A 00 Y O

0O 03/032181 A1l

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 April 2003 (17.04.2003)

(10) International Publication Number

WO 03/032181 Al

(51) International Patent Classification’: GO6F 15/16
(21) International Application Number: PCT/US02/31727
(22) International Filing Date: 4 October 2002 (04.10.2002)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/327,530 5 October 2001 (05.10.2001) US

10/264,973 3 October 2002 (03.10.2002) US

(71) Applicant: BEA SYSTEMS, INC. [US/US]; 2315 North
First Street, San Jose, CA 95131 (US).

(72) Inventors: MESSINGER, Adam; 317 29th Street #306,
San Francisco, CA 94131 (US). PULLARA, Sam; 2030
3rd Street #14, San Francisco, CA 94107 (US). BROWN,
Dave; 1441 Montgomery Street, Apartment 3, San Fran-
cisco, CA 94133 (US).

)

@81

84

Agents: MEYER, Sheldon, R. et al.; Fliesler Dubb Meyer
and Lovejoy LLP, Four Embarcadero Center - Suite 400,
San Francisco, CA 94111-4156 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SL, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: SYSTEM FOR INTEGRATING JAVA SERVLETS WITH ASYNCHRONOUS MESSAGES

502 504
faed st
HTTP Serviet
Client: Container:

.

506 508
c c
Serviet
Response: Serviet:

.

I service }\,514

'

Y

il f Time

>
-

e —]

===k

524

[send] !
520
l:send response}'\ , 522

518

(57) Abstract: In a traditional server that users servlets, when a tHTTP client (502) request is dispatched to a thread the service
method of the appropriate servlet (508) is called. When the service method returns, the response is sent. This is sub-optimal in the
case that an asynchronous event must occur before the response can be sent, because the thread running the servlet must block until
the event occurs. The invention provides for asynchronous processing of such requests. In one embodiment, the invention provides
an extension to the Servlet API which allows the server method to return and thus the thread to be freed before the response is ready
to be sent. Then when the asynchronous event later occurs the response may be completed and sent.

w0 03/032181 A1 NI 000000

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 03/032181

PCT/US02/31727

-1 -

SYSTEM FOR INTEGRATING JAVA SERVLETS
WITH ASYNCHRONOUS MESSAGES

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the
patent disclosure, as it appears in the Patent and
Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

Claim of Priority:

[0001] This application claims priority from provisional application
“SYSTEM FOR APPLICATION SERVER MESSAGING WITH
ASYNCHRONOUS QUEUES”, Application No. 60/327,530, filed
October 5, 2001, and which application is incorporated herein by

reference.

Field of the Invention:

[0002] The invention relates generally to application and
transaction servers and particularly to a system for supporting message

queuing and threads with multiple execute queues.

Cross References:

[0003] This application is related to provisional application
“SYSTEM FOR APPLICATION SERVER MESSAGING WITH
MULTIPLE DISPATCH POOLS", Application No. 60/327,543, filed
October 5, 2001, and Utility Patent Application “SYSTEM FOR

10

15

20

25

WO 03/032181 PCT/US02/31727

-2.

APPLICATION SERVER MESSAGING WITH MULTIPLE DISPATCH
POOLS", Application Number , Inventors: Adam Messinger
and Don Ferguson, filed October 3, 2002 both applications are

incorporated herein by reference.

Background of the Invention:
[0004] The Java 2 Platform, Enterprise Edition (J2EE)

specification defines one of the current standards for developing multi-
tier enterprise applications. J2EE provides a component-based
approach to the design, development, assembly, and deployment of
enterprise applications, which both reduces the cost and enables fasten
design and implementation. The J2EE platform gives the developer a
multi-tiered distributed application model, the ability to reuse
components, a unified security model, and flexible transaction control.
Not only can they deliver innovative customer solutions to market faster
than ever, but the resultant platform-independent J2EE
component-based solutions are not tied to the products and application
program interfaces (APIs) of any one vendor.

