70927765 A1 NI 0O 0 OO O A

.

=
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘, | [I

) IO O T O O

International Bureau

(43) International Publication Date
7 August 2008 (07.08.2008)

(10) International Publication Number

WO 2008/092765 Al

(51) International Patent Classification:
HO4L 29/06 (2006.01)

(21) International Application Number:
PCT/EP2008/050637

(22) International Filing Date: 21 January 2008 (21.01.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/668,901 30 January 2007 (30.01.2007) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth Hampshire PO6 3AU (GB).

(72) Inventors; and
(75) Inventors/Applicants (for US only): CARDONA, Omar
[US/US]; 1900 Scofield Ridge Parkway, Apartment

2701, Austin, Texas 78727-1610 (US). CUNNINGHAM,
James, Brian [US/US]; 6300 Heron Drive, Austin, Texas
78759 (US). DE LEON, Baltazar, III. [US/US]; 1613
Lynnville Trail, Austin, Texas 78727 (US). VENKAT-
SUBRA, Venkat [US/US]; 8607 Bryer Creek Trail,
Austin, Texas 78717-4859 (US).

Agent: LING, Christopher, John; IBM United Kingdom
Limited, Intellectual Property Law, Hursley Park, Win-
chester Hampshire SO21 2JN (GB).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: NETWORK INTERFACE CARD TRANSMISSION CONTROL PROTOCOL ACCELERATION OFFLOAD FAIL-

URE DETECTION AND RECOVERY MECHANISM

EEPROM
INTERFACE PCI BUS NIC
300
S | R | B £,
! 306 !
i i i
| 308~] EEPROM PCI BUS 1
! INTERFACE INTERFACE ﬁ :
| |
! REGISTER/ CONTROL DATA :
310~ CONFIGURE/ UNIT BUFFER |t SRAM

| STATUS/ 314 304 " INTERFACE
! CONTROL 22 == |

|
! I
I ETHERNET . |
| 3121 OSCILLATOR | | \\TeRFACE i
. Y :
|
Lo S R | I 2 FIG. 3

0
NETWORK

(57) Abstract: A computer implemented method anddata processing system for the detection and recovery ofa network interface
card TCP acceleration offload failure. Responsive to a failure to receive an acknowledgement of a transmission control protocol
& segment containing a request for a transmission control protocol offload function in a network interface card, the transmission control
& protocol segment is retransmitted without the request for a transmission controlprotocoloffload function. When an acknowledgement
of the retransmitted transmission control protocol segment without the request for a transmission control protocol offload function
is received, a counter is incremented which indicates a failure of the transmission control protocoloffload function. Responsive to
the counter exceeding a predefined number of allowed failures, all requests to the transmission control protocol offload function for

the network interface card are stopped.

WO 2008/092765 A1 | NI DA 00 0000000 000 0 00

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, Published:

FR, GB, GR,HR,HU, IE, IS, IT, LT, LU, LV, MC, MT,NL, — with international search report
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,

CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

WO 2008/092765 PCT/EP2008/050637

NETWORK INTERFACE CARD TRANSMISSION CONTROL

PROTOCOL ACCELERATION OFFLOAD FAILURE

DETECTION AND RECOVERY MECHANISM

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates generally to an improved data processing system, and in
particular to a computer implemented method and data processing system for the detection
and recovery of a network interface card (NIC) transmission control protocol (TCP)

acceleration offload failure.

Description of the Related Art

Data communications have grown exponentially in recent years because of enhanced
communications standards and network availability. Transmission control protocol (TCP) is
a standard that ensures that packets of data are delivered and received in the same order they
were sent and Internet Protocol (IP) is used in conjunction with TCP to designate how
information travels between systems across the Internet. Most computers have a network
interface card that uses the TCP/IP protocols to send and receive information through a

network.

In a traditional network interface card, the TCP stack uses the system processor to break a
TCP segment down into Ethernet frames before passing the data to the network interface
card. This requires a large amount of processing time, especially in a Gigabit network where
a network interface card can generate tens of thousands of interrupts per second. These

interrupts utilize even more processor cycles.

While local area network (LAN) technology, Ethernet in particular, has improved the media
speed tenfold every 3 to 4 years, the central processing unit (CPU) speed doubles every other
year. Consequently, the CPUs are becoming the bottleneck at a rapid rate in high input/output

WO 2008/092765 PCT/EP2008/050637

(I/O) performance systems. To alleviate this lag in processor performance, an increasing
number of native host functions can be offloaded to 1/O adapters to accelerate data throughput.
Throughput is a measure of the amount of data transferred in a specific amount of time.
Offloading functions reduces the host CPU workload and has the added benefit of improving
the 1/0O adapter throughput.

