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Description

Field of the Invention

[0001] This invention is related to the field of proces-
sors and, more particularly, to address and operand siz-
es in processors.

Description of the Related Art

[0002] The x86 architecture (also known as the 1A-32
architecture) has enjoyed widespread acceptance and
success in the marketplace. Accordingly, it is advanta-
geous to design processors according to the x86 archi-
tecture. Such processors may benefit from the large
body of software written to the x86 architecture (since
such processors may execute the software and thus
computer systems employing the processors may enjoy
increased acceptance in the market due to the large
amount of available software).

[0003] As computer systems have continued to
evolve, 64 bit address size (and sometimes operand
size) has become desirable. A larger address size al-
lows for programs having a larger memory footprint (the
amount of memory occupied by the instructions in the
program and the data operated upon by the program)
to operate within the memory space. A larger operand
size allows for operating upon larger operands, or for
more precision in operands. More powerful applications
and/or operating systems may be possible using 64 bit
address and/or operand sizes.

[0004] Unfortunately, the x86 architecture is limited to
a maximum 32 bit operand size and 32 bit address size.
The operand size refers to the number of bits operated
upon by the processor (e.g. the number of bits in a
source or destination operand). The address size refers
to the number of bits in an address generated by the
processor. Thus, processors employing the x86 archi-
tecture may not serve the needs of applications which
may benefit from 64 bit address or operand sizes.
[0005] US-A-5481684 (PATTIN JAY CET AL) 2 Jan-
uary 1996 (1996-01-02) discloses gate descriptors and
segment descriptors in the x86 architecture. The gate
descriptors control access to entry points into a code
segment. They consist of two 4-byte double words and
comprise an offset which determines the beginning ad-
dress of the service routine within the segment. The seg-
ment descriptors comprise the beginning address of the
segment, a segment limit and many attribute bits to con-
trol access to the segment and further define said seg-
ment. Said segment descriptors also consist of two
4-byte double words.

Summary of the Invention

[0006] The problems outlined above are in large part
solved by a processor as described herein. The proces-
sor supports a first processing mode in which the ad-
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dress size is greater than 32 bits. The address size may
be nominally indicated as 64 bits, although various em-
bodiments of the processor may implement any address
size which exceeds 32 bits, up to and including 64 bits,
in the first processing mode. The first processing mode
may be established by placing an enable indication in a
control register into an enabled state and by setting a
first operating mode indication and a second operating
mode indication in a segment descriptor to predefined
states. Other combinations of the first operating mode
indication and the second operating mode indication
may be used to provide compatibility modes for 32 bit
and 16 bit processing compatible with the x86 processor
architecture (with the enable indication remaining in the
enabled state).

[0007] While the compatibility modes may allow 32 bit
or 16 bit code to execute while the first processing mode
is enabled via the enable indication, it may be desirable
to call code operating in the first processing mode from
the 32 bit or 16 bit code. For example, the operating sys-
tem may operate in the first processing mode while ap-
plication programs may operate in 32 or 16 bit mode. A
call gate descriptor is defined which occupies two en-
tries in a segment descriptor table. By occupying two
entries, each of which may otherwise store a segment
descriptor, the call gate descriptor may include enough
space to store an address in excess of 32 bits. Thus, a
calling code segment may reference a call gate descrip-
tor, which may reference the target code segment and
may provide an address within the address space of the
target code segment, even if the address exceeds the
address size in the calling code segment. Furthermore,
by having the call gate descriptor occupy two entries,
the segment descriptor table may continue to store seg-
ment descriptors for compatibility mode segments.
Thus, call gate descriptors and compatibility mode seg-
ment descriptors may coexist in the segment descriptor
table. Additionally, the area which would be the type field
in the second entry occupied by the call gate descriptor
may be coded to an invalid type, so that an inadvertent
use of the second entry for a code segment may result
in the processor signalling an exception.

[0008] Broadly speaking, a processor is contemplat-
ed. The processor comprises an execution core config-
ured to execute a branch instruction specifying a seg-
ment selector. The processor is configured to read at
least a first entry from a segment descriptor table re-
sponsive to the segment selector, and, if the first entry
indicates a call gate descriptor, a second entry in the
segment descriptor table stores a remaining portion of
the call gate descriptor. Additionally, a computer system
is contemplated comprising the processor and an input/
output (I/O) device configured to communicate between
the computer system and another computer system to
which the 1/0 device is couplable.

[0009] Moreover, A method is contemplated. A call
gate descriptor is read from a segment descriptor table.
The call gate descriptor comprises a first entry and a
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second entry in the segment descriptor table, wherein
each of the first entry and the second entry is capable
of storing a segment descriptor. An offset is extracted
from the call gate descriptor. The offset locates a first
instruction to be executed in a target code segment.

Brief Description of the Drawings

[0010] Other objects and advantages of the invention
will become apparent upon reading the following de-
tailed description and upon reference to the accompa-
nying drawings in which:

Fig. 1 is a block diagram of one embodiment of a
processor.

Fig. 2 is a block diagram of one embodiment of a
segment descriptor for 32/64 mode.

Fig. 3 is a block diagram of one embodiment of a
segment descriptor for compatibility mode.

Fig. 4 is a block diagram of operation in compatibility
mode and in legacy mode according to one embod-
iment of the processor shown in Fig. 1.

Fig. 5 is a table illustrating one embodiment of op-
erating modes as a function of segment descriptor
and control register values.

Fig. 6 is a table illustrating one embodiment of the
use of instruction prefixes to override default oper-
ating modes.

Fig. 7 is a block diagram of one embodiment of a
register.

Fig. 8 is a diagram illustrating one embodiment of a
global descriptor table and a local descriptor table.

Fig. 9 is a block diagram of one embodiment of a
32/64 call gate descriptor.

Fig. 10 is a block diagram of an instruction format.

Fig. 11 is a block diagram of one embodiment of a
computer system including the processor shown in
Fig. 1.

Fig. 12 is a block diagram of another embodiment
of a computer system including the processor
shown in Fig. 1.

[0011] While the invention is susceptible to various
modifications and alternative forms, specific embodi-
ments thereof are shown by way of example in the draw-
ings and will herein be described in detail. It should be
understood, however, that the drawings and detailed de-
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scription thereto are not intended to limit the invention
to the particular form disclosed, but on the contrary, the
intention is to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

Detailed Description of the Preferred Embodiments

[0012] Turning now to Fig. 1, a block diagram illustrat-
ing one embodiment of a processor 10 is shown. Other
embodiments are possible and contemplated. In the
embodiment of Fig. 1, processor 10 includes an instruc-
tion cache 12, an execution core 14, a data cache 16,
an external interface unit 18, a memory management
unit (MMU) 20, and a register file 22. In the illustrated
embodiment, MMU 20 includes a set of segment regis-
ters 24, a first control register 26, a second control reg-
ister 28, a local descriptor table register (LDTR) 30, and
a global descriptor table register (GDTR) 32. Instruction
cache 12 is coupled to external interface unit 18, exe-
cution core 14, and MMU 20. Execution core 14 is fur-
ther coupled to MMU 20, register file 22, and data cache
16. Data cache 16 is further coupled to MMU 20 and
external interface unit 18. External interface unit 18 is
further coupled to MMU 20 and to an external interface.
[0013] Generally speaking, processor 10 employs a
processor architecture compatible with the x86 architec-
ture and including additional architectural features to
support 64 bit processing. Processor 10 is configured to
establish an operating mode in response to information
stored in a code segment descriptor corresponding to
the currently executing code and further in response to
one or more enable indications stored in one or more
control registers. As used herein, an "operating mode"
specifies default values for various programmably se-
lectable processor attributes. For example, the operat-
ing mode may specify a default operand size and a de-
fault address size. The default operand size specifies
the number of bits in an operand of an instruction, unless
an instruction's encoding overrides the default. The de-
fault address size specifies the number of bits in an ad-
dress of a memory operand of an instruction, unless an
instruction's encoding overrides the default. The default
address size specifies the size of at least the virtual ad-
dress of memory operands, and may also specify the
size of the physical address. Alternatively, the size of
the physical address may be independent of the default
address size and may instead be dependent on the LME
bit described below (e.g. the physical address may be
32 bits if the LME bit is clear and an implementation-
dependent size greater than 32 bits and less than 64
bits if the LME bit is set) or on another control bit (e.g.
the physical address extension bit, or PAE bit, in another
control register). As used herein, a "virtual address" is
an address generated prior to translation through an ad-
dress translation mechanism (e.g. a paging mecha-
nism) to a "physical address", which is the address ac-
tually used to access a memory. Additionally, as used
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herein, a "segment descriptor" is a data structure creat-
ed by software and used by the processor to define ac-
cess control and status for a segment of memory. A
"segment descriptor table" is a table in memory having
multiple entries, each entry capable of storing a seg-
ment descriptor.

