wo 2017/155623 A1 || I NN OO0 OO0 O A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/155623 Al

14 September 2017 (14.09.2017) WIPO | PCT
(51) International Patent Classification: (74) Agents: PYTER, Wiktor J. et al.; International Ip Law
GOG6F 3/0488 (2013.01) GOG6F 3/14(2006.01) Group, P.LL.C., 13231 Champion Forest Dr., Suite 410,
GO6F 3/0486 (2013.01) Houston, Texas 77069 (US).
(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every
PCT/US2017/015033 kind of national protection available). AE, AG, AL, AM,
. . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM,
26 January 2017 (26.01.2017) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT.
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,
KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
(26) Publication Language: English MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
(30) Priority Data: NIL NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
15/063,216 7 March 2016 (07.03.2016) US RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, 8V, 8Y,
TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
(71) Applicant: INTEL CORPORATION [US/US]; 2200 ZA, ZM, ZW.
Mission College Blvd., Santa Clara, California 95054 . o
(US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: KUMAR, Arvind; 291 NW Pacific Grove GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

Drive, Beaverton, Oregon 97006 (US). VALAVIL, John J.;
7178 NE Rockridge Place, Hillsboro, Oregon 97124 (US).
RAMADOSS, Murali; 1021 Kirby Court, Folsom, Cali-
fornia 95630 (US).

TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,

[Continued on next page]

(54) Title: VIRTUAL INPUT DEVICE USING SECOND TOUCH-ENABLED DISPLAY

(57) Abstract: An example system for generating hardware device input in-

- 902
Load Modules

904
Monitor for Input Device Triggars
J— 808
Detect Input Device Trigger?
N ¥
910
208

812

Display Virtual Inpud Device
ata from Touch-Enabled Dispiay 914

Virlual Input Device
39186
Generate Hardwars inpul Based on Received Tough Dale
918
Send Hardware Input lo Operating System

cludes a gesture detector to detect an input device trigger from one of two
coupled touch-enabled displays. The example system also further includes a
redirector to intercept touch data from a triggered touch-enabled display.
The example system further includes an emulator to generate hardware input
data based on the intercepted touch data and send the hardware input data to
an operating system. The example system also includes a user interface to
display a virtual input device on the triggered touch-enabled display and re-
ceive touch data via the virtual input device.

WO 2017/155623 A1 AT 00T 000 T U

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

Published:
— with international search report (Art. 21(3))

Declarations under Rule 4.17:
— as to the identity of the inventor (Rule 4.17(i))

WO 2017/155623 PCT/US2017/015033

VIRTUAL INPUT DEVICE USING SECOND TOUCH-ENABLED DISPLAY

Cross Reference to Related Application
[0001] The present application claims the benefit of the filing date of United
States Patent Application Serial No. 15/063,216, by Kumar et al., entitled “Virtual
Input Device using Second Touch-Enabled Display,” filed March 7, 2016, and is

incorporated herein by reference.

Background Art
[0002] Many mobile devices such as laptops and mobile phones include touch-
enabled displays that enable a user to input data using a finger or stylus. In some
examples, two touch-enabled displays can be combined to use one touch-enabled
display as a virtual input device. For example, the virtual input device can be a
virtual keyboard or a virtual touchpad, corresponding to hardware input devices such

as keyboard and touchpad among other hardware input devices.

Brief Description of the Drawings
[0003] Fig. 1 is a diagram illustrating and example mobile computing device that
can display a virtual input device at a second touch-enabled display and generate
hardware input;
[0004] Fig. 2 is a schematic diagram illustrating a basic process for generating a
virtual input device on a second touch-enabled display;
[0005] Fig. 3 is a schematic block diagram illustrating an example process for
receiving input device data from a virtual input device on a second touch-enabled
display;
[0006] Fig. 4 is a block diagram illustrating an example system for generating
hardware input from a virtual input device;
[0007] Fig. 5 is a sequence diagram illustrating a process for generating a virtual
input device on a second touch-enabled display;
[0008] Fig. 6 is a sequence diagram illustrating a process for disabling a virtual

input device on a second touch-enabled display;

WO 2017/155623 PCT/US2017/015033

[0009] Fig. 7 is a block diagram illustrating an example computing device that can
be used to generate hardware input from a virtual input device on a second touch-
enabled display;

[0010] Fig. 8 is a flow chart illustrating a process for displaying a virtual input
device on a second touch-enabled display;

[0011] Fig. 9is a flow chart illustrating a process for generating hardware input
from a virtual input device; and

[0012] Fig. 10 is a block diagram showing computer readable media that stores
code for generating hardware input data.

[0013] The same numbers are used throughout the disclosure and the figures to
reference like components and features. Numbers in the 100 series refer to features
originally found in Fig. 1; numbers in the 200 series refer to features originally found

in Fig. 2; and so on.

Description of the Aspects
[0014] The present disclosure relates generally to techniques for generating and
receiving input from a virtual input device displayed on a display of one of two
coupled touch-enabled displays. As the phrase is used herein, a virtual input device
is a graphical user interface that mimics the appearance and functionality of a
physical input device, such as a keyboard, touchpad or mouse. Specifically, the
techniques described herein include a computer-readable medium, method and
system for generating and receiving input from a virtual input device displayed on a
second touch-enabled display. The techniques include disabling a display of the
second touch-enabled display at an operating system (OS) during the display of the
virtual input device. As discussed above, some laptops currently use two touch-
enabled displays to form laptop designs. In some examples, one touch-enabled
display can be used as a virtual keyboard. For example, OS soft keyboards can be
used to provide a virtual keyboard interface for entering keyboard data. Likewise,
OS-based touchpads can also be used.
[0015] However, OS-based soft keyboards and touchpads may not provide user-

friendly experiences. For example, an operating system keyboard may appear on

WO 2017/155623 PCT/US2017/015033

the bottom portion of the screen where a touch happens. Thus, if a user interacts
with content appearing on a top screen, the OS-based keyboard may appear on the
top screen and cover almost half of the content on the screen, while the bottom
screen is left unused. In some examples, one or more windows may be hidden
behind the OS-based soft keyboard or applications may show up on the same
screen as the OS-based soft keyboard, making the OS-based soft keyboard difficult
to use. Moreover, using an OS-based soft keyboard may take away focus from
applications if the OS-based soft keyboard is created as another application window.
The techniques described herein enable a hardware input device experience on a
second touch-enabled display. Thus, a user can use the second touch-enabled
display in place of a hardware keyboard, touchpad, or other input device.

[0016] Referring now to Fig 1, illustrates an example mobile computing device
that can display a virtual input device at a second touch-enabled display and
generate hardware input. The example mobile computing device is generally
referred to by the reference number 100.

[0017] The mobile computing device 100 shown in Fig. 1 includes a first touch-
enabled display 102 coupled to a second touch-enabled display 104. The first touch-
enabled display has a first display 106. For example, the first display 106 is shown
displaying a web page with writing and pictures. The second touch-enabled display
104 includes a second display 108. The second display 108 includes a virtual
keyboard 110. A pair of hands 112 are shown in contact with the surface of the
second touch-enabled display 104.

[0018] In some examples, the mobile computing device 100 may have a number
of modes for displaying content on the two touch-enabled displays 102, 104. For
example, the mobile computing device 100 may change display configurations based
on the orientation of the mobile computing device 100.

[0019] In Fig. 1, the mobile computing device 100 is shown in a keyboard
orientation with two hands 112 contacting the second display 108 of the second
touch-enabled display 104. In some examples, a virtual input device 110 can be
displayed on the second touch-enabled display 104 in response to detecting a trigger

at the second touch-enabled display 104. For example, the trigger can be a gesture

WO 2017/155623 PCT/US2017/015033

or the placement of one or more hands on the surface of the touch-enabled display
104. In some examples, the trigger can be a button press on the screen of a touch-
enabled display or a physical button (not shown).

[0020] Fig. 2 is a diagram illustrating a basic process for generating a virtual input
device on a second touch-enabled display. The example process is referred to
generally by the reference number 200 and the example stages are referred to
generally by the reference numbers 202A, 202B, 202C and can be implemented
using the mobile computing device 100 of Fig. 1 above.

[0021] The first stage 202A shows a mobile computing device with a first touch-
enabled display 102 and a second touch-enabled display 104. A pair of hands 112
are shown touching the touch-enabled display 104. In some examples, the touching
of the touch-enabled display 104 can be detected and the display from the operating
system can be disabled and an input device displayed as shown in the second stage
202B.

[0022] At the second stage 202B, the touch-enabled display 104 is shown
displaying a virtual input device 110. In some examples, the virtual input device 110
can include a keyboard, a touchpad, or any other input device. For example, the
touch-enabled display 104 may have had any display moved to the touch-enabled
display 102 and had its display replaced with the virtual input device 110. In some
examples, the touch-enabled display 104 can display the virtual input device 110 in
response to the hands 112 being detected on the touch-enabled display 104. For
example, the palms of the hands 112 may be detected at the touch-enabled display
104. In some examples, the detection of the hands 112 may be one of any number
of possible triggers that can be used to enable the virtual input device 110. In some
examples, an application can be used to manage the touch-enabled display 104
while it displays the virtual input device 110. As described in detail below, the virtual
input device 110 can be a pseudo-device that emulates a hardware input device.
Thus, the operating system of the mobile computing device may detect the loss of
one display and an addition of a hardware input device. For example, the emulated
hardware input device can be a keyboard with an integrated mouse and/or touchpad.