One TCP acceleration offload function is TCP segmentation offload (TSO). In TCP
segmentation offload, also known as “large send offload” (LSO), the host TCP protocol
stack creates a large TCP segment, up to 64KB in size. This large segment is then passed to
the IP Protocol stack, where the segment is encapsulated in a single IP packet. The
encapsulated segment is then passed to the network interface card device driver and finally
to the network interface card for transmission. The network interface card which
implements TCP segmentation offload then resegments this single large TCP segment into
multiple smaller TCP segments which are typically 1460 bytes for a standard Ethernet
connection and inserts the necessary Ethernet/IP/TCP header information for each segment.
The performance benefit of using segmentation offloading is gained by the fact that larger
packets can be built by the host TCP stack, which typically translates into reduced host
processor utilization. An additional performance benefit is gained by virtue of the fact that,
in general, larger PCI data transactions translate into higher PCI bus throughput. Since the
work of segmenting the buffer into Ethernet frames is done by the network interface card,

the processor is available to perform other tasks.

Another TCP acceleration offload function is TCP checksum offload (TCO). In TCP
checksum offload, the network interface card which implements TCP checksum offload
performs the calculation of the TCP checksum instead of the host CPU. TCP checksum
offload can significantly reduce host CPU workload because the task of performing a
checksum of the TCP payload, TCP header, and IP header is offloaded to the network
interface card. The host protocol layer may optionally calculate a TCP pseudo header
checksum (depending on the specific requirements of the network interface card) and places
the value in the checksum field. The network interface card may then calculate the correct

TCP checksum without having to reference the IP header.

WO 2008/092765 PCT/EP2008/050637

When the TCP acceleration offload functions operate as intended, network and system
performance may be significantly enhanced. Thus, many operation systems take advantage
of these acceleration features, including AIX® (Advanced Interactive eXecutive), a product

of IBM® Corporation.

However, a significant limitation of current TCP acceleration offload functions is that severe
problems can result when these acceleration offload functions fail to operate correctly. For
example, the TCP checksum generator logic in a network interface card may transition to a
“bad” state due to a failure in the card’s hardware state machine or microcode which
implements this logic. In this situation, every TCP checksum offload packet sent by the
adapter would have an invalid TCP checksum, which would result in these packets being
discarded by the destination host. Thus, when acceleration offload functions fail to operate
as intended, severe network degradation can occur, often to the point where the network

appears to be practically unusable.

SUMMARY OF THE INVENTION

The illustrative embodiments provide a computer implemented method and data processing
system for the detection and recovery of a network interface card TCP acceleration offload
failure. Responsive to a failure to receive an acknowledgement of a transmission control
protocol segment containing a request for a transmission control protocol offload function in
a network interface card, the transmission control protocol segment is retransmitted without
the request for a transmission control protocol offload function. When an acknowledgement
of the retransmitted transmission control protocol segment without the request for a
transmission control protocol offload function is received, a counter is incremented which
indicates a failure of the transmission control protocol offload function. Responsive to the
counter exceeding a predefined number of allowed failures, all requests to the transmission

control protocol offload function for the network interface card are stopped.

WO 2008/092765 PCT/EP2008/050637

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be described, by way of example only, with reference to the

accompanying drawings in which:

Figure 1 is a pictorial representation of a network of data processing systems in which the

illustrative embodiments may be implemented;

Figure 2 is a block diagram of a data processing system in which the illustrative embodiments

may be implemented;

Figure 3 is a block diagram of a network interface card in accordance with the illustrative

embodiments;

Figure 4 is a diagram of a transmission control protocol/Internet protocol (TCP/IP) and

similar protocols in accordance with the illustrative embodiments; and

Figure 5 is a flowchart illustrating the detection and recovery of a network interface card

TCP acceleration offload failure in accordance with the illustrative embodiments.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

With reference now to the figures and in particular with reference to Figures 1-2, exemplary
diagrams of data processing environments are provided in which illustrative embodiments
may be implemented. It should be appreciated that Figures 1-2 are only exemplary and are
not intended to assert or imply any limitation with regard to the environments in which
different embodiments may be implemented. Many modifications to the depicted

environments may be made.

Figure 1 depicts a pictorial representation of a network of data processing systems in which
illustrative embodiments may be implemented. Network data processing system 100 is a

network of computers in which the illustrative embodiments may be implemented. Network

WO 2008/092765 PCT/EP2008/050637

data processing system 100 contains network 102, which is the medium used to provide
communications links between various devices and computers connected together within
network data processing system 100. Network 102 may include connections, such as wire,

wireless communication links, or fiber optic cables.

In the depicted example, server 104 and server 106 connect to network 102 along with
storage unit 108. In addition, clients 110, 112, and 114 connect to network 102. Clients
110, 112, and 114 may be, for example, personal computers or network computers. In the
depicted example, server 104 provides data, such as boot files, operating system images, and
applications to clients 110, 112, and 114. Clients 110, 112, and 114 are clients to server 104
in this example. Network data processing system 100 may include additional servers,

clients, and other devices not shown.