[0014] In the illustrated embodiment, MMU 20 gener-
ates an operating mode and conveys the operating
mode to execution core 14. Execution core 14 executes
instructions using the operating mode. More particularly,
execution core 14 fetches operands having the default
operand size from register file 22 or memory (through
data cache 16, if the memory operands are cacheable
and hit therein, or through external interface unit 18 if
the memory operands are noncacheable or miss data
cache 16) unless a particular instruction's encoding
overrides the default operand size, in which case the
overriding operand size is used. Similarly, execution
core 14 generates addresses of memory operands,
wherein the addresses have the default address size
unless a particular instruction's encoding overrides the
default address size, in which case the overriding ad-
dress size is used. In other embodiments, the informa-
tion used to generate the operating mode may be shad-
owed locally in the portions of processor 10 which use
the operating mode (e.g. execution core 14), and the
operating mode may be determined from the local shad-
Oow copies.

[0015] As mentioned above, MMU 20 generates the
operating mode responsive to a code segment descrip-
tor corresponding to the code being executed and fur-
ther responsive to one or more values in control regis-
ters. Information from the code segment descriptor is
stored in one of the segment registers 24 (a register re-
ferred to as CS, or code segment). Additionally, control
register 26 stores an enable indication (LME) which is
used to enable an operating mode in which the default
address size is greater than 32 bits ("32/64 mode") as
well as certain compatibility modes for the 32 bit and 16
bit operating modes. The default operand size may be
32 bits in 32/64 mode, but instructions may override the
default 32 bit operand size with a 64 bit operand size
when desired. If the LME indication is in an enabled
state, then 32/64 mode may be used in addition to 32
bit and 16 bit modes. If the LME indication is in a disa-
bled state, then 32/64 mode is disabled. In one embod-
iment, the default address size in 32/64 mode may be
implementation-dependent but may be any value up to
and including 64 bits. Furthermore, the size of the virtual
address may differ in a given implementation from the
size of the physical address in that implementation.
[0016] It is noted that enable indications may be de-
scribed herein as bits with the enabled state being the
set state of the bit and the disabled state being the
cleared state of the bit. However, other encodings are
possible, including encodings in which multiple bits are
used and encodings in which the enabled state is the
clear state and the disabled state is the set state. Ac-
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cordingly, the remainder of this description may refer to
the LME indication in control register 26 as the LME bit,
with the enabled state being set and the disabled state
being clear. However, other encodings of the LME indi-
cation are contemplated, as set forth above.

[0017] Segment registers 24 store information from
the segment descriptors currently being used by the
code being executed by processor 10. As mentioned
above, CS is one of segment registers 24 and specifies
the code segment of memory. The code segment stores
the code being executed. Other segment registers may
define various data segments (e.g. a stack data seg-
ment defined by the SS segment register, and up to four
data segments defined by the DS, ES, FS, and GS seg-
ment registers). Fig. 1 illustrates the contents of an ex-
emplary segment register 24A, including a selector field
24AA and a descriptor field 24AB. Selector field 24AA
is loaded with a segment selector to activate a particular
segment in response to certain segment load instruc-
tions executed by execution core 14. The segment se-
lector identifies the segment descriptor in a segment de-
scriptor table in memory. More particularly, processor 10
may employ two segment descriptor tables: a local de-
scriptor table and a global descriptor table. The base
address of the local descriptor table is stored in the
LDTR 30. Similarly, the base address of the global de-
scriptor table is stored in GDTR 32. A bit within the seg-
ment selector (the table indicator bit) selects the de-
scriptor table, and the remainder of the segment selec-
tor is used as an index into the selected table. When an
instruction loads a segment selector into one of segment
registers 24, MMU 20 reads the corresponding segment
descriptor from the selected segment descriptor table
and stores information from the segment descriptor into
the segment descriptor field (e.g. segment descriptor
field 24AB for segment register 24A). The information
stored in the segment descriptor field may comprise any
suitable subset of the segment descriptor, including all
of the segment descriptor, if desired. Additionally, other
information derived from the segment descriptor or oth-
er sources may be stored in the segment descriptor
field, if desired. For example, an embodiment may de-
code the operating mode indications from the code seg-
ment descriptor and store the decoded value rather than
the original values of the operating mode indications. If
an instruction causes CS to be loaded with a segment
selector, the code segment may change and thus the
operating mode of processor 10 may change. Segment
descriptor tables are described in more detail below.
[0018] In one embodiment, only the CS segment reg-
ister is used in 32/64 mode. The data segment registers
are ignored. In 16 and 32 bit modes, the code segment
and data segments may be active. Furthermore, a sec-
ond enable indication (PE) in control register 28 may af-
fect the operation of MMU 20. The PE enable indication
may be used to enable protected mode, in which seg-
mentation and/or paging address translation mecha-
nisms may be used. If the PE enable indication is in the
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disabled state, segmentation and paging mechanisms
are disabled and processor 10is in "real mode" (in which
addresses generated by execution core 14 are physical
addresses). Similar to the LME indication, the PE indi-
cation may be a bit in which the enabled state is the bit
being set and the disabled state is the bit being clear.
However, other embodiments are contemplated as de-
scribed above.

[0019] Itis noted that MMU 20 may employ additional
hardware mechanisms, as desired. For example, MMU
20 may include paging hardware to implement paging
address translation from virtual addresses to physical
addresses. The paging hardware may include a trans-
lation lookaside buffer (TLB) to store page translations.
[0020] Itis noted that control registers 26 and 28 may
be implemented as architected control registers (e.g.
control register 26 may be CR4 and control register 28
may be CRO). Alternatively, one or both of the control
registers may be implemented as model specific regis-
ters to allow for other uses of the architected control reg-
isters without interfering with 32/64 mode.

[0021] Generally, instruction cache 12 is a high speed
cache memory for storing instruction bytes. Execution
core 14 fetches instructions from instruction cache 12
for execution. Instruction cache 12 may employ any suit-
able cache organization, including direct-mapped, set
associative, and fully associative configurations. If an
instruction fetch misses in instruction cache 12, instruc-
tion cache 12 may communicate with external interface
unit 18 to fill the missing cache line into instruction cache
12. Additionally, instruction cache 12 may communicate
with MMU 20 to receive physical address translations
for virtual addresses fetched from instruction cache 12.
[0022] Execution core 14 executes the instructions
fetched from instruction cache 12. Execution core 14
fetches register operands from register file 22 and up-
dates destination registers in register file 22. The size
of the register operands is controlled by the operating
mode and any overrides of the operating mode for a par-
ticular instruction. Similarly, execution core 14 fetches
memory operands from data cache 16 and updates des-
tination memory locations in data cache 16, subject to
the cacheability of the memory operands and hitting in
data cache 16. The size of the memory operands is sim-
ilarly controlled by the operating mode and any over-
rides of the operating mode for a particular instruction.
Furthermore, the size of the addresses of the memory
operands generated by execution core 14 is controlled
by the operating mode and any overrides of the operat-
ing mode for a particular instruction.

[0023] Execution core 14 may employ any suitable
construction. For example, execution core 14 may be a
superpipelined core, a superscalar core, or a combina-
tion thereof. Execution core 14 may employ out of order
speculative execution or in order execution, according
to design choice.

[0024] Register file 22 may include 64 bit registers
which may be accessed as 64 bit, 32 bit, 16 bit, or 8 bit
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registers as indicated by the operating mode of proces-
sor 10 and any overrides for a particular instruction. The
register format for one embodiment is described below
with respect to Fig. 7. The registers included in register
file 22 may include the LEAX, LEBX, LECX, LEDX, LE-
DI, LESI, LESP, and LEBP registers. Register file 22
may further include the LEIP register. Alternatively, ex-
ecution core 14 may employ a form of register renaming
in which any register within register file 22 may be
mapped to an architected register. The number of reg-
isters in register file 22 may be implementation depend-
ent for such an embodiment.

[0025] Data cache 16 is a high speed cache memory
configured to store data. Data cache 16 may employ any
suitable cache organization, including direct-mapped,
set associative, and fully associative configurations. If a
data fetch or update misses in data cache 16, data
cache 16 may communicate with external interface unit
18 to fill the missing cache line into data cache 16. Ad-
ditionally, if data cache 16 employs a writeback caching
policy, updated cache lines which are being cast out of
data cache 16 may be communicated to external inter-
face unit 18 to be written back to memory. Data cache
16 may communicate with MMU 20 to receive physical
address translations for virtual addresses presented to
data cache 16.

[0026] External interface unit 18 communicates with
portions of the system external to processor 10. External
interface unit 18 may communicate cache lines for in-
struction cache 12 and data cache 16 as described
above, and may communicate with MMU 20 as well. For
example, external interface unit 18 may access the seg-
ment descriptor tables and/or paging tables on behalf of
MMU 20.

