

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2317748 C 2008/07/08

(11)(21) **2 317 748**

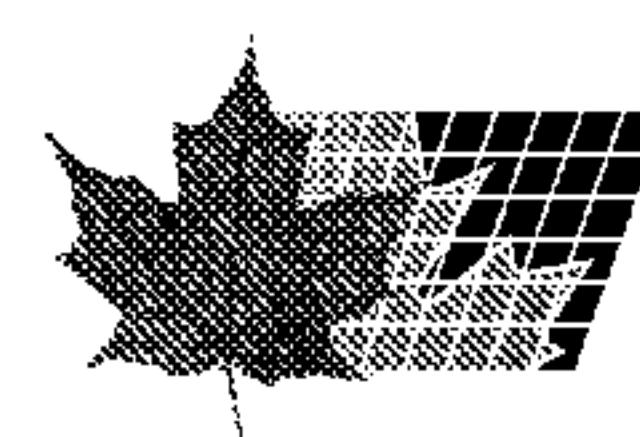
(12) **BREVET CANADIEN**
CANADIAN PATENT

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 1999/01/06
(87) Date publication PCT/PCT Publication Date: 1999/07/15
(45) Date de délivrance/Issue Date: 2008/07/08
(85) Entrée phase nationale/National Entry: 2000/07/07
(86) N° demande PCT/PCT Application No.: GB 1999/000028
(87) N° publication PCT/PCT Publication No.: 1999/034805
(30) Priorité/Priority: 1998/01/08 (US09/004,063)

(51) Cl.Int./Int.Cl. *A61K 31/549* (2006.01),
A61P 31/04 (2006.01), *A61K 9/08* (2006.01),
A61K 9/02 (2006.01), *A61K 9/10* (2006.01),
A61K 9/20 (2006.01), *A61K 9/48* (2006.01)

(72) Inventeur/Inventor:
PFIRRMANN, ROLF, CH


(73) Propriétaire/Owner:
ED GEISTLICH SOHNE AG FUR CHEMISCHE
INDUSTRIE, CH

(74) Agent: FETHERSTONHAUGH & CO.

(54) Titre : UTILISATION D'UN AGENT ANTIMICROBIEN TEL QUE LA TAUROLIDINE OU LE TAURULTAM POUR LA FABRICATION D'UN MEDICAMENT CONTRE UNE INFECTION MICROBIENNE D'ORIGINE NOSOCOMIALE
(54) Title: USE OF ANTIMICROBIAL AGENT SUCH AS TAUROLIDINE OR TAURULTAM IN THE MANUFACTURE OF A MEDICAMENT TO TREAT A NOSOCOMIAL MICROBIAL INFECTION

(57) Abrégé/Abstract:

The invention provides a method and composition for treatment of a nosocomial, microbial infection of a patient which comprises introduction into the gut of a patient an antimicrobial amount of an antimicrobial medicament which is cell wall constituent-inactivating, endotoxin non-releasing, exotoxin inactivating or a combination thereof. In particular, the invention provides the use of Taurolidine and/or Taurultam in the treatment of multi-resistant infections, e.g. VRE and MRSA.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : A61K 31/54		A1	(11) International Publication Number: WO 99/34805 (43) International Publication Date: 15 July 1999 (15.07.99)		
(21) International Application Number: PCT/GB99/00028		(81) Designated States: AU, CA, CN, JP, KR, RU, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).			
(22) International Filing Date: 6 January 1999 (06.01.99)					
(30) Priority Data: 09/004,063 8 January 1998 (08.01.98) US		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>			
(71) Applicant: ED GEISTLICH SÖHNE AG FÜR CHEMISCHE INDUSTRIE [CH/CH]; Bahnhofstrasse 40, CH-6110 Wohlen (CH).					
(71) Applicant (for GB only): PETT, Christopher [GB/GB]; Frank B. Dehn & Co., 179 Queen Victoria Street, London EC4V 4EL (GB).					
(72) Inventor: PFIRRMANN, Rolf; Postfach 1424, CH-6000 Lucerne 15 (CH).					
(74) Agents: PETT, Christopher et al.; Frank B. Dehn & Co., 179 Queen Victoria Street, London EC4V 4EL (GB).					
(54) Title: USE OF ANTIMICROBIAL AGENT SUCH AS TAUROLIDINE OR TAURULTAM IN THE MANUFACTURE OF A MEDICAMENT TO TREAT A NOSOCOMIAL MICROBIAL INFECTION					
(57) Abstract					
The invention provides a method and composition for treatment of a nosocomial, microbial infection of a patient which comprises introduction into the gut of a patient an antimicrobial amount of an antimicrobial medicament which is cell wall constituent-inactivating, endotoxin non-releasing, exotoxin inactivating or a combination thereof. In particular, the invention provides the use of Taurolidine and/or Taurultam in the treatment of multi-resistant infections, e.g. VRE and MRSA.					

USE OF ANTIMICROBIAL AGENT SUCH AS TAUROLIDINE OR TAURULTAM IN THE MANUFACTURE OF A MEDICAMENT TO TREAT A NOSOCOMIAL MICROBIAL INFECTION

5 The present invention relates to the field of treating patients having microbial infections.

The broad use of antibiotics significantly influences multi-resistance of microorganisms, and has greatly increased the number of antibiotic-resistant microorganisms.