[0023] At the third stage, the touch-enabled display 104 no longer displays the

WO 2017/155623 PCT/US2017/015033

virtual input device 110. For example, the hands 112 may no longer be detected at
the touch-enabled display 104 and the virtual input device 110 may have been
disabled as described below with respect to at least Figs. 6 and 8. In some
examples, the virtual input device 110 can be disabled upon detecting that the trigger
is no longer present. In some examples, a second trigger can be used to disable the
virtual input device 110. For example, a gesture or button on the touch-enabled
display 104 can be used to disable the virtual input device 110. In some examples,
the display can be restored on the touch-enabled display 104.

[0024] Thus, the touch-enabled display 104 can be temporarily removed from the
operating system as a display and used instead as a virtual input device. For
example, the operating system may detect a connected hardware device
corresponding to the virtual input device. When the touch-enabled display 104
returns to a normal state as shown in stage 202C, the touch-enabled display 104
appears to the operating system as a second touch enabled display and can be used
by the operating system as normal. As the phrase is used herein, a touch enabled
display is a graphical user interface that is used primarily to display content to a user,
but which also can receive touch input from a user through graphical input devices
such as buttons, links, and the like. Examples of touch enabled displays include
Web pages that enable users to touch links to additional Web pages, video displays
with various graphical buttons and slider mechanisms, document displays that
enable a user to move the cursor to a selected location in the text by touching the
location.

[0025] The diagram of Fig. 2 is not intended to indicate that the example process
200 is to include all of the states shown in Fig. 2. Rather, the example process 200
can be implemented using fewer or additional states not illustrated in Fig. 2.

[0026] Fig. 3 is a schematic block diagram illustrating an example system for
receiving input device data from a virtual input device on a second touch-enabled
display. The example system is referred to generally by the reference number 300
and can be implemented using the computing device 100 of Fig. 1 above.

[0027] The example system 300 includes touch sensors 302 coupled to a touch

integrated circuit 304 as indicated by an arrow 306. The system includes a GPU 308

WO 2017/155623 PCT/US2017/015033

coupled to the touch IC 304 as indicated by an arrow 310. The system includes an
operating system 312 communicatively coupled to the GPU 308 as indicated by
arrows 314, 316. The GPU 308 includes a number of vendor kernels 318 and a
number of post-processing kernels 320 communicatively coupled to the vendor
kernels 318 as indicated by an arrow 322. The post-processing kernels 320 include
a gesture detection module (GDM) 324 and a redirector and emulator module (REM)
326 communicatively coupled to the GDM 324 as indicated by an arrow 328. The
operating system 312 further includes touch data 330 and input device data 332
received from the REM 326. The operating system 312 also includes a number of
applications 334 shown receiving the touch data 330 and the input device data 332
as indicated by arrows 336 and 338, respectively.

[0028] As shown in Fig. 3, the touch IC 304 can collect raw touch sensor data
from the touch sensors 302 and sent the raw touch sensor data to the GPU 308 via a
dedicated hardware path as indicated by arrow 310. For example, the raw touch
data can include touch and/or stylus sensor data. The raw touch sensor data can be
received by the vendor kernels 318 of the GPU 308. The vendor kernels 318 can be
touch/stylus algorithms from touch-enabled display vendors that can run on the GPU
308. For example, the vendor kernels 318 can convert the raw sensor data into
screen co-ordinates depicting touch points. In addition to this, the system 300 allows
for additional processing of the data at the post-processing kernels 320. The post-
processing kernels 320 allow additional code to interpret multi-touch and stylus XY
coordinates and associated stylus/pen data. For example, the raw data can be
interpreted as gestures corresponding to pen-up, pen-down, hover, pressure, etc.
The post-processing kernels 320 can then process the interpreted raw data and
make additional decisions. The final processed data can then be send to the
operating system 312 as indicated by arrows 314 and 316.

[0029] In some examples, the post-processing kernels 320 can include a virtual
input device post-processing kernel 320. For example, the virtual input device post-
processing kernel 320 can include a gesture detection module (GDM) 324 and a
redirection and emulation module (REM) 326. As touch events are detected on a

surface of a touch-enabled display via touch sensors 302, the touch IC 304 collects

WO 2017/155623 PCT/US2017/015033

the raw data from the touch sensors 302 and the touch vendor kernels 318 process
the raw touch sensor data and produce touch point data, which includes the XY
coordinates for all the touch points on the screen. In some examples, the processed
data can be in a standard Human Interface Device (HID) format and the post-
processing kernels 320 can easily monitor this as the data is sent to the OS 312.
[0030] In some examples, the GDM 324 can constantly monitor the touch point
data. For example, the GDM 324 can run a gesture detection algorithm for turning
on this monitoring capability. In some examples, a specific trigger to display the
virtual input device on the touch-enabled display can be predefined. For example, a
trigger can be a gesture. In some examples, the gesture can be a detected
placement of both hands on the screen, with both palms resting at bottom part of the
screen, and all 10 fingers touching the screen. Since this is a normal gesture for
people to type on a physical keyboard, and is therefore an intuitive gesture to bring
up a virtual keyboard on the touch-enabled display. Another example of a gesture
can be the user explicitly touching a seam where two screens meet and dragging
down a virtual input device from the ‘seam’ onto the lower touch-enabled display. In
some examples, the virtual input device can be dragged from any other edge of the
touch-enabled display. Yet another gesture could be the user drawing a figure that
can be used as a trigger. For example, the user can draw a letter “K” to bring up a
virtual keyboard or a letter “T” to bring up a virtual touchpad. In some examples, the
triggers can be configurable. For example, once a gesture is decided, it can be
programmed in the GDM 324. In some examples, more than one trigger can also be
programmed. Once the trigger to start the virtual input device is detected, the GDM
module 324 can set an Input Device Active flag. The Input Device Active flag can
then be shared with the REM 326.

[0031] In some examples, the (REM) 326 can operate in two modes based on the
Input Device Active flag. For example, if the Input Device Active flag is not set, the
REM 326 can work in pass-through mode and does not modify any touch data.
Touch data can be delivered to the OS as touch HID reports. In some examples, the
REM 326 can be a zero impact pass-through module. If the Input Device Active flag

is set, the REM 326 can intercept all touch data and convert it into keyboard key-

WO 2017/155623 PCT/US2017/015033

strokes or other input device data and send keyboard HID reports (or other HID
reports specific to the emulated input device) to the OS 312 through a driver. For
example, the driver can be the Intel Precise Touch Driver. This input device data
can be delivered to the window in focus as determined by the OS 312. Thus, input
device data can be delivered to the OS 312 using a similar mechanism to that used
when hard keyboard data gets delivered to the OS 312.

[0032] In some examples, the REM 326 can also interact with a user level
component (not shown) using a private HID interface. For example, a user interface
module (UIM) can be an OS-based application 334 that can render a virtual input
device layout user interface (Ul) on a touch-enabled display. The private HID
interface and messages are described in greater detail below.

[0033] The diagram of Fig. 3 is not intended to indicate that the example system
300 is to include all of the components shown in Fig. 3. Rather, the example system
300 can be implemented using fewer or additional components not illustrated in Fig.
3 (e.g., additional sensors, integrated circuits, kernels, GPUs, applications, etc.).
[0034] Fig. 4 is a block diagram illustrating an example system for generating
hardware input from a virtual input device. The system is generally referred to by the
reference number 400 and can be performed by the mobile computing device 100 of
Fig. 1.

[0035] The system 400 includes software 402, a central processing unit (CPU)
404, memory 406, a Platform Controller Hub (PCH) 408, and two touch integrated
circuits (ICs) 410, 412. The software 402 includes touch enabled applications 414,
legacy applications 416, a Human Interface Device (HID) class driver 418, a user
interface module 420, a touch driver 422, and a graphic driver 424. The CPU 404
includes a graphics processing unit (GPU) 428. The GPU 428 includes a redirector
and emulator module (REM) 430, a gesture detector module (GDM) 432, and vendor
touch algorithms 434. The REM 430 is communicatively coupled to the memory 406
as indicated by an arrow 436. The vendor touch algorithms 434 are also
communicatively coupled to the memory 406 as indicated by an arrow 438. The
memory 406 includes Human Interface Device (HID) data and Raw Data 442. The
PCH 408 includes CSME hardware 444 that is communicatively coupled to the GPU

WO 2017/155623 PCT/US2017/015033

428 as indicated by an arrow 446. The CSME hardware 444 includes a Direct
Memory Access (DMA) Handler 448, a DMA module 450, a hardware bus interface
(HW Bus I/F) 452 coupled to the DMA 450 as indicated by an arrow 454. The DMA
450 is further coupled to the memory 406 as indicated by an arrow 456. The
hardware bus interface 452 is coupled to the two touch ICs 410, 412 as indicated by
arrow 458.

