diagram illustrating two blocks of packet data being written to a store
buffer, and forwarded to a send buffer in PIO send memory;

Figures 7a-7f are schematic diagrams illustrating send timeframes corresponding to an
exemplary transfer of packet data from memory to PIO send memory through packet egress;
Figures 8a-8¢ are schematic diagrams illustrating send timeframes corresponding to an
exemplary transfer of packet data from memory to PIO send memory through packet egress
using 512-bit write instructions;

Figures 9a and 9b are timeflow diagrams illustrating a comparison of data transfer latencies for
PIO send writes with and without sfences, respectively;

Figure 10 is a schematic diagram of an egress block, according to one embodiment;

Figure 11 is a flowchart illustrating operations, phases, and states that are implemented in
preparing packet data for egress outbound on a fabric link coupled to an HFI;

Figure 12 is a diagram illustrating PIO send address FIFOs and credit return FIFOs, according to

onc embodiment;
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Figure 13 is a schematic diagram of a system node including an HFI, according to one
embodiment; and

Figure 14 is a schematic diagram of an ASIC including two HFIs.

DETAILED DESCRIPTION

Embodiments of methods and apparatus for sending packets using optimized PIO write
sequences without sfences are described herein. In the following description, numerous specific
details are set forth to provide a thorough understanding of embodiments of the invention. One
skilled in the relevant art will recognize, however, that the invention can be practiced without
one or more of the specific details, or with other methods, components, materials, efc. In other
instances, well-known structures, materials, or operations are not shown or described in detail to
avoid obscuring aspects of the invention.

For clarity, individual components in the Figures herein may also be referred to by their labels in
the Figures, rather than by a particular reference number. Additionally, reference numbers
referring to a particular type of component (as opposed to a particular component) may be shown
with a reference number followed by “(typ)” meaning “typical.” It will be understood that the
configuration of these components will be typical of similar components that are shown in the
drawing Figures but not labeled for simplicity and clarity. Conversely, “(typ)” is not to be
construed as meaning the component, element, etc. is typically used for its disclosed function,
implementation, purpose, etc.

Figure 1 shows an exemplary system 100 that is used herein for illustrating aspects of packet
data handling techniques that facilitate increased packet data throughput between system
memory and fabric interfaces. System 100 includes a host fabric interface (HFI) 102 coupled to
a host processor 104 via a Peripheral Component Internet Express (PCle) interconnect 105,
which in turn is coupled to memory 106 (which is also commonly referred to as system memory)
via a memory interconnect 107. HFI 102 includes a transmit engine 108 coupled to a transmit
port 110 of a fabric port 112, and a receive engine 114 coupled to a receive port 116 of fabric
port 112. Each of transmit engine 108 and receive engine 114 are also coupled to a PCle
interface (I/F) 118 that facilitates communication between HFI 102 and processor 104 via PCle
interconnect 105.

Transmit engine 108 includes a send memory 120, a Send Direct Memory Access (Send DMA)
block 122 including a plurality of Send DMA (SDMA) engines 123, a buffer 124, an egress
block 126, and a credit return mechanism 127. Receive engine 114 includes an Rx receive
block 128, a receive buffer 130, a DMA engine 132, a Central Control Engine (CCE) 134, a
parser 136, a set of pipeline blocks 138 and a receive register array (RcvArray) 140.
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Transmit engine 108, also referred to as a “send” engine, generates packets for egress to the
fabric link (e.g., a fabric link coupled to transmit port 110, not shown). The two different
mechanisms provided by the send engine are PIO Send and Send DMA.

PIO Send is short for “Programmed Input/Output” Send. PIO is also known to some as
“Memory-mapped Input/Output” (MMIO). For P1O Send host processor 104 generates a packet
by writing the header and payload of the packet into a memory-mapped send buffer using store
instructions. PIO Send can be viewed as a packet “push” in the sense that the processor pushes
the packet to HFI 102. The send buffer implemented in send memory 120 is in the physical
address space of the adapter, so that processor writes to a send buffer turn into PCle write
transactions that are transferred over PCle interconnect 105 and PCle interface 118 to send
memory 120.

A number of send buffers in send memory 120 plus the mechanism used to return send buffer
credits back to host processor 104 is called a “send context.” In one embodiment, up to 160
independent send contexts are provided by HFI 102, allowing up to 160 concurrent independent
users of the PIO Send mechanism. PIO Send can be used directly from user-mode software by
mapping a send context directly into a user process’s virtual address map.

PIO Send provides a very low overhead send mechanism that delivers low latency and high
message rate for sent packets. The write-combining and store buffer features of host

processor 104 are used, where appropriate, to aggregate smaller writes into 64B (Byte) writes
over the PCle interconnect and interface to improve bandwidth. Since host processor 104 is
involved in writing the bytes of the packet to the send buffer (essentially a memory copy), the
PIO Send mechanism is processor intensive. These performance characteristics make the P10
Send highly optimized for small to medium sized messages.

Send Direct Memory Access, abbreviated to Send DMA or SDMA, eliminates the processor
memory copy so that packets can be sent to transmit engine 108 with significantly lower
processor utilization. Instead of pushing packets to HFI 102 using processor writes as in the
PIO Send mechanism, an SDMA engine 123 in Send DMA block 122 pulls packet header and
payload directly from host memory 106 to form a packet that egresses to the fabric link. In one
embodiment, Send DMA block 122 supports 16 independent SDMA engines 123 and each is
associated with its own SDMA queue.

Both Send PIO and SDMA use a store-and-forward approach to sending the packet. The
header and payload has to be fully received by a send buffer on transmit engine 108 before
the packet can begin to egress to the link. Send buffer memory is provided on HFI 102 for this
purpose, and separate send buffer memory is provided for Send PIO and for SDMA, as shown
in Figure 1 as send memory 120 and SDMA buffer 124. In one embodiment, this partitioning is
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hard-wired into the HFI design and is not software configurable. However, send memory 120 for

Send PIO can be assigned to send contexts under software control at the granularity of send buffer
credits. Similarly, the send buffer memory in SDMA buffer 124 can be assigned to SDMA
engine 123 at the same granularity.

The basic function of receive engine 114 is to separate the header and payload of inbound (from
the fabric) packets, received at receive port 116, and write the packet header and payload data
into host memory 106. In one embodiment, packet data destined for HFI 102 is transferred via
the fabric’s links as streams of data units comprising “flits” (flit streams) that are received at
receive port 116, where the flits are reassembled into packets, which are then forwarded to
receive engine 114. Incoming packet data is first processed at Rx receive block 128, where
various fields in the packet’s header are extracted and checked to determine the type of packet.
The packet data (its data payload) is buffered in receive buffer 130, while the packet header is
forwarded to parser 136, which parses the header data to extract its destination address and other
field data, with further operations being performed by pipeline operations 138.  In conjunction
with applicable pipeline operations, packet data is read from receive buffer 130 and forwarded
via a DMA engine 132, which is configured to forward the packet data to memory 106 via PCle
DMA writes.

Figure 1 further depicts a vertical dashed line 146 used to show use of two clock domains, as
depicted by CLK1 and CLK2. In some embodiments, the clock frequency used for PCle
interface 118 may differ from the clock frequency used for the rest of the HFI components, with
separate reference clocks used for each clock domain. Although not shown, the clock domain
used within transmit port 110 and receive port 116 may also be separate from the clock domain
employed by transmit engine 108 and receive engine 114.

Figure 2 illustrates further details of Send PIO and SDMA operations. As shown, up to 160 send
contexts may be employed in connection with Send PIO packet data. Each send context
comprises a contiguous slice of PIO send memory 120 that is allocated to that send context. The
send buffer for a send context will therefore be contiguous in host physical address space. The
normal mapping of this send buffer into user virtual address space for user processes will also
typically be virtually contiguous. In one embodiment, send blocks in a send buffer comprise 64B
blocks, such that each send context comprises » x 64B, where # is an integer > 0. In one
embodiment, the send blocks are aligned on 64B boundaries, but no additional alignment
constraints are placed on send buffer assignments. In one embodiment, the size of the send
buffer allocated for a send context has a limit. For example, in one embodiment the size of P1IO
send memory 120 is 1MB (1,048,576 Bytes), and the maximum send buffer size is 64KB
(n=1024).
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In one embodiment, host processor 104 employs memory paging using 4KB page granularity.
However, send buffer memory mappings into the host virtual address space are not required to be at
4KB page granularity.

This architectural choice means that the host processor’s 4KB paging mechanism is not
sufficient to provide protection between two send contexts when the send buffers are at 64B
granularity. A simple address space remapping is implemented by HFI 102 using a base offset
and bound per send context. This is achieved by including the send context number in the
physical address used to access the send buffer for a particular context. Thus, the send context
number is included in the physical address of the mappings that the driver sets up for a user process.
HFI 102 uses this information on writes to the send buffer to identify the send context that is being
written, and uses that value to look up information for that send context to validate that the send
context has access to that particular send block within the send buffer memory and then remap
the address to an index into the send buffer memory. This approach allows the start of each send
buffer to be aligned to a 4KB page in the HFI’s address map, yet still share send buffer memory
at 64B granularity.

As discussed above, the minimum amount of send buffer memory per send buffer is 64B
corresponding to one send block (#=1). The maximum amount of send buffer memory per
send buffer is 64KB which is 1024 send blocks. In one embodiment, this limit is placed to
limit the amount of physical address map used for addressing by the PIO Send mechanism.
Additionally, one more address bit is used to distinguish between send blocks that are the start
of a new packet (SOP) versus send blocks that are not the start of a new packet. This encoding
allows the packet boundaries to be delineated and provides a sanity check on the correctness
of the usage of the PIO Send mechanism. Additionally, the first 8B in the SOP send block is
used to pass Per Buffer Control (PBC) information to HFI 102. The PBC is a 64-bit control
quad-word (QW) that is not part of the packet data itself, but contains important control
information about the packet. The SOP bit in the address allows the adapter to locate the PBC
values in the incoming stream of writes to the send buffer.

In one embodiment, the decoding of the PIO Send physical address space is defined in TABLE 1
below and depicted in Figure 3. In the embodiment illustrated in Figure 3, the total amount of

physical address space occupied by the PIO send buffer memory is 32MB.

Address Bits Interpretation
ADDRESSJ[24] 0 = not start of packet, 1 = start of packet (SOP)
ADDRESS[23:16] Send context number (8 bits to address 160 contexts)

6
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ADDRESS[15:0] Byte address within a maximum 64KB send buffer
The send buffer starts at 0x0000 and extends for a

multiple of 64B send blocks beyond this

TABLE 1

Three examples of the address mapping process are illustrated in Figure 4. Note that the three
example contexts are contiguous in the send buffer memory and not on 4KB page aligned, but
are separated in the device physical address space by context number so that they can be mapped
into host virtual address space without sharing across send contexts. An extreme example of this
would be 64 user processes using 64 different send contexts of one 64B send block each mapped
onto the same 4KB worth of send buffer memory in PIO send memory 120.

By way of example, consider the address mapping of send context 0. This send context
comprises 64 blocks or 4KB of user process virtual address space. The context is encoded in bits
[23:16] of the device physical address space, while virtual address bits [11:0] are preserved in
the virtual-to-physical address translation. It is further noted that if the send context corresponds
to the start of a new packet, bit 24 is set (‘17), otherwise bit 24 is cleared (‘0’). The physical
address-to-P1O send memory address mapping adds the context address bits [24:16] to context
base bits [15:0] of the address. As further shown, the size of a send context is the same in each
of virtual memory, physical memory, and PIO send memory. Similar address mapping is
employed for send context 1 and send context 2.

Packet fill for PIO Send uses host processor writes into the send buffer mapped into host
address space. The mapping is typically configured as write-combining so that processor
writes are not cached and are instead opportunistically aggregated up to the 64B processor store
buffer size before being pushed out as posted write transactions over PCle to HFI 102.

