PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 :

GOGF 15/413, 15/40 Al

(11) International Publication Number:

(43) International Publication Date:

WO 91/14993
3 October 1991 (03.10.91)

(21) International Application Number: PCT/US91/02046

(22) International Filing Date: 26 March 1991 (26.03.91)

(30) Priority data:

500,140 27 March 1990 (27.03.90) Us

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 2550
Garcia Avenue, Mountain View, CA 94043 (US).

(72) Inventors: GRAMILCH, Wayne, C. ; 726 Henrietta Ave-
nue, Sunnyvale, CA 94086 (US). TIRFING, Soren ; 3895
Middlefield Road, Palo Alto, CA 94303 (US).

(74) Agents: BLATT, Jeffrey, I. et al.; Blakely, Sokoloff, Taylor
& Zafman, 12400 Wilshire Boulevard, 7th Floor, Los An-
geles, CA 90025 (US).

(81) Designated States: AT (European patent), AU, BE (Euro-
pean patent), CH (European patent), DE (European pa-
tent), DK (European patent), ES (European patent), FR
(European patent), GB (European patent), GR (Euro-
pean patent), IT (European patent), JP, LU (European
patent), NL (European patent), SE (European patent).

Published
With international search report.

(54) Title: LOCKING MECHANISM FOR THE PREVENTION OF RACE CONDITIONS

N
Z

a.c.*.bd b.c.*.bd

(57) Abstract

/j <

indexl

Source2

inden2

e.c.*.bd f.c.*.bd

A file system (104, 106) locking mechanism (738, 760, 780) is provided which prevents the errors which arise when race
conditions occur in a multitasking system. Atomic operators are utilized to perform certain operations for the creation (720) and
renaming (731, 738) of files and directories in the file system wherein if a race condition occurs, the atomic operations fail and the
file creation process is halted to a predetermined state whereby the errors which occur during race conditions are prevented.

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ

BR
CA
CF
CcG
CH
CI

CM
[

DE
DK

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria

Australia
Barbados
Belgium

Burkina Faso
Bulgaria

Benin

Brazil

Canada

Central African Republic
Congo
Switzerland

Cate d'Ivoire
Cameroon -
Czechoslovakia
Germany
Denmark

Spain

Finland

France

Gabon

United Kingdom
Guinea

Greece

Hungary

laly

Japan

Democratic People’s Republic
of Korea

Republic of Korca
Liechtenstein

Sri Lanka
Luxembourg
Monaco

Madagascar
Mali
Mongolia
Mauritania
Malawi
Netherlands
Norway
Poland
Romania
Sudan
Sweden
Sencgal
Sovict Union
Chad

Togo

United States of America

-

WO 91/14993 PCT/US91/02046

10

15

20

25

30

LOCKING MECHANISM FOR THE PREVENTION
. OF RACE CONDITIONS

BACKGROUND OF THE INVENTION

1. EIELD OF THE INVENTION;

The method and apparatus of the present invention relates to the
organization of databases. More specifically, the method and apparatus of the
present invention relates to the organization and identification of database files
derived from textual source files which form the database and the information

contained within the database files for optimum retrieval and storage efficiency of

textual files.

2. BELATED APPLICATIONS:

This application is related to U.S. Patent Application Serial No.

, filed , entitled"'Method and Apparatus for
Searching Database Component Files to Retrieve Information from Modified

Files™, U.S. Patent Application Serial No. , filed

entitled "User Extensible, Language Sensitive Database System" and U.S. Patent
Application Serial No. , filed , entitled "Method

and Apparatus For the Naming of Database Component Files To Avoid

Duplication of Files" which are herein incorporated by reference.

3. ART BACKGROUND:

A database is a collection of information which is organized and
stored in a predetermined manner for subsequent search and retrieval.
Typically, the data is organized in such a manner that the data is indexed
according to certain parameters and can be retrieved according to those
parameters. Data contained in databases vary according to the applications.
For example, a database may contain information to index words in a text file

such that words or strings of words in the text file may be retrieved quickly.

The data contained in the database may be organized in a single

file or multiplicity of files for access and retrieval. Sometimes the potential for

WO 91/14993 PCT/US91/02046

10

15

20

25

30

duplications of files occurs because of the nature of the source information from
which the database is derived. Thus, if the source information contains duplicate
information the database may similarly contain duplicate information. One
application where this occurs is in the environment of computer program
compilers and processes which assist in the indexing and retrieval of source file
information in text form according to certain compiler information generated

during the process of compilation of the source file.

For example, software developers frequently need to review
specific lines or sections of a source code program in textual format that contains
a certain variable or symbol (hereinafter referred to collectively as "symbols”) in
order to determine where in the program the symbol occurs and how the value of
the symbol changes throughout the execution of the program. One method to
provide this capability of search and retrieval is to form a database which
contains an index of all the symbols in the source program and the corresponding
line numbers in the source files where these symbols appear. However, a source
program may be quite large and span not one but a multiplicity of separate files,
whereby the files are combined during the compilation process by linking or
include statements (such as the "# include" statement in the C programming
language) located in the main program. Thus, those files which are frequently
used will be included in the database multiple times even though the information

contained therein is the same.

There is also a need to insure that the database component files
which comprise the database match the current version of the source files from
which the database component file is derived. The user may inadvertently
modify the textual source files from which the database is derived without
updating the database component file. Thus, the database may provide incorrect

information for the retrieval of text from the source file.

-

WO 91/14993 : PCT/US91/02046

In a multitasking environment, multiple processes or devices may
access or attempt to access files simultaneously. A race condition occurs when
one process or device attempts to read or write information to a file while another
file is attempting to write information to the same filé. This results in corrupt data

5 being written into the file and/or corrupt data being read out of the file.

WO 91/14993 - PCT/US91/02046

SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a means

for minimizing the duplication of files within a database.

5 It is an object of the present invention to provide a means for
searching for database files and providing the means in certain instances for
providing the corresponding portions of the source file when the integrity

between the database file and source file is lost.

10 It is an object of the present invention to provide a means for

checking the integrity of the database with the current version of the source file.

It is an object of the present invention to provide a means for
preventing errors which arise due to race conditions which occur in a

15 multitasking system.

In the method and apparatus of the present invention a database
component file to be added to the database is given a unique name that is
dependent upon the contents of the file such that, when the contents of the

20 source file changes, the name of the corresponding database component fiie to
be added to the database also changes. Conversely, if two database component
files have identical information contained therein, the same file name will be
generated and the duplication of information in the database is prevented by
providing a simple test that checks for the existence of the name of the database

25 component file before the generation and addition of the file to the database. If
the file name exists in the database, the information is already contained in the

database and the file is not generated and added to the database information.

) Preferably the name of the file is generated by computing a hash
30 value from the sum of the contents of the file and concatenating the hash value to

the name of the file. Because the source file name is used in conjunction with the

WO 91/14993 PCT/US91/02046

10

15

20

25

30

hash value to construct the database component file name, the hash value does
not have to be unique for all files but only for those source files having the same
name. Therefore, the likelihood of conflicts is minimal. In addition, through the
selection of heuristic methods for computing the hash value, a high degree of
confidence can be maintained that the file names are unique. Furthermore,
because the database component file names are unique for each source file, the
process of searching for the correct file is simplified and there is no need to
specify the locations of database component files, e.g. the directory where the
database component file is located, because the file name is unique for a
particular file contents and a query or search program can safely assume that

any file with the same name was generated from the same source file.

Each database component file contains information regarding the
text contained in one source file which enables the user to quickly determine the
frequency of occurrence of the specified text and the location of the specified text
in the source file. For each textual word (referred to herein as a "symbol"), an

entry in the database component file is provided containing symbo! information.