[0036] In some examples, the vendor touch algorithms 434, GDM 432 and REM
430 can be loaded into system memory by the touch driver 422 during a system
startup phase. For example, the touch driver 422 can be the Intel Precise Touch
driver. Thereafter, the vendor touch algorithms 434, GDM 432 and REM 430 can
execute every time a touch data comes in from touch sensors through Touch ICs
410, 412 and the DMA 450. This OS-independent execution allows the vendor touch
algorithms 434, GDM 432 and REM 430 to operate in such a way that the OS can
detect a real input device such as a keyboard or touchpad.

[0037] In some examples, an additional feature can ensure that OS applications
do not interfere with the virtual input device user interface that is displayed by the
UIM 420. For example, no application windows may be allowed beneath a keyboard
Ul or above a keyboard Ul. In some examples, when a lower touch-enabled display
is being used as a keyboard, the UIM 420 can manage the contents of the touch-
enabled display entirely. This allows the input device user interface to provide a
clobber-free experience. As used herein, clobbering refers to an interruption in the
operation of a virtual input device by applications or operating system and any
associated visual distractions. For example, the operation of the virtual input device
may continue, but the OS may display a notification window where a user’s palms
may be at the touch-enabled display.

[0038] In some examples, the graphics driver 424 as shown in the figure can be
used to assist the implementation of the UIM. For example, when an event is sent to
the UIM 420 to display the virtual keyboard user interface, a special interrupt is also
sent to the graphics driver 424 by the REM 430. This special interrupt can instruct
the graphics driver 424 to issue a Display Detach event to the OS. The Display

Detach event can make the lower touch display (where the input device is to appear)

WO 2017/155623 PCT/US2017/015033

disappear from OS enumeration. Thus, upon receiving the Display Detach event,
the OS may be left with one display, and the OS may immediately move all the
windows from the display of the lower touch-enabled display to the only remaining
display on the upper touch-enabled display.

[0039] In some examples, the graphics driver 424 can provide a private interface
to the UIM 420 for the UIM 420 to display a specific bitmap on the lower display.
The UIM 420 can use this private interface to display the contents of the virtual
keyboard. For example, the UIM 420 can be executed upon powering on the device
400 and can run in background and listen for HID events from the REM 430 on the
private HID interface. The UIM 420 can receive a notification from the REM 430 on
when to start and stop the virtual input device Ul display. The UIM 420 can also
inform the REM 430 about map layout using an HID set feature interface. For
example, the map can enable the REM 430 to run in an autonomous fashion and
convert XY co-ordinates or handwritten gestures to a specific key code without
interacting with the UIM 420 on every co-ordinate translation or handwritten stroke.
For example, the REM 430 can include a character recognition module that
automatically detects and converts touch data received at a writing window into
keyboard stroke data. Thus, the UIM 420 can be said to fully own displaying
everything on the display of the second (in this case, lower) touch-enabled display.
The OS therefore has no way to clobber this display.

[0040] In some examples, when the redirection mode is ended, the graphics
driver 424 can notify the OS of the second display, and the two touch-enabled
displays can then be fully functional displays for the operating system. For example,
in a redirection mode the display of the upper touch-enabled display and upper
screen touch may be available to the OS, while the display of the lower touch-
enabled display and the lower touch-enabled display functionalities may be hidden
from the OS. Instead, an emulated input device can be detected by the OS as a
normal hardware input device. In normal mode, the upper and lower displays, as
well as the upper and lower touch screen functionalities, are available to the OS.
The emulated input device is thus not available to the OS in normal mode. The

emulated input device can include, for example, a keyboard, a touchpad, a mouse

10

WO 2017/155623 PCT/US2017/015033

key, and other special function keys in a similar fashion as they are available on
modern hardware keyboards, in addition to a writing window. A writing window, as
used herein, refers to an area in the virtual input device in which a user can write text
with a stylus or finger.

[0041] Thus, from an architecture perspective, the methods described herein are
performed seamlessly when integrated with existing methods. The only change
when using different types of input devices comes from what the UIM user interface
displays, and what specific HID messages are sent from the REM to the host OS.
For example, the HID messages can differ based on keyboard, mouse, or touchpad
messages.

[0042] The diagram of Fig. 4 is not intended to indicate that the example system
400 is to include all of the components shown in Fig. 4. Rather, the example system
400 can be implemented using fewer or additional components not illustrated in Fig.
4 (e.g., additional touch 1Cs, memory, GPUs, modules, applications, etc.).

[0043] Fig. 5 is a control flow diagram illustrating a process for generating a
virtual input device on a second touch-enabled display. The example process is
generally referred to by the reference number 500 and can be implemented using
the computing device 100 of Fig. 1.

[0044] The control flow diagram of Fig. 5 includes a GDM 502, an REM 504, a
UIM 506, a graphics driver 508, and an OS 510. At time 512, the GMD 502 detects
a trigger such as a gesture and sends a notification of the detected gesture to the
REM 504. Attime 514, the REM sends the UIM 506 a start notification. The start
notification informs the UIM 506 that it is time to display the virtual input device user
interface and send a KeyMap in the case of a keyboard. For example, the KeyMap
can be sent using a Set Feature request. The REM 504 sends the Start notification
when the GDM 502 sets the Input Device Active flag based on detection of a trigger
such as a gesture. For example, a specific gesture may have been predefined or
configured to be used to enable the virtual input device.

[0045] Attime 516, the UIM sends a StartinglnputDevice notification to the
graphics driver 508. In some examples, the StartinglnputDevice notification can be a

special interrupt that is sent to the graphics driver 508. At time 518, the graphics

11

WO 2017/155623 PCT/US2017/015033

driver 508 sends a MonitorDetached notification to the OS 510. As MonitorDetached
notification is sent to the OS, the graphics driver 508 and SW reconfigures the
display and associated memory to receive the display contents from the virtual input
device.

[0046] Attime 520 the UIM 506 sends a DisplayPrivateUl notification to the
graphics driver 508. As indicated by arrow 522, the graphics driver 508 bypasses
the OS 510 to directly display the private Ul at the second touch-enabled display. In
some examples, when the graphics driver 508 hides the display from the OS 510,
the graphics driver 508 can allow the UIM 506 to display a bitmap on the hidden
display. For example, the graphics driver 508 can provide a library application
programming interface (API) for the UIM 506 to display the bitmap. This bitmap may
include the input keyboard, touchpad, mouse or pen/stylus image variants. These
variants can be loaded from the library and rendered using a graphics processing
unit (GPU). In some examples, the UIM 506 can call the API any number of times to
show different bitmaps. For example, the pressing of keys and other dynamic
feedback may involve the display of different bitmaps.

[0047] Attime 524, the UIM 506 sends a SetKeyMap notification to the REM 504.
For example, the SetKeyMap notification can allow the UIM 506 to send a keymap to
the REM 504 for an autonomous parsing thereafter. In some examples, a Key Map
Table may contain the information that is provided by the UIM 506 to the REM 504
describing the keyboard key data. Every entry in the table contains a keycode and
the corresponding key position. For example, language and locales can be included.
In some examples, the co-ordinate system can assume a top-left corner of the
screen as (0, 0). Position and size of the key can be defined by a rectangle specified
by the top-left corner and bottom-right corner. This flexibility allows for keys of
different sizes. For example a SHIFT key can be specified to be bigger than the
character keys, and a SPACE key can be very large. The UIM 506 can define the
coordinates.

[0048] In some examples, the Key Map Table can be a static map that can then
can be provided to the REM 504. Any touches in the area defined by the Key Map
Table can be reported to the OS as keyboard HID reports. The keyboard HID

12

WO 2017/155623 PCT/US2017/015033

reports can also be reported to the UIM 506 through private Data HID reports as
described below.

[0049] Attime 526, the UIM 506 sends a SetTouchpad notification to the REM
504. For example, the SetTouchpad notification can allow the UIM 506 to send
information about the position and size of the virtual touchpad, which may
accompany a virtual keyboard. In some examples, a Touchpad Map Table similar to
the KeyMap Table can be used. For example, the Touchpad Map Table can contain
the co-ordinates and size of the virtual touchpad rectangle, as well as the sizes and
positions of the left, middle and right touchpad buttons. Any touches in the area
defined by entries in the Touchpad Map Table can be reported to the OS as the
Touchpad HID packets. The Touchpad HID packets can also reported to the UIM
506 through private Data HID reports.

[0050] At time 528, the UIM 506 sends a SetPrivateKeyMap notification to the
REM 504. For example, the SetPrivateKeyMap notification can allow the UIM 506 to
send a keymap to the REM 504 for translating touches in some special regions to be
privately sent to the UIM 506. In some examples, a Private Key Map table similar to
the Key Map Table above can be used. The Private Key Map table can contain the
co-ordinates and size of the keys that are considered private to the UIM 506. For
example, any touches in the area defined by entries in this table are not reported to
OS 510, but are instead reported to the UIM 506 through private Data HID reports.
This allows the UIM 506 to reserve some space for special keys that can alter the
behavior of the Ul itself. For example, a special EXIT key can make the virtual
keyboard disappear when pressed.