10 Antibiotic-resistant strains of Enterococci such as vancomycin-resistant strains of *Enterococcus faecium* and *Enterococcus faecalis* (VRE), as well as antibiotic-resistant strains of Staphylococci such as methicillin-resistant *Staphylococcus aureus* (MRSA) can cause severe 15 nosocomial infections and diarrhea. Common nosocomial infections in intensive care units are pneumonia, urinary tract infections, septicemia, catheter-sepsis and postoperative wound infections.

20 Antibiotic-resistant microorganisms are increasingly associated with severe morbidity and mortality among hospitalized patients, particularly among patients with VRE colonizations in long-term care facilities and in those returning to community care, which now present a major public health threat.

25 Management of life-threatening infections caused by antibiotic-resistant strains is particularly difficult, as the range of therapeutic options is very limited. There is a rapid increase in incidences of nosocomial infection and colonization with vancomycin-resistant 30 Enterococci (VRE) throughout the whole world. Treatment options presently are combinations of antibiotics or experimental substances with uncertain efficacy. The potential emergence of vancomycin resistance in clinical isolates of *S. aureus* is dangerous. Successful 35 prevention is necessary to prevent person-to-person transmission of VRE.

The compounds Taurolidine (Taurolin®) and Taurultam

- 2 -

are known antimicrobial substances with broad-spectrum activity against aerobic and anaerobic bacteria, mycobacteria and fungi. Unlike antibiotics, these compounds do not result in release of large quantities of bacterial toxins. They have been suggested as a substitute for antibiotics for administration in patients locally, by injection or by infusion, to combat infections of the teeth and jaw, wound infections, 5 osteitis, endotoxaemia, peritonitis, sepsis and septic shock. However, it is known that these compounds have a short half-life *in vivo* and they never have been suggested for treatment of infections of the gut. 10

There remains an urgent need in the art for improved methods of treating patients with microbial 15 antibiotic-multiresistant infections, including gut infections.

In one aspect the present invention provides the use of an antimicrobial medicament selected from the group consisting of antimicrobial medicaments which are 20 cell wall constituent-inactivating, endotoxin non-releasing, exotoxin-inactivating, and combinations thereof, in the manufacture of a therapeutic agent, preferably an orally administrable therapeutic agent, for use in treating microbial infections of the 25 digestive tract, intestinal tract or gut. Preferably, the medicament for use in the invention is a non-antibiotic medicament effective against antibiotic-resistant microbes.

In a further aspect the invention provides a method 30 of treating a microbial infection of a patient which comprises introducing into the gut of the patient an antimicrobial amount of an antimicrobial medicament selected from the group consisting of antimicrobial medicaments which are cell wall constituent- 35 inactivating, endotoxin non-releasing, exotoxin-inactivating, and combinations thereof, so as to treat the microbial gut infection of the patient. Preferably,

20208-1782

- 3 -

the medicament is orally administered.

According to one aspect of the present invention, there is provided use of an antimicrobial medicament selected from taurolidine, taurultam and combinations thereof in the manufacture of a therapeutic agent for oral or rectal administration in treating a microbial infection of the digestive tract, intestinal tract or gut of a patient.

According to another aspect of the present invention, there is provided a pharmaceutical composition for one or both of oral and rectal administration, said composition comprising a tablet or capsule comprising an antimicrobial medicament selected from taurolidine, taurultam and combinations thereof, together with either a pharmaceutically acceptable delayed release excipient operatively associated with said medicament, or a pharmaceutically acceptable sustained release excipient operatively associated with said medicament.

As used herein, the term "patient" refers to a mammalian patient, preferably a human patient with microbial infection of the gut.

The antimicrobial compounds utilized in accordance with the invention are cell wall constituent-inactivating, endotoxin non-releasing, and/or exotoxin inactivating antimicrobial compounds, which are slow-acting bactericides. Preferably, the compounds are selected from the group consisting of non-antibiotic antimicrobial medicaments which are cell wall constituent-inactivating by cell wall cross-linking, non-antibiotic antimicrobial medicaments which are endotoxin non-releasing, non-antibiotic antimicrobial medicaments which are exotoxin-inactivating and combinations thereof. Particularly preferably, the compounds are cell wall-crosslinking compounds such as Taurolidine and Taurultam. Taurolidine is a unique

20208-1782

- 3a -

antimicrobial agent having an exceptionally broad spectrum of antimicrobial and antibacterial activity including activity against gram positive and gram negative, aerobic, and anaerobic bacteria. Resistance has not been observed either *in vivo* or *in vitro*.
5 Additionally, the compound possesses useful activity against most yeast-like and filamentous fungi.

The compounds Taurolidine and Taurultam are disclosed in US-A-5,210,083.

10

In a yet further aspect the invention thus provides a method of treating bacterial infection, fungal infection or a combination thereof in a patient, said method comprising orally administering so as to introduce into a patient's gut Taurolidine, Taurultam or a combination thereof, so as to treat said infection of said patient.
15

The antimicrobial compounds utilized in the present invention are distinguished from conventional

- 4 -

antibiotics as ordinarily understood in the art, i.e., antibiotics that act by attacking, breaking and/or rupturing microbial cell walls (disturbance of murein-biosynthesis, protein-biosynthesis, DNA topology, etc.), 5 resulting in release of microbial toxins from the microbial cells.

