

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2018275544 C1

(54) Title
Infrared otoscope for characterization of effusion

(51) International Patent Classification(s)
A61B 5/12 (2006.01) **A61B 1/32** (2006.01)
A61B 1/06 (2006.01) **G01B 9/02** (2006.01)
A61B 1/07 (2006.01)

(21) Application No: **2018275544** (22) Date of Filing: **2018.05.30**

(87) WIPO No: **WO18/222782**

(30) Priority Data

(31) Number **15/609,015** (32) Date **2017.05.31** (33) Country **US**

(43) Publication Date: **2018.12.06**
(44) Accepted Journal Date: **2023.04.27**
(44) Amended Journal Date: **2023.10.26**

(71) Applicant(s)
Otonexus Medical Technologies, Inc.

(72) Inventor(s)
Moehring, Mark;Chesavage, Jay A.;Gates, George A.;Kreindler, Daniel

(74) Agent / Attorney
AJ PARK, GPO Box 2513, Sydney, NSW, 2001, AU

(56) Related Art
US 2007/0112273 A1
US 2006/0229509 A1
US 2016/0007840 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2018/222782 A1

(43) International Publication Date
06 December 2018 (06.12.2018)

(51) International Patent Classification:

A61B 5/12 (2006.01) *A61B 1/32* (2006.01)
A61B 1/06 (2006.01) *G01B 9/02* (2006.01)
A61B 1/07 (2006.01)

(74) Agent: ELKINS, Madeline, H.; Wilson Sonsini Goodrich & Rosati, PC, 650 Page Mill Road, Palo Alto, California 94304 (US).

(21) International Application Number:

PCT/US2018/035228

(22) International Filing Date:

30 May 2018 (30.05.2018)

(25) Filing Language:

English

(26) Publication Language:

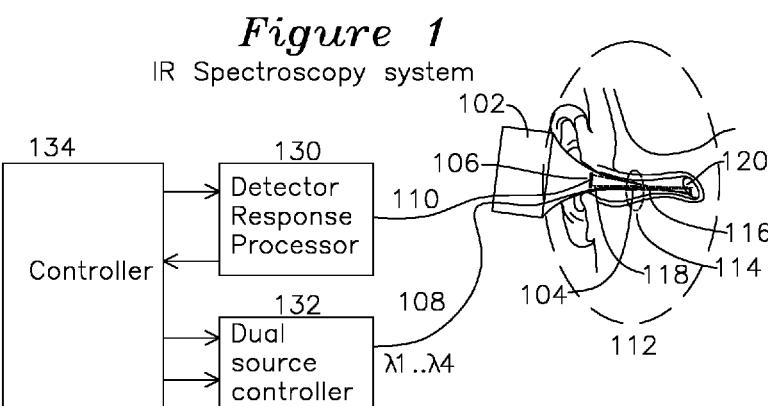
English

(30) Priority Data:

15/609,015 31 May 2017 (31.05.2017) US

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant: OTONEXUS MEDICAL TECHNOLOGIES, INC. [US/US]; 1546 NW 56th St., Seattle, Washington 98109-5209 (US).


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(72) Inventors: MOEHRING, Mark; 1546 NW 56th St., Seattle, Washington 98109-5209 (US). CHESAVAGE, Jay A.; 1546 NW 56th St., Seattle, Washington 98109-5209 (US). GATES, George A.; 1546 NW 56th St., Seattle, Washington 98109 (US). KREINDLER, Daniel; 1546 NW 56th St., Seattle, Washington 98109-5209 (US).

Published:

— with international search report (Art. 21(3))

(54) Title: INFRARED OTOSCOPE FOR CHARACTERIZATION OF EFFUSION

(57) Abstract: An otoscope uses differential reflected response of optical energy at an absorption range and an adjacent wavelength range to determine the presence of water (where the wavelengths are water absorption wavelength and an adjacent non-absorption excitation wavelengths). In another example of the invention, the otoscope utilizes OCT in combination with absorption and non-absorption range for bacteria and water.

1
2
3
4
5
6

7 Infrared Otoscope for Characterization of Effusion

8
9 [0001] Field of the Invention

10 [0002] The present invention relates to an otoscope
11 for characterization of fluid in an ear. In particular,
12 the invention relates to the detection of bacteria in a
13 fluid opposite a membrane using a measurement of optical
14 properties of the fluid and bacteria using one or more dual
15 wavelength optical sources and a detector which is
16 exclusively responsive to a particular source during a
17 particular time interval.

18

19

20 [0003] Background of the Invention

21 [0004] Acute Otitis Media (AOM) is a common disease of
22 the inner ear, involving tissue inflammation and fluidic
23 pressure which impinges on the tympanic membrane. Acute
24 Otitis Media may be caused by a viral infection, which

1 generally resolves without treatment, or it may be caused
2 by a bacterial infection, which may progress and cause
3 hearing loss or other deleterious and irreversible effects.
4 Unfortunately, it is difficult to distinguish between viral
5 or bacterial infection using currently available diagnostic
6 devices, and the treatment methods for the two underlying
7 infections are quite different. For bacterial infections,
8 antibiotics are the treatment of choice, whereas for viral
9 infections, the infection tends to self-resolve, and
10 antibiotics are not only ineffective, but may result in an
11 antibiotic resistance which would make them less effective
12 in treating a subsequent bacterial infection. It is
13 important to accurately diagnose acute otitis media, as AOM
14 can be a precursor to chronic otitis media with effusion
15 (COME), for which surgical drainage of the effusion and
16 insertion of a tube in the tympanic membrane is indicated.

17 [0005] The definitive diagnostic tool for inner ear
18 infections is myringotomy, an invasive procedure which
19 involves incisions into the tympanic membrane, withdrawal
20 of fluid, and examination of the effusion fluid under a
21 microscope to identify the infectious agent in the
22 effusion. Because of complications from this procedure, it
23 is only used in severe cases. This presents a dilemma for
24 medical practitioners, as the prescription of antibiotics

1 for a viral infection is believed to be responsible for the
2 evolution of antibiotic resistance in bacteria, which may
3 result in more serious consequences later in life, and with
4 no efficacious treatment outcome, as treatment of viral
5 infectious agents with antibiotics is ineffective. An
6 improved diagnostic tool for the diagnosis of acute otitis
7 media is desired.

8

9 [0006] Objects of the Invention

10 [0007a] A first object of the invention is a device
11 for characterization of a liquid adjacent to a tympanic
12 membrane. A second object of the invention is a method for
13 characterizing a liquid adjacent to a tympanic membrane.

14 [0007b] Disclosed herein is a device for measurement
15 of infectious agents present in an individual suspected of
16 suffering from acute otitis media, the device having a
17 plurality of optical sources, each optical source operative
18 at a unique wavelength or range of wavelengths, each
19 optical source operative within a particular range of
20 wavelengths for an interval of time which is exclusive from
21 the interval of time when optical sources at other
22 wavelengths are operative, the device having a detector for
23 measurement of reflected optical energy, the detector

1 measuring a ratio of detected optical energy at a first
2 wavelength to detected optical energy at a second or third
3 wavelength, thereafter forming a ratio metric value as a
4 proxy for estimated bacterial load.

5 [0008] Disclosed herein is a method for determination
6 of bacterial concentration by successively illuminating a
7 first surface of a membrane using a first and second
8 wavelength at exclusive time intervals, measuring the
9 reflected optical energy from the opposite surface of the
10 membrane during each associated interval, forming a ratio
11 of the first wavelength and second wavelength detector
12 responses from the associated illumination events, each
13 illumination event at a unique wavelength or range of
14 wavelengths, where at least one of the illumination
15 wavelengths corresponds to a bacterial absorption band, and
16 another of the illumination wavelengths is in a wavelength
17 with non-absorption or non-scattering characteristic for a
18 bacterial colony or group of dispersed bacterium.

19 [0009] Disclosed herein is a speculum tip for
20 insertion into an ear canal, one or more pairs of optical
21 sources, each optical source coupling an optical output
22 through the speculum tip, each optical source operative in
23 a unique wavelength or range of wavelengths, each pair of
24 optical sources generating a first optical output at a

1 first wavelength selected for reflective attenuation for
2 either watery fluid or bacteria, and also generating a
3 second wavelength selected for comparative non-attenuation
4 reflection for either watery fluid or bacteria, the second
5 wavelength operative near the first wavelength, where
6 reflected optical energy from the tympanic membrane is
7 directed to a detector responsive to each optical source
8 wavelength for optical energy reflected into the speculum
9 tip, the detector coupled to a controller measuring a ratio
10 of detector response from said first and said second
11 wavelength, thereby forming a metric indicating the
12 presence of bacteria and/or watery fluid from the detector
13 response ratio associated with each pair of emitters.

