

(12) SOLICITUD INTERNACIONAL PUBLICADA EN VIRTUD DEL TRATADO DE COOPERACIÓN EN MATERIA DE PATENTES (PCT)

(19) Organización Mundial de la Propiedad Intelectual Oficina internacional

(10) Número de Publicación Internacional

WO 2016/205968 A1

(43) Fecha de publicación internacional
29 de diciembre de 2016 (29.12.2016) WIPO | PCT

(51) Clasificación Internacional de Patentes:

E04B 2/00 (2006.01) E04B 2/70 (2006.01)
E04B 2/38 (2006.01) E04B 2/84 (2006.01)
E04B 2/40 (2006.01)

DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) Número de la solicitud internacional:

PCT/CL2016/000043

(22) Fecha de presentación internacional:

4 de agosto de 2016 (04.08.2016)

(25) Idioma de presentación:

español

(26) Idioma de publicación:

español

(30) Datos relativos a la prioridad:

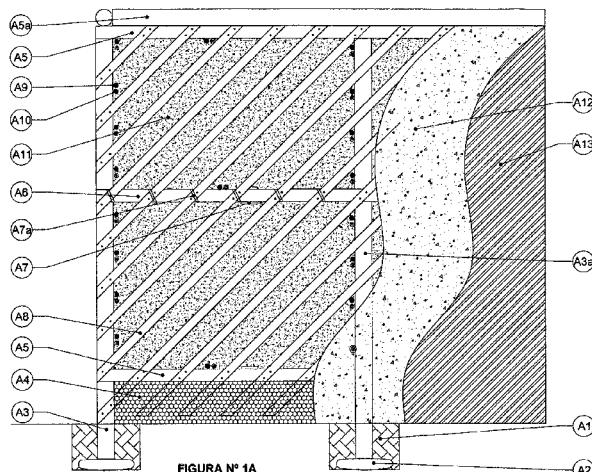
1619-2015 10 de junio de 2015 (10.06.2015) CL

(72) Inventor; e

(71) Solicitante : BRAVO VALENZUELA, Ricardo Jovino [CL/CL]; Avenida Pocuro 2990, Providencia, Región Metropolitana, Código postal 7510614 (CL).

(81) Estados designados (a menos que se indique otra cosa, para toda clase de protección nacional admisible): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ,

(84) Estados designados (a menos que se indique otra cosa, para toda clase de protección regional admisible): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), euroasiática (AM, AZ, BY, KG, KZ, RU, TJ, TM), europea (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).


Publicada:

— con informe de búsqueda internacional (Art. 21(3))

[Continúa en la página siguiente]

(54) Title: STRUCTURAL WALL WITH A STRUCTURE EXOGENOUS TO THE LONGITUDINAL AXIS THEREOF FOR ENABLING THE INSIDE OF THE WALL TO BE FILLED ON SITE

(54) Título : MURO ESTRUCTURAL CON UNA ESTRUCTURA EXOGENA A SU EJE LONGITUDINAL PARA POSIBILITAR SU RELLENO INTERIOR EN OBRA

(57) Abstract: Disclosed is a structural wall with a frame made of wood, metal, plastic, polycarbonate or other resistant material, which does not have stiffening diagonal braces or noggings in the longitudinal axis thereof or, alternatively, has a reticulated and/or articulated structure. This wall is provided with the necessary rigidity by means of a structure external to the longitudinal axis thereof by means of different diagonal elements secured to the studs or pillars and plates, so as to allow the inside of the wall to be filled with materials that enable same to provide features of habitability, such as thermal inertia, thermal insulation, acoustic insulation, and fire resistance, by using very economical fillings such as soil from the site or simple mixtures such as mud and straw, mud with expanded polystyrene, lightweight concrete, earth with wood shavings, earth and volcanic ash, or even using industrial waste such as punctured tyres or other elements, some difficult to recycle. In summary, a wide range of fillings can be used, according to the specific need. This manner of structuring, by enabling on-site filling of the inside of the wall, allows the features of

[Continúa en la página siguiente]

WO 2016/205968 A1

- con información relativa a una petición de restablecimiento del derecho de prioridad sobre una o más reivindicaciones de prioridad (Reglas 26bis.3 y 48.2(b)(vii))

habitability provided by the walls to be ostensibly improved, in a simple, fast and economical manner, the structure being easy to prefabricate and industrialisable, and with a large variety of applications in dwellings and various types of buildings.

(57) Resumen: Muro estructural con armazón de madera, metal, plástico, policarbonato u otro material resistente que no posee diagonales ni cadenetas rigidizantes en su eje longitudinal o, en su defecto, su estructuración es reticulada y/o articulada. Este muro obtiene la rigidez necesaria a través de una estructuración externa a su eje longitudinal mediante diferentes elementos diagonales fijados a los pies derechos o pilares y soleras, de forma de permitir un vertido o relleno a su interior con materiales que le otorgan a este muro prestaciones de habitabilidad, tales como inercia térmica, aislacion térmica, aislación acústica y resistencia la fuego, mediante la utilización de rellenos muy económicos como el suelo del lugar o mezclas sencillas como el barro empajado, barro con poliestireno expandido, hormigón liviano, suelo con viruta de madera, suelo y cenizas volcánicas, o incluso la utilización de desechos industriales como neumáticos picados u otros elementos, algunos difíciles de reciclar; en resumen, puede utilizar una amplia gama de rellenos, según la necesidad específica. Esta manera de estructurar permite, mediante la posibilidad de acceder con un relleno a su interior en obra, mejorar ostensiblemente y de manera sencilla, rápida y económica las prestaciones de habitabilidad de los muros, siendo fácilmente prefabricarle e industrializable, y con una importante variedad de aplicaciones en viviendas y variados tipos de edificaciones.

STRUCTURAL WALL, WHOSE RETICULATED FRAME HAS CONNECTED SPACES IN ITS INTERIOR, AND HAS A STRUCTURE THAT IS EXTERNAL TO ITS LONGITUDINAL AXIS, IN ORDER TO MAKE POSSIBLE ITS INTERNAL FILLING DURING WORK, ON SITE, THROUGH INDUSTRIAL PROCEDURES.

5

DESCRIPTIVE MEMORY

The present invention relates to a structural wall with cross-linked elements, external or not to the longitudinal axis of the wall, which allows the pouring of its interior filling during work. This is applicable to a large number of variants, thicknesses and materials. The use of the present invention allows to industrialize the placement of fillings, on site, to walls that previously could not be filled due to the internal structural elements.

STATE OF THE TECHNIQUE

15

The construction systems of walls and partitions of wood, metal or other material, which have pillars or other vertical structural elements, diagonal stiffeners, sill plates and transversals or blockings on the same axis, are widely known. Usually, some filler (expanded polystyrene, glass wool, polyurethane foam or other materials) is placed between this framework to provide insulation, prior to closing or 20 covering one of the faces of the wall.

Among the known walls within the industry that have some similarity with the wall of this invention presented, there is one called document US 2004237425 (Worrell, Szerdi) of the year 2004, which has great complexity and variety of constructive elements, whose interior is subsequently filled in to the 25 placement of stiffening diagonals, side meshes, insulation on both sides and horizontal reinforcement bars. The fundamental differences between this invention and the wall of American invention of the year 2004, lie in the fact that the wall of this invention does have inner pillars or structural vertical elements, which are essential for transmitting the loads to the base of the wall and to be able to fix its covering, and it can also be built in thicknesses much lower than those mentioned in the Worrell patent, 30 (at least 40 centimeters). Furthermore, the wall of the present invention is prefabricated, which clearly does not occur with the wall of Worrell's invention.

Another document, **CL1416-92**, of the abandoned patent application of 1992, discloses a self-supporting panel (not a supporting wall) to be placed on a base, which does not have pillars (we are referring to boards that reinforce the panel in the middle) or stiffening diagonals or blockings, but it does not mention the way it is structured, and it gives the mission of structuring it to a layer of expanded polystyrene and its coating of metallic mesh, and subsequent stucco. Clearly there are notorious and important differences between this invention of a self-supporting panel and the following: A structural wall capable of receiving loads. It is important to note that the differences are not only of materials

used or the disposition of them, but there are also conceptual differences; that is, the basic concept or inventive unit of the presented invention is not present in the abandoned patent application.

5 *The Chilean patent CL-49055 (same author of this invention, Bravo Valenzuela Ricardo) of the year 2013, which although has several common elements that are used or applied in conjunction with the present invention to the designed wall, does not incorporate the invention of the reticulated structure and the elimination of the internal diagonal, which constitutes the key of the present invention.*

10 The wall CL-49055, is a wooden structure impregnated with expanded polystyrene overlay and cement plates on its base, which is filled with branches or adobe, and not with bulk filling, as is the case of the present invention.

SUMMARY OF THE INVENTION

15 The present invention has a clear concept and obeys a defined single inventive unit, which clearly differentiates it from any other previously known wall: A wall with reticulated or external structural elements, to the longitudinal axis of the wall, **which allows the pouring of its interior filling, on site.** This is applicable to a large number of variants and alternatives of walls, so that the wall using this invention has the possibility of being constructed in an infinity of thicknesses. The use of the present 20 invention allows to **industrialize** the placement of fillings on site.

DESCRIPTION OF THE TECHNICAL PROBLEM THAT IS RESOLVED

The invention of the wall of *the present invention* solves the following problems:

25 **1.** Solves the problem of lack of mass in the construction: The mass or physical weight is what gives the house its stability or thermal inertia, as well as thermal, acoustic and fire resistance. This implies a significant conversion of emergency or temporary housing to permanent housing.

30 **2.** The expanded polystyrene that plays the role and / or replaces the on-foundation, isolates or separates the terrain from the wall, avoiding thermal bridges and the rise of humidity by capillarity.

35 **3.** The placement of cement plates, 3 to 5 centimeters thick at the base of those pillars, which transmit more load to the ground (in order to distribute it and avoid the collapse of the pillars) solves, replaces, and / or prevents the preparation of a foundation.

40 **4.** The distribution of structural elements allows their interior to be filled with materials that provide different qualities: thermal and acoustic insulation, fire resistance, and thermal inertia.

5. It produces a remarkable savings in transportation of materials; the soil used for filling is obtained from the land itself, on site. Due to the nature of its materials, and considering how little invasive it is with the environment, and how friendly it is with the environment, this wall should be classified as "ecological", since its main components are renewable materials, such as wood and soil.

5

6. It gives a quality solution to construction problems derived from natural disasters, as it enables the recycling of materials from the demolition of damaged homes, and the use of low-cost and easy-to-obtain materials.

10 7. It solves labor problems, because the construction of this wall does not require more specialization, and its learning is simple and also innate to a large number of cultures that have built similar walls since time immemorial.

15 8. It solves a problem of time, since it is highly industrializable (it is possible to prefabricate and use efficient and high performance machinery) and its filling material can be carried in bulk or in mixer trucks.

20 9. It solves a problem of limitation of construction by climatic season, because materials like adobe need a lot of sun and water, and in periods when water is usually scarce. This system does not have this limitation and can be applied in any season.

10. It solves logistical problems, because it uses very few materials and, consequently, very little transportation is required.

25 11. This constructive solution leaves a very low carbon footprint. This implies a very low energy consumption and minimal contamination.

12. Its low cost, high quality, great insulation, and habitability make it possible to build larger and better quality homes for the same value, compared to traditional construction.

30

13. The final construction cost is significantly reduced due to the low price of its construction elements and the use of economical, cheap filling materials.

35 14. Because it's of mechano type, foldable, modular and stackable, it saves space, facilitates storage and saves transportation.

15. It is refillable on site once its exterior and interior structural faces are installed, which is not possible on traditional walls.

16. Compared to traditional construction systems of reinforced masonry, this wall uses only a tiny part of the sand and additives required, and in locations with little rain it may not even include cementitious stucco. This is a very important factor, since sand is currently a very scarce material on the planet and many countries no longer have it.

5

DESCRIPTION OF THE FIGURES

Figure 1A, is an elevation view of the wall type A, which constitutes the application of the present invention to a wooden framework (Quincha), with individual pillars located on the axis of the wall.

10 **Figure 2A** is a view showing a vertical section of the wall A. Figure 3A is a view showing a horizontal section of the wall A.

Figure 1B is an elevation view of the type B wall, which is the application of the present invention to a wooden framework (Quincha), built with more than one pillar on the same transverse axis (double, triple, etc), cross-linked or arranged so that they allow the free passage of the filling inside the wall.

15 **Figure 2B** is a view showing a vertical section of the type B wall. Figure 3B is a view showing a horizontal section of the type B wall.

Figure 1C, is a view showing an elevation of the type C wall, which is the application of the invention to a typical wall, which is commonly but not exclusively made of prefabricated wood, with unique or reticulated pillars; diagonals, transversal blockings and / or reticulated sill plates.

20 **Figure 2C**, is a view showing a vertical section of the type C wall. Figure 3C, is a view of the horizontal section of the wall type C.