In one embodiment, the HFI architecture employs PIO Send write transactions at 8B
granularity. Accordingly, each transaction is a multiple of 8B in size, and start on addresses
that are 8B aligned. In one embodiment, there is a requirement that each write not cross a 64B
boundary to ensure that each write is contained within a 64B send block. Accordingly, in one
embodiment PIO Send employs PCle writes that are 64B in size and 64B aligned.

For best performance, it is recommended that software fills send buffers in ascending
address order and optimizes for 64B transfers. In one embodiment, software employs padding (as
applicable) to generate write sequences to multiples of 64B so that all send blocks used for the
PIO Send operation are exactly filled. Thus, from an instruction point of view software
should write all of one 64B send block before starting writes to the next 64B send block and
continuing through to the final 64B send block. The processor write-combining mechanism can

reorder these writes, and therefore the HFI hardware does not rely upon these write sequences
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arriving in this order over PCle. The HFI hardware supports arbitrary reordering of the write
sequences at the 8B level. The sfence instruction can be used by software to impose ordering on
the write sequences. However, since sfence is an expensive operation, the HFI hardware
provides optimizations to eliminate the need for sfences as described below.

Each send context provides a write-only send buffer mapped into host memory. As previously
described, the send buffer starts at a 4KB aligned address, is up to 64KB in size, and is in
units of 64B send blocks. The PIO Send mechanism proceeds by writing packets into the send
buffer in a FIFO order. In one embodiment, each packet is filled by writing an 8B PBC followed
by the header and then the payload in increasing address order. The amount of send buffer
occupied by this sequence is rounded up to an integral number of contiguous 64B send blocks
(contiguous modulo fashion around the send buffer memory), and software is configured to
pad up its write sequence to exactly fill all of these 64B send blocks.

The PBC is the first 8B of the first 64B send block in each PIO Send. The smallest PIO
Send is one send block, while the largest supported packet size requires 162 send blocks
corresponding to 128B + 10KB MTU (Maximum Transfer Unit). Packet sizes on the wire are
multiples of 4B, so flexibility is provided in how the more granular 64B send blocks are used:

e The packet length on the wire in 4B multiples is specified in the PbcLengthDWs field in
the PBC.

e The fill size in 64B multiples is determined by rounding PbcLengthDWs up to a 64B
multiple.

e The fill size covers the 8B PBC plus the packet length plus any required padding to bring
the write sequence up to a 64B multiple. The 64B padding requirement simplifies the
hardware implementation since all send blocks are completely filled. Additionally, this
approach improves performance by ensuring that the write-combining store buffer for the
last part of a packet to be filled to 64B causing it to automatically drain to the HFI
without using an explicit sfence instruction. The padding bytes do not contribute to the
packet that is egressed to the wire.

The layout of a send buffer, according to one embodiment, is shown in Figure 5. The send
buffer memory is used with a FIFO-like semantic. The FIFO order is defined by the address
order of the send blocks used for each packet in the send buffer mapping. Note that the send
buffer is used in a wrap-around fashion (e.g., implemented as a circular FIFO). This means that
once software writes the last 64B in the send buffer, it needs to update the address back to the
base of the send buffer. The writes into the send buffer are subject to a credit limit and credit

return policy to ensure that the host processor does not over-write send buffer blocks that are
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still in use from prior packets that have not yet egressed to the fabric. The FIFO-like

semantics are:

o Packets are filled in FIFO order, though there is a reassembly feature that copes with the
reordering of writes inherent in the write-combining implementation.

o Packets are subsequently launched in FIFO order. After launch the packets are eligible for VL
arbitration.

o Packets are subsequently egressed from a per-VL launch FIFO and will be in-order for
packets from the same context with the same VL, but may be out-of-order for packets
from the same send context on different VLs.

o Credit return is in the original FIFO order. This means that the credit for packets that
egress out-of-order is not recovered until all earlier packets on that send context are
already egressed.

The write-combining mapping allows the host processor to reorder the writes that are used
to build the packets. Under the conventional approach, the processor architectural mechanism to
impose order is the sfence instruction. This ensures that all writes prior to the sfence instruction
will become visible to the HFI prior to all writes after the sfence instruction. However, this
ordering comes with a significant cost since it requires a round-trip in the host processor from the
CPU core issuing the stores to the ordering point in the integrated Input-Output block (I1O).
This adds significant latency, and moreover prevents all other stores from completing in the
CPU core until the sfence ordering is acknowledged. The out-of-order capabilities of the CPU
allow some forward progress on instructions to cover this latency but these resources can
soon run out, and there will be a significant backlog of unretired instructions to recover. The
HFI architecture seeks to minimize or eliminate the need for sfence instructions to order the
write-combined sequences.

The first optimization is elimination of sfences within a packet. Here the writes that
comprise the PIO Send operation for one packet can be reordered by the processor and the HFI
reassembles the correct order, and provides a mechanism to detect when all writes have
arrived such that the packet fill is complete and the packet can be launched. This optimization
gives increasing benefit with the number of send blocks in a packet. The second optimization is
elimination of sfences between packets, which requires the HFI to reassemble interleaved writes
from different packet PIO Sends into their respective packets. This optimization is very important
for short packets, such as the common example of packets that fit into a single 64B send block.
The mechanism provided by the HFI covers both optimizations.

The HFI determines the correct data placement of any PIO Send write by decoding the address.

The context is available in higher order address bits, and this determines the send buffer
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portion that the send context has access to using the base and bounds remap already
described. The lowest 16 bits of the address determine the placement of the written data within
that send buffer. This approach ensures that writes at 8B granularity are always correctly
reassembled into packet in the send buffer memory regardless of the
reordering/splitting/merging of those writes down to 8B granularity.

Figure 6a shows further details of system 100, according to an embodiment. Processor 104
includes a CPU 600 comprising multiple processor cores that support out of order execution. In
one embodiment, each physical processor core may be implemented as two logical cores, such as
supported under Intel® Corporations Hyperthreading™ architecture. In one embodiment,
processor 104 is a 64-bit processor, with each core including a plurality of 64-bit (64b) registers.
Processor 104 also includes a Level 2 (L2) cache 602 and Level 1 (L1) cache that is split into an
instruction cache 604 and a data cache 606 for each core. Although not shown for simplicity,
processor 104 may also employ a Last Level Cache (LLC) that is shared across processor cores.
Processor 104 further includes a store buffer 608 controlled via store buffer control logic 609, an
11O block 610, and a PCle interface 612. Further details of one embodiment of the internal
structure of processor 104 are shown in Figure 17 and described below.

In one embodiment, each of memory 106, and L2 cache 602 employ 64-Byte cachelines, while
store buffer 608 employs 64-Byte store blocks. As further shown, in one embodiment data is
written to store buffer 608 from 64b registers in CPU 600 in 64-bit (8-Byte) units using a “mov”
instruction. For simplicity, the mov instructions are labeled “mov.q” in the Figures herein.
Optionally, data may be written to store buffer 608 using store units having other sizes, such as
16B and 32B. As described in further detail below, in one embodiment a 512-bit write
instruction is used to write 64B of data to a 64B store block, wherein each 64B write fills a store
block.

PIO send memory 120 is depicted as including two sends contexts (send context 1 and send
context 2); however, it will be recognized that under an actual implementation PIO send
memory 120 generally would have many more send contexts (up to 160). Send contexts are
allocated to software applications (or otherwise in response to request for an allocation of a send
context for usage by a software application). In this example, a software application ‘A’ is
allocated send context 1, while a software application ‘B’ is allocated send context 2. The size
of send contexts 1 and 2 is x and y 64B send blocks, respectively. Upon an initial allocation of a
send context, each of the send blocks in the send context will be empty or “free” (e.g., available
for adding data). During ongoing operations, a send context is operated as a circular FIFO, with
64B send blocks in the FIFO being filled from store buffer 608 and removed from the FIFO as

packets are forwarded to egress block 126 (referred to as egressing the send blocks, as described
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below), freeing the egressed send blocks for reuse. Under the FIFO context, each send block
corresponds to a FIFO slot, with the slot at which data is added having a corresponding memory-
mapped address in PIO send memory 120.

Each packet 614 includes multiple header fields including a PBC field, various header fields
(shown combined for simplicity), a PSM (Performance Scale Messaging) header and PSM data,
and an ICRC (Invariant CRC) field. As shown, the minimum size of a packet 614 is 64B, which
matches the store block size in store buffer 608 and matches the 64B send block size used for
cach slot in the send context FIFO.

During ongoing operations, software instructions will be executed on cores in CPU 600 to cause
copies of packet data in memory 106 to be written to send contexts in PIO send memory 120.
First, the packet data along with corresponding instructions will be copied from memory 106 into
L2 cache 602, with the instructions and data being copied from L2 cache 602 to instruction
cache 604 and data cache 606. Optionally, the packet data and instructions may already reside in
L2 cache 602 or in instruction cache 604 and data cache 606. A sequence of mov instructions
for writing packet data from registers in CPU 600 to 8B store units in store buffer 608 are shown
in the Figures herein as being grouped in packets; however, it will be recognized that the
processor cores continuously are executing instruction threads containing the mov instructions.
As shown in Figure 6b, as mov instructions for copying (writing) data from processor core
registers to 8B store units in store buffer 608 are processed, 64B store blocks are filled. In one
embodiment, store buffer 608 operates in a random access fashion, under which the addresses of
the store blocks are unrelated to the addressing used for storing the data in PIO send

memory 120. A store buffer block fill detection mechanism is implemented in store buffer
control logic 609 to determine when a given 64B store block is filled. Upon detection that a
store block is filled, the store block is “drained” by performing a 64B PCle posted write from
store buffer 608 to a 64B send block at an appropriate FIFO slot in PIO send memory 120. The
term “drained” is used herein to convey that the 64B PCle posted write is generated by hardware
(e.g., store buffer control logic 609), as opposed to “flushing” a buffer, which is generally
implemented via a software instruction. As illustrated in Figure 6b, at a time T,,, a store

block 616 is detected as being full, resulting in store block 616 being drained via a 64B PCle
posted write to a send block 618 in the send buffer in PIO send memory 120 allocated for send
context 1. Similarly, at a subsequent time T, a store block 620 in store buffer 608 is detected as
filled, resulting in store block 620 being drained via a second 64B PCle posted write to a send
block 622 in P10 send memory 120. The use of the encircled ‘1’ and ‘2’ are to indicate the order
in which the PCle posted writes occur in Figure 6b and other Figures herein. In conjunction with

draining a 64B store block, its storage space is freed for reuse. In one embodiment, store
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buffer 608 includes store block usage information that is made visible to the processor (or
processor core) to enable the processor/core to identify free store blocks (eight sequential 8B
blocks on 64B boundaries) that are available for writes. Additionally, in examples in the Figures
herein store blocks may be depicted as being filled in a sequential order. However, this is to
simplify representation of how data is moved, as a store buffer may operate using random access
under which the particular store block used to store data is unrelated to the PIO send memory
address to which the data is to be written.

Figures 7a-7f illustrate an exemplary time-lapse sequence illustrating how packet data is added
to PIO send memory 120 and subsequently egressed using 8B writes to 8B store units. Each of
Figures 7a-7f depict further details of store buffer 608 and PIO send buffer 120. As described
above, the memory space of a P10 send buffer may be partitioned into buffers for up to 160 send
contexts. Each of Figures 7a-7f depicts a send context 3 and send context 4 in addition to send
contexts 1 and 2, which are also shown in Figures 6a and 6b and discussed above. Send context
3 and 4 are illustrative of additional send contexts that share the buffer space of PIO send

buffer 120. In addition, send contexts 3 and 4 are depicted with a different crosshatch pattern to
indicate these send contexts are being used by software running on another processor core.
Generally, in a multi-core CPU, instruction threads corresponding to various tasks and services
are assigned to and distributed among the processor cores. Under one embodiment, P1IO send
buffer 120 is shared among software applications that include components, modules, etc.,
comprising a portion of these instruction threads. These instruction threads are executed
asynchronously relative to instruction threads executing on other cores, and thus multiple
software applications may be concurrently implemented for generating packet data that is
asynchronously being added to send contexts in the P10 send buffer on a per-core basis.
Accordingly, while each core can only execute a single instruction at a time, such as a mov,
multiple instructions threads are being executed concurrently, resulting in similar data transfers
to those illustrated in Figures 7a-7f being employed for other send contexts, such as send
contexts 3 and 4 as well as send contexts that are not shown. To support these concurrent and
asynchronous data transfers, a store buffer may be configured to be shared among multiple cores,
or a private store buffer may be allocated for each core, depending on the particular processor
architecture.