- The symbol information comprises the symbol name, symbol type and line

number in the source file where the symbol is located. Line identification
information is also provided which contains the line numbers of the source file,
the length of the line, (i.e., the number of characters in the line) and
corresponding hash values which are computed from the contents of the line of
text in the source file. Before a line of text identified in a query is displayed, the
line identification information provides the means to verify that the line of text
identified in the symbol information is the same line of text as the one now
contained in the source file. The hash value and fine length corresponding to the
line of text (referenced in the database) is compared to a hash value and line
length computed for the text retrieved from the current source file. If the computed
hash value and line length does not match the hash value and iine length

contained in the line identification information, the text does not match the

WO 91/14993 . PCT/US91/02046

database reference because the source file has been changed subsequent to

the generation of the database.

A locking mechanism is also provided which prevents the errors
5 which arise when race conditions occur in a multi-tasking system by using

temporary file names and file directories in conjunction with atomic commands.

WO 91/14993 PCT/US91/02046

BRIEF DESCRIPTION OF THE DRAWINGS
The objects, features and advantages of the present invention will

be apparent from the following detailed description in which:

5 FIGURE 1 is a block diagram of an exemplary computer employed
in the present invention.

FIGURE 2 is illustrative of database component files generated
according to the present invention.
10
FIGURES 3a, 3b and 3c illustrate a source file, the database
component file generated therefrom according to a preferred embodiment of the

present invention and the contents of the database file.

15 FIGURES 4a, 4b and 4c illustrate the structure of a preferred

embodiment of the present invention.

FIGURES 5a and 5b are flow charts of the process of the
preferred embodiment of the present invention.
20
FIGURE 6 illustrates a symbolic link which connects a common

database component file to one or more directories in the system.

FIGURE 7 illustrates the implementation of the split function to

25 increase the speed of performing queries on large database component files.

FIGURE 8 is illustrative of a user interface to the system of the

present invention.

30 FIGURE 9 illustrates race conditions which can occur in a

multitasking environment.

WO 91/14993 PCT/US91/02046

FIGURE 10 is a flow chart illustrating the process for creating a

database component file.

5 FIGURE 11 is a flowchart illustrating the process for issuing a
query and building an index file according to a preferred embodiment of the

present invention.

WO 91/14993 PCT/US91/02046

DETAILED DESCRIPTION OF THE INVENTION

Notation And Nomenclature
The detailed descriptions which follov? are presented largely in
5 terms of algorithms and symbolic representations of operations on data bits within
a computer memory. These algorithmic descriptions and representations are the
means used by those skilied in the data processing arts to most effectively

convey the substance of their work to others skilled in the art.

10 An algorithm is here, and generally, conceived to be a self-
consistent sequence of steps leading to a desired result. These steps are those
requiring physical manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared, and otherwise

15 manipulated. It proves convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like. It should be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate physical quantities
and are merely convenient labels applied to these quantities.

20

Further, the manipulations performed are often referred to in terms,
such as adding or comparing, which are commonly associated with mental
operations performed by a human operator. No such capability of a human
operator is necessary, or desirable in most cases, in any of the operations

25 described herein which form part of the present invention; the operations are
machine operations. Useful machines for performing the operations of the present
invention include general purpose digital computers or other similar devices. In
all cases there should be borne in mind the distinction between the method of
operatipns in operating a computer and the method of computation itself. The

30 present invention relates to method steps for operating a computer in processing

WO 91/14993

10

15

20

25

30

PCT/US91/02046

10

electrical or other (e.g., mechanical, chemical) physical signals to generate other

desired physical signals.

The present invention aiso relates to apparatus for performing these
operations. This apparatus may be specially constructed for the required
purposes or it may comprise a general purpose computer as selectively activated
or reconfigured by a computer program stored in the computer. The aigorithms
presented herein are not inherently related to a particular computer or other
apparatus. In particular, various general purpose machines may be used with
programs written in accordance with the teachings herein, or it may prove more
convenient to construct more specialized apparatus to perform the required
method steps. The required structure for a variety of these machines will appear

from the description given below.
neral m_Configuration

Fig. 1 shows a typical computer-based system for databases
according to the present invention. Shown there is a computer 101 which
comprises three major components. The first of these is the input/output (1/O)
circuit 102 which is used to communicate information in appropriately structured
formto and from the other parts of the computer 101. Also shown as a part of
computer 101 is the central processing unit (CPU) 103 and memory 104. These
latter two elements are those typically found in most general purpose computers
and almost all special purpose computers. In fact, the several elements
contained within computer 101 are intended to be representative of this broad
category of data processors. Particular examples of suitable data processors to
fill the role of computer 101 include machines manutactured by Sun
Microsystems, Inc., Mountain View, California. Other computers having like
capabi‘lities may of course be adapted in a straightforward manner to perform the

functions described below.

Lhd

WO 91/14993 -

10

15

20

25

30

PCT/US91/02046

11

Also shown in Fig. 1 is an input device 105, shown in typical
embodiment as a keyboard. It should be understood, however, that the input
device may actually be a card reader, magnetic or paper tape reader, or other
well-known input device (including, of course, anoiher computer). A mass
memory device 106 is coupled to the I/O circuit 102 and provides additional
storage capability for the computer 101. The mass memory may include other
programs and the like and may take the form of a magnetic or paper tape reader
or other well known device. It will be appreciated that the data retained within
mass memory 106, may, in appropriate cases, be incorporated in standard

fashion into computer 101 as part of memory 104.

In addition, a display monitor 107 is illustrated which is used to
display messages or other communications to the user. Such a display monitor
may take the form of any of several well-known varieties of CRT displays. A
cursor control 108 is used to select command modes and edit the input data,
such as, for example, the parameter to query the database, and provides a more

convenient means to input information into the system.

Process Description

The following description of a preferred embodiment of the present
invention will describe the source files as source code files of computer
programs. The means for generating the database files, referred to as the
"collector”, is described as a part of a compiler which compiles the source code
into object code files. It will be evident to one skilled in the art that the present
invention may be applied to all types of text files and is not limited to computer
program source files. Furthermore, the collector function may be combined with
elements that perform other functions, such as the compiler herein described, or

the collector may operate as an independent means.

Referring to Fig. 2, the database employed to illustrate the present

invention is shown. The database comprises at least one database component

WO 91/14993

10

15

20

25

30

PCT/US91/02046
12

file (referred to in Fig. 2 as having the suffix ".bd" which represents the term
"browser data") and an index file which is used to locate information in the
database component files. Each database component file contains the symbol

information and line identification information to provide the capability of

browsing or searching one source file in response to a query. The symbols in the

source text file may comprise every word in the text file or select text which are
identified according to the symbol type. The symbols may be categorized and
identified according to the type of source file by employing an interface which
specifies the identification of the symbols, such as that described in co-pending

patent application U.S. Serial No. , filed , entitled "User

Extensible, Language Sensitive Database System”.

A database component file is created for each source file and is
stored in the current working file directory. This is illustrated in Fig. 2. Sub-
directory Source1 contains source files a.c and b.c. A sub-directory .sb is
created which contains database files a.c.”.bd and b.c.”.bd and index file Index1.
Sub-directory .sb which is a sub-directory of directory Source2, contains
database files e.c.*.bd and f.c.”.bd and index file Index2 which corresponds to
source files e.c and f.c contained in directory Source2. As explained in detail
below, the ™" in the database file name represents a hash value which is
incorporated into the file name to provide a unique file name to correspond to the

contents of the source file.