While the invention is further described with respect to Taurolidine and Taurultam, the invention also is applicable to the use of other cell wall constituent-inactivating, antimicrobial compounds which release no or a substantially insignificant amount of toxins. Thus, the invention is applicable to Taurolidine, Taurultam, and antimicrobial medicaments which act in a substantially similar manner.

15 As indicated above, the present invention is directed to a method of treating a patient with microbial infection, such as bacterial infection, fungal infection or a combination thereof. In particular, the invention concerns treatment of bacterial and/or fungal 20 gut infection. The method of the invention is particularly suitable for use in treating patients with bacterial colonizations, e.g. in treating infections associated with multi-resistant bacteria, such as MRSA and VRE.

25 In yet a further aspect, the invention provides a method of treating a microbial digestive tract infection of a patient, comprising introducing into the digestive tract of the patient a non-antibiotic, antimicrobial medicament effective against antibiotic-resistant 30 microbes.

The invention is particularly applicable to microbial infections of the digestive tract, intestinal tract or gut, and is advantageous for use against infections of the gut by antibiotic-resistant 35 microorganisms such as antibiotic-resistant strains of gram negative or gram positive bacteria, antibiotic-resistant and multi-resistant strains of Enterococci,

- 5 -

antibiotic-resistant and multi-resistant strains of *Staphylococci*, *Enterococcus faecalis*, *Enterococcus faecium*, *Staphylococcus aureus*, vancomycin-resistant *Enterococcus faecalis* (VRE) strains, and methicillin-resistant *Staphylococcus aureus* (MRSA) strains.

The antimicrobial medicament can be administered as a tablet, capsule, liquid, suspension, suppository or the like, preferably as enteric coated tablets or capsules, ensuring biological availability, controlling the effects of the drug, and avoiding side effects.

In preferred embodiments, the antimicrobial medicament is administered enterally. One suitable method of administration is oral administration. For treatment of microbial infections of the lower bowel or colon, administration is preferably directly into the patient's gut, e.g. orally and/or rectally. In cases of severe microbial infection, bacteria may also be present in the blood stream. In such cases it may be desirable to administer the medicament both locally, e.g. by the oral and/or rectal route, and systemically, e.g. by means of a central catheter. Thus, further embodiments may include injection and/or intravenous administration of the antimicrobial medicament either alone, or in conjunction with oral and/or rectal administration.

In particularly preferred embodiments, the antimicrobial medicament is administered so that the medicament is substantially continuously present in the patient's gut over the course of the treatment, so as to inhibit microbial proliferation and/or reproduction in the patient's gut. Enteric coating of soft or hard gelatin capsules can be utilized to stabilize acid sensitivity, improve tolerance and avoid gastric lesions, gastric disorders, and irritation of the gastric mucosa after peroral administration. Enteric coating delays onset of action, and targets release in the small intestine.

The invention also is applicable to pharmaceutical

- 6 -

compositions for treatment of microbial infections. In a yet further aspect the invention thus provides a pharmaceutical composition comprising an antimicrobial medicament selected from the group consisting of
5 antimicrobial medicaments which are cell wall constituent-inactivating, endotoxin non-releasing, exotoxin-inactivating, and combinations thereof, together with either a pharmaceutically acceptable delayed release excipient operatively associated with
10 said medicament, or a pharmaceutically acceptable sustained release excipient operatively associated with said medicament.

Particularly preferred pharmaceutical compositions in accordance with the present invention, for treatment
15 of microbial gut infections, include an antimicrobial amount of an antimicrobial medicament selected from the group consisting of antimicrobial medicaments which are cell wall constituent-inactivating, endotoxin non-releasing, exotoxin-inactivating, and combinations thereof, in a formulation selected from the group
20 consisting of (1) delayed release formulations including a pharmaceutically acceptable delayed release excipient operatively associated with the antimicrobial medicament, which delays release of the medicament when
25 administered orally until entry into a patient's intestinal tract, and (2) sustained release formulations including a pharmaceutically acceptable sustained release excipient operatively associated with the medicament so as to substantially continuously release
30 the medicament after entry into a patient's intestinal tract. In particularly preferred sustained release formulations, the medicament is substantially continuously released after entry into a patient's intestinal tract for a period of at least one hour, more
35 preferably at least 2, 3, 4, 5, 6, 7, 8 hours or longer.

Sustained and delayed release formulations can be made with:

20208-1782

- 7 -

1) Use of various matrices to control drug release, such matrices including various polymers (see e.g. US-A-5,618,559, US-A-5,637,320, US-A-5,648,096 and US-A-5,654,005), cellulosic materials (see e.g. US-A-5,607,695, US-A-5,609,884, US-A-5,624,683 and US-A-5,656,295) fatty acids and polyglycerols (see e.g. US-A-5,593,690, US-A-5,602,180 and US-A-5,628,993), polysaccharides (see e.g. US-A-5,629,018) and gelatin derivatives (see e.g. US-A-5,614,219).

10 2) Use of gastroresistant coatings including polymeric and vinylic coatings (see e.g. US-A-5,639,476, US-A-5,637,320, US-A-5,616,345, US-A-5,603,957, US-A-5,656,291, US-A-5,614,218, US-A-5,541,171 and US-A-5,541,170), and cellulosic coatings (see e.g. US-A-5,510,114 and US-A-5,603,957).