[0005] The J2EE specification defines the following kinds of
components: application client components; Enterprise JavaBeans
(EJB); servlets and Java Server Pages (JSP) (also called Web
components); and applets. A multi-tiered distributed application model
implies that the application logic is divided into components according
to function, and different application components may make up a J2EE
application on the same or different servers. Where an application
component is actually installed depends on which tier in the multi-tiered

J2EE environment the application component belongs. These tiers are

10

15

20

25

WO 03/032181

PCT/US02/31727

-3-

depicted in Figure 1. As shown therein an application server tier 104 is
used to develop EJB containers and/or presentation containers such as
servlets, JSP, and html pages 114. These in turn are used as an
interface between a client tier 102, where the clients 108 and client
applications are deployed, and a backend tier 106, used for hosting
enterprise or legacy applications such Enterprise Resource Planning
(ERP) systems.

[0006] Clienttier- These can be browsers, Java-based programs,
or other Web-enabled programming environments running within the
client tier, both inside and outside of corporate firewalls.

[0007] Application Server tier - Normally this tier hosts a
combination of presentation logic and business logic to support client
requests. Presentation logic is supported via JSP pages and servlets
that display HTML pages, while business logic is supported via Remote
Method Invocation (RMI) objects and EJBs 112. EJBs rely upon the
container environment for transactions, lifecycle and state management,
resource pooling, security, etc., which together make up the run time
environment in which the beans are executed.

[0008] Back-end tier - This is generally a combination of existing
applications and data stores. It is also referred to as the Enterprise
Information Systems (EIS) tier, since it may include such systems as
Enterprise Resource Planning (ERP), mainframe transaction
processing, database systems, and other legacy information systems.
[0009] Since the components of a J2EE application run
separately, and often on different devices, there needs to be a way for
client and application server tier code to look up and reference other

code and resources. Client and application code can, for example, use

10

15

20

25

WO 03/032181 PCT/US02/31727

-4-

the Java Naming and Directory Interface (JNDI) 116 to look up
user-defined objects such as enterprise beans, and environment entries
such as the location of the Java Database Connector (JDBC)
DataSource objects, which in turn are used for looking up resources in
backend tier, and message connections.

[0010] Application behavior such as security and transaction
management can be configured at deployment time on Web and
enterprise bean components. This deployment time feature decouples
application logic from the configuration settings that might vary with the
assembly. The J2EE security model lets a developer configure a Web
or enterprise bean component so that system resources are accessed
only by authorized users. For example, a Web component can be
configured to prompt for a user name and password. An Enterprise
Bean component can be configured so that only persons in specific
group.s can invoke certain kinds of its methods. Alternatively, a servlet
component might be configured to have some of its methods accessible
to everyone, and a few methods accessible to only certain privileged
persons in an organization. The same serviet component can be
configured for another environment to have all methods available to
everyone, or all methods available to only a select few.

[0011] Some application servers, such as the WebLogic Server
product from BEA Systems, Inc., San Jose, California, use an Access
Control List (ACL) mechanism that allows for fine-grained control of the
usage of components running on the server. Using an ACL, a developer
can define at the Java Method level what can, or cannot, be executed
by which user or group of users. This ACL mechanism covers anything

that runs on the application server except for EJBs, which have their

10

15

20

25

WO 03/032181

PCT/US02/31727

-5-

own access control mechanism defined in the EJB specification.
Security realms allow the administrator to import information from

existing authorization or authentication systems into the ACL.

Java Servlets

[0012] A servlet is a program that extends the functionality of a
Web server. A servlet receives a request from a client, dynamically
generates the response (possibly querying databases to fulfill the
request), and then sends the response containing an HTML or XML
document to the client. Serviets are similar to CGI but are typically
easier to write, since servliets use Java classes and streams. They
execute faster because servlets are compiled to Java byte code and at
run time the servlet instance is kept in memory, each client request
spawning a new thread. Servlets make it easy to generate data to an
HTTP response stream in a dynamic fashion. Each client request is
performed as a new connection, so flow control does not come naturally
between requests. To allow for this session management maintains the
state of specific clients between requests. In some application servers,
servlets make use of the HTTP session object to save their state
between method requests. This object can be replicated in a clustered

environment for failover purposes.

