WO 2006/081508 A1 | |00 000 0 000 0D 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 August 2006 (03.08.2006)

PO 10 RN

(10) International Publication Number

WO 2006/081508 A1l

(51) International Patent Classification:
GOGF 21/20 (2006.01)

(21) International Application Number:
PCT/US2006/003114
(22) International Filing Date: 26 January 2006 (26.01.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/648,669
11/255,311

28 January 2005 (28.01.2005)
21 October 2005 (21.10.2005)

Us
Us

(71) Applicant (for all designated States except US): CITRIX
SYSTEMS, INC. [US/US]; 851 West Cypress Creek Road,
Fort Lauderdale, Florida 33309 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RAO, Goutham
[US/US]; c/o Citrix Gateways, 2740 Zanker Road, Suite
201, San Jose, California 95134 (US). MCCARTHY,

(74)

(81)

(84)

Lewis [US/US]; c/o Citrix Gateways, 2740 Zanker Road,
Suite 201, San Jose, California 95134 (US). SIMMONS,
Timothy, Ernest [US/US]; C/O Citrix Systems, Inc., 851
West Cypress Creek Road, Fort Lauderdale, Florida 33309
(US).

Agent: 1LANZA, John, D.; Choate Hall & Stewart, Two
International Place, Boston, Massachusetts 02110 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: A METHOD AND SYSTEM FOR VERIFICATION OF AN ENDPOINT SECURITY SCAN

Receiving a Request from a Node to
Access a Resource

602

(57) Abstract: A method of granting access to resources includes the step of re-
ceiving a request from a node to access a resource. A scanning agent is generated to

1 gather information about the node. A key is generated and embedded in the scanning

Generating a Scanning Agent to Gather
Information about the Node

i

l Generating at least one Key 606

!

Embedding in the Scanning Agent the at 5
least one Generated Key

=3

8

Transmitting the Scanning Agent to the
Node

!

Gathering, by the Scanning Agent,
Information Regarding the Node

I

Encrypting, by the Scanning Agent, the
Gathered Information using the at least
one Generated Key

Receiving from the Scanning Agent the
Encrypted Gathered Information

I

Decrypting the Encrypted Gathered
Information

)

Generate Data Set Based on Received 520
Information

]

Generate Enumeration of Resources
Available to the Node

ENG

2

614

3
o

o

622

agent. The scanning agent is transmitted to the node and gathers information regard-
ing the node. The scanning agent encrypts the gathered information using the at least
one generated key. The encrypted gathered information is received from the scanning
agent and decrypted.

WO 2006/081508 A1 I} N1VYH0 T 000 0000

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, — before the expiration of the time limit for amending the
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, claims and to be republished in the event of receipt of
RO, SE, SI, SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, amendments

GN, GQ, GW, ML, MR, NE, SN, TD, TG).
For two-letter codes and other abbreviations, refer to the "Guid-
Published: ance Notes on Codes and Abbreviations" appearing at the begin-
— with international search report ning of each regular issue of the PCT Gazette.

WO 2006/081508 PCT/US2006/003114

AMETHOD AND SYSTEM FOR
VERIFICATION OF AN ENDPOINT SECURITY SCAN

Field of the Invention

The present invention relates to a method and system for endpoint
security and, in particular, to a method and system for verification of an
endpoint security scan.

Background of the Invention

Before an endpoint gains access to corporate enterprise network
infrastructure and resources, it is increasingly becoming necessary to
determine that the endpoint has undergone host security checks and audits to
verify that it meets corporate information technology policies. Examples of
such checks include, without limitation, verifying that the anti-virus software on
the endpoint is up to date, that the latest operating system patches have been
installed and that no malicious software is executing on the endpoint.
Performing these checks minimizes the infection of other connected corporate
assets by a compromised endpoint.

Conventional solutions typically deploy software to collect data and
evidence from an endpoint. The collected data is presented to an access
infrastructure or other security gateway, which then determines what the
endpoint may access. A problem with these approaches is that they typically
rely on the assumption that the data from the endpoint has not been corrupted
or compromised by a malicious attack, such as a man-in-the-middle attack.
Corrupted endpoints can “spoof” endpoint evidence collection and report a
favorable result even though the endpoint may actually be in violation of
corporate policies. Additionally, a large number of corporate attacks come
from trusted users, for a variety of social reasons. These attacks exploit
solutions that rely on compliant end users by reporting false evidence. This
creates information technology threats and creates a false sense of security.

WO 2006/081508 PCT/US2006/003114

Summary of the Invention

The present invention relates to a method of and system for verification
of an endpoint security scan. A scanning agent collecting evidence about the
endpoint includes an embedded encryption key which is use to encrypt
collected evidence. Execution of the scanning agent is required to access the
key. Encrypting the collected evidence with the proper key verifies that the
appropriate scanning agent was executed. Execution of the appropriate
scanning agent verifies accuracy of the collected evidence and prevents
manipulation of the scanning agent, either by a malicious “man in the middle”
or a user.

In one aspect, the invention relates to a method of granting access to
resources. A request is received from a node to access a resource. A
scanning agent is generated to gather information about the node. At least
one key is generated and embedded in the scanning agent. The scanning
agent is transmitted to the node and gathers information about the node. The
scanning agent encrypts the gathered information using the at least one
generated key. The encrypted gathered information is received from the
scanning agent and decrypted.

In one embodiment, the generated scanning agent comprises a
selection of a subset of scan routines chosen from a plurality of available scan
routines. In another embodiment, the scanning agent may comprise
obfuscated program code.

In another aspect, the invention relates to a system for granting access
to resources by an access gateway. The system includes a receiver, an
agent constructor, a key generator, an encryption function generator, and a
decryptor. The receiver receives a request to access a resource. The agent
constructor generates a scanning agent for gathering information about the
requestor. The key generator, which is in communication with the receiver
and the agent constructor, generates at least one key. The encryption
function generator, in communication with the agent constructor and the key
generator, embeds the at least one generated key in the generated scanning
agent. The decryptor, in communication with the receiver and the key
generator, receives encrypted gathered information about the requestor and
decrypts the gathered information.

4037061 2

WO 2006/081508 PCT/US2006/003114

In one embodiment, the agent constructor selects a subset of a
plurality of scan routines for execution on the requestor. In another
embodiment, the agent constructor further comprises a transmitter for
transmitting the generated scanning agent to the requestor. In still another
embodiment, the receiver receives encrypted gathered information from the
scanning agent and transmits the received encrypted gathered information to
the decryptor.

Brief Description of the Drawings

These and other aspects of this invention will be readily apparent from
the detailed description below and the appended drawings, which are meant
to illustrate and not to limit the invention, and in which:

FIG. 1Ais a block diagram depicting one embodiment of a computer
network constructed in accordance with the invention;

FIG. 1B is a block diagram depicting one embodiment useful in
connection with the present invention of a policy engine;

FIG. 2A and 2B are block diagrams depicting embodiments of a
computer useful in connection with the present invention;

FIG. 3 is a block diagram depicting one embodiment of an access
gateway;

FIG. 4 is a block diagram depicting one embodiment of a scanning
agent;

FIG. & is a flow diagram summarizing one embodiment of the steps
taken to generate a scanning agent;

FIG. 6 is a flow diagram depicting one embodiment of the steps taken
in a method to grant access to resources;

FIG. 7A is a block diagram of an embodiment of a computer network in
which the network provides policy-based access to file contents for an
endpoint;

FIG. 7B is a flow diagram depicting one embodiment of the steps taken
by an application server farm to provide file contents to an endpoint;

FIG. 8 is a block diagram of an embodiment of a computer network in
which the network grants access to transformed content of a resource;

4037061 3

WO 2006/081508 PCT/US2006/003114

FIG. 9 is a flow diagram depicting one embodiment of the steps taken
by a transformation server to transform the content of the requested file and
present the transformed contents to an endpoint;

FIG. 10A is a block diagram of an embodiment of a computer network
in which authorized remote access to a plurality of application sessions is
provided; and

FIG. 10B is a flow diagram depicting one embodiment of the steps
taken by a session server to connect a node with its associated application

sessions.

Detailed Description of the Invention

Referring now to FIG. 1A, one embodiment of a computer network 100
constructed in accordance with the invention is depicted, which includes an
endpoint 102, a scanning agent 104, an access gateway 106, a policy
database 108, and a server farm 114. In the embodiment shown in FIG. 1A,
the server farm 114 includes a protected server 116. Although only one
endpoint 102, scanning agent 104, access gateway 1086, server farm 114, and
protected server 116 are depicted in the embodiment shown in FIG. 1A, it
should be understood that the system may provide multiple ones of any or
each of those components. For example, in one embodiment, the system 100
includes multiple, logically-grouped protected servers 116, at least some of
which are available to execute applications on behalf of an endpoint 102. In
these embodiments, the logical group of protected servers may be referred to
as a “server farm." In some of these embodiments, the servers may be
geographically dispersed.

In brief overview, when the endpoint 102 transmits a request 110 to the
access gateway 106 for access to a resource, the scanning agent 104
communicates with endpoint 102, retrieves information about the endpoint
102, and transmits the endpoint information 112 to the access gateway 106.
The access gateway 106 makes an access control decision by applying a
policy from the policy database 108 to the received information 112.

In more detail, the endpoint 102 transmits a request 110 for a resource
to the access gateway 106. In some embodiments, the endpoint 102
transmits the request 110 over a network connection. The network can be a

4037061 4

WO 2006/081508 PCT/US2006/003114

local area network (LAN), a metropolitan area network (MAN), or a wide area
network (WAN) such as the Internet. The endpoint 102 and the access
gateway 106 may connect to a network through a variety of connections
including standard telephone lines, LAN or WAN links (e.g., T1, T3, 56 kb,
X.25), broadband connections (ISDN, Frame Relay, ATM), and wireless
connections. Connections between the endpoint 102 and the access gateway
106 may use a variety of data-link layer communication protocols (e.g.,
TCP/P, IPX, SPX, NetBIOS, NetBEUI, SMB, Ethernet, ARCNET, Fiber
Distributed Data Interface (FDDI), RS232, IEEE 802.11, IEEE 802.11a, IEE
802.11b, IEEE 802.11g and direct asynchronous connections).

Upon receiving the request, the access gateway 1086 initiates
information gathering by the scanning agent 104. The scanning agent 104
gathers information 112 regarding the endpoint 102 and transmits the
information 112 to the access gateway 106.