In the depicted example, network data processing system 100 is the Internet with network
102 representing a worldwide collection of networks and gateways that use the Transmission
Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate with one
another. At the heart of the Internet is a backbone of high-speed data communication lines
between major nodes or host computers, consisting of thousands of commercial,
governmental, educational and other computer systems that route data and messages. Of
course, network data processing system 100 also may be implemented as a number of
different types of networks, such as for example, an intranet, a local area network (LAN), or
a wide area network (WAN). Figure 1 is intended as an example, and not as an architectural

limitation for the different illustrative embodiments.

With reference now to Figure 2, a block diagram of a data processing system is shown in
which illustrative embodiments may be implemented. Data processing system 200 is an
example of a computer, such as server 104 or client 110 in Figure 1, in which computer
usable program code or instructions implementing the processes may be located for the

illustrative embodiments.

In the depicted example, data processing system 200 employs a hub architecture including a

north bridge and memory controller hub (NB/MCH) 202 and a south bridge and input/output

WO 2008/092765 PCT/EP2008/050637

(I/O) controller hub (SB/ICH) 204. Processing unit 206, main memory 208, and graphics
processor 210 are coupled to north bridge and memory controller hub 202. Processing unit 206
may contain one or more processors and even may be implemented using one or more
heterogeneous processor systems. Graphics processor 210 may be coupled to the NB/MCH
through an accelerated graphics port (AGP), for example.

In the depicted example, local area network (LAN) adapter 212 is coupled to south bridge and
1/O controller hub 204 and audio adapter 216, keyboard and mouse adapter 220, modem 222,
read only memory (ROM) 224, universal serial bus (USB) and other ports 232, and PCI/PCle
devices 234 are coupled to south bridge and I/O controller hub 204 through bus 238, and hard
disk drive (HDD) 226 and CD-ROM 230 are coupled to south bridge and 1/O controller hub
204 through bus 240. PCI/PCle devices may include, for example, Ethernet adapters, add-in
cards, and PC cards for notebook computers. PCI uses a card bus controller, while PCle does
not. ROM 224 may be, for example, a flash binary input/output system (BIOS). Hard disk
drive 226 and CD-ROM 230 may use, for example, an integrated drive electronics (IDE) or
serial advanced technology attachment (SATA) interface. A super I/O (SIO) device 236 may
be coupled to south bridge and 1/0 controller hub 204.

An operating system runs on processing unit 206 and coordinates and provides control of
various components within data processing system 200 in Figure 2. The operating system may
be a commercially available operating system such as Microsoft® Windows® XP (Microsoft
and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both). An object oriented programming system, such as the Java' * programming system, may
run in conjunction with the operating system and provides calls to the operating system from
Java"™ programs or applications exccuting on data processing system 200. Java'™ and all
Java'™-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Instructions for the operating system, the object-oriented programming system, and applications
or programs are located on storage devices, such as hard disk drive 226, and may be loaded into
main memory 208 for execution by processing unit 206. The processes of the illustrative

embodiments may be performed by processing unit 206 using computer implemented

WO 2008/092765 PCT/EP2008/050637

instructions, which may be located in a memory such as, for example, main memory 208,

read only memory 224, or in one or more peripheral devices.

The hardware in Figures 1-2 may vary depending on the implementation. Other internal
hardware or peripheral devices, such as flash memory, equivalent non-volatile memory, or
optical disk drives and the like, may be used in addition to or in place of the hardware
depicted in Figures 1-2. Also, the processes of the illustrative embodiments may be applied

to a multiprocessor data processing system.

In some illustrative examples, data processing system 200 may be a personal digital assistant
(PDA), which is generally configured with flash memory to provide non-volatile memory for
storing operating system files and/or user-generated data. A bus system may be comprised
of one or more buses, such as a system bus, an 1/0 bus and a PCI bus. Of course the bus
system may be implemented using any type of communications fabric or architecture that
provides for a transfer of data between different components or devices attached to the fabric
or architecture. A communications unit may include one or more devices used to transmit
and receive data, such as a modem or a network adapter. A memory may be, for example,
main memory 208 or a cache such as found in north bridge and memory controller hub 202.
A processing unit may include one or more processors or CPUs. The depicted examples in
Figures 1-2 and above-described examples are not meant to imply architectural limitations.
For example, data processing system 200 also may be a tablet computer, laptop computer, or

telephone device in addition to taking the form of a PDA.

