
J. HARMON

SHOT SHELL CLOSURE

UNITED STATES PATENT OFFICE

2,300,367

SHOT SHELL CLOSURE

Jesse Harmon, Wilmington, Del., assignor to Remington Arms Company, Inc., a corporation of

Application August 16, 1941, Serial No. 407,133

7 Claims. (Cl. 102-42)

This invention relates to shot shells, especially the closing thereof. More particularly, it appertains to the control of firing and ballistics by means of body closure seals which are easily applied and which do not cause objectionable bar- 5 rel fouling.

The shot shell, as generally produced, comprises a fairly rigid paper cylinder (called the "body") having over one end a metal cap (called propellent powder and means for igniting it. The body contains the shot charge and a partition (filler wad) separating it from the powder. It is universal commercial sealing practice to place a card (top wad) over the shot charge and 15 fold the open edge of the body stock inwardly and downwardly (through 180°) so that it rests on top of the wad. It is self-evident that such a closure has substantially fixed resistance to opening. No part of it can be varied to control pressure or ballistics. This will be even more obvious when it is appreciated that the properties of the body paper are fully determined by other considerations. This disadvantage cannot be overcome by changing the character of the top wad. A heavy, hard, unbreakable top wad interferes with the movement of the shot, produces poor patterns, etc. Fragmentation of a frangible top wad results in a cloud of "confetti-like" beads. These tend to obscure the target from the shooter and are blown into his face when the wind is from the general direction of the target. Such arrangements or features are obviously undesirable.

Shot shell bodies are made by rolling a specially prepared porous paper into tube form, the successive layers or convolutions of the paper being secured together by a starch adhesive. For protection against moisture and other purposes, the rolled tubes are heavily impregnated with a wax, usually paraffin wax, the wax content of the finished tube constituting not less than 20% of the weight of the tube. Since shot shells must fit rather closely in a gun chamber, the finished bodies must be brought to a given outside diameter with very low tolerances. For this purpose the wax impregnated tubes are passed through a sizing die, which somewhat reduces their outside diameter, and in so doing irons the surface very hard and smooth.

This invention had for objects the utilization of the end portion of the cylindrical tube, which constitutes the body of the shot shell, as the end closure in such a way that (1) the necessity for a separate end closure (top wad) is eliminated; 55

(2) the ballistic properties of the shell are improved; (3) the confinement and burning rate of the propellent powder are accurately controlled; (4) uniformity and improvement are obtained; and (5) loading economies are effected.

Another and more specific object was to provide a body seal which could be varied, coordinated and adapted to the burning characteristics of different propellent powders to more accuratethe "head"). Ordinarily the head contains the 10 ly control their confinement and burning rate, and to secure the benefit of the maximum energy available in the combustion thereof without the development of excessive pressures. Still other objects were to seal a shot shell body with material which would not require special preparation of the body surface to receive the same, which would not cause fouling or clogging of the gun barrel even during rapid firing, and which would remain effective during long periods of 20 storage even at temperatures somewhat above those normally encountered in the Temperate Zones. Yet further objects were to close the end of a shot shell with the body material in such a way that "blown patterns" are avoided and patterns better than those resulting from conventional shell closing, are obtained; to coordinate the strength of the body seal with the propellent powder utilized to provide a closure which would improve the ballistic properties of powders heretofore regarded as inferior or unsuitable; to secure standard velocities with reduced charges of powder and without the production of excessive pressures; and to provide an adhesive for bonding body seal discs to the waxed and ironed body 35 papers which would enable the sealed shell ends to control both pressure and ballistics. A general advance in the art, and other objects which will appear hereinafter, are also contemplated.

The development of an adhesive suitable for 40 use upon shot shell bodies is greatly complicated by the character of the material of these bodies for, as indicated above, in addition to the difficulties of effecting adhesion to a waxed surface (a problem encountered in various arts) the 45 method of manufacture results in a shot shell surface which is not only heavily waxed but, due to the action of the sizing die, is smooth, hard, rigid, non-porous, etc.

It has now been found that by compounding or diluting the phenol rubber product prepared according to U.S. A. Patent No. 2,158,530 (Williams) with certain amino polymers, there results an adhesive composition which can be used very advantageously to seal the small central unsealed aperture which remains when the end of the shot shell is closed by folding a considerable part of the end portion of the body inwardly, and to influence or govern the opening of the said folded end.

2,300,367

The aforementioned "phenol rubber product," generally known as "Phenol Rubber Product 2,158,530," is obtained when rubber is worked on a rubber mill (or related apparatus such as a Banbury mixer) with about 5% to 55% of its weight of beta-naphthol (or similar monohydric 10 phenol) in the presence of a small amount of a special catalyst, for example, dihydroxy-fluoroboric acid or sulfuric acid, for about 15 minutes at 100° C. This material is quite unlike rubber and the heretofore known rubber derivatives (in- 15 cluding the products known as rubber isomers). The new material, being denser, sinks when placed in water, will not adhere to rubber, is more soluble in hydrocarbon solvents than cyclized with rubber on a mill and the mixture made into a thin cement, layers off. It seems to be an alkylated phenol (rubber being the alkylating agent) since the phenol molecule seems to have chemically combined with the rubber molecule 25 (probably at what was an unsaturated carbon atom in ordinary rubber).