[0051] At time 530, the UIM 506 sends a StartRedirection notification 530 to the
REM 504. The StartRedirection notification can activate the REM 504 to start
suppressing touches and start sending keystrokes or touchpad events to the OS
510.

[0052] Attime 532 a loop begins. The loop 532 includes the receiving of Touch
Data at the REM 504 at time 534. In some examples, the Touch Data may have
been processed by one or more vendor kernels as discussed above or by the GDM.

The loop 532 further includes the sending of Device HID information from the REM

13

WO 2017/155623 PCT/US2017/015033

504 to the OS 510 at time 536. The loop 532 also includes the sending a
PrivateDeviceData information from the REM 504 to the UIM 506 at time 538. For
example, the REM 504 can send private data that shows what key(s) were pressed.
Although the keystroke data also directly goes to the OS as indicated in time 536,
this sideband notification allows the UIM 506 to further reflect something in the user
interface. For example, when a user presses a soft keyboard button, the user
interface may briefly change the color of the specific key(s) or activate a haptic
feedback to provide a feeling of key press to the user. The PrivateDeviceData
notification can enable such feedback.

[0053] In some examples, additional dynamic user interface adjustments can be
performed. For example, a virtual touchpad can be dynamically placed keeping in
mind the placement of a user’s palms. The virtual touchpad can be placed in
between two palms, but if user moves the palms, the virtual touchpad can be moved
around. The UIM 506 can thus send SetTouchPadMap set feature requests anytime
to change the behavior. In some examples, a user-draggable control can be used
that allows the virtual touchpad to be manually moved by the user to a desired
location. For example, private keys can be used to allow such a level of control.
[0054] This control flow diagram is not intended to indicate that the events of the
example process 500 are to be executed in any particular order, or that all of the
events are to be included in every case. Further, any number of additional events
not shown may be included within the example process 500, depending on the
details of the specific implementation. For example, although the way to enter the
virtual input device redirection mode is illustrated via a detected gesture, any form of
trigger can be used alternatively, such as some specific hardware buttons, or the
placement of the device in certain specific way. In addition, the GDM 502 can
continue to detect gestures while in the redirection mode after time 530. Although
this continued detection is not shown in the flows, such continued detection can
provide additional functionality of recognizing gestures. For example, a gesture
including dragging the palm and fingers at a fast speed from left to right can be used
make the keyboard disappear and the system return to a normal mode.

Furthermore, a notification to the graphics driver 508 can also be sent directly from

14

WO 2017/155623 PCT/US2017/015033

the REM 504. For example, StartinglnputDevice 516 message can be sent directly
by REM 504 to Graphics Driver 508. This may allow the graphics driver 508 to send
the MonitorDetached 518 message to the OS 510 in advance and be ready to
receive the DisplayPrivateUl 520 message. Sending the StartinglnputDevice 516
message directly from the REM 504 to the graphics driver 508 can make the
transition to the redirection mode faster.

[0055] Fig. 6 is a control flow diagram illustrating a process for disabling a virtual
input device on a second touch-enabled display. The example process is generally
referred to by the reference number 600 and can be implemented using the mobile
computing device 100 of Fig. 1.

[0056] The control flow diagram of Fig. 6 also includes a GDM 502, an REM 504,
a UIM 506, a graphics driver 508, and an OS 510. The control flow diagram further
includes the loop 532 discussed in detail with respect to Fig. 5 above. However, at
time 602, the loop 532 is broken by the detection of an exit key at the UIM 506. For
example, a Stop notification can allow the REM 504 to scan for specific key
sequence, or detect a stop gesture in collaboration with the GDM 502 and send a
Stop notification to the UIM 506 to kill the input device Ul. At time 604, an
ExitinputDevice notification is sent to the graphics driver 508 from the UIM 506. At
time 606, a StopRedirection notification is sent from the UIM 506 to the REM 504.
For example, the StopRedirection notification can allow the UIM 506 to instruct the
REM 504 to return to a normal pass-through mode. Although this can be done by
REM 504 itself, the StopRedirection notification allows further flexibility for an
implementation to decide and allow multiple ways to return to normal mode. At the
same time 608, the graphics driver 508 sends a MonitorAttached notification to the
0OS 510. Attime 610, the REM 504 receives Touch Data. Attime 612, the REM 504
sends Touch HID data to the OS 510.

[0057] This control flow diagram is not intended to indicate that the events of the
example process 600 are to be executed in any particular order, or that all of the
events are to be included in every case. Further, any number of additional events
not shown may be included within the example process 600, depending on the

details of the specific implementation. For example, the way to exit the keyboard

15

WO 2017/155623 PCT/US2017/015033

mode can be via another touch gesture, or via some specific hardware button, or a
specific assigned key on the virtual keyboard.

[0058] Fig. 7 is a block diagram shown illustrating an example computing device
that can be used to generate hardware input from a virtual input device on a second
touch-enabled display. The computing device 700 may be, for example, a laptop
computer, desktop computer, tablet computer, mobile device, or server, among
others. The computing device 700 may include a central processing unit (CPU) 702
that is configured to execute stored instructions, as well as a memory device 704
that stores instructions that are executable by the CPU 702. The CPU 702 may be
coupled to the memory device 704 by a bus 706. Additionally, the CPU 702 can be
a single core processor, a multi-core processor, a computing cluster, or any number
of other configurations. Furthermore, the computing device 700 may include more
than one CPU 702. The memory device 704 can include random access memory
(RAM), read only memory (ROM), flash memory, or any other suitable memory
systems. For example, the memory device 704 may include dynamic random
access memory (DRAM).

[0059] The computing device 700 may also include a graphics processing unit
(GPU) 708. As shown, the CPU 702 may be coupled through the bus 706 to the
GPU 708. The GPU 708 may be configured to perform any number of graphics
operations within the computing device 700. For example, the GPU 708 may be
configured to render or manipulate graphics images, graphics frames, videos, or the
like, to be displayed to a user of the computing device 700.

[0060] The memory device 704 can include random access memory (RAM), read
only memory (ROM), flash memory, or any other suitable memory systems. For
example, the memory device 704 may include dynamic random access memory
(DRAM). The memory device 704 may include device drivers 710 that are
configured to execute the instructions for generating virtual input devices. The
device drivers 710 may be software, an application program, application code, or the
like.

[0061] The CPU 702 may also be connected through the bus 706 to an

input/output (I/0O) device interface 712 configured to connect the computing device

16

WO 2017/155623 PCT/US2017/015033

700 to one or more 1/O devices 714. The I/O devices 714 may include, for example,
a keyboard and a pointing device, wherein the pointing device may include a
touchpad or a touchscreen, among others. The I/O devices 714 may be built-in
components of the computing device 700, or may be devices that are externally
connected to the computing device 700. In some examples, the memory 704 may
be communicatively coupled to I/O devices 714 through direct memory access
(DMA).

[0062] The CPU 702 may also be linked through the bus 706 to a display
interface 716 configured to connect the computing device 700 to a display device
718. The display device 718 may include a display screen that is a built-in
component of the computing device 700. The display device 718 may also include a
computer monitor, television, or projector, among others, that is internal to or
externally connected to the computing device 700.

[0063] The computing device 700 may also include a touch-enabled display
interface 720 configured to connect the computing device 700 to touch-enabled
displays 722. For example, the computing device 700 can receive touch or stylus
input via the touch-enabled display interface.

[0064] The computing device also includes a storage device 724. The storage
device 724 is a physical memory such as a hard drive, an optical drive, a
thumbdrive, an array of drives, or any combinations thereof. The storage device 724
may also include remote storage drives. The storage device 724 includes a gesture
detector 726, a redirector 728, an emulator 730, and a user interface 732. The
gesture detector 726 can detect an input device trigger from one of two coupled
touch-enabled displays. The redirector 728 can intercept touch data from the
triggered touch-enabled display. The emulator 730 can generate hardware input
data based on the intercepted touch data and send the hardware input data to an
operating system. For example, the hardware input data can include Human
Interface Device (HID) packets corresponding to keyboard strokes. The user
interface 732 can display a virtual input device on the triggered touch-enabled
display and receive touch data via the virtual input device. For example, the virtual

input device can include an emulated keyboard, touchpad, and a writing window,

17

WO 2017/155623 PCT/US2017/015033

among other types of input. In some examples, the user interface 732 can receive a
start request from the emulator and send a start input device request to a graphics
driver. For example, the graphics driver can detach a display of the triggered touch-
enabled display from the operating system response to receiving the start input
device request. In some examples, the user interface 732 can receive a start
request from the emulator and send a request to a graphics driver to display the
virtual input device. In some examples, the emulator 730 can further generate
private device data based on the intercepted touch data and send the private device
data to a user interface to display feedback. For example, the feedback can be a
replaced bitmap of a key in response to receiving touch data corresponding to a
touch of the key. In some examples, the emulator 730 can recognize characters in
the intercepted touch data and generate hardware input data such as keyboard
strokes corresponding to the recognized characters. For example, the intercepted
touch data can include one or more handwritten strokes received inside a writing
window displayed by the user interface. Since the OS and applications receive
hardware keyboard data rather than touch data, the OS and applications can use the
keyboard data without any character recognition at or changes to the OS or
applications.