14

15

16

17 [00010] Summary of the Invention

18 [00011a] In accordance with a first aspect of the
19 present invention, there is provided a device for
20 characterization of a liquid adjacent to a tympanic
21 membrane, the device comprising:

22 a low-coherence interferometer comprising at least one
23 light source with an optical spectrum, wherein the optical
24 spectrum comprises a first wavelength which is at least

1 partially reflective from the tympanic membrane and at
2 least partially absorptive by viral or bacterial effusion
3 fluid and a second wavelength which is at least partially
4 reflective from the tympanic membrane and less absorptive
5 by the viral or bacterial effusion fluid than the first
6 wavelength;

7 a detector configured to receive reflected light from
8 the tympanic membrane and to collect low-coherence
9 interferometry data comprising a measurement of an optical
10 power for at least the first wavelength and the second
11 wavelength; and

12 a controller operably connected to the detector and
13 configured to determine a membrane metric based at least on
14 a ratio of the measurement of the optical power for the
15 first wavelength and the second wavelength, and wherein the
16 membrane metric indicates a presence of the viral or
17 bacterial effusion fluid adjacent the tympanic membrane.

18 [00011b] In accordance with a second aspect of the
19 present invention, there is provided a method for
20 characterizing a liquid adjacent to a tympanic membrane,
21 the method comprising:

22 directing light from a low-coherence interferometer
23 comprising a light source, wherein the light comprises a
24 first wavelength at least partially reflected by the

1 tympanic membrane and absorbed by viral or bacterial
2 effusion fluid and a second wavelength at least partially
3 reflected by the tympanic membrane and less absorptive by
4 the viral or bacterial effusion fluid than the first
5 wavelength;

6 measuring, at a detector, reflected light from the
7 tympanic membrane, wherein the detector is configured to
8 collect low-coherence interferometry data comprising a
9 measurement of an optical power of the first wavelength and
10 an optical power of the second wavelength;

11 determining, at a controller operably connected to the
12 detector, a ratio of the measurement of the optical power
13 for the first wavelength and the second wavelength; and

14 providing an indication of a presence of the viral or
15 bacterial effusion fluid adjacent the tympanic membrane
16 based on the ratio of the intensity of the first wavelength
17 and the intensity of the second wavelength.

18 [00011c] Reference may be made in the description to
19 subject matter which is not in the scope of the appended
20 claims. That subject matter should be readily identifiable
21 by a person skilled in the art and may assist putting into
22 practice the invention as defined in the appended claims.

23 [00011d] The term "comprising" as used in this
24 specification and claims means "consisting at least in part

1 of". When interpreting statements in this specification
2 and claims which include the term "comprising", other
3 features besides the features prefaced by this term in each
4 statement can also be present. Related terms such as
5 "comprise" and "comprised" are to be interpreted in similar
6 manner.

7 [00011e] In a first example of the disclosure, a
8 controller enables one of a first plurality of optical
9 sources, or alternatively a single first optical source at
10 a wavelength for bacterial absorption, and one of a second
11 plurality of optical sources, or alternatively a second
12 optical source operative at an adjacent wavelength which is
13 non-absorptive for bacteria, an optional third source
14 operative at a wavelength absorptive for watery fluid and
15 an optional fourth source operative at an adjacent non-
16 absorptive wavelength for watery fluid, each optical source
17 or sources optionally operative at alternating or exclusive
18 intervals of time. Each wavelength source is optically
19 coupled through a tapered speculum which is inserted into
20 the ear canal of a subject to be examined. The optical
21 beam from each optical source may be carried as a directed
22 beam, or the optical beam may be carried in an annular
23 light guide or light pipe which surrounds the speculum, the
24 optical energy from the illumination configuration

1 impinging onto a front (distal) surface of a tympanic
2 membrane, the tympanic membrane having a bacterial film or
3 bacterial fluid on an opposite (proximal) surface of the
4 tympanic membrane to be characterized. Reflected optical
5 energy is coupled into the speculum tip to a single
6 detector having a first wavelength response for energy
7 reflected from the first source and a second wavelength
8 response for energy reflected from the second wavelength
9 source, or to separate detectors which are operative in
10 each optical wavelength range of a respective optical
11 source. The first wavelength response and second
12 wavelength response are averaged over the associated
13 interval the respective optical source is enabled to form
14 an average measurement for each first wavelength response
15 and each second wavelength response, and a ratio is formed
16 from the two measurements. A first wavelength is in an
17 absorption or scattering range of wavelengths for a
18 bacterium to be characterized, and a second of the
19 wavelengths is adjacent to the first wavelength and outside
20 of the bacterial scattering or absorption wavelength. The
21 response ratio for the first and second wavelength is
22 applied to a polynomial or to a look-up table which
23 provides an estimate of bacterial load from the ratio of
24 power in the first wavelength to the power in the second

1 wavelength, optionally compensating for the wavelength
2 specific attenuation when absorptive or scattering fluid is
3 not present, for example by using a stored wavelength
4 scaling coefficient which compensates for scattering alone.
5 A similar ratio for the detector responses associated with
6 the third and fourth wavelength sources which are in
7 adjacent absorptive and non-absorptive wavelengths,
8 respectively, for water may be formed as well.

9 [0012] In a second example of the disclosure providing
10 axial extent specificity over the region of measurement,
11 the first and second wavelength sources are selected as
12 adjacent wavelengths for absorption response and non-
13 absorption response for bacteria, and also have a short
14 coherence length, with the optical output of each source
15 directed to the proximal surface of the tympanic membrane
16 and middle ear to be characterized after splitting the
17 optical energy into a measurement path and a reference
18 path. The measurement path directs optical energy to the
19 fluid to be characterized having a length equal to the
20 reference path, the reflected optical energy from the
21 measured path and reflected path are combined, thereby
22 forming a coherent response over a narrow depth range,
23 which is set to include the proximal surface of the
24 tympanic membrane and middle ear region to be

1 characterized. The first wavelength source and second
2 wavelength source are enabled during exclusive intervals of
3 time, and the combined measurement path and reference path
4 optical energy directed to a detector response to the
5 associated wavelengths. The first wavelength detector
6 response and second wavelength detector response form a
7 ratio which is used as a bacterial load metric, the ratio
8 metric acting as a proxy for detection of the presence of
9 bacteria. The third and fourth wavelengths are selected as
10 in the first example to be adjacent but comparatively
11 scattering and non-scattering for watery fluid, and used to
12 form a second ratio which acts as a proxy for detection of
13 watery fluid in the selected axial extent.

14 [0013] For the first or second example, by combining
15 the second metric (presence of watery fluid) with the first
16 metric (presence of bacteria), a more complete survey of
17 the scope of acute otitis media may be determined.

18

19

20 [0014] Brief Description of the Drawings

21 [0015] Figure 1 shows a block diagram of an infrared
22 spectroscopy system for making measurements of a tympanic
23 membrane.

2018275544
23 Jun 2023

1 [0016] Figure 2 shows a detail view of a speculum tip
2 and optical components with respect to a tympanic membrane.

3 [0017] Figure 3 shows a plot of scattered IR spectral
4 response vs wavelength from a tympanic membrane.

5 [0018] Figure 4 shows a plot of waveforms for
6 measurement of reflected optical energy from a first and
7 second optical source.

8 [0019] Figure 5 shows a block diagram of an OCT
9 measurement system for dual wavelength measurements.

10 [0020] Figures 6A and 6B shows a block diagram for a
11 multi-wavelength detector.

12 [0021] Figures 7A, 7B, 7C, 7D, 7E, and 7F show
13 waveform plots for a normal tympanic membrane.

14 [00022] Figures 8A, 8B, 8C, 8D, 8E, and 8F show
15 waveform plots for viral effusion in a tympanic membrane.

16 [00023] Figures 9A, 9B, 9C, 9D, 9E, and 9F show
17 waveform plots for bacterial effusion in a tympanic
18 membrane.

19 [0024] Figure 10 shows a block diagram of an optical
20 fiber based OCT system for dual wavelength in-fiber dual
21 spectroscopy.

22

1 [0025] Detailed Description of the Invention

2 [0026] Figure 1 shows a block diagram for an infrared
3 (IR) spectroscopy system with an expanded view of the
4 speculum tip in figure 2. A controller 134 is coupled to a
5 detector response processor 130 and dual source controller
6 132. The dual source controller 132 enables and provides
7 power to a first optical source (not shown) at a first
8 wavelength λ_1 and a second wavelength source (not shown) at
9 a second wavelength λ_2 during alternating intervals. The
10 optical energy from the sources is directed through a
11 speculum tip 102 and onto the front (distal) surface of a
12 tympanic membrane 120 to be characterized, with the
13 speculum tip 120 minimizing the reflected optical energy
14 from inside the speculum tip 120 to the detector 106
15 through paths other than those which first reflect from the
16 tympanic membrane 120. The reflected optical energy is
17 sensed by an optical detector 106 and provided to image
18 processor 130, which compares the reflected optical energy
19 at a first wavelength to reflected optical energy at a
20 second wavelength, and forms a metric such as ratio of
21 reflected optical power measured at the detector in each
22 wavelength $\frac{\lambda_{1refl}}{\lambda_{2refl}}$. The wavelength metric may be used to
23 estimate the likelihood of presence of bacteria or

1 bacterial load in the inner ear fluid on the opposite
2 (proximal) surface of the tympanic membrane 120.

