发明名称
具有干涉层结构的薄膜元件

摘要
本发明涉及一种用于安全纸、有价文件及其类似物的具有干涉层结构的薄膜元件(30)，包括至少两个半透明的吸收层(34, 38)和至少一个介质间隔层(36)。该介质间隔层设于所述至少两个吸收层之间。根据本发明，所述两个吸收层(34, 38)分别由具有复折射率 N 的材料构成，该复折射率 N 的实部 n 和虚部 k 至少在部分可见光谱范围内相差 5 倍以上。所述材料可以为银 (Ag) 或铝 (Al)。
1. 一种用于安全纸、有价文件及其类似物的具有干涉层结构的薄膜元件，包括至少两个半透明的吸收层和至少一个介质间隔层，所述介质间隔层设于所述至少两个吸收层之间，其特征在于，所述两个吸收层分别由具有复折射率 N 的材料制成，所述复折射率 N 的实部 n 和虚部 k 至少在部分可见光谱范围内相差 5 倍以上。

2. 根据权利要求 1 所述的薄膜元件，其特征在于，所述两个吸收层由不同的材料制成，一个所述吸收层的材料的实部 n1 和虚部 k1 至少在部分可见光谱范围内相差 5 倍以上，另一个所述吸收层的材料的实部 n2 和虚部 k2 至少在部分可见光谱范围内相差 8 倍以上，优选为 10 倍以上，特别优选为 15 倍以上。

3. 根据权利要求 1 或 2 所述的薄膜元件，其特征在于，所述两个吸收层的材料的实部 n 和虚部 k 至少在部分可见光谱范围内相差 8 倍以上，优选相差 10 倍以上，特别优选相差 15 倍以上。

4. 根据权利要求 1 或 2 所述的薄膜元件，其特征在于，所述两个吸收层中的至少一个的材料的实部 n 和虚部 k 在整个可见光谱范围内，相差 5 倍以上，或者相差 8 倍以上，或者相差 10 倍以上，或者相差 15 倍以上。

5. 根据权利要求 1-4 中至少一项所述的薄膜元件，其特征在于，所述两个吸收层中的一个或者所述两个吸收层由银构成。

6. 根据权利要求 1-5 中至少一项所述的薄膜元件，其特征在于，所述两个吸收层中的一个或者所述两个吸收层由铝构成。

7. 根据权利要求 1-6 中至少一项所述的薄膜元件，其特征在于，所述干涉层结构是对称的三层结构，所述对称的三层结构包括第一吸收层、介质间隔层和第二吸收层。

8. 根据权利要求 1-6 中至少一项所述的薄膜元件，其特征在于，所述干涉层结构为不对称的三层结构，所述不对称的三层结构包括由第一材料组成的第一吸收层、介质间隔层和由第二材料组成的第二吸收层，所述第一材料和所述第二材料为不同材料。

9. 根据权利要求 1-8 中至少一项所述的薄膜元件，其特征在于，所述介质间隔层由 SiO₂ 或 MgF₂ 构成。

10. 根据权利要求 1-9 中至少一项所述的薄膜元件，其特征在于，所述薄膜元件在反射光中观察时，呈现明亮的金属光泽且基本上为非彩色，而在透射光中观察时呈彩色。

11. 根据权利要求 1-10 中至少一项所述的薄膜元件，其特征在于，在透射光中，所述薄膜元件的色度 C*ab 大于 15，优选大于 20，尤其优选大于 25，所述色度 C*ab 在 CIELAB 色彩空间中规定。

12. 根据权利要求 1-11 中至少一项所述的薄膜元件，其特征在于，当垂直观看时，所述薄膜元件

- 在透射光中呈绿色，并具有大于 30，优选大于 40 的色度 C*ab，或者
- 在透射光中呈黄色，并具有大于 10，优选大于 20 的色度 C*ab，或者
- 在透射光中呈红色，并具有大于 20，优选大于 30 的色度 C*ab，或者
- 在透射光中呈蓝色，并具有大于 20，优选大于 30 的色度 C*ab。

13. 根据权利要求 1-12 中至少一项所述的薄膜元件，其特征在于，所述薄膜元件在透射光中呈彩色并具有色移效应。

14. 根据权利要求 1-12 中至少一项所述的薄膜元件，其特征在于，所述薄膜元件在透
射光中呈彩色，当所述薄膜元件被倾斜时，所述薄膜元件基本上不变色且具有变化的色度
C_{ab}。