[0027] It is noted that processor 10 may include an
integrated level 2 (L2) cache, if desired. Furthermore,
external interface unit 18 may be configured to commu-
nicate with a backside cache in addition to communicat-
ing with the system.

[0028] Turning now to Fig. 2, a block diagram of one
embodiment of a code segment descriptor 40 for 32/64
mode is shown. Other embodiments are possible and
contemplated. In the embodiment of Fig. 2, code seg-
ment descriptor 40 comprises 8 bytes with the most sig-
nificant 4 bytes illustrated above the least significant 4
bytes. The most significant four bytes are stored at a
numerically larger address than the least significant four
bytes. The most significant bit of each group of four
bytes is illustrated as bit 31 in Fig. 2 (and Fig. 3 below),
and the least significant bit is illustrated as bit 0. Short
vertical lines within the four bytes delimit each bit, and
the long vertical lines delimit a bit but also delimit a field
(both in Fig. 2 and in Fig. 3).

[0029] Unlike the 32 bit and 16 bit code segment de-
scriptors illustrated in Fig. 3 below, code segment de-
scriptor 40 does not include a base address or limit.
Processor 10 employs a flat virtual address space for
32/64 mode (rather than the segmented linear address
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space employed in 32 bit and 16 bit modes). According-
ly, the portions of code segment descriptor 40 which
would otherwise store the base address and limit are
reserved in segment descriptor 40. It is noted that a vir-
tual address provided through segmentation may also
be referred to herein as a "linear address". The term "vir-
tual address" encompasses any address which is trans-
lated through a translation mechanism to a physical ad-
dress actually used to address memory, including linear
addresses and other virtual addresses generated in
non-segmented architectures.

[0030] Segment descriptor 40 includes a D bit 42, an
L bit 44 (set to one for a 32/64 mode code segment), an
available bit (AVL) 46, a present (P) bit 48, a descriptor
privilege level (DPL) 50, and a type field 52. D bit 42 and
L bit 44 are used to determine the operating mode of
processor 10, as illustrated in Fig. 5 below. AVL bit 46
is available for use by system software (e.g. the operat-
ing system). P bit 48 is used to indicate whether or not
the segment is present in memory. If P bit 48 is set, the
segment is present and code may be fetched from the
segment. If P bit 48 is clear, the segment is not present
and an exception is generated to load the segment into
memory (e.g. from disk storage or through a network
connection). The DPL indicates the privilege level of the
segment. Processor 10 employs four privilege levels
(encoded as 0 through 3 in the DPL field, with level 0
being the most privileged level). Certain instructions and
processor resources (e.g. configuration and control reg-
isters) are only executable or accessible at the more
privileged levels, and attempts to execute these instruc-
tions or access these resources at the lower privilege
levels result in an exception. When information from
code segment40is loaded into the CS segmentregister,
the DPL becomes the current privilege level (CPL) of
processor 10. Type field 52 encodes the type of seg-
ment. For code segments, the most significant bit two
bits of type field 52 may be set (the most significant bit
distinguishing a code or data segment from a system
segment, and the second most significant bit distin-
guishing a code segment from a data segment), and the
remaining bits may encode additional segment type in-
formation (e.g. execute only, execute and read, or exe-
cute and read only, conforming, and whether or not the
code segment has been accessed).

[0031] Itis noted that, while several indications in the
code segment descriptor are described as bits, with set
and clear values having defined meanings, other em-
bodiments may employ the opposite encodings and
may use multiple bits, as desired. Thus, for example,
the D bit 42 and the L bit 44 may each be an example
of an operating mode indication which may be one or
more bits as desired, similar to the discussion of enable
indications above.

[0032] Turning now to Fig. 3, a block diagram of one
embodiment of a code segment descriptor 54 for 32 and
16 bit compatibility mode is shown. Other embodiments
are possible and contemplated. As with the embodiment
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of Fig. 2, code segment descriptor 54 comprises 8 bytes
with the most significant 4 bytes illustrated above the
least significant 4 bytes.

[0033] Code segment descriptor 54 includes D bit 42,
L bit 44, AVL bit 46, P bit 48, DPL 50, and type field 52
similar to the above description of code segment de-
scriptor 40. Additionally, code segment descriptor 54 in-
cludes a base address field (reference numerals 56A,
56B, and 56C), a limit field (reference numerals 57A and
57B) and a G bit 58. The base address field stores a
base address which is added to the logical fetch address
(stored in the LEIP register) to form the linear address
of an instruction, which may then optionally be translat-
ed to a physical address through a paging translation
mechanism. The limit field stores a segment limit which
defines the size of the segment. Attempts to access a
byte at a logical address greater than the segment limit
are disallowed and cause an exception. G bit 58 deter-
mines the scaling of the segment limit field. If G bit 58
is set the limit is scaled to 4K byte pages (e.g. 12 least
significant zeros are appended to the limit in the limit
field). If G bit 58 is clear, the limit is used as is.

[0034] It is noted that code segment descriptors for
32 and 16 bit modes when 32/64 mode is not enabled
via the LME bit in control register 26 may be similar to
code segment descriptor 54, except the L bit is reserved
and defined to be zero. It is further noted that, in 32 and
16 bit modes (both compatibility mode with the LME bit
set and modes with the LME bit clear) according to one
embodiment, data segments are used as well. Data seg-
ment descriptors may be similar to code segment de-
scriptor 54, except that the D bit 42 is defined to indicate
the upper bound of the segment or to define the default
stack size (for stack segments).

[0035] Tuming nextto Fig. 4, adiagram illustrating ex-
emplary uses of the LME bit in control register 26 and
the compatibility modes to allow for a high degree of flex-
ibility in implementing the 32/64 mode and the 32 and
16 bit modes is shown. A box 60 illustrates exemplary
operation when the LME bit is set, and a box 62 illus-
trates exemplary operation when the LME bit is clear.
[0036] As illustrated in box 60, the compatibility
modes supported when the LME bit is set may allow for
a 64 bit operating system (i.e. an operating system de-
signed to take advantage of the virtual and physical ad-
dress spaces in excess of 32 bits and/or data operands
of 64 bits) to operate with a 32 bit application program
(i.e. an application program written using 32 bit operand
and address sizes). The code segment for the operating
system may be defined by the 32/64 mode code seg-
ment descriptor 40 illustrated in Fig. 2, and thus the L
bit may be set. Accordingly, the operating system may
take advantage of the expanded virtual address space
and physical address space for the operating system
code and the data structures maintained by the operat-
ing system (including, e.g. the segment descriptor ta-
bles and the paging translation tables). The operating
system may also use the 64 bit data type defined in
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32/64 mode using instruction encodings which override
the default 32 bit operand size. Furthermore, the oper-
ating system may launch a 32 bit application program
by establishing one or more 32 bit compatibility mode
segment descriptors (L bit cleared, D bit set, e.g. seg-
ment descriptor 54 shown in Fig. 2) in the segment de-
scriptor table and branching into one of the compatibility
mode segments. Similarly, the operating system may
launch a 16 bit application program by establishing one
or more 16 bit compatibility mode segment descriptors
(L bit cleared, D bit cleared, e.g. segment descriptor 54
shown in Fig. 2) in the segment descriptor table and
branching into one of the compatibility mode segments.
Accordingly, a 64 bit operating system may retain the
ability to execute existing 32 bit and 16 bit application
programs in the compatibility mode. A particular appli-
cation program may be ported to 32/64 mode if the ex-
panded capabilities are desired for that program, or may
remain 32 bit or 16 bit.

[0037] While processor 10 is executing the 32 bit ap-
plication program, the operating mode of processor 10
is 32 bit. Thus, the application program may generally
execute in the same fashion as it does in 32 bit mode
with the LME bit clear (e.g. when the operating system
is a 32 bit operating system as well). However, the ap-
plication program may call an operating system service,
experience an exception, or terminate. In each of these
cases, processor 10 may return to executing operating
system code (as illustrated by arrow 64 in Fig. 4). Since
the operating system code operates in 32/64 mode, the
address of the operating system service routine, excep-
tion handler, etc. may exceed 32 bits. Thus, processor
10 may need to generate an address greater than 32
bits prior to returning to the operating system code. The
LME bit provides processor 10 with an indication that
the operating system may be operating in 32/64 mode
even though the current operating mode is 32 bit, and
thus processor 10 may provide the larger address space
for operating system calls and exceptions.