Figure 1D is an elevation view of the type D wall, showing the application of the present invention to a prefabricated structural wall (or panel), common but not unique to a metal structure, with unique or continuous cross-linked pillars that allow the passage of the filling through its interior.

25 **Figure 2D**, is a view that shows a vertical section of the wall type D. Figure 3D, is a view of the horizontal section of the wall D.

Figure 4D, is a view which shows a close up of the anchor of the type D wall, to the pavement.

30 **Figure 1E**, is an elevation view of the wall type E, showing the application of the present invention to a prefabricated wall (or panel), folding, metal structure or other material that provides sufficient resistance to traction and compression in small thicknesses, such as carbon or PVC fibers, with unique or continuous cross-linked articulated pillars that allow the passage of the filling through its interior.

Figure 2E represents a vertical section view of the type E wall. Figure 3E represents a horizontal section view of the wall type E.

Figure 4E represents a typical module in different stages of folding.

35 **Figure 1F** is an elevation view of the type F wall, showing the application of the present invention to a prefabricated wall (or panel), foldable, stackable, modular, prefabricated and refillable on site; made typically but not only of plastic or a metallic structure, with articulated and cross-linked interior elements, unique or continuous, which allow the passage of the filling through its interior, and with lateral paraments that form a structural assembly.

Figure 2F represents a vertical section view of the type F wall, and its details. Figure 3F represents a horizontal section view of the type F wall, and its detail. Figure 4F represents a typical module in different stages of folding.

5 NOMENCLATURE OF ELEMENTS OF WALL A

A1.- Foundation.

A2.- Cement plate to distribute loads to the land.

A3.- Structural pillar of impregnated wood, metal, PVC or of different measurements.

10 **A3a.-** Connector on pillar.

A4.- On-foundation of expanded polystyrene, boulders or concrete to prevent capillarity.

A5.- Base plate / Top plate, external to the plane of the pillars.

A5a.- Over sill plate.

A6.- Intermediate transversal, external to the plane of the pillars.

15 **A7.-** Locks.

A7a.- Locks, wire ties.

A8.- Stiffening diagonal.

A9.- Stiffening diagonal of the formwork.

A10.- Passage tube for mooring bolt.

20 **A11.-** Interior filling of wall, composed of mud and straw, expanded polystyrene and / or other components according to the need for insulation.

A12.- Wall covering composed of plaster, cementitious plaster, lime mortar, boarding or plating.

A13.- Final finish of the wall.

AM.- Temporary mold

NOMENCLATURE OF ELEMENTS OF WALL B

B1.- Foundation.

B2.- Cement plate to distribute loads or foundation baseboard.

5 **B3.-** Multiple pillars (double, quadruple, etc.) together or separately, made of wood, metal or petroleum products, arranged on the same transversal axis of the wall.

B3a.- Fixation supplement for fixing diagonals to pillar.

B4.- Expanded polystyrene on-foundation, boulders or concrete to prevent capillarity.

B5.- Base plate / Top plate, external to the plane of the pillars.

10 **B5a.-** Over sill plate.

B6.- Intermediate transversal.

B7.- Locks between floors and transversals, at the same height of the wall.

B7a.- Wire ties.

15 **B8.-** Diagonal stiffeners (or horizontal strips in case of internal diagonal placement in case of separate pillars).

B9.- Mold separating transversal.

B10.- Tube to pass mooring bolt or mold fixing.

B11.- Interior wall filling according to need.

20 **B12.-** Interior or exterior cladding made of cementitious plaster or plaster, lime-crushed, board, plaque.

B13.- Final finishing of wall, paint, paper, etc.

BM.- Temporary mold.

NOMENCLATURE OF ELEMENTS OF WALL C

C1.- Plank or foundation.

5 **C3.-** Structural pillar of impregnated wood, metal, PVC or of other measurements, according to specific calculation.

C4.- On-foundation of expanded polystyrene or other insulating material.

C5.- Sill plate, inferior between pillars and superior on the pillars.

C5a.- Top plate.

C6.- Transversal blocking or middle sill plate, between pillars.

10 **C7.-** Locks and / or ties between sill plates and between transversal blockings, at the same height of the wall.

C7b.- Diagonal or horizontal locks, between reticulated pillars.

C11.- Interior wall filling composed of mud and straw, mud with expanded polystyrene and / or other components according to the need for insulation.

15 **C12.-** Covering made of boards, wooden plates, metal, or any other according to the calculation.

C13.- Final finish of the wall; paint, paper, etc.

C14.- Coating of the base for wet areas of fiber cement or similar water resistant. Optional application in prefabricated wooden walls.

20 **C15.-** Stiffening diagonals to the on-foundation, as an alternative applications to the application of prefabricated walls of wood, PVC or other similar ones.

C16.- Cladding fixing system.

C17.- Polyethylene layer between the structure and exterior cladding to prevent swelling of the wood.

C18.- Piece of union of wall-to-pavement.

C19.- Anchoring system, from wall to pavement.

NOMENCLATURE OF ELEMENTS OF WALL D

D1.- Foundation, plank or concrete foundation.

D3.- Single reticulated or continuous perforated pillar.

D3b.- Reinforcements of the pillar, in case of continuous wall.

5 D4.- Expanded polystyrene on-foundation.

D11.- Interior wall filling composed of mud and straw, mud with expanded polystyrene and / or other components according to the need for insulation.

D12.- Structural sheathing composed of board, wooden plate, metal, or any other material supported by the calculation.

10 D13.- Final finish of wall; paint, paper, etc.

D18.- Reinforcements and / or bends in base and crowning of the wall for anchoring to the pavement or the roof.

D19.- Pavement anchoring system.

15 NOMENCLATURE OF ELEMENTS OF WALL E

E1.- Plank, foundation.

E3.- Single reticulated or continuous perforated pillar.

E3b.- Reinforcement of the pillar in case of continuous wall.

20 E4.- Baseboard of expanded polystyrene, or other material, that provides moisture insulation and ensures good performance in its operation.

E11.- Internal fill of wall of mud-misting composition, mud with expanded polystyrene and / or other components according to the need for insulation.

E12.- Interior or exterior structural coating composed, principally but not only, of metal, plastic, PVC or polycarbonate, which is optionally covered with paneling, wooden board, fiber cement, wood gypsum or metal mesh with expanded polystyrene.

25 E13.- Final finish of wall; paint, paper, etc.

E18.- Reinforcements and / or folds in base and crowning of the wall for anchoring to pavement or roof.

30 E19.- Pavement anchoring system.

E20.- Articulated linking joint between walls.

E21.- Foldable modular block.

E22.- Fixing clip between modules.

NOMENCLATURE OF ELEMENTS OF WALL F

F1.- Plank, foundation.

F3.- Single reticulated or continuous perforated pillar.

5 **F4.-** On-foundation of expanded polystyrene, or other material, that provides water insulation and ensures a good performance in its operation.

F10.- Formwok separators that form, or not, an integral part of the prefabricated part.

F11.- Internal fill of wall composed of mud and straw, mud with expanded polystyrene and / or other components according to the need for insulation.

10 **F12.-** Exterior and / or interior plaster composed of lime plating or other material that provides some impermeability or resistance to rain.

F13.- Final finish of the wall; paint, paper, etc.

F18.- Reinforcements and / or bends at the base of the wall for anchoring to pavement.

F18b.- Reinforcements and / or bends for reception of roof loads in the coronation of the wall.

15 **F19.-** Pavement anchoring system.

F20.- Articulated linking joint between walls.

F21.- Foldable modular block.

F22.- Support clips between modules.

F23.- Vertical and diagonal reinforcements of the folding block.

20 **F24.-** Tensioners for diagonal bracing.

FM.- Temporary mold.

DETAILED DESCRIPTION OF THE INVENTION.

The present invention is referred to as a structural wall and consists of the replacement of the stiffening elements typical of a wall (pillars, diagonals and transversals) that are located, traditionally and according to the state of the art, in the longitudinal axis of the wall, and that prevent the pouring or placement of its filling on site, for reticulated stiffener structural elements that allow the passage of this filling inside the wall to its full length and height, allowing it to be filled on site; and / or by a structure external to the longitudinal axis of the wall that transforms its lining into a stiffening structure with the same objective: to allow the filling or pouring of different types of mixtures inside the wall to obtain qualities of thermal and acoustic insulation, thermal inertia, and resistance to fire. The aforementioned properties can be obtained at a minimum cost through the use of mud with straw; however, the invention enables the use of a multiplicity of fillings such as expanded polystyrene bead concrete, expanded polystyrene bead flooring, volcanic ash, sand, concrete mixes, sawdust, wood shavings, sands, or any other material available that provides the wall with the required characteristics.

The present invention has a unique inventive unit but is applicable to an indeterminate number of walls and variety of materials. Six cases will be detailed, which are:

The wall alternative A, represented by figures 1A, 2A and 3A, showing the application of the present invention to a wall of individual pillars, located on the axis of the wall.

The alternative of wall B, represented by figures 1B, 2B and 3B, showing the application of the present invention to a commonly thicker wall, constructed by more than one pillar on the same transversal axis (double, triple, etc), cross-linked or arranged so as to allow the free passage of the filling into the wall.

The wall alternative C, represented by figures 1C, 2C and 3C, showing the application of the present invention to a typical but not exclusively prefabricated wooden wall, with unique or cross-linked pillars; diagonals, transversals and / or reticulated sill plates.

The wall alternative D, represented by figures 1D, 2D, 3D and 4D, showing the application of the present invention to a prefabricated wall (or panel), typical but not only of metal structure, with unique or continuous cross-linked pillars that allow the passage of the filling through its interior.

The wall alternative E, represented by figures 1E, 2E, 3E and 4E, showing the application of the present invention to a folding prefabricated wall (or panel), typical but not only of metal structure, with unique or continuous cross-linked articulated pillars that allow the passage of the filling through its interior.

The wall alternative F, represented by figures 1F, 2F, 3F, 4F, showing the application of the present

invention to a prefabricated folding, stackable, modular, prefabricated and refillable wall (or panel) on site; typical but not only of plastic, PVC, fiberglass or metallic structure, with articulated and cross-linked interior elements, unique or continuous, which allow the passage of the filling through its interior, and with lateral paraments that form a supporting structure.

5

Alternative wall A: represented by figures 1A, 2A and 3A, showing the application of the present invention to a wall of individual pillars located on the wall axis. It consists of pillars (A3) of impregnated wood, metal, PVC or other material suitable for this use, arranged on the wall axis. The pillars (A3) are based on a foundation or traditional base, (A1) or directly on top of cement plantes (A2) with variable diameter and 10 thickness, which distribute the loads to the bottom of the excavation.

The distance between pillars (A3) is determined by the needs of architecture and structural calculation. Horizontally, at the base of the wall and between the pillars (A3), it has a lightweight on-foundation consisting of a block of expanded polystyrene, polyurethane or similar (A4), which aims to isolate the 15 wall from the land, preventing moisture from rising, and also fulfilling the function of thermally insulating the construction, thus avoiding the thermal bridge. The measures of this block of expanded polystyrene (A4) are given by the width of the wall that will be built, and its height by the climatic characteristics of the area in which the wall will be built.

20 Nailed, horizontally and externally to the pillars (A3) at their top, bottom and possibly in their middle part with respect to their height and on both sides of the wall, are the sill plates (A5) and transversal blockings (A6). Diagonally to the pillars (A3), sill plates (A5) and transversal blockings (A6), and on both sides of the wall, stiffening diagonals are installed(A8), which serve to triangulate and stiffen the structure externally to the axis of the pillars (A3). These diagonals (A8) are nailed or installed on both 25 sides of the wall, to supplements (A3b) fix the diagonals to the pillars (A3), of equal measures as the sill plaits (A5) and transversal blockings (A6).

In the interior space given by the structure of pillars, (A3) ransversal blockings (A6), sill plates (A5) and the diagonal stiffeners (A8), whose width will depend on the length of a mold separating element (A9) 30 which will also define the thickness of the coating of the stiffeners (A8), the filling (A11), whose composition is specified according to the insulation needs, is poured on site. This separating mold (A9) is an element sufficiently resistant to compression to resist the tightening of bolts joining both sides of the mold and passing through the interior of the tubes (A10) arranged next to the mold separator (A9). A good choice of separator is a piece of diagonal stiffener (A8). The separator (A9) is nailed or fixed to 35 the pillars (A3), transversal blockings (A6) and sill plates (A5) near the tubes (A10) of equal length, through which the bolts will be bolted to the mold.

For the coating of the wall, a plaster or lime-crushed stucco can be considered (A12), on which the final wall finish is made (A13).