Figure 7a corresponds to a first timeframe T; under which data has been added to all eight 8B
store units corresponding to a first 64B store block 700, which results in the 64 Bytes of data
being written to a send block at the third FIFO slot in send context 1. The send block to which
the data will be written will be based on the memory mapped address of that send block that is

based on the PIO write instruction and the virtual-to-physical-to-PIO send memory address
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translation, such as illustrated in Figure 4 and discussed above. This send block corresponds to a
first block in a packet that has a fill size that is j blocks long (including padding, as applicable).
As discussed above, the PBC header includes a PbcLengthDWs field that specifies the packet
length in 4B multiples. The amount of space occupied by a packet in a send context (the
packet’s fill size) comprises » 64B send blocks (and thus » FIFO slots), wherein # is determined
by rounding the PbcLengthDWs field value up to the next 64B multiple. In the example
illustrated in Figure 7a, j=n, as determined from the PbcLengthDWs field value.

In connection with determining the fill size of a packet, control information is generated to
identify the last send block to which packet data is to be added to complete transfer of the
entirety of the packet’s data (full packet) into the send context in PIO send memory 120; in the
Figures herein send blocks that are identified as being used to store a portion of packet data that
18 yet to be received is marked “To Fill” (meaning to be filled). Under the store and forward
implementation, data for a packet cannot be forwarded to egress block 126 until the entire packet
content is stored in P10 send memory 120. The P10 send block egress control information is
used by a full packet detection mechanism implemented in logic in the transmit engine (not
shown) that detects when an entirety of a packet’s content (including any applicable padding to
fill out the last send block) has been written to PIO send memory 120. In one embodiment, this
full packet detection mechanism tracks when send blocks in corresponding FIFO slots are filled,
and the control information comprises the address of the start and end FIFO slot for each packet
(or an abstraction thereof, such as a send block number or FIFO slot number). Generally, the
address may be relative to the base address of PIO send memory 120, or relative to the base
address of the send context associated with the FIFO buffer.

In Figures 7a-7f, the mov instructions for respective packets are shown as being grouped by
packet, using a labeling scheme of Pa-b, where a corresponds to the send context and b
corresponds to an original order of the packets are added to the send context. The use of this
labeling scheme is for illustrative purposes to better explain how packet data is written to a send
context; it will be understood that the actual locations at which data are written to PIO send
buffer 120 will be based on the PIO write instruction in combination with the address translation
scheme, as discussed above.

Although the mov instructions are depicted as being processed on a packet-by-packet basis, the
order of these instructions corresponds to the order the mov instructions arrive at the core’s
execution pipeline. However, processors that support out of order execution may execute
instructions in a different order than the order in which the instructions arrive. Under some
conventional approaches, out of order execution is permitted for mov instructions within a

packet, but not across packets. This is facilitated through use of an SFENCE or sfence (Store
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Fence, also depicted in the Figures as SFence) instruction under which all storage (e.g., mov in
this example) instructions prior to an SFENCE instruction are globally visible before any storage
instructions after the SFENCE instruction. As a result, under the conventional approach packet
data referenced in mov instructions following an SFENCE cannot be written to the store buffer
until all of the data for a proceeding packet has been written to the store buffer. In order to
enforce this logic, the execution of instructions may be stalled, resulting in a reduction in packet
forwarding performance. In addition, SFENCE instructions may be used to enforce write
ordering within packets in a similar manner. Illustrations comparing PIO writes with and
without sfences are shown in Figures 9a and 9b, as discussed below.

In accordance with aspects of embodiments disclosed herein, the conventional use of SFENCE
instructions is removed, enabling storage instructions from separate packets to be executed out of
order, such that storage for a second packet in the store buffer may begin prior to completion of
storage for a prior (in the received instruction order) first packet. An example of this is depicted
in Figure 7a, wherein the first “mov.q” instruction for packet P1-2 is executed out of order and
prior to the last two “mov.q” instructions for packet P1-1, resulting in data for a first 8B store
unit in a store block 706 being written to store buffer 608. At the conclusion of the first
timeframe, packet data has been written to send context 1 for the first j-1 send blocks (as shown
by store block 700 and store blocks 702 for packet P1-1) using j-1 64B PCle posted writes. As
noted above, in conjunction with each 64B PCle posted write, the corresponding block in store
buffer 608 being drained is freed; this freed state is shown in Figure 7b, which depicts a second
timeframe T,. In the Figures herein, the order of the 64B PCle posted writes are depicted as an
encircled number. For convenience, data transfer of a group of 64B PCle posted writes are
depicted by a single encircled number, such as number ‘2’ in Figure 7a.

During this second timeframe, data corresponding to the two remaining store units for store
block 704 (which comprise padding in this example) are added for packet P1-1, and data from
store block 704 is written to send context 1 via a 64B PCle posted write, which completes
writing the full packet data to PIO send memory. This results in a packet complete state, at
which point the packet is ready for packet launch arbitration as illustrated in Figures 10 and 11
and described in further detail below. In addition, during timeframe T, data is written to each of
store blocks 706, 708, and 710, filling out store blocks 706 and 708, while the mov instruction
for filling the last store unit of store block 708 is temporarily skipped via out of order execution,
as shown. As illustrated, the PbcLengthDWs value in the PBC header indicates the packet fill
size will be three 64B send blocks. Upon filling each of store blocks 706 and 710, these store

blocks are drained and corresponding data is written to send context 1 in PIO send memory 120
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via 64B PCle posted writes, resulting in the last 64B block of packet P1-2 being written prior to

the middle send block.

To reduce clutter, some of arrows showing the result of each mov instruction or set of mov
instructions are not included in Figures 7c-7f; rather, the included arrows may only show a first
write to a new store buffer block and a last block being written. As shown in Figure 7¢, during a
third timeframe T3 the remaining data for packet P1-2 is written to store block 708, resulting in
this store block data being drained and written to the middle send block of packet P1-2 in PIO
send memory 120. This completes transfer of packet P1-2 to the PIO send memory, and thus
packet P1-2 is ready for launch arbitration. In addition, data corresponding to a first packet to be
added to send context 2 (packet P2-1, having a fill size and length of two 64B send blocks)
begins to be written to store blocks 712 and 714, while data for a third packet P1-3 for send
context 1 begins to be written using out of order execution to a store block 716.

Figure 7d shows the state of the data transfers during a timeframe T4. During this timeframe the
last 16 Bytes of packet P2-1 are written to store buffer 608, causing store block 714 to drain via a
64B PCle posted write, which fills the second send block of packet P2-1 in PIO send

memory 120, making packet P2-1 available for launch arbitration. Packet P1-3 data is added to
fill both of store blocks 716 and 718, draining both store blocks via two 64B PCle posted writes
to packet P1-3 data in PIO send memory 120, also making packet P1-3 available for launch
arbitration. mov instructions for two additional packets P2-2 and P1-4 have also been added in
timeframe T4. Packet P2-2 is the second packet to be added to send context 2 and has a size of &
64B blocks and doesn’t need any padding. Packet P1-4 is the fourth packet added to send
context 1 and will have the minimum size of 64B. As illustrated by store blocks 720 and 722,
the first -1 store blocks of packet P2-2 have been added to store buffer 608 and written via A-1
64B PCle posted writes to PIO send memory 120. All but the last 8 Bytes of packet P2-2 have
been added to a store block 724. Prior to the these last 8 Bytes being written to the last 8B store
unit of store block 724, an out of order mov instruction for writing the first 8 Bytes of packet P1-
4 is executed, which begins to fill a store block 726. Lastly, packet P1-2 has been selected for
egress by the VL arbiter, and its data is being egressed for its send blocks in FIFO order. This
illustrates an example under which a packet whose data is added after packet data for a previous
packet in the send buffer for the same send context may be selected for egress prior to the
previous packet, and thus egressed out of the order in which the packet was filled in the send
context.

Figure 7¢ shows the state of the transfer during a timeframe Ts. The last 8 Bytes of packet P2-2
are written to store block 724, and this store block is drained via a 64B PCle posted write to the
last send block for packet P2-2 in PIO send memory 120, thus completing writing of packet P2-2
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data and making packet P2-2 available for launch arbitration. The remaining 56 Bytes of packet

P1-4 are written to store block 726 in store buffer 608, followed by writing the store block data
via a 64B PCle posted write to PIO send memory 120. Upon receipt, the PCB PbcLengthDWs
field is inspected and it is determined that this packet has a length of one 64B send block; since
the entirety of the data for packet P1-4 is contained in this block, packet P1-4 is also marked as
filled and ready for launch arbitration.

The last packet to be added in this example is packet P2-3, which has a length of 192B (3x64B)
and doesn’t need any padding. This transfer is effected by first writing the 192B of packet data
to three store blocks 728, 730, and 732 in store buffer 608. Upon completion of the 8 mov
instructions for each store block, the store block is drained in conjunction with a 64B PCle
posted write into a respective send blocks allocated for packet P2-3 in send context 2 of PIO
send memory 120. Upon completing the last 64B PCle posted write, the packet write completion
mechanism detects the entirety of packet P2-3 has been written to PIO send memory 120, and
thus packet P2-3 is also marked filled complete and available for launch arbitration. Also,
packet P1-1 has been selected by the VL arbiter for egress and its send blocks are egressed in
FIFO order.

In the illustrated embodiment, an SFENCE instruction is added following the last mov.q
instruction for packet P2-3. This is to ensure that all of the data for packet P2-3 is written to
store blocks 728, 730, and 732 before any of them are flushed. If write instructions for
subsequent packets immediate follow in the instruction thread then the use of an SFENCE
instruction is not needed, as the instructions should fill each applicable store block, resulting in
the store block being drained before it would be flushed.

In addition to the foregoing, during timeframe Ts each of Packet P1-2 and packet P2-1 have been
fully egressed and their corresponding send blocks have been cleared (noting during an early
portion of timeframe Ts packet P2-1 was also selected for egress). As described below with
reference to Figures 11 and 14, when a send block state is cleared, a credit for the send context
corresponding to the cleared send block will be returned if there are no send blocks occupying a
lower FIFO slot that have not reached the cleared state. In this example, this condition is true for
send context 2, but it is not true for send context 1 since packet P1-1 is still egressing and has not
reached the cleared state. As a result, two credits are returned for send context 2, while no
credits are returned for send context 1 at this point. As detailed below, in one embodiment an
absolute credit value comprising an 11-bit running count is returned; in the example of Figure 7¢
it is presumed that the running count for send context 2 was at 0 before packet P2-1 had cleared,

and thus the running count absolute credit value that is returned is 2.
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Figure 7f shows the state of the transfer during a timeframe Ts. During this timeframe, packets
P1-3 and P2-2 begins to egress, while packet P1-1 completes egress and its send blocks are
cleared. At this point, credits for both packets P1-1 and P1-2 are returned for send context 1,
totaling j + 3 credits, wherein the running counter value will have increased by j + 3 relative to
the last time credit was returned for send context 1. In the illustrated example, the prior running
count was 2 (corresponding to the first two empty FIFO slots for send context 1, and thus the
running count absolute credit value returned is 2 +j + 3. Additionally, the two credits for the
send blocks for packet P2-1 sent during timeframe Ts have been received and processed, and the
corresponding FIFO slots are marked as free.

According to one embodiment, PIO write instructions may be employed to write 512-bits (64B)
at a time to store buffer 608 such that a single PIO write instruction will result in the complete
filling of a store block. In one embodiment this is facilitated through use of a 512b write
instruction, which is supported by Intel® Corporation’s Advanced Vector Extension 512 (Intel®
AVX-512). Intel AVX-512 features 32 vector registers that are 512 bits wide, enabling 512 bits
of data to be moved from these registers into store block 608. It is noted that the use of Intel
AVX-512 is merely exemplary and is not to be limiting as other existing and future processors
that support 512-bit writes may be used.