[0038] In one embodiment, exceptions are handled
using interrupt segment descriptors stored in an inter-
rupt segment descriptor table. If the LME bit is set, the
interrupt segment descriptors may be 16 byte entries
which include a 64 bit address of the operating system
routine which handles the exception. If the LME bit is
clear, the interrupt segment descriptors may be eight
byte entries which include a 32 bit address. Accordingly,
processor 10 accesses the interrupt descriptor table re-
sponsive to the LME indication (i.e. reading a 16 byte
entry if the LME bit is set and reading an eight byte entry
if the LME bit is clear). Therefore, exceptions may be
handled by the 64 bit operating system even though the
application program is executing in 32 bit compatibility
mode. Furthermore, processor 10 supports a 32 bit (or
16 bit) operating system if the LME bit is clear.

[0039] Similarly, the call mechanisms within proces-
sor 10 may operate in different fashions based on the
state of the LME bit. Since the operating system typically
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executes at a higher privilege level than the application
program, transfers from the application program to the
operating system are carefully controlled to ensure that
the application program is only able to execute permit-
ted operating system routines. More generally, changes
in privilege level are carefully controlled. In one embod-
iment, processor 10 may support at least two mecha-
nisms for performing operating system calls. One meth-
od may be through a call gate in the segment descriptor
tables (described in more detail below). Another method
may be the SYSCALL instruction supported by proces-
sor 10, which uses a model specific register as the
source of the address of the operating system routine.
Updating the model specific registers is a privileged op-
eration, and thus only code executing at a higher privi-
lege level (e.g. operating system code) may establish
the address in the model specific register used by the
SYSCALL instruction. For the SYSCALL method, a sec-
ond model specific register may be defined to store the
most significant 32 bits of the address of the operating
system routine. Thus, if the LME bit is set, the address
may be read from the two model specific registers. If the
LME bitis clear, the address may be read from the model
specific register storing the least significant 32 bits. Al-
ternatively, the model specific register used by the SY-
SCALL instruction may be expanded to 64 bits and the
address may be 32 bits (the least significant 32 bits of
the model specific register) or 64 bits based on the state
of the LME bit.

[0040] As illustrated above, having the LME bit set
may allow for processor 10 to operate in a system in
which the operating system is 64 bit and one or more
application programs are not 64 bit (e.g. 32 bit as shown
or 16 bit, which operates in a similar fashion to the above
description). Additionally, as illustrated by box 62, hav-
ing the LME bit clear may allow for processor 10 to op-
erate in 32 bit or 16 bit modes compatible with the x86
architecture. As described above, the mechanisms for
handling exceptions and operating system calls are de-
signed to handle the LME bit being set or clear, and thus
the 32 bit and 16 bit modes may operate unmodified,
even though processor 10 is capable of operating in
32/64 mode. Furthermore, by providing the x86 compat-
ible 16 and 32 bit modes when the LME bit is clear, (and
ignoring the L bit, which is reserved in these modes)
processor 10 may operate in a system in which the L bit
is defined for some other purpose than for 32/64 mode
and may still support 32/64 mode if the LME bit is set.
Accordingly, a system employing a 32 bit operating sys-
tem and 32 bit or 16 bit application programs may em-
ploy processor 10. Subsequently, the system could be
upgraded to a 64 bit operating system without having to
change processor 10.

[0041] Notillustratedin Fig. 4 is a 64 bit operating sys-
tem and a 64 bit application program operating with the
LME bit set. The mechanisms for calling operating sys-
tem routines described above for the 64 bit operating
system and 32 bit application program may apply equal-
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ly to the 64 bit application program as well. Additionally,
call gates which support 64 bits of offset are supported
(as will be described in more detail below).

[0042] Turning next to Fig. 5, a table 70 is shown il-
lustrating the states of the LME bit, the L bit in the code
segment descriptor, and the D bit in the code segment
descriptor and the corresponding operating mode of
processor 10 according to one embodiment of proces-
sor 10. Other embodiments are possible and contem-
plated. As table 70 illustrates, if the LME bit is clear, then
the L bit is reserved (and defined to be zero). However,
processor 10 may treat the L bit as a don't care if the
LME bit is clear. Thus, the x86 compatible 16 bit and 32
bit modes may be provided by processor 10 if the LME
bit is clear. If the LME bit is set and the L bit in the code
segment is clear, then a compatibility operating mode is
established by processor 10 and the D bit selects 16 bit
or 32 bit mode. If the LME bit and the L bit are set and
the D bit is clear, 32/64 mode is selected for processor
10. Finally, the mode which would be selected if the
LME, L and D bits are all set is reserved.

[0043] As mentioned above and illustrated in Fig. 6
below, the 32/64 operating mode includes a default ad-
dress size in excess of 32 bits (implementation depend-
ent but up to 64 bits) and a default operand size of 32
bits. The default operand size of 32 bits may be overrid-
den to 64 bits via a particular instruction's encoding. The
default operand size of 32 bits is selected to minimize
average instruction length (since overriding to 64 bits
involves including an instruction prefix in the instruction
encoding which may increase the instruction length) for
programs in which 32 bits are sufficient for many of the
data manipulations performed by the program. For such
programs (which may be a substantial number of the
programs currently in existence), moving to a 64 bit op-
erand size may actually reduce the execution perform-
ance achieved by the program (i.e. increased execution
time). In part, this reduction may be attributable to the
doubling in size in memory of the data structures used
by the program when 64 bit values are stored. If 32 bits
is sufficient, these data structures would store 32 bit val-
ues, Thus, the number of bytes accessed when the data
structure is accessed increases if 64 bit values are used
where 32 bit values would be sufficient, and the in-
creased memory bandwidth (and increased cache
space occupied by each value) may cause increased
execution time. Accordingly, 32 bits is selected as the
default operand size and the default may be overridden
via the encoding of a particular instruction.

[0044] Turning next to Fig. 6, a table 72 is shown il-
lustrating one embodiment of the use of instruction pre-
fixes to override the operating mode for a particular in-
struction. Other embodiments are possible and contem-
plated. Execution core 14 determines the address size
and operand size for a particular instruction according
to table 72. In particular for the embodiment illustrated
in Fig. 6, an instruction prefix byte (the address size
override prefix byte) may be used to override the default
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address size and another instruction prefix byte (the op-
erand size override prefix byte) may be used to override
the default operand size. The address size override pre-
fix byte is encoded as 67 (in hexadecimal) and the op-
erand size override prefix byte is encoded as 66 (in hex-
adecimal). The number of override prefixes in the par-
ticular instruction forms the columns of the table. The
rows of the table indicate the operand size and address
size of the particular instruction, based on the operating
mode and the number of override prefixes in the corre-
sponding column. The number of override prefixes re-
fers to the number of override prefixes of the corre-
sponding type (e.g. address size rows are the address
size based on the number of address size override pre-
fixes and operand size rows are the operand size based
on the number of operand size override prefixes).
[0045] The column labeled "0" for the number of over-
ride prefixes illustrates the default operand size and ad-
dress size for each operating mode. It is noted that the
32 bit and 16 bit mode rows refer to both the compati-
bility modes (LME set) and the standard modes (LME
clear). Furthermore, while the default address size is 64
bits in 32/64 mode, the actual number of address bits
may be implementation dependent, as discussed
above.

[0046] The inclusion of one address size override pre-
fix in 32/64 bit mode changes the address size from 64
bit (which may be less than 64 bits for a given imple-
mentation but is greater than 32 bits) to 32 bit, as shown
in table 72. Additionally, the inclusion of one operand
size override prefix in 32/64 bit mode changes the op-
erand size from 32 bit to 64 bit. It may be desirable to
provide for a 16 bit operand as well (e.g. to support the
short integer data type in the "C" programming lan-
guage). Accordingly, the inclusion of two operand size
override prefixes in 32/64 mode selects an operand size
of 16 bits. The inclusion of more than two operand size
override prefixes results in the same operand size as
the inclusion of two operand size override prefixes. Sim-
ilarly, the inclusion of more than one address size over-
ride prefix results in the same address size as the inclu-
sion of one address size override prefix.

[0047] Forthe 32 bit modes, the inclusion of one over-
ride prefix toggles the default 32 bit size to 16 bit, and
the inclusion of more than one override prefix has the
same effect as the inclusion of one override prefix. Sim-
ilarly, for 16 bit modes, the inclusion of one override pre-
fix toggles the default 16 bit size to 32 bit, and the inclu-
sion of more than one override prefix has the same ef-
fect as the inclusion of one override prefix.

[0048] Turning now to Fig. 7, a diagram illustrating
one embodiment of the LEAX register 74 is shown. Oth-
er registers within register file 22 may be similar. Other
embodiments are possible and contemplated. In the
embodiment of Fig. 7, register 74 includes 64 bits, with
the most significant bit labeled as bit 63 and the least
significant bit labeled as bit 0. Fig. 7 illustrates the por-
tions of the LEAX register accessed based upon the op-
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erand size of an instruction (if the A register is selected
as an operand). More particularly, the entirety of register
74 is accessed if the operand size is 64 bits (as illustrat-
ed by the brace labeled "LEAX" in Fig. 7). If the operand
size is 32 bits, bits 31:0 of register 74 are accessed (as
illustrated by the brace labeled "EAX" in Fig. 7). If the
operand size is 16 bits, bits 16:0 of the register are ac-
cessed (as illustrated by the brace labeled "AX" in Fig.
7). The above operand sizes may be selected based on
the operating mode and the inclusion of any override
prefixes. However, certain instruction opcodes are de-
fined which access an eight bit register (AH or AL in Fig.
7).