40

The way to build the wall A is as follows:: In the excavations, of depth according to the particular calculation (directly in its bottom, on a cement plate of low thickness to distribute loads (A2), in a support of foundation (A1) or on a small concrete bed), the pillars are installed (A3) and spaced apart according to architecture and structural calculation. It is advisable to first place the end pillars (A3) of the wall so that they can be used to tie up pieces and place and compress, according to this layout, the rest of the pillars. Then, horizontally and externally to the pillars, in their upper part, the top plate (A5) and the middle transversal blockings (A6) are placed; Then, the on-foundation (A4) is placed between pillars (A3), and externally to the pillars (A3) on the level of the on-foundation (A4), the base plates are installed (A5). Between sill plates (A5) and transversal blockings, (A6) the supplements are installed (A3) on to the pillars (A3b) to fix the diagonals, of equal or similar thickness as the transversals (A6) and sill plates (A5). The shaped frame is stiffened by installing, diagonally to the pillars (A3), sill plates (A5) and / or middle transversal blockings (A6), the stiffening diagonals (A8), at a distance between the axis of 0 to 30 centimeters. These diagonals (A8) will cover the overlay laterally (A4) and reach the top or crown of the wall. It is important to place the stiffening diagonals (A8) opposite to both ends of the wall in order to obtain an adequate response to any earthquake, in both directions.

Depending on the specific structural calculation and the height of the wall, it will be necessary to place one or more pairs of transversal blockings (A6) to reduce the separation between the setting of the stiffening diagonals (A8). Mooring (A7b) between diagonals (A8) of both sides of the wall is convenient, when the quality of the attachments of these (A8) to the fixation supplements (A3b) on the pillars (A3) and to the transversal blockings (A6) is not guaranteed, or the structural calculation indicates it. It is also convenient to place a lock (A7) between the transversal blockings (A6) or sill plates (A5) on both sides of the wall, which means that the clips of this lock work against cut and against friction, as the clips of the transversal blockings do (A6) on the pillars (A3), when facing loads that tend to unlock the sill plates (A5) of the pillar (A3). In addition, this lock reduces the setting distance of the sill plates (A5) to the pillars (A3). Once the levels and plumb have been checked, and also the anchors and joints with other walls have been made, the mold is placed, which commonly requires separators (A9) and moorings (A10). The spacers (A9) are elements that are arranged perpendicular to the longitudinal axis of the wall, commonly of the same material and section as the diagonal stiffeners (A8), and are attached to the pillars, (A3) transversal blockings (A6) or sill plates (A5), to define the final width of the coating of the diagonal stiffeners (A8), and consequently also of the filling of the wall (A11). Conveniently, next to these spacers (A9), moored to them (A9), to the pillars (A3), to the transversal blockings (A6), to the sill plates (A5), or to the diagonal stiffeners, (A8) tubes are installed (A10) where the mold retaining element will pass through, on both sides of the wall; an element that is commonly a bolt, but which is often made using braided wire, which is removed after setting the wall filling mixture (A11).

With the mold placed on the wall in a definitive way, the pouring or filling of the mixture (A11) is carried out inside the wall. This filling (A11) is a mixture of mud and straw, with or without additives, such as expanded polystyrene beads, wood shavings, sawdust, volcanic ash or the mixture of materials that

grants the insulation and / or the desired characteristics.

Once the filling mixture (A11) is placed inside the wall, which requires less vibration energy than the concrete —therefore, the push on the mold is smaller —, the rise of water to the upper surface of the 5 wall is produced, by disintegration of the heaviest materials of the mixture. Water that is then dried with sponges or cloths.

Once sufficient time has elapsed for setting and / or drying of the filling (A11), which varies according to wall thickness, humidity, and ambient temperature conditions, and it's certain that the filling does not exert pressure on the mold, it can be removed, and after a couple of days of drying, and with the wall 10 still with moisture, a ground plaster (A12) is applied directly on it, which protects it from moisture and gives it a final finish. The recommended composition of this final plaster, approximately one centimeter thick, is cement, hydraulic lime, and sand in an approximate volume ratio of 1: 1: 6. It's possible to paint this plaster (A12) once it's dry, apply paper, or give any final finish (A13).

15

Alternative wall B: represented by figures 1B, 2B and 3B, which show the application of the present invention to a wall, commonly greater than 30 cm in width, constructed by more than one pillar (double pillars, triples, etc), cross-linked or arranged in such a way as to allow the free passage of the filling into the wall. It is formed by reticulated pillars (B3); of impregnated wood, metal or plastic derivatives. 20 The pillars (B3) are based on a foundation or traditional base support (B1) or directly on a cement plate (B2) that distributes the loads to the bottom of the excavation.

The distance between pillars (B3) is determined by the needs of architecture and structural calculation, and are arranged in the axes of the walls that will form the building.

25

Horizontally, at the base of the wall and between the pillars (B3), it has a traditional on-foundation or bolus overlay, or a lightweight on-foundation (B4) constituted by a block of expanded polystyrene, or other insulating and moisture resistant material, which has the objective of isolating the wall from the land, preventing the humidity from rising and also fulfilling the function of thermally insulating the 30 building, thus avoiding the thermal bridge. The measurements of this on-foundation (B4) are given by the width of the wall to be built and by the climatic characteristics of the area in which the wall will be built.

From the top of the pillars, (B3) at the ends of the wall to the bottom of the neighboring pillars (B3), the 35 diagonal stiffeners (B14) of the pillars are placed on the same axis or plane of the pillars (B3), with its corresponding locks (B7) that contribute to the rigidity of the structural set, leaving enough space for the filling (B11) to enter the wall when it is poured.

Externally to the pillars (B3) and to the diagonals (B14), to the top and on both sides of this, horizonta-

lly and at an approximate distance of between 0 and 30 centimeters from each other, diagonal stiffeners (B8) are installed. These stiffeners (B8), in addition to helping the structuring of the wall, serve to contain the future filling of the wall, once it has set.

5 Instead of placing diagonal stiffeners in the same plumb of the pillars, in case of thin walls, in which the pillars are placed together or at a minimum distance, we proceed in the same way as in the wall A; that is to say, horizontal sill plates (A5) are placed externally to the pillars, above the on-foundation, and top plates are placed at the top of the wall, in addition to a pair of transversal blockings (A6) at half the height of the wall; also, supplement to fix the diagonals to the pillar (B3b) are placed on the

10 pillars on the same section as sill plates (A5) and transversal blockings (A6), in order to nail the diagonal stiffeners (B8) to the pillars. In the same way, it is necessary to place locks between sill plates and between transversal blockings of both sides of the wall, which helps, in an important way, to avoid the separation of the locks of both sides of the wall, against seismic solicitations.

15 The filling, whose composition is specified according to insulation needs, is poured into the interior space given by the structure of the pillars (B3), the stiffening diagonals (B14) and the transversal blockings (B8), whose width will depend on the length of a mold separating element (B9) and will also define the thickness of the coating of the stiffeners. This mold separator (B9) is an element sufficiently resistant to compression to withstand the tightening of bolts joining both sides of the mold and passing

20 through the interior of tubes (B10) arranged next to the separator. A good choice for a separator (B9) is a piece stiffener (B8). The separator is nailed or fixed to the pillars (B3), sill plates (B6) or transversal blockings (B5), near the tubes (B10) of equal length, through which the bolts that will tie the mold will pass through.

25 The separator (B9) is nailed or fixed to the pillars (B3), diagonals (B14) and stiffeners (B8) near the tubes (B10) of equal length, through which the bolts that will strengthen the mold pass through, but these are not part of the wall.

30 For wall cladding, a ground stucco or a lime grinded stucco may be considered (B12), on which the final finish of the wall (B13) is made.

The way to build the wall B is as follows: In the excavations, of depth according to the particular calculation, the pillars (B3) are installed directly on its bottom, on a cement plate (B2) or on a foundation support (B1) together, separated or reticulated, distanced according to the architectural and structural calculation. It is advisable to place the pillars (B3) at the ends of the wall first, so that they can be used to tie up walls and place the rest of the pillars (B3) according to this layout. Then, from the top of the end pillars of the wall to the bottom of the neighboring pillars, the diagonals (B14) of the wall are placed on the same axis or plane of the pillars (B3), leaving enough space for the filling to penetrate between them (B14) (B11) and into the wall, when it is poured. Once all the pillars (B3) are placed, levels are removed and the top plates (B5) are placed; Then, horizontally, between pillars (B3), the on-

foundation (B4) is constituted by a block of expanded polystyrene, with measurements determined by the insulation needs and climatic conditions. This expanded polystyrene (B4) overlay can be replaced by rocks, boulders or concrete or other insulating and moisture resistant material. The formed frame is stiffened and installed horizontally and externally to the pillars (B3), and diagonals (B14), the stiffeners 5 (B8) are installed diagonally at a distance, between axis, of 0 to 30 centimeters. These diagonals will cover the entire wall , including the on-foundation (B4). It is also possible, as in the case of wall A, to place sill plates (B5), transversal blockings (B6) and diagonal stiffeners, thus replacing the internal 10 diagonals (B14), so that the only difference with that wall would be that the pillars (B3) in this B wall would be paired or reticulated and the thickness would be greater; this solution presents better resistance to the transverse thrust of the inner filling (B11) in a fresh state on the subsequent mold, since 15 the distance between the stiffeners (5) is notoriously lower.

Mooring (B7) between stiffeners (B8) of both sides of the wall is convenient, when the quality of the 20 fixing of these (B8) to the pillars (B3) and to the transversal blockings (B6) is not guaranteed or the structural calculation indicate it. Once the levels and plumbs have been checked and also the anchors 25 and joints with other walls have been made, the mold is placed, which commonly requires separators (B9) and ties (B10). The separators (B9) are elements that are arranged perpendicular to the longitudinal axis of the wall and are commonly of the same material and section as the stiffeners (B8) and are fixed to the pillars (B3) and / or diagonals (B14) to define the final width of the coating of the stiffeners (B8) and consequently also of the filling (B11) of the wall. Next to these spacers (B9), tied to them (B9) and / or to the pillars (B3), to the diagonals (B14) or to the stiffeners (B8), tubes are placed, (B10) 30 through which the fastening element will pass through to tie the mold between both sides of the wall; an element that is commonly a bolt, but is often made with braided wire, which is removed after the filling mixture (B11) sets completely.

With the mold placed on the wall in a definitive way, the pouring or filling of the mixture (B11) is carried 35 out inside the wall. This filling (B11) is a mixture of straw and mud, with or without additives, such as: expanded polystyrene beads, wood shavings, sawdust, volcanic ash or a mixture of materials that grants the insulation and / or the desired characteristics.

Once the filling mixture (B11) is placed inside the wall, which requires less vibration energy than the concrete —therefore, the push on the mold is smaller —, the rise of water to the upper surface of the wall is produced, by disintegration of the heaviest materials of the mixture. Water that is then dried 40 with sponges or cloths.

Once enough time has elapsed for the setting or the drying of the filling (B11), which varies according 45 to wall thickness, humidity and room temperature conditions, and it can be guaranteed that the filling no longer exerts pressure on the mold, it can be removed. After a couple of days of drying, and with the wall still with moisture, a thin ground cake (B1) that protects it from moisture and gives it a final

finish is applied directly on it.

The recommended composition of this final plaster (B12), approximately one centimeter thick, is cement, hydraulic lime and sand, in an approximate ratio of 1: 1: 6 in volume. This plaster, once dry, can be painted, papered or given any final finish (B13).

In the described case of the walls A and B, or others with the application of the present invention, it is possible to adequately reinforce the mold, to have the filling of the suitable shape and composition, known in the industry as rammed earth, in compacted form and by layers, which allows in some places of little rain, to save the final coating (A12 and B12).

Alternative wall C: Represented by figures 1C, 2C and 3C, shows the application of the present invention to a typical but not exclusively prefabricated wooden wall, with unique or cross-linked pillars, transversal blocking and sill plates. It consists of: pillars (C3) of impregnated wood, metal, PVC, polycarbonates and / or other derivatives that can be in one piece or crosslinked by diagonals (C7b) to allow the passage of the filling (C11) into the wall and also the placement of pipes and ducts by it, without the need for special perforations and generating material savings. It also has reticulated transversal blockings (C6) between pillars (C3) at the base and crown of the wall, and, possibly, another one (according to specifications of the project) at half the height of the same, always allowing the free passage of the filling material into the wall.

The top plates (C5), in the case of prefabrication of this wall, constitute the main element of union of the sections or segments of this wall.

The distance between pillars (C3) of a single piece, or reticulated with diagonal locks (C7b), is determined by the structural calculation. Horizontally, at the base of the wall, under the reticulated lower plate (C5) between the pillars (C3) and contained by a pair of stiffeners (C15), at the base of the wall, it has a lightweight on-foundation (C4), constituted by a block of expanded polystyrene, polystyrene foam or similar, whose objective is to isolate the wall from the land, preventing humidity from rising and also fulfilling the function of thermally insulating the building, also avoiding thermal bridges. The width measure of this expanded polystyrene block (C4) is given by the thickness of the wall filling (C11) to be built, and its height by the climatic characteristics of the area in which the wall will be built.