How the foregoing objects and related ends are accomplished will be apparent from the following exposition in which are disclosed the 30 principle and divers embodiments of the invention, including the best mode contemplated for carrying out the same. Parts are given by weight throughout the application unless otherwise specified.

The written description is amplified by the accompanying drawing, in which:

Figure 1 is a sectional elevation view of a shot shell, primed, loaded and ready for closing;

Figure 2 is a perspective view of a shot shell, 40 such as that shown in Figure 1, after it has been subjected to the first or preliminary closing op-

Figure 3 is a perspective view of a shot shell such as that shown in Figures 1 and 2 after it has 45 been subjected to the final closing operation and is fully closed:

Figures 4 and 5 are sectional elevation views taken along the diameter of the closed and sealed end portions of shot shell bodies, showing the 50 vide no means for accomplishing this purpose. sealing means applied in accordance with this invention;

Figure 6 is a perspective view of that portion of the closed and sealed (finished) shot shell body illustrated in Figure 5; and

Figure 7 is a fragmentary perspective view of the open end of a fired shell having segmentlike pieces still adhering thereto.

Similar characters refer to similar parts throughout the drawing.

In Figure 1 there is illustrated a conventional shot shell comprising a body it and a head 21. The body is a waxed cardboard tube and the head a brass thimble-like structure. Within the head is a base wad 22, a battery cup 23, a primer 65 cup 24, an anvil 25 and a charge of priming composition 26.

When in shells of this type the priming composition is ignited, as by striking the primer cup with a firing pin, the flame thereof ignites the 70 charge of propellent powder 31. Before firing, an "over powder" wad 32 and one or more "filler" wads 33 separate the powder 31 from the shot constituting the charge 34.

shell is closed by folding in the end portion of the body. This is carried out by first forming in that part of the body above (as shown in the drawing) the shot charge, a number of creases 12. As a result, the open end of the body is drawn into the frusto-conical form illustrated in Figure 2. It is desirable, but not necessary, that this operation precede the final closing operation in which, in the preferred mode of operation, the thus partially closed body is subjected to the action of a rotating die of such configuration as to press the segments 13 (between the creases 12) into a plane. This brings about a substantially complete closing of the body.

Exhaustive tests have shown that it is definitely detrimental to indent the end closure very much, so it is preferred that the flat closure portion be in the plane of the end of the side wall, as illustrated in Figure 4, or only very slightly inrubber (J. J. E. C. XXXIII 389), and when mixed 20 set, as shown at 53 in Figure 5. In these figures, in the interest of clarity, the shot charge has not been shown. The creased end portion of the body is shown as extending downwardly within the shell at 45.

When the shell is closed in the manner just described, there remains at the center (or cylindrical axis) an unsealed juncture 51 for which a seal is desirable. To provide such a seal, a disc 61, of paper or similar material as illustrated in Figures 4, 5 and 6, is employed. The principal novelty of this invention is in the composition of the adhesve layer 41, used to secure the sealing disc to the body closure.

It will be obvious that by proper selection (of 35 paper 61) and regulation of adhesive strength of the layer 41, there can be secured any degree of "confinement" of the shell contents (including the propellent powder) up to the limit of the tensile strength of the body material (paper, etc.). An accurate control of ballistics thus becomes possible. Unfortunately the strength of suitable adhesives decreases with time, so that the aforementioned control of ballistics is dependent upon adhesive which does not begin to weaken for long periods of time.

An advantage of this invention is illustrated in Figure 6 by the indicia 62. This may indicate the size and character of the shot contained n the shell. Conventional shot shell closures pro-

When the shot shell of this invention is fired, both the adhesive and paper layers (41 and 61) are ruptured as the body straightens to substantially its original cylindrical form. Segment-like portions 611, 612 and 613 of the disc 61 remain securely affixed to the body, as shown in Figure 7.

Specific examples of the new adhesive compositions, and shot shells embodying the same, fol-60

Example I

A shot shell having a body surface of heavily waxed, very smooth, non-porous paper, was loaded. The open end was then partially closed by creasing and folding inwardly that portion of the body above the shot charge. The partly closed end was then subjected to a rotating die to press the folded material surface into a plane substantially perpendicular to the axis of the shot shell cylinder and containing the end of the side wall, thereby substantially completing the closing of the shell.

Twenty-five (25) parts of the beta-naphthol In the present invention the end of the shot 75 rubber product, prepared according to Example

K of U. S. A. Patent No. 2,158,530, and 6.2 parts of phenol formaldehyde methylamine resin prepared according to Example I of U.S. A. Patent 2,098,869, were dissolved in 81.2 parts of toluene. Paper (35 pound sulfite type) slightly heavier 5 than ordinary typewriter paper stock, was coated on one side with the resulting composition, and the solvent removed. The adhesive layer obtained was 0.002 to 0.003 of an inch thick. A disc of suitable size was stamped from the coated 10 paper and secured to the folded end of the shot shell by means of heat and pressure.

Example II

Carry out the sealing of shot shells in the man- 15 ner described in Example I, with an adhesive prepared from beta-naphthol rubber product 25 parts, poly-beta-dimethyl-amino-ethyl methacrylate 6.2 parts, and toluene 81.2 parts.