Java Server Pages

[0013] JSP pages are a text-based, presentation-centric way to
develop servlets. JSP pages offer all the benefits of servlets, and when
combined with a JavaBeans class, provide an easy way to keep content

and display logic separate. Both JSP pages and servlets are more

10

15

20

25

WO 03/032181

-6-

desirable than Common Gateway Interface (CGl), because they are
platform-independent, and use less overhead. JSP pages can be used
with JavaBeans classes to define Web templates for building a Web site
made up of pages with a similar look and feel. The JavaBeans class
performs the data rendering, so the templates have no Java code. This
means they can be maintained by an HTML editor. Simple Web-based
application using a JSP page can be used to bind content to application
logic using custom tags or scriptlets instead of a JavaBeans class.
Custom tags are bundled into tag libraries that are imported into a JSP
page. Scriptlets are small Java code segments embedded directly in the

JSP page.

Java Messaging Services (JMS)

[0014] JMS is the J2EE mechanism used to support the
exchange of messages between Java programs. This is how Java
supports asynchronous communication, wherein the sender and
receiver don't need to be aware of each other and thus can operate
independently. JMS supports two messaging models:

[0015] Point to point - which is based on message queues. In this
model message producer sends a message to a queue. A message
consumer can attach itself to a queue to listen for messages. When a
message arrives on the queue, the consumer takes it off the queue and
responds to it. Messages can be sent to just one queue and will be used
by just one consumer. Consumers have the option to filter messages to
specify the exact message types they want.

[0016] Publish and subscribe - which allows producers to send

messages to a topic and for all the registered consumers for that topic

PCT/US02/31727

10

15

20

25

WO 03/032181

PCT/US02/31727

-7-

to retrieve those messages. In this case, many consumers can receive
the same message.

[0017] One problem with current Servlet APIs is the completely
synchronous programming model. After a request is dispatched to a
particular thread the service() method of the appropriate servlet is
called. When the service() method returns, the response is sent. This
is a simple programming model which is suitable for many types of work,
but is sub-optimal in the case that a asynchronous event must occur
before the response can be sent, because the thread running the serviet

must block until the event occurs.

Summary of the Invention:

[0018] The invention provides a system and method for
asynchronous threading which allows the service() method to return
(and thus allowing the thread to be freed up) before the response is
ready to be sent. Then when the asynchronous event later occurs the
response may be completed and sent. An example use of this
mechanism is the use of JMS in conjunction with servlets.

[0019] In accordance with the invention, the process begins when
a servlet is executed. The servlet builds a portion of a response, but
typically needs more data to complete the response. While it's waiting
it queues a JMS message requesting the data and sets the response
object aside in a place where it may be found when a JMS message
containing the needed data arrives. At this point the serviet may return,
but the response will not yet be sent. At a later point in time, when the

data arrives via JMS for example, the corresponding response object is

10

15

20

25

WO 03/032181

PCT/US02/31727

-8-

retrieved. The remainder of the response can then be generated.
When the response is completed it can be explicitly sent to the client.
[0020] This feature is also available through the use of a JSP tag
library. Using the tags the JSP page author specifies what work should
be done before the asynchronous event and which work should be done
after the asynchronous event. This feature integrates with the JSP
context mechanisms to ensure that they are restored after the

asynchronous event and that processing can continue uninterrupted.

Brief Description of the Figures:

[0021] Figure 1 shows an illustration of a J2EE compatible
architecture that can utilize the present invention.

[0022] Figure 2 shows an illustration of a threading policy with
asynchronous thread pool in accordance with an embodiment of the
invention.

[0023] Figure 3 shows a diagram of a synchronous threading
process.

[0024] Figure 4 shows a lifecycle of a single HTTP request that

is processed using traditional methods.

[0025] Figure 5 shows a lifecycle of a single HTTP request
processed using asynchronous messaging.

[0026] Figure 6 shows a lifecycle of a plurality of HTTP requests
processed using traditional methods.

[0027] Figure 7 shows a lifecycle of a plurality of HTTP requests

processed using asynchronous messaging.

10

15

20

25

WO 03/032181

Detailed Description:

[0028] Broadly described, the invention provides a system and
method to allow asynchronous threading. The invention can be
incorporated into application server systems that allow access to a
servlet via an Application Program Interface (API), or into other systems
that benefit from asynchronous threading.

[0029] The typical Servlet APIs are completely synchronous.
After a request is dispatched to a thread, the service() method of the
appropriate servlet is called. When the service() rﬁethod returns, the
response is sent. This simple programming model is suitable for many
types of work, but is sub-optimal in those instances that an
asynchronous event must occur before the response can be sent,
because the thread running the servlet must block until the event
occurs.