[0049] Turning next to Fig. 8, a block diagram is
shown illustrating one embodiment of a global descrip-
tor table 80 and a local descriptor table 82. Other em-
bodiments are possible and contemplated. As illustrated
in Fig. 8 and mentioned above, the base address of glo-
bal descriptor table 80 is provided by GDTR 32 and the
base address of local descriptor table 82 is provided by
LDTR 30. Accordingly, to support placing global descrip-
tor table 80 and local descriptor table 82 arbitrarily within
the virtual address space, GDTR 32 and LDTR 30 may
store 64 bit base addresses. If the LME bit is clear, the
least significant 32 bits of the base address may be used
to locate the descriptor tables.

[0050] Both global descriptor table 80 and local de-
scriptor table 82 are configured to store segment de-
scriptors of various types. For example, 32/64 mode
code segment descriptors 84, 86, and 90 and compati-
bility mode descriptors 92 and 94 are illustrated in Fig.
8. Each of descriptors 84-94 occupies an entry in the
corresponding descriptor table, where an entry is capa-
ble of storing one segment descriptor (e.g. 8 bytes for
the embodiments illustrated in Figs. 2 and 3). Another
type of descriptor in global descriptor table 80 is a local
descriptor table descriptor 96, which defines a system
segment for the local descriptor table 82 and provides
the base address stored in LDTR 30. LDTR 30 is initial-
ized using an LLDT instruction having as an operand a
segment selector locating descriptor 96 in global de-
scriptor table 80. Global descriptor table 80 may store
multiple LDT descriptors locating different local descrip-
tor tables, if desired. Since the LDT descriptor 96 may
store a 64 bit offset if the LME bit is set, LDT descriptor
96 may occupy two entries in global descriptor table 80.
If the LME bit is clear, LDT descriptor 96 may occupy a
single entry in global descriptor table 80. Similarly, each
task may have a task state segment (TSS) descriptor in
one of descriptor tables 80 and 82 to store certain infor-
mation related to the task. Accordingly, a TSS descriptor
may occupy two entries to allow for TSS information to
be stored anywhere in the 64 bit address space.
[0051] Thelocal and global descriptor tables may also
store a call gate descriptor. For example, Fig. 8 illus-
trates call gate descriptors 100, 102, and 104. Call gate
descriptors support a 64 bit offset as well, and thus may
occupy two entries in the corresponding descriptor table
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as well. An exemplary 32/64 call gate descriptor is illus-
trated in Fig. 9 below.

[0052] By maintaining the segment descriptor tables
80 and 82 at 8 bytes and using two entries for descrip-
tors which include 64 bit offsets, descriptors for 16 and
32 bit modes may be stored in the same tables as the
descriptors which include 64 bit offsets. Thus, applica-
tions operating in compatibility modes may have appro-
priate descriptors in the same segment descriptor tables
as the 64 bit operating systems.

[0053] Generally, call gates are used to manage the
transition between a code segment having a lesser priv-
ilege level and a code segment have a greater privilege
level (e.g. an application program calling an operating
system routine). The lesser privileged code includes a
call or other branch instruction specifying, as a target, a
segment selector (and an offset into the segment, which
is ignored in this case). The segment selector identifies
a call gate descriptor within the descriptor tables, which
includes a minimum privilege level required to execute
the greater privilege level code. When processor 10 ex-
ecutes the call or other branch instruction, processor 10
indexes the descriptor tables with the segment selector
and locates the call gate. If the current privilege level of
processor 10 and the requestor privilege level (which is
part of the segment selector, and may be used to lower
the current privilege level for privilege checking purpos-
es) both reflect sufficient privilege (e.g. the privilege lev-
els are numerically less than or equal to the minimum
privilege level in the call gate descriptor), then the call
may proceed. The call gate descriptor includes a seg-
ment selector for the target segment (the code segment
having the greater privilege level) and the offset within
the target segment at which code fetching is to begin.
Processor 10 extracts the segment selector and the off-
set from the call gate descriptor and reads the target
segment descriptor to begin fetching the code having
the greater privilege level. On the other hand, if either
the current privilege level or the requestor privilege level
is a lesser privilege level than the minimum privilege lev-
el in the call gate descriptor (e.g. either the current or
requestor privilege level is numerically greater than the
minimum privilege level), processor 10 signals an ex-
ception after accessing the call gate descriptor and with-
out accessing the target descriptor. Thus, access to
code executing at greater privilege levels is carefully
controlled.

[0054] As mentioned above, the call gate descriptor
includes a target segment selector and offset within the
segment. The reference to the target segment descrip-
tor is illustrated in Fig. 8 as an arrow from a call gate
descriptor to another descriptor. For example, call gate
descriptor 100 references mode descriptor 90; call gate
descriptor 102 references 32/64 mode descriptor 86,
and call gate descriptor 104 references 32/64 mode de-
scriptor 84. As Fig. 8 illustrates, a call gate descriptor
may be stored in either descriptor table and may refer-
ence a descriptor in the other table or in the same table.
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Furthermore, a call gate descriptor may reference either
a 32/64 mode descriptor or a compatibility mode de-
scriptor.

[0055] Generally, when processor 10 reads a descrip-
tor from one of the descriptor tables using a segment
selector, one descriptor table entry is read. However, if
the LME bitis set and processor 10 detects that the entry
is a call gate descriptor, an LDT descriptor, or a TSS
descriptor, processor 10 reads the next succeeding en-
try in the table to obtain the remainder of the descriptor.
Accordingly, call gate descriptors, LDT descriptors, and
TSS descriptors may coexist in a table with compatibility
mode descriptors (or standard mode descriptors) which
are of a different size, without redefining the size of the
table entries nor how the table is managed for descrip-
tors which occupy one entry. Furthermore, since the
second portion of the call gate descriptor, the LDT de-
scriptor, and the TSS descriptor may be accessed as a
segment descriptor, the portion of the descriptor which
would be the type field of a descriptor in the second por-
tion is set to an invalid type when the descriptor is stored
into the descriptor table, as shown below in Fig. 9. Al-
ternatively, processor 10 may read two consecutive en-
tries from a descriptor table each time a descriptor table
read is performed, and the second entry may be used if
the first entry is a call gate, LDT descriptor type, or TSS
descriptor type.

[0056] Itis noted that code operating in any operating
mode (32/64 mode, 32 bit compatibility mode, or 16 bit
compatibility mode) may reference a call gate descriptor
when the LME bit is set. Thus, a 32 or 16 bit application
may call an operating system routine even if the address
of the routine is outside the 32 bit or 16 bit address space
using the call gate mechanism. Additionally, a call gate
descriptor may reference a code segment having any
operating mode. The operating system may ensure that
the most significant 32 bits of the offset in the call gate
are zero (for a 32 bit target segment) or the most signif-
icant 48 bits of the offset in the call gate are zero (for a
16 bit target segment).

[0057] Turning now to Fig. 9, a block diagram of one
embodiment of a call gate descriptor 120 is shown. Oth-
er embodiments are possible and contemplated. Similar
to Figs. 2 and 3, the most significant bytes are illustrated
above the least significant bytes. The most significant
bit of each group of four bytes is illustrated as bit 31 and
the least significant bit is illustrated as bit 0. Short verti-
cal lines within the four bytes delimit each bit, and the
long vertical lines delimit a bit but also delimit a field. As
mentioned above, a call gate descriptor occupies two
entries in a descriptor table. The horizontal dashed line
in Fig. 9 divides call gate descriptor 120 into an upper
portion (above the line) and a lower portion (below the
line). The lower portion is stored in the entry indexed by
the call gate's segment selector, and the upper portion
is stored in the next succeeding entry.

[0058] Call gate descriptor 120 includes a target seg-
ment selector (field 122), an offset (fields 124A, 124B,
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and 124C), a present (P) bit 126, a descriptor privilege
level (DPL). 128, a type field 130, and a pseudo-type
field 132. The P bit is similar to P bit 48 described above.
The target segment selector identifies an entry within
one of the descriptor tables at which the target segment
descriptor (having the greater privilege level) is stored.
The offset identifies the address at which code fetching
is to begin. In 32/64 mode, since the code segment has
no base address and flat linear addressing is used, the
offset is the address at which code fetching begins. In
other modes, the offset is added to the segment base
defined by the target segment descriptor to generate the
address at which code fetching begins. As mentioned
above, the offset may comprise 64 bits in the present
embodiment.