15 3) Use of additives to the active ingredients that prolong release, such as fatty acids (see e.g. US-A-5,597,562).

20 US-A-5,650,170 discloses dosage forms for delivering drugs at a controlled rate to the intestine and to the colon.

25 In preferred embodiments, the antimicrobial medicament is administered to the patient substantially continuously for a time period of about 5 to 10 days so as to substantially eliminate the microbial infection in the patient. Taurolin *in vitro* has proven to be effective against all gram negative and gram positive bacterial strains tested to-date, including antibiotic multi-resistant strains such as *Enterococcus faecalis* and *Enterococcus facium*, VRE and MRSA.

30 Enterococci are widely distributed in nature and mainly colonize the colon. Normally, Enterococci are not pathogenous. However, due to abuse of antibiotics such as vancomycin, as well as antibiotic additives in animal feed, multi-resistant bacterial strains can be

- 8 -

isolated as concurrent flora in infections of urinary passages, gall bladder infections and wound infections.

A most dangerous form of Enterococcus infection is endocarditis. Chronic diarrhea also is caused by such 5 infection. VREs are especially dangerous as they can pass on their resistance to other bacterial strains such as *Staphylococcus aureus* or *Staphylococcus epidermidis*.

VREs can infect the gut and cause severe diarrhea. This can be treated in accordance with the present 10 invention by oral administration of the antimicrobial medicament, but if sepsis is also present in the patient, concurrent intravenous administration of the antimicrobial medicament as a 2% sterile solution may be desirable.

15 MRSA, which can cause severe nosocomial infections, is particularly wide-spread with high incidences of fatality. In many cases, the patient must be isolated to prevent person-to-person transmission of the infection.

20 MRSA infection, in particular coagulase-negative *Staphylococci* infection, may be treatable by intravenous administration of the antimicrobial medicament alone, but if the patient is experiencing severe diarrhea, both oral and intravenous administration in combination may 25 be desirable. MRSA can infect the skin and mucous membranes of patients, can be present in a patient's urine, and is easily transmitted to other persons. Additionally, MRSA-infected patients sometimes have meningitis.

30 Taurolidine and/or Taurultam may be administered in an aqueous solution at a concentration of about 0.1-3% (e.g. 0.5%) by weight Taurolidine and/or Taurultam. Suitable compositions are disclosed in US-A-5,210,083. Aqueous solutions of Taurolidine and/or Taurultam may be 35 administered during the treatment period in a total amount of about 0.5-5 litres (which may correspond to 1 litre/2% per day, 20-30 g/24 hours/adult human patient

- 9 -

of Taurolidine).

Treatment of severe microbial gut infections in accordance with the present invention can save the lives of many patients, as compared to conventional 5 treatments. Taurolidine and Taurultam destroy bacteria slowly, cross-linking the bacterial cell walls and thereby preventing the release of bacterial toxins. The cross-linking of the bacterial cell walls inactivates the bacterial toxins which could otherwise be highly 10 poisonous. Additionally, because of this unique mode of action with bacterial cell walls, no resistance development by microbes has been observed.

Taurolidine and/or Taurultam prevent over-production of cytokines in the patient by monocytes of 15 the blood which can arise as a result of infection. While addition of antibiotics to human blood leads to a rise in TNF- α , the addition of Taurolidine and/or Taurultam to antibiotic-treated cultures prevents a rise 20 in TNF production as a result of nearly complete neutralization of released endotoxins.

While classic antibiotics act quickly, Taurolidine and/or Taurultam kill bacteria slowly. Furthermore the bacteraemia disappears slowly while treatment with Taurolidine and/or Taurultam continues over a period of 25 time. Bacterial toxins are prevented from release, and no over-production of cytokines occurs.

The invention is illustrated by the following Examples, which are not intended to be limiting:

- 10 -

Example 1 (Capsules)

1. Soft-gelatin capsules, System Scherer®
 Size 16 oblong
 5 Content: 500 mg Taurolidine (crystalline)
 Migliol™ (medium chain triglyceride)
 Softisan 367™ hard fat
 600 mg (Caprylic, capric, stearic
 triglyceride)
 10 Total filling weight 1100 mg.

2. Hard-gelatin capsules

Qualicap™ Lilly transparent/size 0

Contents: 300 mg Taurolidine (crystalline)

15 6 mg talc, Acrosil™, Mg-stearate 8:1:1
 (additive)

 306 mg
20 Example 2 (Tablets)

	Substance	Amount mg/Tablet
25	1 Taurolidine or Taurultam Emdex™ (Dextrates*) direct compression Dextrose Magnesium stearate	300 200 10
30	2 Taurolidine or Taurultam Methacell™ K4M premium (Hydroxypropyl methylcellulose) Corn Starch Magnesium stearate	300 200 12 10
35	Gastric juice-resistant Endragit™ RS 100 and dibutylphthalate in methanol (7.2 parts and 0.8 parts)	

