生物电采集前段电路

本发明公开了一种生物电采集前段电路，包括仪表放大器、缓冲放大器、反向积分电路和电缆屏蔽层接口，位于所述仪表放大器的正极通道和负极通道之间设有用于提取共模信号的等值电阻，所述等值电阻上提取的共模信号传输至缓冲放大器，所述缓冲放大器与所述仪表放大器相连的增益电阻用于提取共模信号，所述增益电阻中提取的共模信号传输至缓冲放大器，所述缓冲放大器将处理过的信号传输至反向积分电路，所述反向积分电路接收信号至信号源。本发明的结构简明，成本较低，有利于提高共模信号提取时的鲁棒性，信号更加稳定，准确性也更高。
1. 一种生物电采集前段电路，其特征在于：包括仪表放大器、缓冲放大器、反向积分电路和电缆屏蔽层接口，位于所述仪表放大器的正极通道和负极通道之间设有用于提取共模信号的等值电阻，所述等值电阻上提取的共模信号传输至缓冲放大器，所述缓冲放大器将处理过的信号传输至反向积分电路，所述反向积分电路将反馈信号至信号源。

2. 根据权利要求1所述的一种生物电采集前段电路，其特征在于：所述电缆屏蔽层的输出端口与缓冲放大器的输出端口相连用于接受共模电压。

3. 根据权利要求1或2所述的一种生物电采集前段电路，其特征在于：所述仪表放大器、缓冲放大器和反向积分电路均单独供电。

4. 根据权利要求3所述的一种生物电采集前段电路，其特征在于：还包括有供电中点用于作为参考接地。
生物电采集前段电路

技术领域
[0001] 本发明涉及一种信号采集电路，尤其涉及一种用于采集生物电信号的电路。

背景技术
[0002] 公知的，生物的电磁现象是生命活动的基本特征之一，各种生物均有电磁活动的表现。生物电的检测在医疗研究和临床诊断上具有重要的应用价值。已有许多生物电检测仪器在临床上得到广泛的应用，如心电图机、脑电图机等等。但由于生物电信号微弱，又常常存在许许多多的严重干扰信号，许多人仍然在进行生物电信号的检测方法和电路的研究。例如现有的右腿驱动电路提供了一种自动检测方法，被广泛应用在各种生物电的测量电路中。它可以给电路提供额外的共模抑制比，抑制包括信号源自身（比如人体皮肤的共模信号）及供电线噪声等在内的一些共模干扰信号。右腿驱动电路通过提取出电路中的共模信号并施加相应变换后反馈到信号源来实现消除共模信号的功能。但是在低压应用中，该电路处理后的信号稳定性还是显得不足，且准确性也偏低。

发明内容
[0003] 本发明为了解决背景技术中所涉及的技术问题，提供了一种生物电采集前段电路。
[0004] 本发明的技术方案是：一种生物电采集前段电路，包括仪表放大器、缓冲放大器、反向积分电路和电编屏蔽层接口，位于所述仪表放大器的正极通道和负极通道之间设置用于提取共模信号的等值电阻，从所述等值电阻上提取的共模信号传输至缓冲放大器，与所述仪表放大器相连的增益电阻也于提取共模信号，从所述电阻中提取的共模信号传输至缓冲放大器，所述缓冲放大器将处理过的信息传输至方向积分电路，所述反向积分电路反馈信号至信号源。
[0005] 本方案中，通过同时从正负极通道中的等值电阻和增益电阻上提取共模信号有利于提高共模信号提取时的鲁棒性，相比与单独从等值电阻或增益电阻上提取共模信号而言，信号更加稳定，准确性也更高。
[0006] 作为一种优选，所述电编屏蔽层接口与缓冲放大器的输出端口相连用于接受共模电压。
[0007] 可以有效地降低电缆的电容性，且较为经济实用，无需额外添加放大器元件来消除电容性。
[0008] 作为一种优选，所述仪表放大器、缓冲放大器和反向积分电路均单独供电。
[0009] 作为一种优选，还包括有供电中点用于作为参考接地。
[0010] 综上所述，本发明具有以下优点：
本发明的结构简明，成本较低，有利于提高共模信号提取时的鲁棒性，信号更加稳定，准确性也更高。
附图说明

[0011] 图 1 为本实施例的示意图。

具体实施方式

[0012] 下面结合附图以实施例对本发明作进一步说明。

[0013] 如图 1 所示，一种生物电采集前端电路，包括仪表放大器 1、缓冲放大器 2、反向积分电路 3 和电缆屏蔽层接口 4，位于所述仪表放大器 1 的正极通道 11 和负极通道 12 之间设有用于提取共模信号的等值电阻 R1，从所述等值电阻 R1 上提取的共模信号传输至缓冲放大器 2，与所述仪表放大器 1 相连的增益电阻 R2 也用于提取共模信号，从前述增益电阻 R2 中提取的共模信号传输至缓冲放大器 2，所述缓冲放大器 2 将处理过的信号传输至反向积分电路 3，所述反向积分电路 3 回馈信号至信号源 5。所述电缆屏蔽层接口 4 与缓冲放大器 2 的输出端口相连用于接受共模电压。所述仪表放大器 1、缓冲放大器 2 和反向积分电路 3 均单独供电。还包括有供电中点 VGND 用于作为参考接地。

[0014] 本电路结构中的供电中点 VGND 作为实际参考地，给正负极的电压添加该中点电压大小的偏置用于解决器件无法输出负电压的问题。首先电路中使用 R1、R2 电阻提取出共模信号并引入放大缓冲器 2，这样便于在放大缓冲器 2 的输出端得到所需的共模信号，然后利用反向积分电路 3 将该共模信号反向积分后接回信号源 5 通常是人体的皮肤上，构成反馈回路，如此便能有效地消除共模信号。

[0015] 以上说明仅是对本发明的解释，使得本领域普通技术人员能完整的实施该方案，但并不是对本发明的限制，本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改，这些都是不具有创造性的修改。但只要在本发明的权利要求范围内都受到专利法的保护。
图 1