(54) Título: ANTICORPO ANTI-TSLP PROJETADO
(57) Resumo:

(30) Prioridade Unionista: 14/12/2006 US 60/869,974

(73) Titular(es): Schering Corporation

(72) Inventor(es): Leonard G. Presta, Rene de Waal Maleyt

(74) Procurador(es): Dannemann, Siemsen, Bigler & Ipanema Moreira

(86) Pedido Internacional: PCT US2007025531 de
13/12/2007

(87) Publicação Internacional: WO 2008/076321 de
26/06/2008
Relatório Descritivo da Patente de Invenção para "ANTICORPO ANTI-TSLP PROJETADO".

CAMPO DA INVENÇÃO

A presente invenção refere-se geralmente a um anticorpo específico de linfopoietin estromal tímico (TSLP), e usos deste, particularmente em distúrbios inflamatórios e alérgicos inflamatórios.

ANTECEDENTES DA INVENÇÃO

O sistema imune funciona para proteger indivíduos de agentes infecciosos, por exemplo, bactérias, organismos multicelulares, e vírus, bem como de cânceres. Este sistema inclui vários tipos de células de linfóide e mieloide, tais como monócitos, macrófagos, células dendríticas (DCs), eosinófilos, células T, células B, e neutrófilos. Estas células de linfóide e mieloide frequentemente produzem proteínas de sinalização conhecidas como citoquinas. A resposta imune inclui inflamação, isto é, o acúmulo de células imunes sistemicamente ou em uma localização particular do corpo. Em resposta a um agente infeccioso ou substância estranha, as células imunes secretam citoquinas que, por sua vez, modulam proliferação, desenvolvimento, diferenciação ou migração de célula imune. Uma resposta imune pode produzir consequências patológicas, por exemplo, quando ela envolve inflamação excessiva, como em distúrbios inflamatórios alérgicos.

O TSLP é uma citoquina imune que induz respostas de célula CD4+ T mediadas por célula dendrítica com um fenótipo a proalógenico (Gilli et al., J. Exp. Medicine 197(8): 1059-1063 (2003). O TSLP é envolvido na iniciação de inflamação alérgica (Watanabe et al., Nature Immunology 5: 426-434 (2004); Soumelis et al., Nature Immunology 3: 673-680 (2002)).

Anticorpos estão sendo desenvolvidos contra um número de alvos antígenos que estão envolvidos em doenças imunes. A limitação mais significante no uso de anticorpos como um agente terapêutico in vivo é a imunogenicidade dos anticorpos. Como muitos dos anticorpos monoclonais são derivados de roedores, o uso repetido em humanos resulta na geração de uma resposta imune contra o anticorpo tarapêutico. Tal resposta imune resulta em uma perda de eficiência terapêutica a um mínimo, e uma respos-
ta anafilática fatal potencial a um máximo. Os esforços iniciais para reduzir a
imunogenicidade de anticorpos de roedor envolveram a produção de anti-
corpos quiméricos, em que regiões variáveis de camundongo foram fundidas
USA 84:3439-43. Contudo, camundongos injetados com híbridos de regiões
variáveis humanas e regiões constantes de camundongo desenvolvem uma
forte resposta de anti-anticorpo contra a região variável humana, sugerindo
que a retenção da região Fv de roedor total em tais anticorpos quiméricos
pode ainda resultar em imunogenicidade indesejada em pacientes.

É geralmente acreditado que circuitos fechados de região de
determinação de complementaridade (CDR) de domínios variáveis compre-
endem o local de ligação de moléculas de anticorpo. Portanto, o enxerto de
circuitos fechados de CDR de roedor em estruturas humanas (isto é, huma-
nização) foi tentado para adicionalmente minimizar sequências de roedor.

239:1534. Contudo, trocas de circuito fechado de CDR podem não resultar
uniformemente em um anticorpo com as mesmas propriedades de ligação
como o anticorpo de origem. Mudanças nos resíduos da estrutura (FR), resi-
duos envolvidos no suporte de circuito fechado de CDR, em anticorpos hu-
manizados, podem também serem requeridas para preservar afinidade de
uso de enxerto de CDR e preservação de resíduo de estrutura em um núme-
ro de construções humanizadas de anticorpo tem sido reportado, é difícil
prever se uma sequência particular resultará no anticorpo com a ligação de-
sejada, e, às vezes, propriedades biológicas. Vide, por exemplo, Queen et
5.

A presente invenção proporciona um anticorpo de TSLP projeta-
do e uso deste para tratar distúrbios inflamatórios, e, particularmente, distúr-
bios inflamatório alérgicos.
SUMÁRIO DA INVENÇÃO

A presente invenção proporciona um composto de ligação que se liga especificamente a TSLP humano e de cino, compreendendo: pelo menos uma região variável de cadeia pesada de anticorpo, ou um fragmento de ligação de TSLP desta, referida região variável de cadeia pesada compreendendo pelo menos uma sequência de CDR selecionada a partir do grupo consistindo em SEQ ID NOs: 1, 2 e 3; ou pelo menos uma região variável de cadeia leve de anticorpo, ou um fragmento de ligação de TSLP desta, referida região variável de cadeia leve compreendendo pelo menos uma sequência de CDR selecionada a partir do grupo consistindo em SEQ ID NOs: 4, 5 e 6.

A presente invenção também proporciona um composto de ligação que se liga especificamente a TSLP humano e de cino, compreendendo pelo menos uma região variável de cadeia pesada de anticorpo, ou um fragmento de ligação de TSLP desta, referida região variável de cadeia pesada compreendendo pelo menos uma sequência de CDR selecionada a partir do grupo consistindo em SEQ ID NOs: 1, 2 e 3; e pelo menos uma região variável de cadeia leve de anticorpo, ou um fragmento de ligação de TSLP desta, referida região variável de cadeia leve compreendendo pelo menos uma sequência de CDR selecionada a partir do grupo consistindo em SEQ ID NOs: 4, 5 e 6.

Em algumas concretizações, a região variável de cadeia pesada de anticorpo, ou fragmento de ligação de TSLP desta, compreende pelo menos duas sequências de CDR selecionadas a partir do grupo consistindo em SEQ ID NOs: 1, 2 e 3. Em outras concretizações, a região variável de cadeia pesada de anticorpo, ou fragmento de ligação de TSLP desta, tem as três sequências de CDR colocadas em SEQ ID NOs: 1, 2 e 3.

Em algumas concretizações, a região variável de cadeia leve de anticorpo, ou fragmento de ligação de TSLP desta, compreende pelo menos duas sequências de CDR selecionadas a partir do grupo consistindo em SEQ ID NOs: 4, 5 e 6. Em outras concretizações, a região variável de cadeia leve de anticorpo, ou fragmento de ligação de TSLP desta, tem as três se-
quências de CDR colocadas em SEQ ID NOs: 4, 5 e 6.

A presente invenção também proporciona um composto de ligação que se liga especificamente a TSLP humano e de cino, compreendendo: pelo menos uma região variável de cadeia pesada de anticorpo, ou um fragmento de ligação de TSLP desta, referida região variável de cadeia pesada compreendendo: a CDR-H1 de SEQ ID NO. 1, ou uma variante desta; a CDR-H2 de SEQ ID NO. 2, ou uma variante desta; e a CDR-H3 de SEQ ID NO. 3, ou uma variante desta; ou pelo menos uma região variável de cadeia leve de anticorpo, ou um fragmento de ligação de TSLP desta, referida região variável de cadeia leve compreendendo: a CDR-L1 de SEQ ID NO. 4, ou uma variante desta; a CDR-L2 de SEQ ID NO. 5, ou uma variante desta; e a CDR-L3 de SEQ ID NO. 6, ou uma variante desta. A presente invenção também proporciona um composto de ligação que se liga especificamente a TSLP humano e de cino, compreendendo pelo menos uma região variável de cadeia pesada de anticorpo, ou um fragmento de ligação de TSLP desta, referida região variável de cadeia pesada compreendendo: a CDR-H1 de SEQ ID NO. 1, ou uma variante desta; a CDR-H2 de SEQ ID NO. 2, ou uma variante desta; e a CDR-H3 de SEQ ID NO. 3, ou uma variante desta; e pelo menos uma região variável de cadeia leve de anticorpo, ou um fragmento de ligação de TSLP desta, referida região variável de cadeia leve compreendendo: a CDR-L1 de SEQ ID NO. 4, ou uma variante desta; a CDR-L2 de SEQ ID NO. 5, ou uma variante desta; e a CDR-L3 de SEQ ID NO. 6, ou uma variante desta. Em uma concretização, a variante compreende até 20 resíduos de aminoácido conservativamente modificados. Em uma concretização, a variante compreende até 10 resíduos de aminoácido conservativamente modificados. Em uma concretização, a variante compreende até 5 resíduos de aminoácido conservativamente modificados. Em uma concretização, a variante compreende até 3 resíduos de aminoácido conservativamente modificados.

Em algumas concretizações dos compostos de ligação acima descritos, todo ou substancialmente todo do restante da região variável de cadeia pesada é todo ou substancialmente todo uma região Ig de humano; e
todo ou substancialmente todo do restante da região variável de cadeia leve é todo ou substancialmente todo uma região Ig de humano. Em concretizações preferidas, o restante da região variável de cadeia pesada é sequência de aminoácido de cadeia pesada de humano; e o restante da região variável de cadeia leve é sequência de aminoácido de cadeia leve de humano.

A presente invenção também proporciona um composto de ligação que se liga especificamente a TSLP humano e de cino, compreendendo: uma região variável de cadeia pesada compreendendo resíduos 1-116 de SEQ ID NO: 10 ou uma variante destes; e uma região variável de cadeia leve compreendendo resíduos 1-108 de SEQ ID NO: 12, ou uma variante destes. Em uma concretização, a variante compreende até 20 resíduos de aminoácido conservativamente modificados. Em uma concretização, a variante compreende até 10 resíduos de aminoácido conservativamente modificados. Em uma concretização, a variante compreende até 5 resíduos de aminoácido conservativamente modificados. Em uma concretização, a variante compreende até 3 resíduos de aminoácido conservativamente modificados. Em uma concretização, a região variável de cadeia leve compreende uma variante na qual o aminoácido na posição 49 de SEQ ID NO:12 foi mudado de Y para K.

A presente invenção também proporciona um composto de ligação que se liga especificamente a TSLP humano e de cino, compreendendo: uma região variável de cadeia pesada compreendendo resíduos 1-116 de SEQ ID NO: 10; e uma região variável de cadeia leve compreendendo resíduos 1-108 de SEQ ID NO: 12.

A presente invenção também proporciona um composto de ligação que se liga especificamente a TSLP humano e de cino, compreendendo: uma região variável de cadeia pesada consistindo essencialmente de resíduos 1-116 de SEQ ID NO: 10; e uma região variável de cadeia leve consistindo essencialmente em resíduos 1-108 de SEQ ID NO: 12.

A presente invenção também proporciona um composto de ligação que se liga especificamente a TSLP humano e de cino, compreendendo: uma região variável de cadeia pesada tendo pelo menos 95%, 90%, 85% ou
80% de homologia a resíduos 1-116 de SEQ ID NO: 10; e/ou uma região variável de cadeia leve tendo pelo menos 95%, 90%, 85% ou 80% de homologia a resíduos 1-108 de SEQ ID NO: 12. Em uma concretização, a invenção proporciona um composto de ligação que se liga especificamente a TS-LP humano e de cino, compreendendo: uma região variável de cadeia pesada tendo pelo menos 90% de homologia a resíduos 1-116 de SEQ ID NO: 10; e uma região variável de cadeia leve tendo pelo menos 90% de homologia a resíduos 1-108 de SEQ ID NO: 12. Em algumas concretizações, a região variável de cadeia pesada compreenderá pelo menos 95% de homologia a resíduos 1-116 de SEQ ID NO: 10; e a região variável de cadeia leve compreenderá pelo menos 95% de homologia a resíduos 1-108 de SEQ ID NO: 12.

Em algumas concretizações, os compostos de ligação da invenção também compreendem uma região constante de cadeia pesada e/ou uma região constante de cadeia leve. Em uma concretização, a região constante de cadeia pesada compreende uma região constante de cadeia pesada humana γ1, γ2, γ3, ou γ4, ou uma variante desta. Em várias concretizações, a região constante de cadeia leve compreende uma região constante de cadeia leve humana lámbida ou kappa.

Em algumas concretizações, o composto de ligação da invenção é um anticorpo ou um fragmento de ligação de antígeno deste. Em várias concretizações, o anticorpo ou fragmento deste da presente invenção é policlonal, monoclonal, químérico, cino-izado, humanizado ou totalmente humano. Em uma concretização preferida, o anticorpo é um anticorpo humanizado ou um fragmento deste.

A presente invenção também contempla que o fragmento de ligação é um fragmento de anticorpo selecionado a partir do grupo consistindo em Fab, Fab', Fab'-SH, Fv, scFv, F(ab')2, e um diacorpo. A presente invenção também contempla que o composto de ligação é um nanocorpo, um avímero, ou um aptímero.

Em uma concretização preferida, o composto de ligação é o anticorpo produzido pelo hibridoma depositado como PTA-7951. Em outra con-
cretização, o composto de ligação não é o anticorpo produzido pelo hibrido-
ma depositado como PTA-7951.

A invenção também envolve um anticorpo ou fragmento de liga-
ção de antígeno deste que se liga especificamente a TSLP humano e de
 cinco, compreendendo a sequência de aminoácido de cadeia pesada de SEQ
 ID NO: 18, ou uma variante desta; e/ou uma sequência de aminoácido de
cadeia leve de SEQ ID NO:17, ou uma variante desta. A invenção também
envolve um anticorpo ou fragmento de ligação de antígeno deste que se liga
especificamente a TSLP humano e de cinco, compreendendo aminoácidos 19
a 472 de SEQ ID NO: 18, ou uma variante destes; e/ou aminoácidos 20 a
233 de SEQ ID NO:17, ou uma variante destes. Em uma concretização, a
variante compreende até 20 resíduos de aminoácido conservativamente mo-
dificados. Em uma concretização, a variante compreende até 10 resíduos de
aminoácido conservativamente modificados. Em uma concretização, a vari-
ante compreende até 5 resíduos de aminoácido conservativamente modifi-
cados. Em uma concretização, a variante compreende até 3 resíduos de a-
minoácido conservativamente modificados.

A presente invenção também compreende um composto de liga-
ção que se liga especificamente a TSLP humano e de cinco, no qual referido
composto de ligação tem um KD de cerca de 2,1 pM ou menos, conforme
medido usando tecnologia KinExA e TSLP humano como o ligante. A pre-
rente invenção também compreende um composto de ligação que se liga
especificamente a TSLP humano e de cinco, no qual referido composto de
ligação tem um KD de 2,1 pM (+/- duas vezes), conforme medido usando
tecnologia KinExA e TSLP humano como o ligante. Em uma concretização, o
composto de ligação é um anticorpo anti-TSLP humanizado, ou um fragmen-
to de ligação de antígeno deste.

A presente invenção também compreende um composto de liga-
ção que se liga especificamente a TSLP humano e de cinco, no qual referido
composto de ligação tem um KD de cerca de 111 pM ou menos, conforme
medido usando-se ressonância de plasmon de superfície e TSLP humano
como o ligante. A presente invenção também compreende um composto de
ligação que se liga especificamente a TSLP humano e de cino, no qual referido composto de ligação tem um KD de 111 pM (+/-duas vezes), conforme medido usando-se ressonância de plasmon de superfície como o ligante. Em uma concretização, o composto de ligação é um anticorpo anti-TSLP humanizado, ou um fragmento de ligação de antígeno deste.

A presente invenção também compreende um composto de ligação que se liga especificamente a TSLP humano e de cino, no qual referido composto de ligação tem um EC50 de cerca de 7,6 nM ou menos. A presente invenção também compreende um composto de ligação que se liga especificamente a TSLP humano e de cino, no qual referido composto de ligação tem um EC50 de cerca de 7,6 nM (+/-duas vezes). (O EC50 se refere à concentração de composto de ligação requerida para neutralizar TSPL humano a 50% do nível observado na ausência do composto de ligação). Em uma concretização, o composto de ligação é um anticorpo anti-TSLP humanizado, ou um fragmento de ligação de antígeno deste.

A presente invenção também proporciona um ácido nucleico isolado que codifica pelo menos uma da região variável de cadeia pesada ou região variável de cadeia leve do composto de ligação da invenção. Também provido é um vetor de expressão compreendendo o ácido nucleico operacionalmente ligado às sequências de controle que são reconhecidas por uma célula hospedreira quando a célula hospedreira é transfetada com o vetor. Também providas são células hospedeiras compreendendo o vetor de expressão.

Também provido é um método de produção de um polipeptídeo compreendendo uma região variável de cadeia pesada ou uma região variável de cadeia leve da invenção compreendendo: cultura da célula hospedreira no meio de cultura sob condições nas quais a sequência de ácido nucleico é expressa, produzindo, desse modo, polipeptídeos compreendendo as regiões variáveis de cadeia leve e pesada; e recuperação dos polipeptídeos a partir da célula hospedreira ou meio de cultura.

A invenção também proporciona um composto de ligação (por exemplo, um anticorpo ou fragmento de ligação de antígeno deste) que se
liga especificamente ao epitope em TSLP humano que é ligado pelo anticorpo produzido pelo híbrido depositado como PTA-7951, no qual o anticorpo que se liga especificamente ao epitope no TSLP humano não é o anticorpo produzido pelo híbrido depositado como PTA-7951.

A invenção também compreende um composto de ligação (por exemplo, um anticorpo ou fragmento de ligação de antígeno deste) que inibe competitivamente ligação pelo anticorpo produzido pelo híbrido depositado como PTA-7951 a TSLP humano, no qual o anticorpo que inibe competitivamente ligação não é o anticorpo produzido pelo híbrido depositado como PTA-7951.

A invenção também compreende um composto de ligação (por exemplo, um anticorpo ou fragmento de ligação de antígeno deste) que bloqueia atividade mediada por TSLP. As atividades mediadas por TSLP incluem, mas não estão limitadas a, ligação a seu receptor, promoção da ativação de células dendríticas que conduzem a proliferação ou sobrevivência de células T_h2, secreção de quemoquinas de atração de T_h2 por células dendríticas, tais como TARC e MDC, produção de citoquinas pró-alérgicas, tais como IL-4, IL-5, IL-13 e TNF-alfa. Um número de ensaios pode ser empregado para determinar se um composto de ligação bloqueia atividade mediada por TSLP. Estes incluem os ensaios descritos nos Exemplos e outros ensaios, incluindo aqueles descritos na técnica. Vide, por exemplo, Reche et al., J. Immunol. 167:336-43 (2001); Isaksen et al., J. Immunol. 168:3288-94 (2002).

Em uma concretização, o composto de ligação é capaz de bloquear a ligação de TSLP a TSLPR em um ensaio de reticulação.

A presente invenção envolve um método de supressão de uma resposta imune em um indivíduo humano compreendendo administrar a um indivíduo em necessidade deste um composto de ligação que se liga especificamente a TSLP humano e de cinco, em uma quantidade efetiva para bloquear a atividade biológica de TSLP. A presente invenção também contempla administrar um agente imunosupressor ou anti-inflamatório adicional. Em uma concretização preferida, a resposta imune é asma. Em outra concreti-
zação preferida, a resposta imune é inflamação alérgica. Em outra concreti-
zação preferida, a inflamação alérgica é rinosinusite alérgica, asma alérgica,
conjuntivite alérgica, ou dermatite alérgica. Em outra concretização preferida,
a resposta imune é fibrose, doença inflamatória do intestino ou linfoma de
Hodgkin. Em outra concretização preferida, o composto de ligação é admi-
nistrado em combinação com outro agente imunomodulatório.

O anticorpo ou fragmento deste da presente invenção pode estar
em uma composição compreendendo o composto de ligação da invenção,
em combinação com um veículo ou diluente farmaceuticamente aceitável.

Em uma concretização adicional, o composição compreende adicionalmente
um agente imunosupressor ou anti-inflamatório.

A presente invenção também envolve uma composição compre-
endendo um composto de ligação da invenção e um veículo ou diluente far-
maceuticamente aceitável.