15. 根据权利要求 1-14 中至少一项所述的薄膜元件，其特征在于，所述薄膜元件与彩
色滤光片组合，优选为与彩色印刷层或者彩色气相沉淀层组合。

16. 根据权利要求 15 所述的薄膜元件，其特征在于，在预定观看方向，所述薄膜元件和
所述彩色滤光片分别仅在不同且不重叠的波长范围内透光。

17. 根据权利要求 1-16 中至少一项所述的薄膜元件，其特征在于，所述薄膜元件以图
案、字符或代码的形式显示。

18. 根据权利要求 1-17 中至少一项所述的薄膜元件，其特征在于，所述薄膜元件与浮
雕结构组合，尤其是涂覆于衍射浮雕结构、微型光学浮雕结构或子波长结构。

19. 一种用于安全纸、有价文件及其类似物的透明安全元件，包括支撑物、和涂覆在所
述支撑物上的如权利要求 1-18 中任一项所述的薄膜元件。

20. 根据权利要求 19 所述透明安全元件，其特征在于，所述薄膜元件以图形的形式施
加在所述支撑物上。

21. 根据权利要求 19 或 20 所述的透明安全元件，其特征在于，所述薄膜元件的与所述
支撑物相对的顶面设有一油墨吸收层，优选为不透明的白色油墨吸收层。

22. 一种用于印刷油墨的光学可变彩色颜料，所述光学可变彩色颜料由权利要求 1-18
中任一项所述的薄膜元件制成。

23. 一种数据载体，包括如权利要求 1-18 中任一项所述的薄膜元件或如权利要求
19-21 中任一项所述的透明安全元件，所述薄膜元件或者所述透明安全元件设置在所述数
据载体的透明窗口区域或者通孔内或上。

24. 一种数据载体，包括如权利要求 1-18 中任一项所述的薄膜元件或如权利要求
19-21 中任一项所述的透明安全元件，所述薄膜元件或者所述透明安全元件内嵌在所述数
据载体中，尤其在于所述数据载体包括纸质基底，所述薄膜元件或所述透明安全元件内嵌
在所述纸质基底中。

25. 根据权利要求 23 或 24 所述的数据载体，其特征在于，所述数据载体为有价文件，比
如钞票，尤其是纸质钞票、塑质钞票、薄片复合钞票或身份证。
具有干涉层结构的薄膜元件

技术领域
[0001] 本发明涉及一种用于安全纸、有价文件及其类似物的具有干涉层结构的薄膜元件，该薄膜元件具有至少两个半透明层，即部分透明的吸收层和至少一个介质间隔层，所述介质间隔层设置在所述至少两个吸收层之间。本发明进一步涉及一种具有该薄膜元件的透明安全元件和数据载体，以及由该薄膜元件形成的、用于印刷油墨的光学可变彩色颜料。

背景技术
[0002] 出于保护的目的，数据载体（如信用卡或身份证件）和其他贵重物品（如名牌物品）通常配有安全元件，以验证数据载体的真实性，同时防止其被未经授权的复制。近年来，已证明的是，在塑料钞票中透明窗口是引起注意的安全元件，最近，在纸质钞票中，也验证了透明窗口作为引起注意的安全元件，因为它们允许使用多个安全特征。
[0003] 具有虹视依赖效应的安全元件在防伪领域起着特殊的作用，因为即使采用最现代的复印机，也不能将其复制。这里，该安全元件通常都显示有光学可变元件，从不同的观看角度，该光学可变元件会传达给观察者不同的图像提示，且随着观看角度，该光学元件会显示例如另一种颜色或亮度印迹和/或另一种图形图案。
[0004] 由此而言，利用具有多层薄膜元件的安全元件是已知的，观察者看到的该薄膜元件的颜色印象随着视角的变化，当薄膜元件被倾斜，其颜色印象从绿色变为蓝色，从蓝色变为品红色，或者从品红色变为绿色。这种当薄膜元件被倾斜时发生的颜色变化在下文中被称为色移效应。

