(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization
International Bureau
(43) International Publication Date 28 June 2018 (28.06.2018)

(51) International Patent Classification:
C07C 15/08 (2006.01)
C07C 2/66 (2006.01)

(21) International Application Number:
PCT/US2016/060017

(22) International Filing Date:
17 November 2016 (17.11.2016)

(25) Filing Language:
English

(26) Publication Language:
English

(27) Publication Number:
WO 2018/118592 A1

(30) Priority Data:
62/437,002 20 December 2015 (20.12.2015)

(31) Priority Application Number:
US 2015/60017-5017

(32) Priority Application Country:
US

(71) Applicant: UOP LLC [US/US]; 25 East Algonquin Road, P.O. Box 5017, Des Plaines, Illinois 60017-5017 (US).

(84) Designated States (unless otherwise indicated, for every kind of national / regional protection available):

(54) Title: PROCESSES AND APPARATUS FOR TOluene METHYLATION IN AN AROMATICS COMPLEX

(57) Abstract: This present disclosure relates to processes and apparatuses for toluene methylation in an aromatics complex for producing paraxylene. More specifically, the present disclosure relates to processes and apparatuses for toluene methylation with the aromatics complex for producing paraxylene wherein an embodiment uses a riser reactor, another embodiment uses a pre-reactor producing dimethyl ether, and another embodiment uses partial regeneration of the catalyst.
Published:
— with international search report (Art. 21(3))
CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority from Provisional Application No. 62/437,002 filed December 20, 2016, the contents of which cited application are hereby incorporated by reference in its entirety.

FIELD

[0002] This present disclosure relates to processes and apparatuses for toluene methylation in an aromatics complex for producing paraxylene. More specifically, the present disclosure relates to processes and apparatuses for toluene methylation within an aromatics complex for producing paraxylene wherein an embodiment uses a riser reactor, another embodiment uses a pre-reactor producing dimethyl ether, and another embodiment uses partial regeneration of the catalyst.

BACKGROUND

[0003] The xylene isomers are produced in large volumes from petroleum as feedstocks for a variety of important industrial chemicals. The most important of the xylene isomers is para-xylene, the principal feedstock for polyester, which continues to enjoy a high growth rate from large base demand. Ortho-xylene is used to produce phthalic anhydride, which supplies high-volume but relatively mature markets. Meta-xylene is used in lesser but growing volumes for such products as plasticizers, azo dyes and wood preservers.

Ethylbenzene generally is present in xylene mixtures and is occasionally recovered for styrene production, but is usually considered a less-desirable component of C₈ aromatics.

[0004] Among the aromatic hydrocarbons, the overall importance of xylenes rivals that of benzene as a feedstock for industrial chemicals. Xylenes and benzene are produced from petroleum by reforming naphtha but not in sufficient volume to meet demand, thus conversion of oilier hydrocarbons is necessary to increase the yield of xylenes and benzene. Often toluene is de-alkylated to produce benzene or selectively disproportionated or
transalkylated to yield benzene and C* aromatics from which the individual xylene isomers are recovered.

[0006] Traditional aromatics complexes send toluene to a transalkylation zone to generate desirable xylene isomers via transalkylation of the toluene with A 91 components. A 91 components are present in both the reformate bottoms and the transalkylation effluent.

[0007] Paraxylene is most often produced from a feedstock which has a methyl to phenyl ratio of less than 2. As a result, the paraxylene production is limited by the available methyl groups in the feed. In addition, paraxylene production also typically produces benzene as a byproduct. Since paraxylene is more valuable than benzene and the other byproducts produced in an aromatics complex, there is a desire to maximize the paraxylene production from a given amount of feed. There are also cases where a paraxylene producer would prefer to avoid the production of benzene as a byproduct or paraxylene production. However, there are also cases where a paraxylene producer would prefer to limit the production of benzene as a byproduct of paraxylene production by making adjustments.

SUMMARY

[0008] The present subject matter relates to processes and apparatuses for toluene methylation in an aromatics complex for producing paraxylene. More specifically, the present disclosure relates to processes and apparatuses for toluene methylation in an aromatics complex for producing paraxylene. More specifically, the present disclosure relates to processes and apparatuses for toluene methylation within an aromatics complex for producing paraxylene wherein an embodiment uses a riser reactor, another embodiment uses a pre-reactor producing dimethyl ether, and another embodiment uses partial regeneration of the catalyst.