The illustrative embodiments provide a computer implemented method and data processing
system for the detection and recovery of a network interface card (NIC) transmission control
protocol (TCP) acceleration offload failure. In particular, the illustrative embodiments
leverage the existing retransmission protocol within TCP in order to enable the TCP stack of
the operating system to detect and recover from a chronic network interface card TCP
acceleration offload failure. The existing retransmission protocol of TCP includes the ability
to retransmit data segments that are not acknowledged by the receiving device. For instance,
TCP may make use of a retransmission timer which causes TCP to resend a data segment

multiple times until receipt of the data segment is acknowledges by the receiving device, or

WO 2008/092765 PCT/EP2008/050637

when TCP determines that a maximum number of retransmissions to the receiving device
has been exceeded. In addition, the illustrative embodiments also use the existing ability of
operating system TCP stacks which support network interface card TCP acceleration offload
functions, such as TCP checksum offload or TCP segmentation offload, to explicitly request
the offload service for each individual data segment built by TCP. Thus, these TCP stacks
have the ability to choose not to request a TCP acceleration offload function, even if the

underlying network interface card supports the offload function.

Using the current abilities of TCP listed above, the illustrative embodiments provide a
mechanism in which an operating system’s TCP stack may detect transmission failures that
are specifically caused by network interface card TCP acceleration offload failures (as
opposed to other network issues or failures). The mechanism also allows the TCP stack to
cease using the network interface card TCP acceleration offload functions for the failing
network interface card, thus facilitating recovery from the failure without requiring user

intervention.

The mechanism in the illustrative embodiments may be implemented when an operating
system TCP stack creates a TCP segment which requests a network interface card to perform
TCP checksum offload or TCP segmentation offload for the segment. If the operating
system TCP stack does not receive an acknowledgement for the segment in a

predefined time interval, the operating system TCP stack retransmits the segment. To detect
and recover from of a network interface card TCP acceleration offload failure, when the
operating system TCP stack still does not receive an acknowledgement after a predefined
number of retransmission attempts and TCP checksum offload or TCP segmentation offload
was previously requested for the segment, the operating system TCP stack retransmits the
segment without the TCP checksum offload or TCP segmentation offload requested. If the
operating system TCP stack then receives an acknowledgement for the segment, the
operating system TCP stack increments a private counter which indicates the number of
times the operating system TCP stack suspects a condition where the network interface
card’s TCP acceleration offload function is failing. If the private counter reaches a
predefined number of “allowed” failures, the operating system TCP stack ceases to request

any TCP acceleration offload functions from that network interface card, for any existing or

WO 2008/092765 PCT/EP2008/050637

new TCP connections, and also for a predefined period of time (minutes, hours, days, or

until the system is rebooted).

Turning now to Figure 3, a diagram of a network interface card is depicted in accordance
with the illustrative embodiments. Network interface card 300 may be implemented as
network adapter 212 in Figure 2. As shown, network interface card 300 includes Ethernet
interface 302, data buffer 304, and PCI bus interface 306. These three components provide a
path between the network and the bus of the data processing system. Ethernet interface 302
provides an interface to the network connected to the data processing system. PCI bus
interface 306 provides an interface to a bus. Data buffer 304 is used to store data being
transmitted and received through network interface card 300. This data buffer also includes

a connection to a SRAM interface to provide for additional storage.

Network interface card 300 also includes electrically erasable programmable read-only
memory (EEPROM) interface 308, register/configure/status/control unit 310, oscillator 312,
and control unit 314. EEPROM interface 308 provides an interface to an EEPROM chip,
which may contain instructions and other configuration information for network interface
card 300. Different parameters and setting may be stored on an EEPROM chip through
EEPROM interface 308.

Register/configure/status/control unit 310 provides a place to store information used to
configure and run processes on network interface card 300. For example, a timer value for a
timer may be stored within these registers. Additionally, status information for different
processes also may be stored within this unit. Oscillator 312 provides a clock signal for

executing processes on network interface card 300.

Control unit 314 controls the different processes and functions performed by network
interface card 300. Control unit 314 may take various forms. For example, control unit 314
may be a processor or an application-specific integrated chip (ASIC). In these examples, the
processes of the present invention used to manage flow control of data are executed by
control unit 314. If implemented as a processor, the instructions for these processes may be

stored in a chip accessed through EEPROM interface 308.

WO 2008/092765 PCT/EP2008/050637
10

Data is received in receive operations through Ethernet interface 302. This data is stored in
data buffer 304 for transfer onto the data processing system across PCI bus interface 306.
For example, the data may be transferred onto a bus using a PCI local bus or via ICH 210 in

Figure 2.

Figure 4 is a diagram of a transmission control protocol/Internet protocol (TCP/IP) and
similar protocols and is depicted in accordance with a illustrative embodiment of the present
invention. TCP/IP and similar protocols are utilized by communications architecture 400. In
this example, communications architecture 400 is a 4-layer system. This architecture
includes application layer 402, transport layer 404, network layer 406, and link layer 408.
Each layer is responsible for handling various communications tasks. Link layer 408 also is
referred to as the data-link layer or the network interface layer and normally includes the
device driver in the operating system and the corresponding network interface card in the
computer. This layer handles all the hardware details of physically interfacing with the

network media being used, such as optical cables or Ethernet cables.