This is further illustrated by the example of Figs. 3a and 3b. Fig. 3a
shows a text file which is a simple computer program written in the C language
comprising a “printf" statement and an "include” statement which incorporates the
file "stdio.h" into the program. The database generation means, referred to as the
"collector” and in the present example a part of the compiler which compiles the
computer program, generates the database files shown in Fig. 3b. Shown in Fig.
3b are”the database component files f00.2rBQsT.bd, which is the database

component file representative of the linked executable file foo.c.luoYuw.bd,

“n

WO 91/14993

10

15

20

25

30

PCT/US91/02046

13

which is the database component file representative of the source file "foo.c",
and the database component file stdio.h.OyPdOs.bd for the source file "stdio.h",

which was incorporated into the program foo.c through the include statement.

Each database component file name includes a hash value which,
when combined with the file name of the source file results in a unique file name.
The hash value is computed as a function of the contents of the source file
wherein if the contents of the source file changes, the hash code changes. For
example the string "2rBQsT" in the database file name f00.2rBQsT.bd, the string
"luoYuw" in file database name foo.c.luoYuw.bd and the string "OyPdOs"

database file name stdio.h.OyPdOs.bd are the hash values generated and

incorporated into the database file names.

The database component file symbol reference comprises symbol
identification information and line identification information. The symbol
information consists of a symbol triple containing the symbol name, line number in
the source file where the symbol is located, and the symbol type. The line
identification information comprises a list of triples, each triple identifying relative
line numbers within the source file, length of the line and hash value of the line.
The hash value is computed from the contents of the line of text (e.g. the sum of
the bytes in the line); thus, if the contents of the line are modified or the line is
moved because of the insertion or deletion of text, the hash value will

correspondingly change. -

An illustration of the contents of a database component file for the
program of Fig. 3a is illustrated in Fig. 3c. The "symbol table section" 400
contains the name of the symbols and the location of the symbol in the "semantic
table section™ 410. The semantic table section 410 contains a triple for each use
of each symbol, identifying the symbol name, the line number in the source file

where the symbol is located and the type of the symbol. The line identification

WO 91/14993 - PCT/US91/02046

10

15

20

25

30

14

section 420, contains the line number, length and hash value triples which

correspond to the lines of text in the source file.

The index file provides the means forAquerying or searching the
database component files for the occurrence of symbols which are the subject of
the query. In the present example, the index file contains a list of all symbols
used and the names of the database component files each of the symbols is

contained in.

A source comprises one or more text files. These text files may or
may not, depending upon the application, be related to one another. For
example, a source may consist of text representative of a document such as a
book or a magazine article. Separate text files may be created for the different
sections of the document, such as the title, introduction, abstract, bibliography,
as well as the body of the document. If the source is a computer program, the
source may comprise a single file containing all the codes for subsequent
compilation and execution of the program or the source may be spread among a
plurality of files wherein one file contains the code of the main program and other
files contain the source code for sub-programs which are referenced in the main
program in the form of sub-routine calls or include statements, such as the "#

include” statement utilized in the C-programming language.

As each file containing code is compiled, the information to be
incorporated into the database component file (".bd file") is genérated. Prior to
generating the database component file, a unique name is generated for the
database component file to be created. The name of the database component file
is derived from the name of the text file and a hash value. The hash value is
computed as a function of the contents of the file such that if the contents of the
text file changes, the hash code changes thereby distinguishing between the

database component files for different versions of the same text file.

@,

x

WO 91/14993 PCT/US91/02046

10

15

20

25

30

15

In some instances, the same text files may frequently be
incorporated into a multiplicity of different sources. For example, with respect to
computer program source, the same text files containing declarations which
reference sub-programs may be incorporated into the text source files containing
the code of the main program. To eliminate the duplication of the same database
component file in such instances, prior to generating a database component file,
the name of the database component file is generated and compared to a list of
currently existing database component files. If the name of the database
component file exists, the database file is not regenerated and duplicated,
because the existing database file can be used for the source file. By eliminating
duplicate database files, processor overhead and memory used to store the

database component file is saved.

The hash value may be generated by any one of many ways which
derive the hash values from the contents of the database component file. For
example, the hash value used to form the database component file name can be

computed according to the sum of all the bytes contained in the file.

Preferably, thé hash value is a sum of various key pieces of
information to be contained in the database component file. For example, if the
information to be contained in the database component file is the information
shown in Fig. 3c, the hash value would be generated as follows: a separate
hash value is computed for each of the sections in the file and the hash value
incorporated into the file name is the sum of the hash values for each of the

sections in the file.

To generate the hash values for each of the sections in the file,
certain information is selected from the section and summed together. For
example, the magic number (the first 2 or 4 bytes in a UNIX® file), source type ID,
majorénd minor version numbers of the file (e.g. version 2,1), line indicator, case

indicator (the case indicator is set if the case of characters is not significant) and

WO 91/14993 . PCT/US91/02046

10

15

20

25

30

16

each character in the language name string are summed to compute a hash
value for the section. The hash value for the source name section is generated
from the ASCH value of each character from the file name and the relative field, if
the relative field is set to a value of one (the relative field indicates whether the
file was identified by a relative path or absolute path). The hash value for the
referenced section is generated from the sum of each hash value for each
referenced file and the ASCI!I value of each character from the name of each
referenced file. The hash value for the symbol table section is the sum of the
ASCII value of each character from each string in the symbol table section. The
record type ID, line number and semantic tag for each record in the semantic
table section are summed together to generate the hash value. In addition, the
line length and hash value (determined according to the sum of the bytes for the
line) for each line in the line ID section are summed and a value of one is added
for each line that has its inactive indicator flag set (the inactive indicator is used
for debugging tools) to generate the hash value for the line ID section of the

database component file.

Thus, the file name incorporating the hash value would be: "[source
code file name] . [hash value] . bd". It is preferred for easier identification that the
suffix ".bd" is used to consistently identify those files which are database

component files.

To save memory space, simplify the file name generation process
and to simplify the query or browse process, it is preferred that the name of the
directory in which the database component file resides is not incorporated into
the file name. This is possible because each database component file name is
unique and relates to a specific text file of the source. Therefore, the query or
search program simply searches file directories in the file system until the unique
databage component file name which corresponds to the text file name is found.
To minimize the number of file directories to search for database component files,

it is preferred that a means is provided which contains a listing of all directories in

s

WO 91/14993 PCT/US91/02046

10

15

20

25

30

17

which database component files are located. The query program will then search
for database component files only in those directories listed. Preferably, by
default, the query program will search only the current working directory.
Expansion of a search beyond the working directofy is then indicated by a

specific file recognized by the browser to provide a list of the directories of the file

system to search.

Once the database component file(s) is created, an index file is
generated to provide an index into the database component file. The index file

contains the symbols (e.g. text) by which a query may be performed and a list of

the database component files in which each symbol is found.

To query (query may be also referred to as search or browse) a
database for a symbol, the index file is reviewed to determine the database
component files of the database, and thus the corresponding text files of the
source, the symbol is located in. The database component files containing the
symbol are reviewed to retrieve the symbol information contained therein which
indicates the location of the symbol in the source text files. The results of the
query are then returned to the user. The information returned may be in a variety
of formats including in the form of a listing of source text files and line numbers
where the symbol is located, the lines of text from the file in which the symbol is
located or a plurality of lines from the text file surrounding and including the line

in which the symbol is located.

Continuing with the present example from Fig.1, if a specific symbol
is the subject of a query and is searched for in the Source1 sub-directory, the
index, Index1, will be reviewed to determine which database component files the
symbol is contained in. If the index file states that the symbol is found in a.c. * .bd,
that database component file is reviewed to retrieve the symbol information
containfng the symbol name, line number and symbol type as well as the line

length and hash value. The text source file corresponding to the database

WO 91/14993 PCT/US91/02046

10

15

20

25

30

18

component file, that is a.c, is reviewed and the line of text at the line number

designated is retrieved for the user.