[0009] Additional objects, advantages and novel features of the examples will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following description and the accompanying drawings or may be learned by production or operation of the examples. The objects and advantages of the
concepts may be realized and attained by means of the methodologies, instrumentalities and combinations particularly pointed out in the appended claims.

DEFINITIONS

[0010] As used herein, the term "stream", "feed", "product", "part" or "portion" can include various hydrocarbon molecules, such as straight-chain, branched, or cyclic alkanes, alkenes, alkadienes, and alkynes, and optionally other substances, such as gases, e.g., hydrogen, or impurities, such as heavy metals, and sulfur and nitrogen compounds. Each of the above may also include aromatic and non-aromatic hydrocarbons.

[0011] Hydrocarbon molecules may be abbreviated C₁, C₂, C₃, Cₙ where "n" represents the number of carbon atoms in the one or more hydrocarbon molecules or the abbreviation may be used as an adjective for, e.g., non-aromatics or compounds. Similarly, aromatic compounds may be abbreviated Aₙ, Aᵣ, A₉, An where "n" represents the number of carbon atoms in the one or more aromatic molecules. Furthermore, a superscript "+" or "-" may be used with an abbreviated one or more hydrocarbons notation, e.g., C₃₊ or C₃₋, which is inclusive of the abbreviated one or more hydrocarbons. As an example, the abbreviation "C₃₊" means one or more hydrocarbon molecules of three or more carbon atoms.

[0012] As used herein, the term "zone" can refer to an area including one or more equipment items and/or one or more sub-zones. Equipment items can include, but are not limited to, one or more reactors or reactor vessels, separation vessels, distillation towers, heaters, exchangers, pipes, pumps, compressors, and controllers. Additionally, an equipment item, such as a reactor, dryer, or vessel, can further include one or more zones or sub-zones.

[0013] As used herein, the term "rich" can mean an amount of at least generally 50%, and preferably 70%, by mole, of a compound or class of compounds in a stream.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 illustrates a toluene methylation riser reactor having a mixing chamber.

[0015] FIG. 2 illustrates a toluene methylation dimethyl ether pre-reactor having staged injection.

[0016] FIG. 3 illustrates a toluene methylation partial regeneration scheme.
[0017] FIG. 4 illustrates partial regeneration of a spent catalyst to retain up to 2 wt% coke on catalyst back to the riser.

[0018] FIG. 5 illustrates partial regeneration of a spent catalyst to retain up to 6 wt% coke on catalyst back to the riser.

[0019] Corresponding reference characters indicate corresponding components throughout the several views of the drawings. Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present disclosure. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present disclosure.

DETAILED DESCRIPTION

[0020] The following description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of exemplary aspects. The scope of the present disclosure should be determined with reference to the claims.

[0021] FIG. 1 illustrates a toluene methylation system 10 having a riser reactor 20 and a mixing chamber 30. FIG. 1 illustrates a process for alkylating an aromatic hydrocarbon reactant with an alkylating reagent comprising methanol to produce an alkylated aromatic product, comprising introducing the aromatic hydrocarbon feed 40 above the mixing chamber 30 comprising water 50. The aromatic hydrocarbon may also be injected directly into the riser 20. Additional streams are introduced into the riser reactor 20 which include methanol, toluene, and water. In the example illustrated in FIG. 1, there are a plurality of injection points 70 into the riser portion 60 of the riser reactor 20. In one embodiment there may be three injection points. The first injection point 80 may comprise a mixture of toluene, methanol, and water. The second injection point 90 and the third injection point 100 may comprise only methanol and water. The aromatic hydrocarbon may include a residence time of 0.5 seconds to 6 seconds, for producing the alkylated aromatic product. The product stream 110 may include an alkylated aromatic product includes xylene. Some of the coked catalyst from the reactor 140 may be recirculated to the mixing chamber 30 via line 120.
Alternatively, a fraction of coked catalyst is cooled in a cooler to remove heat of reaction and returned to the mixing chamber via the riser 60. The riser reactor 20 comprises a temperature of 500°C to 700°C. The riser reactor 20 comprises an operating bed density of 0.05 kg/m³ to 0.29 kg/m³. The weight hourly space velocity of the riser reactor 20 is 4 hr⁻¹ to 20 hr⁻¹. The weight hourly space velocity of the riser reactor is 10 hr⁻¹.