[0030] In one embodiment, the invention provides an extension
to the Servlet AP| which allows the service() method to return (and thus
allowing the thread to be freed up) before the response is ready to be
sent. Then when the asynchronous event later occurs the response
may be completed and sent. One example use of this mechanism is the
use of JMS in conjunction with servlets.

[0031] In this embodiment, when a servlet is executed, it builds
a portion of a response, but then typically needs more data to complete
the response. It queues a JMS message requesting the data, and sets
the response object aside in a place where it may be found when a JMS
message containing the needed data arrives. At this point the serviet
may return, but the response will not yet be sent. Later on, when the

required data arrives via JMS, the response object is retrieved. The

PCT/US02/31727

10

15

20

25

WO 03/032181 PCT/US02/31727

-10 -

remainder of the response can then be generated, and when completed
can be explicitly sent to the client.

[0032] The invention is primarily designed for use with application,
transaction, and messaging servers, such as the WebLogic family of
products from BEA Systems, Inc. At the core of the typical server's
design is the threading model, the policy by which threads are assigned
to perform work requests. As servlet requests arrive at the server they
are dispatched to a thread. This thread is responsible for executing the
requested servlet. The server employs a threading model which uses
two thread pools an asynchronous pool (often referred to as reader
threads) and a synchronous pool (referred to as execute threads). This
combination of pools allows a developer or administration to effectively
prioritize requests while tolerating user code that performs blocking
operations.

[0033] Figure 2 shows a threading policy mechanism 206 in
accordance with an embodiment of the invention. The asynchronous
thread pool 208 waits on an asynchronous input mechanism 202
(muxer) for asynchronous read results to become available. Once a
result is available a thread from the pool looks at the message and
dispatches it by making the appropriate callbacks. The dispatch
callbacks usually queue the request for later processing by the
synchronous thread pool. However certain non-blocking, priority
requests are services directly in the callback. By aggressively accepting
input high priority requests 214 do not wait to be read while low priority
requests 212 run. Since these threads should never block there are

usually a low number of them, perhaps one per processor (CPU).

10

15

20

25

WO 03/032181 PCT/US02/31727

-11 -

[0034] The synchronous thread pool 210 waits on a queue of
requests 204. Once a request is available a thread from the pool
processes takes the request from the queue, processes it, and sends
out the result 216. While processing the request the thread may execute
code, such as sending out the result, which causes the thread to block.
The number of threads should therefore be tuned so that there is always
one thread per CPU that is in the runnable state. The dispatch policies
are described in more detail in provisional application entitled, “SYSTEM
FOR APPLICATION SERVER MESSAGING WITH MULTIPLE
DISPATCH POOLS”, Application Number 60/327,543, Inventor: Adam
Messinger, filed October 5, 2001 and copending utility application
entitled, “SYSTEM FOR APPLICATION SERVER MESSAGING WITH
MULTIPLE DISPATCH POOLS”, Application Number ,
Inventors: Adam Messinger and Don Ferguson, filed October 3, 2002.
[0035] Figure 3 shows a traditional synchronous message
response mechanism. As shown therein, a request from the client
application 302, such as for example a Web browser application, is
transmitted to the application server via a servlet 304. The request may
be in the form of a hypertext transmission protocol (http) request 306,
for which the client will typically expect a hypertext markup language
(html) response 308. In the synchronous model the thread executes the
servlet and then immediately sends the response to the client when
execution of the servlet completes. The problem with this approach is
that the executing thread is consumed for the entire execution of the
servlet. If the servlet is performing tasks which block, perhaps waiting

for other data, then this can represent a waste of server resources.