If the database component file and index file are generated and the
source file is subsequently modified, search errors will occur unless the
database component files and index file are also subsequently updated. To
alleviate the effect of an inconsistent database, line identification information is
included in the database component files. The line identification information
contains the line number, line length and a hash value generated according to
the contents of the line. Prior to the retrieval of lines of text from the source text
file, a hash value is computed according to the text at the referenced line number
and the line length and computed hash value are respectively compared to the
line length and hash value stored in the database component file. If the values
are equal, the proper line of text has been found and is provided to the user as a
result of the query. If one or both values do not match, then the source file has
been changed subsequent to the generation of the database file. An error
message may then be generated telling the user that the database file needs to
be updated. Alternatively, if the line of text has been moved to a different line in
the source text file, it may still be found by comparing the line length and hash
value stored in the database file to line lengths and generated hash values for
other lines from the source text file to find a match. Preferably, to provide a more
accurate match, the line lengths and generated hash values for the lines of text
above and below the line of text to be retrieved are compared to the line lengths
and hash values, representative of three sequential lines of text, stored in the
database component file. Thus, if the line lengths and hash codes of the
sequence of three lines of text match a sequence of line lengths and hash values
stored in the database component file, a match is found and the line(s) of text is

returned to the user as a result of the query.

A preferred embodiment of the present invention is described with

reference to Figs. 4a, 4b and 4c. The present invention is preferably divided into

WO 91/14993 PCT/US91/02046

10

15

20

25

30

19

two tasks or structures (herein referred to as the "collector” and "browser”). In the
present example of the preferred embodiment, the source text file comprises text
files in the form of computer code such as a program written in the C language.
The collector is incorporated into the C language cémpiler 220. Thus, the
compiler 220 generates the compiled or object code 225 and generates the
corresponding database component file 230 for the source text file 210. The
database component file contains a listing of symbol identification information
containing the symbol name, the line number the symbol is located at and the
type of symbol. Furthermore, the database component file contains line
identification information, comprising the line number, the length of the line and
the hash value generated therefrom. The line identification information, as
explained above, is used to check whether the line number identified by the
database file is the correct line of text to retrieve from the text file and present to

the user as a response to a query.

To perform a query, the browser 240 is empioyed. The browser 240
generates an index file 250 which provides a reference of symbols and the
names of database component files 230 the symbols are contained in. To perform
a query, the browser 240 reviews the index file 250 and the database component
files 230 identified in the index file as containing the symbol queried, retrieves the
lines of text in the source text file 210 containing the symbol identified in the
database component file 230 and presents such information as output information
255 to the user.

Fig. 4b illustrates the structure of the preferred embodiment, wherein
two text files, source file A 260 and source file B 270, form the source that is input
to compiler 220 to generate the compiled code 225 and the database,
respectively comprising database component file A 280 and database
component file B 230, which are then utilized by the browser 240 to provide the
output information 255 which comprises the result of a query to the user. It should

be noted that only one index file 250 is generated. In as much as text file A and

WO 91/14993 ' - PCT/US91/02046

10

15

20

25

30

20

text file B are contained within the same directory, only one index file is required.
However, if the database component files are written to separate directories

within the file system, separate index files would be generated.

Fig. 4c illustrates the addition of text file C 300 to the source which,
in conjunction with text file A 260 and text file B 270, is compiled by compiler 220
to generate compiler code 225 and, the database respectively comprising,
database component file A 280, database component file B 290 and database
component file C 310. In as much as text file C 300 is located within a different
directory than text file A 260 and text file B 270, two index files are generated,
one for each directory. The browser 240 generates two indices, Index1 250 for
database component files 280, 290 and Index2 320 for the database component
file 310. The browser 240 utilizes to the index files 250, 320 determine the lines
of text to be retrieved from the source files 260, 270 and 280 according to thé

query to be presented as output information 255 to the user.

The process of the preferred embodiment of the present invention is
explained with reference to Figs. 5a and 5b. Referring to Fig. 5a, at block 400 the
collector generates a uniqué name to identify the database component file. The
database component file name is a combination of the source text file name
concatenated with a hash value which is concatenated with an identification
suffix which identifies the file as a database component file (for example, ".bd").
The hash value is generated as a function of the contents of the database
component file and should be computed in a manner such {hat if the contents of
the file changes the hash value changes. At block 410, the database component
file name generated is checked against the existing database component file
names. If the database component file name exists, this indicates that a database
component file for that particular source text file exists and there is no need to
generate another database component file. If the database component file name
does not exist, at block 420 a database component file identified by the unique

database component file name is generated.

WO 91/14993 - PCT/US91/02046

10

15

20

25

30

21

Fig. 5b illustrates the functions that would be performed by the
browser element including the generation of the index file and the execution of
queries. At block 430 a query is received and at blbck 440 file directories are
examined to determine if an index file needs to be generated or updated. The
index is built from scratch if there is no index. The index is updated if there are
any database component files that have been created since the last time the
index was created/updated. If an index file needs to be generated or updated, at
block 450, the index file is generated or updated. At block 460, the index file is
reviewed and the database component file identification information for the
symbol, which is the subject of the query, is retrieved. This information is then
used at block 470 to access the first database component file identified. At block
475, the line number of the first symbol reference is identified and at block 480,
the symbol identification and line identification information is retrieved from the
database component file. At block 490, the corresponding line of text is retrieved

from the source file and at block 500 the hash value is computed for the line of

text.

At block 510, the length of the line and hash value computed are
compared with the line length and hash vaiue contained in the line identification
information retrieved from the database component file. If the two are equal, the
line of text containing the symbol which is the subject of the query is output to the
user at block 520. If the line lengths or hash values are not equal, at block 530, a
search is attempted through the source file in order to find the line of text which
may have been shifted due to the insertion and/or deletion of text subsequent to
the generation of the database file. As described above, this may be done by
generating a line length and hash value for each line of the source file and
comparing the first length and hash value to the line length and hash value
retrieved from the line identification information in the database component file.
Preferaialy, this process is performed for three lines of text, the line of text above

the line to be retrieved and the line of text below the line to be retrieved. Thus, if

WO 91/14993 | PCT/US91/02046

22

a sequence of line lengths and corresponding hash values for three sequential
lines match those retrieved from the database component file, the line of text is

output to the user as responsive to the query.

5 At blocks 525 and 527 the process continues for the next line
containing the symbol which is the subject of the query until all references in the
current database component file and corresponding text file are retrieved. The
process continues to the next database component file identified by the index file
via blocks 530 and 540 and process through blocks 480 through 530 until the

10 Iast database file is reviewed and the query process is completed.

The database files comprising a database generated according to
the present invention may reside in a single directory or in multiple directories
within the file system. For each text file of the source, the collector will create a

15 corresponding database component file and will, by default, place the database
component file into a sub-directory of the current working directory where the
source text file is located. Preferably the sub- directories containing the
database component files are uniformly identified by the path name [Source
Directory Name/.sb. An index file is also located in each database component

20 file sub-directory providing an index into the database component files located

therein.

Though various enhancements to the database system of the
present invention, a database may be extended and referenced in a variety of

25 ways.