In some embodiments, the scanning agent 104 gathers and transmits
the information 112 over a network connection. In some embodiments, the
scanning agent 104 comprises bytecode, such as an application written in the
bytecode programming language JAVA. In some embodiments, the scanning
agent 104 comprises at least one script. In those embodiments, the scanning
agent 104 gathers information by running at least one script on the endpoint
102. In some embodiments, the scanning agent 104 comprises an Active X
control on the endpoint 102. An Active X control is a specialized COM
(Component Object Model) object that implements a set of interfaces that
enable it to look and act like a control.

In some embodiments, the scanning agent 104 executes on the
endpoint 102. In other embodiments, the scanning agent 104 executes on the
access gateway 106. In still other embodiments, the scanning agent 104
executes on a server.

In one embodiment, the access gateway 106 transmits the scanning
agent 104 to the endpoint 102. In one embodiment, the access gateway 106
requires a second execution of the scanning agent 104 after the scanning
agent 104 has transmitted information 112 to the access gateway 106. In this
embodiment, the access gateway 106 may have insufficient information 112
to determine whether the endpoint 102 satisfies a particular condition in a

4037061 5

WO 2006/081508 PCT/US2006/003114

policy. In other embodiments, the access gateway 106 requires a plurality of
executions of the scanning agent 104 in response to received information
112.

The scanning agent 104 gathers information 112 including, without
limitation, machine ID of the endpoint 102, operating system type, existence
of a patch to an operating system, MAC addresses of installed network cards,
a digital watermark on the client device, membership in an Active Directory,
existence of a virus scanner, existence of a personal firewall, an HTTP
header, browser type, device type, network connection information, and
authorization credentials.

In some embodiments, the digital watermark includes data embedding.
In some embodiments, the watermark comprises a pattern of data inserted
into a file to provide source information about the file. In other embodiments,
the watermark comprises data-hashing files to provide tamper detection. In
other embodiments, the watermark provides copyright information about the
file.

In some embodiments, the network connection information pertains to
bandwidth capabilities. In other embodiments, the network connection
information pertains to Internet Protocol address. In still other embodiments,
the network connection information consists of an Internet Protocol address.
In one embodiment, the network connection information comprises a network
zone identifying the logon agent to which the endpoint 102 provided
authentication credentials.

In some embodiments, the authorization credentials include a number
of types of authentication information, including without limitation, user names,
client names, client addresses, passwords, PINs, voice samples, one-time
passcodes, biometric data, digital certificates, tickets, etc. and combinations
thereof. After receiving the gathered information 112, the access gateway
106 makes an access control decision based on the received information 112.

Referring now to FIG. 1B, one embodiment of the invention is depicted
in which the network of FIG. 1A further comprises a policy engine 150. The
policy engine 150 may include a first component 152 comprising a condition
database 154 and a logon agent 156, and including a second component 160
comprising a policy database 162. The first component 152 applies a

4037061 6

WO 2006/081508 PCT/US2006/003114

condition from the condition database 154 to information received about
endpoint 102 and determines whether the received information satisfies the
condition.

In one embodiment, the policy engine 150 resides on the access
gateway 106. In another embodiment, the policy engine 150 resides on a
separate computer system than the access gateway 106. In some
embodiments, the first component 152 and the second component 160 are
logically separate but not physically separate. In some embodiments, the first
component 152 and the second component 160 are logically and physically
separate. In some embodiments, the condition database 154 resides on the
first component 152. In other embodiments, the condition database 154
resides on the second component 160.

In some embodiments, a condition may require that the endpoint 102
execute a particular operating system to satisfy the condition. In some
embodiments, a condition may require that the endpoint 102 execute a
particular operating system patch to satisfy the condition. In still other
embodiments, a condition may require that the endpoint 102 provide a MAC
address for each installed network card to satisfy the condition. In some
embodiments, a condition may require that the endpoint 102 indicate
membership in a particular Active Directory to satisfy the condition. In another
embodiment, a condition may require that the endpoint 102 execute a virus
scanner to satisfy the condition. In other embodiments, a condition may
require that the endpoint 102 execute a personal firewall to satisfy the
condition. In some embodiments, a condition may require that the endpoint
102 comprise a particular device type to satisfy the condition. In other
embodiments, a condition may require that the endpoint 102 establish a
particular type of network connection to satisfy the condition.

If the received information satisfies a condition, the first component 152
stores an identifier for that condition in a data set 158. In one embodiment,
the received information satisfies a condition if the information makes the
condition true. For example, a condition may require that a particular
operating system be installed. If the endpoint 102 has that operating system,
the condition is true and satisfied. In another embodiment, the received
information satisfies a condition if the information makes the condition false.

4037061 7

WO 2006/081508 PCT/US2006/003114

For example, a condition may address whether spyware exists on the
endpoint 102. If the endpoint 102 does not contain spyware, the condition is
false and satisfied.

In some embodiments, the logon agent 156 resides outside of the
policy engine 150. In other embodiments, the logon agent 156 resides on the
policy engine 150. In one embodiment, the first component 152 includes a
logon agent 156, which initiates the information gathering about endpoint 102.
In some embodiments, the logon agent 156 further comprises a data store. In
these embodiments, the data store includes the conditions for which the
scanning agent may gather information. This data store is distinct from the
condition DB 154.

In some embodiments, the logon agent 156 initiates information
gathering by executing the scanning agent 104. In other embodiments, the
logon agent 156 initiates information gathering by transmitting the scanning
agent 104 to the endpoint 102 for execution on the endpoint 102. In still other
embodiments, the logon agent 156 initiates additional information gathering
after receiving information 112. In one embodiment, the logon agent 156 also
receives the information 112. In this embodiment, the logon agent 156
generates the data set 158 based upon the received information 112. In
some embodiments, the logon agent 156 generates the data set 158 by
applying a condition from the database 154 to the information received from
the scanning agent 104.

In some embodiments, an endpoint 102 has authenticated itself to a
VPN Access Gateway and securely transmits a request for a direct
connection to a resource on a protected network. In one of these
embodiments, although the endpoint 102 has authenticated itself, no
determination has been made as to what resources the endpoint 102 is
authorized to access. In some of these embodiments therefore, the logon
agent 156 intercepts any packet transmitted to a resource on the network. In
one of these embodiments, the logon agent 156 analyzes the intercepted
packet and identifies a request for a resource. In another of these
embodiments, the logon agent 156 applies a policy to the request contained
within the packet to determine whether to allow or deny the request. In still
another of these embodiments, the logon agent 156 transmits a scanning

4037061 8

WO 2006/081508 PCT/US2006/003114

agent 104 to the endpoint 102 to acquire information 112 that the logon agent
156 may use in applying the policy to the request. In these embodiments,
intercepting and analyzing connections to a resource on a network and
requests for the resource enables increased policy-based control over access
to network resources.

In another embodiment, the first component 152 includes a plurality of
logon agents 156. In this embodiment, at least one of the plurality of logon
agents 156 resides on each network domain from which an endpoint 102 may
transmit a resource request. In this embodiment, the endpoint 102 transmits
the resource request to a particular logon agent 156. In some embodiments,
the logon agent 156 transmits to the policy engine 150 the network domain
from which the endpoint 102 accessed the logon agent 156. In one
embodiment, the network domain from which the endpoint 102 accesses a
logon agent 156 is referred to as the network zone of the endpoint 102,

The condition database 154 stores the conditions which the first
component 152 applies to received information. The policy database 162
stores the policies which the second component 160 applies to the received
data set. In some embodiments, the condition database 154 and the policy
database 162 store data in an ODBC-compliant database. For example, the
condition database 154 and the policy database 162 may be provided as an
ORACLE database, manufactured by Oracle Corporation of Redwood Shores,
California. In other embodiments, the condition database 154 and the policy
database 162 can be a Microsoft ACCESS database or a Microsoft SQL
server database, manufactured by Microsoft Corporation of Redmond,
Washington.

After the first component 152 applies the received information to each
condition in the condition database 154, the first component transmits the
data set 158 to second component 160. In one embodiment, the first
component 152 transmits only the data set 158 to the second component 160.
Therefore, in this embodiment, the second component 160 does not receive
information 112, only identifiers for satisfied conditions. The second
component 160 receives the data set 158 and makes an access control
decision by applying a policy from the policy database 162 based upon the
conditions identified within data set 158.

4037061 9

WO 2006/081508 PCT/US2006/003114

In one embodiment, the policy database 162 stores the policies applied
to the received information 112. In one embodiment, the policies stored in the
policy database 162 are specified at least in part by the system administrator.
In another embodiment, a user specifies at least some of the policies stored in
the policy database 162. The user-specified policy or policies are stored as
preferences. The policy database 162 can be stored in volatile or non-volatile
memory or, for example, distributed through multiple servers.

In one embodiment, a policy allows access to a resource only if one or
more conditions are satisfied. In another embodiment, a policy allows access
to a resource but prohibits transmission of the resource to the endpoint 102.
One of the policies stored in the policy database 162 might require or forbid
automatic connection to disconnected application sessions. Yet another
policy might make connection contingent on the endpoint 102 that requests
access being within a secure network. Another policy might require or forbid
automatic connection to active application sessions currently connected to a
different endpoint 102. A further policy might only allow connection to
application sessions after receiving user approval. Another policy might only
allow connection for a predetermined time after disconnection. Still another
policy only allows connection to application sessions that include specific
applications. One policy might allow viewing only of the transformed contents
of a requested file. A policy might allow the viewing of only an HTML version
of the requested file. In some embodiments, access to a resource is provided
while download of the file to the endpoint 102 is prevented. This may be
accomplished in a number of ways, including: transformation of the file
contents into a viewer-only format, transforming the file contents into HTML
for viewing by a web browser, use of file type association to open the file
using an application hosted by a server in a server farm instead of using an
application hosted by the endpoint 102, or by using a system of the sort
described in US Application serial number 10/931405, the contents of which
are incorporated herein by reference.

In some of the embodiments above, the method and apparatus provide
document protection for proprietary information. In these embodiments, the
endpoint 102 cannot access the networked resources unless the policy
engine 150 grants the endpoint 102 permission to access the resources. In

4037061 10

WO 2006/081508 PCT/US2006/003114

one of these embodiments, the policy engine 150 is the single exposed
network element, to ensure that the endpoint 102 must access the policy
engine 150 in order to access the networked resources. In another of these
embodiments, the URLs used to access the networked resources behind the
policy engine 150 are rewritten to prevent direct access by the endpoint 102.
In others of the embodiments above, the method and apparatus enhance the
capabilities of the endpoint 102 to access resource otherwise inaccessible. In
some of the embodiments above, the method and apparatus provide both
protection of proprietary information and enhanced endpoint 102 capabilities.