发明内容
[0005] 由此，本发明的目的在于规定一种上述类型的具有吸引人的视觉外观的薄膜元件，该薄膜元件具有高防伪性能。
[0006] 该目的由具有独立权利要求的特征的薄膜元件、透明安全元件、光学可变彩色颜料和数据载体实现。本发明的拓展为从属权利要求的主题。
[0007] 根据本发明，在薄膜元件中，两个吸收层分别为具有复折射率 N = n+ik 的材料构成，所述复折射率的实部 n 和虚部 k 至少在部分可见光谱范围内相差 5 倍以上。
[0008] 这里，所述两个吸收层可以由相同的材料构成，也可以有不同的材料构成。使用不同的材料是有利的，尤其是从生产技术角度考虑，例如可以确保吸收层的良好的层粘接。在一个优选实施例中，所述两个吸收层由不同的材料制成，所述两个吸收层中的一个的材料的实部 n1 和虚部 k1 至少在部分可见光谱范围内相差 5 倍以上，所述两个吸收层中的另一个的材料的实部 n2 和虚部 k2 相差 8 倍以上，优选 10 倍以上，尤其优选 15 倍以上。
[0009] 在有利的实施例中，所述两个吸收层的材料的实部 n 和虚部 k 至少在部分可见光谱范围内相差 8 倍以上，优选 10 倍以上，尤其优选 15 倍以上。优选地，所述两个吸收层中的至少一个的材料的实部 n 和虚部 k 在整个可见光谱范围内相差 5 倍以上、8 倍以上、10 倍以上或者 15 倍以上。
至少一个所述吸收层，优选两个所述吸收层有利地由银构成。还有一些实施例中，所述吸收层中的一个或者两个所述吸收层由铝构成，这些实施例也被证实是可靠的。采用银 / 介质 / 铝层体系可以在透射中获得最鲜艳的颜色。具有铝 / 介质 / 铝层体系的薄膜元件鲜艳度略低但易于制造。同样易于制造的是银 / 介质 / 铝层体系，其鲜艳度在上述两种层体系之间，并且，对于顶层铝层，同样使得制造时不存在层粘接问题。

所述两个吸收层和所述介质层的层厚度优选为按照这样一种方式相互配合，使得所述薄膜元件具有充分的透射，该透射相当于亮度 L* 在 10% ~ 70% 之间，优选为在 20% ~ 50% 之间，该亮度 L* 是 CIELAB 色彩空间中定义的。当铝被用作所述吸收层时，所述银层的层厚度有利地在 20nm ~ 30nm。

在本发明的一个有利变形中，所述薄膜元件的干涉层结构为对称的三层结构，该对称的三层结构包括第一吸收层、介质间隔层和第二吸收层，所述第二吸收层的材料与第一吸收层相同或具有与所述第一吸收层相同的层厚度。这里，所述干涉层结构可以为银 / 介质 / 银层体系或铝 / 介质 / 铝层体系。

在本发明的一个优选的，同样有利的变形中，所述干涉层结构为不对称的三层结构，所述不对称的三层结构包括由第一材料组成的第一吸收层、介质间隔层由第二材料组成的第一吸收层，所述第一材料和所述第二材料为不同材料。在这种情况下，所述干涉层结构特别为银 / 介质 / 铝层体系。

所述介质间隔层有利地由 SiO₂ 或 MgF₂ 构成。所述介质间隔层的层厚度通常在 90nm ~ 400nm 之间。因为所述介质间隔层的层厚度基本上决定了所述薄膜元件的色彩印象，如下文中详细描述，其根据期望的色彩印象和期望的色移效应的强度来选择。

在一个有利的实施例中，所述薄膜元件在反射光中观察时，呈现明亮的金属光泽且基本上为非彩色，而在透射光中观察时呈彩色。这里，有利地，所述薄膜元件在透射光中的色度 Cₐᵣ 大于 15，优选大于 20，尤其优选大于 25，所述色度 Cₐᵣ 在 CIELAB 色彩空间中规定。

在本发明的一个有利变形中，在透射光中垂直观察时，所述薄膜元件呈绿色且并具有大于 30，优选大于 40 的色度 Cₐᵣ。在本发明的另一个有利变形中，在透射光中垂直观察时，所述薄膜元件呈黄色，并具有大于 10，优选大于 20 的色度 Cₐᵣ。在本发明的又一有利变形中，在透射光中垂直观察时，所述薄膜元件呈红色，并具有大于 20，优选大于 30 的色度 Cₐᵣ。在本发明的再一有利变形中，在透射光中垂直观察时，所述薄膜元件呈蓝色，并具有大于 20，优选大于 30 的色度 Cₐᵣ。