3 [0027] Figure 2 shows an example detailed view of IR
4 speculum tip 102 with respect to other elements of an
5 example embodiment. For bacterial measurement, first
6 wavelength λ_1 and adjacent second wavelength λ_2 optical
7 energy 212 may be coupled to the speculum tip 102 in any
8 known manner which then couples to an annular light pipe,
9 such as with a plurality of optical fibers positioned
10 around the circumference of speculum tip 102, thereby
11 coupling optical energy 200 to tympanic membrane 120 and to
12 fluid 204 which may be on the proximal side of tympanic
13 membrane 120, but without directly coupling to detector 106
14 until after reflection from tympanic membrane 120 and any
15 fluid 204 which may lie opposite the tympanic membrane 120
16 distal surface which is facing the speculum tip 102. It
17 may be additionally advantageous to add structure which
18 exclude optical energy from sources other than tympanic
19 membrane reflection. Reflected optical energy, which
20 includes responses from tympanic membrane 120 and any fluid
21 204 which may be present, is focused by lens 206 into a
22 dual range wavelength detector 106. In one example
23 embodiment, the inner surfaces of speculum tip 212 are

1 reflective and no lens or focusing mechanism 206 is present
2 to guide unfocused reflected light to detector 106. Where
3 a lens 206 is not present, the detector 106 is responsive
4 to optical energy traveling directly from the tympanic
5 membrane, as well as optical energy which has reflected
6 from the inner reflective surface of the speculum tip 212.
7 In this embodiment, identification of the selection region
8 may be accomplished using a laser pointer (not shown) or
9 other optical viewing system. The laser pointer emitter
10 may optionally be disabled during measurement intervals to
11 avoid contributing unwanted detector response from the
12 laser pointer scattered reflection. A similar set of
13 third and fourth wavelengths may be used to measure water
14 content with adjacent wavelengths in absorption and non-
15 absorption wavelengths. In another example embodiment, lens
16 system 206 is present with the detector 106 having a small
17 extent and comparatively small number of pixels and
18 positioned at focal point 207, or alternatively it may be
19 placed at an image plane as shown in figure 2 with a large
20 number of pixels, such as 50x50 or 100x100, or a resolution
21 which is governed by the pixel pitch and available inner
22 diameter of speculum 102 at the image or focal plane.

23 [0028] Figure 3 shows a spectral response for energy
24 reflected from a tympanic membrane with and without

1 bacterial/watery fluid. The reflection characteristic has
2 a characteristic $\frac{1}{f}$ absorption falloff associated with
3 Rayleigh scattering, whereby longer wavelengths have fewer
4 scattering interactions and lower absorption than shorter
5 wavelengths. The absorption plot 302 is generally
6 reciprocal with increasing wavelength, however bacteria
7 having a physical length which interacts with optical
8 energy at an associated wavelength, such as the range 309
9 which has a greater absorption 312,314 for various
10 bacterium in region 309 of the plot for bacterial fluid
11 compared to non-bacterial fluid in response plot 302.
12 Particular bacteria which are absorptive in range 309
13 include *Haemophilus Influenzae*, *Moraxella Catarrhalis*, and
14 *Streptococcus Pneumoniae*. Similarly, an elevated
15 absorption peak 306 is found associated with water
16 absorption in a different range of wavelengths. In the
17 present invention, the detector is responsive to reflected
18 optical energy in a first wavelength range 309 such as
19 1050nm to 1150nm which provides for a decreased response at
20 the detector due to bacterial scattering, and the detector
21 uses absorption in an adjacent wavelength 322 such as
22 1000nm or the visible optical range 308 of 400 to 800nm,
23 which may also be used as a fifth wavelength λ_5 for pointing

1 and illuminating the region of examination used for forming
2 the λ_1 and λ_2 or λ_3 and λ_4 metric ratios. In this case, λ_5
3 may be in a visible range or detection wavelength range for
4 a 2D detector 106, with the λ_5 source having a narrow
5 dispersion laser (not shown) for illuminating the region of
6 examination and indicating a landmark region such as the
7 "cone of light" of the tympanic membrane for locating the
8 measurement region.

9 [0029] In an illustrative example, Figure 3 326 shows
10 a first wavelength with an increased absorption when
11 bacteria is present (region 309) compared to second
12 wavelength 322 which is unaffected by the presence of
13 bacteria, and third wavelength 326 has greater absorption
14 when watery fluid is present compared to fourth wavelength
15 324 which is adjacent to the absorptive wavelength for
16 watery fluid. These examples are given for illustrative
17 purposes, wavelengths for absorption by bacteria or water
18 may vary from those shown in the example of figure 3. In
19 the context of the present specification, wavelength
20 specific absorption may also be referred to as scattering
21 or reflective attenuation. In one example of the
22 invention, a first wavelength operative for increased
23 absorption or scattering in the presence of bacteria is in

1 the range 1050nm to 1150nm, and an adjacent wavelength is
2 one below 1050nm or above 1150nm. In another example of
3 the invention, a third wavelength operative for increased
4 absorption or scattering in the presence of watery fluid is
5 the range 310 from 1450nm to 1600nm, and a fourth
6 wavelength which is adjacent to the third wavelength is
7 below 1450nm or above 1600nm.

8 [0030] Figure 4 shows a plot of waveforms for
9 operation of the device of figures 1 and 2, which uses two
10 optical sources such as λ_1 and λ_2 , although the commutation
11 (also known as time multiplexing) for four wavelengths may
12 be done in any order. A first wavelength λ_1 optical source
13 402 is commutated on during intervals 408, 416, and 424 and
14 off during exclusive intervals 412, 420 when the second
15 wavelength λ_2 optical source is enabled. Intermediate gaps
16 410, 414, 418, 422 may be used for ambient light
17 corrections at the detector, which may be used to estimate
18 an ambient light and detector offset value, and thereafter
19 subtracted from the detector response during intervals 408,
20 416, 424 of λ_1 , and intervals 412 and 420 of λ_2 . The
21 detector response 406 includes detector noise, which may be
22 averaged over the measurement interval 408, 416, 424 for
23 the first wavelength λ_1 , or 412, 420 for the second

1 wavelength λ_2 . In one example of the invention extended
2 from the one shown in figure 4, λ_1 is a wavelength of
3 increased bacterial absorption, λ_2 is a nearby reference
4 wavelength which is outside the bacterial absorption
5 wavelength of λ_1 , λ_3 is a wavelength for water absorption,
6 λ_4 is a wavelength near to λ_3 but not affected by water
7 absorption, and λ_5 is an optical wavelength for
8 visualization, each wavelength λ_1 and λ_2 are commutated on
9 during exclusive intervals as waveforms 402 and 404 of
10 figure 4 for forming a bacterial metric $\frac{\lambda_{1refl}}{\lambda_{2refl}}$, optionally
11 after which each wavelength λ_3 and λ_4 are commutated during
12 exclusive intervals 402 and 404 to form fluid metric $\frac{\lambda_{3refl}}{\lambda_{4refl}}$.
13 Each corresponding metric may then be compared with a
14 threshold for each metric to arrive at an estimated
15 likelihood of presence of fluid or presence of bacteria. In
16 one example of the invention, the respective bacterial or
17 water fluid detector wavelength responses may be corrected
18 for wavelength-specific attenuation or scattering (in the
19 absence of watery fluid or bacteria) so that each pair of
20 wavelengths (pathogen specific and adjacent) provide a
21 unity metric ratio ($\frac{\lambda_{1refl}}{\lambda_{2refl}}$ or $\frac{\lambda_{3refl}}{\lambda_{4refl}}$) when bacteria or watery
22 fluid, respectively, are not present.

[0031] Figure 5 shows a block diagram for an optical coherence tomography (OCT) characterization system, which has the benefit of narrow depth of axial specificity, which allows the response being measured to be restricted to a particular axial depth and range of depth, such as the proximal surface of the tympanic membrane and middle ear region. A low coherence source 514 having a plurality of wavelength range outputs includes a first wavelength λ_1 and a second wavelength λ_2 which are directed along path 518 to first splitter 516, and thereafter to second splitter 526. Half of the optical energy is thereafter directed to the measurement optical path 528, and half to mirror 512 and movable reflector 508, which adjusts the length of the reference path to be equal to the measurement path length which includes the proximal surface of the tympanic membrane and middle ear region. The optical energy returned from the reflector 508 and returned from tympanic membrane 532 combine at second splitter 526, and the summed optical energy continues to first splitter 516 and thereafter to mirror 524 and detector 520. Where the reference optical path (optical distance from splitter 526 to reflector 508) is exactly the same length as measurement optical path (from second splitter 526 to tympanic membrane 532), the coherently summed reference optical energy and reflected

1 optical energy is directed, in sequence, to second splitter
2 526, first splitter 516, mirror 524, and to detector 520.
3 The short coherence length of source 514 provides depth
4 specificity, which allows measurement of bacterial
5 response, typically with specificity of less than an
6 optical wavelength in depth on the proximal side of
7 tympanic membrane 532. Schematic figure 5 is shown for
8 illustration only, other configurations of optical mirrors
9 and splitters may be used.