In some embodiments, the endpoint 102 is a personal digital assistant.
In other embodiments, the endpoint 102 is a cellular telephone. In other
embodiments, the endpoint 102 is a laptop computer. In other embodiments,
the endpoint 102 is a desktop computer. In other embodiments, the endpoint
102 is an Internet kiosk.

For embodiments in which the endpoint 102 is a mobile device, the
device may be a JAVA-enabled cellular telephone, such as the i55sr, i58sr,
i85s, or the i88s, all of which are manufactured by Motorola Corp. of
Schaumburg, lllinois; the 6035 or the 7135, manufactured by Kyocera of
Kyoto, Japan; or the i300 or i330, manufactured by Samsung Electronics Co.,
Ltd., of Seoul, Korea. A typical mobile device may comprise many of the
elements described in FIG. 2A and 2B, including the processor 202 and the
main memory 204.

In other embodiments in which the endpoint 102 is a mobile device, it
may be a personal digital assistant (PDA) operating under control of the
PalmOS operating system, such as the Tungsten W, the VIi, the VIIx, the
i705, all of which are manufactured by palmOne, Inc. of Milpitas, California. In
further embodiments, the endpoint 102 may be a personal digital assistant
(PDA) operating under control of the PocketPC operating system, such as the
IPAQ 4155, iPAQ 5555, IPAQ 1945, iPAQ 2215, and iPAQ 4255, all of which
manufactured by Hewlett-Packard Corporation of Palo Alto, California; the
ViewSonic V36, manufactured by ViewSonic of Walnut, California; or the
Toshiba PocketPC €405, manufactured by Toshiba America, Inc. of New
York, New York. In still other embodiments, the endpoint 102 is a
combination PDA/telephone device such as the Treo 180, Treo 270, Treo

4037061 11

WO 2006/081508 PCT/US2006/003114

600, or the Treo 650, all of which are manufactured by palmOne, Inc. of
Milpitas, California. In still further embodiments, the endpoint 102 is a cellular
telephone that operates under control of the PocketPC operating system,
such as the MPx200, manufactured by Motorola Corp. A typical combination
PDA/telephone device may comprise many of the elements described below
in FIG. 2A and 2B, including the processor 202 and the main memory 204.

In some embodiments, the access gateway 106 comprises a
standalone computer server. In other embodiments, the access gateway 106
comprises a rack mount computer. In still other embodiments, the access
gateway 106 comprises a blade server. In some embodiments, the protected
server 116 comprises a standalone computer server. In other embodiments,
the protected server 116 comprises a rack mount computer. In still other
embodiments, the protected server 116 comprises a blade server.

FIG. 2A and 2B depict block diagrams of embodiments in which the .
endpoint 102, the access gateway 106, or the protected server 116 comprise
a typical computer 200. The computer 200 may be provided as a personal
computer or computer server, of the sort manufactured by the Hewlett-
Packard Corporation of Palo Alto, California, or the Dell Corporation of Round
Rock, Texas. As shown in FIG. 2A and 2B, each computer 200 includes a
central processing unit 202, and a main memory unit 204. Each computer
200 may also include other optional elements, such as one or more
input/output devices 230a-230n (generally referred to using reference numeral
230), and a cache memory 240 in communication with the central processing
unit 202.

The central processing unit 202 is any logic circuitry that responds to
and processes instructions fetched from the main memory unit 204. In many
embodiments, the central processing unit is provided by a microprocessor
unit, such as: the 8088, the 80286, the 80386, the 80486, the Pentium,
Pentium Pro, the Pentium I, the Pentium Ill, Pentium IV, Pentium M, the
Celeron, or the Xeon processor, all of which are manufactured by Intel
Corporation of Mountain View, California; the 68000, the 68010, the 68020,
the 68030, the 68040, the PowerPC 601, the PowerPC604, the
PowerPC604¢e, the MPC603e, the MPC603ei, the MPC603ev, the MPC603r,
the MPC603p, the MPC740, the MPC745, the MPC750, the MPC755, the

4037061 12

WO 2006/081508 PCT/US2006/003114

MPC7400, the MPC7410, the MPC7441, the MPC7445, the MPC7447, the
MPC7450, the MPC7451, the MPC7455, the MPC7457 processor, all of
which are manufactured by Motorola Corporation of Schaumburg, Illinois; the
Crusoe TM5800, the Crusoe TM5600, the Crusoe TM5500, the Crusoe
TM5400, the Efficeon TM8600, the Efficeon TM8300, or the Efficeon TM8620
processor, manufactured by Transmeta Corporation of Santa Clara,
California; the RS/6000 processor, the RS64, the RS 64 Il, the P2SC, the
POWERS, the RS64 IlI, the POWER3-I|, the RS 64 |V, the POWERA4, the
POWER4+, the POWERS, or the POWERS6 processor, all of which are
manufactured by International Business Machines of White Plains, New York;
or the AMD Opteron, the AMD Athlon 64 FX, the AMD Athlon, or the AMD
Duron processor, manufactured by Advanced Micro Devices of Sunnyvale,
California.

Main memory unit 204 may be one or more memory chips capable of
storing data and allowing any storage location to be directly accessed by the
microprocessor 202, such as Static random access memory (SRAM), Burst
SRAM or SynchBurst SRAM (BSRAM), Dynamic random access memory
(DRAM), Fast Page Mode DRAM (FPM DRAM), Enhanced DRAM (EDRAM),
Extended Data Output RAM (EDO RAM), Extended Data Output DRAM (EDO
DRAM), Burst Extended Data Output DRAM (BEDO DRAM), Enhanced
DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC SRAM, PC100
SDRAM, Double Data Rate SDRAM (DDR SDRAM), Enhanced SDRAM
(ESDRAM), SyncLink DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM),
or Ferroelectric RAM (FRAM).

In the embodiment shown in FIG. 2A, the processor 202 communicates
with main memory 204 via a system bus 220 (described in more detail below).
FIG. 2B depicts an embodiment of a computer system 200 in which the
processor communicates directly with main memory 204 via a memory port.
For example, in FIG. 2B, the main memory 204 may be DRDRAM.

FIG. 2A and 2B depict embodiments in which the main processor 202
communicates directly with cache memory 240 via a secondary bus,
sometimes referred to as a “backside” bus. In other embodiments, the main
processor 202 communicates with cache memory 240 using the system bus

4037061 13

WO 2006/081508 PCT/US2006/003114

220. Cache memory 240 typically has a faster response time than main
memory 204 and is typically provided by SRAM, BSRAM, or EDRAM.

In the embodiment shown in FIG. 2A, the processor 202 communicates
with various I/O devices 230 via a local system bus 220. Various buses may
be used to connect the central processing unit 202 to the /O devices 230,
including a VESA VL bus, an ISA bus, an EISA bus, a MicroChannel
Architecture (MCA) bus, a PCI bus, a PCI-X bus, a PCI-Express bus, or a
NuBus. For embodiments in which the /O device is a video display, the
processor 202 may use an Advanced Graphics Port (AGP) to communicate
with the display. FIG. 2B depicts an embodiment of a computer 200 in which
the main processor 202 communicates directly with /O device 230b via
HyperTransport, Rapid I/O, or InfiniBand. FIG. 2B also depicts an
embodiment in which local busses and direct communication are mixed: the
processor 202 communicates with I/O device 230a using a local interconnect
bus while communicating with 1/0O device 230b directly.

A wide variety of I/O devices 230 may be present in the computer 200.
Input devices include keyboards, mice, trackpads, trackballs, microphones,
and drawing tablets. Output devices include video displays, speakers, inkjet
printers, laser printers, and dye-sublimation printers.

In further embodiments, an I/O device 230 may be a bridge between
the system bus 220 and an external communication bus, such as a USB bus,
an Apple Desktop Bus, an RS-232 serial connection, a SCSI bus, a FireWire
bus, a FireWire 800 bus, an Ethernet bus, an AppleTalk bus, a Gigabit
Ethernet bus, an Asynchronous Transfer Mode bus, a HIPPI bus, a Super
HIPPI bus, a SerialPlus bus, a SCI/LAMP bus, a FibreChannel bus, or a
Serial Attached small computer system interface bus.

General-purpose desktop computers of the sort depicted in FIG. 2A
and FIG. 2B typically operate under the control of operating systems, which
control scheduling of tasks and access to system resources. Typical
operating systems include: MICROSOFT WINDOWS, manufactured by
Microsoft Corp. of Redmond, Washington; MacOS, manufactured by Apple
Computer of Cupertino, California; OS/2, manufactured by International
Business Machines of Armonk, New York; and Linux, a freely-available

4037061 14

WO 2006/081508 PCT/US2006/003114

operating system distributed by Caldera Corp. of Salt Lake City, Utah, among
others.

A computer 200 may also be any personal computer (e.g., 286-based,
386-based, 486-based, Pentium-based, Pentium ll-based, Pentium llI-based,
Pentium 4-based, Pentium M-based, or Macintosh computer), Windows-
based terminal, Network Computer, wireless device, information appliance,
RISC Power PC, X-device, workstation, mini computer, main frame computer,
personal digital assistant, or other computing device. Windows-oriented
platforms supported by the computer 200 can include, without limitation,
WINDOWS 3.x, WINDOWS 95, WINDOWS 98, WINDOWS NT 3.51,
WINDOWS NT 4.0, WINDOWS 2000, WINDOWS CE, WINDOWS ME,
WINDOWS XP, WINDOWS Longhorn, MAC/OS, Java, and UNIX. The
computer 100 can include a visual display device (e.g., a computer monitor), a
data entry device (e.g., a keyboard), persistent or volatile storage (e.g.,
computer memory) for storing downloaded application programs, a processor,
and a mouse. Execution of a communication program allows the system 200
to participate in a distributed computer system model.

Referring now to FIG. 3, one embodiment of an access gateway 106
includes a receiver 302, an agent constructor 304, a key generator 306, a
encryption function generator 308, and a decryptor 310. In brief overview, the
receiver 302 receives a request to access a resource. The agent constructor
304 communicates with the receiver 302 and generates a scanning agent 104
for gathering information about the requestor. The key generator 306
communicates with the receiver 302 and with the agent constructor 304 and
generates at least one key. The encryption function generator 308
communicates with the agent constructor 304 and key generator 306, and
embeds the at least one generated key in the generated scanning agent 104.
The decryptor 310 communicates with the receiver 302 and the key generator
306, receives encrypted gathered information about the requestor and
decrypts the gathered information. Although in the embodiment depicted in
FIG. 3 all of the components of the access gateway are depicted as a single
unit, they may be distributed over multiple physical entities.