Example III

Carry out the sealing of shot shells in the manner described in Example I, with an adhesive prepared from beta-naphthol rubber product 25 parts, resinous reaction product of phenol, form- 25 aldehyde and methyl amine prepared according to Example I of U.S. A. Patent No. 2,098,869 (Harmon & Meigs) 6.2 parts, and toluene 81.2

Example IV

Carry out the sealing of shot shells in the manner described in Example I, with an adhesive prepared by mixing until homogeneous a solution of 50 parts of beta-naphthol rubber product in 150 parts of toluene and a solution of 2.6 parts of 35 the phenol-rubber product. Compositions conthe resinous reaction product of phenol, formaldehyde and methyl amine (see Example III) dissolved in 5 parts of toluene.

Example V

Carry out the sealing of shot shells in the manner described in Example I, with an adhesive prepared by mixing until homogeneous a solution of 50 parts of beta-naphthol rubber product in 150 parts of toluene and a solution of 5.5 parts 45 of the resinous reaction product of diphenyl guanidine, formaldehyde and methyl amine (the preparation of which is described elsewhere in the specification under the heading "Group F") dissolved in 10 parts of toluene.

Example VI

Carry out the sealing of shot shells in the manner described in Example I, with an adhesive prepared by mixing until homogeneous a 55 rubber (when compounded therewith) like glue solution of 40 parts of beta-naphthol rubber product in 120 parts of toluene and a solution of 10 parts of triethanol amine phthalate product (preparation described under Group G) in 90 parts of dioxan.

Example VII

Carry out the sealing of shot shells in the manner described in Example I, with an adhesive prepared by mixing until homogeneous a 65 mixture of a solution of 2.6 parts of diphenyl guanidine formaldehyde resin (preparation described under Group E) dissolved in 5 parts of toluene, and a solution of 50 parts beta-naphthol

Example VIII

Carry out the sealing of shot shells in the manner described in Example I, with an adhesive prepared by adding 2 pasts of n-butyl-diethanol- 75 ployed in compounding shot shell adhesives. Al-

amine-dimethylol urea-dimethyl ether resin (preparation described under Group K) dissolved in 20 parts of dioxan to 8 parts of beta-naphthol rubber product dissolved in 24 parts of toluene.

Example IX

Carry out the sealing of shot shells in the manner described in Example I, with an adhesive prepared by dispersing in 83 parts of toluene by grinding in a ball mill for 18 hours, 16 parts of beta-naphthol rubber product and 4 parts of dimethylol urea dimethyl ether-hexamethylene diamine resin (preparation described under Group K).

The adhesive compositions are applied to the sealing paper by conventional means, such as brushes, rollers, doctor knives, etc., after which the solvent is allowed to evaporate. The films thus deposited are non-tacky, waterproof and 20 flexible. They are not adhesive in the dry condition at ordinary temperatures, but when moistened with hydrocarbon solvents such as toluene, or when subjected to heat and pressure, as used in conventional sealing procedures, they have excellent adhesion to materials like the smooth, waxed and ironed cardboard commonly employed for shot shell bodies.

The ratio of phenol-rubber product to amino polymer may be varied over a wide range, depend-30 ing upon the specific adhesive requirements. general the more amino polymer is used the greater will be the storage life of the adhesive composition, that is to say, the stabilizing effect is roughly proportional to the amount used with taining as low as 25% of phenol rubber product to 75% of amino polymer, and compositions containing as high as 98% of phenol rubber product and 2% amino polymer, have been found useful. 40 The preferred range is 2%-25% amino polymer and 98%-75% of phenol rubber product. The improvement obtained by using amounts of amino polymer below the aforementioned lower limit is detectable but has not been found to be of any practical value.

Variations in proportions of any modifying ingredients of the stabilized composition are permissible.

The phenol rubber products are resinous, 50 transparent, thermoplastic, benzene-soluble derivatives of rubber which are resistant to acids and alkalies, which do not adhere to rubber, which have an impact strength similar to phenol aldehyde resins, which impart a hardness to and montan wax, and which are obtained by reacting rubber with a monohydric phenol which contains no substituents other than halogen and hydrocarbon radicals. The phenol rubber prod-60 ucts can be hydrogenated at temperatures in the range 80°-200° C. in the presence of an acidic catalyst.

The preparation of the phenol rubber product is described in U.S. A. Patent No. 2,158,530 (Williams), and in the interest of brevity, reference is made thereto for details. For convenience it may be pointed out that the amount of the phenolic material (phenol, naphthol, etc.) may vary widely, the ordinary limits being 5% rubber product dissolved in 150 parts of toluene. 70 to 55% (based on the rubber). The products prepared by milling 5 to 20 parts of beta-naphthol with 100 parts of rubber in the presence of 4 parts of sulfuric acid as a catalyst are preferred when the phenol rubber products are emthough this type of material was employed in many of the specific examples, it is to be understood that any one or a plurality of the products disclosed in said patent may be employed, when desired.

The crude product (containing excess phenolic material) is preferred for use in shot shell adhesive compositions, but good results have been obtained when the excess of the phenol was reing such materials as alcohol solvents, such as ethanol and butanol, are suitable for removing the unreacted phenolic material. The reaction product may also be purified by dissolving in toluene and precipitating the phenol rubber 15 product with ethyl alcohol (which retains the phenolic body in solution). Treatment of the crude reaction product with formaldehyde renders the excess phenolic material innocuous by causing it to form a phenol formaldehyde resin, 20 whose presence in the composition is not ordinarily objectionable (because it does not exude or blush out as the free phenolic compound would).