- 11 -

3.	Taurolidine or Taurultam	500
	Methocell™ E15LV premium	250
	Microcrystalline Cellulose	50
	Magnesium stearate	10
5		
4.	Taurolidine or Taurultam	300
	Methocell™ E15LV premium	
	(Hydroxypropylmethylcellulose)	200
	Microcrystalline Cellulose	50
10	Talc	16
	Magnesium stearate	2
	Aerosil™ 200	2
	gastric juice-resistant Endragit™	
	(Polymethacrylate)	
15		
	*Dextrates, purified mixture of	
	saccharides resulting from the	
	controlled enzymatic hydrolysis	
	of starch USP/HF 23/18	
20	Dose: 3-4 tablets daily or more, and in severe cases, enough tablets or capsules to deliver to the patient up to 10 grams or more Taurolidine per day.	
25	<u>Example 3</u> - Taurolidine Minimum Inhibition Concentrations (MICs) for methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) and vancomycin-resistant <i>Enterococcus faecalis</i> (VRE) strains.	
30	<u>Introduction</u>	
	<u>Methicillin-resistant Staph. aureus (EMRSA 15)</u>	
35	Because of their resistance characteristics, Staphylococci presently are the pathogens most responsible for severe nosocomial infections.	
	Against penicillinase resistant Betalactam-antibiotics such as methicillin, approximately 10% of	

- 12 -

the *Staphylococcus* strains are resistant. Methicillin-resistance is very problematic in the clinic, as it often happens that a multi-resistance develops. It can initiate invasive and difficult to treat toxin-medicated 5 infection processes. These *Staphylococci* are resistant against all antibiotics, including gyrase-inhibitors with the exception of vancomycin.

Vancomycin-resistant *Enterococcus faecalis*

10 In clinical practice, vancomycin-resistant strains of *Enterococcus faecalis* are on the increase.

Conclusion

15 Owing to its chemical mechanism of action with the bacterial cell wall, taurolidine is fully effective *in vitro* against pathogens which are resistant to antibiotics such as methicillin and vancomycin.

Taurolidine MICs for methicillin-resistant

20 *Staphylococcus aureus* (MRSA) and vancomycin-resistant *Enterococcus faecalis* (VRE) strains.

Test strains

25 All test strains were clinical isolates recovered from patients attending Hammersmith Hospital, London. Strains of *Staphylococcus aureus* (epidemic methicillin-resistant strain 15 (EMRSA 15) and vancomycin-resistant *Enterococcus faecalis* were broadly unselected isolates from local culture collections. However, strain 30 selection was conducted so as to ensure that isolates were not consecutive isolates from individual patients.

Local EMRSA 15 strains are typically resistant *in vitro* to penicillins, including methicillin (cloxacillin), erythromycin, clindamycin, ciprofloxacin, 35 aminoglycosides and mupirocin. Commonly encountered strains of VRE, designated HAM-I, show high level gentamicin resistance in addition to resistance *in vitro*

- 13 -

to ampicillin, erythromycin, vancomycin, teicoplanin.

Disc Sensitivity testing

All routine sensitivity testing was performed using
 5 a standard disc diffusion technique (Stokes) performed
 on Unipath (Oxoid) Diagnostic Sensitivity Test agar with
 5% lysed horse blood.

Control organisms

10 Testing of Staphylococci - *Staphylococcus aureus* (Oxford
 strain) NCTC 6571
 Testing for Enterococci - *Enterococcus faecium* NCTC
 12697

15 Inoculum & test procedure

Inocula for test and control organisms were
 prepared from overnight 37°C Unipath (Oxoid) Brain Heart
 Infusion broth cultures. From these well-mixed
 cultures, 2 drops (t/u ml) were transferred to 3 ml
 20 sterile water. This suspension was used to moisten
 sterile cotton tipped swabs which were then used with a
 rotary plater for inoculation of test plates.

Antibiotic discs

25 The following disc sets were used for sensitivity
 testing:

Staphylococci

	Trimethoprim	5 μ g	Gentamicin	10 μ g
30	Benzyl penicillin	1 unit	Cloxacillin	5 μ g
	Erythromycin	15 μ g	Rifampicin	2 μ g
	Clindamycin	2 μ g	Teicoplanin	30 μ g
	Fucidin	10 μ g	Ciprofloxacin	1 μ g
	Vancomycin	30 μ g	Mupirocin	30 μ g

- 14 -

Enterococci

	Ampicillin	10 μ g
	Vancomycin	30 μ g
	Teicoplanin	30 μ g
5	Gentamicin	200 μ g
	Chloramphenicol	20 μ g
	Erythromycin	15 μ g

Methicillin sensitivity testing

10 Methicillin (cloxacillin) sensitivity for Staphylococci was confirmed using a methicillin test strips (Methi-test, Medical Wire Limited - MW981) and a heavy inoculum. This was prepared by adding 5 colonies from an overnight nutrient agar plate culture 3ml water.

15 For each organism, including sensitive and resistant controls, a loop was charged with the heavy inoculum suspension and streaked across a Unipath (Oxoid) Diagnostic Sensitivity Test plus 5% lysed horse blood agar plate in a single direction. A methicillin strip was then placed on the surface of the plate at right angles to the inocula. Up to 4 test strains, plus sensitive (Oxford *Staphylococcus* NCTC 6571) and resistant controls were accommodated on each test plate. The plate was incubated overnight at 30°C.

25

Test interpretation

Methicillin

Test zones <5mm smaller than the control zone are SENSITIVE. Zones <5mm smaller than the control are 30 RESISTANT. There is no indeterminate category with methicillin.