A polyethylene film or other impermeable material (C17) is fixed on the structure, by means of brackets or glue as a moisture barrier, which will prevent staining of the coating; fixed by means of nails, screws or another type of appropriate fixation (C16), the coatings (C12) are arranged on the outside and inside the wall; these can be plates (that grant a great rigidity to the wall) or wooden boards that are placed diagonally to the pillars (C3) generating, in this way, an excellent triangulation that lends great rigidity. Both coatings rigidify the wall exogenously to the plane of the pillars (C3) avoiding the

placement of internal diagonals in order to allow the pouring of the filling (C11) on site; In addition, these coatings (C12) serve as a mold to contain the filling (C11) emptied on site.

As an external protection measure, a fiber cement or other water resistant material cladding (C14) is attached to the base plate (C5) and to a diagonal stiffener (C15), elements that enclose and contain the on-foundation and the pillars, (C3) to ensure adequate support.

On the inside of the wall, as a protection measure of its on-foundation and base, the installation of a dust cover (C18b) is considered, on the element that joins the wall to the pavement (C19).

10 The way to build the wall C is as follows: It is designed, preferably but not only, to have wood paneling or plaques. On a pavement, appropriate work bench in factory or field, the pillars are installed (C3), of a single piece or prefabricated latticework, with their respective latches (C7b) diagonal or horizontal, spaced apart and of dimensions according to architectural and structural calculation, to the sill plates (C5), transversal blockings (C6), to which the siding will be fixed, inside and externally (C12). These sill plates (C5) and reticulated blockings (C6) are located horizontally on the level of the on-foundation (C4) and in the middle and upper part of the wall and between pillars (C3); In the upper part of the wall this transversal blocking is transformed into a sill plate (C5), since it is not placed between pillars (C3) but on them, and is used to join sections or segments of the wall. Then, between the pillars (C3) and under the bottom reticulated plate (C5), the expanded polystyrene on-foundation (C4) is placed, and then a polyethylene film (C17) is placed on both sides of the structure, before the placement of the board or plate (C12) to prevent swelling and staining of the coating. Then, by using the chosen clamping element (C16), the outer cladding and the inner cladding (C12) are fixed to the sill plates (C5), transversal blockings (C6), pillars (C3), and on-foundation diagonal stiffeners (C15). Both structural walls serve as mold to contain the pouring of the wall filling (C11), of materiality or composition according to specific needs. This pouring of the filling (C11) is done on the upper part of the structure, at half height of the wall, which reduce the initial pressure on the walls, as long as the filling doesn't "set", (C11) granting greater cohesion to the mixture, avoiding the unclamping and deformation of the coating. It is convenient to prop up or reinforce the wall covering as long as the filling material does not dry (C11) to avoid its deformation due to the pressure exerted in the fresh state, by means of procedures already known in the industry.

Once the filling (C11) has been poured into the wall, it is convenient, when composed of mud and straw to eliminate excess water that is deposited or "rises" due to segregation, to the top of the wall, with a sponge or cloth.

35 In the lower part of the wall, similarly to the other alternatives of application of the present invention, elements that protect the base thereof are placed. On the outside, a fiber cement cladding baseboard or other water resistant material is placed (C14), and an element that joins the pavement (C19) is placed on the inside of the wall.

Wall alternative D: represented by figures 1D, 2D, 3D and 4D, showing the application of the present invention to a prefabricated wall (or panel), typical but not only of metal structure. It has a unique or continuous V-shaped pillars (D3) with perforations that allow the passage of the filling (D11) through its interior and has reinforcements (D3b) to the entire height of the wall at its junction with the inner and outer lining (D12i) (D12e), which are the same material of the pillars and have thicknesses and resistance according to specific and particular calculation, with fine strainer-type perforations at the top and bottom of the wall to facilitate the exit and / or evaporation of excess water. These elements, together make up a rigid, supportive and prefabricated structure. The reticulated pillar, single or continuous (D3), has perforations that make it cheaper and lower its weight and allow the free passage of the filling (D11) into the wall. The quantity and size of the perforations of this element are determined by the specific structural calculation for its thickness and higher loads. In addition to the described components, horizontally, at the base of the wall and between the triangular spaces defined by the element (D3), a lightweight on-foundation (D4) is constituted by blocks of expanded polystyrene, polyurethane or similar, which is intended to isolate the wall from land, preventing moisture from rising through the filling (D11) and also fulfilling the function of thermally insulating the construction and avoiding thermal bridges. The measurements of this block (D4) are given by the width of the wall to be built and its height by the climatic characteristics of the area in which the wall will be built. The interior and exterior cladding (D12) at the base of the wall and at its crown, have a reinforcement (D18) to withstand the stresses produced by the load of the beams on the wall and the place where the wall is fixed to the pavement or base. This wall has a final finish (13) that is applied to the interior panel and the exterior panel (D12) once the wall filling has been set (D11).

The way to build the wall D is as follows: it is designed as prefabricated, and it typically has a metallic structure and cladding, but not exclusively, and its shape and / or prefabrication methods can differ greatly, however its installation in the field is simple: on a pavement (D1), on-foundation or plank, this wall, partition or panel (depending on its measurements and strength), is installed by an anchor (D19) determined by calculation. This fixation is made in a reinforced bending (D18) that has the wall at its base, specially designed to withstand the efforts indicated by the structural calculation at each opportunity, for each thickness, height of wall and loads to which it is exposed.

The pouring of the filling (D11) into the wall is done manually, mechanically, or by means of mixer trucks: It is important to consider that while the filling mixture (D11) is fresh, the pressure on the wall can deform it, so it is advisable to do this work in two or more stages, depending on the height and type of filling (D11). Eventually, it is recommended to execute the placement of temporary "shoring" and / or shuttering, which is carried out in a very simple way by means of known solutions within the industry.

The final wall finish (D13), for the case of the described alternative, consists of a layer of paint over filling, wall paper, or another, since it does not necessarily require a cementitious stucco.

Alternative of prefabricated wall E: represented by Figures 1E, 2E, 3E and 4E, shows the application of the present invention to a folding wall. It is formed by modules of parallel structural walls (E3) of natural or synthetic material suitable for this use, joined together by articulated cross-linked elements (E22); It has stiffening reinforcements. When deploying these walls, they are separated to the final width of the structure. These articulated cross-linked elements, in addition to joining and separating both structural faces, collaborate with the structuring of the wall.

As this wall is of meccano type, foldable, modular and stackable, it saves space, facilitates storage and saves transportation. It is also refillable on site.

These modules have different vertical fixing systems between contiguous sections, known within the industry. As an on-foundation, it has a block of expanded polystyrene, polyurethane or similar (E4) which aims to isolate the wall of the land, preventing moisture from rising and also fulfilling the function of thermally insulating the building, thus avoiding the thermal bridge. The measurements of this on-foundation (E4) are given by the width of the wall to be built, and its height by the climatic characteristics of the area where the wall will be built. It also has reinforcements in its lower part (E18) and upper part (E18b) to anchor to the pavement prior to the filling (E11) of the inside of the wall.

20 The way to build the wall E, is as follows: On the base or foundation (E1) the prefabricated module (E21) is deployed, installing it on its definitive position with articulated locks (E20) between the parallel structural faces of the wall. It is then placed at the base of the wall, which will have the necessary reinforcement (E18) and will have incorporated the pavement joining elements (E19) and the insulation on-foundation (E4). Then, the wall is placed in its final position according to the previous layout and its base is fixed to the pavement (E1) by means of anchor bolts, dowels or the system (E19) that is adopted at each opportunity. Once a section of wall is installed, it continues to be joined vertically with the next one by means of clips or another element (E22) which takes the structural vertical walls (E21).

30 Once the walls to be filled on site are erected, as in the case of the A-type wall, a temporary sliding formwork is installed, which has the function of preventing the deformation of the walls or vertical faces during the emptying of the filling (E11) inside the wall, and will not be removed until this wall filling (E11) sets and acquires a resistance and cohesion that ensures that it will not deform or affect the verticality and straightness of the vertical structural walls (E12). Once the certainty of the cohesion of the wall filling (E11) is total, the temporary mold is removed and the wall is able to receive its final surface finish (E13). The filling (E11) to be used and to be emptied into the wall, in manual or mechanized form, will be a mixture of soil with the additive and / or aggregates that are stipulated, and that will typically be mud and straw, or that which is required according to the desired performance.

40 Wall alternative F: represented by Figures 1F, 2F, 3F and 4F, showing the application of the present

invention to a mechano-type wall, foldable stackable, removable and refillable on site. It consists of blocks of lateral structural faces (F21) of natural or synthetic materials that have the conditions of strength and durability sufficient and appropriate for this use. These blocks are formed, in addition to their vertical faces (F21), by articulated elements (F20) that join them. These walls have vertical and / or recessed reinforcements (F23) that allow the subsequent placement of tensioners, which join the top plates (F18a) with the middle sill plates and the base of the floor (F1) and / or bottom sill (F18); It also has an insulating on-foundation (F4) and tubes (F10) that, in addition to defining the final width of the wall, allow the passage of tie bolts for a formwork.

5 10 This wall is of meccano type, folding and modular and stackable, saves space, facilitates storage and saves transportation. It is also refillable on site.

15 **The way to build the wall F, is as follows:** This wall is raised, typically, on a traditional foundation or plank (F1). Once the walls are defined and laid on the foundation, plank or base (F1), a reinforced connector element that serves as a sill plate is fixed to it, using bolts, screws or another fixing element calculated and designed for each model (F19). The mechano-type blocks are opened and / or deployed, fixing the articulated locks (F21) between the parallel paraments of the wall to their definitive position; then the insulation on-foundation (F4) is placed on the base of the wall.

20 25 Once a section of wall is installed, it is continued joining vertically with the next one by means of clips or another vertical element (F22) that takes the adjacent vertical structural walls and, horizontally, at its upper end, by means of a frame that has the elements arranged to tie and join the vertical reinforcements (F24) that fulfill the function of pillars, and the vertical and diagonal structural reinforcements.

30 35 Vertically, this wall is lifted by fitting the prefabricated blocks or joining them by means of clips or other elements, specially designed for that purpose. Its coronation has the elements and anchors arranged to tie or join the vertical reinforcements (F24) that fulfill the function of pillars, and / or vertical and diagonal structural reinforcements.

40 Once the walls to be filled are assembled, a provisional shoring or shuttering is applied, which has the function of preventing the deformation of the vertical structural walls during the pouring of the filling (F11) inside the wall, and they will not be removed until the filling (F11) is completely settled, and acquires a resistance and / or cohesion that ensures that it will not deform or affect the verticality of the vertical structural walls (F12). Once there is certainty of sufficient cohesion of the wall filling (F11), the temporary shoring is removed and the wall is able to receive its final surface finish (F13). The filling (F11) to be used and to be poured into the wall manually or mechanically is commonly, but not exclusively, a mixture of soil with the additive and / or aggregates that are stipulated and that, typically, will be mud or whatever is required according to the desired performance. The indicated filling (F11) is made by layers, to avoid deformations and also, depending on the type of filling to be used, to obtain a good cohesion of the filling mixture by vibration and / or compaction of this filling, through the use of

techniques that are known within the industry.

Once the filling has reached the top of the wall, advancing through the sliding formwork, and after a sufficient period of time has passed to ensure sufficient cohesion of its filling, the sliding formwork is removed and a crowning element is placed which joins together the interior and exterior structural walls (acting as a sill plate or top transversal blocking), making sure that the inner filling of the wall is, fundamentally but not exclusively, the element and material that receives the loads transmitted from the deck or upper floors. For the final finishing of the wall (F13), consider solutions known within the industry.

LIST OF CLAIMS

1. Resistant wall, whose structuring makes possible and solves the problem of pouring of its internal filling right on site, contributing by using cheap materials available anywhere, such as mud and straw, with or without other additives, qualities of great relevance in the housing industry, such as thermal 5 inertia, thermal insulation, acoustic insulation and fire resistance, **CHARACTERISED** by its internal stiffening structural elements (pillars, diagonals, transversal blockings, sill plates), which are cross-linked and / or have an external structuring to its longitudinal axis; on both sides of the wall, on the level of the on-foundation (4) and also close to the end or top of the pillars (3), it has sill plates (5) or pieces arranged horizontally, of a section or measurements according to structural calculation, which 10 are nailed externally to the pillars and, when the height of the wall and the structural calculation indicates it, it takes one or more pairs of transversal blockings (6), distributed conveniently to the top of the wall, to decrease the distance between the installation of the stiffening diagonals (8) that stick to these transversal blockings (6) and sill plates (5); it also has a supplement for fixing diagonals onto the pillars (3a), which is fixed vertically to the pillars (3), of the same measurements as the sill plate, (5) 15 and that replaces and occupies the space that remains between the pillar and the diagonal stiffeners (8); on both sides of the wall and nailed diagonally to the top and bottom sill plates (5), middle transversal blocking (6), and the fixation supplements (3a) on the pillars (3), it has stiffening diagonals (8), rods or reeds that constitute the necessary and sufficient stiffening and triangulation of this wall; the filling (11) of the wall is poured into it manually, mechanically or by mixing trucks.