A presente invenção envolve um ácido nucleico isolado que co-
difica a sequência de polipeptídeo do anticorpo ou fragmento deste da pre-
sente invenção. O ácido nucleico pode estar em um vetor de expressão ope-
ravelmente ligado às sequências de controle reconhecidas por uma célula
hospedeira transfectada com o vetor. Também envolvida é uma célula hos-
pedeira compreendendo o vetor, e um método de produção de um polipeptí-
deio compreendendo cultura da célula hospedeira sob condições nas quais a
sequência de ácido nucleico é expressa, produzindo, desse modo, o polipep-
tídeo, e recuperação do polipeptídeo a partir da célula hospedeira ou meio.

Em várias concretizações, a invenção se refere a medicamentos
compreendendo o anticorpo ou fragmento deste da presente invenção. Por
exemplo, a invenção envolve o uso de um composto de ligação que se liga
especificamente a TSLP humano e de cino, (por exemplo, qualquer um dos
compostos de ligação de acordo com a invenção) para a preparação de um
medicamento para tratar supressão de uma resposta imune. A presente in-
venção envolve o uso de um composto de ligação que se liga especifica-
mente a TSLP humano e de cino, (por exemplo, qualquer um dos compostos
de ligação de acordo com a invenção) para a preparação de um medicamen-
to para tratar asma. A presente invenção envolve o uso de um composto de ligação que se liga especificamente a TSLP humano e de cino, (por exemplo, qualquer um dos compostos de ligação de acordo com a invenção) para a preparação de um medicamento para tratar um distúrbio inflamatório. Em uma concretização, o distúrbio inflamatório é um distúrbio inflamatório alérgico. Em uma concretização, o distúrbio inflamatório alérgico é rinosinusite alérgica, asma alérgica, conjuntivite alérgica, ou dermatite alérgica.

DESCRIÇÃO DETALHADA

Conforme aqui usado, incluindo as reivindicações em anexo, as formas singulares de palavras, tais como "um," "uma," e "o," incluem suas referências plurais correspondentes, a menos que o contexto indique claramente de outro modo. Todas as referências aqui citadas são incorporadas por referência a mesma extensão como se cada publicação individual, pedido de patente, ou patente fosse especificamente e individualmente indicada para ser incorporada por referência.

I. Definições

"Ativação," "estimulação," e "tratamento", conforme se aplicam a células ou a receptores, podem ter o mesmo significado, por exemplo, ativação, estimulação, ou tratamento de uma célula ou receptor com um ligante, a menos que indicado de outro modo pelo contexto ou explicitamente. "Ligante" envolve ligantes naturais e sintéticos, por exemplo, citoquinas, variantes de citoquina, análogos, muteinas, composições de ligação derivadas de anticorpos. "Ligante" também envolve moléculas pequenas, por exemplo, miméticos de peptídeo de citoquinas e miméticos de peptídeo de anticorpos.

"Ativação" pode se referir a ativação de célula conforme regulada por mecanismos internos, bem como por fatores externos ou ambientais. "Resposta," por exemplo, de uma célula, tecido, órgão, ou organismo, envolve uma mudança no comportamento bioquímico ou fisiológico, por exemplo, concentração, densidade, adesão, ou migração dentro de um compartimento biológico, taxa de expressão de gene, ou estado de diferenciação, em que a mudança está correlacionada com ativação, estimulação, ou tratamento, ou com mecanismos internos, tais como programação genética.
"Atividade" de uma molécula pode descrever ou se referir a ligação da molécula a um ligante, ou a um receptor, a atividade catalítica; a capacidade de estimular expressão de gene ou sinalização, diferenciação, ou maturação de célula; a atividade antigênica, a modulação de atividades de outras moléculas, e similares. "Atividade" de uma molécula pode também se referir a atividade na modulação ou manutenção de interações célula a célula, por exemplo, adesão, ou atividade na manutenção de uma estrutura de uma célula, por exemplo, membranas de célula ou citoesqueleto. "Atividade" pode também significar atividade específica, por exemplo, [atividade catalítica]/[mg de proteína], ou [atividade imunológica]/[mg de proteína], concentração em um compartimento biológico, ou similares. "Atividade proliferativa" envolve uma atividade que promove, que é necessária para, ou que está especificamente associada à, por exemplo, divisão de célula normal, bem como um câncer, tumores, displasia, transformação de célula, metástase, e angiogênese.

"Administração" e "tratamento", conforme se aplica a um animal, ser humano, indíviduo experimental, célula, tecido, órgão, ou fluido biológico, se referem ao contato de um farmacêutico exógeno, terapêutico, agente diagnóstico, ou composição ao animal, ser humano, indíviduo, célula, tecido, órgão, ou fluido biológico. "Administração" e "tratamento" podem se referir, por exemplo, a métodos terapêuticos, farmacocinéticos, diagnósticos, pesquisa, e experimentais. O tratamento de uma célula envolve contato de um reagente com a célula, bem como contato de um reagente com um fluido, em que o fluido está em contato com a célula. "Administração" e "tratamento" também significam tratamentos in vitro e ex vivo, por exemplo, de uma célula, por um reagente, diagnóstico, composição de ligação, ou por outra célula. "Tratamento", conforme se aplica a um indivíduo humano, veterinário ou de pesquisa, se refere a tratamento terapêutico, profilático ou medidas preventivas, para aplicações de pesquisa e de diagnósticos.

Conforme aqui usado, o termo "anticorpo" se refere a qualquer forma de anticorpo ou fragmento deste que exibe a atividade biológica desejada. Desse modo, ele é usado no sentido amplo, e cobre especificamente
anticorpos monoclonais (incluindo anticorpos monoclonais de comprimento total), anticorpos policlonais, anticorpos multiespecíficos (por exemplo, anticorpos biespecíficos), e fragmentos de anticorpo, considerando-se que eles exibam atividade biológica desejada.

Conforme aqui usado, o termo "fragmento de ligação de TSLP", ou "fragmento de ligação deste", envolve um fragmento ou um derivado de um anticorpo que ainda retém substancialmente sua atividade biológica de atividade de inibição de TSLP. Portanto, o termo "fragmento de anticorpo", ou fragmento de ligação de TSLP, se refere a uma porção de um anticorpo de comprimento total, geralmente a ligação de antígeno ou região variável deste. Exemplos de fragmentos de anticorpo incluem fragmentos Fab, Fab', F(ab')₂, e Fv; diacorpos; anticorpos lineares; moléculas de anticorpo de cadeia simples, por exemplo, sc-Fv; anticorpos de domínio; e anticorpos multi-específicos formados de fragmentos de anticorpo. Tipicamente, um fragmento de ligação ou derivado retém pelo menos 10% de sua atividade inibitória de TSLP. Preferivelmente, um fragmento de ligação ou derivado retém pelo menos 25%, 50%, 60%, 70%, 80%, 90%, 95%, 99% ou 100% (ou mais) de sua atividade inibitória de TSLP, embora qualquer fragmento de ligação com afinidade suficiente para exercer o efeito biológico desejado será útil. É também pretendido que um fragmento de ligação de TSLP possa incluir substituições de aminoácido conservativas que não alteram substancialmente sua atividade biológica.

O termo "anticorpo monoclonal", conforme aqui usado, se refere a um anticorpo obtido de uma população de anticorpos substancialmente homogêneos, isto é, os anticorpos individuais compreendendo a população são idênticos, exceto para mutações possíveis que ocorrem naturalmente que podem estar presentes em quantidades menores. Os anticorpos monoclonais são altamente específicos, sendo dirigidos contra um epitope antígenico simples. Em contraste, preparações de anticorpo (policlonais) convencionais incluem tipicamente uma multiplicidade de anticorpos dirigidos contra (ou específicos para) epitopes diferentes. O modificador "monoclonal" indica o caráter do anticorpo como sendo obtido de uma população de anticorpos

Os anticorpos monoclonais aqui incluem especificamente anticorpos "quiméricos" (imunoglobulinas) em que uma porção da cadeia pesada e/ou leve é idêntica a ou homóloga a sequências correspondentes em anticorpos derivados de uma espécie particular ou pertencente a uma classe ou subclasse de anticorpo particular, enquanto o restante da(s) cadeia(s) é (são) idêntica(s) a ou homóloga(s) a sequências correspondentes em anticorpos derivados de outras espécies pertencente a outra classe ou subclasse de anticorpo, bem como fragmentos de tais anticorpos, considerando-se que eles exibem a atividade biológica desejada (Patente dos Estados Unidos No. 4.816.567; e Morrison et al., (1984) *Proc. Natl. Acad. Sci. USA* 81: 6851-6855).

Um "anticorpo de domínio" é um fragmento de imunoglobulina imunologicamente funcional contendo somente a região variável de uma cadeia pesada, ou a região variável de uma cadeia leve. Em alguns exemplos, duas ou mais regiões de V_H são covalentemente unidas com um ligador de peptídeo para criar um anticorpo de domínio bivalente. As duas regiões de V_H de um anticorpo de domínio bivalente podem ter como alvo os mesmos, ou antígenos diferentes.

Um "anticorpo bivalente" compreende dois locais de ligação de antígeno. Em alguns exemplos, os dois locais de ligação têm as mesmas especificidades de antígeno. Contudo, anticorpos bivalentes podem ser bi-específicos (vide abaixo).
Conforme aqui usado, o termo "Fv de cadeia simples" ou anticorpo "scFv" se refere a fragmento de anticorpos compreendendo os domínios V_H e V_L de anticorpo, no qual estes domínios estão presentes em uma cadeia de polipeptídeo simples. Geralmente, o polipeptídeo Fv compreende adicionalmente um ligador de polipeptídeo entre os domínios de V_H e V_L que capacitam o sFv formar a estrutura desejada para ligação de antígeno. Para uma revisão de sFv, vide Pluckthun (1994) *The Pharmacology of Monoclonal Antibodies*, vol. 113, Rosenberg and Moore eds. Springer-Verlag, New York, pp. 269-315.

Conforme aqui usado, o termo "anticorpo humanizado" se refere a formas de anticorpos que contêm sequências de anticorpos não-humanos (por exemplo, murina), bem como anticorpos humanos. Tais anticorpos con-
têm sequência mínima derivada de imunoglobulina não-humana. Em geral, o anticorpo humanizado compreenderá substancialmente todos de pelo menos um, e tipicamente dois, domínios variáveis em que todos ou substancialmente todos circuitos fechados hipervariáveis corresponderem àqueles de uma imunoglobulina não-humana, e todas ou substancialmente todas das regiões de FR são aquelas de uma sequência de imunoglobulina humana. O anticorpo humanizado opcionalmente também compreenderá pelo menos uma porção de uma região constante de imunoglobulina (Fc), tipicamente aquela de uma imunoglobulina humana. O prefixo "hu" ou "hum" é adicionado as designações de clone de anticorpo quando necessário para distinguir anticorpos humanizados (por exemplo, "hu23B12") de anticorpos de roedor originais (por exemplo, rato 23B12, ou "r23B12"). As formas humanizadas de anticorpos de roedor geralmente compreenderão as mesmas sequências de CDR dos anticorpos de roedor originais, embora certas substituições de aminoácido podem ser incluídas para aumentar afinidade ou aumentar estabilidade do anticorpo humanizado.

O termo "anticorpo totalmente humano" se refere a um anticorpo que compreende sequências de proteína imunoglobulina humana somente. Um anticorpo totalmente humano pode conter cadeias de murina carboidrato
se produzido em um camundongo, em uma célula de camundongo, ou em um híbridoma derivado de uma célula de camundongo. Similarmente, "anticorpo de camundongo" se refere a um anticorpo que compreende sequências de imunoglobulina de camundongo somente.

Conforme aqui usado, o termo "região hipervariável" se refere a resíduos de aminoácido de um anticorpo que são responsáveis pela ligação de antígeno. A região hipervariável compreende resíduos de aminoácido de uma "região de determinação de complementaridade" ou "CDR" (por exemplo, resíduos 24-34 (CDRL1), 50-56 (CDRL2) e 89-97 (CDRL3) no domínio variável de cadeia leve, e resíduos 31-35 (CDRH1), 50-65 (CDRH2) e 95-102 (CDRH3) no domínio variável de cadeia pesada; Kabat et al., (1991) Sequences of Proteínas of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md.) e/ou aqueles resíduos de um "ciclo fechado hipervariável" (isto é, resíduos 26-32 (L1), 50-52 (L2) e 91-96 (L3) no domínio variável de cadeia leve, e 26-32 (H1), 53-55 (H2) e 96-101 (H3) no domínio variável de cadeia pesada; Chothia e Lesk, (1987) J. Mol. Biol. 196: 901-917). Conforme aqui usado, o termo "estrutura" ou resíduos de "FR" se refere àqueles resíduos de domínios variáveis diferentes dos resíduos de região hipervariável definidos aqui como resíduos de CDR.

A numeração do resíduo acima se refere ao sistema de numeração de Kabat, e não corresponde necessariamente em detalhe à numeração de sequência na Listagem de Sequência acompanhante. Vide Tabelas 2 e 3, em cuja numeração de sequência é com referência a Listagem de Sequência.

"Ligação" se refere a uma associação da composição de ligação com um alvo em que a associação resulta em redução no movimento Browniano normal da composição de ligação, em casos em que a composição de ligação pode ser dissolvida ou suspensa na solução.

"Composto de ligação" se refere a uma molécula que compreende uma ou mais sequências de aminoácido que se ligam especificamente a TSLP humano. Em uma concretização preferida, o composto de ligação é um anticorpo. Em outra concretização preferida, o composto de ligação compreende um fragmento de anticorpo.
"Composição de ligação" se refere a um composto de ligação de TSLP em combinação com um estabilizador, excipiente, sal, tampão, solvente, ou aditivo, capaz de se ligar a um alvo.

Tabela 1

<table>
<thead>
<tr>
<th>Resíduo Original</th>
<th>Substituição Conservativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala (A)</td>
<td>Gly; Ser</td>
</tr>
<tr>
<td>Arg (R)</td>
<td>Lys, His</td>
</tr>
<tr>
<td>Asn (N)</td>
<td>Gln; His</td>
</tr>
<tr>
<td>Asp (D)</td>
<td>Glu; Asn</td>
</tr>
<tr>
<td>Cys (C)</td>
<td>Ser; Ala</td>
</tr>
<tr>
<td>Gin (Q)</td>
<td>Asn</td>
</tr>
<tr>
<td>Glu (E)</td>
<td>Asp; Gln</td>
</tr>
<tr>
<td>Gly (G)</td>
<td>Ala</td>
</tr>
<tr>
<td>His (H)</td>
<td>Asn; Gln</td>
</tr>
<tr>
<td>Ile (I)</td>
<td>Leu; Val</td>
</tr>
<tr>
<td>Leu (L)</td>
<td>Ile; Val</td>
</tr>
<tr>
<td>Lys (K)</td>
<td>Arg; His</td>
</tr>
<tr>
<td>Met (M)</td>
<td>Leu; Ile; Tyr</td>
</tr>
<tr>
<td>Phe (F)</td>
<td>Tyr; Met; Leu</td>
</tr>
<tr>
<td>Pro (P)</td>
<td>Ala</td>
</tr>
<tr>
<td>Ser (S)</td>
<td>Thr</td>
</tr>
<tr>
<td>Thr (T)</td>
<td>Ser</td>
</tr>
<tr>
<td>Resíduo Original</td>
<td>Substituição Conservativa</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Trp (W)</td>
<td>Tyr; Phe</td>
</tr>
<tr>
<td>Tyr (Y)</td>
<td>Trp; Phe</td>
</tr>
<tr>
<td>Val (V)</td>
<td>Ile; Leu</td>
</tr>
</tbody>
</table>

Os termos "consiste essencialmente em", ou variações tais como "consiste essencialmente em", ou "consistindo essencialmente de", conforme usados através de todo relatório descritivo e reivindicações, indicam a inclusão de quaisquer elementos citados ou grupo de elementos, e a inclusão opcional de outros elementos, de natureza similar ou diferente do que os elementos citados, que não mudam materialmente as propriedades básicas ou novas do regime de dosagem especificado, método, ou composição. Como um exemplo não-limitativo, um anticorpo ou fragmento deste que consiste essencialmente em uma sequência de aminoácido citada pode também incluir um ou mais aminoácidos, incluindo substituições de um ou mais resíduos de aminoácido que não afetam materialmente as propriedades do composto de ligação.

"Quantidade efetiva" envolve uma quantidade suficiente para melhorar ou prevenir um sintoma ou sinal da condição médica. Quantidade efetiva também significa uma quantidade suficiente para permitir ou facilitar diagnóstico. Uma quantidade efetiva para um paciente particular ou indivíduo veterinário pode variar dependendo de fatores, tais como a condição sendo tratada, a saúde geral do paciente, a rota do método e a dose de administração, e a severidade dos efeitos colaterais (vide, por exemplo, Patente dos Estados Unidos No. 5.888.530, publicada por Netti, et al.). Uma quantidade efetiva pode ser a dose máxima ou protocolo de dosagem que evita efeitos colaterais significantes ou efeitos tóxicos. O efeito resultará em um aperfeiçoamento de uma medida diagnóstica ou parâmetro por pelo menos 5%, usualmente por pelo menos 10%, mais usualmente pelo menos 20%, mais usualmente pelo menos 30%, preferivelmente pelo menos 40%, mais preferivelmente pelo menos 50%, mais preferivelmente pelo menos 60%, idealmente pelo menos 70%, mais idealmente pelo menos 80%, e mais idealmente pelo menos 90%, em que 100% é definido como o parâmetro diagnóstico

"Exógena" se refere a substâncias que são produzidas fora de um organismo, célula, ou corpo humano, dependendo do contexto.

"Endógena" se refere a substâncias que são produzidas dentro de uma célula, organismo, ou corpo humano, dependendo do contexto.

Conforme aqui usado, o termo "molécula de ácido nucleico isolada" se refere a uma molécula de ácido nucleico que é identificada e separada de pelo menos uma molécula de ácido nucleico contaminante com a qual ela está ordinariamente associada na fonte natural do ácido nucleico do anticorpo. Uma molécula de ácido nucleico isolada é outra do que na forma ou assentamento em que ela é encontrada na natureza. As moléculas de ácido nucleico isoladas, portanto, são distinguidas da molécula de ácido nucleico conforme elas existem em células naturais. Contudo, uma molécula de ácido nucleico isolada inclui uma molécula de ácido nucleico contida em células que expressam ordinariamente o anticorpo onde, por exemplo, a molécula de ácido nucleico está em uma localização cromossomal diferente daquela das células naturais.

A expressão "sequências de controle" se refere a sequências de DNA necessárias para a expressão de uma sequência de codificação operavelmente ligada em um organismo hospedeiro particular. As sequências de controle que são adequadas para procariótides, por exemplo, incluem um promotor, opcionalmente uma sequência de operador, e um local de ligação de ribossomo. Células eucarióticas são conhecidas por utilizarem promotores, sinais de poliadenilação, e intensificadores.

Um ácido nucleico é "operavelmente ligado" quando ele é colocado em um relacionamento funcional com outra sequência de ácido nucleico. Por exemplo, DNA para uma pré-sequência ou condutor secretório é operavelmente ligado ao DNA para um polipeptídeo se ele é expresso como uma pré-proteína que participa na secreção do polipeptídeo; um promotor ou
intensificador é operavelmente ligado a uma sequência de codificação se ele afeta a transcrição da sequência; ou um local de ligação de ribossomo é operavelmente ligado a uma sequência de codificação se ele está posicionado de modo a facilitar translação. Geralmente, "operavelmente ligado" significa que as sequências de DNA sendo ligadas são contíguas, e, no caso de um condutor secretório, contíguas e em fase de leitura. Contudo, intensificadores não têm que ser contíguos. A ligação é efetuada por ligação em locais de restrição convenientes. Se tais locais não existem, os adaptadores de oligonucleotídeo sintéticos ou ligadores são usados de acordo com prática convencional.

Conforme aqui usado, as expressões "célula," "linha de célula", e "cultura de célula" são usadas permutavelmente, e todas tais designações incluem progenia. Desse modo, as palavras "transformantes" e "células transformadas" incluem a célula individual primária e culturas derivadas destas sem relação ao número de transferências. É também compreendido que toda progenesis não pode ser precisamente idêntica em teor de DNA, devido a mutações deliberadas ou inadvertentes. Progenias mutantes que têm a mesma função ou atividade biológica, conforme classificada na célula originalmente transformada, são incluídas. Em que designações distintas são pretendidas, será claro a partir do contexto.