[0065] The computing device 700 may also include a network interface controller
(NIC) 734. The NIC 734 may be configured to connect the computing device 700
through the bus 706 to a network 736. The network 736 may be a wide area
network (WAN), local area network (LAN), or the Internet, among others. In some
examples, the device may communicate with other devices through a wireless
technology. For example, the device may communicate with other devices via a
wireless local area network connection. In some examples, the device may connect
and communicate with other devices via Bluetooth® or similar technology.

[0066] The block diagram of Fig. 7 is not intended to indicate that the computing
device 700 is to include all of the components shown in Fig. 7. Rather, the
computing system 700 can include fewer or additional components not illustrated in
Fig. 7, such as additional engines, additional network interfaces, and the like. The

computing device 700 may include any number of additional components not shown

18

WO 2017/155623 PCT/US2017/015033

in Fig. 7, depending on the details of the specific implementation. Furthermore, any
of the functionalities of the CPU 702 may be partially, or entirely, implemented in
hardware and/or in a processor. For example, the functionality of the gesture
detector 726, the redirector 728, the emulator 730, and the user interface 732 may
be implemented with an application specific integrated circuit, in logic implemented in
a processor, in logic implemented in a specialized graphics processing unit, or in any
other device.

[0067] Fig. 8 is a flow chart illustrating a process for displaying a virtual input
device on a second touch-enabled display. The example process is generally
referred to by the reference number 800 and can be implemented using the
processor 702 of the computing device 700 of Fig. 7 above. For example, the
process can be performed by the gesture detector 726, the redirector 728, emulator
730, and user interface 732 of Fig. 7.

[0068] At block 802, the gesture detector monitors a touch-enabled display for
gestures. In some examples, the gesture can monitor two or more touch-enabled
displays for gestures.

[0069] At block 804, the gesture detector detects an input device trigger from a
touch-enabled display. For example, the input device trigger can be a gesture, a
hardware button, or a placement of the touch-enabled display.

[0070] At block 806, the user interface disables the touch-enabled display at an
operating system and displays virtual input device on the disabled touch-enabled
display. For example, the touch-enabled display may display a virtual keyboard or a
virtual touchpad. In some examples, the virtual input device can include a writing
window to receive one or more handwritten strokes to be converted to keyboard
strokes. In some examples, disabling the touch-enabled display can include sending
a message to the operating system that the touch-enabled display has been
detached.

[0071] At block 808, the user interface detects an adjustment gesture. For
example, the adjustment gesture can be a movement between two detected palms.
In some examples, the display may include a user-draggable control on the disabled

touch-enabled display.

19

WO 2017/155623 PCT/US2017/015033

[0072] At block 810, the user interface adjusts a virtual input device. For
example, the virtual input device can be made smaller or larger based on the
detected adjustment gesture. In some examples, the virtual input device can be
relocated on the touch-enabled display based on the detected adjustment gesture.
In some examples, and the user interface can move the virtual input device to a new
location based on touch data received at the user-draggable control.

[0073] At block 812, the gesture detector detects an absence of any input device
gesture. For example, a user may have removed both hands from the touch-
enabled display.

[0074] At block 814, the user interface disables the virtual input device. For
example, the virtual input device may disappear from the touch-enabled display and
the touch-enabled display may return to a default mode of operation. In some
examples, the user interface can disable the virtual input device by detecting an exit
trigger and disabling the virtual input device in response to detecting the exit trigger.
In some examples, the user interface can disable the virtual input device in response
to detecting a predefined placement of the touch-enabled display. For example, the
touch-enabled display may be placed in a reading or book mode and the virtual input
device may disappear.

[0075] This process flow diagram is not intended to indicate that the blocks of the
example process 800 are to be executed in any particular order, or that all of the
blocks are to be included in every case. Further, any number of additional blocks not
shown may be included within the example process 800, depending on the details of
the specific implementation. For example, the gesture detector can continuously
monitor the touch-enabled display for additional gestures and the user interface can
then disable the virtual input device in response to detecting an exit gesture.

[0076] Fig. 9 is a flow chart illustrating a process for generating hardware input
from a virtual input device. The example process is generally referred to by the
reference number 900 and can be implemented using the processor 702 of the
computing device 700 of Fig. 7 above. For example, the process can be performed
by the gesture detector 726, the redirector 728, the emulator 730, and the user
interface 732 of Fig. 7.

20

WO 2017/155623 PCT/US2017/015033

[0077] At block 902, the processor loads modules. For example, the gesture
detector, redirector, emulator and user interface may be loaded by the processor
upon bootup of the computing device.

[0078] At block 904, the gesture detector monitors a touch-enabled display for
input device triggers. For example, an input device trigger can be a gesture, a
button press, or a placement of the touch-enabled display.

[0079] At block 906, the gesture detector determines whether an input device
trigger has been detected at the touch-enabled display. If an input device trigger is
detected, then the method may proceed to block 910. If an input device trigger is not
detected, then the method may proceed at block 908.

[0080] At block 908, the redirector allows data from the touch-enabled display to
pass through to the operating system in response to not detecting an input device
trigger.

[0081] At block 910, the redirector intercepts data from the touch-enabled display
in response to detecting the input device trigger. For example, raw touch data from
the touch-enabled display can be captured and redirected from the operating
system. In some examples, a monitor detachment notification can be sent to the
operating system. For example, the operating system can move any windows from
the disabled touch-enabled display to another touch-enabled display.

[0082] At block 912, the emulator displays a virtual input device on the touch-
enabled display. For example, the virtual input device may be a virtual keyboard, a
virtual touchpad, among other possible virtual input devices, such as a writing
window. For example, a writing window can be an input box to receiving handwritten
characters such as letters, digits, or other characters.

[0083] At block 914, the emulator receives touch data from the touch-enabled
display displaying the virtual input device. For example, the touch data can be raw
touch data including coordinates of detected touches among other information.
[0084] At block 916, the emulator generates hardware input based on the
received touch data. For example, the hardware input can include Human Interface
Device (HID) data corresponding to hardware such as a keyboard and touchpad. In

some examples, the emulator can generate private device data based on the

21

WO 2017/155623 PCT/US2017/015033

received touch data. In some examples, the emulator can perform character
recognition on the received touch data and convert detected characters into
hardware input.

[0085] At block 918, the emulator sends the hardware input to the operating
system. For example, the operating system may receive the hardware input as if the
emulator was a hardware keyboard or a hardware touchpad. In some examples, the
emulator can also send the private device data to a virtual input device to provide
feedback.

[0086] This process flow diagram is not intended to indicate that the blocks of the
example process 900 are to be executed in any particular order, or that all of the
blocks are to be included in every case. Further, any number of additional blocks not
shown may be included within the example process 900, depending on the details of
the specific implementation.

[0087] Fig. 10 is a block diagram showing computer readable media 1000 that
store code for generating hardware input data. The computer readable media 1000
may be accessed by a processor 1002 over a computer bus 1004. Furthermore, the
computer readable medium 1000 may include code configured to direct the
processor 1002 to perform the methods described herein. In some embodiments,
the computer readable media 1000 may be non-transitory computer readable media.
In some examples, the computer readable media 1000 may be storage media.
[0088] The various software components discussed herein may be stored on one
or more computer readable media 1000, as indicated in Fig. 10. For example, a
gesture detector module 1006 may be configured to detect an input device trigger
from one of two coupled touch-enabled displays. A redirector and emulator module
1008 may be configured to intercept touch data from the triggered touch-enabled
display. A user interface module 1010 may be configured to display of a virtual input
device on the triggered touch-enabled display. The redirector and emulator module
1008 may be configured to generate hardware input data based on the intercepted
touch data. The redirector and emulator module 1008 may be configured to send
the hardware input data to an operating system. In some examples, the user

interface module 1010 may be configured to receive a start request and send a start

22

WO 2017/155623 PCT/US2017/015033

input device request to a graphics driver. For example, the graphics driver can
detach a display of the triggered touch-enabled display from the operating system
response to receiving the start input device request. In some examples, the user
interface module 1010 may be configured to receive a start request from the
emulator and send a request to a graphics driver to display the virtual input device.
In some examples, the redirector and emulator module 1008 may be configured to
generate private device data based on the intercepted touch data and send the
private device data to a virtual input device to display feedback. For example, the
feedback can be visual feedback in the form of an updated bitmap with a pressed
button. In some examples, the user interface module 1010 may be configured to
disable the virtual input device in response to detecting an exit trigger. For example,
the user interface module 1010 may be configured to send an ExitlnputDevice
notification to a graphics driver in response to detecting an exit trigger.