For example, a single common database directory may be
employed by all the directories from which source programs are processed
through the collector by installing a reference, referred to as a "symbolic link",

30 betweén the source files directory and the directory containing the common

database component files. This is illustrated in Fig. 6, wherein the main directory

WO 91/14993 PCT/US91/02046

10

15

20

25

30

. 23

Project contains two sub-directories Source1 and Source2, Source1 containing,
source files a.c and b.c and Source2 containing source files e.c and f.c. The
corresponding database component files are Iocatgd in common directory .sb
which is a sub-directory of main directory project and contains an index file and
database component files a.c.*.bd, b.c.*.bd, e.c.*.bd and f.c.*.bd. For example, in
the UNIX® (UNIX is a trademark of AT&T) operating system, a symbolic fink may
be established by executing the following command:

In -s <directory path name>/.sb

Furthermore, when generating database component files, it may be
desirable to store the database component file in a directory other than a sub-
directory of the current working directory. For example it may be desirable to
place, in a single directory for easy reference, those database component files
commonly referenced by source files located in a plurality of directories. In
addition, a query, by default, will review the index file and corresponding
database component files located in the current working directory. Often, it is

desirable to execute a query on database component files inside as well as

 outside the current working directory.

A file, having a predetermined identifiable name, referred to in the
preferred embodiment as the .sbinit file, is used by the collector and browser to
obtain information about the database structure. The .sbinit file contains the

commands "import", "export” and "split".

To query multiple database component files in directories other than
the current working directory, the import command is used to indicate to the
browser the path names of directories containing database component files
outside the current working directory to read each time it performs a query. The
import command has the form:

import <path>

WO 91/14993 : PCT/US91/02046

10

15

20

25

30

- 24

where path is the path name'to the file directory that contains the .sb sub-
directory containing the database component files to be imported. For example, if
the current working directory is /project/sourcel, and the browser is to search
project/source2 as well as /project/source1 when performing a query, the import
command would be:

import /project/source2

Similarly, the "export” command, may be used to cause the
collector which generates the database component files to store the files in a
directory other than the current working directory. The export command identifies
the path name and source file name of those source files the database
component files of which are to be located in a specified directory. This enables
the user to save disk space by placing those database component files
associated with identical files in a single database while still retaining distinct
databases in separate directories for individual projects. The export command
has the form:

export <prefix> into <path name>

thus whenever a collector processes a source file having the path name which
starts with <prefix>, the resulting database component file will be stored in
<path name>/.sb . For example, to place the database component file created
for source files from /usr/include in a .sb sub-directory in the directory
project/sys, the export command would be:

export /usr/include into /project/sys .

To improve the performance of the system when working with a
large number of database component files, a split function may be implemented.
The split function splits the database component files into an "old" group and
"new" group of database component files whenever the size of the index file
exceeds a specified number of bytes indicating that the database is too large to
efficiently perform updates within a predetermined period of time. Thus, when the

database component files are updated thus requiring that the index file be

o

WO 91/14993

10

15

20

25

30

PCT/US91/02046

. 25

updated, those source files which have changed subsequent to the last time the
database component files were updated are updated and categorized in the
"new" group of database component files, Ieaving'the remaining database
component files in the "old" group unchanged. Correspondingly, a new index file
is created to index the new group of database component files while the index file
to the old group of database component files remains unchanged. This increases
system performance because the time it takes to build the index file is proportional
to the number of database files that require indexing. Consequently, it takes less
time to build a small index file for the new group of database component files than
to rebuild one large index file for the entire group of database component files.
This is illustrated in Fig. 7. The size of the index file in Source1/.sb is larger than
the predetermined number of bytes. Thus, the old group of database component
files has moved down a sub-directory to Source1/.sb/.sb and a new group of
database component files is created comprising those database component files
corresponding to source files which have been modified subsequent to the last
time the collector process was executed and the database component files were
updated. In the present example, only source file a.c has been modified;
therefore the new group of database files in Source1/.sb contains a.c.*.bd and a
new index file is created for a.c.*.bd. The split command has the form:

split <size>
where <size> is the size, in bytes, of the database index. When the index file is

greater than or equal to <size>, the split function will be initiated.

The information provided to the user indicating the results of the
query may take a variety of forms and is implementation dependent. Fig. 8 is an
example of a user interface containing information regarding the source file, the
parameters of the query, the lines of text from the source file which are returned
pursuant to the query and a predetermined number of lines of the source file
which surround the line of text which contains the symbol which is the subject of

the query.

WO 91/14993 PCT/US91/02046

10

15

20

25

30

26

The frame header 500 indicates the current working directory. The
control sub-window 510 displays the current query information such as the name
of the source file containing the current match 540, the query parameter 550, the
number of matches (occurrences of the symbol specified by the query), as well
as the match currently displayed 560, the identifier or string constant for the
current match 570 and the line numbers of text displayed 580. The control sub-
window 510 also contains the controls needed to manipulate the browser. For
éxample, the buttons available in the sub-window permits the user to issue
queries, move between matches, move between queries, delete matches and

queries and refine or narrow queries.

The ,match sub-window 520 displays all matches found by the
current query. The information provided for each match includes the name of the
file in which the match appears 590, the line number in the file on which the
match appears 600, the function in which the match appears 610 (if applicable)

and the line of text containing the match 620.

The source sub-window 530 displays a portion of the source file
that contains the current match. The match is identified by a marker such as a
black arrow 630. The source sub-window 530 may optionally contain markers in
the form of gray arrows 640 to identify other matches found during the current or

other queries.

Thus a user, by using the user interface such as the one shown in
Fig. 8, can perform a variety of tasks employing the system of the present
invention, including issuing queries, modifying queries, modifying the databases
searched, as well as reviewing the results of the queries. As is apparent to one
skilled in the art, the user interface can be tailored to each implementation to
include _additional functionality or tools for the user to refine his queries, as well
as to modify the information content and organization of information which is

presented to the user to show the results of the queries performed.

$3

WO 91/14993 PCT/US91/02046

10

15

20

25

30

The flexibility of the system of the present invention provides for a
multitasking capability wherein multiple collectors as well as muttiple browsers
may be operating simultaneously on a number of détabase files. The database
files operated on may include duplicate files that are accessed by multiple
collectors or browsers. A problem which arises in the multitasking environment is
the existence of race conditions. This problem arises when two processes or
devices access a single source file or corresponding database component file at
the same time resulting in corrupt data being written into the database component
file and/or corrupt data being read out of the database component file. An
example of the race condition may be explained by reference to Fig. 9. The main
directory project contain source files ac., b.c and i.h. Source files a.c and b.c
contain statements which include file i.h. Thus, if two compilers are initiated to
compile files a.c and b.c, both compilers will attempt to generate a database
component file for i.h, because i.h is included in source files a.c and b.c. As a
result, both compilers attempt to simultaneously create i.h.*.bd which may result '
in corrupted data because both compilers are writing into the same file
concurrently. In addition, if two queries are run in paraliel and the index for the
databases a.c and b.c have not been generated, each query mechanism will
initiate a process to build an index. Therefore the index file may contain
corrupted data as the result of two processes concurrently writing into the same

index file.

To prevent these problems, a process is utilized which employs a
locking mechanism to prevent more than one process from accessing a file at any
one time. A sub-directory is created which is referred to by a predetermined
name, herein referred to as "new root", which is used as part of a locking
mechanism to prevent more than one collector or browser from interacting
simultaneously with a database component file. In conjunction with the specially
named sub-directory, a locking mechanism is employed using atomic operations

whereby if the operation fails, the process step fails and the process will either

WO 91/14993

10

15

20

25

30

PCT/US91/02046

28

fall to a wait state or an error state (depending upon the application). In addition,
the use of this sub-directory provides the means for determining when an index
file requires an update to conform to a recent modification of a database

component file.

Referring to Fig. 10, the collector, at block 700, prior to generating a
database component file, will generate the hash value, combine it with the
source file name and check whether the database component file name already
exists which indicates that there is no need to generate a new database
component file. At block 710, the hash value generated and the database
component file name generated using the hash value is compared against the
existing database file names. If the file name exists, the database already exists
and there is no need to generate a new database. If the file name does not exist,
at block 720, a sub-directory, which is referred to herein as "new root", is
created. At block 730, the database file is then generated and placed in the new
root directory. During the creation of the database component file, the file is
identified by a temporary file name. Preferably the temporary file name is the
concatenation of the time the file was opened, the machine ID of the machine the
collector is executing on and the process ID. Thus the temporary file name would

be [time] [machine ID] [process ID]. IP.