Figures 8a-¢ illustrate an exemplary time-lapse sequence illustrating how packet data is added to
PIO send memory 120 and subsequently egressed using 512-bit writes to store blocks. In this
example, the sequence of write instructions for each packet are depicted as mov512.q
instructions to indicate 512-bits of data is being moved from a 512b register in a CPU 600a. As
512b movs are being performed, the number of instructions is significantly less than using 8B
movs. As before, SFENCEs are depicted with an “X” to indicate this is where SFENCE
instructions would be placed under a conventional approach.

In Figure 8a, operations performed during a timeframe T; are illustrated. In addition, mov512.q
instructions for a sequence of packets P1-1, P1-2, P2-1, P1-3, P2-2, and P1-4 are depicted as
being received; however this is to illustrate the stream of instructions, as some of these
instructions will not have been received during timeframe Ty, but rather are received during later
timeframes proximate to when data is depicted as being written to store buffer 608. For
illustrative and comparative purpose, the same packet sequence is depicted in Figures 7a-7f and
Figures 8a-8¢, although the order in which some of the send blocks are written to differ between
these two examples.

During timeframe T, j mov512.q instructions for packet P1-1 are executed by a processor core
on CPU 600a, resulting for each instruction is 64B of data being written to a storage block,

which is then drained via a 64B PCle posted write in a manner similar to that shown in
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Figures 6b and 7a-7f. This results in the full packet data for packet P1-1 being written to P1O

send memory 120, and the head packet status for this packet is marked for launch arbitration. In
addition, the first two mov512.q instructions for packet P1-2 are received but executed out of
order. As a result, the middle send block in which the packet data is written will be written to
PIO send memory prior to the first send block, as depicted by 64B PCle posted writes ‘4’ and
‘5’. Upon receipt of the data for the middle send block, the control information employed by
transmit engine logic will not know the number of blocks needed to be filled for packet P1-2,
since the head packet (and thus PBC header) has yet to be received. The receipt of a head packet
can be detected in one of two ways, either via inspection of the first portion of the send block to
detect the PBC header or via a Start of Packet (SOP) bit in the 64B PCle posted write indicating
the write contains the first send block for a packet. Upon receipt of the first send block for
packet P1-2, its PBC header is inspected and it is determined this packet’s fill size is three send
blocks.

During timeframe T, as shown in Figure 8b, the last mov512.q instruction for packet P1-2 is
executed, moving the data first to store block 710, which is then drained via a 64B PCle posted
write ‘6’, which completes filling of the send blocks for packet P1-2. As a result, the head
packet status is marked for launch arbitration. Instructions for each of packets P2-1 and P1-3 are
executed out of order, as illustrated by the order of 64B PCle posted writes ‘7, ‘8’, and ‘9’, the
last of which is shown in progress but not yet completed. The mov512.q instruction for the first
send block of packet P2-1 has yet to be executed. As before, since the first send block (and thus
the send block that will include the SOP bit set in the corresponding 64B PCle posted write and
contain the PBC header) has yet to be written, the control logic does not know the size of packet
P2-1. The FIFO slot occupied be the first send block for packet P2-1 is also still marked as free.
Conceivably if the last block in the send context 2 FIFO was marked as something other than
free then the logic could be configured to determine that this FIFO slot corresponds to the first
send block for packet P2-1 (since it would have to go there), but this doesn’t really provide a
benefit relative to waiting for the first send block to arrive.

During timeframe Tz depicted in Figure 8c, the mov512.q instruction for writing the first send
block is executed, resulting in store block 715 being filled and drained via 64B PCle posted write
‘10°. The control logic detects this corresponds to the start of packet P2-1, inspects the
PbcLengthDWs field of the PBC header and determines the packet fill size is two send blocks.
Since the second send block has already been filled, filling this first send block results in the
entire packet being filled, and thus the head packet status is marked for launch arbitration. In
addition, the £ mov512.q instructions for packet P2-2 are executed, resulting in the filling and

draining of store block 718, £-2 store blocks 719, and filling with draining in process for store
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block 720. Upon inspection of the PBC header for packet P2-2, it is determined that this

packet’s fill size is k& send blocks. Also during timeframe T3, packet

P1-1 has been selected for egress, with egress of packet P1-1 in process.

During timeframe T4 depicted in Figure 8d, the single mov512.q corresponding to packet P1-4 is
executed, writing all of this packet’s data first to store block 714 and then to the single send
block in PIO send memory 120 via 64B PCle posted write ‘14°. The entirety of packet P2-3 is
also written to PIO send memory 120 via store blocks 727, 728, and 730 and 64B PCle posted
writes ‘157, ‘16°, and “17°. Each of the head packet for packets P1-4 and P2-3 is marked for
launch arbitration. In addition, each of packets P1-2 and P2-1 have been selected for egress and
packet data in these packets’ corresponding send blocks is currently being egressed.

As discussed above, during timeframe Tj the packet data for packet P1-1 started egress. During
timeframe T4 egress has completed, and the send blocks are marked as cleared. In accordance
with the embodiment discussed above, an absolute credit return count of 2+ credits would be
returned at this point (presuming credits for all prior packets for send context 1 that are not
shown have been returned previously). However, as explained below in the discussion of the
credit return mechanism, in some embodiments credits are aggregated across multiple packets
and are not returned until a threshold of credits since the last credit return has been reached. In
this example, the threshold has yet to be reached, resulting in no return credits at this point.
During timeframe Ts depicted in Figure 8e, cach of packets P1-2 and P2-1 have completed
egress and are marked as cleared, while packet P2-2 has been selected for egress and begins
egressing. Aggregated credit return may be configured on a per send context basis, such that it
may be employed for some send contexts and not employed for others. In addition, the
aggregated credit threshold may be configured on a per send context basis. Accordingly, in this
example the aggregated credit threshold for send context 1 has been reached, and thus a running
return credit count value of 2 +; + 3 is returned via credit return block 127. In addition, send
context 2 is not employing an aggregated credit threshold and thus a running return credit count
value of 2 credits is returned. In one embodiment, running credit count values for multiple send
contexts can be send in a single DMA write to memory over PCle.

Figures 9a and 9b illustrate data flow timelines corresponding to transfer of packet data using
64B PCle posted writes with and without SFENCE instructions, respectively. When drained
from store buffer 608, which is part of the processor core, it first is forwarded to 110 610, as
shown in Figures 6a and 6b. There is some additional latency at the 11O, as it has to handle other
10 requests in addition the PCle posted write requests discussed herein. Notably, the 11O returns
an sfence Acknowledgement (ack) for each sfence instruction. This prevents out of order

instructions from being executed across sfences, potentially resulting in delays until all
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instructions for the packet prior to the sfence have been executed. Under the embodiments
herein that remove the use of sfences, these potential delays are prevented from occurring,
optimizing the PIO send block write efficiency.

Figure 10 shows further details of egress block 126, accordingly to an embodiment. Head packet
status from each of the (up to) 160 send contexts is tracked in a block 1000, while head packet
status for each of the 16 SDMA queues is tracked in a block 1002. Blocks 1000 and 1002
provide inputs to a round robin launch arbiter 1004 that provides outputs to a plurality of per-VL
launch FIFOs 1006, whose outputs are received as inputs to a VL arbiter 1008. The VL arbiter
provides input controls to a multiplexer (Mux) 1010 that is coupled to each of PIO send

memory 120 and SDMA memory 124. Egress block 126 further includes process blocks 1012,
1014, and 1018 and an egress FIFO 1016.

Egress block 126 is responsible for arbitrating packets from the 160 send contexts and 16 SDMA
engines and to select the next available, complete packet to launch from its send buffer
memory into a per-VL launch FIFO 1006. The per-VL launch FIFOs are deep to minimize
blocking between VLs, and contain only control information for the packets including pointers to
the packets in the PIO send memory 120 and SDMA memory 124. The actual packet datapath
does not flow through per-VL launch FIFOs 1006, but rather these FIFOs are used to provide
per-VL inputs to VL arbiter 1008, which performs a VL arbitration across the launch FIFOs to
select the next packet to egress. This causes egress block 126 to start fetching the data for that
packet from PIO send memory 120 or SDMA memory 124 via mux 1010, and then packet
integrity checks are applied in process block 1012. Finally, the Packet Egress pipeline
performs any necessary modifications to the packet (e.g. HCRC/ICRC insertion in process
block 1014, FIFO buffering in egress FIFO 1016, and PBC removal, and packet framing for
egress in process block 1018) and presents the packet to fabric port 112.

In one embodiment, transmit engine 108 supports 8 data VLs, and 1 management VL. However,
this is merely exemplary and non-limiting. Packets are assigned to a virtual lane (VL) by
software when the packet is constructed using a VL field in the PBC header.

In one embodiment, packets that are sent using PIO Sends to a send context will be launched in
the order that is defined by the placement of those packets into the send context’s send buffer.
This is called the “original program order.” Essentially this means that the send buffer behaves
as a FIFO, though there is flexibility on the filling of the send buffer to reassemble the program’s
original packet order even when using the loose ordering semantics provided by the processor’s
write-combining feature. For the purposes of this ordering discussion, the essential point is that
software chooses the packet order on a send context, and the send context maintains that packet

order through to packet launch.
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Once a complete packet is filled into a send buffer, either by PIO Send or SDMA, the packet

can be launched by the transmit engine. Launch of a packet from a send buffer places the
packet on a per-VL FIFO. The launch order of packets with the same VL specifies the order
that the packets with that VL will be egressed to the link. The order in which packets at the head of
the per-VL FIFOs are selected is determined by the VL arbitration algorithm.

Note that software can send packets with different VLs by PIO Send on one send context.
Similarly, it can send packets with different VLs by SDMA on one SDMA queue. The
implementation will preserve the packet order through the send context or the SDMA queue up
to the launch point even when the packets are on different VLs. However, beyond launch there is
no guaranteed ordering because of the per-VL launch FIFO, and the actual egress order to the
link will depend on the details of VL arbitration.

Under one embodiment, packets for the same send context that are to be transmitted using the
same VL will be egressed in original program order. Meanwhile, packets to be transmitted using
different VLs may be egressed out of order, such that a later-written packet may proceed an
carlier-written packet if they are to be transmitted over different VLs.

In one embodiment, the HFI provides no guarantee on launch order beyond the above defined
ordering. For example, the launch order of packets on any SDMA queue is not ordered by the
HFT with respect to packets on any other SDMA queue or with respect to any packets sent using
PIO Send. Additionally, the launch order of packets on any send context is not ordered by the
HFI with respect to packets on any other send context or with respect to any packets sent using
SDMA.

Figure 11 is a flowchart illustrating operations, phases, and states that are implemented in
preparing packet data for egress outbound on a fabric link coupled to an HFI. During a packet
fill phase 1102, the send memory is being filled with the packet data either via the P1O send or
SDMA mechanism. Packet complete state 1104 occurs when all of the packet data is buffered in
the send memory. At this point, packet filling is complete and the packet is eligible for launch.
Packet launch 1106 is the point at which the packet is launched from the send memory onto a
per-VL launch FIFO. During this phase the packet data still occupies the send buffer state, but at
launch the packet is now ready for egress and its order with respect to other packets on that same
VL is established.

During Packet VL arbitration 1108 the packets at the heads of the per-VL launch FIFOs are
arbitrated between, and one is selected by the VL arbitration algorithm to be egressed to the link.
During packet egress 1110, packet data for the packet selected via VL arbitration is read from the
send memory (P10 send memory 120 or SDMA memory 124, as applicable) and packet integrity
checks are performed in block 1012 to determine whether the packet data is valid. Packets that
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fail integrity checks are dropped, while good packets are egressed to the link, which may include
insertion of an HCRC and ICRC, if required, and buffering in Egress FIFO 1016.