20 2. Structural wall according to claim 1, **CHARACTERISED** for possessing pillars (3) or single, double or multiple right feet cross-linked on the same transversal axis of the wall; it has multi-element or single cross-linked diagonals (8), separated from each other to allow the distribution of the filling (11) inside the wall; It also has stiffening diagonals (8) that are fixed to sill plates (5), transversal blockings and fixation supplements on pillars, which are arranged and fixed externally and diagonally to the 25 pillars, and constitute the necessary and sufficient stiffening of this wall.

3. Structural wall according to claim number 1, **CHARACTERISED** to be composed of: cross-linked pillars (3), cross-linked sill plates (5), and cross-linked transversal blockings (6), that allow the on-site 30 pouring of the interior wall filling material (11); It has an external stiffening composed of diagonal sheathing (12) or wood or metal plate, an interior filling (11) composed of mud and straw, with or without additives such as expanded polystyrene pearls or other components according to specific need and applied or poured into the ground; an outer base (14) of fiber cement or other moisture resistant material, of a height somewhat higher than the height of the overlay (4).

35 4. Structural wall according to claim number 1, **CHARACTERISED** by having reticulated pillars constituted by unique elements, or grooved or perforated sheets (3), continuous formed by folded plates and with possible reinforcements (18) or individual lattices, which allow the free passage of the filling (11)

inside the wall; because it has a stuffed clay filling without or with additives, depending on the specific needs and that is applied or poured in the field manually, mechanically or with machinery; because its inner and / or outer lining, at its base and at its crowning, has small holes that allow the excess water to escape from the interior filling (11); because at its base and at its upper end it has a reinforcement or bending, (18) (18b) at the anchor point to the pavement and at the support site of the bearer and / or higher loads.

5 **5.** Structural wall according to claims numbers 1, 2, 3 and 4, **CHARACTERISED** by an internal structure which is reticulated and partially external to the longitudinal axis of the wall, allowing the on-site pouring of its interior filling.

10 **6.** Structural wall according to claims 1 and 2, **CHARACTERISED** because by a lower horizontal structuring element –sill plate– (5), which is located externally to the plane of the pillars and above the level of affection of moisture, to prevent its putrefaction.

15 **7.** Structural wall according to claim 1, 2, 3, 4, and 5, **CHARACTERIZED** by the fact that it's prefabricated and its filling poured on site; a condition that is possible thanks to the fact that the structuring is transferred to the outside of the axis or plane of the longitudinal axis of this wall, delegating in its lining (12), a structural function or in its defect, its stiffening lies in a reticulated internal structure of pillars (3), transversal blockings (6) and multi-element stiffening diagonals (8), which allow the free passage of the filling (11) into the wall.

20 **8.** Structural wall according to claims 4, 5 and 7, **CHARACTERISED** by being of the mechano, foldable, modulable and stackable type (21).

25 **9.** Wall according to claim 1 and 8, **CHARACTERISED** in that it is further constituted by folding modules (21), composed of parallel vertical structural walls, joined with articulated rods or diagonal stiffeners (20), that allow folding and unfolding, keeping both planes parallel.

30 **10.** Wall according to claim 1 and 8, **CHARACTERISED** in that it's composed of folded sheet elements (12) which, by themselves, form pillars, diagonals, tensioners and cladding of both vertical structural walls.

35 **11.** Wall according to claim 1 and 8, **CHARACTERISED** to be constituted by folding modules (21) and being composed of stackable, mechano-type, rigid structural sidewalls, joined with articulated rods (20) that allow folding and unfolding and also define the final wall thickness .

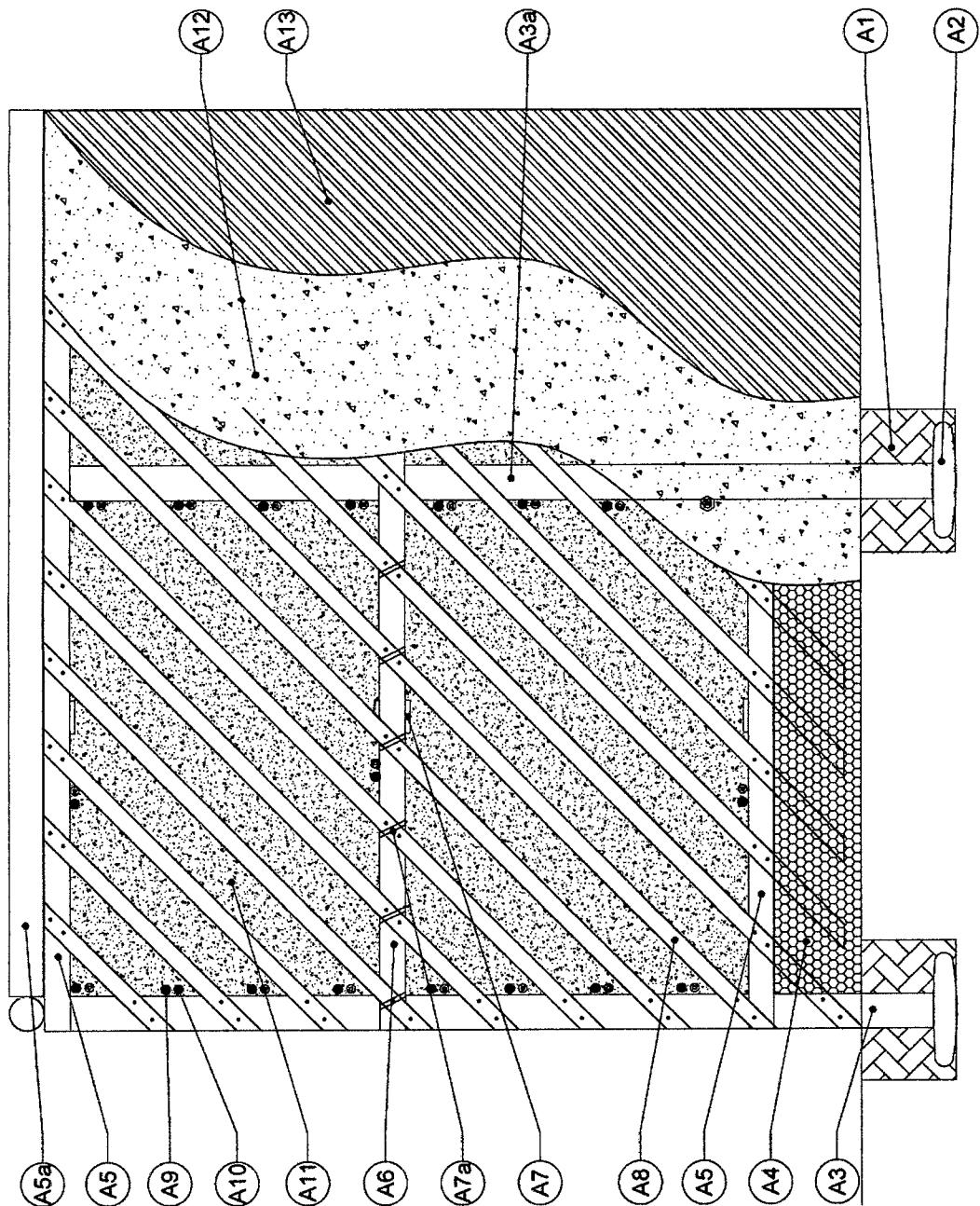
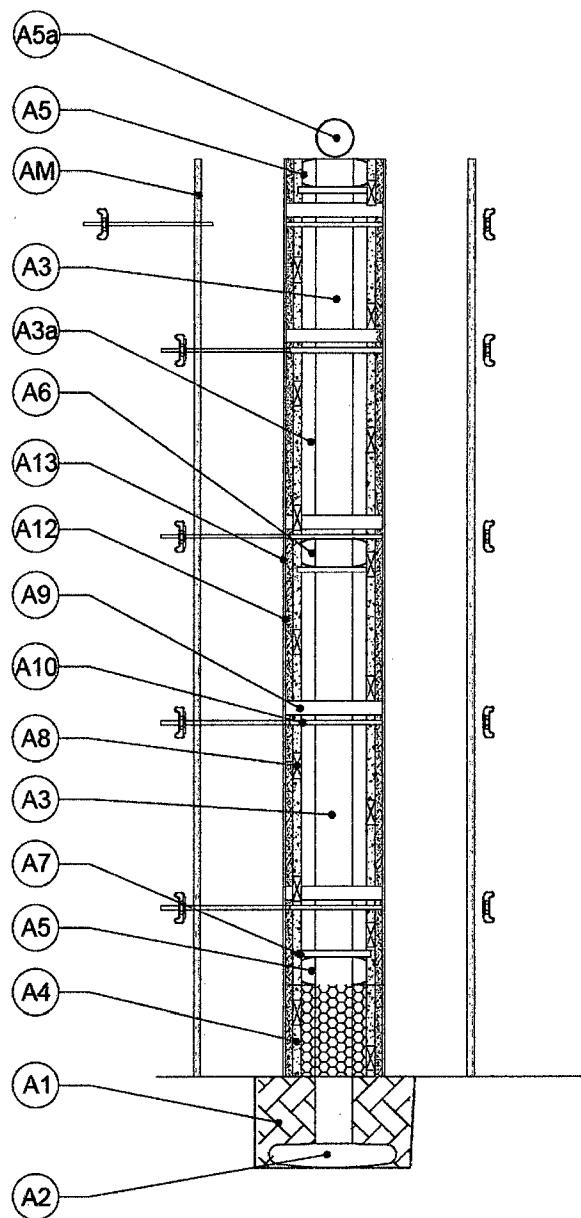
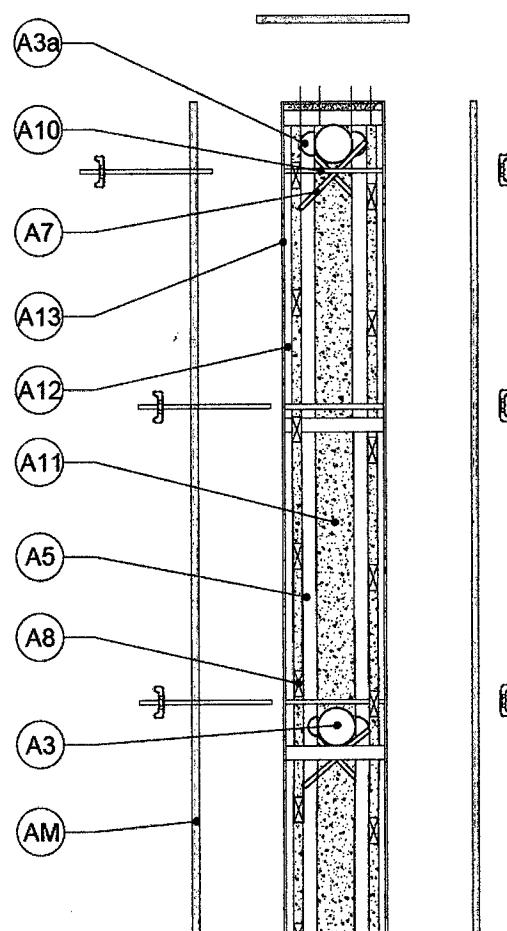
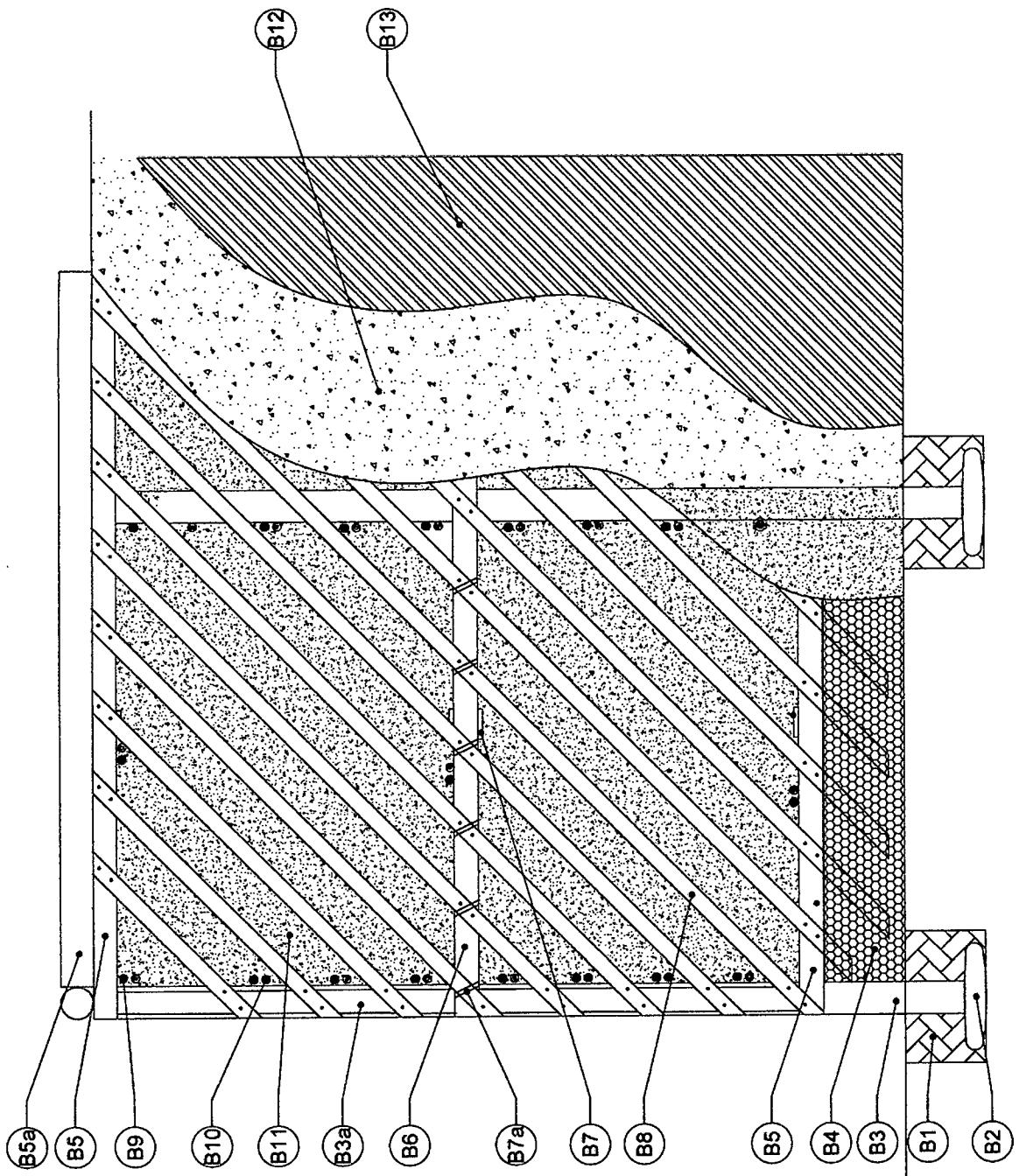
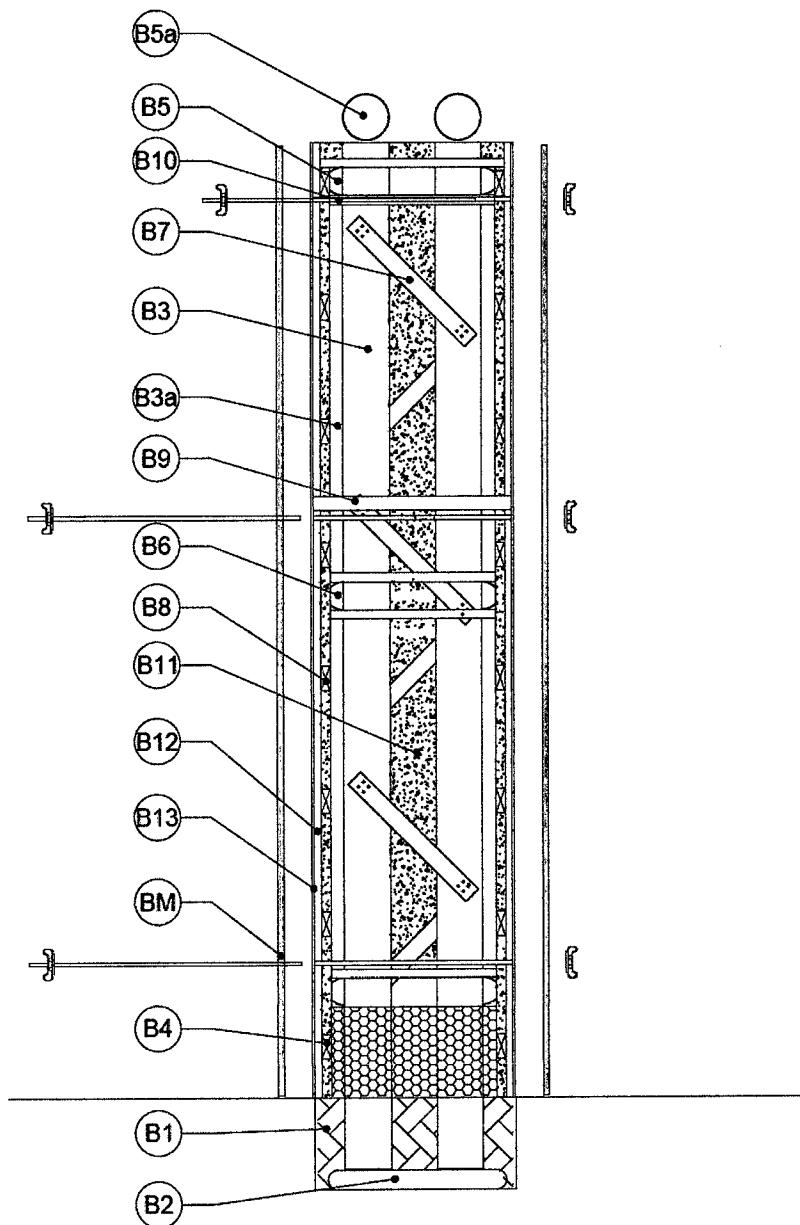