Various phenols in addition to the hydroxy- 25 benzene and beta naphthol of the examples, for instance chloro-phenol, cresol and dihydroxydiphenyl, may be employed in the manufacture of the phenol rubber product, as indicated in the patent just discussed. One or more phenolic 30 presence of catalytic proportions of stannic chlomaterials may be used in the reaction with the rubber. Catalysts other than the sulfuric acid and dihydroxy-fluor-boric acid, for example, organic sulfonic acids, hydroxy-fluorboric acid and boron trifluoride, may be employed.

The phenol rubber products of this invention may be designated by a variety of names other than those already mentioned, for example, "rubber alkylated phenol," "phenol modified rubber," "rubber substituted phenol" and "phenol rubber 40 condensation product." The terminology employed is intended to apply only to the type of material obtained according to the aforementioned U.S. A. Patent No. 2,158,530. These to cover isomers or like derivatives of rubber which might be obtained by using phenol or phenol sulfonic acid in a simple catalytic capacity.

The amino-nitrogen-containing polymers capable of being formed into coherent films, soluble 50in organic solvents and in 2% aqueous acetic acid and insoluble in water can, for convenience, be divided into sub-groups, as follows:

(A) Resinous polymeric coherent-film-forming reaction products of phenols, aldehydes and ma- 55 is dependent upon polymeric form. terial from the group consisting of ammonia, primary amines and secondary amines;

(B) Resinous polymeric coherent-film-forming amino alcohol esters of material from the group consisting of acrylic acid and acrylic acid sub- 60 stituted in the alpha position by a hydrocarbon radical:

(C) Resinous polymeric coherent-film-forming reaction products of amino phenols with alde-

(D) Resinous polymeric coherent-film-forming reaction products of alphyl ketones (aliphatic and alicyclic) with formaldehyde and material from the group consisting of ammonia, primary amines, secondary amines and tertiary amines;

(E) Resinous polymeric coherent-film-forming reaction products of diaryl (especially diphenyl) guanidine with aldehydes (especially formalde-

reaction products of diaryl (especially diphenyl) guanidine with aldehydes (especially formaldehyde) and amines (primary or secondary);

(G) Resinous polymeric coherent-film-forming amino alcohol esters of polycarboxylic acids;

(H) Resinous coherent-film-forming aromatic amine aldehyde resins;

(I) Resinous polymeric coherent-film-forming reaction products of vinyl ketone polymers with moved. Ordinary extraction procedures utiliz- 10 material from the group consisting of ammonia and amines;

(J) Resinous polymeric coherent-film-forming reaction products of piperazine, aldehydes (especially formaldehyde) and phenols;

(K) Resinous polymeric coherent-film-forming reaction products of dimethylol urea dimethyl ether and amines:

(L) Resinous polymeric coherent-film-forming reaction products prepared by treating polyvinyl chloroacetate with secondary aliphatic amines;

(M) Resinous polymeric coherent-film-forming products resulting from the reaction of urea, formaldehyde, and lower aliphatic (in which the substituent radicals have less than 5 carbon atoms) primary or secondary amines, especially methyl, dimethyl, butyl and dibutyl amines;

(N) Resinous polymeric coherent-film-forming products obtained by polymerizing, in the ride, the reaction product of epichlorohydrin, with material from the group consisting of ammonia and primary aliphatic amines;

(O) Resinous polymeric coherent-film-form-35 ing reaction products of phenol-lignin with dimethyl amine and formaldehyde;

(P) Resinous polymeric coherent-film-forming products obtained by the catalytic hydrogenation of resins having ketone groups at superatmospheric temperature and pressure in the presence of material from the group consisting of ammonia, primary amines and secondary amines: and

(Q) Resinous polymeric coherent-film-formnames are not to be construed broadly enough 45 ing reaction products of protein material from the group consisting of lower aliphatic aldehydes and lower aliphatic ketones and amines having less than 9 carbon atoms, in which the amino nitrogen is joined to the aliphatic carbon.

These related highly polymeric amino nitrogen-containing substances, which are prepared synthetically, form a distinctive group. Since the corresponding monomers do not accomplish the end desired, it is clear that their effectiveness

Details of the preparation of these basic amino nitrogen-containing polymers are summarized below.

In general, the products of group A are prepared by reacting an aldehyde (preferably formaldehyde) with the appropriate nitrogen compound (ammonia or amine) in aqueous solution to give a methylol derivative (of the ammonia or amine), which is then reacted with the phenol in question. The resin separates from the solution as it is formed, and is usually washed with water before drying. The detailed preparation of these resins is disclosed in the patent literature, see for example, U.S.A. Patent No. 2,098,869 (Harmon & Meigs), particularly Examples A-A-7 and A-8, U.S. A. Patent No. 2,168,335 (Heckert), particularly Example A-6, U.S. A. Patent No. 2,168,336 (Heckert), particularly Example A—2, U. S. A. Patent No. 2,031,557 (F) Resinous polymeric coherent-film-forming 75 (Bruson) and U. S. A. Patent No. 2,053,092 (Bruson). The preferred combinations are the reaction products of:

	Z	i ols
(1)	Phenol	1
	Formaldehyde	2
	Methylamine	1
(2)	Phenol	0.5
	Formaldehyde	1.4
	Dimethylamine	0.4
	Ammonia	0.5
(3)	Phenol	1
	Formaldehyde	
	Piperazine	1
(4)	PiperazineBeta-naphthol	1
	Formaldehyde	2
	Methylamine	1
(5)	Phenol	1
	Formaldehyde	2
	N-aminoethyl morpholine	. 1
(6)	Phenol	1
	Formaldehyde	
	Ammonia	
(7)	Phenol	
	Formaldehyde	
	Ethylene-diamine	
(8)	Resorcinol	. 1
	Formaldehyde	
	Methylamine	
(9)	Diphenylolpropane	
	Formaldehyde	
	Dimethylamine	. 2
(10)	Xylenol	
	Formaldehyde	1.8
	Diethanolamine	. 0.6

In general the polymeric amino nitrogen-containing bodies of group B are prepared by reacting the appropriate amino alcohol with the methyl ester of the acrylic (or alpha-substituted homolog, preferably methacrylic) acid, distilling 40 off the methanol (thereby forming the monomeric amino alcohol acrylate or homolog), and polymerizing (by any suitable means, such as heat, light or peroxide catalyst). The preparation of polymeric esters of this type are disclosed 45 in detail in U.S. A. Patent No. 2,138,763 (Graves). The polymerization procedures described in U. S. A. Patent No. 2,138,762 (Harmon) are quite suitable. The preferred esters include poly-(beta-diethylaminoethyl-methacrylate), (beta-dimethylaminoethyl-methacrylate), poly-4-(beta-methacrylyloxyethyl)-morpholine, poly-(beta - dicyclohexylaminoethyl - methacrylate), triethanolamine-monomethacrylate, and the like.

Preparation of the resins falling in category C 55 is described in detail in U. S. A. Patent No. 2,147,-789 (Graves). The preferred product of this group is that obtained by reacting meta-diethylamino-phenol with formaldehyde.

The resinous products of group D are, in general, prepared in the same manner as the preferred material which is the reaction product of acetone, formaldehyde and metnylamine. To prepare this material, a solution of 5 parts of trisodium phosphate (Na₃PO₄·12H₂O) in 50 parts 65 of water was mixed with 50 parts paraformaldehyde. The mixture was cooled in ice, and a solution containing 19 parts (0.61 mol) of methylamine dissolved in 50 parts of acetone, added. A vigorous reaction set in, and cooling was necessary. After the initial reaction was over, the mixture was heated on a steam bath over a reflux condenser for 134 hours. It was then allowed to stand overnight. A soft brown, resinous mass resulted. This was well mixed with water 75

to remove unreacted materials, separated from the water and dried. The final product was an amorphous, orange-colored solid soluble in glacial acetic acid and not precipitated upon dilution of this solution with water. This resin was partially soluble in alcohol, chloroform and dioxan, and was insoluble in acetone, ethyl acetate and toluene.

The resinous products of group E are in general prepared in the same manner as the preferred material which is the reaction product of diphenyl guanidine with formaldehyde. To prepare this material, 43 parts (0.2 mol) of diphenyl guanidine was mixed with 48.6 parts (0.6 mol) of 37% formaldehyde solution, and the mixture allowed to stand with occasional stirring for 18 hours at a temperature of 50° C. The mixture set to a sticky, taffy-like mass which became progressively harder and more brittle. After 18 hours, the resinous mass was ground under cold water, filtered, washed with water and air dried. The final product was a white, amorphous powder soluble in dilute (2%) acetic acid and toluene.

The polymeric basic amino nitrogen-containing 25 bodies of group F are in general prepared in the same manner as the preferred material which is the reaction product of diphenyl guanidine. formaldehyde and methylamine. To prepare this material, a solution of dimethylol methylamine 30 (1 mol) in water was made by passing 31 parts (1 mol) of methylamine into 160 parts (2 mols) of 37% formaldehyde solution cooled with ice. The solution was added to 215 parts (1 mol) of diphenyl guanidine, and the mixture stirred for 15 minutes. This gave a dough-like product which was allowed to stand for 22 hours to complete the reaction. At the end of this time the mixture became a hard, resinous mass. It was ground under cold water, filtered, washed with water, and dried over calcium chloride in a vacuum desiccator. The reaction product was a white powder soluble in acetone, ethyl acetate, chloroform, dioxan and toluene.

The resinous products of group G are, in general, prepared in the same manner as the preferred material which is the reaction product of triethanol amine and dimethyl phthalate. To prepare this material, a mixture of 149 parts (1 mol) of triethanol amine, 194 parts (1 mol) of dimethyl phthalate and 800 parts of benzene was charged into a reaction flask, and a solution of 2 parts of sodium in 16 parts of methanol was added in small proportions during the course of the reaction as a catalyst. The mixture was heated at a temperature of 130°-155° C. for 9 hours. During this time a binary of methanol and benzene distilled off. When the theoretical amount of binary had been collected in the receiver, the reaction was stopped and the benzene distilled off on a steam bath under reduced pressure. The residue was a viscous oil which, upon cooling, became a soft, resinous mass. The resinous product was soluble in 20% acetic acid, and films flowed from this solution became hard and brittle on baking at 110° C. for 10 hours. The resinous reaction product was soluble in dioxan, 90% ethyl alcohol, 90% acetone and chloroform, and was partly soluble in toluene.

Preparation of the resins falling in category H is described in detail in British Patent 342,325. The preferred reaction product in this group is that from aniline and formaldehyde.