The next state is packet cleared 1112. This state occurs when the packet has cleared the send
buffer and the send buffer is available for reuse. Accordingly, in return credit block 1114 one or
more credits for the send buffer are returned via credit return mechanism 127, and the cleared
send blocks become available to be filled with new packet data. Note, however, that an
implementation can optimize credit return and send buffer reuse down to the send block level so
that some send blocks could be reused before the entirety of the packet has egressed to the link.
This can be an important implementation where send buffer resources are limited. In addition, as
explained above, although a send block may be cleared, if there are other send blocks below it in
the FIFO that have not cleared, the credit for the block will not be returned until those blocks are
also cleared.

Credit Return Mechanism

The PIO Send mechanism uses a credit return mechanism to ensure that send buffer blocks are
not over-written by software prior to the previous packet clearing the send buffer. In one
embodiment, send credits are at 64B granularity, and one send credit corresponds to one (64B)
send block. Send credits for a send context are returned in-order and software uses the send buffer
memory in a wraparound FIFO manner. Send credit accounting uses absolute numbers so that the
HFI can overwrite the credit return information at any time with a more up-to-date value
without loss of send credits. Credit return also provides status information and this is over-
written by successive credit return writes. When an error is encountered, a credit return is forced
with an error indication set, and the send context is placed in an error state and no further
credit return writes will be scheduled until the send context is recovered from the error state by
host system software. This ensures that error indications in the credit return location can be
observed and dealt with appropriately by host software without risk of being overwritten.

In simple terms, credit tracking is achieved by maintaining a running count of the number of
credits that have been consumed and a running count of the number of credits that have been
freed. The number of credits that is currently occupied is then the delta between these
counts. As mentioned above, these are absolute counters that simply increment appropriately
as credits are consumed or freed.

After initialization, a send buffer will be empty and all send credits for that buffer are
available to software. In one embodiment, the maximum number of send credits that can be
assigned to a send context is 1024, corresponding to a 64KB maximum size for a send buffer. In
one embodiment 1 1-bit counters are used to track credit information. This approach uses one

extra bit so that the counters can differ in value by the full 1024 value. This also allows the cases
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where 0 credits are available and 1024 credits are available to be disambiguated. Counter math is
performed modulo 2048. For example, advances of the 11-bit counters and differences between 11-
bit counters are performed modulo 2048.

In more detail, both software and hardware each maintain an 11-bit counter per send context to
track credit usage. The software counter is called the fill counter. The hardware counter is
called the free counter. Hardware DMAss its counter value, at appropriate intervals, to a
shadow free counter held in host memory so that software has visibility of credit return. Initially,
both counters are 0 and no send credits are in use. The number of used credits is calculated as the
fill counter minus the free counter, modulo 2048. The number of available credits is then the total
number of credits in the send context minus the number of used credits. When both counters
have the same value the context is empty and all of its send credits are available for software to
fill. Software check for available credits before writing send blocks to a send context. As software
fills a send block it increments its fill counter, modulo 2048, to indicate the current extent to which
software has used credits. When software has no credits available it will wait for credits to free
up. Software can monitor the shadow free counter in host memory to determine when credits
are free.
Pseudo code corresponding to an abstract model of credit tracking is shown below.
PSEUDO CODE LISTING 1
class SendBuffer :
def init  (self, num_credits) :
assert(num_credits >= 1 and num_credits <= 1024)
self. num_credits = num_credits
self.fill counter=0
self.free_counter=0
selffill index =0
self.egress index =0
selfpacket credits =[]
for 11in xrange(0, num_credits) :
self.packet_credits.append(0)
def get num_credits (self) :
return self num_credits
def get used credits (self) :
return (self fill counter - self.free_counter) % 2048
def get free credits (self) :
return self.num_credits - self.get used credits()
def fill credits (self, num_credits) :
# If there 1s sufficient space, this method fills the send buffer

# with num_credits and returns True. Otherwise, it returns False.
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assert(num_credits > 0)
free_credits = self.get free credits()
ifnum_credits <= free_credits :
self.packet credits[self fill index] =num_credits

selffill index = (self.fill index + num_credits) % selfnum credits
selffill counter = (self.fill _counter + num_credits) % 2048
print 'Buffer (%d used, %d free): filled %d credits' % \

(self.get used credits(), self.get free credits(), num_credits)
return True

else :

return False

def free credits (self) :
# If there is a packet to egress, this method egresses that packet, frees
# its credits and returns a value indicating that number of credits.

# Otherwise, it returns False.

num_credits = self.packet credits[self.egress_index]
if num_credits :
self.packet credits[self.egress_index] =0
self.egress index = (self.egress index + num_credits) % self.num_credits
self.free counter = (self.free_counter + num_credits) % 2048
print 'Buffer (%d used, %d free): returned %d credits’ % \
(self.get used credits(), self.get free credits(), num_credits)
return num_credits
def show (self) :
print '‘Buffer %d used, %d free, %d total' % \
(self.get used credits(), self.get free credits(), self.num_credits)

import random
send_buffer = SendBuffer(100) send_buffer.show()
packet fifo=1]
count =0
while count < 100 :
if random.random() >= 0.25 :
fill = int(random.uniform(1, 20))
while not send_bufter.fill credits(fill) :
credits = send_buffer.free credits() assert(credits)
expected credits = packet fifo.pop(0) assert(credits == expected credits) packet fifo.append(fill)
count +=1

else :

credits = send_buffer.free credits() if credits :
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expected_credits = packet fifo.pop(0) assert(credits == expected_credits)
print 'Total of %d packets filled with %d
(count, len(packet fifo))

print 'All %d packets posted, now draining while True :
credits = send_buffer.free credits() if credits :

expected credits = packet fifo.pop(0)
assert(credits = expected credits) else :

break
print "Total of %d packets filled with %d (count, len(packet fifo))
In one embodiment, send credit return is aggregated to reduce the PCle and host memory
bandwidth that is consumed. Each send context is programmed with a credit threshold value
called SendCtxtCreditCtrl. Threshold. The send context maintains a counter value that tracks the
oldest send block (in terms of address order within the send buffer) that has not yet been
egressed to the fabric. As discussed above, egress of send blocks can be out-of-order when
multiple VLs are used in a single send buffer. To address this situation hardware state is
employed to track the out-of-order egress such that an in-order credit return can be provided. The
delta between the counter for this oldest send block minus the hardware copy of the free counter
is the number of pending free credits that have not yet been returned to software. When this
value matches or exceeds the threshold, send credit return is initiated for that send context.
This credit return approach leaves credits up to the threshold residing in the hardware and does not
provide a way to guarantee that all credits can be returned. This is a problem for identifying
that any specific send has cleared the send buffer. There are several ways provided to address
this:
e In many cases, host software can use the credit return threshold mechanism and will not
care whether a particular PIO Send has cleared the send buffer.
e The host can read the current credit value for a send context from an adapter register
using a SendCtxtCreditStatus register.
e The host can write to a SendCtxtCreditForce register to force a credit return to be
scheduled for a send context.
e Allow the host to request a credit return for a specific PIO Send via a PBC bit called
PbcCreditReturn.
Additionally, host software can arrange for an interrupt when credit is returned on a particular
send context.
In some embodiments, an early credit return mechanism may be implemented that allows
credits to be more aggressively returned to the host as soon as the packet has been committed

to egress, but before the packet has actually cleared the send buffer. This allows the host to get
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started on the next packet to optimize credit return latency and reduce send buffering
requirements. The idea is that the host could start filling the next packet while the egress is
draining the send buffer for its previous occupant. A hardware interlock is employed to ensure
that the previous packet cannot be overwritten, and also a rate-matching egress FIFO is
implemented so that the previous packet can be drained at fabric wire rate. This mechanism can be
disabled on a per context basis in case of implementation problems. This is an important
optimization for improving performance where send credits per context are low (e.g. when
using large numbers of contexts and larger MTU sizes).

A per-send context configuration bit (SendCtxtCreditCtrl.EarlyReturn) is provided to enable
or disable early credit return. When enabled, individual send blocks can be freed up early by
the hardware (i.e. prior to egress of the packet clearing that send block) and these early freed
credits are returned using the usual credit return algorithms. The credit return threshold
mechanism still applies.

Note that software is to ensure that there are sufficient credits assigned to a send context for the
packets that it wishes to send. If there are insufficient credits assigned to a send context for a
particular packet, then sufficient credits will never become available to launch the packet.
One approach is for software to limit the packet size based on the number of send blocks
assigned to the send context. This calculation should consider that credits up to the credit threshold
value for the context may reside in the hardware and will not be automatically returned until
future send blocks are egressed.

In one embodiment, a send credit return is implemented as a 64B write to host memory to a
64B cache-line aligned address. The reason for this is to avoid read-modify-write operations
on memory from the I1O since these operations add additional latency and can impact
pipelining of accesses to host memory. However, this means that credit return consumes
additional PCle bandwidth. Although this is mitigated by the send credit return aggregation it is
desirable to reduce this further where possible. In one embodiment this is facilitated via use of
aggregating credits across send context groups, as described below.

In one embodiment, each 11-bit credit return value is combined with context status, and
padded up with reserved bits to make a 64-bit value. In one embodiment, 64-bit values support

up to 8 credit returns to be packed into a 64B write for a group credit return.

One technique for reducing credit return overhead is to aggregate credit returns across send
context groups. The idea is that send contexts can be grouped together and then credit return

for a group of contexts is performed with a single 64B write to host memory. In one
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embodiment, the 160 send contexts are aggregated into sets of 8 consecutive send contexts
giving a total of 20 sets. However, other aggregations of send contexts may be used.

The set size of 8 send contexts allows for 20 different sets with the ability to specify the
grouping independently per set. Set number S contains send contexts 8S to 85+7 inclusive.
The set mappings for one embodiment are shown in TABLE 2. The choice of 20 sets gives
reasonable flexibility in the typical configurations of 40, 80 and 160 send contexts. In
configurations with reduced numbers of send contexts, software gets additional flexibility when
selecting which send contexts to use depending on the required grouping. Each set can be

independently configured into the configurations shown in TABLE 3.

Set Number | Send Contexts In The Set
0 0to7
1 8to 15
19 152 to 159
TABLE 2
Value (B) | Number Of Groups Send Contexts Per Group (G)
0 8 1 (i.e. no actual grouping)
1 4 2
2 2 4
3 1 8 (i.e. maximum grouping)

TABLE 3

With the minimum value of 0, the set has 8 groups with 1 send context per group (i.e. no actual
grouping). This gives full flexibility since every send context in that set will have independent
credit return. With the maximum value of 3, the set has 1 group containing all 8 send contexts
and credit return is aggregated for all 8 send contexts. Accordingly, the host memory page that is
used for that set’s credit return is shared by those 8 send contexts. Note that only a read-only
mapping of that page is required since software does not write to the credit return location. The
maximum group size of 8 gives up to an 8x reduction in credit return bandwidth, depending on
how the credit return algorithms of those 8 send contexts interact with each other.

Each send context has a SendCtxtCreditReturnAddr register that specifies the host physical
address and TPH information that is used for credit return for that send context. When send
context grouping is used, credit return uses the SendCtxtCreditReturnAddr register belonging to
the context that triggered the credit return. In one embodiment software is used to program the
SendCtxtCreditReturnAddr registers for all contexts in a group with the same address.

When a credit return is initiated by a particular send context (denoted N), the send context is
mapped to the set number (S) by right shifting the send context number by 3. The set number is

used to look up into the per-set configuration state and gives a value B as shown in the left-most
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column of TABLE 3. B is the number of least significant bits of send context number that
distinguishes send contexts in the same group. The number of send contexts in that group is G
and is equal to 1 << B, and takes the value in the right-most column of TABLE 3. The lowest
send context number in this set is called M and has the value (N >> B) << B, that is the value of
N with the least significant B bits cleared.

In one embodiment, credit return is achieved as follows. Credit return is aggregated for the G
send contexts using one 64B write. The address for the return is specified in the
SendCtxtCreditReturnAddr register for context number M (the lowest numbered context in the
group), while the G send contexts for this credit return are numbered M through M + G - 1
inclusive. The credit information for each send context in the group is a QW, with G such values
packed into the 64B credit return write. For 7 in the range [0, G - 1], the credit being returned is
for send context number M + [ and the credit is placed into the QW with index (M + I) & 0x7.
Thus the index is simply specified by the lowest 3 bits of the send context number, and the credit
return value for any particular send context is always in the same position in the 64B credit
return value, regardless of the value of G, eliminating shift operations in the implementation.
Unused QWs in the credit return value are filled with a value of 0x0.