Other drugs

Except for methicillin tests, interpretation of 35 results is based on the following criteria:

- 15 -

Sensitive	test zones greater than, equal to, or no more than 3mm smaller than the control zone
Resistant	test zones less than 3mm
5	
Indeterminate	test zone greater than 3mm, but more than 3mm less than the control zone.

10 **Taurolidine MICs**

Taurolidine MICs were performed using a sample of authenticated anhydrous micronised taurolidine batch number E/40522/4 (Geistlich Pharma AG, Wolhusen, Switzerland).

15 An aqueous stock solution of taurolidine was prepared to contain 2g/100ml taurolidine in water. This preparation was solubilized and sterilized by heating to 121°C (15 psi) for 15 minutes.

20 Using this stock solution, serial doubling dilution of taurolidine were prepared in Unipath (Oxoid) Nutrient Broth Number 2 using 50µl volumes in sterile round bottom microdilution trays. To these dilutions was added an equal volume of drug-free broth containing a suspension of the test organism to give a final inoculum 25 density of approximately 10³ cfu. Inocula were prepared from overnight drug-free broth cultures of each test organism in Unipath (Oxoid) Nutrient Broth Number 2.

Final test concentrations of taurolidine were as follows:

30

2,000 mg/l	735 mg/l
1,500 mg/l	250 mg/l
1,000 mg/l	190 mg/l
750 mg/l	125 mg/l
35 500 mg/l	62 mg/l

- 16 -

All tests were incubated at 37°C for 18 hours. The MIC was defined as the lowest concentration of drug showing no visible evidence of growth.

5 **Results**

The results of disc sensitivity testing and taurolidine MICs are summarised below. There appears no difference in level of susceptibility to taurolidine for the strains examined when compared to the reference 10 strain NCTC 6571 or the results from previous studies performed with fully sensitive strains.

TRI PEN ERY CLI FUC VAN GEN CLX RIF TEI CIP MUP AMP CHL Taurolidine MIC														
(mg/f1)														
15	<i>S. aureus</i>	S	R	R	R	S	S	R	R	S	S	R	R	500
		S	R	R	R	S	S	R	R	S	S	R	R	500
		S	R	R	R	S	S	R	R	S	S	R	R	500
		S	R	R	R	S	S	R	R	S	S	R	R	500
	<i>E. faecium</i>		R		R	R		R		R	S		750	
20			R		R	R		R		R	S		375	
			R		R	R		R		R	S		500	
			R		R	R		R		R	S		375	
	<i>S. aureus</i>	S	S	S	S	S	S	S	S	S	S	S	600	
	NCTC 6571													

25

Example 4 - Taurolidine Susceptibility of Enterococcus Species

Worldwide, vancomycin-resistant strains of 30 *Enterococcus faecium* and *Enterococcus faecalis* (VRE) are increasingly associated with severe morbidity and mortality among hospitalized patients. Particularly difficult is the increasing incidence of colonization with VRE seen among patients in long-term-care facilities and in those returning to community care which now present a major public health threat. Management of life-threatening infections caused by

- 17 -

these strains is particularly difficult as the range of therapeutic options is severely limited. Taurolidine (Taurolin®, Geistlich Pharma AG, Switzerland) is an antimicrobial medicament for parenteral or local 5 administration and is characterized by broad spectrum of antimicrobial activity as well as potentially valuable cytokine-moderating (anti-endotoxic) activity.

The *in vitro* susceptibility to taurolidine of a panel of clinical isolates and reference strains of 10 *Enterococcus faecium* (n=20, 7 strains vancomycin resistant) and *Enterococcus faecalis* (n=53, 5 strains vancomycin resistant) has been examined. There was no difference in degree of susceptibility between strains of *E. faecalis* (MIC mode 375 µg/ml, range 125-500 µg/ml) 15 and *E. faecium* (MIC mode 375 µg/ml, range 95-375 µg/ml). In all cases, the Minimum Bacteriocidal Concentration (MBC) of taurolidine was within 2 dilutions of the corresponding value for MIC confirming a bactericidal mode of action. *In vitro* resistance to taurolidine was 20 not observed.

No differences were noted between the MICs or MBCs for vancomycin-sensitive or vancomycin-resistant strains of Enterococci or for strains obtained from various locations across Europe (Switzerland, Germany, UK). On 25 the basis of these limited *in vitro* data, taurolidine provides a further therapeutic option for selected patients with severe or life threatening infections caused by VRE. The activity of this agent against vancomycin-resistant and vancomycin-sensitive strains of 30 Enterococci indicates that taurolidine adds a further dimension to the limited armamentarium available against these increasingly common bacterial pathogens.

The results are shown in Table 1.