[0089] The block diagram of Fig. 10 is not intended to indicate that the computer
readable media 1000 is to include all of the components shown in Fig. 10. Further,
the computer readable media 1000 may include any number of additional
components not shown in Fig. 10, depending on the details of the specific
implementation.

EXAMPLES

[0090] Example 1 is a system for generating hardware device input. The system
includes a gesture detector to detect an input device trigger from one of two coupled
touch-enabled displays. The system also includes a redirector to intercept touch
data from a triggered touch-enabled display. The system further includes an
emulator to generate hardware input data based on the intercepted touch data and
send the hardware input data to an operating system. The system also further
includes a user interface to display a virtual input device on the triggered touch-
enabled display and receive touch data via the virtual input device.

[0091] Example 2 includes the system of example 1, including or excluding
optional features. In this example, the user interface is to receive a start request

from the emulator and send a start input device request to a graphics driver. The

23

WO 2017/155623 PCT/US2017/015033

graphics driver is to detach the triggered touch-enabled display from the operating
system in response to receiving the start input device request.

[0092] Example 3 includes the system of any one of examples 1 to 2, including or
excluding optional features. In this example, the user interface is to receive a start
request from the emulator and send a request to a graphics driver to display the
virtual input device.

[0093] Example 4 includes the system of any one of examples 1 to 3, including or
excluding optional features. In this example, the emulator is to generate private
device data based on the intercepted touch data and send the private device data to
a user interface to display feedback.

[0094] Example 5 includes the system of any one of examples 1 to 4, including or
excluding optional features. In this example, the system includes a graphics
processing unit. The graphics processing unit includes the gesture detector, the
redirector, and the emulator.

[0095] Example 6 includes the system of any one of examples 1 to 5, including or
excluding optional features. In this example, the system includes a keymap to be
used by the emulator module to generate the hardware input data based on the
intercepted touch data.

[0096] Example 7 includes the system of any one of examples 1 to 6, including or
excluding optional features. In this example, the user interface is to display private
keys to be used to modify or relocate the virtual input device.

[0097] Example 8 includes the system of any one of examples 1 to 7, including or
excluding optional features. In this example, the virtual input device includes a
virtual keyboard, a virtual touchpad, a writing window, or any combination thereof.
[0098] Example 9 includes the system of any one of examples 1 to 8, including or
excluding optional features. In this example, the virtual input device includes a
virtual keyboard and the hardware input data includes Human Interface Device (HID)
packets corresponding to keyboard strokes.

[0099] Example 10 includes the system of any one of examples 1 to 9, including
or excluding optional features. In this example, the virtual input device includes a

writing window and the emulator is to recognize characters in the intercepted touch

24

WO 2017/155623 PCT/US2017/015033

data and generate the hardware input data including keyboard strokes
corresponding to the recognized characters.

[0100] Example 11 is a method for generating hardware device input. The
method includes monitoring a touch-enabled display for an input device trigger. The
method also includes detecting the input device trigger from the touch-enabled
display. The method further includes disabling the touch-enabled display at an
operating system in response to detecting the input device trigger. The method also
further includes displaying a virtual input device on the disabled touch-enabled
display in response to detecting the trigger.

[0101] Example 12 includes the method of example 11, including or excluding
optional features. In this example, the method includes receiving touch data from
the virtual input device. The method also includes generating hardware input based
on the received touch data. The method further includes sending the hardware input
to the operating system.

[0102] Example 13 includes the method of any one of examples 11 to 12,
including or excluding optional features. In this example, the method includes
detecting an adjustment gesture and adjusting the virtual input device based on the
adjustment gesture.

[0103] Example 14 includes the method of any one of examples 11 t0 13,
including or excluding optional features. In this example, the method includes
detecting an absence of an input device trigger and disabling the virtual input device
in response to detecting the absence of the input device trigger.

[0104] Example 15 includes the method of any one of examples 11 to 14,
including or excluding optional features. In this example, disabling the touch-
enabled display includes sending a message to the operating system that the touch-
enabled display has been detached.

[0105] Example 16 includes the method of any one of examples 11 to 15,
including or excluding optional features. In this example, the method includes
detecting an exit trigger and disabling the virtual input device in response to
detecting the exit trigger.

25

WO 2017/155623 PCT/US2017/015033

[0106] Example 17 includes the method of any one of examples 11 to 16,
including or excluding optional features. In this example, the method includes
receiving touch data from the virtual input device. The method also includes
generating private device data based on the received touch data. The method
further includes sending the private device data to a user interface to provide
feedback.

[0107] Example 18 includes the method of any one of examples 11 t0 17,
including or excluding optional features. In this example, the method includes
displaying a user-draggable control on the disabled touch-enabled display and
moving the virtual input device to a new location based on touch data received at the
user-draggable control.

[0108] Example 19 includes the method of any one of examples 11 t0 18,
including or excluding optional features. In this example, the method includes
monitoring the touch-enabled display for additional gestures and disabling the virtual
input device in response to detecting an exit gesture.

[0109] Example 20 includes the method of any one of examples 11 to 19,
including or excluding optional features. In this example, the method includes
disabling the virtual input device in response to detecting a predefined placement of
the touch-enabled display.

[0110] Example 21 is at least one computer readable medium for generating
hardware input data having instructions stored therein that. The computer-readable
medium includes instructions that direct the processor to detect an input device
trigger from one of two coupled touch-enabled displays. The computer-readable
medium includes instructions that direct the processor to intercept touch data from
the triggered touch-enabled display. The computer-readable medium includes
instructions that direct the processor to display a virtual input device on the triggered
touch-enabled display. The computer-readable medium includes instructions that
direct the processor to generate hardware input data based on the intercepted touch
data; and send the hardware input data to an operating system.

[0111] Example 22 includes the computer-readable medium of example 21,

including or excluding optional features. In this example, the computer-readable

26

WO 2017/155623 PCT/US2017/015033

medium includes instructions to receive a start request and send a start input device
request to a graphics driver. The graphics driver is to detach the triggered touch-
enabled display from the operating system response to receiving the start input
device request.

[0112] Example 23 includes the computer-readable medium of any one of
examples 21 to 22, including or excluding optional features. In this example, the
computer-readable medium includes instructions to receive a start request from the
emulator and send a request to a graphics driver to display the virtual input device.
[0113] Example 24 includes the computer-readable medium of any one of
examples 21 to 23, including or excluding optional features. In this example, the
computer-readable medium includes instructions to generate private device data
based on the intercepted touch data and send the private device data to a user
interface to display feedback.

[0114] Example 25 includes the computer-readable medium of any one of
examples 21 to 24, including or excluding optional features. In this example, the
computer-readable medium includes instructions to disable the virtual input device in
response to detecting an exit trigger.

[0115] Example 26 includes the computer-readable medium of any one of
examples 21 to 25, including or excluding optional features. In this example, the
computer-readable medium includes instructions to receive touch data from the
virtual input device. The computer-readable medium includes instructions that direct
the processor to generate hardware input based on the received touch data. The
computer-readable medium includes instructions that direct the processor to send
the hardware input to the operating system

[0116] Example 27 includes the computer-readable medium of any one of
examples 21 to 26, including or excluding optional features. In this example, the
computer-readable medium includes instructions to monitor the touch-enabled
display for additional gestures and disable the virtual input device in response to
detecting an exit gesture:

[0117] Example 28 includes the computer-readable medium of any one of

examples 21 to 27, including or excluding optional features. In this example, the

27

WO 2017/155623 PCT/US2017/015033

computer-readable medium includes instructions to detect an absence of an input
device trigger and disable the virtual input device in response to detecting the
absence of the input device trigger.

[0118] Example 29 includes the computer-readable medium of any one of
examples 21 to 28, including or excluding optional features. In this example, the
computer-readable medium includes instructions to detect an adjustment gesture
and adjust the virtual input device based on the adjustment gesture.

[0119] Example 30 includes the computer-readable medium of any one of
examples 21 to 29, including or excluding optional features. In this example, the
computer-readable medium includes instructions to detect an exit trigger and
disabling the virtual input device in response to detecting the exit trigger.

[0120] Example 31 is a system for generating hardware device input. The system
includes means for detecting an input device trigger from one of two coupled touch-
enabled displays. The system also includes means for intercepting touch data from
the triggered touch-enabled display. The system further includes means for
generating hardware input data based on the intercepted touch data. The system
also further includes means for sending the hardware input data to an operating
system. The system also includes means for displaying a virtual input device on the
triggered touch-enabled display.

[0121] Example 32 includes the system of example 31, including or excluding
optional features. In this example, the system includes means for receiving a start
request from the emulator and send a start input device request to a graphics driver.
The graphics driver is to detach the triggered touch-enabled display from the
operating system response to receiving the start input device request.

[0122] Example 33 includes the system of any one of examples 31 to 32,
including or excluding optional features. In this example, the system includes means
for receiving a start request from the emulator and send a request to a graphics
driver to display the virtual input device.