All combinations for the credit return value are summarized in TABLE 4. There are 8 columns
for the different index values into the 64B credit return. Index 0 corresponds to bytes 0 to 7,
index 1 to bytes 8 to 15, and so on. Each row depicts one combination of credit return values for
that specific value of G (which is the number of send contexts per group). Empty cells indicate
an unused QW and these have zero values. The notation CRx (where x is in 0 to 7) indicates
the credit return value for a context with the least 3 significant bits equal to x. Each CRx QW
value has the format defined by TABLE 2. For example, when G is 1 there is one credit
return value and it will be in one of the 8 locations depending on the send context number.

When G is § there are 8 credit return values and all 8 locations are used.

G Index 7 | Index 6 | Index 5 | Index 4 | Index 3 | Index 2 | Index 1 | Index 0
1 CRO
CR1
CR2
CR3
CR4
CR5
CR6
CR7
2 CR1 CRO
CR3 CR2
CR5 CR4
CR7 CR6
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4 CR3 CR2 CR1 CRO
CR7 CR6 CR5 CR4
8 CR7 CR6 CR5 CR4 CR3 CR2 CR1 CRO
TABLE 4

When credit is returned for a send context group, the free counter for each send context in
the group is updated to the credit counter value that is DMA transferred to the shadow copy
held in host memory. This approach means that when one send context triggers credit return
for a group based on its threshold value, that credit return is provided for all other send contexts in
that group to the maximum extent possible. This approach reduces the frequency of send credit
updates for the group as a whole providing that send block egress is reasonably interleaved
across members of the group. Note that the threshold value needs to be larger than the number
of send blocks in the largest packet for this mechanism to be effective.

Figure 12 shows an exemplary configuration of PIO send address FIFOs 1200 and credit return
FIFOs 1202 used to support PIO write management using absolute credits, according to one
embodiment. A PIO send address FIFO 1400 is implemented for each send context in

memory 106 under the management of software that generated the PIO send memory writes. As
discussed above, in one embodiment 11-bit running counters are used in combination with FIFO
semantics to track available credits (which correspond to available send blocks within each send
context). As each send block worth of instructions is generated and forwarded for execution by a
processor core, the software increases its running count for the send context to which the send
blocks are to be written. Meanwhile, on the receiving end, credit return mechanism 127 maintains
an 11-bit running count of absolute credits returned. As credits are returned, the running count is
advanced. The FIFOs use circular FIFO semantics under which one the count reaches 2047 it is
returned to 0. The software also keeps track of the absolute return credits for each send context.
As long as the difference between the sent absolute running count and the returned absolute
running counts is less than the size of a send context, the software can generate additional PIO
send memory writes. Once the difference reaches the size of the send context, writing of packet
data to the send context is paused until an updated absolute running count is received via credit
return mechanism 127.

Exemplary HFI Implementation Architectures

Figure 13 shows a system node 1300 having an exemplary configuration comprising a host
fabric interface 102 including a fabric port 112 coupled to a processor 1306, which in turn is
coupled to memory 106. Fabric port 112 includes a transmit port 110 and a receive port 116
having a high-level configuration similar to that shown in Figure 1. Transmit port 110 includes
Tx Link Fabric Sub-layer circuitry and logic 1310 including a transmit buffer (Tbuf) partitioned
into a plurality of transmit VL buffers, Tx Link Transfer Sub-layer circuitry and logic 1312, and
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Tx PHY circuitry and logic 1314 including four transmitters 1316, and a Tx Link Control

Block 1317. Receive port 116 includes Rx Link Fabric Sub-layer circuitry and logic 1318
including a receive buffer (Rbuf) partitioned into plurality of receive VL buffers, Rx Link
Transfer Sub-layer circuitry and logic 1320, and Rx PHY circuitry and logic 1322 including four
receivers 1324, and an Rx Link Control Block 1325.

Tx PHY circuitry and logic 1314 is illustrated in a simplified form that includes four
transmitters 1316 and a portion of Tx Link Control Block 2017. Generally, transmitters 1316
may comprise electrical or optical transmitters, depending on the PHY layer configuration of the
link. It will be understood by those having skill in the networking arts that a Tx PHY circuitry
and logic block will including additional circuitry and logic for implementing transmit-side PHY
layer operations that are not shown for clarity. This including various sub-layers within a PHY
layer that are used to facilitate various features implemented in connection with high-speed
interconnect to reduce errors and enhance transmission characteristics.

Rx PHY circuitry and logic 1322 is illustrated in a simplified form that includes four

receivers 1324 and a portion of Rx Link Control Block 2025. Generally, receivers 1324 may
comprise electrical or optical transmitters, depending on the PHY layer configuration of the link,
and will be configured to receive signals transmitter over the link from transmitters 1316. It will
be understood by those having skill in the networking arts that an Rx PHY circuitry and logic
block will including additional circuitry and logic for implementing receive-side PHY layer
operations that are not shown for clarity. This including various sub-layers within a PHY layer
that are used to facilitate various features implemented in connection with high-speed
interconnect to reduce errors and enhance transmission characteristics.

HFI 1302 further includes a transmit engine 108 and a receive engine 114 coupled to a PCle
interface 118. Each of transmit engine 108 and receive engine 114 are configured in a similar
manner to transmit engine 108 and receive engine 114 of Figure 1, as described above.
Processor 1306 includes a CPU 1326 including a plurality of processor cores 1328, each
including integrated Level 1 and Level 2 (L1/L2) caches and coupled to an coherent
interconnect 1330. In the illustrated embodiment, a store buffer (St. Bf)) is also shown coupled
to each core 1328; optionally, a store buffer may be shared across all or a portion of the
processor cores in a processor. Also coupled to coherent interconnect 1330 is a memory
interface 1332 coupled to memory 106, an integrated input/output block (I10) 1334, and a Last
Level Cache (LLC) 1336. 110 1334 provides an interface between the coherent domain
employed by the processor cores, memory, and caches, and the non-coherent domain employed
for 10 components and 10 interfaces, including a pair of PCle Root Complexes (RCs) 1338 and
1340. As is well-known in the art, a PCle RC sits at the top of a PCle interconnect hierarchy to
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which multiple PCle interfaces and PCle devices may be coupled, as illustrated by PCle

interfaces 1342, 1344, 1346, and 1348. As shown, PCle 1344 is coupled to PCle interface 118
of HFI 102.
In some embodiments, such as illustrated in Figure 13, processor 1306 employs an SoC
architecture. In other embodiments, PCle-related components are integrated in an 10 chipset or
the like that is coupled to a processor. In yet other embodiments, processor 1306 and one or
more HFIs 102 are integrated on an SoC, such as depicted by the dashed outline of SoC 1350.
Also, as shown, a second HFI 102 is shown coupled to PCle interface 1346, wherein the dashed
outline indicates this is an optional configuration. In one embodiment, multiple HFI’s are
implemented on an ASIC (Application Specific Integrated Circuit) 1400, as shown in Figure 14.
As further illustrated in Figure 13, software applications 1352 comprise software components
running on one or more of processor cores 1328 or one or more virtual machines hosted by an
operating system running on processor 1306. In addition to these software components, there are
additional software components and buffers implemented in memory 106 to facilitate data
transfers between memory 106 (including applicable cache levels) and transmit engine 108 and
receive engine 114.
Further aspects of the subject matter described herein are set out in the following numbered
clauses:
1. A method comprising;:
receiving sequences of Programmed Input/Output (P10) write instructions to write packet
data for respective packets stored in memory to a PIO send memory on a network adaptor;
executing the sequences of PIO write instructions as an instruction thread on a processor
that supports out of order execution, wherein execution of PIO write instructions cause data to be
written to store units in a store buffer, the store units grouped into store blocks comprising a line
of store units; wherein a portion of the PIO write instructions are executed out of order resulting
in data being written to store units in different store blocks prior to the store blocks being filled;
detecting when store blocks are filled; and
in response to detecting a store block is filled, draining the data in the store block via a
posted write to a buffer in the P1IO send memory.
2. The method of clause 1, wherein the memory employs 64-Byte (64B) cache lines, each
store blocks comprises 64 Bytes of data, and the posted write comprises a 64B PCle (Peripheral
Component Interconnect Express) posted write.
3. The method of clause 1 or 2, wherein the processor comprises a 64-bit processor, and
cach store unit comprises 64-bits of data that is written from a 64-bit data register in the

processor to a store unit using a single instruction.
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4. The method of any of the proceeding clauses, wherein the sequences of PIO write
instructions are received as sequential groups of one or more aligned 64B writes per respective
packet, the method further comprising:

generating a packet;

determining the packet has a length that is not a multiple of 64 Bytes;

adding padding to the packet to extend its length to a multiple of 64 Bytes; and

generating P10 write instructions comprising a sequence of one or more aligned 64B
writes comprising the packet data and including padding.
5. The method of any of the proceeding clauses, wherein the processor employs write-
combining, and wherein execution of out of order PIO write instructions results in data being
written to store units within a store block in a non-sequential order.
6. The method of any of the proceeding clauses, wherein the PIO send memory is
partitioned into a plurality of send contexts, each send context organized as a sequence of send
blocks, the method further comprising:

receiving a sequence of PIO write instructions for writing data for a packet to a plurality
of sequential send blocks in a sequential order; and

writing the data for the packet to the sequential send blocks in a non-sequential order.
7. The method of clause 6, further comprising;:

detecting that all of the plurality of sequential send blocks have been filled with the
packet data; and

enabling data in the plurality of send blocks to be egressed once all of the plurality of
send blocks are filled.
8. A non-transitory machine readable medium having instructions stored thereon configured
to enable a computer including a processor supporting out-of-order execution to implement the
method of any of the proceeding clauses when executed on the processor.
9. A method comprising;:

receiving sequences of Programmed Input/Output (P10) write instructions to write packet
data for respective packets stored in memory to a PIO send memory on a network adaptor, each
PIO write instruction defining a location of a cache line in memory containing the data and a
memory-mapped address of a send block in the PIO send memory to which the data is to be
written;

executing the sequences of PIO write instructions as an instruction thread on a processor
that supports out of order execution, wherein execution of PIO write instructions cause data to be

written to store blocks in a store buffer; wherein a portion of the PIO write instructions are
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executed out of order resulting in data being written to store blocks in a different order than in
order in which the PIO write instructions are received;

detecting when store blocks are filled; and

in response to detecting a store block is filled, draining the data in the store block via a
posted write to a send block in the P1O send memory located at the address contained in the P1O
write instruction used to write the data to the send block.
10.  The method of clause 9 wherein the PIO write instruction comprises a 512-bit write
instruction, and each of a memory cache line, store block, and send block has a size of 64 Bytes.
11.  The method of clause 10, wherein posted write comprises a 64-Byte (64B) PCle
(Peripheral Component Interconnect Express) posted write.
12. The method of any of clauses 9-11, further comprising:

partitioning the PIO send memory into a plurality of send contexts;

employing a First-in, First-out (FIFO) storage scheme for each send context under which
data for a given packet is stored in one or more sequential send blocks, wherein PIO write
instructions for writing packet data for multiple packets to the same send context are sequentially
grouped in an original FIFO order, and wherein the packet data for the multiple packets are
enabled to be written to send blocks in a different order than the original FIFO order.
13.  The method of clause 12, further comprising:

detecting that all of the one or more sequential send blocks have been filled with the
packet data for a given packet; and

enabling data for the given packet to be egressed once all of the plurality of send blocks
are filled.
14.  The method of clause 13, further comprising:

encoding a header field in each packet with virtual lane (VL) indicia used to identify a
VL associated with that packet;

enabling packets with different VLs within the same send context to be egressed out of
FIFO order; and

enforcing FIFO ordering for egress of data for packets associated with the same VL
within the same send context.
15. A non-transitory machine readable medium having instructions stored thereon configured
to enable a computer including a processor supporting out-of-order execution to implement the
method of any of clauses 8-14 when executed on the processor.