10

15

20

25

WO 03/032181

PCT/US02/31727

-12-

[0036] Figure 4 illustrates a typical system lifecycle wherein a
client access a resource at a server. As shown in Figure 4, an HTTP
client 402 accesses a servlet 408, which typically runs on a remote web
server. It will be evident to one skilled in the art that while HTTP clients
are shown herein for purposes of illustration, the invention is not so
limited, but may be used with other types of client application. As shown
in the lifecycle diagram in Figure 4, the HTTP client accesses the
servlet via a servlet container 404. The servlet container is responsible
for receiving the HTTP request 410, and passing it to the servlet 408 for
processing. Much of the operation of processing this HTTP request
takes place at the servlet response level 406. As illustrated in Figure
4, with time increasing vertically down the page, the process continues
with an :init call 412 to the servlet, which is handled by the
response handler 406. The servlet containerthen passesa :service
request 414 to the servlet, to retrieve or to update data for example. A
typical use of such a system is in an e-commerce environment, wherein
the client application is designed to retrieve catalog listings, such as the
results of a search for flight times, etc. The servlet typically responds to
the request by writing output 416 to the servlet response handler. This
step is often required for buffering, and for optimization purposes.
When the servlet container then requests that the response be returned
to the client,itsendsa :send request418 tothe response handler,
and the response handler returns the :send response 420 to the
serviet container. The response is then sent as an HTTP response 422
to the client.

[0037] Figure 5 illustrates a similar life cycle that may be used in

accordance with an embodiment of the invention. As shown in Figure

10

15

20

25

WO 03/032181 PCT/US02/31727

-13-

5, again an HTTP client 502 is used to access a remote server, server
resource or serviet 508. The HTTP request 510 is handled by a servlet
container 504 which issues an :init request 512 to the serviet
response handler 506. This time however, when the :service
request 514 is transmitted to the servlet for processing, the serviet
returns 516 immediately to the response handler. Thisimmediate return
frees up the response handler for handling subsequent requests, in that
it does not need to wait for the servlet to actively return data in order to
handle those requests. After a period of time t 520, when the serviet
has the appropriate data to return to the requests, it sends a :send
signal 518 to the response handler, which then sends the :send
response 522 to the servlet container. The subsequent HTTP
response 524 is transmitted to the client as before.

[0038] As part of the process described above, the serviet sets a
response code until it has something else to transmit, effectively taking
the responsibility for responding away from the container level and
placing it at the servlet level. In practice the amount of time that the
servlet waits to issue the :send response can be defined as some
arbitrary amount, or can be performed as the result of an asynchronous
message, for example as the result of receiving a JMS message
indicating that the information is available to be transmitted to the client.
This type of processing is useful in, for example, e-commerce sites
where a user typically experiences a delay time in awaiting search
results. When processing is performed according to the invention,
instead of merely having a frozen screen, the user may receive some
items of information, while other items are returned piecemeal as the

servlet finds the appropriate data and returns it. At the same time the

10

15

20

25

WO 03/032181 PCT/US02/31727

-14 -

servlet response handler is available to handle other client requests.
The type of data that is returned immediately, and the type that is
returned later, can be specified by the developer.

[0039] Figures 6 and 7 illustrate in more detail the operation of
the invention, as it may be applied to service multiple requests. As
shown in Figure 6, when asynchronous messaging is not used,
subsequent requests from clients must be handled in a sequential
manner. So, for example, in Figure 6, a first HTTP request 410 from
client A is handled by the servlet container 404 and servlet response
handler 406 and completely processed, prior to a second HTTP request
430 from client B 403 being handled. The overall result is one of taking
twice as much time to process HTTP requests from the two clients. If
the requests were not handled in this sequential manner, it is very likely
that one or more requests would create a backlog for other requests
such that the user would experience a delay in processing.

[0040] Figure 7 illustrates a life cycle of a mechanism in
accordance with an embodiment of the invention in which asynchronous
messaging is used to process multiple requests from a single client,
and/or requests from multiple clients, in an asynchronous manner, such
that the processing can be run in different threads. As shown in Figure
7, a first HTTP client A 502 and a second HTTP client B 503 access a
servlet resource 508 using the mechanisms described above. In
accordance with this embodiment, when a first HTTP request A 510 is
received at the servlet container, it is handled by the response handler
using an :init A call 512, and then passed as a :service
request 514 to the servlet 508. The servlet returns 516 immediately to

the servlet response handler, which then frees up the response handler

10

15

20

25

WO 03/032181 PCT/US02/31727

-15-

for handling other requests. As shown in Figure 7, a second HTTP
request B is handled immediately as an ~ :init B call 532 by the
servlet response handler, and passed to the servletas a :service
request 534 for processing. Again, the servlet returns immediately 536.
Interleaving the messages in this manner reduces the overall time for
processing both requests, and allows the servlet to return information to
the client when and if it becomes available. For example, as shown in
Figure 7, when the servlet finds the information necessary to respond
to request A it returns that :send response A signal 522 to the
servlet container for sending on to the client as HTTP response A 524.
A second :send response B signal 542, and HTTP response B

544 is similarly handled in the same way.