Referring now to FIG. 3, and in greater detail, the receiver 302 receives
a request to access a resource. In some embodiments, the receiver 302

4037061 15

WO 2006/081508 PCT/US2006/003114

receives the request from an endpoint 102. In one embodiment, the
requested resource is located on the same network as the receiver 302. In
another embodiment, the requested resource is hosted by a protected server
116 residing on the same network as the receiver 302.

In some embodiments, prior to making a decision regarding the
request, the receiver 302 transmits a scanning agent 104 to the requestor to
gather information about the requestor. In one of these embodiments, the
receiver 302 receives encrypted gathered information from the generated
scanning agent 104 and transmits the received encrypted gathered
information to the decryptor 310. In another of these embodiments, the
receiver 302 may make a decision regarding the request responsive to the
decrypted gathered information. In one embodiment, the receiver 302
comprises a policy engine applying a policy to the received gathered
information to make a decision regarding the request.

The agent constructor 304 generates a scanning agent 104 for
gathering information about the requestor. In one embodiment, the agent
constructor 304 resides on the same system as the receiver 302. In some
embodiments, the agent constructor 304 generates a scanning agent 104
responsive to a request received by the receiver 302.

In one embodiment, the agent constructor 304 comprises a transmitter
for transmitting the generated scanning agent 104 to the requestor. In other
embodiments, the agent constructor 304 returns the scanning agent 104 to
the receiver 302, which transmits the scanning agent 104 to the requestor.

In one embodiment, the agent constructor 304 selects a subset of a
plurality of scan routines for execution on the requestor. In some
embodiments, the agent constructor 304 generates a unique scanning agent
for each request to access resources. In other embodiments, the agent
constructor 304 generates the scanning agent 104 at runtime.

The key generator 306 communicates with the receiver 302 and the
agent constructor 304 and generates at least one key in response to a
request by the agent constructor 304. In one embodiment, the key generator
306 generates a unique key upon receiving a request for a key. In another
embodiment, the key generator 306 generates a key in advance of a request.
In one embodiment, the key generator 306 is special-purpose hardware, such

4037061 16

WO 2006/081508 PCT/US2006/003114

as an application specific integrated circuit (ASIC) or a field-programmable
gate array. In another embodiment, the key generator 306 is software
executing on a general-purpose computer.

In some embodiments, the key generated by the key generator 306 is
56, 64, 128, 256, or 1024 bits in length. In other embodiments, the key
generator 306 generates a key for use in encryption algorithms including, but
not limited to, the Diffie-Hellman, RC2, RC5, RC86, Rijndael, DFC, Twofish,
HPC, Crypton, E2, Mars, Cast-256, Safer+, Serpent, Deal, AES, DES, or
TripleDES algorithms.

In one embodiment, the encryption function generator 308 creates
executable program code, the executable program code providing
functionality for encrypting data with a generated key embedded in the
program code of the scanning agent 104. The encryption function generator
308 may generate instructions within the code which explicitly perform each
step of an encryption algorithm. Each execution of the encryption function
generator 308 may result in generation of a different set of instructions for
encrypting data because the instructions for explicitly performing each step of
an encryption algorithm may be expressed differently in each execution of the
encryption function generator 308. Executing the program code provided by
the encryption function generator 308 may result in encrypted data that is
substantially similar to the output of encrypting data with a standard
encryption algorithm.

Typically an encryption key would be stored in a data section in
program code, the data section storing data used by executable instructions
stored in a text section of the program code. In some embodiments of the
present invention, however, generated encryption keys are stored in the text
section, preventing malicious attackers from easily identifying the generated
encryption keys. In one of these embodiments, the encryption function
generator 308 also embeds instructions for encrypting data with the generated
key in the text section of the scanning agent 104. For example, if the
generated key is a 128 bit key, the encryption function generator 308 may
generate executable instructions to perform an encryption operation with four
sets of 32 bits on gathered information. Executing these instructions may
result in substantially the same output of encrypted information as performing

4037061 17

WO 2006/081508 PCT/US2006/003114

a single operation with the 128 bit key on the gathered information. However,
the encryption algorithm and the generated key may not be easily identifiable
by a malicious attacker when coded in this manner.

In one embodiment, multiple keys are embedded into the scanning
agent 104 and used to encrypt the gathered information. In this embodiment,
the encryption function generator 308 generates a block of executable
program code for each key to be embedded into the scanning agent 104. In
one embodiment, as each block of executable program code embedded in the
scanning agent 104 is executed, the information the scanning agent 104
gathers is encrypted with the embedded key. |

In an embodiment where the scanning agent 104 comprises bytecode
the agent constructor 304 may obfuscate the program code of the scanning
agent 104. In some embodiments, the agent constructor 304 uses a software
program to obfuscate the program code. In other embodiments, the agent
constructor 304 receives input from a user or administrator to obfuscate the
program code. In some embodiments, the agent constructor 304 creates a
scanning agent 104 comprising program code that contains instructions for
how to encrypt information using a key embedded in the program code. In
one embodiment, the agent constructor 304 generates a new, unique
scanning agent 104 each time the receiver 302 receives a request to access a
resource.

In embodiments where the agent constructor 304 obfuscates the
program code of the scanning agent 104, obfuscation may result in a high
degree of confidence that a static analyzer cannot guess how to decrypt an
block of program code. There are obfuscating compilers available that at an
instruction level produce an unpredictable block of program code that
accomplishes the same result as the instruction being obfuscated. For
example, there are an infinite number of ways to create the machine
instructions for the C statement | = | + 1;. This embodiment, coupled with
heuristics on the access gateway 106 that require the results of an endpoint
analysis to be delivered within a certain amount of time, may ensure that the
program is not subject to a human debugger and analysis and that the results
can be trusted.

4037061 18

WO 2006/081508 PCT/US2006/003114

In one embodiment, the decryptor 310 decrypts gathered information
sent from the scanning agent 104 in an encrypted form to the access gateway
106. In some embodiments, the decryptor 310 receives the encrypted
information from the receiver 302. In one embodiment, the decryptor 310
uses a shared secret key generated by the key generator 306 to decrypt the
information. In another embodiment, the decryptor 310 uses a private key
generated by the key generator 306 to decrypt the information.

Referring now to FIG. 4, a block diagram depicts one embodiment of a
scanning agent 404, including an evidence collection element 406 and at least
one encryption logic element 408. In brief overview, the evidence collection
element 406 executes to gather information about an endpoint 102. The
encryption logic element 408 includes functionality for encrypting the gathered
information. In one embodiment, the scanning agent is dynamically
generated at runtime by an agent constructor 304 in communication with a
key generator 306 and an encryption function generator 308.

In one embodiment, the evidence collection element 406 may include
scan routines executed upon arrival at the endpoint 102 to gather information
about the endpoint 102. The information gathered may include information
112 as described above with regard to FIG. 1A. The evidence collection
element 406 may transmit the gathered information to the encryption logic
element 408 for encryption prior to transmission back to the receiver 302,

The encryption logic element 408 may be program code generated by
an execution of the encryption function generator 308. In one embodiment,
the scanning agent 404 includes a plurality of encryption logic elements,
depicted in FIG. 4 as encryption logic elements 408a through 408n. In some
embodiments, the encryption logic elements 408 may be referred to as
encryption jackets.

In one embodiment, the evidence collection element 406 and the
encryption logic elements 408 may be implemented as blocks of executable
program code. in an embodiment with multiple encryption logic elements 408,
each encryption logic element 4408 includes code for encrypting, with a unique
key, the information gathered by the evidence collection element 406. In this
embodiment, the gathered information may be encrypted multiple times with
multiple keys.

4037061 19

WO 2006/081508 PCT/US2006/003114

In one embodiment, the number of encryption logic elements 408
embedded in the scanning agent 404 by the encryption function generator
308 varies for each scanning agent 404 generated. In this embodiment, the
variable number of encryption logic elements 408 embedded in the scanning
agent 404 and encrypting the gathered information with a unique key may
prevent a malicious attacker from locating and retrieving a key stored in a
known location. In one embodiment, the number of encryption logic elements
408 embedded when generating the scanning agent 404 is dynamically
generated by the access gateway 404 and is not stored anywhere.

Referring now to FIG. 5, a flow diagram summarizes one embodiment
of the steps taken to generate a scanning agent 104. [n brief overview, a
random number N is generated (step 552). An encryption function generator
is executed (step 554). The outcome of executing the encryption function
generator is embedded into the program code of a scanning agent (step 556).
The program code of the scanning agent is obfuscated (step 558).

A random number is generated (step 552). In one embodiment, the
agent constructor 304 generates this number. In another embodiment, the
encryption function generator 308 generates this number. In some
embodiments, the random number represents the number of encryption logic
elements 408 to be generated by the encryption function generator.

The encryption function generator 308 is executed (step 554). In one
embodiment, each execution of the encryption function generator 308 results
in the generation of a separate encryption logic elements 408, each
encryption logic element 408 enabling the encryption of gathered information
with a unique key. In some embodiments, the encryption function generator
308 generates a set of executable instructions which encrypt gathered
information in a substantially similar manner as a standard encryption
algorithm.

The outcome of executing the encryption function generator is
embedded into the program code of a scanning agent 104 (step 556). In one
embodiment, the agent constructor 304 embeds the outcome in the scanning
agent 104. In another embodiment, the encryption function generator 308
embeds the outcome in the scanning agent 104.

4037061 20

WO 2006/081508 PCT/US2006/003114

The program code of the scanning agent is obfuscated (step 558).
Obfuscation of program code may make it extremely difficult for static analysis
based programs to determine the type of the contained block (decryption
block versus evidence collection block).

In some embodiments, techniques may be used to guard against
debuggers and trace programs. In one embodiment, the program code of the
scanning agent 104 is scanned for breakpoint type of instructions, such as
int3 instructions, which cannot be randomly inserted into the scanning agent.
Additionally, in other embodiments, the executing scanning agent may be
scanned for these instructions. In these embodiments, execution of the
scanning agent may be aborted upon identification of such an instruction.