10 [0032] Figure 6A shows a first example of a multi-
11 wavelength detector 520A, where a first wavelength λ_1
12 detector 602 is responsive to λ_1 and transparent for second
13 wavelength λ_2 associated with second detector 604. By
14 bonding a first detector 602 and second detector 604
15 together using an optically transparent adhesive, the
16 front-facing detector 602 is transparent for the optical
17 energy λ_2 of the detector 604 behind it. This construction
18 of the detector 602/604 may require commutation of the
19 various optical sources as was described in figure 4,
20 particularly where one of the detectors has an out-of-band
21 response to adjacent wavelength optical energy used for a
22 different measurement, such as water vs bacterial
23 absorption.

[0033] Figure 6B shows another embodiment of a multi-wavelength detector 520A, which utilizes a diffraction grating 608 to separate the various wavelengths λ_1 , λ_2 , λ_3 , λ_4 , etc. to detector 606 for spatial isolation of each wavelength. Because the various wavelengths are spatially separated, this configuration of detector may permit the four optical sources to be operated continuously and simultaneously, as they are inherently non-interfering because of the spatial separation by wavelength not present in the detector configuration of figure 6A. Dark current detector response (the detector response in the absence of optical energy used to establish a baseline response level which is subtracted from a reading when optical energy is present) may be made before or after the optical sources are enabled.

[0034] Figures 7A, 7B, 7C, 7D, 7E, and 7F show associated waveforms for positional drive 701 and 703, which modulate the axial position of reflector 508 of figure 5, where the position "0" corresponds to position 536b of figure 5, the position "-0.5" indicates position 536a, "+0.5" indicates position 536c, and "+1.0" indicates position 536d.

2018275544
23 Jun 2023

1 [0035] For the attenuation plot of figure 3, and using
2 λ_1 at an exemplar maximum viral attenuation wavelength of
3 1100nm and λ_2 at an exemplar adjacent wavelength 1000nm, and
4 λ_3 at an exemplar water absorption wavelength of 1500nm and
5 λ_4 at an exemplar nearby wavelength of 1400nm which is
6 outside the water absorption wavelength, it is possible to
7 compare the relative responses of λ_1 with λ_2 , and λ_3 with λ_4
8 to determine the three conditions of clinical interest:
9 absence of watery fluid, presence of effusion fluid without
10 bacteria, and presence of effusion fluid with bacteria, as
11 is desired for subjects suffering from ear discomfort. The
12 apparatus and method thereby providing a diagnostic tool
13 for viral vs bacterial infection, as well as determining
14 that no fluid is present proximal to the tympanic membrane.

15 [0036] Figures 7A and 7D are plots of axial position
16 for the reflector 508 of figure 5, figures 7B and 7C show
17 the λ_1 and λ_2 responses, respectively, which are
18 differential for bacteria, and figures 7E and 7F show the λ_3
19 and λ_4 responses, respectively, which are differential for
20 presence of watery fluid. The waveforms 702, 740, 703, and
21 741 show equal amplitude detector responses 714 and 750
22 where no fluid is present proximal to the tympanic
23 membrane. Responses 706, 744, 718, and 754 are minimal

1 coherent reflections due to patches of ear wax, ear
2 follicles, or other minor structures distal to the tympanic
3 membrane, and responses 712, 713, 722, and 758 are the
4 respective detector responses for λ_1 through λ_4 ,
5 respectively at the tympanic membrane. The short duration
6 of the responses 708, 748, 721, and 757 at position +0.5
7 near the tympanic membrane also indicates that only the
8 tympanic membrane is providing return signal, and only over
9 the short duration of coherent reflection from the tympanic
10 membrane. As minimal differential attenuation is present
11 which is specific to wavelength, the response amplitudes
12 714, 750, 724, and 756 are all equivalent amplitude.

13 [0037] Figures 8A and 8D similarly show a plot of
14 reflector position 801 and 803, respectively, corresponding
15 to the region of coherence about the tympanic membrane, as
16 was described for figures 7A and 7D. The plots of figure
17 8B and 8C show the OCT responses from viral (watery) fluid
18 proximal to the tympanic membrane. The responses 806, 844,
19 818, and 854 distal to the tympanic membrane are minimal,
20 as before. The tympanic membrane responses and proximal
21 responses 812, 841, 822, and 858 have an extended duration
22 of response associated with the fluid boundary proximal to
23 the tympanic membrane, and include a longer time extent 808

1 and 848 of response, related to the spatially expanded
2 response from fluid adjacent to the tympanic membrane,
3 compared to the narrow tympanic membrane detector response
4 such as 712 of figure 7. The peak amplitude detector
5 responses 814 (λ_1) and 850 (λ_2) are similar in amplitude,
6 whereas the peak response 824 (λ_3) is reduced compared to
7 856 (λ_4) because of the differential absorption of water at
8 λ_3 compared to λ_4 .

9 [0038] Figures 9A and 9D show the reflector position
10 plots with responses of figures 9B, 9C, 9E, and 9F for
11 bacterial effusion proximal to the tympanic membrane. The
12 amplitude 914 of OCT detector response 912 to λ_1 is reduced
13 compared to the detector amplitude response 947 at λ_2 , which
14 is not as absorptive for bacteria. The extent of OCT
15 response 908 and 948 is lengthened, as before, due to the
16 bacterial concentration which may be adjacent to the
17 tympanic membrane. The water attenuation of λ_3 compared to
18 λ_4 is shown in plots 903 and 941, with responses 922
19 attenuated at amplitude 924 compared to plot 958 at greater
20 amplitude 956.

21 [0039] As described in the previous response plots,
22 the ratio of reflected signal λ_1/λ_2 may be used to estimate

1 bacterial concentration, and the ratio of reflected signal
2 λ_3/λ_4 may be used to estimate fluid presence adjacent to the
3 tympanic membrane, and the ratio may compensate for lower
4 amplitude response from shorter wavelengths (having more
5 Rayleigh scattering) of each pair of wavelengths such that
6 the ratio is normalized to 1 for the absence of either
7 bacteria or watery fluid in each respective ratio.

8 [0040] Figure 10 shows a fiber optic architecture for
9 performing OCT to form a differential measurements
10 previously described. Low coherence source 1002 generates
11 $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ in a commutated sequence (for detector 1022
12 of figure 6A, or concurrently for the detector of figure
13 6B), which is applied to first splitter 1006, the low
14 coherence source being coupled to optical fiber 1008 and to
15 second splitter 1010, half of the optical source power
16 directed thereafter to optical fiber 1012 and lens 1013,
17 which directs the beam through the speculum tip (not
18 shown), to tympanic membrane 1051, with reflections from
19 the tympanic membrane and adjacent structures directed back
20 along Lmeas path to lens 1013, optical fiber 1012, and back
21 to second splitter 1010. The other half of the power
22 traveling from the source 1002 through splitter 1004 to
23 second splitter 1010 is directed to reference path 1017

1 with length L_{ref} terminating in a polished fiber end 1019,
2 which reflects optical energy in a counter-propagating
3 direction and back to second splitter 1010. The reference
4 path length L_{ref} is equal to the total measurement length
5 from second splitter 1010 to the tympanic membrane 1050.
6 By adjusting L_{ref} using the PZT modulator 1014 which
7 changes the length of the optical fiber by stretching it
8 longitudinally, the region of optical coherence can be
9 modulated axially about the tympanic membrane.

10 [0041] The foregoing is a description of preferred
11 embodiments of the invention. It is understood that
12 various substitutions can be made without limitation to the
13 scope of the invention. For example, other wavelengths may
14 be preferable for bacterial absorption or water absorption
15 than those specified.

1 We claim:

2 1) A device for characterization of a liquid adjacent
3 to a tympanic membrane, the device comprising:
4 a low-coherence interferometer comprising at least one
5 light source with an optical spectrum, wherein the optical
6 spectrum comprises a first wavelength which is at least
7 partially reflective from the tympanic membrane and at
8 least partially absorptive by viral or bacterial effusion
9 fluid and a second wavelength which is at least partially
10 reflective from the tympanic membrane and less absorptive
11 by the viral or bacterial effusion fluid than the first
12 wavelength;

13 a detector configured to receive reflected light from
14 the tympanic membrane and to collect low-coherence
15 interferometry data comprising a measurement of an optical
16 power for at least the first wavelength and the second
17 wavelength; and

18 a controller operably connected to the detector and
19 configured to determine a membrane metric based at least on
20 a ratio of the measurement of the optical power for the
21 first wavelength and the second wavelength, and wherein the
22 membrane metric indicates a presence of the viral or
23 bacterial effusion fluid adjacent the tympanic membrane.

24

1 2) The device of claim 1, wherein the detector
2 comprises a first detector configured to collect the
3 measurement of optical power at the first wavelength and
4 transparent to the second wavelength positioned in front of
5 a second detector configured to collect the measurement of
6 optical power at the second wavelength.

7

8 3) The device of claim 1, wherein the detector
9 comprises a first detector adjacent to a second detector
10 and a diffraction grating configured to direct the
11 reflected light onto the first detector and the second
12 detector.