FIGURA N° 1A

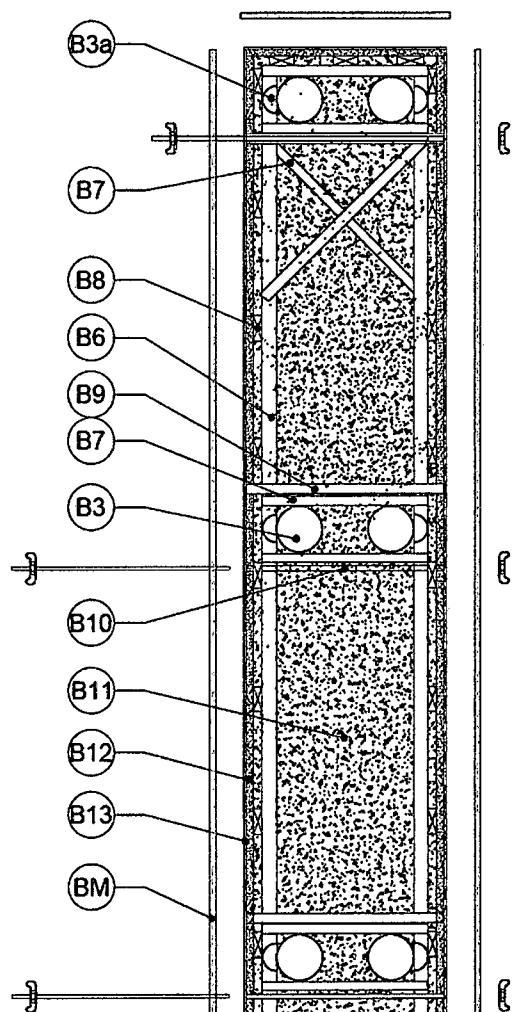

FIGURA N° 2A

FIGURA N° 3A

FIGURA N° 1B

FIGURA N° 3B

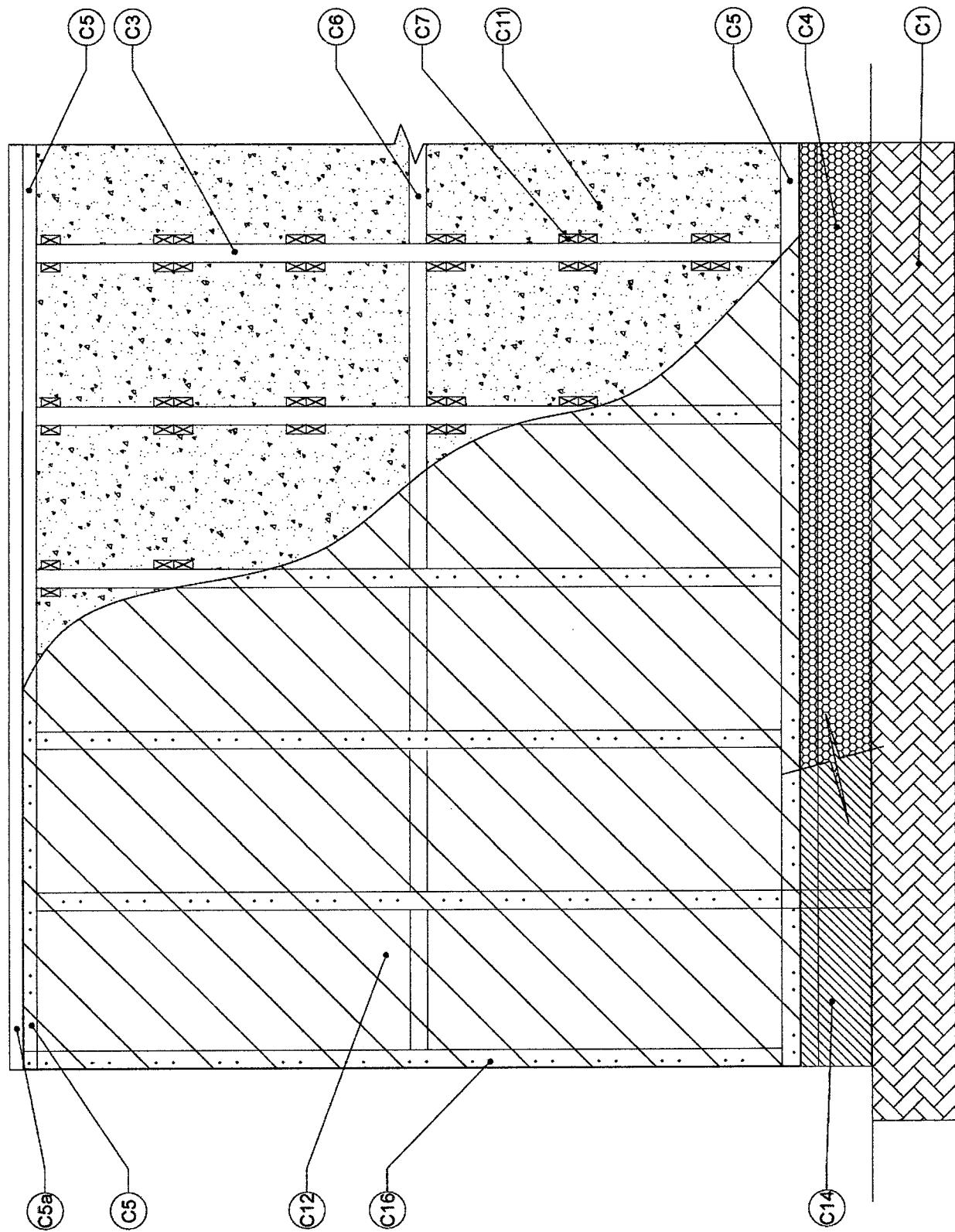
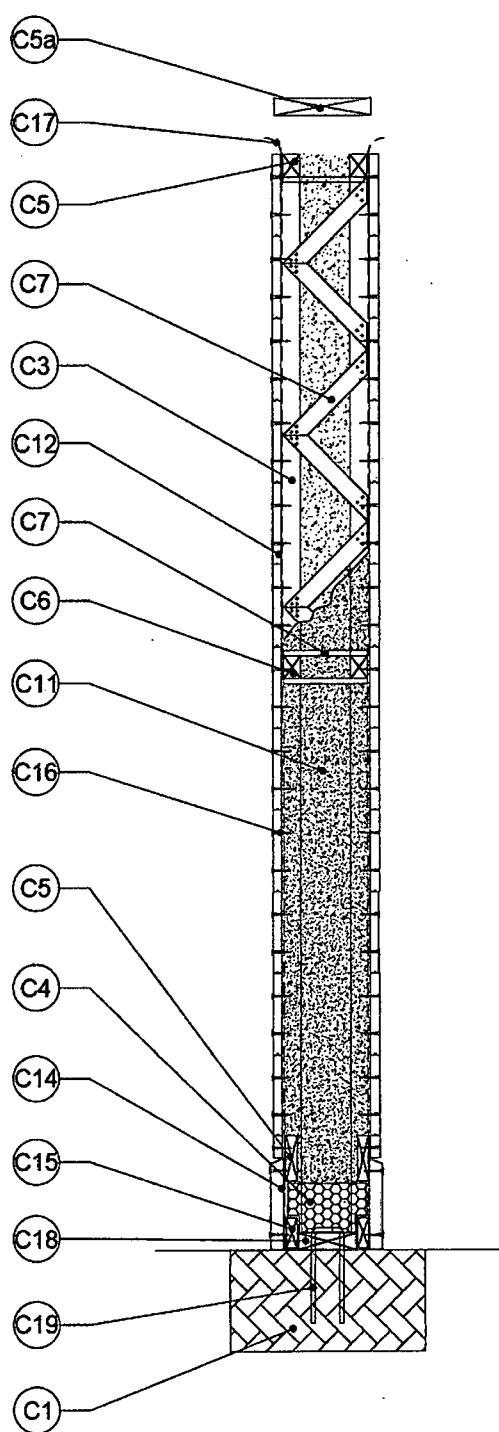