16.  An apparatus, comprising:
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a processor, having a plurality of processor cores supporting out of order execution and
including a memory interface, at least one store buffer, and a first PCle (Peripheral Component
Interconnect Express) interface;

a second PCle interface, coupled to the first PCle interface of the processor via a PCle
interconnect; and

a transmit engine operatively coupled to the second PCle interface and including a
Programmed Input/Output (P1IO) send memory,

wherein the processor includes circuitry and logic to,

receive sequences of Programmed Input/Output (PIO) write instructions to write packet
data for respective packets stored in a memory when coupled to the memory interface to the P1IO
send memory;

execute the sequences of PIO write instructions as an instruction thread on a processor
core, wherein execution of PIO write instructions cause data to be written to store units in a store
buffer, the store units grouped into store blocks comprising a line of store units; wherein a
portion of the PIO write instructions are executed out of order resulting in data being written to
store units in different store blocks prior to the store blocks being filled;

detect when store blocks are filled; and

in response to detecting a store block is filled, drain the data in the store block via a PCle
posted write to a buffer in the PIO send memory sent over the PCle interconnect.

17. The apparatus of clause 16, wherein the memory employs 64-Byte (64B) cache lines,
cach store blocks comprises 64 Bytes of data, and the posted write comprises a 64B PCle
(Peripheral Component Interconnect Express) posted write.

18.  The apparatus of clause 16 or 17, wherein the processor comprises a 64-bit processor,
and each store unit comprises 64-bits of data that is written from a 64-bit data register in the
processor to a store unit using a single instruction.

19.  The apparatus of any of clauses 16-18, wherein the processor employs write-combining,
and wherein execution of out of order PIO write instructions results in data being written to store
units within a store block in a non-sequential order.

20. The apparatus of any of clauses 16-19, wherein the PIO send memory is partitioned into a
plurality of send contexts, each send context organized as a sequence of send blocks, and
wherein the apparatus includes further circuitry and logic to:

receive a sequence of PIO write instructions for writing data for a packet to a plurality of
sequential send blocks in a sequential order; and

write the data for the packet to the sequential send blocks in a non-sequential order.

21.  The apparatus of clause 20, further comprising circuitry and logic to:
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detect that all of the plurality of sequential send blocks have been filled with the packet

data; and

enable data in the plurality of send blocks to be egressed once all of the plurality of send
blocks are filled.

22.  The apparatus of clause 21, further comprising circuitry and logic to:

inspect data in a first of the plurality of sequential send blocks to determine a length of
the packet; and

determine how many sequential send blocks are to be employed for storing data for the
packet.

23.  An apparatus, comprising:

a processor, having a plurality of processor cores supporting out of order execution and
including a memory interface, at least one store buffer, and a first PCle (Peripheral Component
Interconnect Express) interface;

a second PCle interface, coupled to the first PCle interface of the processor via a PCle
interconnect; and

a transmit engine operatively coupled to the second PCle interface and including a
Programmed Input/Output (P1IO) send memory,

wherein the processor includes circuitry and logic to,

receive sequences of Programmed Input/Output (PIO) write instructions to write packet
data for respective packets stored in memory to the PIO send memory, each PIO write
instruction defining a location of a cache line in memory containing the data and a memory-
mapped address of a send block in the PIO send memory to which the data is to be written;

execute the sequences of PIO write instructions as an instruction thread on a processor
core, wherein execution of PIO write instructions cause data to be written to store blocks in a
store buffer, wherein a portion of the PIO write instructions are executed out of order resulting in
data being written to store blocks in a different order than in order in which the PIO write
instructions are received;

detect when store blocks are filled; and

in response to detecting a store block is filled, drain the data in the store block via a PCle
posted write to a send block in the P10 send memory located at the address contained in the P1O
write instruction used to write the data to the send block.

24.  The apparatus of clause 23, wherein the PIO write instruction comprises a 512-bit write
instruction, and each of a memory cache line, store block, and send block has a size of 64 Bytes,
and wherein the PCle posted write comprises a 64-Byte PCle posted write.

25. The apparatus of clause 23 or 24, further comprising circuitry and logic to:
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partition the PIO send memory into a plurality of send contexts;

implement a First-in, First-out (FIFO) storage scheme for each send context under which
data for a given packet is stored in one or more sequential send blocks;

detect that all of the one or more sequential send blocks have been filled with the packet
data for a given packet; and

enable data for the given packet to be egressed once all of the plurality of send blocks are
filled,

wherein P10 write instructions for writing packet data for multiple packets to the same
send context are sequentially grouped in an original FIFO order, and wherein the packet data for
the multiple packets are enabled to be written to send blocks in a different order than the original
FIFO order via out of order execution of the P1O write instructions.
26.  The apparatus of clause 25, further comprising circuitry and logic to:

encode a header field in each packet with virtual lane (VL) indicia used to identify a VL
associated with that packet;

enable packets with different VLs within the same send context to be egressed out of
FIFO order; and

enforce FIFO ordering for egress of data for packets associated with the same VL within
the same send context.
27.  An apparatus, comprising:

a PCle (Peripheral Component Interconnect Express) interface;

a transmit engine including,

a Programmed Input/Output (P1O) send memory operatively coupled the PCle interface;
and

an egress block, operatively coupled to the PIO send memory; and

a network port including a transmit port operatively coupled to the egress block,

wherein the transmit engine further comprises circuitry and logic to,

partition the PIO send memory into a plurality of send contexts, each comprising a
plurality of sequential send blocks;

receive inbound PCle posted writes from a processor coupled to the PCle interface via a
PCle interconnect, each PCle posted write containing packet data corresponding to a packet
stored in memory coupled to the processor and being written to a single send block via a P1IO
write instruction, wherein packet data for a given packet is written to one send block or a
plurality of sequential send blocks, wherein packet data for a packet to be written to a plurality
sequential send blocks is enabled to be received out of order;

detect when a plurality of sequential send blocks for a packet have been filled; and
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mark packet data in the plurality of sequential send blocks as eligible for egress to the
egress block when all of the sequential send blocks for a packet are detected as being filled.

28.  The apparatus to clause 27, further comprising circuitry and logic to implement an arbiter
to select a packet from among packets in the plurality of send contexts that have been filled to be
egressed from the egress block to the transmit port.

29.  The apparatus of clause 27 or 28, wherein the transmit engine further comprises a send
direct memory access (SDMA) memory and a plurality of SDMA engines configured to pull data
from memory coupled to the processor using DMA transfers to write data to buffers in the
SDMA memory.

30. The apparatus of any of clause 27-29, wherein the PCle interfaces comprises a first PCle
interface, the apparatus further comprising:

a processor, having a plurality of processor cores supporting out of order execution and
including a memory interface, at least one store buffer, and a second PCle (Peripheral
Component Interconnect Express) interface coupled to the first PCle interface via a PCle
interconnect; further including circuitry and logic to,

receive sequences of P10 write instructions to write packet data for respective packets
stored in a memory when coupled to the memory interface to the PIO send memory;

execute the sequences of PIO write instructions as an instruction thread on a processor
core, wherein execution of PIO write instructions cause data to be written to store units in a store
buffer, the store units grouped into store blocks comprising a line of store units; wherein a
portion of the PIO write instructions are executed out of order resulting in data being written to
store units in different store blocks prior to the store blocks being filled;

detect when store blocks are filled; and

in response to detecting a store block is filled, drain the data in the store block via a PCle
posted write to a buffer in the PIO send memory sent over the PCle interconnect.

31.  The apparatus of any of clauses 27-30, wherein the apparatus comprises a host fabric
interface further comprising:

a receive engine, coupled to the PCle interface; and

a receive port, coupled to the receive engine.

32.  The apparatus of clause 31, wherein the apparatus comprises multiple host fabric
interfaces having a configuration defined for the host fabric interface of clause 31.
33.  An apparatus, comprising:

a processor, having a plurality of processor cores supporting out of order execution and

including a memory interface, at least one store buffer, and a first PCle (Peripheral Component

Interconnect Express) interface;
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a second PCle interface, coupled to the first PCle interface of the processor via a PCle
interconnect; and

a transmit engine operatively coupled to the second PCle interface and including a
Programmed Input/Output (PIO) send memory,

wherein the processor further includes means for,

receiving sequences of Programmed Input/Output (P10) write instructions to write packet
data for respective packets stored in a memory when coupled to the memory interface to the P10
send memory;

executing the sequences of PIO write instructions as an instruction thread on a processor
core, wherein execution of PIO write instructions cause data to be written to store units in a store
buffer, the store units grouped into store blocks comprising a line of store units; wherein a
portion of the PIO write instructions are executed out of order resulting in data being written to
store units in different store blocks prior to the store blocks being filled;

detecting when store blocks are filled; and

in response to detecting a store block is filled, draining the data in the store block via a
PCle posted write to a buffer in the PIO send memory sent over the PCle interconnect.
34.  The apparatus of clause 33, wherein the memory employs 64-Byte (64B) cache lines,
cach store blocks comprises 64 Bytes of data, and the posted write comprises a 64B PCle
(Peripheral Component Interconnect Express) posted write.
35.  The apparatus of clause 33 or 34, wherein the processor comprises a 64-bit processor,
and each store unit comprises 64-bits of data that is written from a 64-bit data register in the
processor to a store unit using a single instruction.
36.  The apparatus of any of clauses 33-35, wherein the processor employs write-combining,
and wherein execution of out of order PIO write instructions results in data being written to store
units within a store block in a non-sequential order.
37.  The apparatus of any of clauses 33-36, wherein the PIO send memory is partitioned into a
plurality of send contexts, each send context organized as a sequence of send blocks, and
wherein the apparatus includes further means for:

receiving a sequence of PIO write instructions for writing data for a packet to a plurality
of sequential send blocks in a sequential order; and

writing the data for the packet to the sequential send blocks in a non-sequential order.
38.  The apparatus of clause 37, further comprising means for:

detecting that all of the plurality of sequential send blocks have been filled with the
packet data; and
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enabling data in the plurality of send blocks to be egressed once all of the plurality of

send blocks are filled.
39.  The apparatus of clause 38, further comprising means for:

inspecting data in a first of the plurality of sequential send blocks to determine a length of
the packet; and

determining how many sequential send blocks are to be employed for storing data for the
packet.
In general, the circuitry, logic and components depicted in the figures herein may also be
implemented in various types of integrated circuits (e.g., semiconductor chips) and modules,
including discrete chips, SoCs, multi-chip modules, and networking/link interface chips
including support for multiple network interfaces. Also, as used herein, circuitry and logic to
effect various operations may be implemented via one or more of embedded logic, embedded
processors, controllers, microengines, or otherwise using any combination of hardware, software,
and/or firmware. For example, the operations depicted by various logic blocks and/or circuitry
may be effected using programmed logic gates and the like, including but not limited to ASICs,
FPGAs, IP block libraries, or through one or more of software or firmware instructions executed
on one or more processing elements including processors, processor cores, controllers,
microcontrollers, microengines, efc.
In addition, aspects of embodiments of the present description may be implemented not only
within a semiconductor chips, SoCs, multichip modules, efc., but also within non-transient
machine-readable media. For example, the designs described above may be stored upon and/or
embedded within non-transient machine readable media associated with a design tool used for
designing semiconductor devices. Examples include a netlist formatted in the VHSIC Hardware
Description Language (VHDL) language, Verilog language or SPICE language, or other
Hardware Description Language. Some netlist examples include: a behavioral level netlist, a
register transfer level (RTL) netlist, a gate level netlist and a transistor level netlist. Machine-
readable media also include media having layout information such as a GDS-II file.
Furthermore, netlist files or other machine-readable media for semiconductor chip design may be
used in a simulation environment to perform the methods of the teachings described above.
Although some embodiments have been described in reference to particular implementations,
other implementations are possible according to some embodiments. Additionally, the
arrangement and/or order of elements or other features illustrated in the drawings and/or
described herein need not be arranged in the particular way illustrated and described. Many other

arrangements are possible according to some embodiments.
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In each system shown in a figure, the elements in some cases may each have a same reference
number or a different reference number to suggest that the elements represented could be
different and/or similar. However, an element may be flexible enough to have different
implementations and work with some or all of the systems shown or described herein. The
various elements shown in the figures may be the same or different. Which one is referred to as a
first element and which is called a second element is arbitrary.