在本发明的一个优选变形中，所述薄膜元件在透射光中呈彩色并具有色移效应，当所述薄膜元件被倾斜，其色彩印象在透射光中变化。这里，所述透射光中的色彩印象可以变化，比如，从垂直透视时的品红色变为倾斜透视时的绿色。在本发明的一个可选的同样有利的变形中，所述薄膜元件在透射光中呈彩色，当所述薄膜元件被倾斜时，所述薄膜元件基本上不变色，但具有色度 Cₐᵣ 变化的透明色彩。这里，透射光中的色彩印象可以为，比如蓝色，所述蓝色透明色彩的色度从垂直透视时的较高值变为倾斜透视时的较低值。在该变形中，当薄膜元件被倾斜时，只有可以辨识的蓝色透明色彩的饱和度发生了变化。

在本发明的一个新构思中，所述薄膜元件与彩色滤光片 (color filter) 结合，优选为与彩色印刷纸或者彩色胶相的积淀层结合。这里，所述薄膜元件和所述彩色滤光片可以
以这样一种方式相互配合，在该预定观看方向，所述薄膜元件和所述彩色滤光片分别仅在不同且不重叠的波长范围内透光。对于该预定方向，薄膜元件和彩色滤光片的组合呈黑色，因为没有颜色能够同时透过两个元件。对于其他观看方向，薄膜元件可透过波长范围偏移，这样，所述波长范围与所述彩色滤光片透过波长范围重叠。因此，光的一部分透过两个元件。这样，可以创造这样的透明安全元件，其显示从黑色开始或向黑色的偏移，并常常给观看者深刻的印象。

[0019] 在有利的实施例中，所述薄膜元件以图案、字符或代码的形式显示。这还包括这样的可能性，连续的薄膜元件中设有图案、字符或代码形式的间隙。

[0020] 本发明的薄膜元件可以有效地与浮雕结构组合，比如衍射浮雕结构（比如全息图）、微型光学浮雕结构（比如显微镜结构、锯齿结构构成的3D图）或子波长结构（比如亚波长光栅、蛾眼结构），该薄膜元件尤其可以涂覆在这种浮雕结构上。这样，可以将上述浮雕结构的光学可变效应和所述明显的透射色彩效应相结合，如果可能，还可以与明显的透射色彩效应结合。

[0021] 本发明的薄膜元件还可以与其他光学可变涂层相结合，尤其是其自身具有色彩可变和色彩不变区域的组合的涂层。

[0022] 本发明还包括用于安全纸、有价文件及其类似物的透明安全元件，包括支撑物、和涂覆在所述支撑物上的上述薄膜元件。这里，所述薄膜元件有利地以图形的形式涂覆在所述支撑物上。在有利的实施例中，所述薄膜元件的与所述支撑物相对的顶面另外设有一油墨吸收层。所述油墨吸收层优选为不透明的白色油墨吸收层。

[0023] 在后一种情况中，所述薄膜元件可以嵌设在比如安全纸或其他数据载体中，在其中形成彩色的类水印元件。为此，所述薄膜元件至少在部分区域施加在薄片条上，尤其是以图形的形式。在复合钞票中，所述薄片条随后被粘接在纸上，并且在其顶面印刷一层白色的油墨吸收层，这样，具有薄膜元件的区域实际上在俯视图中是不可见的。但是当透视时，所述薄膜元件仍然呈彩色。惊奇地，已被证实的是，尤其是在透视时呈绿色的薄膜元件通过普通厚度的纸层后，仍然是清晰可辨的，并且形成类水印且彩色的元件，因为在反射光和透射光中的不同视觉印象。

[0024] 特别有利地，窗口的另一透明安全元件位于同一薄片条的另一区域中，这样，所述窗口元件和所述彩色类水印元件可以在同一操作中制造。

[0025] 此外，本发明包括用于印刷油墨的光学可变彩色颜料，所述光学可变彩色颜料由上述类型的薄膜元件形成。

[0026] 最后，本发明还包括具有上述类型的薄膜元件或透明安全元件的数据载体，所述薄膜元件或者所述透明安全元件设置在所述数据载体的透明窗口区域或者通孔内或上。本发明还包括具有上述类型的薄膜元件或透明安全元件的数据载体，其中，所述薄膜元件或者所述透明安全元件内嵌在所述数据载体中。所述数据载体尤其包括纸质基底，所述薄膜元件或所述透明安全元件内嵌在所述纸质基底中。