[0123] Example 34 includes the system of any one of examples 31 to 33,

including or excluding optional features. In this example, the means for intercepting

28

WO 2017/155623 PCT/US2017/015033

touch data is to further generate private device data based on the intercepted touch
data and send the private device data to a user interface to display feedback.

[0124] Example 35 includes the system of any one of examples 31 to 34,
including or excluding optional features. In this example, the system includes means
for processing graphics.

[0125] Example 36 includes the system of any one of examples 31 to 35,
including or excluding optional features. In this example, the system includes means
for generating the hardware input data based on the intercepted touch data.

[0126] Example 37 includes the system of any one of examples 31 to 36,
including or excluding optional features. In this example, the system includes means
for modifying or relocating the virtual input device.

[0127] Example 38 includes the system of any one of examples 31 to 37,
including or excluding optional features. In this example, the virtual input device
includes a virtual keyboard, a virtual touchpad, a writing window, or any combination
thereof.

[0128] Example 39 includes the system of any one of examples 31 to 38,
including or excluding optional features. In this example, the virtual input device
includes a virtual keyboard and the hardware input data includes Human Interface
Device (HID) packets corresponding to keyboard strokes.

[0129] Example 40 includes the system of any one of examples 31 to 39,
including or excluding optional features. In this example, the virtual input device
includes a writing window and the means for generating hardware input data is to
recognize characters in the intercepted touch data and generate the hardware input
data including keyboard strokes corresponding to the recognized characters.

[0130] Example 41 is an apparatus for generating hardware device input. The
apparatus includes a gesture detector to detect an input device trigger from one of
two coupled touch-enabled displays. The apparatus also includes a redirector to
intercept touch data from the triggered touch-enabled display. The apparatus further
includes an emulator to generate hardware input data based on the intercepted

touch data and send the hardware input data to an operating system. The apparatus

29

WO 2017/155623 PCT/US2017/015033

also further includes a user interface to display a virtual input device on the triggered
touch-enabled display and receive touch data via the virtual input device.

[0131] Example 42 includes the apparatus of example 41, including or excluding
optional features. In this example, the apparatus includes a user interface to receive
a start request from the emulator and send a start input device request to a graphics
driver. The graphics driver is to detach the triggered touch-enabled display from the
operating system response to receiving the start input device request.

[0132] Example 43 includes the apparatus of any one of examples 41 to 42,
including or excluding optional features. In this example, the apparatus includes a
user interface to receive a start request from the emulator and send a request to a
graphics driver to display the virtual input device.

[0133] Example 44 includes the apparatus of any one of examples 41 to 43,
including or excluding optional features. In this example, the emulator is to further
generate private device data based on the intercepted touch data and send the
private device data to a user interface to display feedback.

[0134] Example 45 includes the apparatus of any one of examples 41 to 44,
including or excluding optional features. In this example, the apparatus includes a
graphics processing unit. The graphics processing unit includes the gesture
detector, the redirector, and the emulator.

[0135] Example 46 includes the apparatus of any one of examples 41 to 45,
including or excluding optional features. In this example, the apparatus includes a
keymap to be used by the emulator module to generate the hardware input data
based on the intercepted touch data.

[0136] Example 47 includes the apparatus of any one of examples 41 to 46,
including or excluding optional features. In this example, the display further includes
private keys to be used to modify or relocate the virtual input device.

[0137] Example 48 includes the apparatus of any one of examples 41 to 47,
including or excluding optional features. In this example, the apparatus is a mobile
computing device.

[0138] Example 49 includes the apparatus of any one of examples 41 to 48,

including or excluding optional features. In this example, the virtual input device

30

WO 2017/155623 PCT/US2017/015033

includes a virtual keyboard, a virtual touchpad, a writing window, or any combination
thereof.

[0139] Example 50 includes the apparatus of any one of examples 41 to 49,
including or excluding optional features. In this example, the virtual input device
includes a writing window and the emulator is to recognize characters in the
intercepted touch data and generate the hardware input data including keyboard
strokes corresponding to the recognized characters.

[0140] Not all components, features, structures, characteristics, etc. described
and illustrated herein need be included in a particular aspect or aspects. If the
specification states a component, feature, structure, or characteristic “may”, “might”,
“can” or “could” be included, for example, that particular component, feature,
structure, or characteristic is not required to be included. If the specification or claim
refers to “a” or “an” element, that does not mean there is only one of the element. If
the specification or claims refer to “an additional” element, that does not preclude
there being more than one of the additional element.

[0141] Itis to be noted that, although some aspects have been described in
reference to particular implementations, other implementations are possible
according to some aspects. Additionally, the arrangement and/or order of circuit
elements or other features illustrated in the drawings and/or described herein need
not be arranged in the particular way illustrated and described. Many other
arrangements are possible according to some aspects.

[0142] In each system shown in a figure, the elements in some cases may each
have a same reference number or a different reference number to suggest that the
elements represented could be different and/or similar. However, an element may
be flexible enough to have different implementations and work with some or all of the
systems shown or described herein. The various elements shown in the figures may
be the same or different. Which one is referred to as a first element and which is
called a second element is arbitrary.

[0143] Itis to be understood that specifics in the aforementioned examples may
be used anywhere in one or more aspects. For instance, all optional features of the

computing device described above may also be implemented with respect to either

31

WO 2017/155623 PCT/US2017/015033

of the methods or the computer-readable medium described herein. Furthermore,
although flow diagrams and/or state diagrams may have been used herein to
describe aspects, the techniques are not limited to those diagrams or to
corresponding descriptions herein. For example, flow need not move through each
illustrated box or state or in exactly the same order as illustrated and described
herein.

[0144] The present techniques are not restricted to the particular details listed
herein. Indeed, those skilled in the art having the benefit of this disclosure will
appreciate that many other variations from the foregoing description and drawings
may be made within the scope of the present techniques. Accordingly, it is the
following claims including any amendments thereto that define the scope of the
present techniques.

32

WO 2017/155623 PCT/US2017/015033

Claims

What is claimed is:

1. A system for generating hardware device input, comprising:

a gesture detector to detect an input device trigger from one of two coupled
touch-enabled displays;

a redirector to intercept touch data from a triggered touch-enabled display;

an emulator to generate hardware input data based on the intercepted touch
data and send the hardware input data to an operating system; and

a user interface to display a virtual input device on the triggered touch-

enabled display and receive touch data via the virtual input device.

2. The system of claim 1, wherein the user interface is to receive a start
request from the emulator and send a start input device request to a graphics driver,
wherein the graphics driver is to detach a display of the triggered touch-enabled
display from the operating system in response to receiving the start input device

request.

3. The system of claim 1, wherein the user interface is to receive a start
request from the emulator and send a request to a graphics driver to display the

virtual input device.

4. The system of claim 1, wherein the emulator is to further generate
private device data based on the intercepted touch data and send the private device

data to the virtual input device to display feedback.
5. The system of claim 1, comprising a graphics processing unit, the

graphics processing unit comprising the gesture detector, the redirector, and the

emulator.

33

WO 2017/155623 PCT/US2017/015033

6. The system of any combination of claims 1-5, comprising a keymap to
be used by the emulator module to generate the hardware input data based on the

intercepted touch data.

7. The system of any combination of claims 1-5, wherein the user
interface is to display private keys to be used to modify or relocate the virtual input

device.

8. The system of any combination of claims 1-5, wherein the virtual input
device comprises a virtual keyboard, a virtual touchpad, a writing window, or any

combination thereof.

9. The system of any combination of claims 1-5, wherein the virtual input
device comprises a virtual keyboard and the hardware input data comprises Human

Interface Device (HID) packets corresponding to keyboard strokes.

10. The system of any combination of claims 1-5, wherein the virtual input
device comprises a writing window and the emulator is to recognize characters in the
intercepted touch data and generate the hardware input data comprising keyboard

strokes corresponding to the recognized characters.

11. A method for generating hardware device input, comprising:

monitoring a touch-enabled display for an input device trigger;

detecting the input device trigger from the touch-enabled display;

disabling the touch-enabled display at an operating system in response to
detecting the input device trigger; and

displaying a virtual input device on the disabled display in response to

detecting the input device trigger.

12. The method of claim 11, comprising:

receiving touch data from the virtual input device;

34

WO 2017/155623 PCT/US2017/015033

generating hardware input based on the received touch data; and

sending the hardware input to the operating system.

13. The method of claim 11, comprising detecting an adjustment gesture

and adjusting the virtual input device based on the adjustment gesture.

14. The method of claim 11, comprising detecting the absence of an input
device trigger and disabling the virtual input device in response to detecting the

absence of the input device trigger.

15. The method of claim 11, wherein disabling the touch-enabled display
comprises sending a message to the operating system that the touch-enabled

display has been detached.

16. The method of any combination of claims 11-15, comprising detecting
an exit trigger and disabling the virtual input device in response to detecting the exit

trigger.

17. The method of any combination of claims 11-15, comprising:
receiving touch data from the virtual input device;
generating private device data based on the received touch data; and

sending the private device data to a user interface to provide feedback.

18. The method of any combination of claims 11-15, comprising displaying
a user-draggable control on the disabled touch-enabled display and moving the
virtual input device to a new location based on touch data received at the user-

draggable control.