13

14 4) The device of claim 1, wherein said first
15 wavelength is in the range 1050nm to 1150nm, and the second
16 wavelength is below 1050nm.

17

18 5) The device of claim 1, wherein the first wavelength
19 and the second wavelength are measured at exclusive
20 intervals of time.

21

22 6) The device of claim 1, wherein the first wavelength
23 and the second wavelength are measured concurrently.

24

1 7) The device of claim 1, wherein one or more of the
2 first wavelength or the second wavelength are selected to
3 increase the ratio of the measurement of the optical power
4 for the first wavelength and the second wavelength.

5

6 8) The device of claim 1, wherein the low-coherence
7 interferometer is a portion of an optical coherence
8 tomography system.

9

10 9) The device of claim 4, further comprising a second
11 optical source in the visible range aligned with at least a
12 portion of the first wavelength and the second wavelength
13 along an axis toward the tympanic membrane.

14

15 10) The device of claim 1, wherein the membrane metric
16 is applied to a look-up table to determine a bacterial or
17 viral load.

18

19 11) The device of claim 1, wherein the membrane metric
20 is determined based at least on the ratio of the
21 measurement of the optical power for the first wavelength
22 and the second wavelength as a function of depth of the
23 measurement.

24

1 12) A method for characterizing a liquid adjacent to a
2 tympanic membrane, the method comprising:
3 directing light from a low-coherence interferometer
4 comprising a light source, wherein the light comprises a
5 first wavelength at least partially reflected by the
6 tympanic membrane and absorbed by viral or bacterial
7 effusion fluid and a second wavelength at least partially
8 reflected by the tympanic membrane and less absorptive by
9 the viral or bacterial effusion fluid than the first
10 wavelength;
11 measuring, at a detector, reflected light from the
12 tympanic membrane, wherein the detector is configured to
13 collect low-coherence interferometry data comprising a
14 measurement of an optical power of the first wavelength and
15 an optical power of the second wavelength;
16 determining, at a controller operably connected to the
17 detector, a ratio of the measurement of the optical power
18 for the first wavelength and the second wavelength; and
19 providing an indication of a presence of the viral or
20 bacterial effusion fluid adjacent the tympanic membrane
21 based on the ratio of the intensity of the first wavelength
22 and the intensity of the second wavelength.

23

1 13) The method of claim 12, further comprising
2 indicating a landmark region on the tympanic membrane using
3 a second optical source.

4

5 14) The method of claim 12, wherein providing the
6 indication of the presence of the viral or bacterial
7 effusion fluid comprises comparing a membrane metric
8 derived from the ratio to a look-up table and estimating a
9 viral load or a bacterial load based on the comparison.

10

11 15) The method of claim 12, further comprising
12 adjusting the first wavelength or the second wavelength to
13 increase the ratio of the measurement of the optical power
14 for the first wavelength or the second wavelength.

15

16 16) The method of claim 12, wherein the indication of
17 the presence of the viral or bacterial effusion fluid
18 comprises an indication of acute otitis media or chronic
19 otitis media with effusion.

20

21 17) The method of claim 12, further comprising
22 adjusting a measurement path of the low-coherence
23 interferometer relative to a reference path of the low-
24 coherence interferometer and measuring a summed response

1 from the measurement path and the reference path at the
2 detector.

3

4 18) The method of claim 17, wherein the low-coherence
5 interferometer comprises a portion of an optical coherence
6 tomography system and wherein the providing the indication
7 comprises restricting the ratio to a particular axial
8 depth.

9

10 19) The method of claim 12, wherein the measuring
11 further comprises measuring the reflected light as a
12 function of depth and using a depth profile to provide the
13 indication.

14

15 20) The method of claim 19, wherein providing the
16 indication of the presence of the viral or bacterial
17 effusion fluid further comprises using the depth profile
18 and the ratio to distinguish a viral response from a
19 bacterial response from a no effusion response.

20

21 21) The method of claim 12, further comprising
22 directing light comprising a third wavelength and a fourth
23 wavelength and forming a second ratio using the third
24 wavelength and the fourth wavelength.

1

2 22) The method of claim 21, further comprising
3 comparing the first ratio and the second ratio.

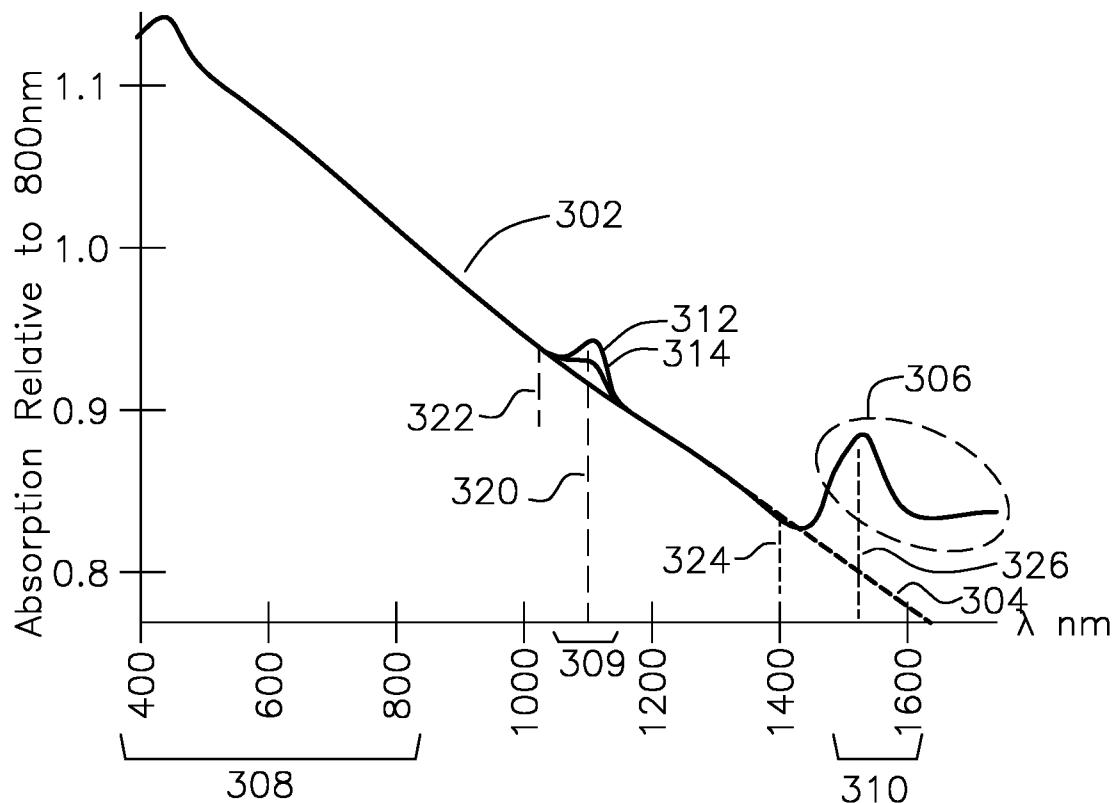
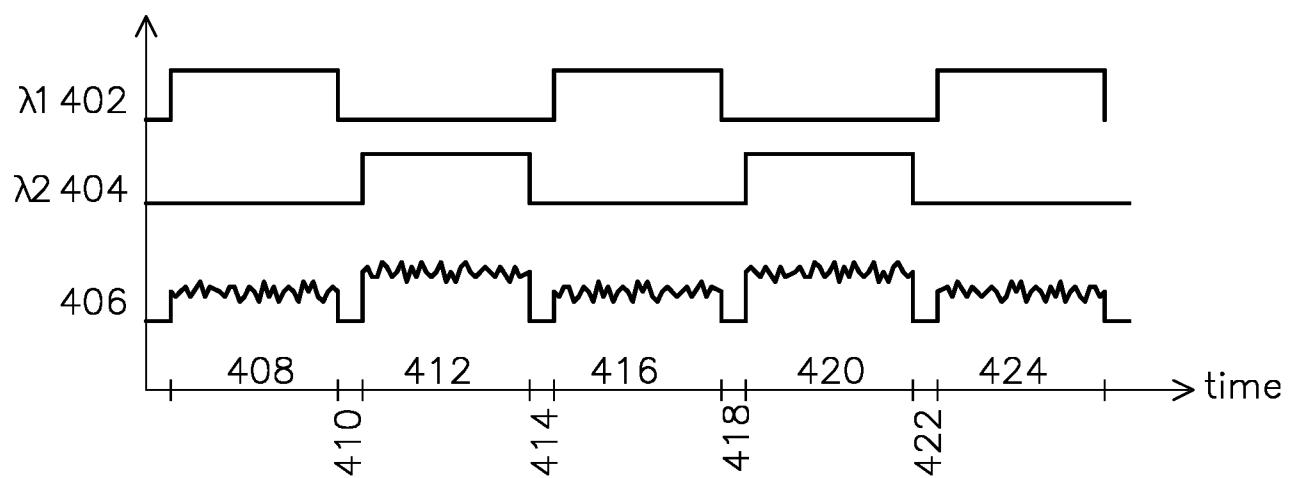