FIGURA N° 1C

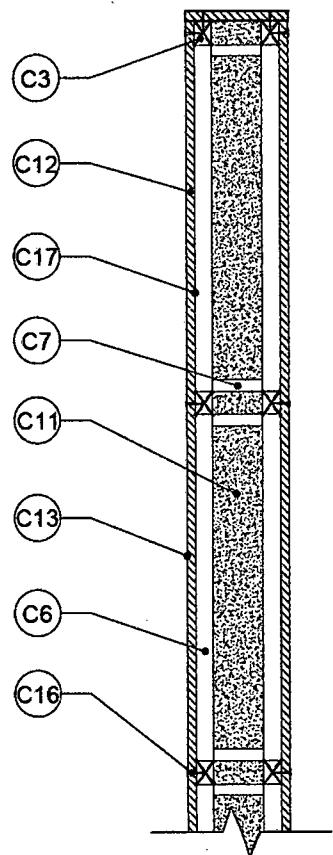


FIGURA N°3C

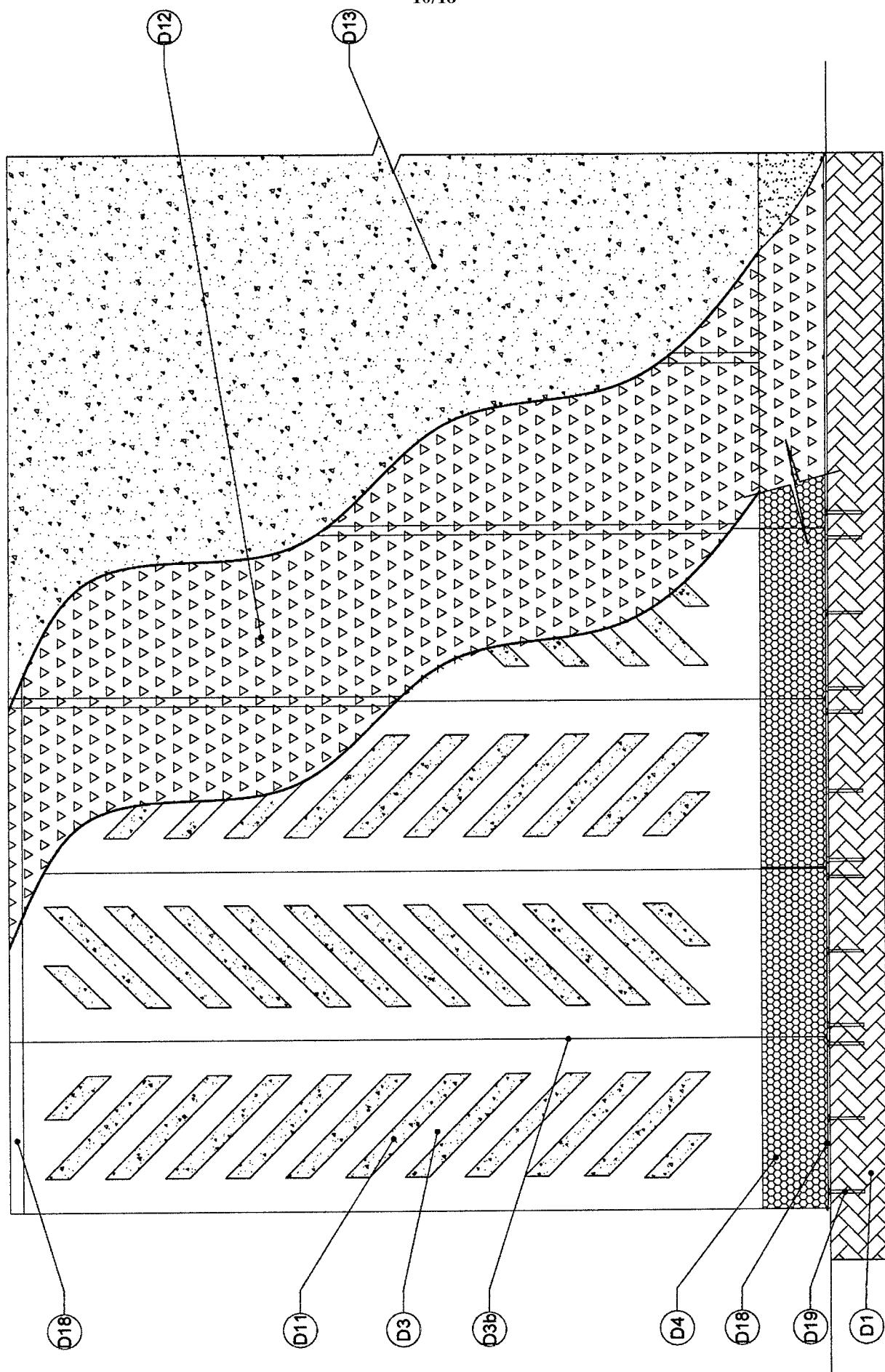
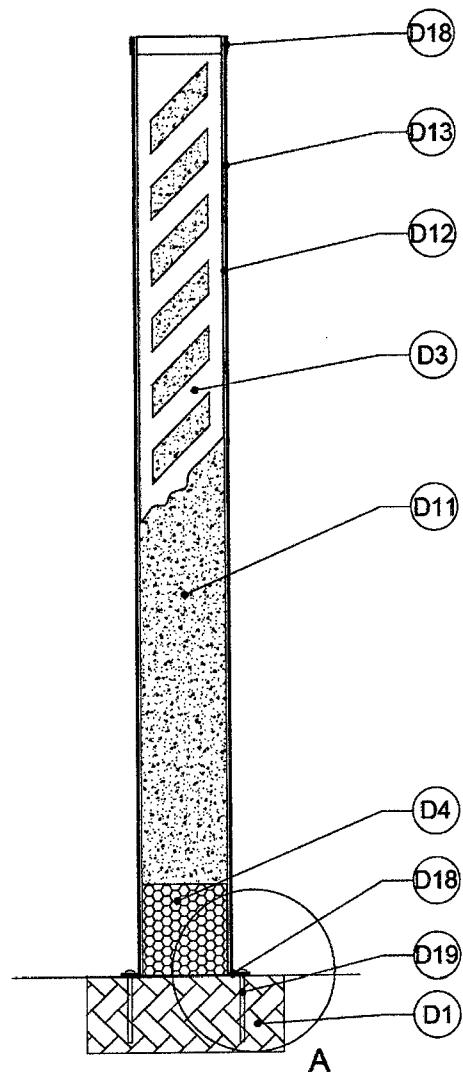
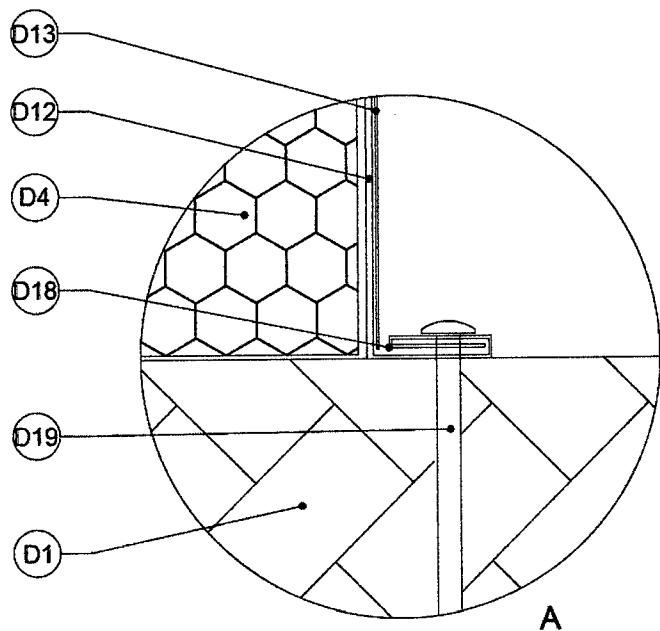
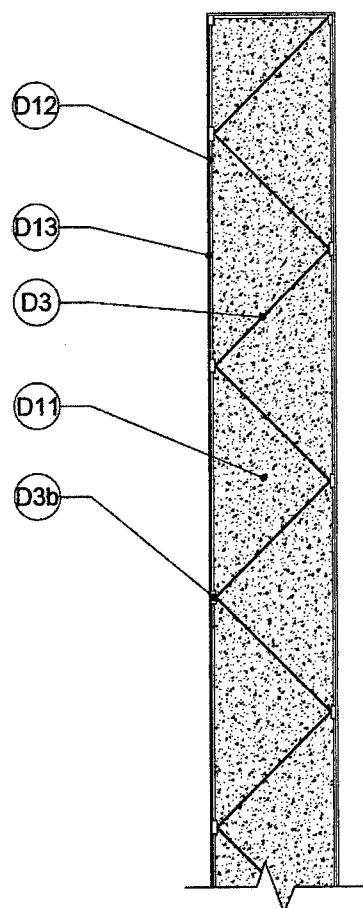