Conforme aqui usado, "reação de cadeia de polimerase" ou "P-PCR" se refere a um procedimento ou técnica em que quantidades minutas de uma peça específica de ácido nucleico, RNA e/ou DNA, são amplificadas conforme descrito em, por exemplo, Patente dos Estados Unidos 4.683.195.

Geralmente, a informação de sequência a partir das extremidades da região de interesse, ou além, necessita estar disponível, tal que prímeres de oligonucleotídeo podem ser designados; estes prímeres serão idênticos ou similares em sequência a trançados opostos do gabarito a ser amplificado. Os nucleotídeos de terminal 5' dos dois prímeres podem coincidir com as extremidades do material amplificado. A PCR pode ser usada para amplificar sequências de RNA específicas, sequências de DNA específicas de DNA genômico total, e cDNA transcrito de RNA celular total, bacteriófago, ou se-

Conforme aqui usado, o termo "sequência de linha de germe" se refere a uma sequência de sequências de DNA de imunoglobulina não-rearranjadas. Qualquer fonte adequada de DNA de imunoglobulina não-rearranjada pode ser usada.

"Inibidores" são compostos que diminuem, bloqueiam, previnem, retardam ativação, inativam, desensibilizam, ou regulam inferiormente, por exemplo, um gene, proteína, ligante, receptor, ou célula. Um inibidor pode também ser definido como uma composição que reduz, bloqueia, ou inativa uma atividade constitutiva. Um "antagonista" é um composto que se oopõe às ações de um agonístico. Um antagonista previne, reduz, inibe, ou neutraliza a atividade de um agonístico. Um antagonista pode também prevenir, inibir, ou reduzir atividade constitutiva de um alvo, por exemplo, um receptor-alvo, mesmo em que não existe agonísticos identificados.

Para examinar a extensão de inibição, por exemplo, amostras ou ensaios compreendendo uma dada, por exemplo, proteína, gene, célula, ou organismo, são tratados com um agente de ativação ou inibição potencial, e são comparados a amostras de controle sem o agente. As amostras de controle, isto é, não-tratadas com agente, são designadas um valor de atividade relativo de 100%. A inibição é alcançada quando o valor de atividade relativa ao controle é cerca de 90% ou menos, tipicamente 85% ou menos, mais tipicamente 80% ou menos, mais tipicamente 75% ou menos, geralmente 70% ou menos, mais geralmente 65% ou menos, mais geralmente 60% ou menos, geralmente 60% ou menos, tipicamente 55% ou menos, usualmente 50% ou menos, mais usualmente 45% ou menos, mais usualmente 40% ou menos, preferivelmente
35% ou menos, mais preferivelmente 30% ou menos, ainda mais preferivelmente 25% ou menos, e mais preferivelmente menos do que 25%.

Um ponto final de inibição é geralmente 75% do controle ou menos, preferivelmente 50% do controle ou menos, mais preferivelmente 25% do controle ou menos, e mais preferivelmente 10% do controle ou menos. Geralmente, um ponto final de ativação é pelo menos 150% do controle, preferivelmente pelo menos duas vezes o controle, mais preferivelmente pelo menos quatro vezes o controle, e mais preferivelmente pelo menos 10 vezes o controle.

"Especificamente" ou "seletivamente" se liga, quando se refere a um ligante/receptor, anticorpo/antígeno, ou outro par de ligação, indica uma reação de ligação que é determinativa da presença da proteína, *por exemplo*, TSLP, em uma população heterogênea de proteínas e/ou outros biológicos. Desse modo, sob condições designadas, um ligante/antígeno
especificado se liga a um receptor/anticorpo particular, e não e liga em uma quantidade significante a outras proteínas presentes na amostra.

O anticorpo, ou composição de ligação derivada a partir do local de ligação de antígeno de um anticorpo do método contemplado, se liga a seu antígeno com uma afinidade que é pelo menos duas vezes maior, preferivelmente pelo menos dez vezes maior, mais preferivelmente pelo menos 20 vezes maior, e, mais preferivelmente, pelo menos 100 vezes maior do que a afinidade com antígenos não-relacionados. Em uma concretização preferida, o anticorpo terá uma afinidade que é maior do que cerca de 10^9 litros/mol, conforme determinado, por exemplo, por análise de Scatchard (Munsen, et al. (1980) Analyt. Biochem. 107:220-239).

Conforme aqui usado, o termo "distúrbio inflamatório" se refere a qualquer doença ou distúrbio caracterizado por inflamação local em um local de dano ou infecção, e inclui, sem limitação, inflamação alérgica, doenças autoimunes, e outros distúrbios caracterizados por acúmulo indesejado de célula imune em um local de tecido local.

Conforme aqui usado, o termo "agente imunomodulatório" se refere a agentes naturais ou sintéticos que suprimem ou modulam uma resposta imune. A resposta imune pode ser uma resposta humoral ou celular.

Agentes imunomodulatórios envolvem agentes imunosupressores ou anti-inflamatórios.

"Agentes imunosupressores", "drogas imunosupressoras", ou "imunosupressores", conforme aqui usados, são terapêuticos que são usados na terapia imunosupressora para inibir ou prevenir atividade do sistema imune. Clinicamente eles são usados para prevenir a rejeição de órgãos transplantados e tecidos (por exemplo, tutano de osso, rim, fígado), e/ou no tratamento de doenças autoimunes, ou doenças que são muito similarmente de origem autoimune (por exemplo, artrite reumatoide, miastenia gravis, eritematose de lupos sistêmica, colite ulcerativa, esclerose múltipla). Fármacos imunosupressores podem ser classificadas em quatro grupos: glucocorticoides, ..., "cytosta-
ticas#cytostatics" ou "citoestáticos; anticorpos (incluindo Modificadores de Resposta Biológica ou DMARDs); fármacos; fármacos, incluindo agentes quimioterápicos conhecidos usados no tratamento de distúrbios proliferativos. Para esclerose múltipla, em particular, os anticorpos da presente invenção podem ser administrados em conjunto com uma nova classe de terapêuticos similares a proteína de ligação de mielin, conhecidos como copaxonas.

"Agentes anti-inflamatórios", ou "fármacos anti-inflamatórias", são usados para representar ambos terapêuticos esteroidais e não-esteroidais. Esteroides, também conhecidos como corticosteroides, são fármacos que se assemelham proximamente a cortisol, um hormônio produzido naturalmente por glândulas adrenais. Esteroides são usados como o tratamento principal para certas condições inflamatórias, tais como: vasculite sistêmica (inflamação de vasos sanguíneos; e Miosite (inflamação de músculo). Os esteroides podem também serem usados seletivamente para tratar condições inflamatórias, tais como: artrite reumatoide (artrite inflamatória crônica que ocorre nas juntas em ambos os lados do corpo); eritematose de lupos sistêmica (uma doença generalizada causada pela função de sistema imune anormal); síndrome de Sjögren (distúrbio crônico que seca os olhos e seca a boca).

Fármacos não-esteroidais anti-inflamatórias, usualmente abreviadas por NSAIDs, são fármacos com efeitos analgésicos, antipiréticos e anti-inflamatórios – elas reduzem dor, febre e inflamação. O termo "não-esteroidal" é usado para distinguir estas fármacos de esteroides, que (entre uma faixa ampla de outros efeitos) têm uma ação anti-inflamatória de depressão eicosanoide similar. NSAIDs são geralmente indicadas para o alívio sintomático das seguintes condições: artrite reumatoide; osteoartrite; artropatias inflamatórias (por exemplo, espondilite de anquilosação, artrite psoriática, síndrome de Reiter); gota aguda; dismenorreia; dor de osso metastático; dor de cabeça e enxaqueca; dor pós-operatória; dor suave a moderada devido a inflamação e dano de tecido; pirexia; e cólica renal. NSAIDs incluem salicilatos, ácidos arilcanônicos, ácidos 2-arilpropionico (profens), ácidos N-arantranílicos (ácidos fenâmicos), oxicams, coxibs, e
sulfonanilidas.

II. Geral

A presente invenção proporciona anticorpos anti-TSLP projetados e usos destes para tratar distúrbios inflamatórios, e, particularmente, distúrbios inflamatórios alérgicos. Em uma concretização preferida, o distúrbio inflamatório é asma. Em uma concretização preferida, o distúrbio inflamatório alérgico é rinosinusite alérgica, asma alérgica, conjuntivite alérgica, ou dermatite alérgica. A presente invenção também proporciona anticorpos anti-TSLP projetados para tratar fibrose, doença inflamatória de intestino ou linfoma de Hodgkin.

TSLP é um membro da família de 'cadeia longa' de citocinas hematopoieticas. Critérios na base estrutural de reconhecimento de citocina/receptor de 'cadeia longa' mostraram que, embora áreas grandes de superfície de proteína sejam enterradas na formação de citocina – complexos de receptor, a afinidade da interação é dominada por uns poucos resíduos de aminoácido apertadamente agrupados formando um 'ponto quente' energético no centro da interface de ligação. A identidade dos resíduos que dominam a energia de ligação de uma interface grande de proteína-proteína foi denominada o 'epitópe funcional'. A afinidade da interação (e, consequentemente, especificidade biológica) é consequentemente definida pela complementaridade estrutural dos epitópes funcionais de ligante e receptor. Estudos detalhados de mutagênese mostraram que os resíduos mais significantes que compõem os epitópes funcionais de citocinas e receptores são contatos hidrofóbicos envolvendo, ou cadeias laterais não-polares, tais como triptofano, os componentes alifáticos de cadeias laterais não-polares, ou o suporte principal do polipeptídeo. O 'núcleo' não-polar é circundado por um halo de resíduos polares de menor importância para energia de ligação. Estudos cinéticos indicam que o papel primário dos epitópes funcionais é estabilizar interação de proteína-proteína pela diminuição da taxa de dissociação do complexo. Tem sido sugerido que o contato inicial entre citocina e receptor é dominado pela difusão aleatória ou 'rolamento' de superfícies de proteína que produzem muitos contatos instáveis. O complexo é então esta-
bilizado quando os epitópes funcionais do receptor e ligante engajam (vide, por exemplo, Bravo e Heath, *supra*).

III. Geração de Anticorpos Específicos de TSLP

Qualquer método adequado para geração de anticorpos monoclonais pode ser usado. Por exemplo, um recipiente pode ser imunizado com uma forma ligada ou não-ligada (por exemplo, ocorrendo naturalmente) do heterodímero de TSLP, ou um fragmento deste. Qualquer método adequado de imunização pode ser usado. Tais métodos podem incluir adjuvantes, outros imunosteimulantes, imunizações impulsionadoras repetidas, e o uso de uma ou mais rotas de imunização.

Qualquer fonte adequada de TSLP pode ser usada como o imunógeno para a geração do anticorpo não-humano, das composições e métodos aqui descritos. Tais formas incluem, mas não estão limitadas a, proteína inteira, incluindo heterodímeros ligados e que ocorrem naturalmente, peptídeo(s), e epitópes, gerados através de meios de degradação recombinante, sintética, química ou enzimática conhecidos na técnica.

Qualquer forma do antígeno pode ser usada para gerar o anticorpo que é suficiente para gerar um anticorpo biologicamente ativo. Desse modo, a indução do antígeno pode ser um epitópe simples, epitópes múltiplos, ou a proteína total sozinha ou em combinação com um ou mais agentes de intensificação de imunogenicidade conhecidos na técnica. O antígeno de indução pode ser uma proteína de comprimento total isolada, uma proteína de superfície de célula (*por exemplo*, imunização com células transfectadas com pelo menos uma porção do antígeno), ou uma proteína solúvel (*por exemplo*, imunização com somente porção de domínio extracelular da proteína). O antígeno pode ser produzido em uma célula geneticamente modificada. O DNA que codifica o antígeno pode ser genômico ou não-genômico (*por exemplo*, cDNA), e codifica pelo menos uma porção do domínio extracelular. Conforme aqui usado, o termo "porção" se refere ao número mínimo de aminoácidos ou ácidos nucleicos, conforme apropriado, para constituir um epitópe imunogênico do antígeno de interesse. Quaisquer vetores genéticos adequados para transformação das células de interesse podem ser empre-
gados, incluindo, mas não limitados a, vetores adenovirais, plasmídeos, e vetores não-virais, tais como lipídios catiônicos.

Outras técnicas adequadas envolvem seleção de bibliotecas de anticorpos em fago ou vetores similares. *Vide*, *por exemplo*, Huse et al., *Sci-

Anticorpos ou composições de ligação contra fragmentos predefinidos de TSLP podem ser providos por imunização de animais com conjugados do polipeptídeo, fragmentos, peptídeos, ou epitóps com proteínas-veículo. Anticorpos monoclonais são preparados de células que secretam o anticorpo desejado. Estes anticorpos podem ser classificados para ligação a TSLP normal ou defectivo. Estes anticorpos monoclonais se ligarão usualmente com pelo menos um K_d de cerca de 1 μM, mais usualmente pelo menos cerca de 300 nM, tipicamente pelo menos cerca de 30 nM, preferivelmente pelo menos cerca de 10 nM, mais preferivelmente pelo menos cerca de 3 nM ou melhor, usualmente determinado por ELISA.

IV. Humanização de Anticorpos Específicos de TSLP

Qualquer anticorpo não-humanizado adequado pode ser usado como uma fonte para a região hipervariável. As fontes para anticorpos não-humanos incluem, mas não estão limitadas a, murina, Lagomorphs (incluindo coelhos), bovino, e primatas. Para a maior parte, os anticorpos humani-

Métodos para projetar recombinantemente anticorpos foram descritos, *por exemplo*, por Boss et al. (Patente dos Estados Unidos No. 4.816.397), Cabilly et al. (Patente dos Estados Unidos No. 4.816.567), Law et al. (Publicação de Pedido de Patente Europeu No. 438 310) e Winter (Publicação de Pedido de Patente Europeu No. 239400).

Variantes se sequência de aminoácido de anticorpo anti-TSLP humanizado são preparadas pela introdução de mudanças de nucleotídeo apropriadas no DNA de anticorpo anti-TSLP humanizado, ou por síntese de peptídeo. Tais variantes incluem, por exemplo, anulações de, e/ou inserções em, e/ou substituições de resíduos dentro das sequências de aminoácido mostradas para o anti-TSLP F(ab) humanizado. Qualquer combinação de anulação, inserção, e substituição é feita para chegar na construção final, provido que a construção final possui as características desejadas. As mudanças de aminoácido também podem alterar os processos pós-translacionais do anticorpo anti-TSLP humanizado, tal como mudando o número ou posição de locais de glicosilação.

Um método útil para identificação de certos resíduos ou regiões do polipeptídeo de anticorpo anti-TSLP humanizado que são localizações preferidas para mutagênese é denominado "mutagênese de escaneamento
de alanina", conforme descrito por Cunningham e Wells (1989) *Science* 244: 1081-1085. Aqui, um resíduo ou grupo de resíduos-alvos são identificados (*por exemplo*, resíduos carregados, tais como Arg, Asp, His, Lys, e Glu), e substituídos por um aminoácido neutro ou negativamente carregado (mais preferivelmente alanina ou polialanina) para afetar a interação dos aminoácidos com antígeno de TSLP. Os resíduos de aminoácido que demonstram sensibilidade funcional às substituições em seguida são refinados pela introdução de adicionais ou outras variantes em, ou para, os locais de substituição. Desse modo, enquanto o local para introdução de uma variação de sequência de aminoácido é predeterminado, a natureza da mutação *per se* não necessita ser predeterminada. Por exemplo, para analisar o desempenho de uma mutação a um dado local, escaneamento de Ala ou mutagênese aleatória é conduzida no códon-alvo ou região, e as variantes de anticorpo anti-TSLP humanizado expresso são classificadas para a atividade desejada.

Inserções de sequência de aminoácido incluem fusões amino- e/ou carboxil-terminal variando em comprimento de um resíduo para polipeptídeos contendo uma centena ou mais resíduos, bem como inserções de intrassequência de resíduos de aminoácido simples ou múltiplas. Exemplos de inserções terminais incluem anticorpo anti-TSLP humanizado com um resíduo N-terminal metionil, ou o anticorpo fundido a uma etiqueta de epitópe. Outras variantes insercionais da molécula de anticorpo anti-TSLP humanizado incluem a fusão ao N- ou C-terminal de anticorpo anti-TSLP humanizado de uma enzima ou um polipeptídeo que aumenta a meia vida do soro do anticorpo.

Outro tipo de variante é uma variante de substituição de aminoácido. Estas variantes têm pelo menos um resíduo de aminoácido na molécula de anticorpo anti-TSLP humanizado removida, e um resíduo diferente inserido em seu lugar. Os locais de maior interesse para mutagênese substitucional incluem os circuitos fechados hipervariáveis, mas alterações de FR são também contempladas. Resíduos de região hipervariável ou resíduos de FR envolvidos na ligação de antígeno são geralmente substituídos em uma maneira relativamente conservativa.
Outro tipo de variante de aminoácido do anticorpo altera o modelo de glicosilação original do anticorpo. Por alteração é significativo anulação de uma ou mais porções de carboidrato encontradas no anticorpo, e/ou adição de um ou mais locais de glicosilação que não estão presentes no anticorpo. A glicosilação de anticorpos é típicamente ou N-ligada ou O-ligada. N-ligada se refere à fixação da porção de carboidrato à cadeia lateral de um resíduo de asparagina. As sequências de tripeptídeo asparagina-X-serina e asparagina-X-treonina, em que X é qualquer aminoácido, exceto prolina, são sequências de reconhecimento para fixação enzimática da porção de carboidrato à cadeia lateral de asparagina. Desse modo, a presença de qualquer destas sequências de tripeptídeo em um polipeptídeo cria um local de glicosilação potencial. Glicosilação O-ligada se refere à fixação de um dos açúcares N-aceilgalactosamina, galactose, ou xilose a um ácido hidroxiamino, mais comumente serina ou treonina, embora 5-hidroxiprolina ou 5-hidroxilisina possam também serem usadas.

A adição de locais de glicosilação ao anticorpo é convenientemente acompanhada pela alteração da sequência de aminoácido tal que ela contém uma ou mais das sequências de tripeptídeo acima descritas (para locais de glicosilação N-ligados). A alteração pode também ser feita pela adição de, ou substituição por, um ou mais resíduos de serina ou treonina à sequência do anticorpo original (para locais de glicosilação O-ligados).

Ainda outro tipo de variante de aminoácido é a substituição de resíduos para proporcionar maior estabilidade química do anticorpo humanizado final. Por exemplo, um resíduo de asparagina (N) pode ser mudado para reduzir o potencial para formação de isoaaspartato em quaisquer sequências de NG dentro de uma CDR de roedor. Em uma concretização, a asparagina é mudada para glutamina (Q). A formação de isoaaspartato pode debilitar ou anular completamente a ligação de um anticorpo a seu antígeno-alvo. Presta (2005) J. Allergy Clin. Immunol. 116:731 em 734. Em adição, resíduos de metionina em CDRs de roedor podem ser mudados para reduzir a possibilidade que a metionina enxofre oxidaria, que pode reduzir a afinidade de ligação do antígeno, e também contribuir para heterogeneidade mole-
cular na preparação de anticorpo final. *Ig.* Em uma concretização, a metionina é mudada para alanina (A). Os anticorpos com tais substituições são subseqüentemente classificados para assegurar que as substituições não diminuem a afinidade de ligação de TSLP a níveis inaceitáveis.

As moléculas de ácido nucleico que codificam variantes de seqüências de aminoácido de anticorpo específico de TSLP humanizado são preparadas por uma variedade de métodos conhecidos na técnica. Estes métodos incluem, mas não estão limitados a, isolamento de uma fonte natural (no caso de variantes de sequência de aminoácido que ocorrem naturalmente), ou preparação por mutagênese mediada por oligonucleotídeo (ou direcionada de local), mutagênese de PCR, e mutagênese de cassetes de uma variante anteriormente preparada, ou uma versão não-variante de anticorpo anti-TSLP humanizado.