[0022] In an embodiment, the system 10 further includes passing the alkylate aromatic product 110 to a light olefins column to produce a light olefins product stream. Then the light olefins product stream may be passed to a toluene column to produce a toluene column product stream comprising paraxylene. In another embodiment the process 10 may include passing the light olefins product stream to a toluene column to produce a toluene column product stream comprising unreached toluene and to recycle unreached toluene to the reactor. The catalyst may include a MFI zeolite with silica-to-alumina ratio higher than 20, preferentially higher than 100, a silica or an alumina binder, or combined aluminosilicate binder; and a clay binder. In one embodiment, phosphorus is added to the catalyst. The MFI zeolite content in the catalyst is in the range of 25 wt% to 65 wt%. The catalyst may be in a powder format with an average particle size of 70 microns to 80 microns.

[0023] FIG. 2 illustrates a process 200 for alkylation an aromatic hydrocarbon reactant with an alkylation reagent comprising methanol to produce an alkylated aromatic product. The process 200 in FIG. 2 includes passing methanol 210 into a pre-reactor 220 to produce dimethyl ether and water 230, passing dimethyl ether and water 230 and toluene 240 to a riser reactor system 250 for producing the alkylated aromatic product 260. The a residence time in the reactor 250 may be 0.5 seconds to 6 seconds. The aromatic hydrocarbon reactant includes toluene, the alkylation reagent includes methanol, and the alkylated aromatic product 260 includes xylene.

[0024] The pre-reactor operates at 400°C to 500°C. The pre-reactor comprises an operating bed density of 0.30 kg/m³ to 0.80 kg/m³. In some embodiments, the residence time in the riser reactor is 4 seconds. The weight hourly space velocity of the riser reactor is 4 to 20. The weight hourly space velocity of the riser reactor is 10 hr⁻¹. The riser reactor system comprises a temperature of 500°C to 700°C. The riser reactor system comprises an operating bed density of 0.05 kg/m³ to 0.29 kg/m³.
The pre-reactor may include a plurality of injection zones. The riser reactor may also include a plurality of injection zones, as illustrated in the example in FIG. 1. It is contemplated that the riser reactor comprises 1 to 4 injection points. It is also contemplated that the riser reactor may comprise 2 injection points.

In an embodiment, the system 200 further includes passing the alkylate aromatic product 260 to a light olefins column 270 to produce a light olefins product stream 280. Then the light olefins product stream 280 may be passed to a toluene column 290 to produce a toluene column product stream 300 comprising paraxylene. In another embodiment the process 200 may include passing the light olefins product stream 270 to a toluene column 290 to produce a toluene column product stream comprising unreacted toluene 310 and to recycle unreacted toluene 310 to the reactor 250. The catalyst may include a MFI zeolite with silica-to-alumina ratio higher than 20, preferentially higher than 100; a silica or an alumina binder, or combined aluminosilicate binder; and a clay binder. In one embodiment, phosphorus is added to the catalyst. The MFI zeolite content in the catalyst is in the range of 25 wt% to 65 wt%. The catalyst may be in a powder format with an average particle size of 70 microns to 80 microns.

FIG. 3 illustrates a toluene methylation system 300 having a riser reactor 320, a mixing chamber 330, and a regenerator 450. More specifically, FIG. 3 illustrates a process for alkylating an aromatic hydrocarbon reactant with an alkylating reagent comprising methanol to produce an alkylated aromatic product, comprising introducing the aromatic hydrocarbon feed 340 above a mixing chamber 330 comprising water 350, and passing a portion of the coked catalyst 440 to the regenerator 450. Additional streams are introduced into the riser reactor system 320 which include methanol, toluene, and water. In the example illustrated in FIG. 3, there are a plurality of injection points 370 into the riser portion 360 of the riser reactor 320. In one embodiment there may be three injection points. The first injection point 380 may comprise a mixture of toluene, methanol, and water. The second injection point 390 and the third injection point 100 may comprise only methanol and water. The aromatic hydrocarbon may include a residence time of 0.5 seconds to 6 seconds, for producing the alkylated aromatic product. The product stream 410 may include an alkylated aromatic product includes xylene. Some of the coked catalyst from the reactor 320 may be recirculated to the mixing chamber 330 via line 420. Alternatively, a fraction of coked catalyst is cooled in
a cooler 430 to remove heat of reaction and returned to the mixing chamber via the riser 360. The riser reactor 320 comprises a temperature of 500°C to 700°C. The riser reactor 320 comprises an operating bed density of 0.05 kg/m³ to 0.29 kg/m³. The weight hourly space velocity of the riser reactor 320 is 4 hr⁻¹ to 20 hr⁻¹. The weight hourly space velocity of the riser reactor is 10 hr⁻¹.