Network layer 406 also is referred to as the internet layer and handles the movement of
packets of data around the network. For example, network layer 406 handles the routing of
various packets of data that are transferred over the network. Network layer 406 in the
TCP/IP suite is comprised of several protocols, including Internet Protocol (IP), Internet

control message protocol (ICMP), and Internet group management protocol (IGMP).

Next, transport layer 404 provides an interface between network layer 406 and application
layer 402 that facilitates the transfer of data between two host computers. The detection and
recovery method described in the illustrative embodiments may be implemented using
various transfer protocols. Transport layer 404 is concerned with things such as, for
example, dividing the data passed to it from the application into appropriately sized chunks
for the network layer below, acknowledging received packets, and setting timeouts to make
certain the other end acknowledges packets that are sent. In the TCP/IP protocol suite, two
distinctly different transport protocols are present: TCP and user datagram protocol (UDP).
TCP provides reliability services to ensure that data is properly transmitted between two

hosts, including dropout detection and retransmission services.

WO 2008/092765 PCT/EP2008/050637
11

TCP segmentation and TCP checksum are used as an exemplary implementation of
embodiments of the present invention and in no way limits segmentation offload and
checksum offload to the TCP suite of protocols. In other embodiments, segmentation
offloading and checksum offloading may be used with any transport protocol, for example,

user datagram protocol and other versions of TCP protocol.

Conversely, user datagram protocol provides a much simpler service to the application layer
by merely sending packets of data called datagrams from one host to the other, without
providing any mechanism for guaranteeing that the data is properly transferred. When using

UDP, the application layer must perform the reliability functionality.

Application layer 402 handles the details of the particular application. Many common
TCP/IP applications are present for almost every implementation, including a Telnet for
remote login; a file transfer protocol (FTP); a simple mail transfer protocol (SMTP) for

electronic mail; and a simple network management protocol (SNMP).

Figure 5 is a flowchart illustrating the process of detection and recovery of a network
interface card TCP acceleration offload failure in accordance with the illustrative
embodiments. TCP is a protocol often used for data transfer and for that reason provides an
illustrative example of an implementation of one illustrative embodiment in an exemplary
protocol. A TCP stack is implemented in the operating system of a device and is executed
by the processor. The TCP stack sends and receives information from the network interface
card driver to ensure successful segmentation. Instructions for the TCP stack and
corresponding operating system may be stored, loaded, and executed in a data processing
system, such as stored within disk 226 or main memory 208 in data processing system 200, and

executed by processing unit 206 or network adapter 212 shown in Figure 2.

The process begins when the operating system TCP stack creates a TCP segment (step 502).
The operating system TCP stack sets a control flag or flags in the message buffer header to
indicate to the network interface card to perform TCP checksum offload or TCP
segmentation offload for this segment (sep 504). The operating system TCP stack also

maintains a table within the TCP stack’s per-session internal control block in host memory.

WO 2008/092765 PCT/EP2008/050637
12

This table contains an entry for each transmitted segment that was associated with a TCP
offload request. Within step 504, the operating system TCP stack creates these entries and
places them into this table for each transmitted segment associated with a TCP offload
request. The operating system TCP stack then passes the message buffer to IP for

transmission (step 506).

The operating system TCP stack determines if an acknowledgement for that segment has
been received in a predefined time interval (step 508). If an acknowledgement has been
received (“yes” output of step 508), the process terminates thereafter. If an
acknowledgement has not been received (“no” output of step 508), the operating system
TCP stack retransmits the segment (step 510). Each time a retransmission is performed, a

retransmit backoff algorithm may cause the predefined time interval to increase.

It should be noted that the steps prior to this point describe the TCP protocol as it currently
functions. The following steps describe TCP functions which enable the detection and
recovery of network interface card TCP acceleration offload failure in the illustrative

embodiments.

The operating system TCP stack then determines if an acknowledgement for the
retransmitted segment has been received in the predefined time interval (step 512). If an
acknowledgement has been received (“yes” output of step 512), the process terminates
thereafter. If an acknowledgement has not been received (“no” output of step 512), the
operating system TCP stack determines if a predefined number of retransmission attempts
has occurred (step 514). In other words, the operating system TCP stack determines if the
number of retransmissions is equal to the predefined value. The operating system TCP stack
maintains a retransmit counter for each active TCP session in order to implement the
retransmit capability of the TCP protocol. When the operating system TCP stack performs a
packet retransmission for a given session, it also increments the retransmit counter for that
session. The retransmit counter may be stored by the operating system TCP stack in a per-

session internal control block in host memory.

WO 2008/092765 PCT/EP2008/050637
13

If the predefined number of retransmission attempts has not been met (“no” output of step
514), the process loops back to step 510. If the predefined number of retransmission
attempts has been met (“yes” output of step 514), the operating system TCP stack determines
whether a TCP checksum offload or TCP segmentation offload was previously requested for
the segment (step 516). This determination may be made by accessing the table maintained
in step 504 to determine if this segment was sent with a TCP acceleration offload request,

such as TCP checksum offload or TCP segmentation offload.