Once the generation of the database component file is complete, at
block 731, the file is renamed from its temporary file name to its database
component file name. If, at block 732, the rename operation fails because a file
with the same database component file name exists, the system recognizes that
there is no need to have duplicate files and the file identified by the temporary file
name is deleted at block 734. Occasionally while one compiler process is
generating a database component file, a browser process will be operating and
will determine that an index file needs to be generated or updated. For example,
this may occur when a first database component file has been generated and a

second database component file is in the process of being generated when an

@

WO 91/14993 PCT/US91/02046

10

15

20

25

30

. 29

index file is generated. As will be described in detail below, one of the steps in
the process for the generation of the index file is to rename the new root directory
to "locked” and move all the files contained in the locked directory to another
directory, referred to herein as "old root". Thus thé rename file operation to
rename the database component file from a temporary name in new root to the
database component file name also in new root will fail if a file with the temporary
file name does not exist in new root. At block 736, if the rename operation fails
because the file is not found, at block 738 the database component file identified
by the temporary file name, is moved from the locked directory to the new root
sub-directory and is renamed from the temporary file to its database component

file name.

Referring to Fig. 11, when the index file is to be generated (in the
preferred embodiment, this is performed when a search or query is initiated) at
block 740, the sub-directories are checked to determine whether a sub-directory
identified as new root exists (block 750). The presence of a directory named new
root indicates that the index file needs to be updated for the database component
file(s) contained therein. At block 760, the new root directory is renamed to a
second predetermined sub-directory name, "locked". As will be evident
subsequently, this protects a‘gainst access and use of the database files
contained therein until such time that the index file is completely generated. If, at
block 765, the rename operation fails because a locked directory already exists,
this indicates that an index build is in progress and the current process has to
wait until the index build is complete. Therefore, at block 767, the current
process puts itself "to sleep” (i.e. suspends itself) for a predetermined time period
(e.g. 10 seconds). At the end of the time period, the process returns to block 750
and checks to see if the new root directory still exists. This process continues
until the locked directory no longer exists. At block 760, once the rename
operatipn is executed to rename "new root" to "locked", at block 770, the
database component files are moved out of the "locked" directory to a sub-

directory having a third predetermined name, in the present example, "old root",

WO 91/14993

10

18

20

25

30

PCT/US91/02046

i 30

and the index file is generated. At block 775, any IP files which may exist are
also transferred out of the locked directory to a new root directory which already

exists or is created by the process.

Once the files are transferred and the index file is generated, the
operation is complete. To indicate the operation is complete to other processes
attempting to access the database files, at block 780, the locked directory is
removed from the file system. Thus, if a subsequent process performs a search
and looks for the new root directory, it will find that none exist, indicating that the

index file is up to date and a new index file does not need to be generated.

When a query is initiated and the browser attempts to access a
database component file while a new index file is being generated, it will be
prevented from doing so because an index file does not exist and a search for the
new root directory will fail (because it has been renamed to "locked"). Thus, the
rename directory operation, which is an atomic operation, will fail and the ‘
process will either remain in a wait state (i.e. "put itself to sleep”) until it can
perform the operation or will branch on an error condition or to a predetermined
state such as waiting for access. Preferably the browser process will be put into
a wait state for a predetermined time period, e.g. 10 seconds, check to see if the
index file generation process is complete and continue in the wait state for
another time period. This process is continued until the index file generation

process is complete and the rename operation can be executed.

in addition, if a new new root directory is created during the index
build process, and another query is issued, the second query will also be put into

a wait state and suspend its index rebuild until the locked directory is removed.

While the invention has been described in conjunction with the

preferred embodiment, it is evident that numerous alternatives, modifications,

WO 91/14993 . PCT/US91/02046

31

variations and uses will be apparent to those skilled in the art in light of the

foregoing description.

WO 91/14993 - ~ PCT/US91/02046

10

15

20

25

30

. 32
CLAIMS
What is claimed is:
1. In a muitiprocess computer system comprising at least one CPU,

input/output means and memory containing a file system, said file system
comprising at least one source file comprising text, an apparatus for generating
databases comprising database component files of symbols contained in th.e
source files, generating index files for the database component files and for
performing queries to search for symbols in the source files by searching the
database component files to determine where the symbol is located in the source
file, means for preventing errors which occur due to race conditions wherein said
apparatus attempts to concurrently generate more than one database component
file from the same source file, more than one index file from the same database
component files or attempts to concurrently generate a database component file
or index file and search the same database component file or index file, said
apparatus co’smprising:
means for creating a temporary sub-directory in the file system, said
directory being a sub-directory of the current directory and being
identified by a first predetermined name, wherein the means for generating
the database component file stores the database component file in the
temporary directory;
collector means for generating database component files, said
collector means identifying the database component file by a temporary
name until the database component file is completely generated;
means for renaming the database component file from its temporary
name to a permanent database component file name, said means
comprising an atomic command which, upon failure to execute, defaults to
a predetermined state;
if a database component file is stored in the temporary directory,

means for generating an index file comprising;

(o

WO 91/14993

10

15

20

25

30

PCT/US91/02046

. 33

means for renaming the temporary directory to a second
predetermined name, said means comprising an atomic command
which, upon failure to execute, defaults to a predetermine state;
means for transferring the database component file from the
temporary directory to a directory which is a sub-directory of the
directory containing the source file;
means for creating an index file for the database component
file, said index file being located in the same sub-directory as the
database component file;
means for removing the temporary directory from the file
system;
whereby if a race condition occurs and there is an attempt to concurrently
generate another database component file or index file, the means for renaming
the temporary directory will fail upon execution thereby halting the means for

generating the index file and preventing the errors which occur due to race

conditions.

2. The apparatus according to claim 1, wherein if the means for
renaming the database component file fails because a file identified by the
permanent file name already exists, means for deleting the database component

file identified by the temporary file name.

3. The apparatus according to claim 1, wherein if the means for
renaming the database component file fails because the database component file
identified by the temporary name is not found in the temporary sub-directory;

means for searching for the database component file in other sub-
directories of the source file directory;

means for transferring the database component file to the temporary sub-
directory;

means for re-attempting to rename the database component file from its

temporary name to its permanent database component file name.

WO 91/14993 : PCT/US91/02046

10

15

20

25

30

34

4. The apparatus according to claim 1, wherein said temporary file
name comprises [time][machine ID]{process ID].IP, where [time] is the time the .
temporary file was created, [machine ID] is the ID of the machine the process
which generates the database component file is operating on, and [process ID] is

the ID of the process which generates the database component file.

5. In a multiprocess computer system comprising at least one CPU,
input/output means and memory containing a file system, said file system
comprising at least one source file comprising text, in a process for generating
databases comprising database component files of symbols contained in the
source files, generating index files for the database component files and for
performing queries to search for symbols in the source files by searching the
database component files to determine where the symbol is located in the source
file, a process for preventing errors which occur due to race conditions wherein
said attempts to concurrently generate more than one database component file
from the same source file, more than one index file from the same database
component files are made or attempts to concurrently generate a database
component file or index file and search the same database component file or
index file are made, said process comprising the steps of:

creating a temporary sub-directory in the file system, said directory

being a sub-directory of the directory containing trhe source file and being

identified by a first predetermined name, wherein the database component

file is stored in the tefnporary directory;

generating database component files identified by a temporary
name until the database component file is completely generated; :
renaming the database component file from its temporary name to a
permanent database component file name) said step comprising an atomic
‘command which, upon failure to execute, defaults the process to a

predetermined state;

WO 91/14993 PCT/US91/02046

® 35

if a database component file is stored in the temporary directory,
generating an index file comprising the steps of;
renaming the temporary directory to a second predetermined
name, said step comprising an atomic command which, upon failure
5 to execute, defaults the process to a predetermine state;
transferring the database component file from the temporary
directory to a directory which is a sub-directory of the directory
containing the source file;
creating an index file for the database component file located
10 in the same sub-directory as the database component file;
removing the temporary directory from the file system;
whereby if a race condition occurs and there is an attempt to concurrently
generate another database component file or index file, the step of renaming the
temporary directory will fail upon execution thereby halting the process and and

15 preventing the errors which occur due to race conditions.