19. The method of any combination of claims 11-15, comprising monitoring
the touch-enabled display for additional gestures and disabling the virtual input

device in response to detecting an exit gesture.

35

WO 2017/155623 PCT/US2017/015033

20. The method of any combination of claims 11-15, comprising disabling
the virtual input device in response to detecting a predefined placement of the touch-
enabled display.

21. Atleast one computer readable medium for generating hardware input
data having instructions stored therein that, in response to being executed on a
computing device, cause the computing device to:

detect an input device trigger from one of two coupled touch-enabled displays;

intercept touch data from a triggered touch-enabled display;

display a virtual input device on the triggered touch-enabled display;

generate hardware input data based on the intercepted touch data; and

send the hardware input data to an operating system.

22. The at least one computer readable medium of claim 21, comprising
instructions to receive a start request and send a start input device request to a
graphics driver, wherein the graphics driver is to detach a display of the triggered
touch-enabled display from the operating system in response to receiving the start

input device request.

23. The at least one computer readable medium of claim 21, comprising
instructions to receive a start request and send a request to a graphics driver to

display the virtual input device.

24. The at least one computer readable medium of any combination of
claims 21-23, comprising instructions to generate private device data based on the
intercepted touch data and send the private device data to the virtual input device to

display feedback.
25. The at least one computer readable medium of any combination of

claims 21-23, comprising instructions to disable the virtual input device in response

to detecting an exit trigger.

36

WO 2017/155623 PCT/US2017/015033

110

108

WO 2017/155623 PCT/US2017/015033

2110

{3
N
&
&5
o
o <t
=)
™
)
e
h
N
Al o ;
[y P
S 80
& —
Lh.
N .
= &
A e
<L
o~
&
/ X
o
&
«

104

PCT/US2017/015033

WO 2017/155623

3/10

\MWM wmmwwwf
3 (=

7

A58

seldhy

» '

7
.y
f@mm iii

//r wepsAs Bunessdyn \\
rf AR

B Bt

M\ TAY

Y

sioey Buissannid-isod

EEle

Ry

NgZE < Lgze \ye

.

(19

gLy
.

SIBUIEY
JOpUBA

QLe

()

e/

\ a0e

S0E
Ty

SI08UAS

@
121

HOnG)

“ AL

WO 2017/155623 PCT/US2017/015033
4/10
414 416 =
Touch Enabled Legacy
Applications Applications
402 418 o~ 420
HID Class Driver U
y 424
422 Touch Driver Graphic Driver &

, - 406

P Graphics Mamaory
434~ 436 - 440

U ADR 1 e M Dala

438

VT T 3 +442

434 Aloorithms * Raw Data

A
Y
PO e 448
A0/~ 444 CSMEMW 450~y TWiA <
DMA 454 & 458
-1 Handler
448 HW Bus IF }g” 4ne
- 458
E i
Touch IC Touch 10
#1 #e
410 "j e 3 412 ”’} 3 y
400

PCT/US2017/015033

WO 2017/155623

5/10

G Ol
.Qam

P

BIB(] S0IAB{] S1EAL]

A

Cii 80iAa(] pUsE

\ 8BS

“ \ BIECT UONOL
AR “ doo

mhﬂ
ml.&
;
i
!
f
j
i
f
;
L
i

R

Tiin
tid

i
H
H
i
H
i
i
i
H
H
H
i
H

depAausigaldigg //Ma

A 1\\

88

PRAUNGLIBS S 985
ol

e e e

depiaies

|45
4

S

HEIG

0EG b’
:
2G| :
M m\ (3G M
%\ 29 i ITIBAL ARSI b
H §
ETSEER TR 7o :
H i
M& aupacpnduituEg
M <
H f
H f
H §
H f
H f
H f
H i
BALC
SO win

B0G .\m

80% \.w

LA

A
w\

A

H
H
i
H
i
H
i
H
3
i
H
b
H
i
H
H
j

e

[M

BEAEESEES

IS

gos \\,

PCT/US2017/015033

WO 2017/155623

6/10

;] : f

i H H i

f i i i

H H H i

i H H H

B i i i

g i i “

f i i

; g LS : : w
M,, p 400 CliH USR0E puss “ 7 908 r“& m,/ BB LN M
AT - V09 ; opaipeMeals 019 m

M N TR RS M m M

f i i i

H H H

W % Jiojua W m
m m - m m

M M m @ PIB(T GUAB(] S1BAU m M
a gec ./t UHSWRORRE T Ngeg ; M

M M M MA \v BIB{T Yono m

: w : bpes (doo
M ; M L zoo S |

i H H H i

: : w w :

JBALC s
50 sonders win N s

~01g - a0g 905 S p0g 705

WO 2017/155623

PCT/US2017/015033
710
700~
7O~ (,7'@5 08
Py GRPU
704 ~
Memaory
Davice
720
-7 10 £ 'ﬁg
Dirivers r~ Touch Screen Touch
Interface Seresns
724 ~, - 722
Slovage
Geslure =728
Deteclor T42] pec—
eofid) rmmmmT—
| Redirector ?’"?28 0 Device o
U Emuator R 90U nterface Devices 1+
Ussr (-732 714
interface 7
f‘“?’g 6 S E——
734 Display Display
2 Interface Davices
NIC

Network

756~

WO 2017/155623 PCT/US2017/015033

8/10

Monitor Toush-Enabled Display for Trigger

!

Delect inpul Device Trigger

kid

Disable Touch-Enabled Display af Operating System 7 806
and Display Virtual input Device

k:d

&08
Detect Adjustment Gesture 2
% 810
Adiust Virlual Inpud Device 4
* 812
Detact Absence of Input Device Gesture 2

Disable Virtual input Device

e
2
o)

WO 2017/155623

9/10

PCT/US2017/015033

Load Modules

ks

ki

Monitor for Input Device Triggers

Detect Input Device Trigger? '

Allow Dala io

intercept

Fass Through Data
i
208 ~

W

Display Virtual Input Device

'

Receive Touch Data from Touch-Enabled Display
Displaving Virtual Input Device

kil

Generale Hardwars Inpui Based on Received Touch Data

k:d

Send Hardware Input to Operating Syslem

400

FiGL 9

WO 2017/155623

- 1002

10/10

Frocessor

1004~

Gesturs Detaclor
Modile

Radirector and
Emutator Module

User Interface
Modils

PCT/US2017/015033
o 1006
= 1008
- 1010

FiG. 10

International application No.

A A AR
INTERNATIONAL SEARCH REPORT PCT/US2017/015033

A. CLASSIFICATION OF SUBJECT MATTER
GOG6F 3/0488(2013.01)i, GO6F 3/0486(2013.01)i, GO6F 3/14(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOOF 3/0488; GOGF 3/02; GOOF 3/048; GOOF 3/041; GOOF 3/0486; GOOF 3/14

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: virtual keyboard, second touch display, gesture, detect, trigger, disable

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2011-0285631 A1 (AKIRA IMAMURA et al.) 24 November 2011 1-25
See paragraphs [0027]-[0030], [0039]-[0042], [0061]; claims 1, 9-10;
and figures 1-2, 4, 9.
Y US 2013-0127729 A1 (TIMOTHY J. MOSBY et al.) 23 May 2013 1-25
See paragraphs [0009]-[0018], [0024], [0040]-[0042]; claims 1, 9;
and figures 1, 4.
A US 2013-0257732 A1 (ROBERT DUFFIELD) 03 October 2013 1-25
See paragraphs [0021], [0063]-[0066]; and figures 1, 17.
A US 2012-0260207 A1 (ANTON TRESKUNOV et al.) 11 October 2012 1-25
See paragraphs [0027]-[0028], [0047]; and figures 1, 2A-2C, 5.
A US 2012-0050187 A1 (YANG CHENG CHEN) 01 March 2012 1-25
See paragraphs [0029], [0031]; and figures 3, 5.

|:| Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later
than the priority date claimed

date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
12 May 2017 (12.05.2017)

Date of mailing of the international search report

12 May 2017 (12.05.2017)

Name and mailing address of the [SA/KR

International Application Division

Korean Intellectual Property Office

189 Cheongsa-ro, Seo-gu, Dagjeon, 35208, Republic of Korea

Facsimile No. +82-42-481-8578

Authorized officer

SRR
o

R \\\\

LEE, Dong Yun

Telephone No. +82-42-481-8734

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2017/015033

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2011-0285631 Al 24/11/2011 JP 2011-248411 A 08/12/2011

US 2013-0127729 Al 23/05/2013 US 2009-0237361 Al 24/09/2009
US 8358277 B2 22/01/2013
US 8619036 B2 31/12/2013

US 2013-0257732 Al 03/10/2013 None

US 2012-0260207 Al 11/10/2012 KR 10-2012-0114139 A 16/10/2012
US 9430145 B2 30/08/2016

US 2012-0050187 Al 01/03/2012 TW 201209646 A 01/03/2012

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - wo-search-report
	Page 50 - wo-search-report