If no TCP checksum or segmentation offload was previously requested for the segment
(“no” output of step 516), the TCP retransmit algorithm returns to step 510 and continues to
function as currently implemented (i.c., in a manner consistent with current TCP stack

implementations in the industry).

If a TCP checksum or segmentation offload was previously requested for the segment (“yes”
output of step 516), the operating system TCP stack retransmits the segment with no TCP
checksum offload or TCP segmentation offload requested (step 518).

The operating system TCP stack then determines if an acknowledgement for the
retransmitted segment without the requested offload function has been received (step 520).
If an acknowledgement of the retransmitted segment is received (“yes” output of step 520),
the operating system TCP stack increments a private counter which indicates the number of
times the operating system TCP stack suspects a condition where the network interface
card’s TCP acceleration offload function is failing (step 522). The private counter may be
contained within the per-session internal control block which is maintained by the host TCP
stack, and stored in host memory. If no acknowledgement of the retransmitted segment is
received (“no” output of step 520), the operating system TCP stack may assume that the
transmission failure is not due to a network interface card TCP acceleration offload failure,
thus the private counter is not incremented and the process returns to step 510 to function as
currently implemented (i.e., the host TCP stack continues to perform the TCP retransmit

algorithm as currently defined by the industry).

WO 2008/092765 PCT/EP2008/050637
14

Turning back to step 522, the operating system TCP stack determines whether the private
counter has reached a predefined number of “allowed” failures (e.g., four failures) (step
524). If a predefined number of “allowed” failures has not been reached (“no” output of step
524), the process terminates thereafter. If a predefined number of “allowed” failures has
been reached (“yes” output of step 524), the operating system TCP stack stops requesting
any TCP acceleration offload functions from that network interface card (step 526). The
operating system TCP stack may stop requesting any offload functions from the network
interface card for any existing or new TCP connections, as well as for a predefined period of
time (e.g., minutes, hours, days, until the system is rebooted, etc.) The number of “allowed”
failures may likewise be bounded by a predefined time period if desired. For example, the
operating system TCP stack may allow no more than four failures within a 60-minute time

interval.

It should be noted that the illustrative embodiments protect against a “false positive”
condition where the operating system TCP stack may mistakenly conclude that a network
interface card TCP acceleration offload function is failing because a successful transmission
happens to coincide with disablement of network interface card TCP stack acceleration
offload functions. By using a private counter and a predefined number of “allowed” failures,

the likelihood of disabling a perfectly functioning network interface card is greatly reduced.

The invention can take the form of an entirely hardware embodiment, an entirely software
embodiment or an embodiment containing both hardware and software elements. In a
preferred embodiment, the invention is implemented in software, which includes but is not

limited to firmware, resident software, microcode, etc.

Furthermore, the invention can take the form of a computer program product accessible from
a computer-usable or computer-readable medium providing program code for use by or in
connection with a computer or any instruction execution system. For the purposes of this
description, a computer-usable or computer readable medium can be any tangible apparatus
that can contain, store, communicate, propagate, or transport the program for use by or in

connection with the instruction execution system, apparatus, or device.

WO 2008/092765 PCT/EP2008/050637
15

The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system (or apparatus or device) or a propagation medium. Examples of a
computer-readable medium include a semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include
compact disk — read only memory (CD-ROM), compact disk — read/write (CD-R/W) and
DVD.

A data processing system suitable for storing and/or executing program code will include at
least one processor coupled directly or indirectly to memory elements through a system bus.
The memory elements can include local memory employed during actual execution of the
program code, bulk storage, and cache memories which provide temporary storage of at least
some program code in order to reduce the number of times code must be retrieved from bulk

storage during execution.

Input/output or I/O devices (including but not limited to keyboards, displays, pointing
devices, etc.) can be coupled to the system either directly or through intervening I/O

controllers.

Network adapters may also be coupled to the system to enable the data processing system to
become coupled to other data processing systems or remote printers or storage devices
through intervening private or public networks. Modems, cable modem and Ethernet cards

are just a few of the currently available types of network adapters.

The description of the present invention has been presented for purposes of illustration and
description, and is not intended to be exhaustive or limited to the invention in the form
disclosed. Many modifications and variations will be apparent to those of ordinary skill in
the art. The embodiment was chosen and described in order to best explain the principles of
the invention, the practical application, and to enable others of ordinary skill in the art to
understand the invention for various embodiments with various modifications as are suited

to the particular use contemplated.