Figure 1

Figure 1
 IR Spectroscopy system


Wavelengths indicated: 102, 104, 106, 108, 110, 112, 114, 116, 118, 120

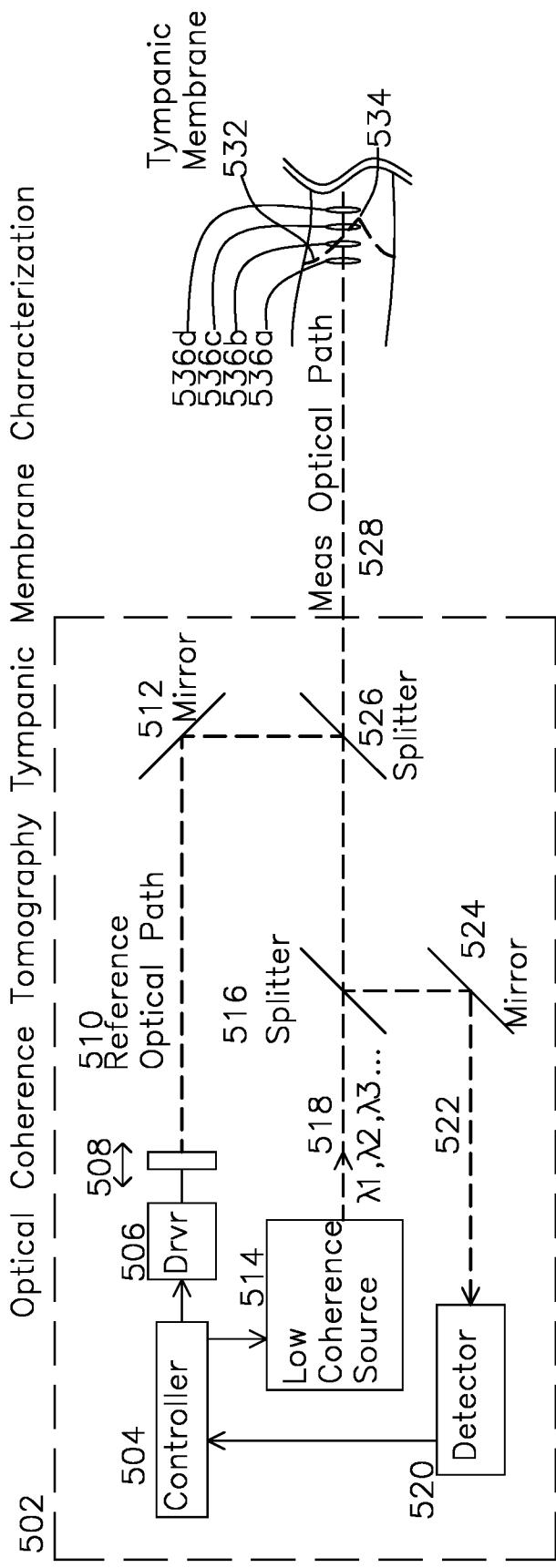

Figure 2
eculum Tip detail

Figure 3
Normalized spectral response from TM

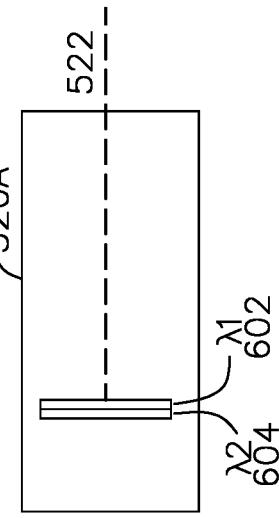


Figure 4
Measurement waveforms

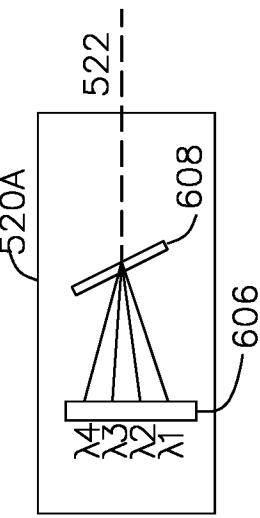
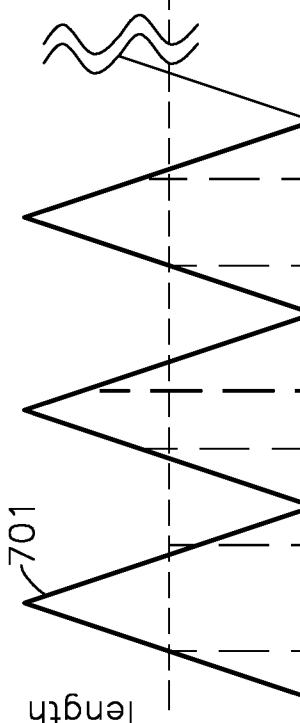


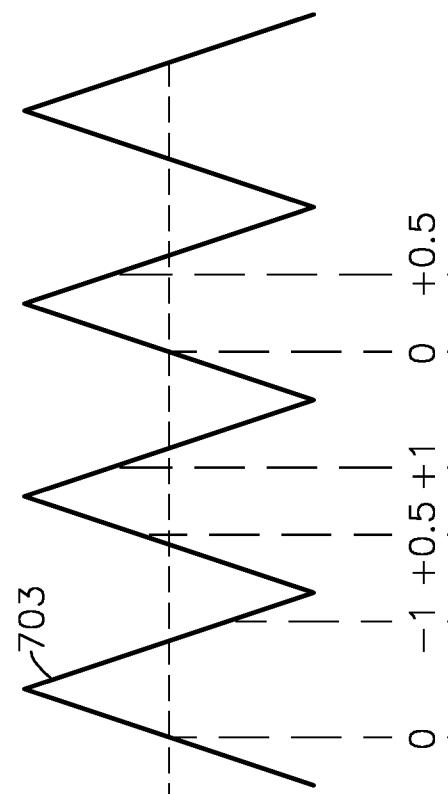
Figure 5

Figure 6A
Multi-wavelength Detector
520A

Figure 6B
Multi-wavelength Detector
520A



4/7


Figure 7A

No Effusion (λ_1, λ_2)