Implementation

[0041] The file servlet can be replaced by a fast file serviet on
platforms that support the asynchronous sending of files over the
network. The implementation of this type of servlet requires the addition

of asynchronous responses for servlets, which is discussed below.

Synchronous and Asynchronous Responses

[0042] When a servlet request from a remote client is serviced a
response is often required. This response can either be synchronous,
in that it is sent by the same thread that processed the request, or
asynchronous in that it is sent later in a different thread. This analysis
is from the server's perspective. From the clients perspective eithertype
of response may or may not block waiting for it depending upon how the

remote request was made.

10

15

20

25

WO 03/032181 PCT/US02/31727

-16 -

[0043] Currently most requests are handled in a synchronous
manner. When a servlet request is serviced all processing must be
completed before the servicing thread can move on to another request.
This synchronous model is the one specified by the RMI and servlet
specifications. The traditional reason for this is that writing
asynchronous code is very difficult and thus prone to error.

[0044] There are certain situations where the ability to respond to
requests in an asynchronous manner would be very helpful for
conserving threads. This is typically true in cases where the server
needs to make one or more long running requests of external resources
or where the server needs to wait on some condition while processing
the request. An example of this is a client request to dequeue from a
JMS queue that is currently empty. In a synchronous model the thread
servicing the request blocks until there is a message in the queue to
return to the client. In an asynchronous model the thread can set the
request aside and continue servicing other requests. When a message
is placed in the queue the request can be found and a response sent to
the client. The invention allows servers to support asynchronous

responses to RMI and servlet requests.

Serviets

[0045] Particular servlets can be declared as asynchronous in
their deployment descriptor. When the service method of an
asynchronous servlet returns, no further action will be taken on that
request. The servlet is responsible for storing the request someplace
such that after some other action takes place it can be retrieved and the

response sent. At this point a special send() method must be called on

10

15

20

25

WO 03/032181

-17 -

the request which will flush the streams, log the request, and, if it is a
keep alive connection then register the socket with the muxer to receive
more data. It is important to create implementations that ensure
resources are appropriately freed by timing out long running requests,

thus freeing resources for garbage collection and other cleanup.

JSP

[0046] An asynchronous model may also be supported in a
similar manner through the use of JSP tag libraries. These tag libraries
are used by the http developer/page author to designate which portion
of the web page should be executed prior to the asynchronous event
and which portion should be executed after the asynchronous event.
The tag libraries allow the author to gain access to an object which
should be notified when the asynchronous event occurs and JSP page
execution should resume.

[0047] When using the tag libraries the execution context of the
page may be automatically stored before registering for the
asynchronous event. In this way it is possible to hide many of the
details of asynchronous programming from the JSP author. The JSP
need not be concerned about state maintenance. State stored in any
of the standard scopes (page, request, session or application) will
continue to work as they would using a synchronous JSP.

[0048] The foregoing description of the present invention has
been provided for the purposes of illustration and description. It is not
intended to be exhaustive or to limit the invention to the precise forms
disclosed. Obviously, many modifications and variations will be

apparent to the practitioner skilled in the art. The embodiments were

PCT/US02/31727

WO 03/032181 PCT/US02/31727

-18-

chosen and described in order to best explain the principles of the
invention and its practical application, thereby enabling others skilled in
the art to understand the invention for various embodiments and with
various modifications that are suited to the particular use contemplated.
It is intended that the scope of the invention be defined by the following

claims and their equivalence.

10

15

20

25

WO 03/032181 PCT/US02/31727

-19-
Claims:

What is claimed is:

1. A system for asynchronous messaging between Java servlets

and a servlet handler, comprising:

a server including a servlet and a servlet response handler;

an HTTP interface for receiving requests from, and sending
responses to an HTTP client; and,

wherein a request from a client allows the servlet to return certain
response data immediately, and to set a response code to be used with

subsequent responses.

2. The system of claim 1 wherein the servlet subsequent response
is triggered by a response command to send additional response data.