Italicized letters, such as ‘M’, “‘G’, ‘B’, ‘n’, ‘m’, ‘k’, etc. in the foregoing detailed description and
the claims are used to depict an integer number, and the use of a particular letter is not limited to
particular embodiments. Moreover, the same letter may be used in separate claims to represent
separate integer numbers, or different letters may be used. In addition, use of a particular letter
in the detailed description may or may not match the letter used in a claim that pertains to the
same subject matter in the detailed description.

In the description and claims, the terms "coupled" and "connected," along with their derivatives,
may be used. It should be understood that these terms are not intended as synonyms for each
other. Rather, in particular embodiments, "connected" may be used to indicate that two or more
elements are in direct physical or electrical contact with each other. "Coupled"” may mean that
two or more elements are in direct physical or electrical contact. However, "coupled" may also
mean that two or more elements are not in direct contact with each other, but yet still co-operate
or interact with each other.

An embodiment is an implementation or example of the inventions. Reference in the
specification to "an embodiment,” "one embodiment,” "some embodiments," or "other
embodiments" means that a particular feature, structure, or characteristic described in connection
with the embodiments is included in at least some embodiments, but not necessarily all

embodiments, of the inventions. The various appearances "an embodiment,” "one embodiment,”
or "some embodiments" are not necessarily all referring to the same embodiments.

Not all components, features, structures, characteristics, etc. described and illustrated herein need
be included in a particular embodiment or embodiments. If the specification states a component,
feature, structure, or characteristic "may"”, "might", "can" or "could" be included, for example,
that particular component, feature, structure, or characteristic is not required to be included. If
the specification or claim refers to "a" or "an" element, that does not mean there is only one of
the element. If the specification or claims refer to "an additional" element, that does not preclude
there being more than one of the additional element.

The above description of illustrated embodiments of the invention, including what is described in
the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms

disclosed. While specific embodiments of, and examples for, the invention are described herein
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for illustrative purposes, various equivalent modifications are possible within the scope of the
invention, as those skilled in the relevant art will recognize.

These modifications can be made to the invention in light of the above detailed description. The
terms used in the following claims should not be construed to limit the invention to the specific
embodiments disclosed in the specification and the drawings. Rather, the scope of the invention
is to be determined entirely by the following claims, which are to be construed in accordance

with established doctrines of claim interpretation.

41



10

15

20

25

30

35

WO 2015/199946 PCT/US2015/034359
CLAIMS

1. A method comprising;:

receiving sequences of Programmed Input/Output (P10O) write instructions to write packet
data for respective packets stored in memory to a PIO send memory on a network adaptor;

executing the sequences of PIO write instructions as an instruction thread on a processor
that supports out of order execution, wherein execution of PIO write instructions cause data to be
written to store units in a store buffer, the store units grouped into store blocks comprising a line
of store units; wherein a portion of the PIO write instructions are executed out of order resulting
in data being written to store units in different store blocks prior to the store blocks being filled;

detecting when store blocks are filled; and

in response to detecting a store block is filled, draining the data in the store block via a

posted write to a buffer in the P1IO send memory.

2. The method of claim 1, wherein the memory employs 64-Byte (64B) cache lines, cach
store blocks comprises 64 Bytes of data, and the posted write comprises a 64B PCle (Peripheral

Component Interconnect Express) posted write.

3. The method of claim 1, wherein the processor comprises a 64-bit processor, and each
store unit comprises 64-bits of data that is written from a 64-bit data register in the processor to a

store unit using a single instruction.

4. The method of claim 1, wherein the sequences of PIO write instructions are received as
sequential groups of one or more aligned 64B writes per respective packet, the method further
comprising:

generating a packet;

determining the packet has a length that is not a multiple of 64 Bytes;

adding padding to the packet to extend its length to a multiple of 64 Bytes; and

generating P1O write instructions comprising a sequence of one or more aligned 64B

writes comprising the packet data and including padding.
5. The method of claim 1, wherein the processor employs write-combining, and wherein

execution of out of order PIO write instructions results in data being written to store units within

a store block in a non-sequential order.
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6. The method of claim 1, wherein the PIO send memory is partitioned into a plurality of

send contexts, each send context organized as a sequence of send blocks, the method further
comprising:

receiving a sequence of P1O write instructions for writing data for a packet to a plurality
of sequential send blocks in a sequential order; and

writing the data for the packet to the sequential send blocks in a non-sequential order.

7. The method of claim 6, further comprising;:

detecting that all of the plurality of sequential send blocks have been filled with the
packet data; and

enabling data in the plurality of send blocks to be egressed once all of the plurality of
send blocks are filled.

8. A method comprising;:

receiving sequences of Programmed Input/Output (P10) write instructions to write packet
data for respective packets stored in memory to a PIO send memory on a network adaptor, each
PIO write instruction defining a location of a cache line in memory containing the data and a
memory-mapped address of a send block in the PIO send memory to which the data is to be
written;

executing the sequences of PIO write instructions as an instruction thread on a processor
that supports out of order execution, wherein execution of PIO write instructions cause data to be
written to store blocks in a store buffer; wherein a portion of the PIO write instructions are
executed out of order resulting in data being written to store blocks in a different order than in
order in which the PIO write instructions are received;

detecting when store blocks are filled; and

in response to detecting a store block is filled, draining the data in the store block via a
posted write to a send block in the P1O send memory located at the address contained in the P1O

write instruction used to write the data to the send block.

9. The method of claim 8, wherein the PIO write instruction comprises a 512-bit write

instruction, and each of a memory cache line, store block, and send block has a size of 64 Bytes.

10.  The method of claim 9, wherein posted write comprises a 64-Byte (64B) PCle

(Peripheral Component Interconnect Express) posted write.
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11. The method of claim 8, further comprising;:

partitioning the PIO send memory into a plurality of send contexts;

employing a First-in, First-out (FIFO) storage scheme for each send context under which
data for a given packet is stored in one or more sequential send blocks, wherein PIO write
instructions for writing packet data for multiple packets to the same send context are sequentially
grouped in an original FIFO order, and wherein the packet data for the multiple packets are

enabled to be written to send blocks in a different order than the original FIFO order.

12. The method of claim 11, further comprising:

detecting that all of the one or more sequential send blocks have been filled with the
packet data for a given packet; and

enabling data for the given packet to be egressed once all of the plurality of send blocks
are filled.

13. The method of claim 12, further comprising:

encoding a header field in each packet with virtual lane (VL) indicia used to identify a
VL associated with that packet;

enabling packets with different VLs within the same send context to be egressed out of
FIFO order; and

enforcing FIFO ordering for egress of data for packets associated with the same VL

within the same send context.

14.  An apparatus, comprising:

a processor, having a plurality of processor cores supporting out of order execution and
including a memory interface, at least one store buffer, and a first PCle (Peripheral Component
Interconnect Express) interface;

a second PCle interface, coupled to the first PCle interface of the processor via a PCle
interconnect; and

a transmit engine operatively coupled to the second PCle interface and including a
Programmed Input/Output (PIO) send memory,

wherein the processor includes circuitry and logic to,

receive sequences of Programmed Input/Output (P1O) write instructions to write
packet data for respective packets stored in a memory when coupled to the memory

interface to the P1IO send memory;
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execute the sequences of PIO write instructions as an instruction thread on a
processor core, wherein execution of PIO write instructions cause data to be written to
store units in a store buffer, the store units grouped into store blocks comprising a line of
store units; wherein a portion of the PIO write instructions are executed out of order
resulting in data being written to store units in different store blocks prior to the store
blocks being filled;

detect when store blocks are filled; and

in response to detecting a store block is filled, drain the data in the store block via

a PCle posted write to a buffer in the PIO send memory sent over the PCle interconnect.

15.  The apparatus of claim 14, wherein the memory employs 64-Byte (64B) cache lines, each
store blocks comprises 64 Bytes of data, and the posted write comprises a 64B PCle (Peripheral

Component Interconnect Express) posted write.

16.  The apparatus of claim 14, wherein the processor comprises a 64-bit processor, and each
store unit comprises 64-bits of data that is written from a 64-bit data register in the processor to a

store unit using a single instruction.

17.  The apparatus of claim 14, wherein the processor employs write-combining, and wherein
execution of out of order PIO write instructions results in data being written to store units within

a store block in a non-sequential order.

18.  The apparatus of claim 14, wherein the PIO send memory is partitioned into a plurality of
send contexts, each send context organized as a sequence of send blocks, and wherein the
apparatus includes further circuitry and logic to:

receive a sequence of PIO write instructions for writing data for a packet to a plurality of
sequential send blocks in a sequential order; and

write the data for the packet to the sequential send blocks in a non-sequential order.

19.  The apparatus of claim 18, further comprising circuitry and logic to:

detect that all of the plurality of sequential send blocks have been filled with the packet
data; and

enable data in the plurality of send blocks to be egressed once all of the plurality of send
blocks are filled.
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20.  An apparatus, comprising:
a PCle (Peripheral Component Interconnect Express) interface;
a transmit engine including,
a Programmed Input/Output (P10) send memory operatively coupled the PCle
interface; and
an egress block, operatively coupled to the PIO send memory; and
a network port including a transmit port operatively coupled to the egress block,
wherein the transmit engine further comprises circuitry and logic to,
partition the PIO send memory into a plurality of send contexts, each comprising
a plurality of sequential send blocks;
receive inbound PCle posted writes from a processor coupled to the PCle
interface via a PCle interconnect, each PCle posted write containing packet data
corresponding to a packet stored in memory coupled to the processor and being written to
a single send block via a P1O write instruction, wherein packet data for a given packet is
written to one send block or a plurality of sequential send blocks, wherein packet data for
a packet to be written to a plurality sequential send blocks is enabled to be received out of
order;
detect when a plurality of sequential send blocks for a packet have been filled;
and
mark packet data in the plurality of sequential send blocks as eligible for egress to
the egress block when all of the sequential send blocks for a packet are detected as being
filled.
21.  The apparatus to claim 20, further comprising circuitry and logic to implement an arbiter
to select a packet from among packets in the plurality of send contexts that have been filled to be

egressed from the egress block to the transmit port.

22.  The apparatus of claim 20, wherein the transmit engine further comprises a send direct
memory access (SDMA) memory and a plurality of SDMA engines configured to pull data from
memory coupled to the processor using DMA transfers to write data to buffers in the SDMA

memory.

23.  The apparatus of claim 20, wherein the PCle interfaces comprises a first PCle interface,
the apparatus further comprising:
a processor, having a plurality of processor cores supporting out of order execution and

including a memory interface, at least one store buffer, and a second PCle (Peripheral
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Component Interconnect Express) interface coupled to the first PCle interface via a PCle

interconnect; further including circuitry and logic to,

receive sequences of P10 write instructions to write packet data for respective
packets stored in a memory when coupled to the memory interface to the PIO send
memorys;

execute the sequences of PIO write instructions as an instruction thread on a
processor core, wherein execution of PIO write instructions cause data to be written to
store units in a store buffer, the store units grouped into store blocks comprising a line of
store units; wherein a portion of the PIO write instructions are executed out of order
resulting in data being written to store units in different store blocks prior to the store
blocks being filled;

detect when store blocks are filled; and

in response to detecting a store block is filled, drain the data in the store block via

a PCle posted write to a buffer in the PIO send memory sent over the PCle interconnect.

24.  The apparatus of claim 20, wherein the apparatus comprises a host fabric interface further
comprising:

a receive engine, coupled to the PCle interface; and

a receive port, coupled to the receive engine.
25.  The apparatus of claim 24, wherein apparatus comprises multiple host fabric interfaces

having a configuration defined for the host fabric interface of claim 24.
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