Ordinariamente, as variantes de sequência de aminoácido do anticorpo anti-TSLP humanizado terá uma sequência de aminoácido tendo pelo menos 75% da identidade de sequência de aminoácido com as sequências de aminoácido de anticorpo humanizado de cadeia ou pesada ou leve, mais preferivelmente pelo menos 80%, mais preferivelmente pelo menos 85%, mais preferivelmente pelo menos 90%, e mais preferivelmente pelo menos 95%. A identidade ou homologia com relação a esta sequência é definida aqui como a percentagem de resíduos de aminoácido na sequência candidata que são idênticas aos resíduos de anti-TSLP humanizados, após alinhamento das sequências e introdução de folgas, se necessário, para alcançar a identidade de sequência porcento máxima, e não considerando quaisquer substituições conservativas como parte da identidade de sequência. Nenhuma das extensões N-terminal, C-terminal, ou internas, anulações, ou inserções na sequência de anticorpo, devem ser construídas como afetando a identidade de sequência ou homologia.

O anticorpo humanizado pode ser selecionado de qualquer classe de imunoglobulinas, incluindo IgM, IgG, IgD, IgA, e IgE. Preferivelmente, o anticorpo é um anticorpo de IgG. Qualquer isotipo de IgG pode ser usado, incluindo IgG₁, IgG₂, IgG₃, e IgG₄. Variantes dos isotipos de IgG são também
contempladas. O anticorpo humanizado pode compreender sequências de mais do que uma classe ou isótipo. A otimização das sequências de domínio constante necessárias para gerar a atividade biológica desejada é prontamente alcançada pela classificação dos anticorpos nos ensaios biológicos descritos abaixo.

Do mesmo modo, qualquer classe de cadeia leve pode ser usada nas composições e métodos aqui. Especificamente, kappa, lâmbda, ou variantes destas, são úteis nas presentes composições e métodos.

Qualquer porção adequada das sequências de CDR a partir do anticorpo não-humano pode ser usada. As sequências de CDR podem ser mutagenizadas por substituição, inserção ou anulação de pelo menos um resíduo tal que a sequência de CDR seja distinta da sequência de anticorpo humana e não-humana empregada. É contemplado que tais mutações seriam mínimas. Tipicamente, pelo menos 75% dos resíduos de anticorpo humanizado corresponderão âqueles dos resíduos de CDR não-humanos, mais frequentemente 90%, e, mais preferivelmente maior do que 95%.

Qualquer porção adequada das sequências de FR a partir do anticorpo humano pode ser usada. As sequências de FR podem ser mutagenizadas por substituição, inserção ou anulação de pelo menos um resíduo tal que a sequências de FR sejam distintas das sequências de anticorpo humano e não-humano empregadas. É contemplado que tais mutações seriam mínimas. Tipicamente, pelo menos 75% dos resíduos de anticorpo humanizado corresponderão âqueles dos resíduos de FR humanos, mais frequentemente 90%, e, mais preferivelmente, maior do que 95%.

Tabela 2
Sequências de Cadeia Pesada e Domínios

<table>
<thead>
<tr>
<th>Clone de anticorpo</th>
<th>SEQ ID NO:</th>
<th>Resíduos de V_H</th>
<th>resíduos de CDR de cadeia pesada</th>
</tr>
</thead>
<tbody>
<tr>
<td>r23B12</td>
<td>7</td>
<td>1-116</td>
<td>26-35 50-65 95-105</td>
</tr>
<tr>
<td>Hu23B12</td>
<td>10</td>
<td>1-116</td>
<td>26-35 50-65 95-105</td>
</tr>
</tbody>
</table>

Tabela 3
Sequências de Cadeia Leve e Domínios

<table>
<thead>
<tr>
<th>Clone de anticorpo</th>
<th>SEQ ID NO:</th>
<th>Resíduos de V_L</th>
<th>Resíduos de CDR de cadeia leve</th>
</tr>
</thead>
<tbody>
<tr>
<td>r23B12</td>
<td>8</td>
<td>1-108</td>
<td>24-34 50-56 89-97</td>
</tr>
<tr>
<td>Hu23B12</td>
<td>12</td>
<td>1-108</td>
<td>24-34 50-56 89-97</td>
</tr>
</tbody>
</table>

A sequência variável de aminoácido de cadeia pesada r23B12 é EEKLQQSGDD LVR

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PGAAVKMSCKASGYIFTDYAMHWVKQRPGQGLEWIGTFIPLLDTSDYNQNFKGRATLTADKSSNTAYMELSRLTSEDASAVYYCARMGVTHS HYVMDA WGQ GASVTVSS (SEQ ID NO. 7).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A sequência variável de aminoácido de cadeia leve r23B12 é DIVLTQSPATLSV

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPGESVSLSCRASQPISISVHWFQQQKSNESPRLLIKFASQSIGIPSRSFGSGSGTDFTL NINRVESEDFSVYVYCCQFTFSLPHYTFTGTGT KLELKR (SEQ ID NO. 8).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A sequência de ácido nucleico para a cadeia pesada variável de hu23B12 é CAG GTG CAG CTG GTG CAG TCT GGC GCT GAG GTG AAG
AAG CCT GGC GCC TCC GTG AAG GTC TCC TGC AAG GCT TCT GGC
TAC ATC TTC ACC GAC TAC GCC ATG CAC TGG GTG CGG CAG GCC
CCT GGC CAG GGG CTG GAG TGG ATG GGT ACC TTC ATC CCT CTG
CTG GAC ACC AGC GAC TAC ACC CAG AAC TTC AAG GGC AGA GTC
ACC ATG ACC ACA GAC ACA TCC ACC AGC ACA GCC TAC ATG GAG
CTG AGG AGC CTG AGA TCT ACC ACC ACC ACC ACC GTC TAT TAC TGT
GCC AGA ATG GGA GTG ACC CAC AGC TAC GTG ATG GAT GCA TGG
GGC CAG GGC ACC CTG GTC ACC GTC TCC AGC (SEQ ID NO: 9), que
codifica a sequência variável de de aminoácido de cadeia pesada de
hu23B12
QVQLVQSGAEVKPGASVKVSCKASGYIFTDYAMHWVRQAPGGGLEWM
GTFIPLLDTSDLNQNFKGRVTTDTSTSTAYMELRSLRSDDTAVYYCARM
GVTHSYVM DAWQGGLTVTVSS (SEQ ID NO. 10).

A sequência de ácido nucleico para a cadeia leve variável de
hu23B12 é GAA ATT GTG CTG ACT CAG AGC CCA GGC ACC CTG TCT
CTG TCT CCA GGC GAG AGA GCC ACC CTC TCC TGC CGG GCC AGC
CAG CCC ATC TCC ATC AGC GTG CAC TGG TAC CAG CAG AAA CCA
GGA CAG GCT CCA AGG CTG CTG ATC TAC TTT GCC TCC CAG AGC
ATC TCC GGG ATC CCC GAT AGG TTC AGC GGA TCC GGA TCT GGG
ACA GAT TTC ACC CTC ACC ATC AGC AGA CTG GAG CCT GAA GAT
TTC GCA GTG TAT TAC TGT CAG CAG ACC TTC AGC CTG CCT TAC
ACT TTC GGC CAA GGG ACC AAG GTG GAG ATC AAG CGT (SEQ ID
NO: 11), que codifica a sequência variável de aminoácido de cadeia leve de
hu23B12 é EIVLTQSPGTLSPGERATLSCRASQPISIVHWWYYQKPGQA
PRLLIYFASQSISGPDRFSGSGLDFTLITISRLEPEDFAVYYCQQTFLPY
TFGQG TKVEIKR (SEQ ID NO. 12).

A sequência de ácido nucleico para a cadeia leve de hu23B12 é
CAG GTG CAG CTG GTG CAG TCT GGC GCT GAG GTG AAG AAG CCT
GGC GCC TCC GTG AAG GTC TCC TGC AAG GCT TCT GGC TAC ATC
TTC ACC GAC TAC GCC ATG CAC TGG GTG CGG CAG GCC CCT GGC
CAG GGG CTG GAG TGG ATG GGT ACC TTC ATC CCT CTG CTG GAC
ACC AGC GAC TAC AAC CAG AAC TTC AAG GGC AGA GTC ACC ATG

ACC ACA GAC ACA TCC ACC AGC ACA GCC TAC ATG GAG CTG AGG
AGC CTG AGA TCT GAC GAC ACC GCC GTG TAT TAC TGT GCC AGA
ATG GGA GTG ACC CAC AGC TAC GTG ATG GAT GCA TGG GGC CAG
GGC ACC CTG GTC ACC GTC TCC AGC GCT AGC ACC AAG GGC CCA
5 TCG GTC TTC CCC CTG GCA CCC TCC TCC AAG AGC ACC TCT GGG
GGC ACA GCG GCC CTG GGC TGC CTG TGC AAG GAC TAC TTC CCC
GAA CCG GTG AGC GTG TCG TGG AAG TAC TCA GCC GCC CTG ACC AGC
GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA CTC
TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC AGC TTG
10 GGC ACC CAG ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC
AAC ACC AAG GTG GAC AAG AAA GTT GAG CCC AAA TCT TGT GAC
AAA ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT GAA CTC CTG
GGG GGA CCG TCA GTC TTC CTC TTC CCC CCC AAA CCC AAG GAC
ACC CTC ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG
15 GTG GAC GTG AGC CAC GAA GAC CCT GAG GTC AAG TTC AAC TGG
TAC GTG GAC GGC GTG GAG GTG CAT AAT GCC AAG ACA AAG CCG
CGG GAG GAG CAG TAC AAC AGC ACG TAC CGT GTG GTC AGC GTC
CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG GAG TAC
AAG TGC AAG GTC TCC AAC AAA GCC CTC CCA GCC CCC ATC GAG
20 AAA ACC ATC TCC AAA GCC AAA GGG CAG CCC CCA GCA CAG
GTG TAC ACC CTG CCC CCA TCC CGG GAT GAG CTG ACC AAG AAC
CAG GTC AGC CTG ACC TGC CTG GTC AAA GCC TTC TAT CCC AGC
GAC ATC GCC GTG GAG TGG GAG AGC AAT GGG CAG CCG GAG AAC
AAC TAC AAG ACC ACG CCT CCC GTG CTG GAC TCC GAC GCC TCC
25 TTC TTC CTC TAC AGC AAG CTC ACC GTG GAC AAG AGC AGG TGG
CAG CAG GGG AAC GTC TTC TCA TGC TCC GTG ATG CAT GAG GCT
CTG CAC AAG CAC TAC AGC CAG AAG AGC CTC TCC CTG TCT CCG
GGT AAA (SEQ ID NO: 13), que codifica a sequência de hu23B12 de ami-
noácido de cadeia pesada pesada
30 QVQLVQSGAEVKPGASVVKVSCKASGYIFTDYAMHWVRQAPGQGLEWM
GTFPLLDTSDKNVQNKGRVTMZMTDTSTSTAYMLRSLRSDDTAVYYPACRM
GVTHSYVMDDWQGTLTVSSA STKGPSVFPLAPSSKSTSGTAA LGC L V
A sequência de ácido nucleico para a cadeia leve de hu23B12 é:

GAA ATT GTG CTG ACT CAG AGC CCA GGC ACC CTG TCT CTT
CCA GGC GAG AGA GCC ACC CTC TCC TGC CCG GCC AGC CAG CCC
ATC TCC ATC AGC GTG CAC TGG TAC CAG CAG AAA CCA GGA CAG
GCT CCA AGG CTG ATC TAC TTC GCC TCC CAG AGC ATC TCC
GGG ATC CCC GAT AGG TTC AGC GGA TCC GGA TCT GGG ACA GAT
TTC ACC CTC ACC ATC AGC AGA CTG GAG CCT GAA GAT TTC GCA

GTG TAT TAC TGT CAG CAG ACC TCC AGC CTG CCT TAC ACT TTC
GGC CAA GGG ACC AAG GTG GAG ATC AAG CGT ACG GTG GCT GCA
CCA TCT GTC TTC ATC TTC CCC CCA TCT GAT GAG CAG TGT AAA
TCT GGA ACT GCC TCT GTT GTG TGC CTG CTG AAT AAC TTC TAT
CCC AGA GAG GCC AAA GTA CAG TGG AAG GTG GAT AAC GCC CTC

CAA TCG GGT AAC TCC CAG GAG AGT GTC ACA GAG CAG CAG AGC
AAG GAC AGC ACC TAC AGC CTC AGC AGC ACC CTG ACN CAG AGC
AAA GCA GAC TAC GAG AAA CAC AAA GTC TAC GCC TGC GAA GTG
ACC CAT CAG GGC CTG AGC TCG CCC GTC ACA AAG AGC TCC AAC
AGG GGA GAG TGT (SEQ ID NO: 15), que codifica a sequência de aminoácido de cadeia leve de hu23B12:

EIVLTQSPGTLSLSPGERATLSCRASQPISISVHWYQQKPGQAPRLLI

Também contemplados são anticorpos químéricos. Conforme notado acima, anticorpos químéricos típicos compreendem uma porção da
cadeia pesada e/ou leve idêntica a ou homóloga às sequências correspondentes em anticorpos derivados de uma espécie particular, ou pertencentes a uma classe ou subclasse de anticorpo particular, enquanto o restante da(s) cadeia(s) é idêntica a ou homóloga às sequências correspondentes em anticorpos derivados de outras espécies, ou pertencentes a outra classe ou subclasse de anticorpo, bem como fragmentos de tais anticorpos, considerando-se que eles exibam a atividade biológica desejada (Patente dos Estados Unidos 4.816.567; e Morrison et al. (1984) Proc. Natl. Acad. Sci. USA 81: 6851-6855).

Em ainda outras concretizações, domínios constantes diferentes podem ser anexados às regiões de \(V_L \) e \(V_H \) humanizadas aqui providas. Por exemplo, se um uso pretendido particular de um anticorpo (ou fragmento) da presente invenção fosse chamar por funções efetuadoras alteradas, um domínio constante de cadeia pesada ouťro do que IgG1 pode ser usado. Embora anticorpos de IgG1 proporcionem meia vida longa, e para funções efetuadoras, tal como ativação de complemento e citotoxicidade celular dependente de anticorpo, tais atividades podem não serem desejáveis para todos os
usos do anticorpo. Em tais exemplos, um domínio constante de IgG4, por exemplo, pode ser usado.

V. Atividade biológica e Anti-TSLP Humanizado

Anticorpos tendo as características aqui identificadas como sendo desejáveis em um anticorpo anti-TSLP humanizado podem ser classificados para atividades biológicas inibitórias in vitro, ou para afinidade de ligação adequada. Para classificar os anticorpos que se ligam ao epitópe no TSLP humano ligado por um anticorpo de interesse (por exemplo, aqueles que bloqueiam ligação da citocina a seu receptor), um ensaio de bloqueio cruzado de rotina, tal como aquele descrito em ANTIBODIES, A LABORATORY MANUAL, Cold Spring Harbor Laboratory, Ed Harlow e David Lane (1988), pode ser realizado. Anticorpos que se ligam ao mesmo epitópe são similarmente para bloqueio cruzado em tais ensaios, mas nem todos os anticorpos de bloqueio cruzado se ligam precisamente ao mesmo epitópe, visto que o bloqueio cruzado pode resultar de impedimento estérico de ligação de anticorpo por anticorpos ligados em epitópes mais próximos, ou mesmo se sobrepondo.

Alternativamente, mapeamento de epitópe, por exemplo, conforme descrito em Champe et al. (1995) J. Biol. Chem. 270:1388-1394, pode ser realizado para determinar se o anticorpo se liga a um epitópe de interesse. "Mutagênese de escaneamento de alanina", conforme descrito por Cunningham e Wells (1989) Science 244: 1081-1085, ou alguma outra forma de mutagênese de ponto de resíduos de aminoácido em TSLP humano também seja usada para determinar o epitópe funcional para um anticorpo anti-TSLP da presente invenção. Estudos de mutagênese, contudo, podem também revelar resíduos de aminoácido que sejam cruciais à estrutura tridimensional total de TSLP, mas que não sejam diretamente envolvidas em contatos anticorpo-antígeno, e, desse modo, outros métodos podem ser necessários para confirmar um epitópe funcional determinado usando-se este método.

O epitópe ligado por um anticorpo específico pode também ser determinado pela avaliação da ligação do anticorpo a peptídeos compreendendo fragmentos de TSLP humano. A sequência de aminoácido de TSLP
humano é colocada em SEQ ID NO: 4 em WO 00/17362. Uma série de peptídeos de sobreposição envolvendo a sequência de TSLP pode ser sintetizada e classificada para ligação, por exemplo, em um ELISA direto, um ELISA competitivo (em que o peptídeo é avaliado para sua capacidade de prevenir ligação de um anticorpo a TSLP ligado a uma cavidade de uma placa de microtitulação), ou em um chip. Tais métodos de classificação de peptídeo podem não serem capazes de detectar alguns epitópes funcionais descontínuos, isto é, epitópes funcionais que envolvem resíduos de aminoácido que não são contíguos ao longo da sequência primária da cadeia de polipeptídeo de TSLP.

O epitópe ligado por anticorpos da presente invenção pode também ser determinado por métodos estruturais, tais como determinação de estrutura de cristal de raios X (por exemplo, WO2005/044853), modelagem molecular e espectroscopia de ressonância magnética nuclear (RMN), incluindo determinação de RMN das taxas de troca de H-D de hidrogênios de amida instáveis em TSLP quando livres e quando ligados em um complexo com um anticorpo de interesse (Zinn-Justin et al. (1992) Biochemistry 31, 11335-11347; Zinn-Justin et al. (1993) Biochemistry 32, 6884-6891).

Com relação a cristalografia de raios X, a cristalização pode ser efetuada usando-se qualquer dos métodos conhecidos na técnica (por exemplo, Giege et al. (1994) Acta Crystallogr. D50:339-350; McPherson (1990) Eur. J. Biochem. 189:1-23), incluindo microbatelada (por exemplo, Chayen (1997) Structure 5:1269-1274), tendo difusão de vapor de gota em balanço (por exemplo, McPherson (1976) J. Biol. Chem. 251:6300-6303), semeadura e diálise. É desejável usar uma preparação de proteína tendo uma concentração de pelo menos cerca de 1 mg/mL e preferivelmente cerca de 10 mg/mL a cerca de 20 mg/mL. A cristalização pode ser melhor alcançada em uma solução de precipitante contendo polietileno glicol 1000-20,000 (PEG; peso molecular médio variando de cerca de 1000 a cerca de 20,000 Da), preferivelmente cerca de 5000 a cerca de 7000 Da, mais preferivelmente cerca de 6000 Da, com concentrações variando de cerca de 10% a cerca de 30% (w/v). Pode também ser desejável incluir um agente de estabilização
de proteína, por exemplo, glicerol a uma concentração variando de cerca de 0,5% a cerca de 20%. Um sal adequado, tal como cloreto de amônia, cloreto de lítio ou citrato de sódio pode também ser desejável na solução de precipitante, preferencialmente em uma concentração variando de cerca de 1 mM a cerca de 1000 mM. O precipitante é preferencialmente tamponado a um pH de cerca de 3,0 a cerca de 5,0, preferencialmente cerca de 4,0. Tampões específicos úteis na solução de precipitante pode variar e são bem-conhecidos na técnica (Scopes, Proteina Purification: Principles e Practice, Third ed., (1994) Springer-Verlag, New York). Exemplos de tampões úteis incluem, mas não estão limitados a, HEPES, Tris, MES e acetato. Cristais podem ser desenvolvidos a uma faixa ampla de temperaturas, incluindo 2°C, 4°C, 8°C e 26°C.

A ligação de anticorpos adicionais ao mesmo epitópe como um anticorpo da presente invenção pode ser obtida, por exemplo, por classificação de anticorpos elevada contra TSLP para ligação ao epitópe, ou por imunização de um animal com um peptídeo compreendendo um fragmento de TSLP humano compreendendo a sequência de epitópe. Anticorpos que se ligam ao mesmo epitópe funcional podem ser esperados exibir atividades biológicas similares, tais como bloqueio de ligação de receptor, e tais atividades podem ser confirmadas por ensaios funcionais dos anticorpos.