3. The system of claim 2 wherein the response command is a JMS
message.
4. The system of claim 1 wherein the functioning of the serviet and

servlet response handler is exposed to the user via a JSP tag library.
5. The system of claim 4 wherein the JSP tag library is used to
indicate which HTTP response data should be returned immediately and

which response data should be returned later.

6. The system of claim 4 further comprising support for JSP

10

15

20

25

WO 03/032181 PCT/US02/31727

-20-

execution contexts.

7. A method for asynchronous messaging between Java serviets
and a servlet handler, comprising the steps of:

receiving request from an HTTP client to access a servlet
resource; and,

responding to said requests asynchronously, wherein a request
from a client allows the servlet to return certain response data
immediately, and to set a response code to be used with subsequent

responses.

8. The method of claim 7 wherein the servlet subsequent response

is triggered by a response command to send additional response data.

9. The method of claim 8 wherein the response command is a JMS

message.

10. The method of claim 7 wherein the functioning of the servlet and
servlet response handler is exposed to the user via a JSP tag library.

11. The method of claim 10 wherein the JSP tag library is used to
indicate which HT TP response data should be returned immediately and

which response data should be returned later.

12. The system of claim 10 further comprising support for JSP

execution contexts.

PCT/US02/31727

WO 03/032181

1/7

90l

Jal] pusyoeg

(suoneoiddy Aoeban

‘dY3 ‘SWgay)

SWa)SAS

UoljeWlOju] &

asudieug

oLl

-
I
I
I
I
I
|
I
I
I
I
I
I
—

I 3-NOI4

Jal] Janeg uoneoddy

(TINX 1427

“NLH N

‘sabed dSr
‘S}19|AISS)

SWF ‘IANr

Jauiejuon
uoneussald

t

JalL Ju3lD

| Chl
_
_
_
_
_
_
_

N

asldisyug ‘

suesg

> JuallD

Jeureuo) gra

___________________\S

— — — —— — g — —— —— —] — —— — — — — — — — —

> jueiD
N

PCT/US02/31727

WO 03/032181

2/7

90IN0SDY

G0C ~4

¢ dd

Nnoid

IIIIII p0Z
91¢ __ N\ -
| S
J ! 100d =~ s}senbay
T > Uns®Y — ! peayy] | 10
b1z “ SNOUOIYOUAS “ ananp
w | |
}senbey _ _
l Aoud b1 I wsiueyoap
1senbay _ j0od | induj
il Auoug mo] <+—H peayl e SNOUOJYOUASY
| sSnouoJyouAsy | |
S | %
| | 202

cle

80¢ [opon Buipeaiy |

4

90¢

PCT/US02/31727

WO 03/032181

3/7

o€
Joneg

uoneolddy

¢ ™ANOI

vie
anand
asuodsay
80¢
1401 Wiy coe
>
9le ¥y %
, WA <
8l (1osmoug)
asuodsay BB Wl
1senbay
10990 L,
enep
cle dny
90¢

WO 03/032181 PCT/US02/31727
4/7
402 404 406 408
fal Vet fad ~
HTTP Servlet Servlet
Client: Container: Response: Serviet:
410
‘http request
-
L
—
Time
-t
—
Bl
= — — — — —
:http response |
~
422

(Single Request)

FIGURE 4

WO 03/032181 PCT/US02/31727
S/17
502 504 506 508
Yt ol Vo ~
HTTP Serviet Serviet
Client: Container: Response: Serviet:
510
:http request
I Zinit I—\, 512
>
| ‘service |-\ , 514
- -
- ’
516
-« — — — — |
- | send |
=

I -hitp responseJ
7 1

524

(Single Request)

FIGURE 5

Time

520

WO 03/032181 PCT/US02/31727
6/7
402 403 404 406 408
ft ~ et ~ ~
HTTP HTTP Serviet Serviet '
ClientA: | | Client B: Container: Response: Serviet:
410
(.
‘hitp request A
>
init 412
e
:service 414 [|
Time
¢

,4_._-

:send response 420

— — — aari

r ‘http

response]

/

422

]

"hitp [

init B J-\, 432

request B

430

r :service 434

8 || [omteaput]
> -

416

-

442 I

sendB |\ 438
>

‘/

-hitp l :

send response B 440

response i
B
,‘__— —

(Multiple Requests)