[0028] In an embodiment, the regenerator 450 produces a product stream of catalyst 460 wherein 0.1% to 15% of coke is left on the catalyst and the partially regenerated catalyst 460 is returned to the riser reactor 320. In a preferred embodiment, the regenerator 450 produces a product stream of catalyst 460 wherein 2% to 4% of coke is left on the catalyst and the partially regenerated catalyst 460 is returned to the riser reactor 320. In one embodiment, the regenerator 450 is a bubbling bed regenerator. In another embodiment, the regenerator 450 is a swing bed regenerator. In another embodiment, the regenerator 450 is a fixed bed regenerator. The oxygen concentration may be 0.5% to 21.0%.

[0029] In an embodiment, the system 300 further includes passing the alkylate aromatic product 410 to a light olefins column to produce a light olefins product stream. Then the light olefins product stream may be passed to a toluene column to produce a toluene column product stream comprising paraxylene. In another embodiment, the process 300 may include passing the light olefins product stream to a toluene column to produce a toluene column product stream comprising unreacted toluene and to recycle unreacted toluene to the reactor. The catalyst may include a MFI zeolite with silica-to-alumina ratio higher than 20, preferentially higher than 100; a silica or an alumina binder, or combined aluminosilicate binder; and a clay. In one embodiment, phosphorus is added to the catalyst. The MFI zeolite content in the catalyst is in the range of 25 wt% to 65 wt%. The catalyst may be in a powder format with an average particle size of 70 microns to 80 microns.

EXAMPLES

[0030] The following examples are intended to further illustrate the subject embodiments. These illustrations of different embodiments are not meant to limit the claims to the particular details of these examples.

[0031] FIG. 4 illustrates that partial regeneration of a spent catalyst to retain up to 2 wt% coke on catalyst back to the riser would improve 2-3% PX/X selectivity. Optimal partial
regeneration level leaves a residual level of coke that suppresses back-isomerization that
would reduce PX concentration from well above equilibrium towards equilibrium. The
catalyst comprises 40 wt% MFT zeolite with silica-to-alumina ratio of 500 and was steamed
under 1050°C for 90 minutes.

FIG. 5 illustrates that partial regeneration of a spent catalyst to retain up to 6 wt%
coke on catalyst back to the riser would improve 3-5% PX/X selectivity. Additional residual
coke levels above 2% and up to 6% allows PX/X to continue to increase without a significant
and adverse effect on catalyst activity allowing PX/X to be maximized will still maintaining
an acceptable toluene conversion. The catalyst comprises 40 wt% MFI zeolite with silica-to-
alumina ratio of 500 and was steamed under 1050°C for 45 minutes.

It should be noted that various changes and modifications to the presently preferred
embodiments described herein will be apparent to those skilled in the art. Such changes and
modifications may be made without departing from the spirit and scope of the present subject
matter and without diminishing its attendant advantages.

SPECIFIC EMBODIMENTS

While the following is described in conjunction with specific embodiments, it will
be understood that this description is intended to illustrate and not limit the scope of the
preceding description and the appended claims.

A first embodiment of the invention is a process for alkylation an aromatic
hydrocarbon reactant with an alkylation reagent comprising methanol to produce an alkylated
aromatic product, comprising introducing the aromatic hydrocarbon reactant into a mixing
chamber comprising water; introducing the aromatic hydrocarbon into a riser reactor system,
having a residence time of 0.5 seconds to 6 seconds, for producing the alkylated aromatic
product; and wherein the riser reactor system comprises an operating bed density of 0.05
kg/m3 to 0.29 kg/m3 recovering the alkylate aromatic product, produced by reaction of the
aromatic reactant and the alkylation reagent, from the reactor system. An embodiment of the
invention is one, any or all of prior embodiments in this paragraph up through the first
embodiment in this paragraph, wherein the aromatic hydrocarbon reactant includes toluene,
the alkylation reagent includes methanol, and the alkylated aromatic product includes xylene.