6. The process according to claim 4, wherein if the step of renaming
the database component file fails because a file identified by the permanent file
20 name already exists, deleting the database component file identified by the

temporary file name.

7. The apparatus according to claim 5, wherein if the step of renaming
the database component file fails because the database component file identified
25 Dby the temporary name is not found in the temporary sub-directory;
seérching for the database component file in other sub-directories
of the source file directory;
transferring the database component file to the temporary sub-
directory;
30 re-attempting to rename the database component file from its

temporary name to its permanent database component file name.

WO 91/14993 PCT/US91/02046

1/ 18

107

[
R “
Display Monitor ""“" l
l |. ooooo

103 —iH i oDoooo

. '

el eatatatatelatatetatetatatatatets!

Figure 1

SUBSTITUTE SHEET

PCT/US91/02046

WO 91/14993

2/ 18

Z aanbiy

cnapuj PQ'."3'3 PO

NS

qs’

[Hapuj PQx"2°'q Ppg.-oe

NS
N

1834n0S

«"3°9

3°q

-
N@P.:ow\
/;_.En_\

J'e

SUBSTITUTE SHEET

PCT/US91/02046

WO 91/14993

3/18

pa‘sopdho-y-oipys zg:91 22 das 96be
PA'mnAonia°00) zg:9] 22 das 829
PQ’1sDgiz 00} gc:91 22 das 882

q¢ aanbiy “Z€:91 ¢z das 21
. *'2€:91 ez das ziIs

ec aanbiy

usaios
ualos
ualos
uaios

uai0s

--2-Mi-mMi-
--4-Mmi-mai-
-Mi-mi-mua-
H-JRMARMAPp
H-ARMIKmMUPp

€ |e}o0)
:jooymanN/qs’

N T o= - -

{

:(.u\PH1OMm ol13H,) Jiutad

)
() utew

<Y oIp)s> apnjouly

SUBSTITUTE SHEET

WO 91/14993 - PCT/US91/02046

- 4/18

Figure 3c-1

¢*¢¢ Header section (id=1, start=0, length=124)
Magic number = 0x3c63623e '<cb>'

.bd format version number = 2,1
#Hline seen in source = 0

case was folded =0

Language: ‘sun_c' - version 1,1

Source type = root (1)

Number of sections = 6

Header section, id=1, star=0, iength=124

Source name section, id=2, stant=124, length=16
Reld files section, id=3, start=140, length=16
Symbol table section, id=4, start=156, length=332
Semantic table section, id=5, start=488, length=120
Line id section, id=6, start=608, length=20
*¢** Source name section (id=2, stat=124, length=16)
relative=1 Amp/foo.c
*¢** Refd files section (id=3, start=140, length=16)
hash=OyPdOS stdio.h

****Symbol table section (id=4, start=156, length=332)
156:'FF main25' @ 488 400
180: ' P main' @ 496

196: 'printl’ @ 504

212:'F Shmploo.c0.' @ 512

240: “'Hello world\n™ @ 520

264:' N #180/100.c' @ 528

288: ‘<stdio.h>' @ 536

308: ‘main’' @ 544

320:'FGsun_c0. @552

344:' AF main printf' @ 560

368: ' P #180/fc0.c' @ 568

392: ' Al #180/fc0.c #49¢/stdio.h' @ 576

428" Al fo0.0 #180/100.¢C’' @ 584

456: ' N main' @ 592

SUBSTITUTE SHEET

WO 91/14993 PCT/US91/02046

5718

472:' N {00.0' @ 600
***+ Semantic table section (id=5, start=488, length=120) =
488: Name ref @ 1.' F F main 2 5' 25 cb_focus_function_untt

492: End rec 410
496: Name ref @ 2.' P main' 65 cb_grapher_{unction_property

500: End rec

504: Name ref @ 4. ‘printt' 192 cb_c_def_global_proc_implicit

508: End rec

512: Name ref @ 1.' F S ampfioo.c 0 .' 23 cb_focus_{file_unit

516: Enc rec

520: Name ref @ 4. “Hellow world\n™ 213 cb_c_regular_string

524: Enc rec

528: Name ref @ 1.' N #180/100.c' 72 cb_grapher_source_{ile_node

§32: Enc rec

536: Name ref @ 1. '<sidio.h>' 56 cb_cpp_included_file_name_system

540: Enc rec

544: Name ref @ 2. 'main' 178 cb_c_def_global_tunc_w_body

548: Enc rec

552: Name ref @ 1.' F G sun_c 0.' 30 cb_focus_language_unit

556: Enc rec

560: Name ref @ 4. ' AF main print' 64 cb_grapher_function_call_arc

564: Enc rec

568: Name ref @ 1.' P #180400.c' 73 cb_grapher_source_file_property

5§72: Enc rec

576: Name ref @ 1. ' Al #180/100.c #49c/stdio.h' 69 cb_grapher_source_source_{ile_
580: Enc rec

584: Name ref @ 1. ' Al f00.0 #180/100.c" 66 cb_grapher_executable_object_file_arc
588: Enc rec

592: Name ref @ 2.' N main' 61 cb_grapher_function_regular_call_node
596: Enc rec

600: Name ref @ 1.' N {00.0' 71 cb_grapher_object_file_node

604: Enc rec :

***¢ | ine id section (id=6, start=608, length=20)

Line 1 length=18 hash=1626 inactive=0 420
Line 2 length=6 hash=502 inactive=0

Line 3 length=1 hash=123 inactive=0

Line 4 length=25 hash=2162 inactive=0

Line 5 length=1 hash=125 inactive=0

Figure 3c-2

]

SUBSTITUTE SHEET

PCT/US91/02046

WO 91/14993

6718

ey ainbiy

Aosmoig

062
uolovuiIogU|
yndingp
obz — |

LY 4

fiaan
0 o1z
£GeZ

a4 931nos

0se

a4
asuqejoq

a2]i4 3po)
13pdwio)

1apduwo)

e

SUBSTITUTE SHEET

PCT/US91/02046

WO 91/14993 -

7/18

ai ainbiy
0G¢
062
GG¢e /
_ 0b2 CITE
~ gaseqejeg
uoljeusioju] 1asmoag
indang
CdLE)
< yasegejeg
08¢
fizanp al4 gadunos alt4 yalinos
ccz 012 092

gee

CALE
apo)
pajndwo)

Japdwo)

YA -

| YA

SUBSTITUTE SHEET

PCT/US91/02046

8718

WO 91/14993

0czge 062
apo
3 aanbiy _5___.._ ._“_.8
ole czz
a4
GG¢ Jjaseqeloq
oz
~
goljewaoju] CILE | d
inding 43smoig < gaseqejeq 13pdwo)
a4 \ A % A
yaseqojaqg 0z’
haanp
h al4 gaaunos all4 yaainos
£Ge
00g 0L ////aom