Another embodiment enables the prevention of an attack by debugger
or trace program. Since a process cannot be doubly traced, it is possible that
each execution block asks the operating system to trace it. Tracing the
execution block by the operating system may prevent a malicious attacker
from tracing the execution block. For example, in Linux, the following block of
code can detect an attempt to trace an execution block: if
(ptrace(PTRACE_TRACEME, 0, 1, 0) < Q) {/* being traced */}

In some embodiments, a workaround for preventing an attack on a
scanning agent 104 includes the use of an alternative wrapper scheme that
does not use a standard decryption algorithm. In one of these embodiments,
variable key lengths are used with arbitrary data to confuse an adversary as
to segment size.

In conjunction with timing-based analysis, in which the access gateway
106 determines the time taken to perform the scanning of the endpoint 102
and rejects result that exceed a predetermined threshold, the embodiments
described could prevent malicious attackers from spoofing the results of a
host check and falsely reporting themselves as a compliant endpoint.

Referring now to FIG. 6, a flow diagram depicts one embodiment of the
steps taken to grant access to resources. In brief overview, a request is
received from a node to access a resource (step 602). A scanning agent 104
Is generated to gather information about the node (step 604). At least one
key is generated (step 606). The at least one key is embedded in the
scanning agent 104 (step 608). The scanning agent 104 is transmitted to the

4037061 21

WO 2006/081508 PCT/US2006/003114

node (step 610). The scanning agent 104 gathers information regarding the
node (step 612). The scanning agent 104 encrypts the gathered information
using the at least one generated key (step 614). The encrypted gathered
information is received from the scanning agent 104 (step 616). The
encrypted gathered information is decrypted (step 618). A data setis
generated based on the received information (step 620). An enumeration of
resources available to the node is generated (step 622).

Still referring to FIG. 6, and in greater detail, a request is received from
a node to access a resource (step 602). In one embodiment, the request is
received via a network connection by an access gateway 106. In some
embodiments, the node is an endpoint 102 seeking access to a resource on a
network.

A scanning agent 104 is generated to gather information about the
node (step 604). In one embodiment, the scanning agent 104 comprises a
subset of scan routines to be executed on the node, selected from a plurality
of available scan routines. The subset of scan routines may be selected to
collect information 112. In some embodiments, a unique scanning agent 104
is generated for each node that requests access to a resource.

At least one key is generated (step 606). In one embodiment, at least
one shared secret key is generated. In another embodiment, at least one
public key and one private key are generated. In some embodiments,
multiple keys are generated.

The at least one key is embedded in the scanning agent 104 (step
608). In one embodiment, the at least one generated key is used by the
scanning agent 104 to encrypt gathered information 112. In some
embodiments, the program code of the scanning agent 104 is obfuscated. In
one of these embodiments, a software program is used to obfuscate the
program code.

In some embodiments, the scanning agent 104 comprises hard coded
instructions for encrypting gathered information regarding the node with the
reconstructed key. In one embodiment, the scanning agent 104 encrypts the
gathered information with a public key. In another embodiment, the scanning
agent 104 encrypts the gathered information with a shared secret key.

4037061 22

WO 2006/081508 PCT/US2006/003114

The scanning agent 104 is transmitted to the node (step 610). In some
embodiments, the receiver 602 fransmits the scanning agent 104 to the node.
In one of these embodiments, the receiver 602 may download the scanning
agent 104 to the node.

The scanning agent 104 gathers information 112 regarding the node
(step 612). In some embodiments, the scanning agent 104 gathers the
information about the node across a network connection. In one of these
embodiments, the scanning agent 104 may remotely download scan routines
to the node. In another of these embodiments, the scanning agent 104 may
remotely execute scan routines on the node. In other embodiments, the
scanning agent 104 executes at least one script on the node to gather
information.

The scanning agent 104 encrypts the gathered information using the at
least one generated key (step 614). In some embodiments, the scanning
agent 104 encrypts the gathered information using a plurality of generated
keys. In one embodiment, the scanning agent 104 encrypts the gathered
information using a shared secret key. In another embodiment, the scanning
agent 104 encrypts the gathered information using a generated public key.
The encrypted gathered information is received from the scanning agent 104
(step 616). In one embodiment, the encrypted gathered information is
received by the receiver 602.

The encrypted gathered information is decrypted (step 618). In some
embodiments, the encrypted gathered information is decrypted with the at
least one generated key. In other embodiments, the gathered information is
encrypted with a public key and the gathered information is decrypted with a
private key. In still other embodiments, multiple keys are required to decrypt
the encrypted gathered information.

The access gateway 106 generates a data set 158 based upon the
information (step 620). In some embodiments, the access gateway 106
requests further information about the node from the scanning agent 104. In
these embodiments, the access gateway 106 requires more than one
execution of the scanning agent 104 on the node. In those embodiments, the
access gateway 106 generates a data set 158 after receiving the additional
requested information. In these embodiments, the access gateway 106 may

4037061 23

WO 2006/081508 PCT/US2006/003114

have insufficient information 112 to determine whether the node satisfies a
particular condition. In others of these embodiments, the conditions may be
indeterminate. In some of the embodiments where the conditions are
indeterminate, the scanning agent 104 could not gather the information
required to satisfy the condition.

The data set 158 contains identifiers for each condition satisfied by the
received information 112. Then the access gateway 106 applies a policy to
each identified condition within the data set 158. That application yields an
enumeration of resources which the node may access (step 622). Inone
embodiment, the resources comprise proprietary data. In some
embodiments, the resources comprise web pages. In other embodiments, the
resources comprise word processing documents. In still other embodiments,
the resources comprise spreadsheets. In some embodiments, the
enumeration includes only a subset of the resources that the node may
access. The access gateway 106 then presents that enumeration to the
node. In some embodiments, the access gateway 106 creates a Hypertext
Markup Language (HTML) document used to present the enumeration to the
node.

Referring now to FIG. 7A, one embodiment of a computer network 700
constructed in accordance with the invention is depicted, which includes a
endpoint 702, a scanning agent 704, an access control server 706, a policy
database 708, an application server farm 714, a first application server 716,
an application database 718, a second application server 720, and a second
application database 722. In some embodiments, there is a network
boundary 724 separating the network on which the endpoint 702 resides from
the network on which the access control server 706 and application server
farm 714 reside. |

In brief overview, when the endpoint 702 transmits to the access
control server 706 a request 710 for access to a resource, the scanning agent
704 communicates with endpoint 702, retrieving information 712 about the
endpoint 702, and transmitting endpoint information 712 to access control
server 706. In one embodiment, the endpoint 702 transmits the request 710
after policy engine 156 presents the endpoint 702 with an enumeration of

available resources. The access control server 706 makes an access control

4037061 24

WO 2006/081508 PCT/US2006/003114

decision by applying a policy from the policy database 708 to the received
information 712. Finally, the access control server 706 transmits a file type to
the application server farm 714 for presentation of the file contents to the
endpoint 702. Additional components of the computer network 700 are
omitted and will be described further in FIG. 7B.

Referring now to FIG. 7B, a flow diagram depicts one embodiment of
the steps taken by the access control server 706 and the application server
farm 714 to provide file contents to the endpoint 702. Part of the application
server farm 714 is an application server 716.

In one embodiment, once the access control server 706 decides to
grant the endpoint 702 access to the requested file, the access control server
706 determines the file type for the requested file (step 752). In other
embodiments, the application server 716 determines the file type for the
requested file. In still other embodiments, a server other than the application
server 716 or the access control server 706 determines the file type. In some
embodiments, the server determining the file type must first retrieve the
requested file. In some of those embodiments, the file is located on the same
side of the network boundary 724 as the server determining the file type. In
others of those embodiments, the file is located on the same side of the
network boundary 724 as the endpoint 702. In these embodiments, the
method and apparatus enhance the capabilities of the endpoint 702 to access
resources otherwise inaccessible, but they do not provide document
protection for proprietary information.

In some embodiments, the network boundary 724 physically separates
at least two networks. In other embodiments, the network boundary 724
logically separates at least two networks. In one embodiment, the network
boundary 724 is a firewall.

In one embodiment, the file extension is the file type and the server
determining the file type does so by extracting the file extension from the file.
In another embodiment, a resource fork is the file type. After determining file
type, the server determining the file type transmits the file type to the
application server farm 714 for retrieval and presentation to the endpoint 702
(step 754).

4037061 25

WO 2006/081508 PCT/US2006/003114

The application server 716 receives the file type from the access
control server 706. (step 756). In some embodiments, the application server
716 identifies an application program associated with that file type. In other
embodiments, the access control server 706 identifies an application program
associated with that file type. In still other embodiments, a server other than
the access control server 706 or the application server 716 identifies the
application program associated with that file type.

In one embodiment, the server identifying the application program
associated with the file type queries an application database 718 to retrieve
an identifier for the application program. In some embodiments, the
application database 718 is a registry file. In embodiments where either the
application server 716 or a separate server identify the application type based
on the file type, the identifying server then transmits to the access control
server 706 the identifier to the application program. In some embodiments,
the identifying server transmits the identifier to the access control server 706
over a network connection.

In some embodiments, neither the access control server 706 nor a
separate server need to transmit the file type to the application server 716 to
determine the identifier of the associated application program. In one of these
embodiments, the application server 716 transmits to the access control
server 706 a list of hosted application programs and the file types with which
those application programs are associated. In these embodiments, the
access control server 706 retrieves from the transmitted list the identifier for
the appilication program associated with the file type.

When the access control server 706 receives the identifier of the
application program, the access control server 706 creates and transmits to
the endpoint 702 an executable file (step 758). In some embodiments, the
executable file contains the identifier of the application program. In some
embodiments, the executable file contains the identifier of an application
server in the application server farm 714 that will present the contents of the
file to the endpoint 702. In some embodiments, the same application server
716 that identified the application program to use with the file type will present
the contents of the file to the endpoint 702. In other embodiments, a second
application server 720 presents the contents of the file to the endpoint 702. In

4037061 26

WO 2006/081508 PCT/US2006/003114

one embodiment, the executable file contains both the identifier of the
application program and the identifier of an application server in the
application server farm 714 what will present the contents of the file to the
endpoint 702. In some embodiments, the executable file enables the
endpoint 702 to connect with an identified server using a presentation-layer
protocol such as the Independent Computing Architecture (ICA) protocol,
available from Citrix Systems, Inc. of Fort Lauderdale, Florida. In other
embodiments, the executable file enables the endpoint 702 to connect with an
identified server using the Remote Desktop Protocol (RDP), manufactured by
Microsoft Corporation. In other embodiments, the presentation-layer protocol
is wrapped in a higher protocol.