Synthetic resins falling in class I are generally prepared by reacting polymeric vinyl ketones with ammonia or primary amines. The conditions of

the reaction and the products are described in detail in U.S. A. Patent No. 2,122,707 (Balthis).

The resinous products of group J are in general prepared in the same manner as the preferred material which is the reaction product of formaldehyde, piperazine and phenol. To prepare this material, 162 parts (2 mols) of aqueous 37% formaldehyde was cooled to 15° C., and 190 parts (1 mol) of piperazine hexahydrate in 200 parts of water added drop-wise at such a rate that the 10 temperature did not rise above 23° C. The reaction vessel was cooled in ice, then 94 parts (1 mol) of phenol in 20 parts of water was added all at once and the ice bath removed. The reaction and allowed to stand over night. A light pink, sticky resin, which was washed with water, was obtained.

The polymeric substances of group K are, in general, prepared in the same manner as the 20 forth. preferred materials which are the reaction products of dimethylol urea dimethyl ether with n-butyl-diethanol amine and with hexamethylenediamine.

parts of n-butyl-diethanol amine and 74 parts of dimethylol urea dimethyl ether were mixed and heated in an atmosphere of nitrogen in a bath maintained at 150°-160° C. for 1.5 hours. Methanol (28 parts) was evolved during this time, and 30 a clear, light-yellow resin, soluble in dioxan, trichlorethylene, dilute aqueous acetic acid and hydrochloric acid, was formed.

To prepare the second of these products, 29 parts of hexamethylene diamine and 37 parts of dimethylol urea dimethyl ether were mixed and gently heated in a distilling vessel in an oil bath until 7 parts of methanol had distilled. resinous residue in the distilling vessel was washed with water, dissolved in concentrated hydrochloric acid, and precipitated with aqueous sodium hydroxide. The precipitate was filtered, washed with water and dried. A white, amorphous powder, which was soluble in butanol and dilute aqueous acetic acid, was obtained.

The resinous products of group L are prepared, for example, by dissolving 15 parts of di-n-butylamine and 10 parts of polymeric vinyl-alphachloroacetate in 80 parts of ethylene glycol-monomethyl ether, allowing the solution to stand in a 50 closed vessel for 2 weeks, pouring into 350 parts of water, filtering off the resin which separates, and drying it. The product prepared in the manner just described is an orange-colored rubbery mass soluble in acetone, ethanol and toluene and 55 in 2% aqueous acetic acid. About 13 parts are obtained by this procedure.

The resinous products of group M may be prepared by dissolving two molecular proportions of urea in three molecular proportions of 37% aqueous formaldehyde, adding one molecular proportion of dimethyl (or other alkyl) amino-methanol dissolved in water (40 parts per mol of compound), and heating for about 13 hours. Evaporation of water leaves a white basic resin.

The resinous products of group N are prepared by the procedures described in U.S. A. Patent No. 1,977,251.

The resinous products of group O are prepared by the process of Example B of U. S. A. Patent 70 No. 2,122,433,

The coherent-film-forming resinous products of group P are, in general, prepared in the same manner as the preferred individual polymers scribed in U.S.A. Patent No. 2,063,153 (Greenewalt).

The amine polymers of group Q are, in general, prepared in the same manner as the preferred species whose properties and mode of preparation are disclosed in U.S. A. Patent No. 2,143,023

Instead of simple polymers, interpolymers may be prepared, for instance, by reacting methyl methacrylate and methyl vinyl ketone in the presence of ammonium hydroxide or reacting beta-dicyclohexyl-aminoethyl methacrylate monomer and beta-dimethylaminoethyl methacrylate monomer together under suitable conditions, or revessel was then raised to a temperature of 35° C. 15 acting dicyclohexylaminoethyl methacrylate with methyl vinyl ketone under suitable conditions. Other equivalent polymeric materials, such as copolymers, may also be used, provided their solubility characteristics are as previously set

The two classes of basic amino-nitrogen-containing polymers which have given the most satisfactory results are the polymeric amino-alcohol esters of alpha-substituted acrylic acids described To prepare the first of these materials, 80.5 25 in U. S. A. Patents 2,138,762 (Harmon) and 2,138,763 (Graves), and the resins obtained by reacting phenols, formaldehyde and amines described in U.S. A. Patent No. 2,098,869 (Harmon & Meigs)

The latter products, which are dilute acetic acid soluble resins, and with which may be classed the very satisfactory phenol formaldehyde piperazine resins, are obtained by reacting a phenol containing carbon, hydrogen and oxygen only, and having at least 2 unsubstituted nuclear positions ortho or para to the phenolic hydroxyl with formaldehyde and a non-aromatic primary amine containing less than 7 carbon atoms. A molecular ratio of amine to phenol of not less than 0.5:1 and not greater than 1:1, and a molecular ratio of aldehyde to amine not greater than 1:1 in this reaction, give especially desirable results.