SUBSTITUTE SHEET

WO 91/14993 PCT/US91/02046

9/18

Generate Unique

Database File Name 400
Database Name
Exist? 410
YES
Generate_natabase 420
File
Figure 5a

SUBSTITUTE SHEET

WO 91/14993

- 10718

Receive Query K~ 430

PCT/US91/02046

Figure 5b-1

Current Index

440 File Generated?

Update Index File

Generate or

Retrieve Database
Component File }——460
Identification

y

Read First Database

Component File 470
ldentified

> 6o to First Symbol 475
Reference

Retrieve Symbol
Identification and Line

identification Information from }—— 480
Database Component File For Symbol
Reference
L
Go to Source Text File and 490
Retrieve Line of Text
Compute Hash Uslue
for Line 500

I

SUBSTITUTE SHEET

450

PCT/US91/02046

WO 91/14993

11718

3’}

9 aanbi4

Z921inog§

gqs*

Pq-."2°a

(L]0 P

qs°

3'q

|321n0§

SUBSTITUTE SHEET

PCT/US91/02046

WO 91/14993

12718

®

Z-4s 3anbiy

SZs

Loy
juauodwo] asoquejeg
uf 3juaiajay joquifis yse

0gS

$3A

a4 yuauodwo)
assqgejag)seq

LZs

|

ON

3jualajay
foquifis }HaN o) 09

ON

|

0esS —

sapoj ysay Suisp
aft] alinos uy Y}HA|
104 yaseas ydwal)ly

ON

1asn oy
uonouiiojuj yndyng

23|14 aseqejeq
ug pasojs anjeq
YseH D3° anjaq ysey

0zs

o0is

paynuapi|
asaqejeg }HaN poeay

T

SUBSTITUTE SHEET

WO 91/14993) PCT/US91/02046

13718
Project
Database

a.c b.c .sbinit .sb\\\\\\\\

a.c.*.bd Index

0ld Group
Database

Figure 7

SUBSTITUTE SHEET

PCT/US91/02046

WO 91/14993

14/ 18

olids Nide

09 P1oA 333838
. €
f(nopars)paon
{(1nopys)o| (ay
} (--som)3y g ¢ sew}y !) 40
¢
{

i1 = sew)y
} (1 =i (sswjiy ‘,pg, ‘[1]AOJu)jusass) ;)
} (3 ¢ 20uw) 4

i3 = sewm}y EUTY

HpL ¥ Jeyd
{5840 g

£()p1son

QNO/ ‘()prsom ploa

{()oLisy pioa

08S
028

(ABuw ‘28us)ujem
Pion &

}

PIOA UJSINS
0oty [voeyxe

g 94nbi1

MopuINgns 22.mos
-

mopuimgns yaiow
-

MOPUIMGNS 10.43U0D
-

0£S

0¢Zs

01S

00S

SUBSTITUTE SHEET

PCT/US91/02046

WO 91/14993

- 15718

6 34nb14

ui

PA.'Ul PQ."2°q pq.-2'e Hapuj

N7

\,

13901y

SUBSTITUTE SHEET

WO 91/14993

PCT/US91/02046

- 16/ 18

@ Figure 10 A

name with Hash Value

6enerate Hash Ualue and Check
for Database Component File

—— 700

Database
Component File
Name Exnists?

710

Create New Root
Directory

l

VES

Database File |
Already Created

— 720

Generate Database File Under
Temporary Database Name,
Place in New Root Directory

— 730

y

Rename File From Temporary
File Name to Database
Component File Name

— 131

|

SUBSTITUTE SHEET

PCT/US91/02046

WO 91/14993

17/ 18

g0l ainbiy

JwIeN a4
85s — juauodwo) asegejeq o) }| awsuay pus
fi10)2341g 100y mapN o) fi0}2a410 paxlIo]
woJs4 34 yusuoduio) aseqejeq 3noW

LPUnoO4 jON
3114 asnvJag
10§ auisuay

9%L

3WBN
2114 favsodwag
fiq payynuapj
a4 yuauodwo)
9s0que)o(g anoway

¢sisiu3 ipvasy awenN
3114 juauoduio) aseqejeq
asnelag ey auieuay

r4 4
S$31A

SUBSTITUTE SHEET

WO 91/14993 -

PCT/US91/02046

- 18/ 18

740 ——

Query Implemented

Figure 11

750

810

New Root
Directory
Enists?

Initiate Search

!

760 ——

Rename "New Root"

1o "Locked"

2674 Steep

10

765

Rename Operation
failed becoause
Locked Directory
slready exists

770 —

Move Database Files Out
of "Locked" Directory
and Generate New Index

File

Y

775 —

Move Existing
IP files to
New Root

:

780 —

Remove Locked
Directory

SUBSTITUTE SHEET

INTE?NATIONAL SEARCH REPORT
International Apphcation No. ?CT/3591 /,:21\16
I. CLASSIFICATION OF SUBJECT MATTER (f several classification symuols apoly, ingicate ail) &
Acceraing to International Patent Classification (IPC) or to both National Classification and IPC
TPC(3): 306F 15/41%, 15/4C
.8, Ch.t 254/20C,SCO

1l FIELDS SEARCHED

Minimum Documentation Searched 7

Clagsi“cat.or Syst2m

Classification Symbois

oo ~r
Q
Veowe wide

264/220, SCO

Documentation Searched other than Mimmum Documentation
to the Extent that such Documents are Included in the Fields Searched @

Jll. DOCUMENTS CONSIDERED TO BE RELEVANT *

Category * Citation of Document, 1! with indication, where appropriate, of the relevant passages 2 Relevant to Claim No. '3
Y,P Us, A, 4,945,475 (BRUFFEY ET AL.) 31 July 1990, 1=7

Note: See the entire document.
Y Us, A, 4,611,272 (LOMET) 09 September 1986, 1-7

Note: See the entire document.
Y Us, A, 4,827,462 (FLANNAGAN ET AL.) 02 May 1989, 1=7

Note: See the entire document.
Y C. J. DATE, "DATA BASE: A PRIMER", published 1083, 1=7

pages 165-175.

Y,E Us, A, 5,008,853 (BLY ET AL.) 16 April 1991,

Note: col. 9, line 8-col. 10, line 42)

Y,E Us, A, 4,010,495 (WILLETTS) 23 April 1991,
col. 22, line 19-col. 23, line 15.

Y,E Us, 4, 5,014,192 (MANSFIELD) ET AL.) O7 May 1991,
Note: col. 68, lines 10-65 and col. 69,
liens 25-65.

* Special categories of cited documents: 10 “T" later document published aherﬂthe intern:nonallﬁlinq dg(at
wan which i or priority date and not in conflict with the app! ication bu
A gg::m::‘etdd?f%I:%l"::arg::rm:‘r:g?a:getha art which (s not cited to understand the principle or theory underlying the

invention

“E" earlier document but published on or atter the international x" document of particular relevance; the claimed invention

filing date cannot be considered novel or cannot be considered to
upr docu;\nant which may throw .:!ouhtsI on prioéity clgim(s)hor involve an inventive step

which 18 cited to establish-the publication date of another vy document of | . Inimnad i :

i i particular r e; the in 1

citation or other special reason (as specified) cannot be considerad to involve an inventive step when the
“Q" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-

other means ments, such combination bsing obvious to a person skiiled
P document published prior to the international filing date but in the art.)

later than the prionty date claimed ug" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search [Date of Mélinéof this Igt;rnggTearch Report
| JUG

28 MAY 1991 e
International Searching Authority Signature of Authorized Officer /{‘j #o
= n }Uﬁ @
LR 155 NGOC-HO g

ISA/US | GOPAL C. RAY INTERNATIONALDIVISION

Form PCTASA/210 (second sheet) (Rev.11-87)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