The endpoint 702 receives the executable file from the access control
server 706. The endpoint 702 connects to the application server 716
identified in the executable file (step 760). In one embodiment, the endpoint
702 connects to the identified application server 716 using the ICA protocol.
In another embodiment, the endpoint 702 connects to the identified
application server 716 using RDP.

The application server 716 selects a format for the presentation of the
file contents (step 762). In other embodiments, the access control server 706
identifies the format used to present the file contents. In those embodiments,
the access control server 706 may apply a policy to identify the available
formats. In some embodiments, the application server 716 selects the format
based upon received information about the endpoint 702. In other
embodiments, the application server 716 selects the format by applying a
policy to the received information.

The application server 716 accepts the endpoint 702 connection and
retrieves the requested file (step 764). In one embodiment, the application
server 716 retrieves the file from a web server. In another embodiment, the
application server 716 retrieves the file from a file server. In yet another
embodiment, the retrieved file is an email attachment. In this embodiment,
the application server 716 retrieves the file from an electronic mail server. In
some embodiments, the mail server is a Lotus mail server. In other
embodiments, the mail server is an Outlook mail server or an Outlook Web
Access mail server.

4037061 27

WO 2006/081508 PCT/US2006/003114

The application server 716 then presents the contents of the file to the
endpoint 702 over the connection (Step 766). In one embodiment, the file
contents presented comprise an email attachment.

Referring now to FIG. 8, one embodiment of a computer network 800
constructed in accordance with the invention is depicted, which includes a
endpoint 802, a scanning agent 804, a policy engine 506, a first component
808, a second component 812, a condition database 810, a policy database
812, a transformation server 816, and a storage element 818. In brief
overview, when the endpoint 802 transmits a request 822 for access to a
resource from the policy engine 806, the scanning agent 804 communicates
with endpoint 802, retrieving information about the endpoint 802, and
transmitting endpoint information 812 to the policy engine 806. The policy
engine 806 makes an access control decision as discussed in FIG. 4 above.
Once the policy engine 806 decides to grant the endpoint 802 access to the
requested file, the policy engine 806 transmits the request to the
transformation server 816 for transformation and presentation to the endpoint
802.

In more detail, the policy engine 806 receives a request from the
endpoint 802 for the transformed contents of a file. In one embodiment, the
policy engine 806 identifies a transformation server 816 capable of presenting
the transformed contents of the file to the endpoint 802. In some
embodiments, the transformation server 816 is capable of presenting the
transformed contents of the file because it contains a copy of previously
transformed contents. In other embodiments, the transformation server 816 is
capable of presenting the transformed contents of the file because it has the
capacity to transform the file contents presently.

In one embodiment, the policy engine 806 identifies a transformation
server 816 by querying a storage element 818 to determine whether a
transformation server 816 previously transformed the contents of the file. In
that embodiment, the policy engine 806 transmits the identifier of the
transformation server 818 identified by the storage element 818 to the
endpoint 802. In other embodiments, no transformation server 816 has
previously transformed the contents. In those embodiments, the policy engine

identifies instead a transformation server 816 capable of presently

4037061 28

WO 2006/081508 PCT/US2006/003114

transforming the contents of the file and transmits the request of the endpoint
802 to that transformation server 816.

In other embodiments, a server other than the policy engine 806
identifies the transformation server 816 capable of presenting the transformed
contents of the file to the client. In some of those embodiments, that same
server also transmits to the transformation server 816 the request for
presentation of the file to the client. In some of these embodiments, the same
server identifying the capable transformation server 816 routes transmits the
request to the transformation server 816 through a proxy server.

In one embodiment, the transformation server 816 receives the request
from the policy engine 806 for transformation of the contents of a requested
file and presentation to the endpoint 802. In another embodiment, the
transformation server 816 receives the request from the server other than the
policy engine 806. The transformation server 816 retrieves the file and
transforms the contents from a native format to a second format. The
transformation server 816 then accepts a connection from the endpoint 802
and presents the transformed contents of the file, transforming the contents if
not previously transformed. Finally, the transformation server 816 writes to
the storage element 818 the identifier of the server transforming the contents
of the file and the identifier of the file.

Referring now to FIG. 9, a flow diagram depicts one embodiment of the
steps taken by the transformation server 816 to transform the content of the
requested file and present the transformed contents to the endpoint 802.

The transformation server 816 receives the request for transformation
of the contents of a requested file and presentation to the endpoint 802 (step
900). In one embodiment, the transformation server 816 receives this request
over a network connection.

The transformation server 816 transforms the contents of the
requested file from a native format into a second format (step 902). In one
embodiment, the transformation server 816 transforms the contents of the file
using regular expressions, from a native format into a second format for
presentation on the client. In another embodiment, the transformation server
816 transforms the contents of the file into a second format from a native

format, which contains a format conversion tool. In another embodiment, the

4037061 29

WO 2006/081508 PCT/US2006/003114

transformation server 816 transforms the contents of the file from a native
format into HTML. In another embodiment, the transformation server 816
transforms the contents of the file from a native format into a second format
where the second format enables presentation on a personal digital assistant.
In another embodiment, the transformation server 816 transforms the
contents of the file from a native format into a second format, where the
second format enables presentation on a cellular phone. In another
embodiment, the transformation server 816 transforms the contents of the file
from a native format into a second format, where the second format enables
presentation on a laptop computer. In another embodiment, the
transformation server 816 transforms the contents of the file from a native
format into a second format, where the second format enables presentation at
an Internet kiosk.

The transformation server 816 writes identifying information about the
transformation to the storage element 818 (step 904). In one embodiment,
the identifying information includes an identifier for the transformation server
816 and an identifier for the transformed file. In some embodiments, the
identifying information includes a temporary file containing the transformed
contents of the file. In those embodiments, the storage element 818 functions
as a global cache of transformed file contents.

After the policy engine 806 identifies the transformation server 816
capable of presenting the transformed contents of the file for the endpoint
802, the policy server 806 transmits the identifier of the transformation server
816 to the endpoint 802. The endpoint 802 receives the identifier and
connects to the transformation server 816. The transformation server 816
accepts the connection and presents the transformed contents of the
requested file to the endpoint 802 over the connection (step 906). In one
embodiment, the transformation server 816 retains the transformed contents
of the requested file after the presentation to the endpoint 802.

Referring to FIG. 10A, one embodiment of a computer network 1000
constructed in accordance with the invention is depicted, which includes a first
endpoint 1002, a scanning agent 1004, an policy engine 1006, a policy
database 1008, a condition database 1010, a second endpoint 1016, a
session server 1020, a stored application database 1022, an application

4037061 30

WO 2006/081508 PCT/US2006/003114

server farm 1024, a first application server 1026, a first database 1028, a
second application server 1030, and a second database 1032. In brief
overview, when the first endpoint 1002 transmits to the access control server
1006 a request 1012 for access to a resource, the scanning agent 1004
communicates with endpoint 1002, retrieving information about endpoint
1002, and transmitting endpoint information 1014 to the policy engine 10086.
The policy engine 1006 makes an access control decision, as discussed
above in FIG. 1B. The session server 1020 establishes a connection between
the endpoint 1002 and a plurality of application sessions associated with the
endpoint 1002. Additional components of the computer network 1000 are
omitted and will be described further in FIG. 10B.

Referring now to FIG. 10B, a flow diagram depicts one embodiment of
the steps taken by the session server 1020 to connect the endpoint 1002 with
its associated application sessions. The session server 1020 receives
information about the endpoint 1002 from the policy engine 1006 containing
access control decision the policy engine 1006 made (step 1050). In one
embodiment, the information also includes the endpoint information 1014.

The session server 1020 generates an enumeration of associate
application sessions (step 1052). In some embodiments, the policy engine
1006 identifies a plurality of application sessions already associated with the
endpoint 1002. In other embodiments, the session server 1020 identifies
stored application sessions associated with the endpoint 1002. In some of
these embodiments, the session server 1020 automatically identifies the
stored application sessions upon receiving the information from the policy
engine 1006. In one embodiment, the stored application database 1022
resides on the session server 1020. In another embodiment, the stored
application database 1022 resides on the policy engine 1006.

The stored application database 1022 contains data associated with a
plurality of servers in the application server farm 1024 executing application
sessions. In some embodiments, identifying the application sessions
associated with the endpoint 1002 requires consulting stored data associated
with one or more servers executing application sessions. In some of these
embodiments, the session store 1020 consults the stored data associated

with one or more servers executing application sessions. In others of these

4037061 31

WO 2006/081508

PCT/US2006/003114

embodiments, the policy engine 1006 consults the stored data associated with
one or more servers executing application sessions. In some embodiments, a
first application session runs on a first application server 1026 and a second
application session runs on a second application server 1030. In other
embodiments, all application sessions run on a single application server within
the application server farm 1024.

The session server 1020 includes information related to application
sessions initiated by users. The session server can be stored in volatile or
non-volatile memory or, for example, distributed through multiple servers.
Table 10-1 shows the data included in a portion of an illustrative session

server 1020.

Table 10-1
Application Session App Session 1 App Session 2 App Session 3
User ID User 1 User 2 User 1
Client ID First Client First Client
Client Address 172.16.0.50 172.16.0.50
Status Active Disconnected Active
Applications Word Processor Data Base Spreadsheet
Process Number 1 3 2
Server Server A Server A Server B
Server Address 172.16.2.55 172.16.2.55 172.16.2.56

The illustrative session server 1020 in Table 10-1 includes data

associating each application session with the user that initiated the application

session, an identification of the client computer 1002 or 1016, if any, from

which the user is currently connected to the server 1026, and the IP address

of that client computer 1002 or 1016. The illustrative session server 1020

also includes the status of each application session. An application session

status can be, for example, “active” (meaning a user is connected to the

application session), or “disconnected” (meaning a user is not connected to

the application session). In an alternative embodiment, an application session

status can also be set to “executing-disconnected” (meaning the user has

disconnected from the application session, but the applications in the

application session are still executing), or “stalled-disconnected” (meaning the

user is disconnected and the applications in the application session are not

executing, but their operational state immediately prior to the disconnection

4037061

WO 2006/081508 PCT/US2006/003114

has been stored). The session server 1020 further stores information
indicating the applications 116 that are executing within each application
session and data indicating each application’s process on the server. In
embodiments in which the server 1026 is part of a server farm 1024, the
session server 1020 is at least a part of the dynamic store, and also includes
the data in the last two rows of Table 10-1 that indicate on which server in the
server farm each application is/was executing, and the IP address of that
server. In alternative embodiments, the session server 1020 includes a status
indicator for each application in each application session.