FIGURE 6

Coeer]|

436

WO 03/032181 PCT/US02/31727
717
502 503 504 506 408
e fd fad et ~
HTTP HTTP Servlet Serviet)
Client A: Client B: Container: Response: Serviet:
510
O
‘http request A
-
‘ Ginit A |>\, 512
’.l_-
‘hitp
| | {requestB Time
-t
e keI~ ¢
- 516
P
t, 520
y c A
536
518 A
I 'send A J
¢ — — — —
524 '
et :send response A{\, 522
:hitp Lt
response '
A
o e e «————-] ¥
L:send response B 542 t, 540
—
538
]
-http
response
B
544
(Multiple Requests)

FIGURE 7

INTERNATIONAL SEARCH REPORT

International application No.
PCT/USo02/381727

A CLASSIFICATION OF SUBJECT MATTER

IPC(7) :GosF 15/16
US CL :709/208, 218, 219, 811; 707/511, 501, 518
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. : 709/208, 218, 219, 311, 314; 707/511, 501, 518

Documentation searched other than minimum documentation to the extent that such documents are included in the fields
searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y —|[US 6,292,933 Bl (BAHRS ET AL.) 18 SEPTEMBER 2001, | 1-12
ABSTRACT, COL. 1, 17-67, COL. 2, LINES 1-67, COL. 3,
LINES 1-67, COL. 4, LINES 1-67, COL. 5, LINES 1-7, COL. 14,
LINES 23-67, COL. 15, LINES 1-65, COL. 16, LINES 56-67,
COL. 17, LINES 1-60.

A —1US 6,292,792 Bl (BAFFES ET AL.) 18 SPETEMBER 2001, | 1-12
ABSTRACT,

Y —| US 5,987,454 A (HOBBS) 16 NOVEMBER 1999, ABSTRACT, | 1-12
COL. 7, LINES 34-67, COL. 8, LINES 1-67, COL. 9, LINES 1-12,
COL. 10, LINES 30-67, COL. 11, LINES 1-17, COL. 12, LINES
40-67, COL. 13, LINES 65-67, COL. 14, LINES 1-65.

Further documents are listed in the continuation of Box C. l:l See patent family annex.

. Special categories of cited documents: T later document published after the international filing date or priority
. . date and not in conflict with the application but cited to understand
"A" document defining the general state of the art which is not the principle or theory underlying the invention
considered to be of particular relevance
"E" earlier document published on or after the international filing date X ::i:::i'::ltdon‘::s:{ S:T:;nzilza‘:fs;i;t:ezl:;T:SO:::?:;YLQ?I?:‘:;:
"L document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other o i . . .
special reason (as specified) Y docu.ment of pa.rncular relevance;.the claimed invention cannot be
considered to involve an inventive step when the document is
"o" document referring to an oral disclosure, use, exhibition or other combined with one or more other such do ts, such bination
means being obvious to a person skilled in the art
"pP" document published prior to the international filing date but later nge document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the irﬁrgati:.)jnla_:;l ‘Sﬁaxihuregort
03 DECEMBER 2002
Name and mailin% address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks ’,}/'J\
Box PCT ﬁ ”/ £—.
Washington, D.C. 20281 WILLIAM C. VAU%&&A . Wetiaes
Facsimile No. (708) 305-3230 Telephone No. (703)“305-9700

Form PCT/ISA/210 (second sheet) (July 1998)%

INTERNATIONAL SEARCH REPORT

International application No.

ABSTRACT, COL. 1, LINES 59-67, COL. 2, LINES 57-67, COL.
4, LINES 15-67, COL. 5, LINES 1-67, COL. 6, LOINES 1-65.

PCT/US02/31727
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y,P —|[US 6,327,628 B1 (ANUFF ET AL.) 04 DECEMBER 2001, 1-12

Y,P —|US 6,480,865 B1 (LEE ET AL.) 12 NOVEMBER 2002, 1-12
ABSTRACT, FIGURE 1, COL. 1, LINES 22-67, COL. 2, LINES
1-67, COL. 3, LINES 1-67, COL. 4, LINES 5-15, COL. 39-67.

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US02/31727

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

EAST, NPL

search terms: servlet, http, method, class, java server page, rmi, rpc, remote method invocation, remote procedure call,
library, database, java database, queue, container, java messaging, object oriented

Form PCT/ISA/210 (extra sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