Afinidades de anticorpo (por exemplo, para TSLP humano) podem ser determinadas usando-se análise-padrão. Anticorpos humanizados preferidos são aqueles que se ligam a TSLP humano com um valor K_D of
não mais do que cerca de 1×10^{-7}; preferivelmente não mais do que cerca de 1×10^{-8}; mais preferivelmente não mais do que cerca de 1×10^{-9}; e mais preferivelmente não mais do que cerca de 1×10^{-10} M.

Os anticorpos e fragmentos destes úteis nas presentes composições e métodos são anticorpos e fragmentos biologicamente ativos. Conforme aqui usado, o termo "biologicamente ativo" se refere a um anticorpo ou fragmento de anticorpo que é capaz de se ligar ao epitópe antigênico desejado, ou exercer indiretamente um efeito biológico. Tipicamente, estes efeitos resultam da falha do TSLP se ligar a seu receptor. Em uma concretização, o anticorpo e fragmentos destes úteis nas presentes composições e métodos inibem: proliferação induzida por hTSLP de uma linha de célula de Baf-3 transfetada com receptor-hTSLP e IL-7Ralfa; expressão de luciferase induzida por hTSLP de uma linha de célula de Baf-3 transfetada com o receptor-TSLP, e um sistema relator de luciferase; secreção de TARC induzida por hTSLP de monócitos primários humanos isolados de PBMCs; e indução de diferenciação de Th2.

Conforme aqui usado, o termo "específico" se refere a ligação seletiva do anticorpo ao epitópe de antígeno alvo. Os anticorpos podem ser testados para especificidade de ligação por comparação da ligação a TSLP para ligação ao antígeno irrelevante ou mistura de antígeno sob um dado conjunto de condições. Se o anticorpo se liga ao TSLP pelo menos 10, e preferivelmente 50 vezes mais do que ao antígeno irrelevante ou mistura de antígeno, então ele é considerado ser específico. Um anticorpo que "especificamente se liga" a TSLP não se liga às proteínas que não compreendem as sequências derivadas de TSLP, isto é, "especificidade", conforme aqui usado, se refere a especificidade de TSLP, e não qualquer outras sequências que podem estar presentes na proteína em questão. Por exemplo, conforme aqui usado, um anticorpo que "especificamente se liga" a TSLP tipicamente se ligará a FLAG-h TSLP, que é uma proteína de fusão compreendendo TSLP e uma etiqueta de peptídeo FLAG®, mas não se liga a etiqueta de peptídeo FLAG® sozinho ou quando ele é fundido a uma proteína outra do que TSLP.
VI. Composições Farmacêuticas

Toxicidade e eficiência terapêutica das composições de anticorpo, administradas sozinhas ou em combinação com um agente imunossupressor, podem ser determinadas por procedimentos farmacêuticos padrões em culturas de célula ou animais experimentais, por exemplo, para determinação da LD$_{50}$ (a dose letal em 50% da população) e a ED$_{50}$ (a dose terapêuticamente efetiva em 50% da população). A proporção de dose entre efeitos tóxicos e terapêuticos é o índice terapêutico, e ele pode ser expresso como a proporção entre LD$_{50}$ e ED$_{50}$. Os anticorpos que exibem altos índices terapêuticos são preferidos. Os dados obtidos a partir destes ensaios de cultura de célula e estudos de animal podem ser usados na formulação de uma faixa de dosagem para uso em seres humanos. A dosagem de tais compostos estão preferivelmente dentro de uma faixa de concentrações de circulação que incluem a ED$_{50}$ com pouca ou nenhuma toxicidade. A dosagem pode variar dentro desta faixa, dependendo da forma de dosagem empregada.
e da rota de administração utilizada.

Rotas adequadas de administração incluem administração parenteral, tais como administração intramuscular, intravenosa, ou subcutânea. A administração de anticorpo usado na composição farmacêutica, ou para praticar o método da presente invenção, pode ser efetuada em uma variedade de modos convencionais, tais como ingestão oral, inalação, aplicação tópica ou cutânea, subcutânea, intraperitoneal, parenteral, intraarterial ou injeção intravenosa. Em uma concretização, o composto de ligação da invenção é administrada intravenosamente. Em outra concretização, o composto de ligação da invenção é administrada subcutaneamente.

Alternadamente, pode-se administrar o anticorpo em um local preferivelmente do que maneira sistêmica, por exemplo, via injeção do anticorpo diretamente em uma junta artrítica, ou lesão induzida por patogenia caracterizada por imunopatologia, frequentemente em um depósito ou formulação de liberação sustentada. Além disso, pode-se administrar o anticorpo em um sistema de distribuição de droga alvo, por exemplo, em um lipossoma revestido com um anticorpo específico de tecido, tendo como alvo, por exemplo, junta artrítica, ou lesão induzida por patogenia caracterizada por imunopatologia. Os lipossomas serão alvejados e retirados seletivamente pelo tecido afligido.

A determinação da dose apropriada é feita pelo clínico, por exemplo, usando parâmetros ou fatores conhecidos ou imaginados na técnica para afetar o tratamento ou predizer afetar o tratamento. Geralmente, a dose começa com uma quantidade um tanto menor do que a dose otimizada, e é aumentada por pequenos incrementos em seguida até que o efeito otimizado ou desejado é alcançado relativo a quaisquer efeitos colaterais negativos. Medicações de diagnóstico importantes incluem aquelas de sintomas de, por exemplo, a inflamação ou nível de citoquinas inflamatórias produzidos. Preferencialmente, um biológico que será usado é derivado da mesma espécie conforme o animal alvo para tratamento, desse modo, minimizando uma resposta inflamatória, autoimune, ou proliferativa ao reagente.

Anticorpos, fragmentos de anticorpo, e citoquinas podem ser providos por infusão contínua, ou por doses em intervalos de, por exemplo, um dia, uma semana, ou 1-7 vezes por semana. As doses podem ser provadas intravenosamente, subcutaneamente, topicalmente, oralmente, nasalmente, retalmente, intramuscularmente, intracerebralmente, intraespinhalmente, ou por inalação. Um protocolo de dose preferido é um envolvendo a dose máxima ou frequência de dose que evita efeitos colaterais indesejáveis significantes. Uma dose semanal total é geralmente pelo menos 0,05 g/kg de peso corpóreo, mais geralmente pelo menos 0,2 g/kg, mais geralmente pelo menos 0,5 g/kg, tipicamente pelo menos 1 g/kg, mais tipicamente pelo menos 10 g/kg, mais tipicamente pelo menos 100 g/kg, preferencialmente pelo menos 0,2 mg/kg, mais preferencialmente pelo menos 1,0 mg/kg, mais preferencialmente pelo menos 2,0 mg/kg, otimamente pelo menos 10 mg/kg, mais otimamente pelo menos 25 mg/kg, e mais otimamente pelo menos 50 mg/kg (vide, por exemplo, Yang, et al. (2003) New Engl. J. Med.

Conforme aqui usado, "inibir" ou "tratar" ou "tratamento", incluem uma transferência de desenvolvimento dos sintomas associados com doença autoimune, ou imunopatologia induzida por patogenia e/ou uma redução na severidade de tais sintomas que são ou serão esperados se desenvolverem. Os termos adicionalmente incluem melhora de sintomas de imunopatologia autoimune não-controlados e indesejados, ou induzidos por patogenia existentes, prevenção de sintomas adicionais, e melhora ou prevenção das causas básicas de tais sintomas. Desse modo, os termos denotam que um resultado benéfico foi conferido em um indivíduo vertebrado com uma doença inflamatória.

Conforme aqui usado, o termo "quantidade terapeuticamente efetiva" ou "quantidade efetiva" se refere a uma quantidade de um anticorpo anti-TSLP ou fragmento deste, que quando administrada sozinha ou em combinação com um agente terapêutico adicional a uma célula, tecido, ou indivíduo, é efetiva para prevenir ou melhorar a doença autoimune ou doença associada a imunologia induzida por patogenia ou condição ou a progressão da doença. Uma dose terapeuticamente efetiva adicionalmente se refere àquela quantidade do composto suficiente para resultar na melhora dos sintomas, por exemplo, tratamento, cura, prevenção ou melhora da condição médica relevante, ou um aumento na taxa de tratamento, cura, prevenção, ou melhora de tais condições. Quando aplicada a um ingrediente ativo individual administrado sozinho, uma dose terapeuticamente efetiva se refere àquele ingrediente sozinho. Quando aplicada a uma combinação, uma dose terapeuticamente efetiva se refere a quantidades combinadas dos ingredientes ativos que resultam no efeito terapêutico, se administrada em combinação, em série ou simultaneamente. Uma quantidade efetiva de terapêutico
diminuirá os sintomas tipicamente por pelo menos 10%; usualmente por pelo menos 20%; preferivelmente pelo menos cerca de 30%; mais preferivelmente pelo menos 40%, e mais preferivelmente por pelo menos 50%.

Indivíduos veterinários, experimentais, ou de pesquisa típicos incluem macacos, cães, gatos, ratos, camundongos, coelhos, porquinhos-da-india, cavalos, e seres humanos.

VII. Produção de Anticorpo

Para produção recombinante dos anticorpos da presente invenção, os ácidos nucleicos que codificam as duas cadeias são solados e inseridos em um ou mais vetores replicáveis para clonagem adicional (amplificação do DNA), ou para expressão. O DNA que codifica o anticorpo monoclonal é prontamente isolado e sequenciado usando-se procedimentos convencionais (por exemplo, pelo uso de sondas de oligonucleotídeo que são capa-
zes de se ligarem especificamente às cadeias pesada e leve do anticorpo. Muitos vetores são disponíveis. Os componentes do vetor geralmente incluem, mas não estão limitados a, um ou mais dos seguintes: uma sequência de sinal, uma origem de replicação, um ou mais genes marcadores, um elemento intensificador, um promotor, e uma sequência de terminação de transcrição. Em uma concretização, ambas as cadeias leve e pesada do anticorpo anti-TSLP humanizado da presente invenção são expressas a partir do mesmo vetor, por exemplo, um plasmídeo ou um vetor adenoviral.

Os anticorpos da presente invenção podem ser produzidos por qualquer método conhecido na técnica. Em uma concretização, os anticorpos são expressos em células de mamífero ou de inseto na cultura, tais como células de ovário de hamster chinês (CHO), células 293 de rim embriônico humano (HEK), células NOS de mieloma de camundongo, células de rim de hamster bebê (BHK), células de ovário de Spodoptera frugiperda (Sf9).

Em uma concretização, os anticorpos secretados de células CHO são recupera
deros e purificados por métodos cromatográficos padrões, tais como proteína A, troca de catión, troca de ânion, interação hidrofóbica, e cromatografia de hidroxiapatita. Os anticorpos resultantes são concentrados e armazenados em 20 mM de acetato de sódio, pH 5,5.

Em outra concretização, os anticorpos da presente invenção são produzidos em levedura de acordo com os métodos descritos em WO2005/040395. Brevemente, vetores que codificam as cadeias leve e pesada individuais de um anticorpo de interesse são introduzidos em células haploides de levedura diferentes, por exemplo, tipos de união diferentes da levedura Pichia pastoris, cujas células haploides de levedura são opcionalmente auxotrofes complementares. As células de levedura haploides transformadas podem, em seguida, serem unidas ou fundidas para dar uma célula de levedura diploide capaz de produzir ambas as cadeias pesada e leve. A cepa diploide é então capaz de secretar o anticorpo totalmente montado e biologicamente ativo. Os níveis de expressão relativos das duas cadeias podem ser otimizados, por exemplo, pelo uso de vetores com número de cópia diferente, usando-se promotores transcripcionais de resistências diferentes,
ou induzindo expressão de promotores indutíveis que acionam transcrição dos genes que codificam uma ou ambas as cadeias.

Em uma concretização, as respectivas cadeias pesada e leve do anticorpo anti-TSLP são introduzidas em células haploides de levedura para criar uma biblioteca de cepas de levedura haploides de um tipo de união que expressa uma pluralidade de cadeias leves, e uma biblioteca de cepas de levedura haploides de um tipo de união diferente que expressa uma pluralidade de cadeias pesadas. Estas bibliotecas de cepas haploides podem ser unidas (ou fundidas como esferoplastos) para produzir uma série de células de levedura diploides que expressam uma biblioteca combinatorial de anticorpos compreendida das várias permutações possíveis de cadeias leve e pesada. A biblioteca combinatorial de anticorpos pode, em seguida, ser classificada para determinar se qualquer dos anticorpos têm propriedades que são superiores (por exemplo, afinidade mais alta para TSLP) àquelas dos anticorpos originais. Vide, por exemplo, WO2005/040395.

Em outra concretização, os anticorpos da presente invenção são anticorpos de domínio humanos nos quais porções de um domínio variável de anticorpo são ligadas em um polipeptídeo de peso molecular de aproximadamente 13 kDa. Vide, por exemplo, Publicação de Patente dos Estados Unidos No. 2004/0110941. Tais agentes de peso molecular baixo, de domínio simples, proporcionam numerosas vantagens em termos de facilidade de síntese, estabilidade, e rota de administração.

VIII. Usos

A presente invenção proporciona métodos para uso de anti-TSLP projetado para o tratamento e diagnose de distúrbios inflamatórios.

Em uma concretização preferida, o distúrbio inflamatório é asma. Em outra concretização preferida, o distúrbio inflamatório é um distúrbio inflamatório alérgico. Em uma concretização preferida, o distúrbio inflamatório alérgico é rinosinusite alérgica, asma alérgica, conjuntivite alérgica, ou dermatite alérgica.

A presente invenção proporciona métodos para uso de anti-TSLP projetado para o tratamento e diagnose de fibrose, doença inflamatória
do intestino, linfoma de Hodgkin, infecções virais respiratórias, ou outras infecções virais, artrite reumatoide, ou qualquer outro distúrbio caracterizado por inflamação no local de dano.

O escopo amplo desta invenção é melhor compreendido com referência aos seguintes exemplos, que não são pretendidos para limitar as invenções às concretizações específicas.

Todas as citações são aqui incorporadas por referência à mesma extensão como se cada publicação individual ou pedido de patente fosse especificamente e individualmente indicado para ser incorporado por referência.

Muitas modificações e variações desta invenção podem ser feitas sem fugir de seu espírito e escopo, conforme será aparente àqueles técnicos no assunto. As concretizações específicas aqui descritas são oferecidas por meio de exemplo somente, e a invenção é para ser limitada pelos termos das reivindicações em anexo, junto com o escopo total de equivalentes aos quais tais reivindicações são intituladas; e a invenção não é para ser limitada pelas concretizações específicas que foram apresentadas aqui por meio de exemplo.

Exemplo 1

Métodos Gerais

Métodos para purificação de proteína, incluindo imunoprecipitação, cromatografia, eletroforese, centrifugação, e cristalização são descritos

Exemplo 2

Humanização de Anticorpos Anti-humano TSLP

Anticorpo de rato anti-humano TSLP 23B12 é produzido pelo hidridoma depositado em American Type Culture Collection (Manassas, VA) ("ATCC") com a designação de depósito de patente "PTA-7951". A humanização de anticorpo de rato anti-humano TSLP 23B12 foi realizada conforme essencialmente como descrito nas publicações de pedido de patente PCT WO 2005/047324 e WO 2005/047326, que são incorporadas por referência.

Domínios variáveis leves e pesados do anticorpo monoclonal anti-TSLP (23B12) foram clonados e fundidos a uma cadeia leve kappa humana (domínio CL) e cadeia pesada de IgG1 humana (CH1-ligação-CH2-CH3), respectivamente.

A sequência de aminoácido do domínio de VH não-humano foi comparada a um grupo de três sequências de aminoácido de linha de germe de VH humano; um representante de cada um dos subgrupos IGHV1, IGHV3 e IGHV4. Os subgrupos de VH estão listados em M.-P. Lefranc, "Nomenclature of the Human Immunoglobulin Heavy (IGH) Genes", Experimental e Clinical Immunogenetics, 18:100-116, 2001. Rat 23B12 antibody scored highest against human heavy chain germline DP-14 in subgroup VH1.

Para o anticorpo de rato 23B12, a sequência de VL foi da sub-classe kappa de VL. A sequência de aminoácido do domínio de VL não-humano foi comparada a um grupo de quatro sequências de aminoácido de

Uma vez que as sequências de aminoácido alvos das cadeias leve e pesada variáveis foram determinadas, plasmídeos que codificam o anticorpo humanizado de comprimento total foram gerados. Partindo-se com um plasmídeo que codifica um anticorpo anti-IL-23 humanizado tendo estrutura de linha de germe de VH1 DP-14 e um plasmídeo separado que codifica um anticorpo anti-IGFR humanizado tendo estrutura de linha de germe de VLkIII Z-A27, os plasmídeos foram alterados usando-se metagênese de Kunkel (vide, por exemplo, Kunkel T A. (1985) *Proc. Natl. Acad. Sci. U.S.A* 82:488-492) para mudar a sequência de DNA para a sequência 23B12 humanizada alvo. Simultaneamente, otimização de códons foi incorporada nas mudanças para proporcionar expressão potencialmente otimizada. As sequências de aminoácido de cadeia variável pesada e leve humanizadas são colocadas em SEQ ID NOs: 10 e 12. As sequências de aminoácido de cadeia pesada e leve humanizadas de comprimento total são colocadas em SEQ ID NOs: 14 e 16. Uma variante da cadeia leve foi também criada, no qual a variante compreendia um K (preferivelmente do que um Y) na posição de aminoácido 49 de SEQ ID NO:12 ou SEQ ID NO:16.

Exemplo 3

Determinação da Constante de Dissociação de Equilíbrio (K_D) para TSLP Anti-humano Humanizado Usando Tecnologia KinExA
A constante de dissociação de equilíbrio (K_D) foi determinada usando-se instrumento KinExA 3000 (Sapidyne Instruments Inc., www.sapidyne.com). O KinExA usa o princípio do método de Ensaio de Exclusão Cinética baseado na medição da concentração de anticorpo não-complexado em uma mistura de anticorpo, antígeno e complexo de anticorpo-antígeno. A concentração de anticorpo livre é medida por exposição da mistura a um antígeno imobilizado de fase sólida por um período muito breve de tempo. Na prática, isto é efetuado pelo escoamento da mistura de antígeno-anticorpo em fase de solução que passa nas partículas revestidas de antígeno presas em uma célula de fluxo. Os dados gerados pelo instrumento são analisados usando-se software de costume. As constantes de equilíbrio são calculadas usando-se uma teoria matemática baseada nas seguintes suposições:

1. A ligação segue a equação de ligação reversível para equilíbrio:

\[k_{on} [Ab] [Ag] = k_{off}[AbAg] \]

2. Anticorpo e antígeno se ligam 1:1 e anticorpo total se iguala ao complexo antígeno-anticorpo, mais anticorpo livre.

3. O sinal do instrumento está linearmente relacionado a concentração de anticorpo livre.

Materiais

Anticorpos:

- Anti hu TSLP Humanizado mAb 23B12 (VL Y49)
- Anti hu TSLP Humanizado mAb 23B12 (VL K49)
- Anti hu TSLP mAb 23B12 Humanizado (VL Y49)

Antígenos:

- TSLP humano recombinante (SPB Lote P345)
- TSLP humano recombinante (SPB Lote P367)
- TSLP humano recombinante (R&D, Cat.N. 1398-TS/CF, Lote IDK 015031)
Antígenos biotinilatados:
- TSLP humano biotinilatado (SPB Lote p367AC)
- TSLP humano biotinilatado (SPB Lote p367AA)
- TSLP humano biotinilatado (SPB Lote 38ABMA)

Outros reagentes:
- Partículas de PMMA, 98 microns (Sapidyne, Cat No. 440198)
- Neutravidin (Pierce, Cat No. 31000)
- Cy5-conjugado Cabra antirrato IgG (H+L) (Jackson Immunoresearch Laboratories Cat No 112-175-167, Lote 60306)
- Cy5-conjugado Cabra anti-HulgG (H+L) (Jackson Immunoresearch Laboratories Cat No 109-175-088, lote 49069 e lote 58552)

Condições experimentais:
Partículas de PMMA foram revestidas com TSLP humano biotinilatado de acordo com Sapidyne "Protocolo para revestimento de partículas de PMMA com ligantes biotinilatados tendo braços ligadores curtos ou não-existentes". Todos os procedimentos experimentais foram feitos de acordo com o manual KinExA 3000. Todas as operações foram feitas em duplicata.