[0059] DPL 128 stores the minimum privilege level of
the calling routine must have (both in the current privi-
lege level and the requested privilege level) which may
successfully pass through the call gate and execute the
called routine at the privilege level specified in the target
segment descriptor.

[0060] Type field 130 is coded to a call gate descriptor
type. In one embodiment, this type is coded as the 32
bit call gate type defined in the x86 architecture. Alter-
natively, other encodings may be used. Finally, pseudo-
type field 132 is coded to an invalid type (e.g. zero) to
ensure that if a segment selector identifying the seg-
ment table entry storing the upper half of call gate de-
scriptor 120 is presented, then an exception will be sig-
nalled by processor 10.

[0061] Itis noted that the lower half of LDT descriptor
96 may be similar to the 32 bit LDT descriptor and the
upper half of LDT descriptor 96 may be similar to the
upper half of call gate descriptor 120.

[0062] Turning next to Fig. 10, a block diagram of an
instruction format 140 for instructions executed by proc-
essor 10 is shown. Other embodiments are possible and
contemplated. In the embodiment of Fig. 10, instruction
format 140 includes a prefix field 142, an opcode field
144, a mod R/M (register/memory) field 146, an SIB
(scale index base) field 148, a displacement field 150,
and an immediate field 152. Each of the fields except
for the opcode field 144 are optional. Thus, instruction
format 140 may define a variable length instruction.
[0063] Prefix field 142 is used for any instruction pre-
fixes for the instruction. As described above, an operand
size override prefix and an address size override prefix
may be encoded into an instruction to override the op-
erating mode of processor 10. These override prefixes
are included in prefix field 142. As noted above, the op-
erand size override prefix and address size override pre-
fix may each by bytes included within prefix field 142.
[0064] Opcode field 144 includes the opcode of the
instruction (i.e. which instruction in the instruction set is
being executed). For some instructions, operands may
be specified within opcode field 144. For other instruc-
tions, a portion of the opcode may be included within
mod R/M field 146. Furthermore, certain opcodes spec-
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ify an eight bit or 16 bit register as an operand. Thus
opcode encodings may serve to override the defaults
indicated by the operating mode of processor 10 as well.
[0065] Mod R/M field 146 and SIB field 148 indicate
operands of the instruction. Displacement field 150 in-
cludes any displacement information, and immediate
field 152 includes an immediate operand.

Computer Systems

[0066] Turning now to Fig. 11, a block diagram of one
embodiment of a computer system 200 including proc-
essor 10 coupled to a variety of system components
through a bus bridge 202 is shown. Other embodiments
are possible and contemplated. In the depicted system,
a main memory 204 is coupled to bus bridge 202
through a memory bus 206, and a graphics controller
208 is coupled to bus bridge 202 through an AGP bus
210. Finally, a plurality of PCI devices 212A-212B are
coupled to bus bridge 202 through a PCl bus 214. A sec-
ondary bus bridge 216 may further be provided to ac-
commodate an electrical interface to one or more EISA
or ISA devices 218 through an EISA/ISA bus 220. Proc-
essor 10 is coupled to bus bridge 202 through a CPU
bus 224 and to an optional L2 cache 228. Together, CPU
bus 224 and the interface to L2 cache 228 may comprise
an external interface to which external interface unit 18
may couple.

[0067] Bus bridge 202 provides an interface between
processor 10, main memory 204, graphics controller
208, and devices attached to PCl bus 214. When an op-
eration is received from one of the devices connected
to bus bridge 202, bus bridge 202 identifies the target
of the operation (e.g. a particular device or, in the case
of PCI bus 214, that the target is on PCI bus 214). Bus
bridge 202 routes the operation to the targeted device.
Bus bridge 202 generally translates an operation from
the protocol used by the source device or bus to the pro-
tocol used by the target device or bus.

[0068] In addition to providing an interface to an ISA/
EISA bus for PCI bus 214, secondary bus bridge 216
may further incorporate additional functionality, as de-
sired. An input/output controller (not shown), either ex-
ternal from or integrated with secondary bus bridge 216,
may also be included within computer system 200 to
provide operational support for a keyboard and mouse
222 and for various serial and parallel ports, as desired.
An external cache unit (not shown) may further be cou-
pled to CPU bus 224 between processor 10 and bus
bridge 202 in other embodiments. Alternatively, the ex-
ternal cache may be coupled to bus bridge 202 and
cache control logic for the external cache may be inte-
grated into bus bridge 202. L2 cache 228 is further
shown in a backside configuration to processor 10. It is
noted that L2 cache 228 may be separate from proces-
sor 10, integrated into a cartridge (e.g. slot 1 or slot A)
with processor 10, or even integrated onto a semicon-
ductor substrate with processor 10.
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[0069] Main memory 204 is a memory in which appli-
cation programs are stored and from which processor
10 primarily executes. A suitable main memory 204
comprises DRAM (Dynamic Random Access Memory).
For example, a plurality of banks of SDRAM (Synchro-
nous DRAM) or Rambus DRAM (RDRAM) may be suit-
able.

[0070] PCldevices 212A-212B are illustrative of a va-
riety of peripheral devices such as, for example, network
interface cards, video accelerators, audio cards, hard or
floppy disk drives or drive controllers, SCSI (Small Com-
puter Systems Interface) adapters and telephony cards.
Similarly, ISA device 218 is illustrative of various types
of peripheral devices, such as a modem, a sound card,
and a variety of data acquisition cards such as GPIB or
field bus interface cards.

[0071] Graphics controller 208 is provided to control
the rendering of text and images on a display 226.
Graphics controller 208 may embody a typical graphics
accelerator generally known in the art to render three-
dimensional data structures which can be effectively
shifted into and from main memory 204. Graphics con-
troller 208 may therefore be a master of AGP bus 210
in that it can request and receive access to a target in-
terface within bus bridge 202 to thereby obtain access
to main memory 204. A dedicated graphics bus accom-
modates rapid retrieval of data from main memory 204.
For certain operations, graphics controller 208 may fur-
ther be configured to generate PCI protocol transactions
on AGP bus 210. The AGP interface of bus bridge 202
may thus include functionality to support both AGP pro-
tocol transactions as well as PCI protocol target and in-
itiator transactions. Display 226 is any electronic display
upon which an image or text can be presented. A suit-
able display 226 includes a cathode ray tube ("CRT"), a
liquid crystal display ("LCD"), etc.

[0072] Itis noted that, while the AGP, PCI, and ISA or
EISA buses have been used as examples in the above
description, any bus architectures may be substituted
as desired. It is further noted that computer system 200
may be a multiprocessing computer system including
additional processors (e.g. processor 10a shown as an
optional component of computer system 200). Proces-
sor 10a may be similar to processor 10. More particu-
larly, processor 10a may be an identical copy of proces-
sor 10. Processor 10a may be connected to bus bridge
202 via anindependent bus (as shown in Fig. 11) or may
share CPU bus 224 with processor 10. Furthermore,
processor 10a may be coupled to an optional L2 cache
228a similar to L2 cache 228.

[0073] Turning now to Fig. 12, another embodiment
of a computer system 300 is shown. Other embodiments
are possible and contemplated. In the embodiment of
Fig. 12, computer system 300 includes several process-
ing nodes 312A, 312B, 312C, and 312D. Each process-
ing node is coupled to a respective memory 314A-314D
via a memory controller 316A-316D included within
each respective processing node 312A-312D. Addition-
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ally, processing nodes 312A-312D include interface log-
ic used to communicate between the processing nodes
312A-312D. For example, processing node 312A in-
cludes interface logic 318A for communicating with
processing node 312B, interface logic 318B for commu-
nicating with processing node 312C, and a third inter-
face logic 318C for communicating with yet another
processing node (not shown). Similarly, processing
node 312B includes interface logic 318D, 318E, and
318F; processing node 312C includes interface logic
318G, 318H, and 318l; and processing node 312D in-
cludes interface logic 318J, 318K, and 318L. Processing
node 312D is coupled to communicate with a plurality
of input/output devices (e.g. devices 320A-320B in a
daisy chain configuration) via interface logic 318L. Other
processing nodes may communicate with other 1/0 de-
vices in a similar fashion.