For example, in the example of Table 10-1, three application sessions
exist, App Session 1, App Session 2, and App Session 3. App Session 1 is
associated with User 1, who is currently using terminal 1. Terminal one’s IP
address is 152.16.2.50. The status of App Session 1 is active, and in App
Session 1, a word processing program, is being executed. The word
processing program is executing on Server A as process number 1. Server
A's |P address is 152.16.2.55. App Session 2 in Table 1 is an example of a
disconnected application session 1110. App Session 2 is associated with
User 2, but App Session 2 is not connected to a client computer 1002a or
1016. App Session 2 includes a database program that is executing on
Server A, at IP address 152.16.2.55 as process number 3. App Session 3 is
an example of how a user can interact with application sessions operating on
different servers 1026. App Session 3 is associated with User 1, as is App
Session 1. App Session 3 includes a spreadsheet program that is executing
on Server B at IP address 152.16.2.56 as process number 2, whereas the
application session included in App Session 1 is executing on Server A.

In one embodiment, the session server 1020 is configured to receive a
disconnect request to disconnect the application sessions associated with the
endpoint 1002 and does so disconnect the application sessions in response to
the request. The session server 1020 continues to execute an application
session after disconnecting the endpoint 1002 from the application session.
In this embodiment, the session server 1020 accesses the stored application
database 1022 and updates a data record associated with each disconnected
application session so that the record indicates that the application session
associated with the endpoint 1002 is disconnected.

4037061 33

WO 2006/081508 PCT/US2006/003114

Unintentional termination of application sessions resulting from
imperfect network connections and users’ failure to terminate their application
sessions themselves can lead to user difficulties. One embodiment of the
invention limits these difficulties by differentiating disconnection (which is
treated as if the user is not done working with an application session) from
termination (which is assumed to be an intentional end to the application
session) and by correlating application sessions with users as opposed to
endpoints. When a user is finished using an application operating in an
application session, the user can terminate an application session.
Termination generally involves the affirmative input of the user indicating that
the server should no longer maintain the application session. Such affirmative
user input can include selecting an “Exit” option from a menu, clicking on an
icon, etc. Inresponse to the session server 1020 receiving a termination
request, the execution of the application session and any application within
that application session is halted. In one embodiment, data related to the
application session is also removed from the stored application database
1022.

Disconnection, either intentional or unintentional, on the other hand,
does not result in termination of application sessions. Since the application or
applications operating in an application session are executing on the server
1020, a connection to the first endpoint 1002 is not usually necessary to
continue execution of the applications, and in one embodiment the
applications can continue to execute while waiting for the user to connect. In
an alternative embodiment, upon disconnection of a user, the session server
1020 stalls the execution of the applications operating in the application
session. That is, the session server 1020 halts further execution of the
applications, and the session server 1020 stores the operational state of the
application and any data the application is processing. In a further
embodiment, the session server 1020 can selectively stall execution of
specific applications after a user disconnects. For example, in one
embodiment, the session server 1020 continues execution of an application
for a fixed time period, and if a user fails to connect within that time period, the
session server 1020 stalls the application. In another embodiment, the

session server 1020 stalls specified application sessions that cannot continue

4037061 34

WO 2006/081508 PCT/US2006/003114

executing without user input. In each of the above-described embodiments, if
the user of the first endpoint 1002 disconnects from the server 1026 and then
connects to the server 1026 while operating the first endpoint 1002, the
second endpoint 1016, or a third client computer, the session server 1020 can
connect the client computer operated by the user to one or more previously
initiated, non-terminated application session(s) associated with the user, and
reinitiate execution of any stalled applications.

In one embodiment, the session server 1020 detects a disconnection.
A user can intentionally and manually instruct the server to disconnect an
application session from the endpoint 1002 or 1016 that the user is
communicating from. For example, in one embodiment, application sessions
provide a menu option for disconnection (as distinguished from termination
above) that a user can select. The session server 1020 can also detect an
unintentional disconnection. For example, in one embodiment, session server
1020 identifies when a predetermined number of data packets transmitted to a
endpoint 1002 or 1016 have not been acknowledged by the endpoint 1002 or
1016. In another embodiment, the endpoint 1002 or 1016 periodically
transmits a signal to the server 1026 to confirm that a connection is still intact.
If the session server 1020 detects that a predetermined number of expected
confirmation signals from a endpoint 1002 or 1016 have not arrived, session
server 1020 determines that the endpoint 1002 or 1016 has disconnected. If
the session server 1020 detects that a user has disconnected from an
application session, either intentionally, or unintentionally, the entry in the
session server 1020 related to the disconnected application session is
modified to reflect the disconnection.

After receiving authentication information, the session server 1020
consults the stored applications database 1022 to identify any active 4
application sessions that are associated with the user, but that are connected
to a different endpoint, such as the first endpoint 1002, for example. In one
embodiment, if the session server 1020 identifies any such active application
sessions, the session server 1020 automatically disconnects the application
session(s) from the first endpoint 1002 and connects the application
session(s) to the current endpoint 1016 (step 1054). In some embodiments,
the received authentication information will restrict the application sessions to

4037061 35

WO 2006/081508 PCT/US2006/003114

which the endpoint 1002 may reconnect. In one embodiment, the user can
trigger the automatic consultation of the session server and subsequent
connection with the selection of a single user interface element.

After identifying the application sessions associated with the endpoint
1002, the session server 1020 connects the endpoint 1002 to associated
application sessions. The session server 1020 determines whether each
application session in the plurality is active or disconnected. In one
embodiment, at least one application session in the plurality is active. In one
embodiment, at least one application session in the plurality is disconnected.
In one embodiment, the session server 1020 receives the application output
automatically. In another embodiment, receipt of the application output is
triggered by endpoint 1002 selection of a single user interface element. The
session server 1020 identifies disconnected application sessions to which to
reconnect the endpoint 1002 based upon the access control decision
contained in the received information 1014. In one embodiment, upon
identifying any disconnected application sessions, the session server 1020
prompts the user to indicate whether connection is desired. If connection is
not desired, the session server 1020 prompts user to indicaté whether the
disconnected applications sessions should remain disconnected, or whether
the application sessions should be terminated.

In one embodiment, connection includes modifying the entry in the
stored applications database 1022 to indicate that the user is connected to the
application session and to indicate from which endpoint 1002 the user is
connected to the server. Upon connection, the server 1026 resumes
transmitting application output data to the endpoint 1002 or 1016. In one
embodiment, the plurality of application sessions associated with the endpoint
was connected to the first endpoint 1002 prior to connection and, after
connection the plurality of application sessions is reconnected to the first
endpoint 1002. In another embodiment, the plurality of application sessions
associated with the endpoint 1002 was connected to the first endpoint 1002
prior to connection and, after connection the plurality of application sessions is
reconnected to the second endpoint 1016.

The following illustrative examples show how the methods and
apparatus discussed above can be used to provide policy-based access to file

4037061 36

WO 2006/081508 PCT/US2006/003114

contents for an endpoint 102. These examples are meant to illustrate and not
to limit the invention.
Evidence Collection

In one embodiment, an endpoint 102 requests access to a word
processing document located on a server residing on the same network as
the policy engine 156 resides. The policy engine 156 receives the request
and determines that it possesses no information about endpoint 102. The
palicy engine 156 transmits a scanning agent 104 to the endpoint 102. In
some embodiments, the scanning agent 104 has pre-defined information to
collect from the endpoint 102. In other embodiments, the scanning agent 104
first analyzes the endpoint 102 to determine what type of information to
collect. In still other embodiments, the scanning agent 104 retrieves from the
policy engine 156 the instructions as to what information to collect about the
endpoint 102.

Once executing on the endpoint 102, the scanning agent 104 gathers
the required information and transmits the information 112 to the policy engine
156. The policy engine 156 receives the information 112 and begins the
process of determining what conditions the information 112 satisfies. In some
embodiments, the policy engine 156 determines that the received information
112 does not suffice to determine whether the information 112 satisfies one or
more conditions. In those embodiments, the policy engine 156 transmits
further instructions to the scanning agent 104 for gathering more information
about the endpoint 102.

Policy-Based Access Control

As the first component 152 of the policy engine 156 determines that
one or more conditions are satisfied, it stores an identifier for each satisfied
condition in a data set. Upon completion, the first component 152 transmits
the data set and the requested application to the second component 160. In
an example of this embodiment, the requested application may be a word
processing document and the conditions satisfied may indicate that the client
device is a personal digital assistant. In another example of this embodiment,
the requested application may be a spreadsheet and the conditions satisfied
may indicate that the client device is a trusted laptop connecting from an

insecure network such as a public internet kiosk. In a third example of this

4037061 37

WO 2006/081508 PCT/US2006/003114

embodiment, the requested application may be a file attached to an electronic
mail message and the conditions satisfied may indicate that the client device
is on a personal desktop connecting from a secure network but lacking the
appropriate application software to view the file.

The second component 160 receives the data set from the first
component 152 and applies one or more policies to the received data. In one
example of this embodiment, the second component 160 may apply a policy
requiring that when a client device type is a personal digital assistant if the
condition that the endpoint have on it application software is not satisfied, the
endpoint 102 receive the transformed contents of the file. The endpoint 102
would then receive an executable file enabling connection to a transformation
server, which will present the contents of the file in a format accessible to the
client device type. Applying this policy enables the endpoint 102 to view the
contents of the file in spite of inappropriate form factor for viewing content.

In another example of this embodiment, the second component 160
may apply a policy prohibiting download to the endpoint 102 when a client
device type is a trusted laptop, containing the appropriate application
software, but from an insecure network such as an Internet kiosk. In this
embodiment, the policy might require that the policy engine 156 transmit an
executable file to the endpoint 102 enabling connection to an application
server 416 for presentation of the file contents. Applying a policy of this type,
and retrieving the file only to the protected server 116, enables the endpoint
102 to view the contents of the file without jeopardizing the proprietary
contents of the file from inappropriate dissemination.

In yet another example of this embodiment, the second component 160
may apply a policy requiring that a personal desktop making a secure
connection, but lacking appropriate application software, connect to an
protected server 116 via an ICA session, and that the protected server 116
execute the appropriate application and present the file to the endpoint 102.
Applying the policy enables the endpoint 102 to view the contents of the file
regardless of the lack of application software on the endpoint 102.