WO 2008/092765 PCT/EP2008/050637
16

CLAIMS

1. A method in a data processing system for the detection and recovery of a network
interface card transmission control protocol acceleration offload failure, the method
comprising:

responsive to a failure to receive an acknowledgement of a transmission control
protocol segment comprising a request for a transmission control protocol offload function
in a network interface card, retransmitting the transmission control protocol segment without
the request for a transmission control protocol offload function;

responsive to receiving an acknowledgement of the retransmitted transmission
control protocol segment without the request for a transmission control protocol offload
function, incrementing a counter to indicate a failure of the transmission control protocol
offload function; and

responsive to determining that the counter has exceeded a predefined number of
allowed failures, stopping all requests to the transmission control protocol offload function

for the network interface card.

2. The method of claim 1, wherein the failure to receive an acknowledgement occurs
after a predefined number of attempts of transmitting the transmission control protocol

segment.

3. The method of claim 1, wherein the counter is a private counter which indicates a

number of times when the transmission control protocol offload function fails.

4. The method of claim 1, further comprising:

responsive to a failure to receive an acknowledgement of the retransmitted
transmission control protocol segment without the request for a transmission control protocol
offload function, determining that the transmission control protocol offload function is not a

cause of the failure.

WO 2008/092765 PCT/EP2008/050637
17

5. The method of claim 1, wherein the transmission control protocol offload function
includes one of a transmission control protocol checksum offload function or a transmission

control protocol segmentation offload function.

6. The method of claim 1, wherein the transmission control protocol segment is
retransmitted without the request for a transmission control protocol offload function in
response to a number of failed attempts to receive an acknowledgement of the transmission

control protocol segment.

7. The method of claim 1, wherein the requests to the transmission control protocol
offload function for the network interface card are stopped for any existing or new

transmission control protocol connections.

8. The method of claim 1, wherein the requests to the transmission control protocol

offload function for the network interface card are stopped for a predefined period of time.

9. The method of claim 1, wherein the predefined period of time includes one of

minutes, hours, days, or until the data processing system is rebooted.

10. The method of claim 1, wherein a failure is determined to be an allowed failure if the

failure occurs within a predefined period of time.

11. A data processing system for the detection and recovery of a network interface card
transmission control protocol acceleration offload failure, the data processing system
comprising:

a bus;

a storage device connected to the bus, wherein the storage device contains computer
usable code;

at least one managed device connected to the bus;

a communications unit connected to the bus; and

a processing unit connected to the bus, wherein the processing unit executes the

computer usable code to, in response to a failure to receive an acknowledgement of a

WO 2008/092765 PCT/EP2008/050637
18

transmission control protocol segment comprising a request for a transmission control
protocol offload function in a network interface card, retransmit the transmission control
protocol segment without the request for a transmission control protocol offload function; in
response to receiving an acknowledgement of the retransmitted transmission control protocol
segment without the request for a transmission control protocol offload function, increment a
counter to indicate a failure of the transmission control protocol offload function; and in
response to determining that the counter has exceeded a predefined number of allowed
failures, stop all requests to the transmission control protocol offload function for the

network interface card.

12. The data processing system of claim 11, wherein the failure to receive an
acknowledgement occurs after a predefined number of attempts of transmitting the

transmission control protocol segment.

13. The data processing system of claim 11, wherein the counter is a private counter
which indicates a number of times when the transmission control protocol offload function

fails.

14. The data processing system of claim 11, wherein the processing unit further executes
the computer usable code to determine that the transmission control protocol offload
function is not a cause of the failure in response to a failure to receive an acknowledgement
of the retransmitted transmission control protocol segment without the request for a

transmission control protocol offload function.

15. The data processing system of claim 11, wherein the transmission control protocol
offload function includes one of a transmission control protocol checksum offload function

or a transmission control protocol segmentation offload function.

16. The data processing system of claim 11, wherein the transmission control protocol
segment is retransmitted without the request for a transmission control protocol offload
function in response to a number of failed attempts to receive an acknowledgement of the

transmission control protocol segment.

WO 2008/092765 PCT/EP2008/050637
19

17. The data processing system of claim 11, wherein the requests to the transmission
control protocol offload function for the network interface card are stopped for any existing

or new transmission control protocol connections.

18. The data processing system of claim 11, wherein the requests to the transmission
control protocol offload function for the network interface card are stopped for a predefined

period of time.

19. The data processing system of claim 11, wherein the predefined period of time

includes one of minutes, hours, days, or until the data processing system is rebooted.

20. The data processing system of claim 11, wherein a failure is determined to be an

allowed failure if the failure occurs within a predefined period of time.