An embodiment of the invention is one, any or all of prior embodiments in this paragraph up
through the first embodiment in this paragraph, wherein the residence time in the user reactor is 4 seconds. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph, wherein a fraction of the coked catalyst is recirculated from the top of the riser to the mixing chamber. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph, wherein a fraction of coked catalyst is cooled to remove heat of reaction and returned to the mixing chamber. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph, wherein a fraction of regenerated catalyst is returned to the mixing chamber. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph, wherein the riser reactor system comprises a temperature of 500°C to 700°C. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph, wherein the weight hourly space velocity of the riser reactor is 4 hr⁻¹ to 20 hr⁻¹. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph, wherein the weight hourly space velocity of the riser reactor is 10 hr⁻¹. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph, further comprising passing the alkylate aromatic product to a light olefins column to produce a light olefins product stream. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph, further comprising passing the light olefins product stream to a toluene column to produce a toluene column product stream comprising paraxylene. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph, further comprising passing the light olefins product stream to a toluene column to produce a toluene column product stream comprising unreacted toluene and to recycle unreacted toluene to the reactor. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph, wherein the catalyst comprising a MFI zeolite with silica-to-alumina ratio higher than 20.
preferentially higher than 100: a silica or an alumina binder, or combined aluminosilicate binder; and a clay. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph, wherein phosphorus is added to the catalyst. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph, wherein the MFI zeolite content in the catalyst is in the range of 25 wt% to 65 wt%. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph, wherein the MFI zeolite content in the catalyst is in the range of 25 wt% to 45 wt%. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph, wherein the catalyst is in a powder format with an average particle size of 70 microns to 80 microns.

[0036] Without further elaboration, it is believed that using the preceding description that one skilled in the art can utilize the present invention to its fullest extent and easily ascertain the essential character!sties of this invention, without departing from the spirit and scope thereof, to make various changes and modifications of the invention and to adapt it to various usages and conditions. The preceding preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limiting the remainder of the disclosure in any way whatsoever, and that it is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims.

[0037] In the foregoing, all temperatures are set forth in degrees Celsius and, all parts and percentages are by weight, unless otherwise indicated.
CLAIMS:

1. A process for alkylating an aromatic hydrocarbon reactant with an alkylating reagent comprising methanol to produce an alkylated aromatic product, comprising:
 - introducing the aromatic hydrocarbon reactant into a mixing chamber comprising water;
 - introducing the aromatic hydrocarbon into a riser reactor system, having a residence time of 0.5 seconds to 6 seconds, for producing the alkylated aromatic product;
 - and wherein the riser reactor system comprises an operating bed density of 0.05 kg/m^3 to 0.29 kg/m^3 recovering the alkylate aromatic product, produced by reaction of the aromatic reactant and the alkylating reagent, from the reactor system.

2. The process of claim 1, wherein the aromatic hydrocarbon reactant includes toluene, the alkylating reagent includes methanol, and the alkylated aromatic product includes xylene.

3. The process of claim 1, wherein the residence time in the riser reactor is 4 seconds.

4. The process of claim 1, wherein a fraction of the coked catalyst is recirculated from the top of the riser to the mixing chamber.

5. The process of claim 1, wherein a fraction of coked catalyst is cooled to remove heat of reaction and returned to the mixing chamber.

6. The process of claim 1, wherein a fraction of regenerated catalyst is returned to the mixing chamber.

7. The process of claim 1, wherein the riser reactor system comprises a temperature of 500°C to 700°C.

8. The process of claim 1, wherein the weight hourly space velocity of the riser reactor is 4 hr^-1 to 20 hr^-1.

9. The process of claim 1, wherein the weight hourly space velocity of the riser reactor is 10 hr^-1.

10. The process of claim 1, wherein the riser reactor comprises a plurality of injection zones.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 2007/123977 A2 (EXXON MOBIL CHEMICAL PATENTS INC. et al.) 01.11.2007, paragraphs [0011]-[0016], examples 2,3, claims 5-9, 25</td>
<td>1-10</td>
</tr>
<tr>
<td>Y</td>
<td>US 5939597 A (MOBIL OIL CORPORARION) 17.08.1999, col.3, lines 10-26</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>WO 2013/086342 A1 (GTC TECHNOLOGY US, LLC) 13.06.2013</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

02 March 2018 (02.03.2018)

Date of mailing of the international search report

22 March 2018 (22.03.2018)

Name and mailing address of the ISA/RU:
Federal Institute of Industrial Property, Berezhkovskaya nab., 30-1, Moscow, G-59, GSP-3, Russia, 125093
Facsimile No: (8-495) 531-63-18, (8-499) 243-33-37

Authorized officer

O. Abolenskya

Telephone No. 495 53165 15