Para rato anti hu TSLP mAb 23B12.H8.A4 (SPB Lote PAB330), as seguintes condições foram usadas:
- Volume de amostra: 2 mL
- Taxa de fluxo de amostra: 0,25 mL/min
- Volume de etiqueta: 1 mL
- Taxa de fluxo de etiqueta: 0,25 mL/min
- Concentração de etiqueta: 0,1 nM
- Concentração de antígeno mais alta: 10 nM
- Concentração de antígeno mais baixa: 10 pM

Para rato anti hu TSLP mAb 23B12.H8.A4 (SPB Lote PAB330A), as seguintes condições foram usadas:
- Volume de amostra: 4 mL
- Taxa de fluxo de amostra: 0,25 mL/min
- Volume de etiqueta: 1 mL
- Taxa de fluxo de etiqueta: 0,25 mL/min
Concentração de etiqueta: 0,05 nM
Concentração de antígeno mais alta: 0,5 nM
Concentração de antígeno mais baixa: 0,5 pM
Para anti hu TSLP mAbs humanizado, as seguintes condições foram usadas:
 Volume de amostra: 2 mL
 Taxa de fluxo de amostra: 0,25 mL/min
 Volume de etiqueta: 1 mL
 Taxa de fluxo de etiqueta: 0,25 mL/min
Concentração de etiqueta: 0,02 nM
Concentração de antígeno mais alta: 0,2 nM
Concentração de antígeno mais baixa: 0,2 pM
As diluições em série duas vezes do antígeno foram preparadas e misturadas com o anticorpo a concentração constante. A mistura foi incubada por 2 horas a 25°C para equilibrar.

A Tabela 4 mostra os resultados da análise de KinExA.

Tabela 4
Valores K_D Determinados por KinExa

<table>
<thead>
<tr>
<th>mAb</th>
<th>TSLP</th>
<th>Expressão</th>
<th>K_D(pM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rato 23B12.H8.H4</td>
<td>humano</td>
<td>HEK293</td>
<td>0,22</td>
</tr>
<tr>
<td>Rato 23B12.H8.H4</td>
<td>humano</td>
<td>E. coli</td>
<td>0,47</td>
</tr>
<tr>
<td>hu23B12 (VL Y49)</td>
<td>humano</td>
<td>HEK293</td>
<td>2,1</td>
</tr>
<tr>
<td>hu23B12 (VL K49)</td>
<td>humano</td>
<td>HEK293</td>
<td>1,0</td>
</tr>
<tr>
<td>hu23B12 (VL Y49)</td>
<td>humano</td>
<td>E. coli</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Exemplo 4

Determinação do EC$_{50}$ para Anti-Humano TSLP Humanizado Usando ELISA

O ELISA mede o EC50 de rato 23B12 purificado de sobrenadante de hidridoma ou ligação de 23B12 IgG1 recombinante humanizado para qualquer TSLP humano derivado de adenovírus (S-P Biopharma) ou TSLP humano derivado de E. coli (S-P Biopharma ou R&D 1398-TS).

Materiais:

Nunc Maxisorb de Imunoplaça de 96 cavidades cert. (Nunc # 439454)
Salina tamponada de fosfato 0X (PBS), pH 7,4 (Fisher # BP399-20)
Salina Tris Tamponada 20X (TBS), pH 7,4 (Technova # 1680)
Tween-20, grau de enzima (Fisher # BP337-500)
500 mM de EDTA (Technova # E0306)
Albumina, grau RIA de soro bovino (Sigma # A7888)
Tampão de Revestimento: 1 μg/mL TSLP em PBS em 100 μL/cavidade
Reagente de detecção:
10 HRP-F(ab)'2 cabra anti-humano IgG H+L (Jackson # 109-036-088);
HRP-F(ab)'2 cabra antirrádio IgG H+L (Jackson # 112-032-072)
Substrato & Soluções de Parada:
TMB Microwell Peroxidase Substrate System 2C (Kirkegaard & Perry Labs # 50-76-00) 1:1; 1M H₃PO₄ 0,1 mL/cavidade
ABTS (Kirkegaard & Perry Labs # 50-66-06) 100 μL/cavidade
Solução de parada de ABTS Peroxidase (Kirkegaard & Perry Labs # 50-085-02) diluído de concentrado 5X 1:5 em Milli-Q water, 100 μL/cavidade
Diluente ELISA e Tampão de Ensaio:
50 mM de TBS ou PBS; 0,5% de BSA; 0,05% de Tween-20; 4 mM de EDTA
Tampão de Lavagem ELISA:
25 50 mM de TBS ou PBS; 0,05% de Tween-20; 4 mM de EDTA
Equipamento:
Skatron Scanwahser300™
Dispositivos Moleculares VersaMax™ leitora de microplaca
Protocolo
30 Revestimento de placas foi realizado conforme segue: TSLP (100 ou 200 ng por cavidade) em PBS foi incubado a 4°C durante a noite. As placas foram lavadas com 1 ciclo (4 lavagens/ciclo) em um lavador de placa
Skatron, bloqueadas por adição de 0,2 mL/cavidade de tampão de ensaio ELISA, incubadas por 60 minutos a 25°C em um oscilador orbital, e, em seguida, lavadas por 1 ciclo. O anticorpo foi, em seguida, titulado através de uma série de oito cavidades na faixa de 1000 ng/mL a 0,4572 ng/mL usando-se diluições 3 vezes em série, e incubado por 90 minutos a 25°C em um oscilador orbital. As placas foram lavadas por 1 ciclo, HRP-cabra F(ab')2 anti-humano ou antirrato IgG (H+L) (diluição 1:5.000) foi adicionado a 0,1 mL/cavidade e incubado por 60 minutos a 25°C em um oscilador orbital. As placas foram lavadas por 2 ciclos com rotação de placa entre ciclos. Substrato de TMB ou ABTS foi adicionado a 0,1 mL/cavidade e incubado por 5 minutos em oscilador orbital. Solução de parada foi então adicionada a 0,1 mL/cavidade e as placas lidas a A_{450-570 nm} (TMB) ou A_{405 nm} (ABTS).

A Tabela 5 mostra os resultados da análise de ELISA.

Tabela 5
Valores de EC₅₀ Determinados Por ELISA

<table>
<thead>
<tr>
<th>mAb</th>
<th>Espécie de TS-LP</th>
<th>Expressão<sup>1</sup> de TSLP</th>
<th>EC<sub>50</sub>(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rato 23B12.H8.H4</td>
<td>humana</td>
<td>HEK293-B</td>
<td>0,79</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>humana</td>
<td>HEK293</td>
<td>0,37</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>Humana</td>
<td>HEK293-F</td>
<td>0,26, 0,47±0,28(n=3)</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>humana</td>
<td>E.coli-B</td>
<td>0,40</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>humana</td>
<td>E.coli-B</td>
<td>0,39, 0,44±0,20(n=5)</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>HEK293-B</td>
<td>0,22</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>HEK293</td>
<td>0,029</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>HEK293-F</td>
<td>0,018</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>HEK293</td>
<td>0,17</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>HEK293</td>
<td>0,21</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>HEK293</td>
<td>0,11</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>HEK293</td>
<td>0,13</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>HEK293</td>
<td>0,15</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>HEK293</td>
<td>0,24</td>
</tr>
<tr>
<td>mAb</td>
<td>Espécie de TS-LP</td>
<td>Expressão de TSLP</td>
<td>EC<sub>50</sub>(nM)</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>HEK293</td>
<td>0,18</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>HEK293</td>
<td>0,11</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>HEK293<sup>2</sup></td>
<td>0,073, 0,14±0,07(n=12)</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>E. coli-B</td>
<td>0,064</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>E. coli-B</td>
<td>0,085</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>E. coli</td>
<td>0,11</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>E. coli</td>
<td>0,11</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>E. coli</td>
<td>0,060</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>E. coli<sup>2</sup></td>
<td>0,061</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>humana</td>
<td>E. coli<sup>2</sup></td>
<td>0,029, 0,07±0,03(n=7) 0,11±0,07(n=19)</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>cino</td>
<td>HEK293</td>
<td>0,45</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>cino</td>
<td>HEK293</td>
<td>0,52</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>cino</td>
<td>HEK293</td>
<td>0,29</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>cino</td>
<td>HEK293</td>
<td>0,15</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>cino</td>
<td>HEK293</td>
<td>0,19</td>
</tr>
<tr>
<td>hu23B12(VL Y49)</td>
<td>cino</td>
<td>HEK293</td>
<td>0,27, 0,31±0,15(n=6)</td>
</tr>
<tr>
<td>hu23B12(VL K49)</td>
<td>humana</td>
<td>HEK293-B</td>
<td>0,12</td>
</tr>
<tr>
<td>hu23B12(VL K49)</td>
<td>humana</td>
<td>E. coli-B</td>
<td>0,038</td>
</tr>
<tr>
<td>hu23B12(VL K49)</td>
<td>humana</td>
<td>E. coli-B</td>
<td>0,050</td>
</tr>
<tr>
<td>hu23B12(VL K49)</td>
<td>humana</td>
<td>HEK293</td>
<td>0,034</td>
</tr>
<tr>
<td>hu23B12(VL K49)</td>
<td>humana</td>
<td>HEK293-F</td>
<td>0,021, 0,05±0,04(n=5)</td>
</tr>
</tbody>
</table>

1) -B = TSLP biotinilatado
- F = remoção de TSLP de local de clivagem de furina via via K101A/R102A
2) revestimento direto de 200 ng de TSLP ao invés de 100 ng

Exemplo 5

Afinidade De Anticorpos de Rato 23B12 E Humanizado 23B12 para E Cino TSLP Humano

As atividades de ligação de cinética do rato parental e seu anti-
corpo anti-humano TSLP 23B12 derivado humanizado contra ambos TSLP humano (hu) e macaco cynomolgus (cino) foram medidas por ressonância de plasmon de superfície usando-se um sistema BIAcore T100 (BIAcore AB, Upsalla, Sweden). Aproximadamente 100RU de TSLP humano ou TSLP de cino foram imobilizados via química de acoplamento de amina em um Sensor Chip CM5 (Research grade, BR-1006-68). Tampão de HBS-EP (BR-1006-69) foi usado como o tampão de operação com uma taxa de fluxo de 30μL/min. Anticorpos de rato e 23B12 humanizado em concentrações de variação variando de 0,82 a 600 nM foram injetados sobre as superfícies de TSLP hu ou cino imobilizadas a uma taxa de fluxo de 30μL/min. Seguindo cada ciclo de injeção, a superfície de chip CM5 foi regenerada usando-se uma série de soluções (10 mM de Glicina, pH 1,5 e 25 mM de NaOH, repectivamente) a uma taxa de fluxo de 75μL/min.

Sensogramas de ligação de subtração de práticas foram usados para analisar a taxa constante de associação (ka) e dissociação (kd), e a constante de dissociação de equilíbrio K_D. Os conjuntos de dados resultantes foram ajustados com um modelo de analito bivalente usando-se o software BIAevaluation (versão 1.0). A K_D determinada para o anticorpo 23B12 de rato parental contra TSLP humano foi 64 pM, enquanto o respectivo valor contra o ligante de TSLP de cino foi 86 pM (Tabela 6). A K_D determinada para o anticorpo 23B12 humanizado contra TSLP humano foi 111 pM, enquanto o respectivo valor contra o ligante de TSLP de cino foi 132 pM (Tabela 6), indicando uma perda de menos do que duas vezes de afinidade sob humanização de 23B12 mAb.

Tabela 6

<table>
<thead>
<tr>
<th>Anticorpo</th>
<th>Ligante</th>
<th>Ka(1/Ms)</th>
<th>Kd(1/s)</th>
<th>K_D(pM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rato 23B12</td>
<td>huTSLP</td>
<td>3.18E+05</td>
<td>2.1E-05</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>cynoTSLP</td>
<td>1.86E+05</td>
<td>1.6E-05</td>
<td>86</td>
</tr>
<tr>
<td>Hu 23B12</td>
<td>huTSLP</td>
<td>5.00E+05</td>
<td>5.6E-05</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>cynoTSLP</td>
<td>3.57E05</td>
<td>4.7E-05</td>
<td>132</td>
</tr>
</tbody>
</table>

Exemplo 6

Bioensaio de Proliferação Para A Avaliação de Neutralização de Anticorpo
Anti-TSLP

A capacidade de um anticorpo monoclonal neutralizar biologicamente TSLP foi avaliada pela aplicação de bioensaios de proliferação de curto prazo que utilizam células que expressam receptores de TSLP recombinantes. As células transfectantes de Ba/F3-TSLPR-IL7Ra proliferam em resposta a TSLP, e a resposta pode ser inibida por uma neutralização de anticorpo anti-TSLP. Cada anticorpo foi titulado contra uma concentração de TSLP escolhida dentro da região linear da curva de resposta de dose de TSLP, perto do platô e acima da EC₅₀ do TSLP. A proliferação, ou falta desta, é medida por meios colorimétricos usando Alamar Blue, um corante indicador de crescimento baseado na detecção de atividade metabólica. A capacidade de um anticorpo neutralizar TSLP é avaliada por seu valor de EC50, ou concentração de um anticorpo que induz inibição meio máxima de proliferação de TSLP.

Os transfectantes Ba/F3 são mantidos em meio RPMI-1640, 10% de soro bovino fetal, 50 µM de 2-mercaptoetanol, 2 mM de L-Glutamina, 50 µg/mL de penicilina-estreptomicina, e 10 ng/mL de camundongo IL-3.

Os bioensaios de proliferação de Ba/F3 são trealizados em meio RPMI-1640, 10% de soro bovino fetal, 50 µM de 2-mercaptoetanol, 2 mM de L-Glutamina, e 50 µg/mL de penicilina-estreptomicina.

O ensaio é realizado em placas de fundo plano de 96 cavidades (Falcon 3072 ou similar). Todas as preparações de reagentes e suspensões de célula utilizam o meio de bioensaio apropriado. O volume de ensaio é 150 µL por cavidade. Titulações de um anticorpo anti-TSLP são pré-incubadas com TSLP por 30-60 minutos à temperatura ambiente, durante cujo tempo as células são preparadas. As células são adicionadas às placas, seguindo a pré-incubação de anticorpo-citoquina. As placas de bioensaio são incubadas em uma câmara de cultura de tecido humidificada (37°C, 5% de CO₂) por 40-48 horas. No final do tempo de cultura, Alamar Blue (Biosource Cat #DAL1100) é adicionado e permitido se desenvolver por 8-12 horas. A absorvância é então lida a 570 nm e 600 nm (VERSAmax Microplate Reader,
Molecular Probes), e um OD$_{570-600}$ é obtido. Duplicatas ou triplicatas são recomendadas.

As células são usadas em um estado de crescimento saudável, geralmente em densidades de 3-8 x 105/mL. As células são contadas, pesadas, lavadas duas vezes em meio de bioensaio, e suspensas à densidade apropriada para galvanização.

TSLP foi preparado para concentração de operação e adicionado à primeira cavidade a 75 μL. Diluições em série de 1:3 foram feitas por titulação 25:50 μL em meio de bioensaio através das cavidades, deixando 50 μL/cavidade. As células foram suspensas à densidade apropriada para galvanização a 100 μL por cavidade.

O anticorpo foi preparado à concentração de operação e adicionado à primeira cavidade a 75 μL. Diluições em série de 1:3 foram feitas por titulação 25:50 μL em meio de bioensaio através das cavidades, deixando 50 μL por cavidade. TSLP na concentração apropriada foi adicionado a 50 μL por cavidade às cavidades contendo o anticorpo titulado. As células foram suspensas à densidade apropriada para galvanização a 50 μL por cavidade, e adicionadas seguindo pré-incubação de anticorpo-citoquina.

Usando-se software GraphPad Prism 3.0, a absorbância foi plotada contra concentração de citoquina ou anticorpo, e os valores de EC$_{50}$ foram determinados usando-se repressão não-linear (ajuste de curva) de resposta de dose sigmoidal.

Os resultados do ensaio são mostrados na Tabela 7.

Tabela 7

<table>
<thead>
<tr>
<th>mAb</th>
<th>Espécie de TSLP</th>
<th>Expressão1 de TSLP</th>
<th>EC$_{50}$(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rato 23B12.H8.H4</td>
<td>Humana</td>
<td>HEK293</td>
<td>0,093</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>Humana</td>
<td>HEK293</td>
<td>0,085</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>Humana</td>
<td>HEK293</td>
<td>0,23</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>Humana</td>
<td>HEK293</td>
<td>0,40</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>Humana</td>
<td>HEK293</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,11±0,07(n=5)</td>
</tr>
<tr>
<td>mAb</td>
<td>Espécie de TSLP</td>
<td>Expressão¹ de TSLP</td>
<td>EC₅₀(nM)</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>Humana</td>
<td>E.coli</td>
<td>2,16</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>Humana</td>
<td>E.coli</td>
<td>2,78</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>Humana</td>
<td>E.coli</td>
<td>4,15</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>Humana</td>
<td>E.coli</td>
<td>3,81</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>Humana</td>
<td>E.coli</td>
<td>1,83</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>Humana</td>
<td>E.coli</td>
<td>2,77</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>Humana</td>
<td>E.coli</td>
<td>3,10 (3,01±0,79(n=8))</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>cino</td>
<td>HEK293</td>
<td>0,45</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>cino</td>
<td>HEK293</td>
<td>0,42</td>
</tr>
<tr>
<td>rato 23B12.H8.H4</td>
<td>Cino</td>
<td>HEK293</td>
<td>0,61</td>
</tr>
<tr>
<td>Rato 23B12.H8.H4</td>
<td>cino</td>
<td>HEK293</td>
<td>0,77 (0,56±0,16(n=4))</td>
</tr>
</tbody>
</table>

Exemplo 7

Atividade de Neutralização De Anti-TSLP mAb r23B12 Em Produção de TARC Induzida por TSLP Por Células Dendriticas Primárias Humanas

Células mononucleares de sangue periféricas (PBMCs) foram isoladas de revestimentos nús obtidos de doadores de sangue saudáveis (Stanford Medical School Blood Center, Stanford, CA) por centrifugação de Ficoll e Células Dendriticas CD11c+ foram obtidas por MACS (Miltenyi Biotech, Auburn, CA) usando-se seleção negativa, seguido por classificação de célula usando-se um FACS. Células de linhagem negativa (Lin⁻) foram obtidas por depleção de MACS de células T, células B, células NK, células de sangue vermelhas e monócitos formam PBMC usando-se gotas magnéticas revestidas de camundongo anti-humano CD3 mAb (OKT3, DNAX) e camundongo anti-CD16 mAb e cabra anti-camundongo IgG (Miltenyi Biotech), e usando-se gotas magnéticas diretamente revestidas com anti-CD19, CD56 e CD14 mAbs (Miltenyi Biotech). Subsequentemente, células Lin⁻ foram manchadas com TC-anti-CD4 (Caltag, Burlingame, CA), PE-anti-CD11c e FITC-anti-CD3, -CD14, -CD19, -CD56, -CD16, e -CD20 (todos de BD Biosciences, San Diego, CA) e CD11c+ DC classificadas em um Vantage FAC sor-
ter™ (BD Biosciences) a uma pureza > 99% de células CD11c⁺ CD4⁺ Lin⁻.

CD11c⁺ CD4⁺ DCs foram cultivadas imediatamente após classificação em RPMI (Mediatech, Herndon, VA) contendo 10% de FCS e 1% de piruvato (Mediatech), HEPES (Invitrogen, Grand Island, NY) e penicilina-estreptomicina (Mediatech). As células foram semeadas a 0,5 x 10⁵/ml em placas de fundo plano de 96 cavidades na presença de meio sozinho, TSLP (15 ng/ml, DNAX), ou em uma combinação de TSLP e o anticorpo monoclonal de neutralização anti-TSLP mAb (clone 23B12) ou um anticorpo monoclonal anti-TSLPR ou um rato de controle de isotipo IgG2a (R&D Systems, Minneapolis, MN). Os sobrenadantes de cultura DC foram coletados após 24 horas de cultura, armazenados congelados a -20 °C e analisados para níveis de proteína de TARC por ELISA (R&D Systems).