FIGURA N° 1D

FIGURA N° 3D



FIGURA N° 1E

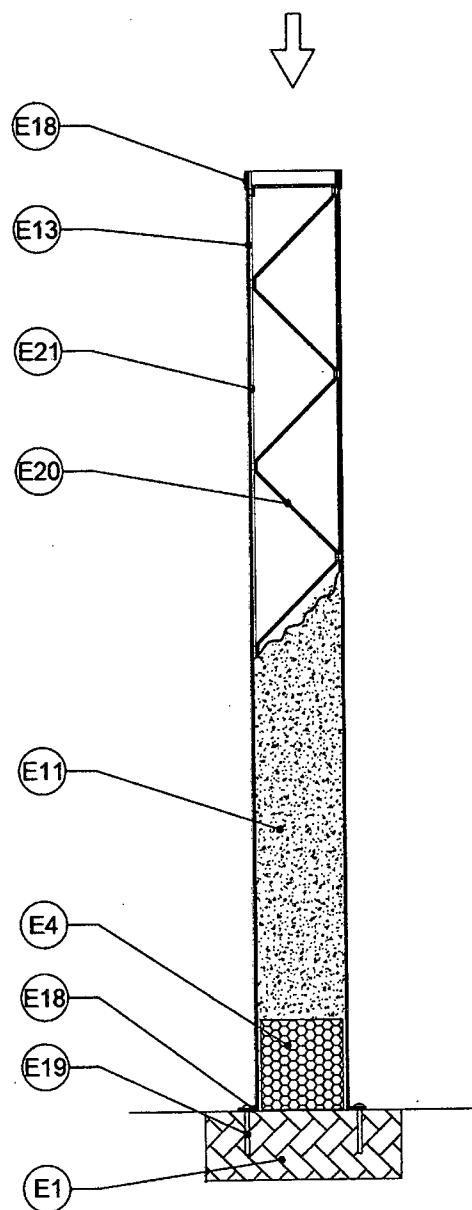
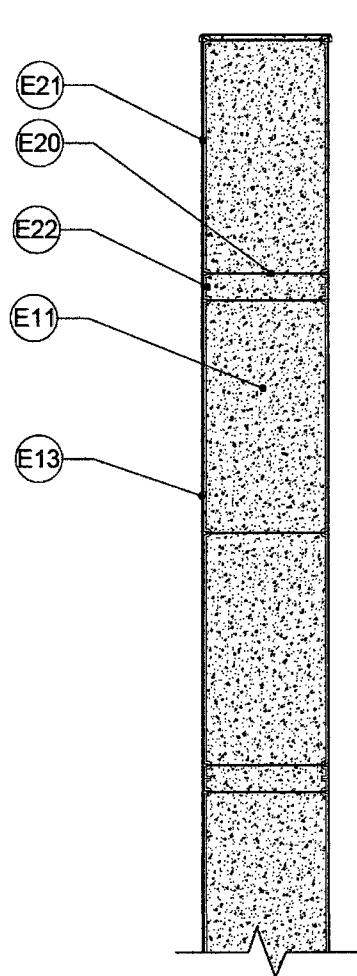
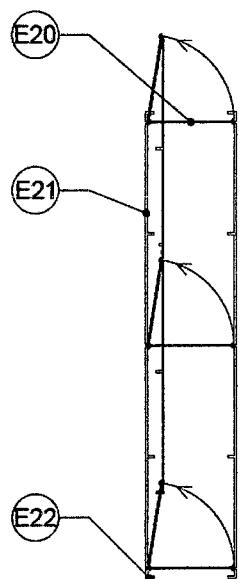
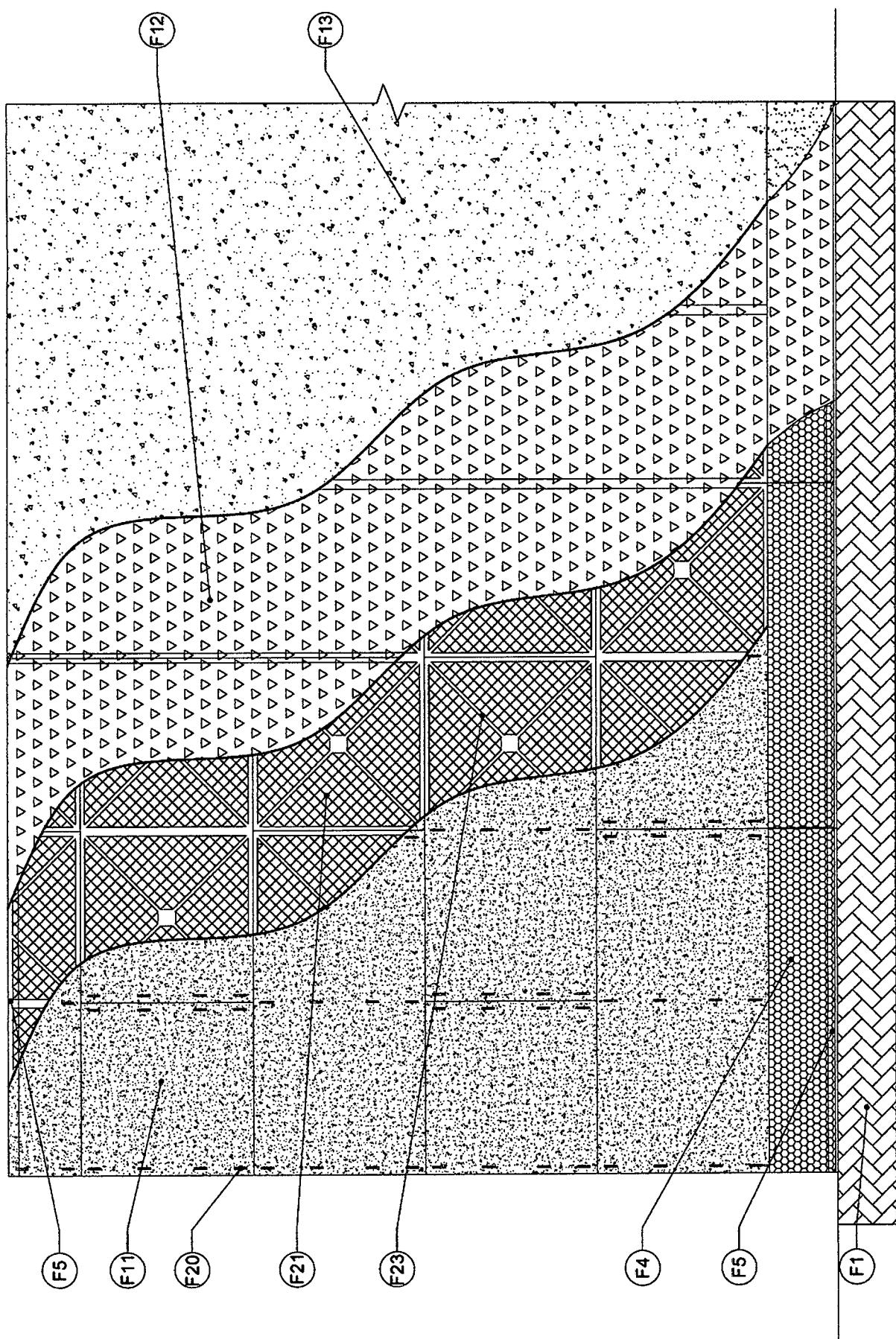
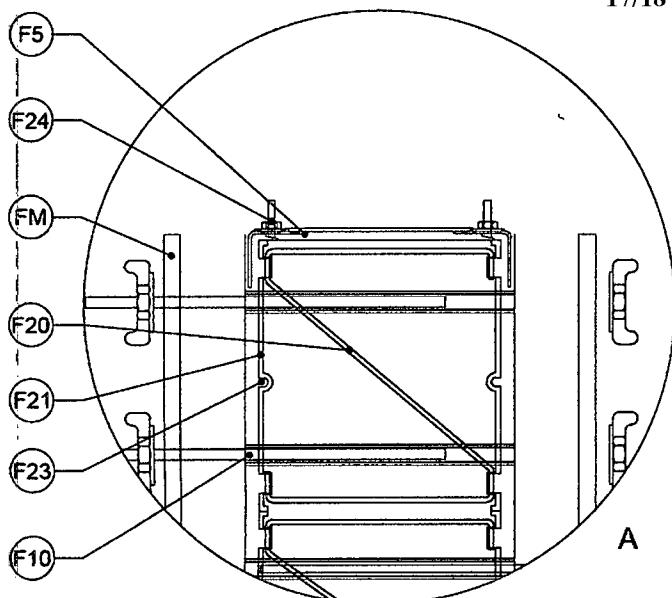
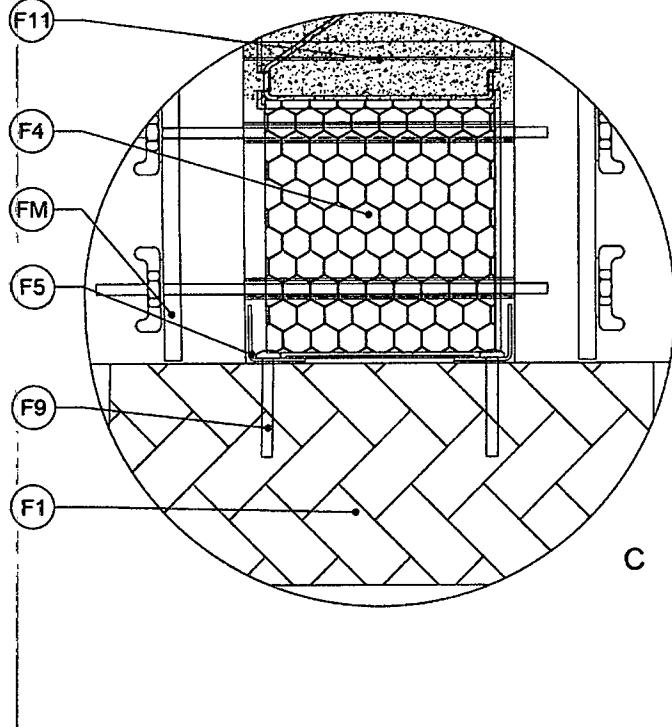




FIGURA N° 2E

FIGURA N° 3E**FIGURA N° 4E**


FIGURA N° 1F

A

B

C

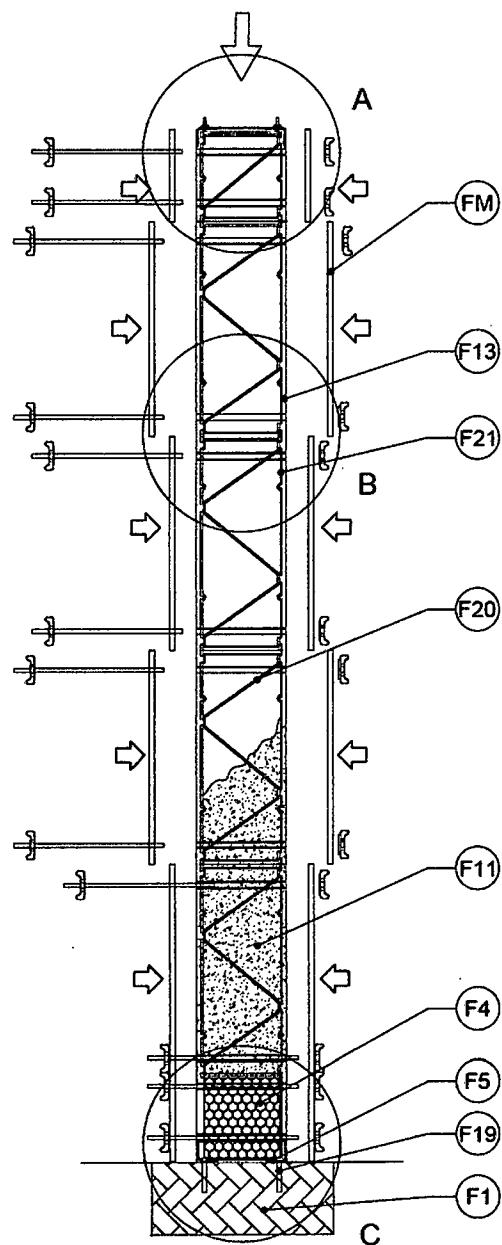


FIGURA N° 2F

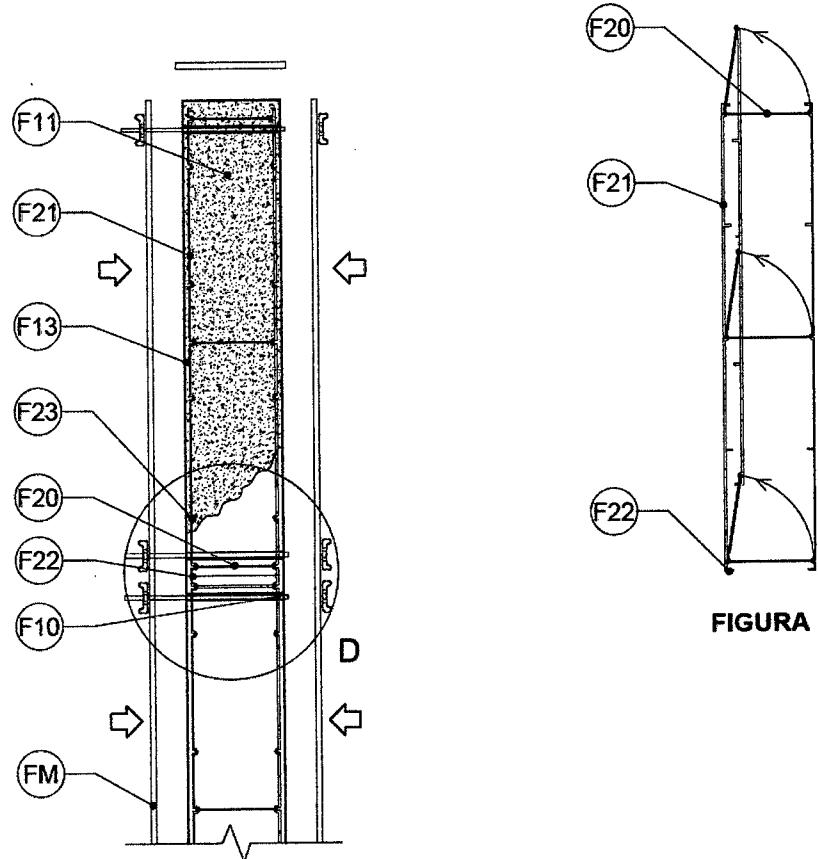
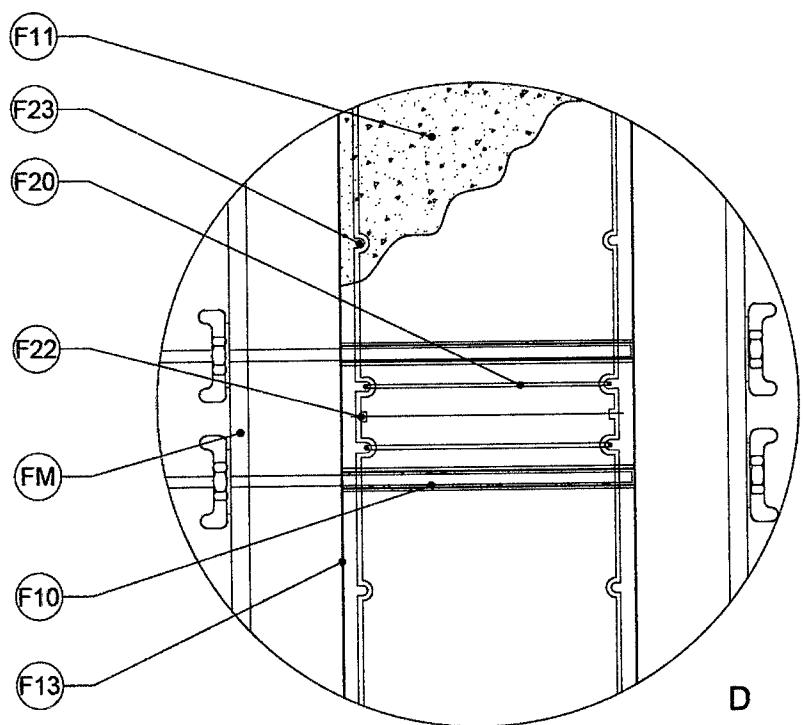



FIGURA N° 4F

FIGURA N° 3F