- 18 -

TABLE 1

E. faecium (all strains)			E. faecium (VAN R strains)			E. faecium (VAN S strains)			
	MIC	MBC		MIC	MBC		MIC	MBC	
5	Mode	375	500	Mode	95	500	Mode	375	750
	Avg.	260	581	Avg.	161	446	Avg.	323	666
	Mean	260	581	Mean	161	446	Mean	323	666
	Median	250	500	Median	95	500	Median	375	750
10	Min.	95	375	Min.	95	375	Min.	125	500
	Max.	375	1000	Max.	250	500	Max.	375	1000
15	E. faecalis (all strains)		E. faecalis (VAN R strains)		E. faecalis (VAN S strains)		E. faecalis (VAN S) model		
	MIC	MBC		MIC	MBC		MIC	MBC	
	Mode	375	500	Mode	250	500	Mode	250	500
20	Avg.	310	606	Avg.	213	500	Avg.	289	566
	Mean	310	606	Mean	213	500	Mean	289	566
	Median	375	500	Median	250	500	Median	250	500
	Min.	125	375	Min.	125	500	Min.	190	375
	Max.	500	750	Max.	375	750	Max.	500	750

25

Example 5

Two percent taurolidine solution was tested against various bacteria at 5×10^4 CFU/well, according to Manual of Clinical Microbiology, 6th edition, P.R. Murray et al., pp. 1334-1335. The results are shown in Table 2.

- 19 -

TABLE 2

	Sample No.	Organism	MIC(mg/lt) 24 h	MIC(mg/lt) 48 h	MBC(mg/lt) 24 h	VE ¹ 30
5	1	<i>E. faecium</i>	190	250	500	S
	2	<i>E. faecium</i>	375	375	500	S
	3	<i>E. faecium</i>	190	250	500	S
10	4	<i>E. faecium</i>	250	250	375	R
	5	<i>E. faecium</i>	250	250	375	R
	6	<i>E. faecium</i>	</=95	190	50	R
	7	<i>E. faecium</i>	125	375	500	S
	8	<i>E. faecium</i>	</=95	190	500	R
	9	<i>E. faecium</i>	</=95	250	500	R
15	10	<i>E. faecium</i>	190	375	750	S
	11	<u>Staph. app.</u>	190	250	375	S
	12	<i>E. faecium</i>	</=95	190	375	S
	13	<i>E. faecium</i>	250	375	500	S
	14	<i>E. faecium</i>	375	375	750	S
20	15	<i>E. faecium</i>	375	375	500	S
	16	<i>E. faecium</i>	375	375	750	S
	17	<i>E. faecium</i>	375	375	750	S
	18	<i>E. faecium</i>	375	375	750	S
	19	<i>E. faecium</i>	375	375	750	S
25	20	<i>E. faecium</i>	375	375	1000	S
	21	<i>E. faecalis</i>	375	375	500	S
	22	<i>E. faecalis</i>	250	375	500	S
	23	<i>E. faecalis</i>	250	375	500	S
	24	<i>E. faecalis</i>	375	375	500	S
30	25	<i>E. faecalis</i>	375	375	500	S
	26	<i>E. faecalis</i>	375	375	500	S
	27	<i>E. faecalis</i>	250	250	500	S

- 20 -

28	E.faecalis	250	375	500	S
29	E.faecalis	190	250	500	S
30	E.faecalis	190	250	500	S
31	E.faecalis	375	375	500	S
5	32	E.faecalis	375	375	S
33	E.faecalis	250	250	750	S
34	E.faecalis	250	375	500	S
35	E.faecalis	250	250	500	S
10	36	E.faecalis	250	375	500
37	E.faecalis	250	250	500	S
38	E.faecalis	250	375	500	R
39	E.faecalis	250	375	500	S
40	E.faecalis	250	375	500	S
41	E.faecalis	190	190	500	R
15	42	E.faecalis	125	190	500
43	E.faecalis	250	375	750	S
44	E.faecalis	250	375	500	R
45	E.faecalis	250	250	500	S
46	E.faecalis	250	250	500	S
20	47	E.faecalis	250	250	500
48	E.faecalis	375	375	500	S
49	E.faecalis	250	375	500	S
50	E.faecalis	375	375	500	S
51	E.faecalis	375	500	750	S
25	52	E.faecalis	190	375	750
53	E.faecalis	375	375	750	S
54	E.faecalis	500	500	750	S
55	E.faecalis	375	500	750	S
56	E.faecalis	250	375	375	S
30	57	E.faecalis	375	500	750
58	E.faecalis	375	375	750	
59	E.faecalis	375	375	750	

- 21 -

5	60	E.faecalis	375	375	750	
	61	E.faecalis	375	500	750	
	62	E.faecalis	375	500	750	
	63	E.faecalis	375	500	750	
	64	E.faecalis	375	375	750	
	65	E.faecalis	375	375	750	
	66	E.faecalis	190	250	375	
	67	E.faecalis	375	375	750	
	68	E.faecalis	375	375	750	
	69	E.faecalis	250	500	750	
10	70	E.faecalis	375	500	750	
	71	E.faecalis	375	500	750	
	72	E.faecalis	375	375	750	
	73	E.faecalis	375	500	750	
15	74	E.faecalis	375	375	750	

¹VE30: Resistance to Vancomycin (30 µg/Disc)

R = Resistant to Vancomycin (VE)

S = Sensitive to VE

20208-1782

- 22 -

CLAIMS:

1. Use of an antimicrobial medicament selected from taurolidine, taurultam and combinations thereof in the manufacture of a therapeutic agent for oral or rectal administration in treating a microbial infection of the digestive tract, intestinal tract or gut of a patient.
2. Use as claimed in claim 1 wherein said therapeutic agent is for administration in the form of a tablet, capsule, liquid, suspension or suppository.
- 10 3. Use as claimed in claim 1 or 2 wherein the microbial infection to be treated is by an antibiotic-resistant microorganism.
4. Use as claimed in any one of claims 1 to 3 wherein the microbial infection to be treated is by a gram-negative or gram-positive bacterium.
- 15 5. Use as claimed in claim 1 or 2 wherein the microbial infection to be treated is by one or both of Enterococci and Staphylococci.
6. Use as claimed in claim 5 wherein the microbial infection to be treated is by one or both of antibiotic-resistant Enterococci and Staphylococci.
- 20 7. Use as claimed in claim 6 wherein the Enterococci are vancomycin-resistant *Enterococcus faecalis* (VRE).
8. Use as claimed in claim 6 wherein the Staphylococci are methicillin-resistant *Staphylococcus aureus* (MRSA).
- 25 9. Use as claimed in claim 1 or 2 wherein the microbial infection is by antibiotic-resistant *Enterococcus faecium*.

20208-1782

- 23 -

10. A pharmaceutical composition for one or both of oral and rectal administration, said composition comprising a tablet or capsule comprising an antimicrobial medicament selected from taurolidine, taurultam and combinations thereof, together with either a pharmaceutically acceptable delayed release excipient operatively associated with said medicament, or a pharmaceutically acceptable sustained release excipient operatively associated with said medicament.
- 10 11. A composition as claimed in claim 10 wherein said delayed release excipient is for delaying release of said medicament when for oral administration until entry into a patient's intestinal tract.
12. A composition as claimed in claim 10 wherein said sustained release excipient is for substantially continuous release of said medicament after entry into a patient's intestinal tract for a period of at least 3 hours.
13. A composition as claimed in claim 12 wherein said period of substantially continuous release is at least 8 hours.
14. A composition as claimed in any one of claims 10 to 13 for treatment of a microbial infection.
15. A composition as claimed in claim 14 wherein the microbial infection to be treated is by one or both of 25 Enterococci and Staphylococci.
16. A composition as claimed in claim 15 wherein the microbial infection to be treated is by one or both of antibiotic-resistant Enterococci and Staphylococci.

20208-1782

- 24 -

17. A composition as claimed in claim 16 wherein the Enterococci are vancomycin-resistant *Enterococcus faecalis* (VRE).
18. A composition as claimed in claim 16 wherein the 5 Staphylococci are methicillin-resistant *Staphylococcus aureus* (MRSA).
19. A composition as claimed in claim 14 wherein the microbial infection is by antibiotic-resistant *Enterococcus faecium*.
- 10 20. Use of an antimicrobial medicament selected from taurolidine, taurultam and combinations thereof for oral or rectal administration in treating a microbial infection of the digestive tract, intestinal tract or gut of a patient.
21. Use as claimed in claim 20 wherein said 15 therapeutic agent is for administration in the form of a tablet, capsule, liquid, suspension or suppository.
22. Use as claimed in claim 20 or 21 wherein the microbial infection to be treated is by an antibiotic-resistant microorganism.
- 20 23. Use as claimed in any one of claims 20 to 22 wherein the microbial infection to be treated is by a gram-negative or gram-positive bacterium.
24. Use as claimed in claim 20 or 21 wherein the microbial infection to be treated is by one or both of 25 Enterococci and Staphylococci.
25. Use as claimed in claim 24 wherein the microbial infection to be treated is by one or both of antibiotic-resistant Enterococci and Staphylococci.

20208-1782

- 25 -

26. Use as claimed in claim 25 wherein the Enterococci are vancomycin-resistant *Enterococcus faecalis* (VRE).

27. Use as claimed in claim 25 wherein the Staphylococci are methicillin-resistant *Staphylococcus aureus* (MRSA).

28. Use as claimed in claim 20 or 21 wherein the microbial infection is by antibiotic-resistant *Enterococcus faecium*.

29. An antimicrobial medicament selected from 10 taurolidine, taurultam and combinations thereof for oral or rectal administration in treating a microbial infection of the digestive tract, intestinal tract or gut of a patient.

30. An antimicrobial medicament as claimed in claim 29 wherein said therapeutic agent is for administration in the 15 form of a tablet, capsule, liquid, suspension or suppository.

31. An antimicrobial medicament as claimed in claim 29 or 30 wherein the microbial infection to be treated is by an antibiotic-resistant microorganism.

20 32. An antimicrobial medicament as claimed in any one of claims 29 to 31 wherein the microbial infection to be treated is by a gram-negative or gram-positive bacterium.

33. An antimicrobial medicament as claimed in claim 29 or 30 wherein the microbial infection to be treated is by 25 one or both of Enterococci and Staphylococci.

34. An antimicrobial medicament as claimed in claim 33 wherein the microbial infection to be treated is by one or both of antibiotic-resistant Enterococci and Staphylococci.

20208-1782

- 26 -

35. An antimicrobial medicament as claimed in claim 34 wherein the Enterococci are vancomycin-resistant *Enterococcus faecalis* (VRE).

36. An antimicrobial medicament as claimed in claim 34
5 wherein the Staphylococci are methicillin-resistant *Staphylococcus aureus* (MRSA).

37. An antimicrobial medicament as claimed in claim 29
or 30 wherein the microbial infection is by antibiotic-
resistant *Enterococcus faecium*.

FETHERSTONHAUGH & CO.

OTTAWA, CANADA

PATENT AGENTS