WO 2008/092765 PCT/EP2008/050637
173
FIG. 1
100
E '/ 110
104~
—
— o
SERVER 112
=
106~
=il Lss 114
SERVER
CLIENT
108
FIG. 2
206~_ PROCESSING
UNIT 200
210 202 208 216 236
\ N\ / / /
GRAPHICS MAIN AUDIO
PROCESSOR<:> NB/MCH [KG=> MEMORY ADAPTER
204
240 N 238
BUS
<1Iil | il/il T
KEYBOARD
USB AND
NETWORK PCI/PCle AND
DISK'| | CD-ROM ADAPTER gg:?g DEVICES MOUSE MODEM | ROM
ADAPTER
/ / / / / \ \ \
226 230 212 232 234 220 222 224

WO 2008/092765 PCT/EP2008/050637

2/3
EEPROM
INTERFACE PCI BUS NIC
300
A | R | N £,
| 306 :
: 2 .
| 308~] EEPROM PCI BUS |
| INTERFACE INTERFACE ﬁ! !
I |
| REGISTER/ CONTROL DATA | |
310~ CONFIGURE/ UNIT BUFFER SRAM
l STATUS/ 314 304 Cz? INTERFACE
| CONTROL k) oV |
|
' I
| ETHERNET A :
| 312 OSCILLATOR | 1 \rerpACE |
| N |
|
| 302
L I R | J FIG. 3
—0
NETWORK
;00
402~
APPLICATION | TELNET, FTP, E-MAIL, ETC.
404~ TRANSPORT |TCP, UDP
IP. ICMP, IGMP
406~ NETWORK _[IP, ,
a8 LINK DEVICE DRIVER AND NIC

FIG. 4

WO 2008/092765

(START)

\
902~ CREATE TCP SEGMENT

Y

SET A CONTROL FLAG IN THE
MESSAGE BUFFER HEADER
504~J " FORNIC TO PERFORM TCP
CHECKSUM OR SEGMENTATION
OFFLOAD FOR THE SEGMENT

Y
506~ PASS MESSAGE BUFFER
TO IP FOR TRANSMISSION

508

ACKNOWLEDGEMENT
FOR SEGMENT RECEIVED WITHIN
A PREDEFINED TIME
INTERVAL?

YES

510 NO

PCT/EP2008/050637

N v
RETRANSMIT SEGMENT

ACKNOWLEDGEMENT
FOR RETRANSMITTED
SEGMENT RECEIVED WITHIN
A PREDEFINED TIME

INTERVAL
?

512

HAS
PREDEFINED NUMBER
OF RETRANSMISSIONS
OCCURRED?

o14

516

WAS TCP
CHECKSUM OR
SEGMENTATION OFFLOAD
PREVIOUSLY REQUESTED
FOR SEGMENT
?
518
el
RETRANSMITT SEGMENT WITHOUT
REQUESTED TCP CHECKSUM OR
SEGMENTATION OFFLOAD

ACKNOWLEDGEMENT
FOR RETRANSMITTED SEGMENT
WITHOUT OFFLOAD

RECEIVED
7

INCREMENT PRIVATE COUNTER
INDICATING SUSPECTED FAILED
OFFLOAD FUNCTION

N

PRIVATE COUNTER
REACHED PREDEFINED
NUMBER OF "ALLOWED"
FAILURES

524

CEASE REQUESTING ANY TCP
ACCELERATION OFFLOAD
FUNCTIONS FROM THE NIC

>

FIG. 5

Y

END

INTERNATIONAL SEARCH REPORT

I International application No

PCT/EP2008/050637

A. CLASSIFICATION OF SUBJECT WATTER
INV. H04L29/56

According to International Patent Ciassification (IPC) or o both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Elecironic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A EP 1 396 977 A (BROADCOM CORP [US]) 1-20
10 March 2004 (2004-03-10)
the whole document

A US 2006/133419 Al (RONCIAK JOHN [UST ET 1-20
AL) 22 June 2006 (2006-06-22)
the whole document

A US 2005/147126 Al (QIU JACK [US] ET AL) 1-20
7 July 2005 (2005-07-07)
the whole document

A US 5 898 713 A (MELZER CLIFFORD B [US] ET 1-20
AL) 27 April 1999 (1999-04-27)
the whole document

See patent family annex.

D Further documents are listed in the continuation of Box C.

* jal cat ies of ci* uments :

Special categories ed docurments *T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular relevance,; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive slep when the document is taken alone

document of particular relevance; the claimed invention

cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-

A document defining the general state of the art which is not
considered to be of parlicular relevance

‘E* earlier document but published on or after the international oy
filing date

L document which may throw doubts on priority claim(s) or
which is cited 1o establish the publication date of another vy
citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or

other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but fn the ar,
later than the prierity date claimed *'&* document member of the same patent family

Dale of the actual completion of the international search

17 April 2008

Date of mailing of the intemnational search report

24/04/2008

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Pereira, Mafa]da

Form PCT/ISA/210 (second shaet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent faml‘ly members

International application No

PCT/EP2008/050637
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 1396977 A 10-03-2004 DE 60313550 T2 31-01-2008
Us 2004042412 Al 04-03-2004
Us 2007263630 Al 15-11-2007
US 2006133419 Al 22-06-2006 NONE
US 2005147126 Al 07-07-2005 NONE
US 5898713 A 27-04-1999 NONE

Form PCT/ISA/210 (patent family annex) (April 2008)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - wo-search-report
	Page 26 - wo-search-report