Os resultados são providos na Tabela 8.

<table>
<thead>
<tr>
<th></th>
<th>TARC (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>5</td>
</tr>
<tr>
<td>TSLP-DC</td>
<td>1400,5</td>
</tr>
<tr>
<td>TSLP + 5 µg/ml de anticorpo r23B12</td>
<td>41,5</td>
</tr>
<tr>
<td>TSLP + 0,5 µg/ml de anticorpo r23B12</td>
<td>146</td>
</tr>
<tr>
<td>TSLP + 0,05 µg/ml de anticorpo r23B12</td>
<td>570,5</td>
</tr>
<tr>
<td>TSLP + 20 µg/ml de anticorpo r23B12</td>
<td>199</td>
</tr>
</tbody>
</table>

CD11c⁺ DC cultivados em meio sozinho não produzem níveis significativos de TARC. A adição de TSLP (15 ng/ml) a CD11c⁺ DC induziu níveis significativos de produção de TARC até ~ 1500 pg/ml. Esta indução mediada por TSLP de TARC foi bloqueada em uma maneira dependente da dose pela adição simultânea de anti-TSLP mAb 23B12.

Exemplo 8

Atividade de Neutralização De Anti-TSLP mAb r23B12 Em Diferenciação Th2 Induzida por TSLP Por Células Dendríticas Primárias Humanas

Células mononucleares de sangue periféricas (PBMCs) foram isoladas de revestimentos nús obtidos de doadores de sangue saudáveis (Stanford Medical School Blood Center, Stanford, CA) por centrifugação de Ficoll e Células Dendríticas CD11c⁺ foram obtidas por MACS (Miltenyi Bio-
tech, Auburn, CA) usando-se seleção negativa, seguido por classificação de célula usando-se um FACS. Células de linhagem negativa (Lin^{-}) foram obtidas por depleção de MACS de células T, células B, células NK, células de sangue vermelhas e monócitos formam PBMC usando-se gotas magnéticas revestidas de camundongo anti-humano CD3 mAb (OKT3, DNAX) e camundongo anti-CD16 mAb e cabra anti-camundongo IgG (Milttenyi Biotech), e usando-se gotas magnéticas diretamente revestidas com anti-CD19, CD56 e CD14 mAbs (Milttenyi Biotech). Subsequentemente, células Lin^{-} foram manchadas com TC-anti-CD4 (Caltag, Burlingame, CA), PE-anti-CD11c e FITC-anti-CD3, -CD14, -CD19, -CD56, -CD16, e -CD20 (todos de BD Biosciences, San Diego, CA) e CD11c^{+} DC classificadas em um Vantage FACsorter™ (BD Biosciences) a uma pureza > 99% de células CD11c^{+} CD4^{+} Lin^{-}.

CD11c^{+} CD4^{+} DCs foram cultivadas imediatamente após classificação em RPMI (Mediatech, Herndon, VA) contendo 10% de FCS e 1% de piruvato (Mediatech), HEPES (Invitrogen, Grand Island, NY) e penicilina-estreptomicina (Mediatech). As células foram semeadas a 0,5 x 10^{6}/ml em placas de fundo plano de 96 cavidades na presença de meio sozinho, TSLP (15 ng/ml, DNAX), ou em uma combinação de TSLP e o anticorpo monoclonal de neutralização anti-TSLP mAb (clone 23B12) ou um anticorpo monoclonal anti-TSLPR ou um rato de controle do isótopo IgG2a (R&D Systems, Minneapolis, MN). CD11c^{+} DCs foram coletados após 24 horas de cultura, sob condições diferentes, lavados duas vezes e recultivados com células T de CD4^{+} CD45RA^{+} alogenéicos simples.

As células T CD4^{+} CD45RA^{+} simples foram isoladas pela classificação de célula após depleção negativa de células CD8, CD16, CD20, CD19, CD56 e CD14 usando-se gotas magnéticas (Myltenyi Biotech). Após 24 horas de cultura sob condições diferentes, CD11c^{+} DCs foram coletados, lavados duas vezes, e co-cultivados com 5 x 10^{4} de células T CD4^{+} alogenéicas simples em placas de fundo redondo de 96 cavidades a uma proporção de 1:5 DC:células T. Após 6 dias de cultura, os sobrenadantes foram coletados e congelados a -20 °C e números de células viáveis determinados por exclusão de "trypan blue". Para testar sua capacidade de secretar cito-
quinas, células T DC-primadas CD4+ (10^6/ml) foram re-estimuladas com anti-CD3 biotimilatado (10 ng/ml) mAbs reticulado a placas de cultura revestidas de estreptavidin na presença de anti-CD28 mAbs solúvel (1000ng/ml). Os sobrenadantes de cultura foram coletados após 24 horas de cultura, congelados a -20°C, ou analisados por ensaio Luminex para IFNγ-, TNFα-, IL-2, IL-4, IL-5, IL-10 e IL-13 (Linco Research Inc., St Charles, MO).

Os resultados são providos na Tabela 9.

<table>
<thead>
<tr>
<th>Produção de Citoquina</th>
<th>DC+ CD4</th>
<th>TSLP-DC+ CD4</th>
<th>TSLP-DC+ 5 μg/ml de r23B12 +CD4</th>
<th>TSLP-DC+ 0,5 μg/ml de r23B12 +CD4</th>
<th>TSLP-DC+ 0,05 μg/ml de r23B12 +CD4</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-5 (pg/ml)</td>
<td>115</td>
<td>777</td>
<td>24</td>
<td>70,6</td>
<td>32</td>
</tr>
<tr>
<td>IL-4 (pg/ml)</td>
<td>14</td>
<td>89</td>
<td>14,5</td>
<td>21,3</td>
<td>27,3</td>
</tr>
<tr>
<td>IL-13 (pg/ml)</td>
<td>136</td>
<td>1290</td>
<td>55,5</td>
<td>182</td>
<td>43,3</td>
</tr>
</tbody>
</table>

A co-cultura de células de CD4+ CD45RA+ T com CD11c+ DC que foram cultivadas em meio sozinho resultou em uma população de célula T, que sob reativação por anti-CD3 + anti-CD28 mAbs, produz níveis baixos de citoquinas Th2. A adição de TSLP (15 ng/ml) à cultura primária de CD11c+ DC induziu a produção de níveis significantes de IL-4, IL-5 e IL-13 pelas células T respondentes, sugerindo que TSLP-DC induziu a diferenciação de células T simples em células Th2. Esta indução mediada por TSLP de diferenciação de Th2 foi bloqueada em uma maneira dependente de dose por adição simultânea de anti-TSLP mAb 23B12 para as culturas de DC primárias.

Exemplo 9

Cino-ização de Anticorpos de TSLP Anti-humano.

Dois estudos mostraram que macacos cynomolgus (*Macaca fascicularis*) VL são similares a VLκ-I humano e que cynomolgus VH são similares a VH-III humano (41%), VH-IV (39%), e VH-I (14%). (Lewis et al., Dev. Comp. Immunol. 17:549-560 (1993); e Druar et al., Immunogenetics 57:730-738 (2005.) De modo a minimizar imunogenicidade potencial de hu23B12
em macacos cynomolgus, os 23B12 CDRs de rato foram transferidos em estruturas humanas VLx-I e VH-III; estes foram então fundidos em domínios constantes de IgG de cynomolgus.

A sequência de aminoácido da cadeia leve cino-izada é

MAPVQLLGLLVLFLPAMRCDIQMTQPSSLSASVGVDRVTITCRASQPISIV
HWYQQKPGKAKPILLYFASQSIISGVPSFSGGSSTDFLTITSSLQPEDFAT
YYCQQTFSLPYTFGQGTKVEIKRTVAAPSFIIFPSEPQKVKSUTSVVCLLN
NFYPRESSAVKWKVDGLKTGNSQESVTEQDSDKNTYSLSSTLTSSTDYQ
SHNVYACEVTHQGLSSPVTKSFNREGC (SEQ ID NO: 17). A sequência de sinal está sublinhada.

A sequência de aminoácido da cadeia pesada cino-izada é

MAVLGLLLFCLTVFSCVSLSQVQLVESGGGVVQPGRLSCLAASGVYIFTDY
AMHVRQAPGKGLEWAVTFIPLLTDSDYNQNFHKRGFTISRDNSKNTLYLQ
MNSLRAEDTAVVYACARMGVTSHYVMDAWQGTLVTSSASTKGPSVFPL
APSSRSTSESTAALGLCYKDYPFEPVPVTWNSGSLSGTVHTFPAVLQSSGL
YSLSAVTVPSLGLGTQVTCVNVHKPSNTKVDKREVICTGGGSPHTCP
PCPAPELLGGPSVFLPPCPKDLMISRTPEVTCVVDVDQEDPQVKNWY
VNGAEVHHAQTPRETQYNSTYRVSVLTVTHQDWLNGKEYTCKVSNKAL
PAPIQKTSKDKGQQPREPQVYTLPPSREELTKNQVSLTCLVKGFYPSDIVVE
WESSGQPENTYKTTPPVLDSDGSYFLSYKLTVDKSRWQQNVFSCVVMH
EALHNHYTQKSLSPLPGK (SEQ ID NO: 18). A sequência de sinal está sublinhada.

Os anticorpos cino-izados anti-humanos TSLP 23B12 foram então recombinantemente produzidos em células de CHO.

25 Exemplo 10
Bioensaio de Proliferação para a Avaliação da Atividade de Neutralização de Anticorpos Cino-izados Anti-humanos TSLP

A capacidade de anticorpos cino-izados anti-humano TSLP 23B12 de neutralizar biologicamente TLSP humano ou cino foi avaliada pela aplicação de bioensaios de proliferação de curto prazo que utilizam células que expressam receptores de TSLP recombinantes. As células de Ba/F3-huTSLPR/hull-7Ra e Ba/F3-cyTSLPR/cylL-7Ra transfectantes proliferam
em resposta a TSLP humano e TSLP cino, e a resposta pode ser inibida por um anticorpo anti-TSLP de neutralização. Um anticorpo é titulado contra uma concentração de TSLP humano ou de cino escolhida dentro de uma região linear da curva de resposta de dose, perto do platô e acima de EC50. A proliferação, ou falta de, é medida por meios colorimétricos usando Alamar Blue, um corante indicador de crescimento baseado na detecção de atividade metabólica. A capacidade de um anticorpo neutralizar TSLP é avaliada por seu valor de EC50, ou concentração de anticorpo que induz inibição meio máxima de proliferação de TSLP.

A capacidade de um anticorpo neutralizar TSLP é avaliada por seu valor de EC50, ou concentração de um anticorpo que induz inibição meio máxima de proliferação de TSLP.

Os transfecantes Ba/F3 são mantidos em meio RPMI-1640, 10% de soro bovino fetal, 50 μM de 2-mercaptoetanol, 2 mM de L-Glutamina, 50 μg/mL de penicilina-estreptomicina, e 10 ng/mL de camundongo IL-3, 1 mg/ml de G418, e 2 μg/ml de puromicina.

Os bioensaios de proliferação de Ba/F3 são realizados em meio RPMI-1640, 10% de soro bovino fetal, 50 μM de 2-mercaptoetanol, 2 mM de L-Glutamina, e 50 μg/mL de penicilina-estreptomicina.

Os ensaios foram realizados em placas de fundo plano de 96 cavidades (Falcon 3072 ou similar). Todas as preparações de reagentes e suspensões de célula utilizam o meio de bioensaios apropriado. O volume de ensaio é 150 μL por cavidade. Titulações de um anticorpo anti-TSLP são pré-incubadas com huTSLP por aproximadamente 30 minutos à temperatura ambiente, durante cujo tempo as células foram preparadas. As células foram adicionadas às placas, seguindo a pré-incubação de anticorpo-citoquina. As placas de bioensaios foram incubadas em uma câmara de cultura de tecido humidificada (37°C, 5% de CO2) por 40-48 horas. No final do tempo de cultura, Alamar Blue (Biosource Cat #DAL1100) é adicionado a 16,5 μL/cavidade e permitido se desenvolver por 5-12 horas. A absorvância é então lida a 570 nm e 600 nm (VERSAmax Microplate Reader, Molecular Probes), e um OD_{570-600} foi obtido. Duplicatas foram operadas para cada amostra.
As células são usadas em um estado de crescimento saudável, geralmente em densidades de 7-9 x 10^5/mL. As células são lavadas duas vezes, contadas e suspensas para a densidade apropriada para galvanização a 7500 células/50 μL por cavidade.

TSLP humano ou de cão foi preparado para concentração de operação (600 ng/mL) e adicionado à primeira cavidade a 75 μL. Diluições em série de 1:3 foram feitas por titulação 25:50 μL em meio de bioensaio através das câvidades, deixando 50 μL/cavidade. As células foram suspensas à densidade apropriada para galvanização a 7500 células/50 μL por cavidade. Para substituir a adição de anticorpo, 50 μL de meio de bioensaio foi adicionado a estas cavidades para trazer o volume final para 150 μL.

O anticorpo foi preparado à concentração de operação (3X a concentração final; a concentração de partida final de cada anticorpo variou) e adicionado à primeira cavidade a 75 μL. Diluições em série de 1:3 foram feitas por titulação 25:50 μL em meio de bioensaio através das câvidades, deixando 50 μL por cavidade. TSLP (em concentração de operação de 9 ng/ml para HuTSLP, 3 ng/ml para CyTSLP) foi adicionado a 50 μL por cavidade às câvidades contendo o anticorpo titulado. As células foram então suspensas à densidade apropriada para galvanização a 7500 células/50 μL por cavidade, e adicionadas seguindo pré-incubação de anticorpo-citoquina.

Os valores de EC50 são determinados por regressão não-linear (ajuste de curva) de resposta de dose de sigmoidal usando software GraphPad Prism 4. Para a resposta de dose de TSLP, a absorbância é plotada contra concentração de citoquina. Para atividade de neutralização, a percentagem de inibição é plotada contra concentração de anticorpo.

Os resultados do ensaio são mostrados na Tabela 10.

Tabela 10
Ensaio baseado em Célula de Ba/F3 de Células Transfectadas de TSLPR

<table>
<thead>
<tr>
<th>Humano ou de Cynomolgus</th>
<th>TSLP</th>
<th>TSLPR</th>
<th>Rato23B12</th>
<th>Hu23B12</th>
<th>Hu-cy*</th>
<th>Cy-hu*</th>
<th>Cy23B12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu</td>
<td>hu</td>
<td>0,6</td>
<td>7,6</td>
<td>5,3</td>
<td>3,9</td>
<td>9,4</td>
<td>9,0</td>
</tr>
<tr>
<td>Hu</td>
<td>hu</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rato23B12</td>
<td>Hu23B12</td>
<td></td>
<td></td>
<td>Cy23B12</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Hu</td>
<td>hu</td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>Hu</td>
<td>cino</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>Hu</td>
<td>cino</td>
<td>0,08</td>
<td></td>
<td></td>
<td></td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Cino</td>
<td>cino</td>
<td>0,2</td>
<td>0,5</td>
<td>0,5</td>
<td>2,8</td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>Cino</td>
<td>cino</td>
<td>0,4</td>
<td>2,2</td>
<td>3,2</td>
<td>16</td>
<td>26,19</td>
<td></td>
</tr>
<tr>
<td>Cino</td>
<td>cino</td>
<td>0,7</td>
<td>3,0</td>
<td></td>
<td></td>
<td>22,17</td>
<td></td>
</tr>
</tbody>
</table>

* hu-cy = 23B12 VL/VH humanizado em domínios constantes de cynomolgus
** cy-hu = 23B12 VL/VH cino-izado em domínios constantes humanos

Exemplo 11

Medicações de Afinidade de BIAcore e KinExA para Anticorpos Cino-izados

Anti-TSLP

A afinidade de anticorpos cino-izados anti-humano TSLP 23B12 para ligante de TSLP humano e cino foi determinada por ressonância de plasmon de superfície usando-se o sistema BIAcore T100, conforme descrito no Exemplo 5.

A constante de disassociação de equilíbrio para os anticorpos anti-TSLP foi determinada usando-se o instrumento KinExA 3000 (Sapidyne Instruments Inc.) conforme descrito no Exemplo 3.

Os seguintes materiais foram usados:

Anticorpos:

- Rato anti hTSLP GNE01.23B12.H8.A4 (SPB Lote pab 330A)
- Anti hTSLP mAb 23B12 humanizado (621HC/780LC)
- Anti hTSLP mAb 23B12 cinoizado (782+MAFA19/781MAFA7)
- Anti hTSLP mAb 23B12 cinoizado (782+hlgG1/781hukappa)
- Anti hTSLP mAb 23B12 cinoizado (huV-CynoC chimera)

Antígenos:

- TSLP humano recombinante, R&D Systems (Cat.No. 1398-TS/CF, Lote. IDK 015031)
- TSLP humano recombinante, R&D Systems (Cat.No. 1398-TS, Lote. IDK 026031)
- TSLP humano biotinilatado (SPB Lote 38ABMA)

Outros reagentes:
Partículas de PMMA, 98 microns (Sapidyne, Cat No. 440198)
Neutavidin (Pierce, Cat No. 31000)
Cy5 conjugado Cabra antirrato IgG (H+L) (Jackson Immunoresearch Laboratories Cat. No 112-175-167, Lote 60306)

Para r23B12, as seguintes condições foram usadas:
Volume de amostra: 2 ml
Taxa de fluxo de amostra: 0,25 ml/min
Volume de etiqueta: 1 ml
Taxa de fluxo de etiqueta: 0,25 ml/min
Conc. de mAb: 0,05 nM
Concentração mais alta de Ag (TSLP): 0,5 nM
Concentração mais baixa de Ag (TSLP): 0,5 pM

Para hu23B12, as seguintes condições foram usadas:
Volume de amostra: 2 ml
Taxa de fluxo de amostra: 0,25 ml/min
Volume de etiqueta: 1 ml
Taxa de fluxo de etiqueta: 0,25 ml/min
Conc. de mAb: 0,02 nM
Concentração mais alta de Ag (TSLP): 0,4 nM
Concentração mais baixa de Ag (TSLP): 0,4 pM

Para cy23B12, as seguintes condições foram usadas:
Volume de amostra: 2 ml
Taxa de fluxo de amostra: 0,25 ml/min
Volume de etiqueta: 1 ml
Taxa de fluxo de etiqueta: 0,25 ml/min
Conc. de mAb: 0,1 nM
Concentração mais alta de Ag (TSLP): 1 nM
Concentração mais baixa de Ag (TSLP): 1 pM

Para hu-cy23B12* e cy-hu23B12**, as seguintes condições foram usadas:
Volume de amostra: 2 ml
Taxa de fluxo de amostra: 0,25 ml/min
Volume de etiqueta: 1 ml
Taxa de fluxo de etiqueta: 0,25 ml/min
conc. de mAb: 0,05 nM
Concentração mais alta de Ag (TSLP): 1 nM
Concentração mais baixa de Ag (TSLP): 1 pM

Para todos os experimentos, duas diluições em série duas vezes do antígeno foram preparadas e misturadas com o anticorpo a concentração constante. A mistura foi incubada por 2 horas a temperatura ambiente para equilibrar. Os resultados dos experimentos de BIAcore e KinExA descritos acima são resumidos na Tabela 11.

Tabela 11
Medições de Afinidade de Ligação de BIAcore e KinexA

<table>
<thead>
<tr>
<th></th>
<th>TSLP</th>
<th>R23B12</th>
<th>Hu23B12</th>
<th>hu-cy*</th>
<th>Cy.hu**</th>
<th>Cy23B12</th>
</tr>
</thead>
<tbody>
<tr>
<td>KinExA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hu</td>
<td>0,47</td>
<td>1,7</td>
<td>1,4</td>
<td>63</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>BIAacore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hu</td>
<td>64</td>
<td>111</td>
<td>106</td>
<td>556</td>
<td>620</td>
<td></td>
</tr>
<tr>
<td>Hu</td>
<td>126.114</td>
<td>132</td>
<td>114</td>
<td>1203</td>
<td>1159.2508</td>
<td></td>
</tr>
</tbody>
</table>

* hu-cy = 23B12 VL/VH humanizado em domínios constantes de cynomolgus
** cy-hu = 23B12 VL/VH cynoizado em domínios constantes humanos

Em resumo, o anticorpo anti-humano TSLP 23B12 humanizado mostrou aproximadamente ligação reduzida 5 vezes comparada ao anticorpo de rato parental baseado em medições de BIAcore e KinExA (Tabela 11). A substituição de estruturas humanizadas 23B12 (VLk-III/VH-I) com aquelas menos potencialmente imunogênicos em macacos cynomolgus (VLk-I/VH-III) efetuou uma redução de 10 vezes na ligação comparada a rato parental 23B12, e uma redução 5 vezes comparada a hu23B12 (Tabelas 10, 11).