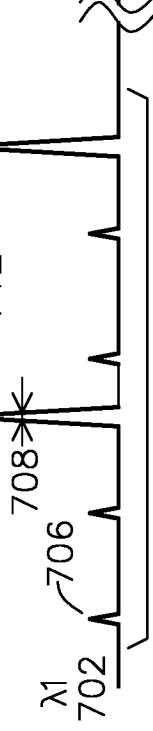

length
Decrease Ref
length
Increase Ref

Figure 7B

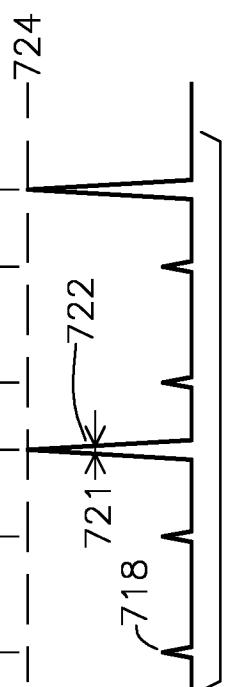

length
Decrease Ref
length
Increase Ref

Figure 7C

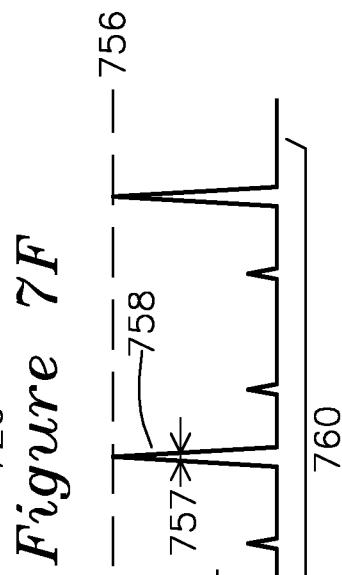

length
Decrease Ref
length
Increase Ref

Figure 7D

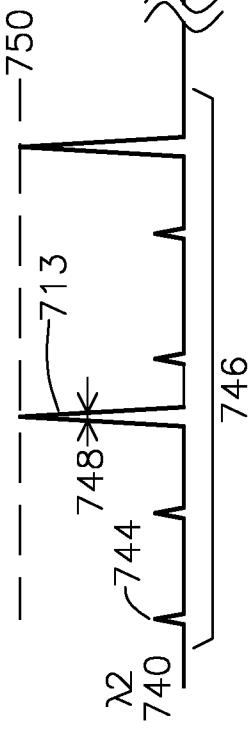

length
Decrease Ref
length
Increase Ref

Figure 7E

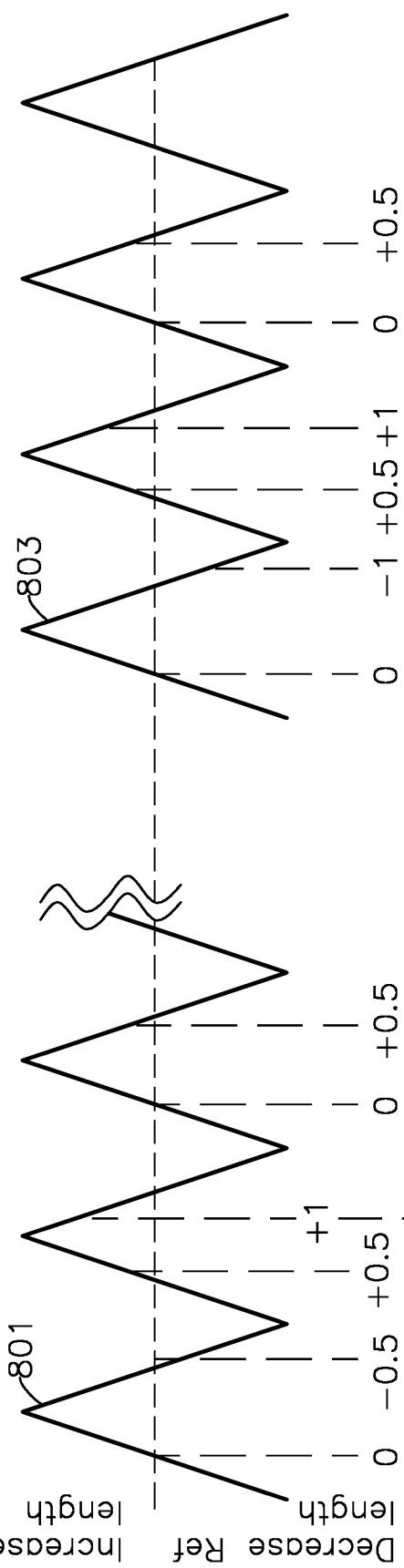
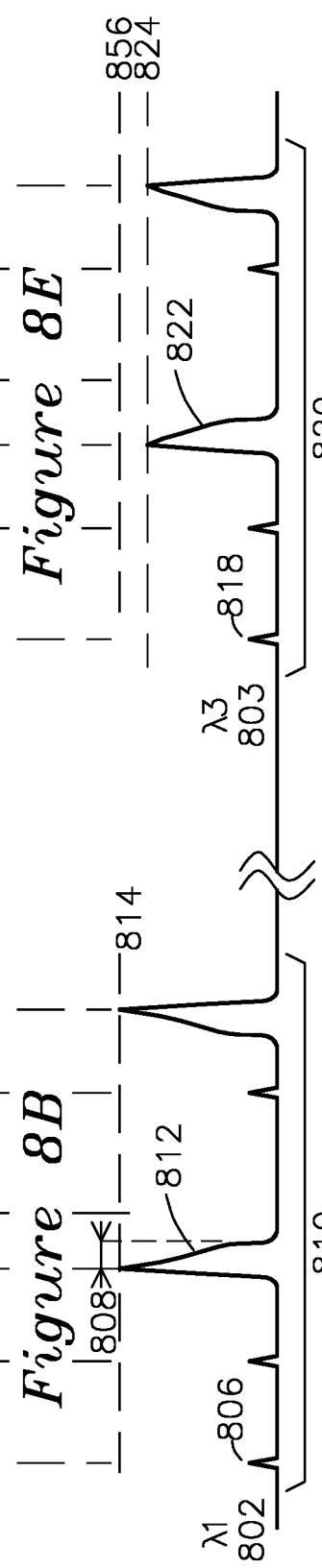
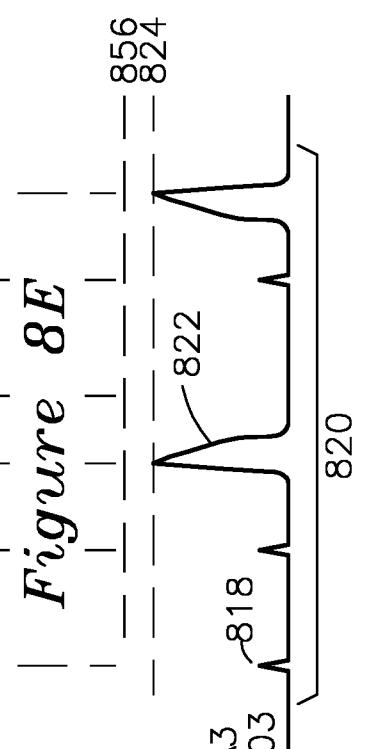
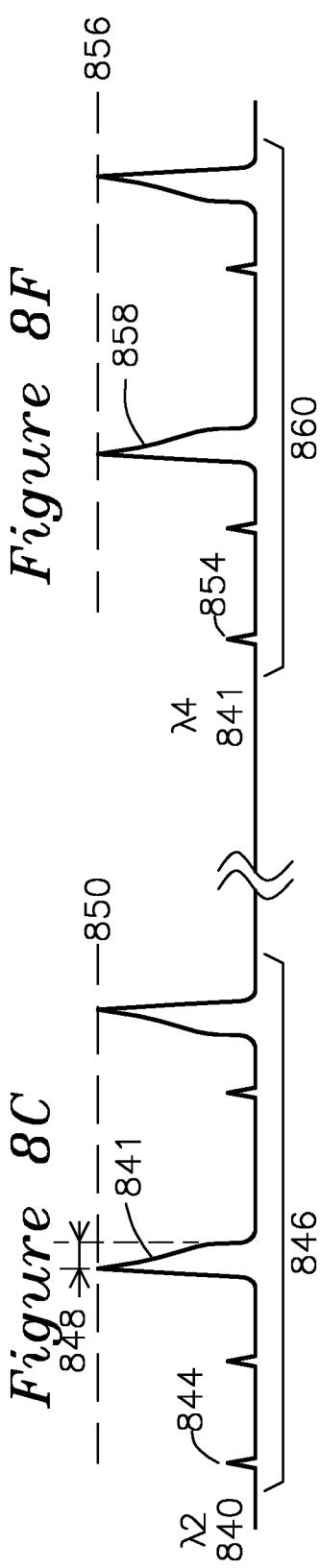
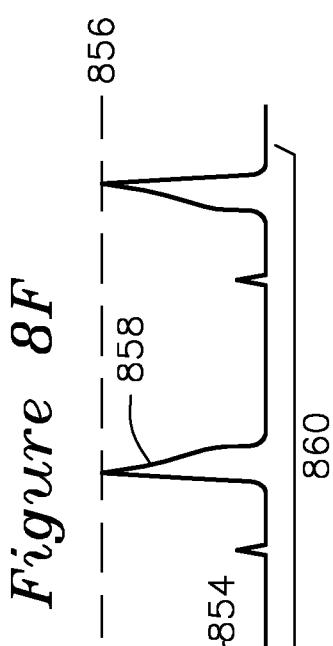