The present invention may be provided as one or more computer-
readable programs embodied on or in one or more articles of manufacture.
The article of manufacture may be a floppy disk, a hard disk, a compact disc,

4037061 38

WO 2006/081508 PCT/US2006/003114

a digital versatile disc, a flash memory card, a PROM, a RAM, a ROM, or a
magnetic tape. In general, the computer-readable programs may be
implemented in any programming language. Some examples of languages
that can be used include C, C++, C#, or JAVA. The software programs may
be stored on or in one or more articles of manufacture as object code.

While the invention has been shown and described with reference to
specific preferred embodiments, it should be understood by those skilled in
the art that various changes in form and detail may be made therein without
departing from the spirit and scope of the invention as defined by the following
claims.

4037061 39

WO 2006/081508 PCT/US2006/003114

CLAIMS
What is claimed is:

1. A method of granting access to resources, the method comprising the
steps of:

(a) receiving a request from a node to access a resource;

(b) generating a scanning agent to gather information about the
node;

(c) generating at least one key;,

(d) embedding in the scanning agent the at least one generated
key;

(e) transmitting the scanning agent to the node;

(f) gathering, by the scanning agent, information regarding the
node,

(9) encrypting, by the scanning agent, the gathered information
using the at least one generated key;

(h) receiving from the scanning agent the encrypted gathered
information; and

(i) decrypting the encrypted gathered information.

2. The method of claim 1, wherein step (a) further comprises receiving the
request via a network connection.

3. The method of claim 1, wherein step (b) further comprises selecting, for
execution on the node, a subset of scan routines from a plurality of
available scan routines.

4. The method of claim 1, wherein step (c) further comprises generating a
shared secret key. '

5. The method of claim 1, wherein step (c) further comprises generating a
public key and a private key.

6. The method of claim 5, wherein step (g) further comprises encrypting
the gathered information with the generated public key.

7. The method of claim 5, wherein step (i) further comprises decrypting
the encrypted gathered information with the generated public key.

4037061 40

WO 2006/081508 PCT/US2006/003114

8. The method of claim 1, wherein step (d) further comprises obfuscating
the scanning agent.

9. The method of claim 1, wherein step (f) further comprises gathering the
information across a network connection.

10. The method of claim 1, wherein step (f) further comprises gathering
information by executing at least one script on the endpoint.

11. The method of claim 1, wherein step (i) further comprises decrypting
the encrypted gathered information with the at least one generated key.

12. A system of granting access to resources by an access gateway
comprising:

a receiver, receiving a request to access a resource;

an agent constructor, generating a scanning agent for gathering
information about the requestor, the scanning agent comprising
program code;

a key generator, in communication with the receiver and the agent
constructor, generating at least one key;

a encryption function generator, in communication with the agent
constructor and the key generator, embedding the at least one
generated key in the generated scanning agent; and

a decryptor, receiving encrypted gathered information about the
requestor and decrypting the gathered information.

13. The system of claim 12, wherein the agent constructor selects a subset
of a plurality of scan routines for execution on the requestor.

14.The system of claim 12, wherein the agent constructor obfuscates the
program code of the scanning agent.

15. The system of claim 12, wherein the agent constructor further
comprises a transmitter for transmitting the generated scanning agent
to the requestor. '

16. The system of claim 12, wherein the encryption function generator
provides functionality for encrypting data with a generated key.

17. The system of claim 12, wherein the receiver receives encrypted
gathered information from the scanning agent and transmits the
received encrypted gathered information to the decryptor.

4037061 41

WO 2006/081508 PCT/US2006/003114

18. The system of claim 12, wherein the key generator further comprises
generating a shared secret key.

19. The system of claim 12, wherein the key generator further comprises
generating a public key and a private key.

20.The system of claim 12, further comprising a policy engine applying a

policy to the received gathered information.

4037061 42

WO 2006/081508

FIG. 1A

FIG. 1B

PCT/US2006/003114

100
Endpoint 102 | Relqluoest Access Gateway 106
A
A
2 Endpoint Policy
Scanning Information 112 %
agent 104) DB 108
Server Farm 114
Protected Server 116
Policy Engine 150

Condition DB

154

First Component 152

Second Component 160

Data Set
Logon 158
Agent Policy
156 DB 162

1/8

WO 2006/081508

PCT/US2006/003114

FIG. 2A
200
Main Main
Cache Processor Memory
240 202 204
L 220
1/0 Device I/0 Device
230A 230B
FIG. 2B
200
Main Processor 202 Cache
240
Main
Memory
204
Vo Vo Memory :
Port | Port | Port 1/0 Device
230B
|
Bridge
P T 220 o
/0 Device
230A

2/8

WO 2006/081508 PCT/US2006/003114

FIG. 3
Receiver » Agent
302 Constructor
304
Decryptor | | Key | Encryption
310 - Generator | Function
306 Generator
308
FIG. 4
Scanning Agent 404
" Evidence
Collection Element
406
A
A\ 4
Encryption Logic
408a
Encryption Logic
408n

3/8

WO 2006/081508

FIG. 5

Generate a Random Number, N

4/8

5§52
Y

Execute an Encryption Function 554

Generator

A\ 4

. Embed the Outcome of Executing the 556

Encryption Function Generator into the
Program Code of a Scanning Agent

v

Obfuscating Program Code of the 558

Scanning Agent

PCT/US2006/003114

WO 2006/081508

FIG. 6

Receiving a Request from a Node to 502
Access a Resource
Generating a Scanning Agent to Gather
Information about the Node 604
A
Generating at least one Key 606
A
Embedding in the Scanning Agent the at 508
least one Generated Key
A
Transmitting the Scanning Agent to the 510
Node
A
Gathering, by the Scanning Agent, 612
Information Regarding the Node
A
Encrypting, by the Scanning Agent, the 614
Gathered Information using the at least
one Generated Key
¥
Receiving from the Scanning Agent the 616
Encrypted Gathered Information
Y
Decrypting the Encrypted Gathered 618
Information
A
Generate Data Set Based on Received 620
Information
y
Generate Enumeration of Resources 622

Available to the Node

5/8

PCT/US2006/003114

WO 2006/081508 PCT/US2006/003114

FIG.7A
700
Application Server Farm 714
Endpoint 702 é‘gf]ffjl
Server 706 First Application Second
Server 716 Application
Request 710 T., Server 720
- Policy
Scanning ™| | DB 708
Agent 704 App DB AP DB
— 718 722
Information [™
712
Network
Boundary
724
FIG.7B
Determination of the File Type for the Requested File 752
Transmission of File Type to Application Server Farm 714 754
A4
Application Server 716 in Application Server Farm 714 756
Receives File Type
Access Control Server 706 Transmits Executable File to 758
Endpoint 702
A 4
Endpoint 502 Connects to Application Server 716 760
¥
The Application Server 716 Selects a Format for the
Presentation of the File Contents 762
A4
Application Server 716 Retrieves Requested File 764
y
Application Server Farm Presents File Contents to 66
Endpoint 502

6/8

WO 2006/081508 PCT/US2006/003114
FIG. 8
800
Policy Engine 806
Endpoint 802 4—' Request 822 I._}
First Component Second
808 Component 812
v .
Scanning Information
agent 804 [¢ 812 >
Condition Policy
________ ‘DB 810 DB 814 -
2 E Proxy E/'
Transformation } Server !
Server 816 ‘//E 820 E i
Storage
Element 818
FIG. 9

Transformation Server 816 Receives File
Transformation Request

900

v

Transformation Server 816 Transforms File From
Native Format to Second Format

902

{

Transformation Server 816 Stores File and Server
Identifiers in Storage Element 818

904

A 4

Transformation Server 816 Presents Transformed
Contents to the Connected Endpoint 802

906

7/8

WO 2006/081508 PCT/US2006/003114

FIG. 10A
1000
First Endpoint [€ » Session Server
1002 Policy Engine 1006 1020
. | Request 1012 . Application
Scanning 4 | Policy Condition DB DB 1022
agent DB 1008 1010
1004 Endpoint il
« Information i
1014 ‘ /: ~
y Application Server Farm 1024
Request
‘ 1018
Second / First Application Second
Endpoint 1016 Server 1026 Application
Server 1030
DB 1028 DB 1032
FI1G 10B
Policy Engine 1006 Transmits Access 1050
Control Decision to Session Server 1020
Y
Session Server 1020 Generates 1052
Enumeration of Associated Application
Sessions
y
Session Server 1020 Connects Endpoint 1054

1002 to Associated Application Sessions

8/8

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/003114

CLASSIFICATION Cf SUBJECT MATTER
F21/20

A.
INV. GO6

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search lerms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y EP 0 580 350 A (DIGITAL EQUIPMENT
CORPORATION) 26 January 1994 (1994-01-26)
column 4, line 17 - Tine 47

column 5, line 12 - Tine 40

column 9, line 22 - line 49

26 February 2004 (2004-02~-26) .
paragraph [0048] - paragraph [0051];
figure 4

A HOHL F: "Time-Timited blackbox security:
protecting mobile agents from malicious
hosts"

MOBILE AGENTS AND SECURITY, SPRINGER
VERLAG, BERLIN,, DE, 1998, pages 92-113,
XP002355543

page 103 - page 109

Y US 2004/037423 Al (GHANEA-HERCOCK ROBERT)

1-20

1-20

8,14

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

“*E’ earlier document but published on or after the international e
filing date

invention

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
L document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+:31~70) 340-2040, Tx. 31 651 epo nl,

which is cited to establish the publication date of another "Y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
0O document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious 1o a person skilled
P document published prior to the international filing date but in the art.
later than the priority date claimed *'&* document member of the same patent family
Date of the actual completion of the international search Date of mailing of the intemational search report
23 June 2006 04/07/2006
Name and mailing address of the 1ISA/ Authorized officer

Fax: (+31-70) 340-3016 Cartrysse, K

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/003114

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 2004/083373 Al (PERKINS GREGORY M ET
AL) 29 April 2004 (2004-04-29)
paragraph [0024] - paragraph [0034]

12,16

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2006/003114
Patent document Publication Patent family Publication

cited in search report date member(s) date
EP 0580350 A 26-01-1994 JP 6202998 A 22-07-1994
us 5235642 A 10-08-1993
UsS 2004037423 Al 26-02-2004 AU 9405401 A 29-04-2002
CA 2426118 Al 25-04-2002
WO 0233547 Al 25-04-2002
Us 2004083373 Al 29-04-2004 AU 2003302059 Al 15-06-2004
CN 1708944 A 14-12-2005
EP 1556993 A2 27-07-2005
WO 2004046846 A2 03-06-2004
JP 2006504206 T 02-02-2006

Form PCT/ISA/210 (patent family annex) (April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