Exemplo 12

Estudos farmacocinéticos de Anticorpos Cino-izado anti-TSLP 23B12
Um ensaio ELISA foi designado para medir a quantidade de anticorpo cino-izado anti-TSLP que alcança o plasma, soro ou fluido de lavagem broncoalveolar (BAL) de um animal inoculado com tal anticorpo.

Reagentes e Tampões:

Suporte Sólido: placa de 96 cavidades Nunc Maxisorp (cat# 439454)

Tampão de Revestimento: 50mM de Carbonato de sódio/ bicarbonato pH 9,6

Tampão de Bloqueio: 0,5% de BSA em PBS

Tampão de Diluente de Ensaio: 0,5% de BSA [peso/v], 0,05% de Tween 20 [v/v], 0,25% de CHAPS [peso/v], 5 mM de EDTA, 0,35M de NaCl em PBS (AD), pH 7,4

Tampão de Lavagem: 0,05% de Tween 20 em PBS

Molécula de captura: huTSLP, 38ABM, 2497 µg/mL

Moléculas de detecção:

- QED R799, 3600 µg/mL (um anticorpo anti-cy23B12 de coelho monoclonal)
- anticoelho-HRP, JIR gato# 711-036-152

Substrato: TMB (Kirkegaard & Perry, gato# 50-76-03)

Solução de parada: H3PO4 a 1M

Lavador de Placa: SkanWasher 300 Modelo 12010 (Molecular Devices Cat. No. 0200-3903)

Solução de parada: SpectraMax Plus 384 Microtiterplate Spectrophotometer (Molecular Devices Part No. 0112-0056)

Protocolo:

O revestimento de placas foi realizado conforme segue: huTSLP (100 ng por cavidade) no tampão de revestimento foi incubado a 40ºC durante a noite. As placas foram lavadas com 1 ciclo (3 lavagens/ciclo) em um lavador de placa Skatron, bloqueadas pela adição de 150 µL/cavidade de tampão de bloqueio, incubadas por 60 minutos à temperatura ambiente em um oscilador orbital e, em seguida, lavadas por 1 ciclo. O anticorpo cino-izado anti-TSLP 23B12 padrão foi titulado através de uma série de oito cavi-
dades (réplicas) na faixa de 200 ng/mL a 1,56 ng/mL usando diluições 2 vezes em série. As amostras são diluídas em série em relação a seus níveis esperados. 100 µL de controles padrões e amostras foram adicionados à placa revestida e incubados por 120 minutos à temperatura ambiente em um oscilador orbital. As placas foram lavadas por 2 ciclos e o anticorpo anticy23B12 de coelho policional foi adicionado a 100 µL/cavidade e incubadas por 60 minutos à temperatura ambiente em um oscilador orbital. As placas foram lavadas por 2 ciclos, HRP-burro anti-coelho IgG (H+L) (diluição 1:10.000) foi adicionado a 100 µL/cavidade, e incubadas por 60 minutos à temperatura ambiente em um oscilador orbital. As placas foram lavadas por 2 ciclos com rotação de placa entre ciclos. O substrato de TMB foi adicionado a 100 µL/cavidade e incubado aproximadamente 5 minutos em um oscilador orbital. A solução de parada foi em seguida adicionada a 100 µL/cavidade e as placas lidas a A450-650 nm (TMB).

Este ensaio pode detectar menos do que 156 ng/mL de anticorpos cino-izados anti-TSLP no plasma (5% de diluição) e soro; e menos do que 3,2 ng/mL em fluido BAL.

Este ensaio ELISA foi usado para medir os farmacocinéticos de anticorpos cino-izados anti-TSLP 23B12 após administração a camundongos e macacos.

Um estudo de PK de dose simples foi conduzido em camundongos CD-1 normais. Neste estudo, dez camundongos receberam 10 mg/kg do anticorpo por administração intravenosa (IV); e dez camundongos receberam 10 mg/kg do anticorpo por administração subcutânea (SC). Os resultados do estudo estão resumidos na Tabela 12.

Tabela 12

<table>
<thead>
<tr>
<th>Rota</th>
<th>Folga (mL/dia/kg)</th>
<th>Vss (mL/kg)</th>
<th>AUC 0-final (µg*dia/mL)</th>
<th>T ½ terminal (dia)</th>
<th>Tmáx (dia)</th>
<th>Cmáx (µg/mL)</th>
<th>F(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>24,8</td>
<td>220</td>
<td>366</td>
<td>6,69</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IV (w/o Dia 10)</td>
<td>22,8</td>
<td>198</td>
<td>404</td>
<td>6,36</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SC</td>
<td>-</td>
<td>-</td>
<td>370</td>
<td>3,13</td>
<td>0,667</td>
<td>73,7</td>
<td>95,6</td>
</tr>
</tbody>
</table>
A Tabela 13 resume a percentagem de anticorpo cino-izado anti-TSLP encontrada no fluido de BAL versus no soro em vários pontos de tempo após administração de IV ou SC.

Tabela 13

<table>
<thead>
<tr>
<th>Ponto de tempo (dia)</th>
<th>IV BAL/Média de Soro (%)</th>
<th>SC BAL/Média de Soro (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,250</td>
<td>1,686</td>
<td>4,080</td>
</tr>
<tr>
<td>1,000</td>
<td>2,811</td>
<td>5,880</td>
</tr>
<tr>
<td>3,000</td>
<td>5,677</td>
<td>7,301</td>
</tr>
<tr>
<td>7,000</td>
<td>13,740</td>
<td>16,945</td>
</tr>
<tr>
<td>10,000</td>
<td>14,319</td>
<td>5,064</td>
</tr>
<tr>
<td>14,000</td>
<td>6,517</td>
<td>16,912</td>
</tr>
</tbody>
</table>

Tabela 14

<table>
<thead>
<tr>
<th>Formulação</th>
<th>Animal ID</th>
<th>Dose (mg/kg)</th>
<th>CL/F (mL/dia/kg)</th>
<th>AUC 0-final (mg*dia/mL)</th>
<th>T ½ terminal (dia)</th>
<th>Tmáx (dia)</th>
<th>Cmáx (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nenhum Triton</td>
<td>Cino M2-04</td>
<td>5,6</td>
<td>15,1</td>
<td>326 (600)</td>
<td>9,18</td>
<td>1</td>
<td>26,4</td>
</tr>
<tr>
<td></td>
<td>Cino M7-05</td>
<td>5,6</td>
<td>7,96</td>
<td>594 (1090)</td>
<td>10</td>
<td>1</td>
<td>48,3</td>
</tr>
<tr>
<td></td>
<td>Cino M21-05</td>
<td>5,7</td>
<td>8,82</td>
<td>491 (887)</td>
<td>12,4</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>0,05% de Triton X100</td>
<td>Cino 2172</td>
<td>10,7</td>
<td>10,3</td>
<td>666</td>
<td>8,15</td>
<td>4</td>
<td>61,6</td>
</tr>
<tr>
<td></td>
<td>Cino 3048</td>
<td>10,3</td>
<td>8,27</td>
<td>778</td>
<td>8,86</td>
<td>2</td>
<td>88,8</td>
</tr>
<tr>
<td></td>
<td>Cino 5102</td>
<td>9,8</td>
<td>8,14</td>
<td>753</td>
<td>9,08</td>
<td>1</td>
<td>89,9</td>
</tr>
</tbody>
</table>
Tabela 15

<table>
<thead>
<tr>
<th>Formulação</th>
<th>Proporção de BAL/Soro (%)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nenhum Triton</td>
<td>Ponto de tempo (dia)</td>
<td>M2-04</td>
<td>M7-05</td>
<td>M21-05</td>
<td>Média</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,657</td>
<td>0,712</td>
<td>0,335</td>
<td>0,568</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1,83</td>
<td>1,15</td>
<td>1,81</td>
<td>1,60</td>
</tr>
<tr>
<td>+0,05% de Triton X100</td>
<td>Ponto de tempo (dia)</td>
<td>2172</td>
<td>3048</td>
<td>5102</td>
<td>Média</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,313</td>
<td>0,492</td>
<td>1,39</td>
<td>0,733</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,090</td>
<td>0,620</td>
<td>0,693</td>
<td>0,467</td>
</tr>
</tbody>
</table>

Exemplo 13

Administração de Anticorpos Cino-izados anti-TSLP 23B12 a Macacos Monkeys

Muitas modificações e variações desta invenção podem ser fei-
tas sem fugir de seu espírito e escopo, conforme será aparente àqueles versados na técnica. As concretizações específicas aqui descritas são oferecidas por meio de Exemplo somente, e a invenção é para ser limitada pelos termos das reivindicações em anexo, junto com o escopo total de equivalentes aos quais tais reivindicações são intituladas; e a invenção não é para ser limitada pelas concretizações específicas que foram apresentadas aqui por meio de Exemplo.

A citação das publicações ou documentos acima não é pretendida como uma admissão que qualquer do precedente é técnica anterior pertinente, nem constitui qualquer admissão como para os conteúdos ou dados destas publicações ou documentos. As patentes dos Estados Unidos e outras publicações aqui referenciadas são, desse modo, incorporadas por referência.
REIVINDICAÇÕES

1. Composto de ligação que liga especificamente TSLP humano e cino, compreendendo:
 pelo menos uma região variável de cadeia pesada de anticorpo,
 ou um fragmento de ligação de TSLP desta, referida região variável de cadeia pesada compreendendo pelo menos uma sequência de CDR selecionada a partir do grupo consistindo em SEQ ID NOs: 1, 2 e 3; ou
 pelo menos uma região variável de cadeia leve de anticorpo, ou
 um fragmento de ligação de TSLP desta, referida região variável de cadeia leve compreendendo pelo menos uma sequência de CDR selecionada a partir do grupo consistindo em SEQ ID NOs: 4, 5 e 6.

2. Composto de ligação, de acordo com a reivindicação 1, em que o composto de ligação compreende:
 pelo menos uma região variável de cadeia pesada de anticorpo,
 ou um fragmento de ligação de TSLP desta, referida região variável de cadeia pesada compreendendo pelo menos uma sequência de CDR selecionada a partir do grupo consistindo em SEQ ID NOs: 1, 2 e 3; e
 pelo menos uma região variável de cadeia leve de anticorpo, ou
 um fragmento de ligação de TSLP desta, referida região variável de cadeia leve compreendendo pelo menos uma sequência de CDR selecionada a partir do grupo consistindo em SEQ ID NOs: 4, 5 e 6.

3. Composto de ligação de acordo com a reivindicação 2, em que:
 a região variável de cadeia pesada de anticorpo, ou fragmento de ligação de TSLP desta, compreende pelo menos duas seqüências de CDR selecionadas a partir do grupo consistindo em SEQ ID NOs: 1, 2 e 3; e
 a região variável de cadeia leve de anticorpo, ou fragmento de ligação de TSLP desta, compreende pelo menos duas seqüências de CDR selecionadas a partir do grupo consistindo em SEQ ID NOs: 4, 5 e 6.

4. Composto de ligação, de acordo com a reivindicação 2, em que:
 a região variável de cadeia pesada de anticorpo, ou fragmento
de ligação de TSLP desta, tem as três sequências de CDR colocadas em SEQ ID NOs: 1, 2 e 3; e

a região variável de cadeia leve de anticorpo, ou fragmento de ligação de TSLP desta, tem as três sequências de CDR colocadas em SEQ ID NOs: 4, 5 e 6.

5. Composto de ligação que liga especificamente TSLP humano e cinco, compreendendo:

pelo menos uma região variável de cadeia pesada de anticorpo, ou um fragmento de ligação de TSLP desta, referida região variável de cadeia pesada compreendendo: a CDR-H1 de SEQ ID NO. 1, ou uma variante desta; a CDR-H2 de SEQ ID NO. 2, ou uma variante desta; e a CDR-H3 de SEQ ID NO. 3, ou uma variante desta; ou

pelo menos uma região variável de cadeia leve de anticorpo, ou um fragmento de ligação de TSLP desta, referida região variável de cadeia leve compreendendo: the CDR-L1 de SEQ ID NO. 4, ou uma variante desta; a CDR-L2 de SEQ ID NO. 5, ou uma variante desta; e a CDR-L3 de SEQ ID NO. 6, ou uma variante desta.

6. Composto de ligação, de acordo com a reivindicação 5, em que referido composto de ligação compreende:

pelo menos uma região variável de cadeia pesada de anticorpo, ou um fragmento de ligação de TSLP desta, referida região variável de cadeia pesada compreendendo: the CDR-H1 de SEQ ID NO. 1, ou uma variante desta; a CDR-H2 de SEQ ID NO. 2, ou uma variante desta; e a CDR-H3 de SEQ ID NO. 3, ou uma variante desta; e

pelo menos uma região variável de cadeia leve de anticorpo, ou um fragmento de ligação de TSLP desta, referida região variável de cadeia leve compreendendo: a CDR-L1 de SEQ ID NO. 4, ou uma variante desta; a CDR-L2 de SEQ ID NO. 5, ou uma variante desta; e a CDR-L3 de SEQ ID NO. 6, ou uma variante desta.

7. Composto de ligação que liga especificamente TSLP humano e cinco, compreendendo:

uma região variável de cadeia pesada compreendendo resíduos
1-116 de SEQ ID NO: 10 ou uma variante destes; e
uma região variável de cadeia leve compreendendo resíduos 1-
108 de SEQ ID NO: 12, ou uma variante destes,
em que uma variante compreende até 20 resíduos de aminoácido
conservativamente modificados.

8. Composto de ligação de acordo com a reivindicação 7, compreendendo:
uma região variável de cadeia pesada compreendendo resíduos
1-116 de SEQ ID NO: 10; e
uma região variável de cadeia leve compreendendo resíduos 1-
108 de SEQ ID NO: 12.

9. Composto de ligação que liga especificamente TSLP humano
e cinto, compreendendo:
uma região variável de cadeia pesada tendo pelo menos 90% de
homologia a resíduos 1-116 de SEQ ID NO: 10; e
uma região variável de cadeia leve tendo pelo menos 90% de
homologia a resíduos 1-108 de SEQ ID NO: 12.

10. Ácido nucleico isolado que codifica pelo menos uma da regi-
ão variável de cadeia pesada ou região variável de cadeia leve do composto
de ligação como definido na reivindicação 1.

11. Vetor de expressão compreendendo o ácido nucleico como
definido na reivindicação 10 operavelmente ligado às sequências de controle
que são reconhecidas por uma célula hospedadora quando a célula hospedei-
ra é transfectada com o vetor.

12. Célula hospedadora compreendendo o vetor de expressão
como definido na reivindicação 11.

13. Método de produção um polipeptídeo compreendendo:
cultura da célula hospedadora como definido na reivindicação 8
em meio de cultura sob condições nas quais a sequência de ácido nucleico é
expressa, produzindo, desse modo, polipeptídeos compreendendo as regi-
ões variáveis de cadeias leve e pesada; e
recuperação dos polipeptídeos a partir da célula hospedeira ou
meio de cultura.

14. Composto de ligação de acordo com a reivindicação 1, compreendendo adicionalmente:

uma região constante de cadeia pesada humana, ou uma variante desta, em que a variante compreende até 20 substituições de aminoácido conservativamente modificadas; ou

uma região constante de cadeia leve humana, ou uma variante desta, em que a variante compreende até 20 substituições de aminoácido conservativamente modificadas.

15. Composto de ligação de acordo com a reivindicação 14, em que a região constante de cadeia pesada humana compreende uma região constante de cadeia pesada humana γ4 ou γ1, ou uma variante desta, em que a variante compreende até 20 substituições de aminoácido conservativamente modificadas.

16. Composto de ligação de acordo com a reivindicação 2, compreendendo adicionalmente:

uma região constante de cadeia pesada humana, ou uma variante desta, em que a variante compreende até 20 substituições de aminoácido conservativamente modificadas; ou

uma região constante de cadeia leve humana, ou uma variante desta, em que a variante compreende até 20 substituições de aminoácido conservativamente modificadas.

17. Composto de ligação, de acordo com a reivindicação 16, em que a região constante de cadeia pesada humana compreende uma região constante de cadeia pesada humana γ4 ou γ1, ou uma variante desta, no qual a variante compreende até 20 substituições de aminoácido conservativamente modificadas.

18. Composto de ligação, de acordo com a reivindicação 1, em que o composto de ligação é um anticorpo humanizado ou um fragmento de ligação de TSLP deste.

19. Composto de ligação, de acordo com a reivindicação 1, em que o composto de ligação é um fragmento de anticorpo de ligação de TSLP
seleccionado a partir do grupo consistindo em Fab, Fab', Fab'-SH, Fv, scFv, F(ab')₂, e a diacorpo.

20. Método de supressão de uma resposta imune em um indivíduo humano, compreendendo administrar a um indivíduo em necessidade deste o composto de ligação como definido na reivindicação 1, ou um fragmento de ligação de TSLP desta, em uma quantidade efetiva para bloquear a atividade biológica de TSLP.

21. Método, de acordo com a reivindicação 20, em que a resposta imune é uma resposta inflamatória.

22. Método, de acordo com a reivindicação 20, em que o indivíduo tem um distúrbio selecionado a partir do grupo consistindo em rinosinusite alérgica, asma alérgica, conjuntivite alérgica, ou dermatite alérgica.

23. Método, de acordo com a reivindicação 20, em que o indivíduo tem asma.

24. Composição compreendendo o composto de ligação como definido na reivindicação 1 em combinação com um veículo ou diluente farmaceuticamente aceitável.

25. Anticorpo que se liga especificamente ao epitope em TSLP humano que é ligado pelo anticorpo produzido pelo hibridoma depositado como PTA-7951, no qual o anticorpo que se liga especificamente ao epitope em TSLP humano não é o anticorpo produzido pelo hibridoma depositado como PTA-7951.

26. Anticorpo que inibe competitivamente ligação pelo anticorpo produzido pelo hibridoma depositado como PTA-7951 a TSLP humano, no qual o anticorpo que inibe competitivamente ligação não é o anticorpo produzido pelo hibridoma depositado como PTA-7951.

27. Composto de ligação de acordo com a reivindicação 1, em que o composto de ligação bloqueia atividade mediada por TSLP.

28. Composto de ligação de acordo com a reivindicação 1, em que referido composto de ligação é capaz de bloquear a ligação de TSLP a TSLP_R em um ensaio de bloqueio cruzado.

29. Uso do composto de ligação como definido na reivindicação
1, ou um fragmento de ligação de TSLP deste, para a preparação de um medicamento para suprimir uma resposta imune.

30. Uso do composto de ligação como definido na reivindicação 1, ou um fragmento de ligação de TSLP deste, para a preparação de um medicamento para tratar infamação.

31. Uso do composto de ligação como definido na reivindicação 1, ou um fragmento de ligação de TSLP deste, para a preparação de um medicamento para tratar infamação alérgica.

32. Uso do composto de ligação como definido na reivindicação 1, ou um fragmento de ligação de TSLP deste, para a preparação de um medicamento para tratar rinosinusite alérgica, asma alérgica, conjuntivite alérgica, ou dermatite alérgica.

33. Uso do composto de ligação como definido na reivindicação 1, ou um fragmento de ligação de TSLP deste, para a preparação de um medicamento para tratar asma.
RESUMO

Patente de Invenção: "ANTICORPO ANTI-TSLP PROJETADO".

A presente invenção refere-se a compostos de ligação que se ligam especificamente a TSLP humano, bem como a usos dos mesmos, por exemplo, no tratamento de distúrbios inflamatórios.