[0074] Processing nodes 312A-312D implement a
packet-based link for inter-processing node communi-
cation. In the present embodiment, the link is imple-
mented as sets of unidirectional lines (e.g. lines 324A
are used to transmit packets from processing node
312A to processing node 312B and lines 324B are used
to transmit packets from processing node 312B to
processing node 312A). Other sets of lines 324C-324H
are used to transmit packets between other processing
nodes as illustrated in Fig. 12. Generally, each set of
lines 324 may include one or more data lines, one or
more clock lines corresponding to the data lines, and
one or more control lines indicating the type of packet
being conveyed. The link may be operated in a cache
coherent fashion for communication between process-
ing nodes or in a noncoherent fashion for communica-
tion between a processing node and an I/O device (or
a bus bridge to an I/O bus of conventional construction
such as the PCI bus or ISA bus). Furthermore, the link
may be operated in a non-coherent fashion using a dai-
sy-chain structure between 1/O devices as shown. It is
noted that a packet to be transmitted from one process-
ing node to another may pass through one or more in-
termediate nodes. For example, a packet transmitted by
processing node 312A to processing node 312D may
pass through either processing node 312B or process-
ing node 312C as shown in Fig. 12. Any suitable routing
algorithm may be used. Other embodiments of compu-
ter system 300 may include more or fewer processing
nodes then the embodiment shown in Fig. 12.

[0075] Generally, the packets may be transmitted as
one or more bit times on the lines 324 between nodes.
A bit time may be the rising or falling edge of the clock
signal on the corresponding clock lines. The packets
may include command packets for initiating transac-
tions, probe packets for maintaining cache coherency,
and response packets from responding to probes and
commands.

[0076] Processing nodes 312A-312D, in addition to a
memory controller and interface logic, may include one
or more processors. Broadly speaking, a processing
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node comprises at least one processor and may option-
ally include a memory controller for communicating with
a memory and other logic as desired. More particularly,
each processing node 312A-312D may comprise one or
more copies of processor 10. External interface unit 18
may includes the interface logic 318 within the node, as
well as the memory controller 316.

[0077] Memories 314A-314D may comprise any suit-
able memory devices. For example, a memory 314A-
314D may comprise one or more RAMBUS DRAMs
(RDRAMSs), synchronous DRAMs (SDRAMSs), static
RAM, etc. The address space of computer system 300
is divided among memories 314A-314D. Each process-
ing node 312A-312D may include a memory map used
to determine which addresses are mapped to which
memories 314A-314D, and hence to which processing
node 312A-312D a memory request for a particular ad-
dress should be routed. In one embodiment, the coher-
ency point for an address within computer system 300
is the memory controller 316A-316D coupled to the
memory storing bytes corresponding to the address. In
other words, the memory controller 316A-316D is re-
sponsible for ensuring that each memory access to the
corresponding memory 314A-314D occurs in a cache
coherent fashion. Memory controllers 316A-316D may
comprise control circuitry for interfacing to memories
314A-314D. Additionally, memory controllers 316A-
316D may include request queues for queuing memory
requests.

[0078] Generally, interface logic 318A-318L may
comprise a variety of buffers for receiving packets from
the link and for buffering packets to be transmitted upon
the link. Computer system 300 may employ any suitable
flow control mechanism for transmitting packets. For ex-
ample, in one embodiment, each interface logic 318
stores a count of the number of each type of buffer within
the receiver at the other end of the link to which that
interface logic is connected. The interface logic does not
transmit a packet unless the receiving interface logic
has a free buffer to store the packet. As a receiving buff-
er is freed by routing a packet onward, the receiving in-
terface logic transmits a message to the sending inter-
face logic to indicate that the buffer has been freed.
Such a mechanism may be referred to as a "coupon-
based" system.

[0079] /O devices 320A-320B may be any suitable I/
O devices. For example, I/O devices 320A-320B may
include network interface cards, video accelerators, au-
dio cards, hard or floppy disk drives or drive controllers,
SCSI (Small Computer Systems interface) adapters and
telephony cards, modems, sound cards, and a variety
of data acquisition cards such as GPIB or field bus in-
terface cards.

[0080] Numerous variations and modifications will be-
come apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the fol-
lowing claims be interpreted to embrace all such varia-
tions and modifications.
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Claims

1.

A processor comprising:

an execution core configured to execute a
branch instruction specifying a segment selec-
tor,

wherein said processor is configured to read
at least a first entry from a segment descriptor table
responsive to said segment selector, and wherein,
if said first entry indicates a call gate descriptor, a
second entry in said segment descriptor table
stores a remaining portion of said call gate descrip-
tor and wherein each of said first entry and said sec-
ond entry is capable of storing a segment descrip-
tor.

The processor as recited in claim 1 wherein said
processor is further configured to extract an offset
from said call gate descriptor, and wherein at least
a first portion of said offset is stored in said first en-
try, and wherein a remaining portion of said offset
is stored in said second entry.

The processor as recited in claim 2 wherein said
offset is 64 bits.

The processor as recited in claim 1 wherein said
processor is configured to extract a target segment
selector from said call gate descriptor, wherein said
target segment selector identifies a target segment
descriptor.

The processor as recited in claim 4 wherein said
target segment descriptor includes a first operating
mode indication, and wherein said first operating
mode indication establishes a default address size
greater than 32 bits.

The processor as recited in claim 1 wherein said
second entry includes a type field, and wherein said
type field is encoded to indicate that said second
entry is invalid.

The processor as recited in claim 6 wherein said
processor, in response to reading said second entry
as a segment descriptor, is configured to detect that
said second entry is invalid using said type field.

A method comprising:

reading a call gate descriptor from a segment
descriptor table, said call gate descriptor com-
prising a first entry and a second entry in said
segment descriptor table, wherein each of said
first entry and said second entry is capable of
storing a segment descriptor; and
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10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

extracting an offset from said call gate descrip-
tor.

A method as recited in claim 8 in which said offset
locates a first instruction to be executed in a target
code segment.

The method as recited in claim 9 wherein said offset
is 64 bits.

The method as recited in claim 9 further comprising
reading a first segment descriptor from only a third
entry of said segment descriptor table.

The method as recited in claim 9 further comprising
extracting a target segment selector from said call
gate descriptor, said target segment selector iden-
tifying a target segment descriptor.

The method as recited in claim 12 further compris-
ing reading said target segment descriptor, said tar-
get segment descriptor establishing a default ad-
dress size greater than 32 bits.

The method as recited in claim 9 further wherein
each of said first entry and said second entry has a
type field.

The method as recited in claim 14 further compris-
ing setting said type field in said second entry to in-
dicate invalid.

The method as recited in claim 15 further compris-
ing setting said type field in said first entry to indicate
a call gate descriptor.

The method as recited in claim 15 further compris-
ing:

attempting to read a segment descriptor from
said second entry; and

determining that said segment descriptor is
invalid responsive to said type field in said sec-
ond entry,

A computer system comprising:

a processor according to claim 1; and an input/
output (I/0) device configured to communicate
between said computer system and another
computer system to which said /O device is
couplable.

The computer system as recited in claim 18 wherein
said I/O device comprises a modem.

The computer system as recited in claim 18 further
comprising a second processor comprising:
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an execution core configured to execute a
branch instruction specifying a segment selec-
tor;

wherein said processor is configured to read
at least a first entry from a segment descriptor table
responsive to said segment selector, and wherein,
if said first entry indicates a call gate descriptor, a
second entry in said segment descriptor table
stores a remaining portion of said call gate descrip-
tor.

Patentanspriiche

Prozessor mit:

einem Ausfiihrungskern zum Ausflihren eines
einen Segmentselektor spezifizierenden Ver-
zweigungsbefehls,

wobei der Prozessor in Reaktion auf den Segment-
selektor zum Lesen mindestens eines ersten Ein-
trags aus einer Segmentbeschreibungstabelle vor-
gesehen ist und, wenn der erste Eintrag einen Auf-
rufgatterbeschreiber anzeigt, ein zweiter Eintrag in
der Segmentbeschreibungstabelle den restlichen
Teil des Aufrufgatterbeschreibers speichert und so-
wohl der erste als auch der zweite Eintrag in der
Lage ist, einen Segmentbeschreiber zu speichern.

Prozessor nach Anspruch 1, bei dem der Prozessor
ferner zum Extrahieren eines Offset aus dem Auf-
rufgatterbeschreiber vorgesehen ist und minde-
stens ein erster Teil des Offsetin dem ersten Eintrag
gespeichert ist und der restliche Teil des Offset in
dem zweiten Eintrag gespeichert ist.

Prozessor nach Anspruch 2, bei dem das Offset 64
Bits aufweist,

Prozessor nach Anspruch 1, bei dem der Prozessor
zum Extrahieren eines Target-Segmentselektors
aus dem Aufrufgatterbeschreiber vorgesehen ist
und der Target-Segmentselektor einen Target-Seg-
mentbeschreiber identifiziert.

Prozessor nach Anspruch 4, bei dem der Target-
Segmentbeschreiber eine erste Operationsmodus-
anzeige aufweist und die erste Operationsmodus-
anzeige eine Standardadressengrofle festlegt, die
mehr als 32 Bits umfasst.