length
Decrease Ref
length
Increase Ref

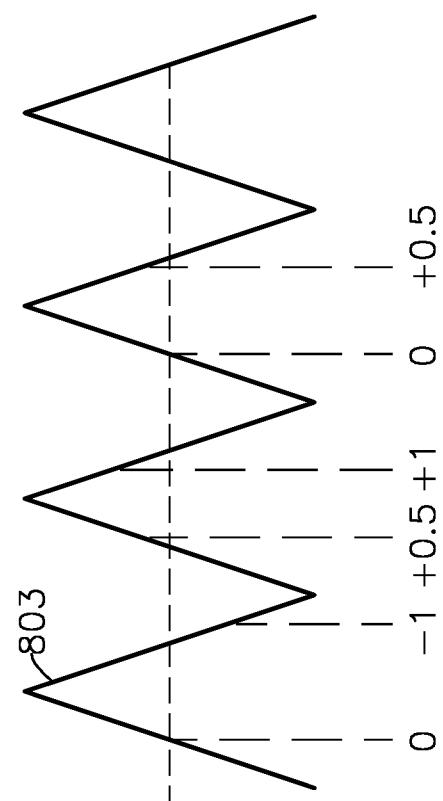
Figure 7F

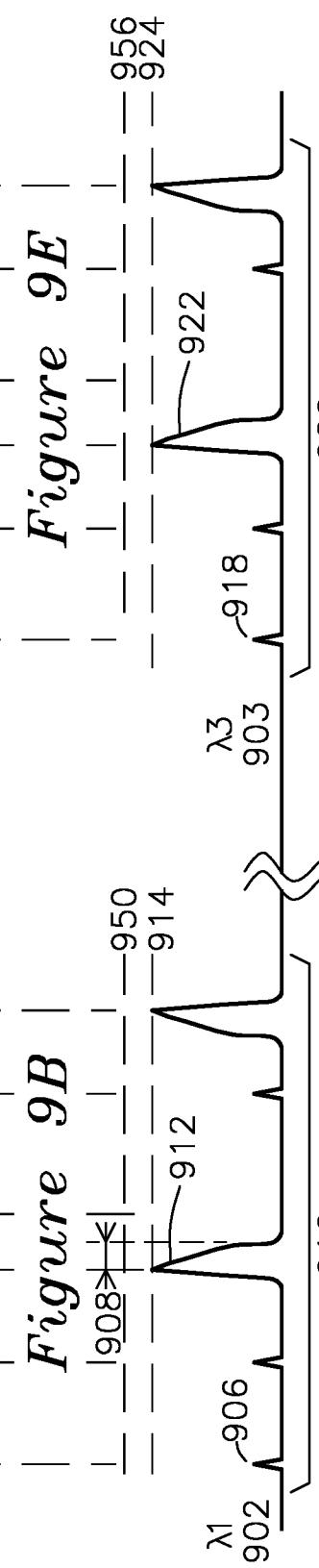
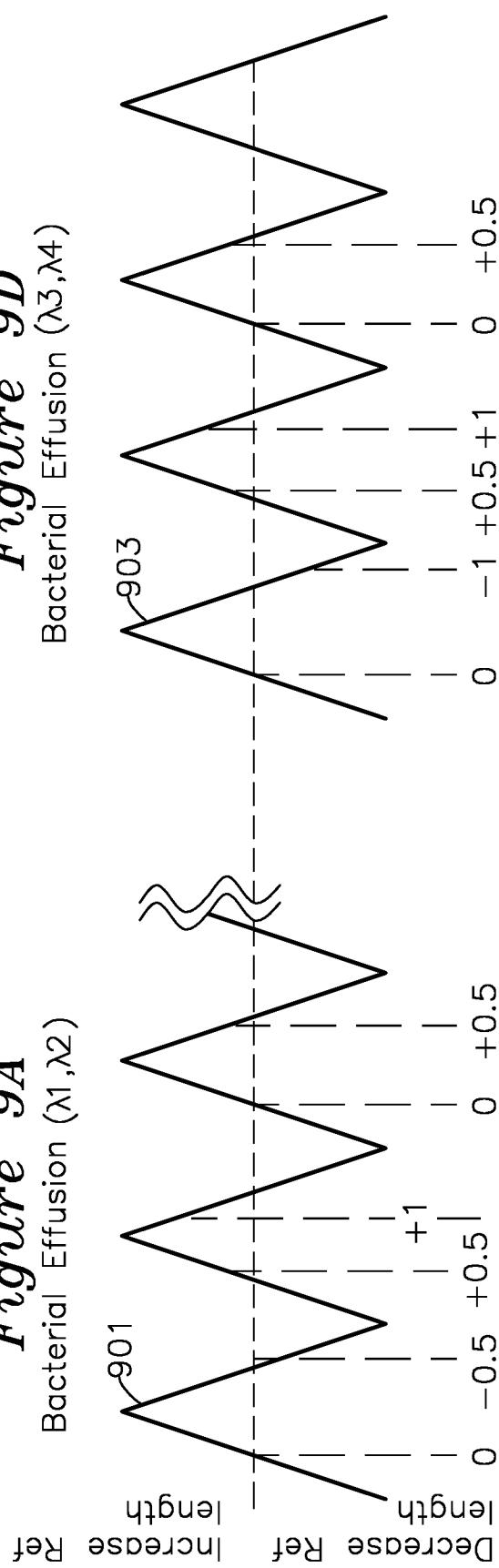

length
Decrease Ref
length
Increase Ref

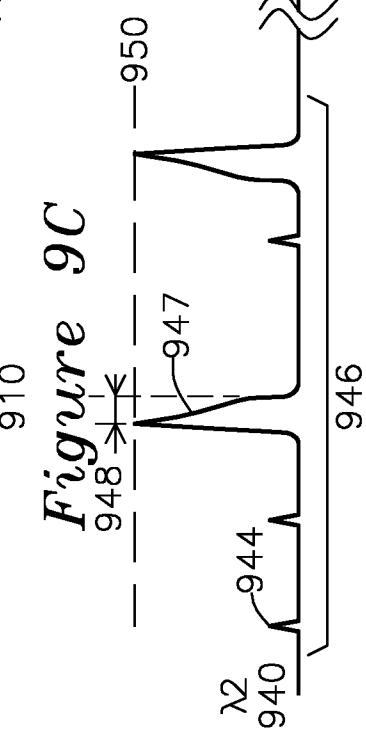

Figure 8A
Viral Effusion (λ_1, λ_2)

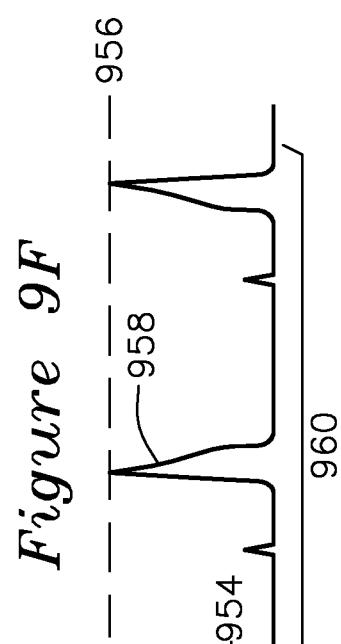
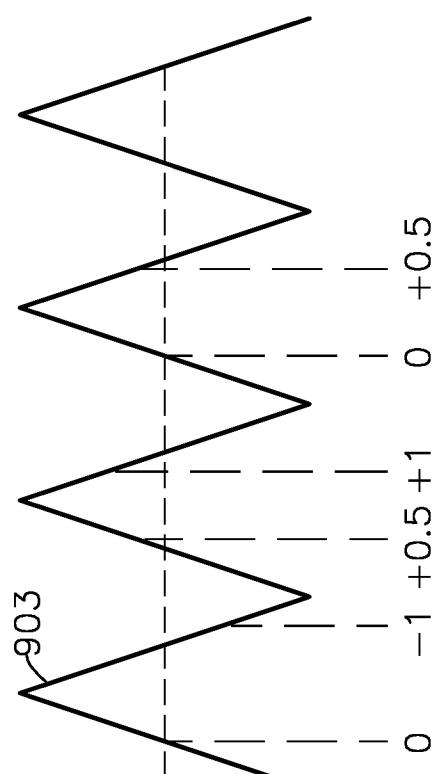

Figure 8B


Figure 8E


Figure 8C



Figure 8F


Figure 8D
Viral Effusion (λ_3, λ_4)



Figure 9A
Bacterial Effusion (λ_1, λ_2)

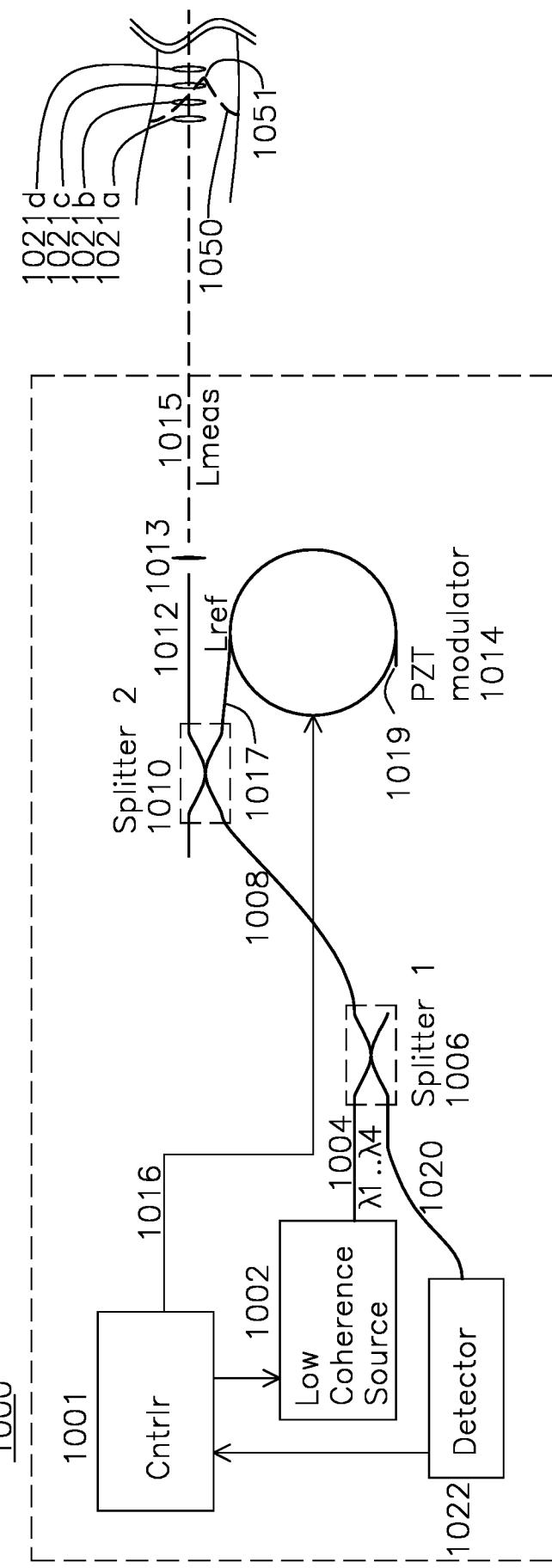

Figure 9C

Figure 9D
Bacterial Effusion (λ_3, λ_4)

Figure 10
Optical Waveguide system for OCT measurement of TM