The specific compounds which are preferred for the purposes of this invention, are beta-di-n-45 butylaminoethyl methacrylate polymer; 2-aminocyclohexyl methacrylate polymer; triethanolamine mono-methacrylate polymer; 2-(diethylamino)-cyclohexyl methacrylate polymer; 4-(beta-methacrylyloxyethyl) morpholine polymer; beta-dimethylaminoethyl methacrylate polymer; beta-diethylaminoethyl acrylate polymer; betadicyclohexylaminoethyl acrylate polymer: 1-(beta-methacrylyloxyethyl) piperidine polymer; the resin obtained by the hydrogenation, in the presence of ammonia, of polymerized bis-(4ketocyclohexyl) dimethylmethane; the resin obtained from the hydrogenation, in the presence of ammonia, of polymerized methylvinyl ketone: the reaction product of polymeric methyl alphamethylvinyl ketone and cyclohexylamine; the reaction products of polymeric methylvinyl ketone and aqueous ammonia (or cyclohexylamine, ethylenediamine, hexamethylenediamine, and the like); the resin obtained by reacting cyclohexanone with formaldehyde and methylamine; the resinous reaction product of acetone with formaldehyde and butylamine, and phenol-formaldehyde-hydrazine resin, cresol-formaldehyde-tetraethylenepentamine resin, phenol-formaldehydeethylenediamine resin, phenol-formaldehydedodecylamine resin, phenol-formaldehyde-thiourea resin and cresol-formaldehyde-melamine

The polymeric basic amino nitrogen-containwhose properties and mode of preparation are de- 75 ing substance may be introduced into the phenol rubber product and compositions containing the same, in any desired manner. Ordinarily the incorporation is made by the use of a mutual solvent or by milling, but grinding, kneading, and other conventional mixing procedures are satis- 5°

The adhesive compositions may be applied to the ammunition parts (paper or other medium) as solutions (used in a broad sense to include both true solutions and pseudo-solutions, which 10 latter are in reality colloidal suspensions), emulsions, melts without any solvent, and melts with reduced amounts of solvent.

In forming solutions and melts containing small amounts of organic liquids of the phenol rubber 15 product-amino polymer compositions, aliphatic, aromatic and chlorinated hydrocarbons are suitable. The preferred substances are benzene, toluene, xylene, tetrachlorethane, kerosene and related products.

In preparing the adhesive compositions, various adjuvants or augmenting agents, such as resins, plasticizers, waxes, colors, etc., may be

incorporated when desired.

The preferred resins (natural, synthetic and 25 semi-synthetic) include rosin, hydrogenated rosin, hydrogenated rosin derivatives, ester gum, pitches, cumarone indene resins, alkyd (polyhydric alcohol-polycarboxylic acid reaction product) resins, damar, and the like. Such materials, 30 individually and in combination, compound readily with the phenol rubber product. Although resins generally improve homogeneity and thermoplasticity, it is not always desirable to have a desirable, one or more may be used.

The preferred plasticizers (sometimes improperly referred to as softeners) are dibutyl phthalate, tricresyl phosphate, chlorinated paraffin, dixylyl ethane, chlorinated diphenyls, hydrogen- 40 ated methyl abietate, diethyl-toluene sulfonamide, camphor, hydrocarbon oils, and the like. One or more of materials of this character may be present in the adhesive composition, or material of this character may be omitted.

One or more waxes (used generically to include waxy substances like paraffin wax, as well as true waxes which are monohydric alcohol esters of higher fatty acids) may be added to enhance the adhesive and other characteristics of the phenol- 50 rubber product-amine polymer compositions, as desired.

The adhesive composition may be applied to the shell body and dried before sealing instead of convenience may dictate.

The shell bodies and sealing discs may be made of materials other than paper, for example, re-

generated cellulose, if desired.

The molecular weight of the amino polymer 60 (basic resin) has some effect on its power to stabilize the phenol rubber product. Resins giving low viscosity solutions at high (50%) solids contents, are preferred. These factors should be taken into consideration in compounding the 65 adhesive, it being desirable, for example, to utilize resinous materials of high softening point to aid in producing adhesive compositions of high softening points, and vice versa.

Many of the advantages of the present inven- 70 tion are apparent from the foregoing part of the specification. The bond between the shell body surface (waxed cardboard) and the sealing disc (paper) remains firm at temperatures which are reached at rapid firing (up to 120° F.-49° C.). 75 integral with the side wall thereof, said end

The adhesive and sealing disc remain firmly secured to the shot shell body after firing, so that no deposit or residue accumulates in the gun barrel. The adhesive composition seals the juncture of the folded closure against the entrance of moisture. The sealing means effects an improvement in pattern, eliminating "blown" patterns (one in which the shot scatters widely). The sealing means characteristics may be correlated with the characteristics of the powder, primer and loaded material to effect loading economies and improved ballistics. The sealing means has thermoplastic characteristics and adheres to the shell material with adequate and controllable tenacity. The adhesive of this invention eliminates the necessity for special treatments of the shot shell body such as abrasion, roughening of the surface, removal of a substantial portion of the waterproofing oil contained in the surface, etc., to facilitate penetration by the adhesive. The adhesives of the present invention do not have objectionably low softening points, and are able to withstand shock. Approximately a 25fold improvement in adhesive ageing life (at 65° C.) is hereby obtained. The adhesives do not have to be used when freshly prepared.

As many apparently widely different embodiments of this invention may be made without departing from the spirit and scope thereof, it is to be understood that this invention is not limited to the specific embodiments thereof except as defined in the appended claims.