Prozessor nach Anspruch 1, bei dem der zweite
Eintrag ein Typenfeld aufweist und das Typenfeld
kodiert ist, um anzuzeigen, dass der zweite Eintrag
unglltig ist.
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Prozessor nach Anspruch 6, wobei der Prozessor
in Reaktion auf das Lesen des zweiten Eintrags als
Segmentbeschreiber unter Verwendung des Ty-
penfelds detektiert, dass der zweite Eintrag unguiltig
ist.

Verfahren mit folgenden Schritten:

Auslesen eines Aufrufgatterbeschreibers aus
einer Segmentbeschreibungstabelle, wobei
der Aufrufgatterbeschreiber einen ersten Ein-
trag und einen zweiten Eintrag in der Segment-
beschreibungstabelle aufweist und sowohl der
erste Eintrag als auch der zweite Eintrag in der
Lage ist, einen Segmentbeschreiber zu spei-
chern; und

Extrahieren eines Offset aus dem Aufrufgatter-
beschreiber.

Verfahren nach Anspruch 8, bei dem das Offset ei-
nen ersten in einem Target-Code-Segment auszu-
fihrenden Befehl lokalisiert.

Verfahren nach Anspruch 9, bei dem das Offset 64
Bits aufweist.

Verfahren nach Anspruch 9, ferner mit dem Schritt
des Auslesens eines ersten Segmentbeschreibers
nur aus einem dritten Eintrag der Segmentbe-
schreibungstabelle.

Verfahren nach Anspruch 9, ferner mit dem Schritt
des Extrahierens eines Target-Segmentselektors
aus dem Aufrufgatterbeschreiber, wobei der Target-
Segmentselektor einen Target-Segmentbeschrei-
ber identifiziert.

Verfahren nach Anspruch 12, ferner mit dem Schritt
des Auslesens des Target-Segmentbeschreibers,
der eine Standardadressengréfe festlegt, die mehr
als 32 Bits umfasst.

Verfahren nach Anspruch 9, bei dem sowohl der er-
ste Eintrag als auch der zweite Eintrag ein Typen-
feld aufweist.

Verfahren nach Anspruch 14, ferner mit dem Schritt
des Einstellen des Typenfelds in dem zweiten Ein-
trag derart, dass Unguiltig angezeigt wird.

Verfahren nach Anspruch 15, ferner mit dem Schritt
des Einstellens des Typenfelds in dem ersten Ein-
trag derart, dass ein Aufrufgatterbeschreiber ange-
zeigt wird.

Verfahren nach Anspruch 15, ferner mit folgenden
Schritten:
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Versuchen, einen Segmentbeschreiber aus
dem zweiten Eintrag auszulesen; und
Feststellen, dass der Segmentbeschreiber in
Reaktion auf das Typenfeld in dem zweiten Ein-
trag ungultig ist.

Computersystem mit:

einem Prozessor nach Anspruch 1; und

einer Eingangs/Ausgangs- (I/0O-) Vorrichtung
zur Kommunikation zwischen dem Computer-
system und einem weiteren Computersystem,
mit dem die 1/0-Vorrichtung koppelbar ist.

Computersystem nach Anspruch 18, bei dem die I/
O-Vorrichtung ein Modem aufweist.

Computersystem nach Anspruch 18, ferner mit ei-
nem zweiten Prozessor mit:

einem Ausfiihrungskern zum Ausflhren eines
einen Segmentselektor spezifizierenden Ver-
zweigungsbefehls,

wobei der Prozessor in Reaktion auf den Segment-
selektor zum Lesen mindestens eines ersten Ein-
trags aus einer Segmentbeschreibungstabelle vor-
gesehen ist und, wenn der erste Eintrag einen Auf-
rufgatterbeschreiber anzeigt, ein zweiter Eintrag in
der Segmentbeschreibungstabelle den restlichen
Teil des Aufrufgatterbeschreibers speichert.

Revendications

1.

Processeur comportant :

une unité centrale d'exécution configurée pour
exécuter une instruction de branchement spé-
cifiant un sélecteur de segment,

dans lequel ledit processeur est configuré
pour lire au moins une premiére entrée a partir
d'une table de descripteur de segment en réponse
audit sélecteur de segment, et dans lequel, si ladite
premiere entrée indique un descripteur de voie
d'appel , une seconde entrée dans ladite table de
descripteur de segment stocke une partie restante
dudit descripteur de voie d'appel et dans lequel cha-
cune de ladite premiére entrée et de ladite seconde
entrée est capable de stocker un descripteur de
segment.

Processeur selon la revendication 1 dans lequel le-
dit processeur est, de plus, configuré pour extraire
un prélévement a partir dudit descripteur de voie
d'appel , et dans lequel au moins une premiére par-
tie dudit prélévement est stockée dans ladite pre-
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miére entrée et dans lequel une partie restante du-
dit prélevement est stockée dans ladite seconde
entrée.

Processeur selon la revendication 2 dans lequel le-
dit décalage est de 64 binaires.

Processeur selon la revendication 1 dans lequel le-
dit processeur est configuré pour extraire un sélec-
teur de segment cible dudit descripteur de voie
d'appel , dans lequel ledit sélecteur de segment ci-
ble identifie un descripteur de segment de cible.

Processeur selon la revendication 4 dans lequel le-
dit descripteur de segment cible comprend une pre-
miére indication de mode de fonctionnement et
dans lequel ladite premiere indication de mode de
fonctionnement établit une dimension d'adresse
par défaut supérieure a 32 binaires.

Processeur selon la revendication 1 dans lequel la-
dite seconde entrée comprend un champ de type
et dans lequel ledit champ de type est codé pour
indiquer que ladite seconde entrée est invalide.

Processeur selon la revendication 6 dans lequel le-
dit processeur, en réponse a la lecture de ladite se-
conde entrée en tant que descripteur de segment
est configuré pour détecter que ladite seconde en-
trée est invalide en utilisant ledit champ de type.

Procédé consistant a :

lire un descripteur de voie d'appel a partir d'une
table de descripteur de segment, ledit descrip-
teur de voie d'appel comprenant une premiere
entrée et une seconde entrée dans ladite table
de descripteur de segment, dans lequel chacu-
ne de ladite premiére entrée et de ladite secon-
de entrée est capable de stocker un descripteur
de segment ; et

extraire un préléevement dudit descripteur de
-voie d'appel.

Procédé selon la revendication 8 dans lequel ledit
décalage place une premiere instruction a exécuter
dans un segment de code cible.

Procédé selon la revendication 9 dans lequel ledit
décalage est de 64 binaires.

Procédé selon la revendication 9 comprenant, de
plus, une lecture d'un premier descripteur de seg-
ment a partir seulement d'une troisieme entrée de
ladite table de descripteur de segment.

Procédé selon la revendication 9 consistant, de
plus, a extraire un sélecteur de segment cible dudit
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descripteur de voie d'appel, ledit sélecteur de seg-
ment cible identifiant un descripteur de segment ci-
ble.

Procédé selon la revendication 12 consistant, de
plus, a lire ledit descripteur de segment cible, ledit
descripteur de segment cible établissant une di-
mension d'adresse par défaut supérieure a 32 bi-
naires.

Procédé selon la revendication 9 dans lequel, de
plus, chacune de ladite premiére entrée et de ladite
seconde entrée posséde un champ de type.

Procédé selon la revendication 14 consistant, de
plus, a établir ledit champ de type dans ladite se-
conde entrée pour indiquer une invalidité.

Procédé selon la revendication 15 consistant, de
plus, a établir ledit champ de type dans ladite pre-
miére entrée pour indiquer un descripteur de voie
d'appel.

Procédé selon la revendication 15 consistant, de
plus, a:

essayer de lire un descripteur de segment a
partir de ladite seconde entrée ; et

déterminer que ledit descripteur de segment
estinvalide en réponse audit champ de type de
ladite seconde entrée.

Systéme d'ordinateur comprenant :

un processeur selon la revendication 1 ; et un
dispositif d'entrée/sortie (I/O) configuré pour
communiquer entre ledit systéme d'ordinateur
et un autre systéme d'ordinateur auquel ledit
dispositif d'entrée/sortie peut étre couplé.

Systéme d'ordinateur selon la revendication 18
dans lequel ledit dispositif d'entrée/sortie comprend
un modem.

Systéme d'ordinateur selon la revendication 18
comportant, de plus, un second processeur
comprenant :

une unité centrale d'exécution configurée pour
exécuter une instruction de branchement spé-
cifiant un sélecteur de segment ;

dans lequel ledit processeur est configuré
pour lire au moins une premiére entrée a partir
d'une table de descripteur de segment en réponse
audit sélecteur de segment, et dans lequel, si ladite
premiére entrée indique un descripteur de voie
d'appel, une seconde entrée dans ladite table de
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descripteur de segment stocke une partie restante
dudit descripteur de voie d'appel.
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