1. A shot shell comprising a body, an end resin present. When the presence of resins is 35 closure integral with said body, and a moistureproofing and ballistic controlling member seal secured to said end closure, said seal comprising essentially a thin disc adhesively secured to said end closure by means of phenol rubber product diluted with a small amount of basic amino polymer capable of being forced into coherent solid films which are substantially insoluble in water and 5% aqueous ammonia and soluble in 2% aqueous acetic acid and organic solvents, 45 said phenol rubber product being a reaction product of rubber and one or more phenols, containing 1% to 5% of the phenol material chemically combined with the rubber which is resinous, thermoplastic, benzene soluble, acid resistant, alkali resistant, which does not adhere to rubber, which has an impact strength similar to phenol aldehyde resins and which imparts a hardness to rubber like glue.

2. A shot shell comprising an integral wax to the sealing disc, or may be applied to both, as 55 impregnated body, an end closure, and a moistureproofing and ballistic controlling member seal secured to said end closure, said seal comprising essentially a thin disc adhesively secured to said end closure by means of beta-naphthol rubber product containing 2%-75% of basic amino polymer capable of being formed into coherent solid films which are substantially insoluble in water and 5% aqueous ammonia and soluble in 2% aqueous acetic acid and organic solvents, said naphthol rubber product being a reaction product of rubber and one or more phenols, containing 1% to 5% of the phenol material chemically combined with the rubber which is resinous, thermoplastic, benzene soluble, acid resistant, alkali resistant, which does not adhere to rubber, which has an impact strength similar to phenci aldehyde resins and which imparts a hardness to rubber like glue.

3. A shot shell body comprising an end closure

closure being sealed with beta-naphthol rubber product containing 25% resinous reaction product of phenol, formaldehyde and methylamine, said naphthol rubber product being a reaction product of rubber and one or more phenols, 5 containing 1% to 5% of the phenol material chemically combined with the rubber which is resinous, thermoplastic, benzene soluble, acid resistant, alkali resistant, which does not adhere to rubber, which has an impact strength similar 10 to phenol aldehyde resins and which imparts a hardness to rubber like glue.

4. In a shot shell, the combination comprising a substantially cylindrical body of wax impregnated deformable material and an exteriorly planar 15 end closure integral with said body and flush with the end thereof, and comprising a plurality of abutting segments and folds joining said segments, said closure including the segments and said end closure comprising essentially a thin disc adhesively secured to said end closure by means of phenol rubber product diluted with a a small amount of basic amino polymer capable of being formed into coherent solid films which 25 are substantially insoluble in water and 5% aqueous ammonia and soluble in 2% aqueous acetic acid and organic solvents, said phenol rubber product being a reaction product of rubber and one or more phenois, containing 1% to 5% of the 30 phenol material chemically combined with the rubber which is resinous, thermoplastic, benzene soluble, acid resistant, alkali resistant, which does not adhere to rubber, which has an impact strength similar to phenol aldehyde resins and 35 which imparts a hardness to rubber like glue.

5. In a shot shell, the combination comprising a substantially cylindrical body of wax impregnated deformable material and an exteriorly planar end closure integral with said body and 40 flush with the end thereof, and comprising a plurality of abutting segments and folds joining said segments, said closure including the segments and folds being integral with said body, and a seal for said end closure comprising essentially a thin disc adhesively secured to said end closure by means of beta-naphthol rubber product containing 2%-75% of basic amino polymer capable of being formed into coherent solid films which are substantially insoluble in water and 50 5% aqueous ammonia and soluble in 2% aqueous acetic acid and organic solvents, said naphthol rubber product being a reaction product of rubber and one or more phenols, containing 1% to 5% of the phenol material chemically combined as

with the rubber which is resinous, thermoplastic, benzene soluble, acid resistant, alkali resistant. which does not adhere to rubber, which has an impact strength similar to phenol aldehyde resins and which imparts a hardness to rubber like glue.

6. In a shot shell, the combination comprising a substantially cylindrical body of wax impregnated deformable material and an exteriorly planar end closure integral with said body and flush with the end thereof, and comprising a plurality of abutting segments and folds joining said segments, said closure including the segments and folds being integral with said body, and a seal for said end closure comprising essentially a thin disc adhesively secured to said end closure by means of beta-naphthol rubber product containing 25% resinous reaction product of phenol, formaldehyde and methylamine, said folds being integral with said body, and a seal for 20 naphthol rubber product being a reaction product of rubber and one or more phenols, containing 1% to 5% of the phenol-material chemically combined with the rubber which is resinous, thermoplastic, benzene soluble, acid resistant, alkali resistant, which does not adhere to rubber, which has an impact strength similar to phenol aldehyde resins and which imparts a hardness to rubber like glue.

7. In a shot shell, the combination comprising a substantially cylindrical body of wax impregnated deformable smooth cardboard and an exteriorly planar end closure integral with said body and flush with the end thereof, and comprising a plurality of abutting segments and folds joining said segments, said closure including the segments and folds being integral with said body, and a seal for said end closure comprising essentially a thin 35 pound sulfite paper disc adhesively secured to said end closure by means of phenol rubber product diluted with a small amount of basic amino polymer capable of being formed into coherent solid films which are substantially insoluble in water and 5% aqueous ammonia and soluble in 2% aqueous acetic acid and organic solvents, said phenol rubber product being a reaction product of rubber and one or more phenois, containing 1% to 5% of the phenol material chemically combined with the rubber which is resinous, thermoplastic, benzene soluble, acid resistant, alkali resistant, which does not adhere to rubber, which has an impact strength similar to phenol aldehyde resins and which imparts a hardness to rubber like glue.