[0027] 所述数据载体特别为有价值文件，比如钞票，特别是纸质钞票，聚合物钞票或、或者身份证，比如信用卡、银行卡、现金卡、授权卡、个人身份证或者护照个人页。

附图说明
具体实施方式

下文将以单票的安全元件为例，对本发明进行说明。对于这一点，图1为示意图，该单票10具有通孔14，通孔14被本发明的透明安全元件12覆盖。图2显示了图1中的安全元件12沿线II-II的截面。

所述透明安全元件12包括图形16，该图形16在图1中显示为饰章（crest）状的图形16，以便于说明。然而，在其它实施例中，所述图形16可以为任意图案、字符或代码，特别还可以是数字的字符串，比如所述单票10的面额。当在反射光中观看所述透明安全元件，且观察者22与所述入射光20位于同一侧时，所述图形16产生明亮的金属般的且基本上无色的视觉印象。

相比之下，如果在透射光（观察位置24）中观看所述透明安全元件12，例如，当所述单票10被持于光源前面或朝上对着日光，那么向观察者24显现的图形16具有鲜明而鲜艳的色彩，并且该色彩随所述单票10的倾斜角度变化。例如，所述图形16在垂直观看时，具有鲜明的绿色，当所述单票被倾斜，所述图形16在倾斜透视时，变为鲜艳的蓝色。

当透过安全元件（其在反射光下显现无色的金属光泽）观看时，其鲜明而鲜艳的色彩印象与平常的观看习惯不同，进而受到高度注意并具有高的识别价值。当所述单票10被倾斜时，这一点通过色彩的变化进一步加强，特别是因为该色彩的变化由于色彩鲜艳而非常明显。

为了产生上述色彩效应，参见图2，所述透明安全元件12包括透明的塑料薄膜（foil）32，涂覆在所述塑料薄膜32上的对称的三层薄膜元件30，该薄膜元件具有干涉层结构，该干涉层结构的形状为所述期望的图形16。所述薄膜元件30包括第一层透明吸收层34，介质隔层36和第二层透明吸收层38。在一实施例中，第一层透明吸收层34由25nm厚的银层构成，介质隔层36由270nm厚的二氧化硒层构成，第二层透明吸收层38由另一
25nm 厚的银层构成。

【0042】本发明的所用层结构的区域性特征主要在于，两层半透明吸收层 34、38 采用了这样一种材料，该材料的复折射率 N = n + ik，其中 n 和虚部 k 至少在部分可见光谱范围内显著不同，即相差超过 5 倍。相比之下，在传统地用作薄膜元件的吸收层的材料中，比如铬、镍或钯，其复折射率的实部 n 和虚部 k 的值通常在同一数量级。

【0043】这种不同的特性展示在图 3 中，其中，复折射率 N 的实部 n 的曲线和虚部 k 的曲线分别显示为波长的函数，图 3(a) 为铬的复折射率，图 3(b) 为银的复折射率。从图 3(a) 中可知，对于铬，n(曲线 40，实线) 和 k(曲线 42，虚线) 的值在整个可见光谱范围内处于相同的数量级，且没有地方相差超过约 2.5 倍。相比之下，图 3(b) 中银的 n 和 k 的相应的曲线显示，在可见光谱范围内，银的虚部 k(曲线 46，虚线) 为实部 n(曲线 44，实线) 的约 10 ～ 30 倍。

【0044】发明人发现，当这些材料被用作干涉层元件的吸收层时，这种 n 和 k 的值的巨大差别惊喜地产生了透射的强烈色彩。同时，反射保持基本上无色，进而对观察者呈现非彩色。这种特征展示在图 4 中，其中分别显示了对称的吸收层 /介质层 /吸收层结构在垂直观看和倾斜观看时的透射谱。

【0045】图 4(a) 首先显示了，传统的对称的铬/介质/铬结构在垂直观看（曲线 50，实线）和倾斜观看（曲线 52，虚线）的透射。该结构中，介质层的层厚度优选为 300nm，铬层的层厚度优选为 80nm。在两种情况下，透射谱具有基本上平坦的曲线，这样，透射光几乎不具有色饱和度度，进而呈现为浅灰色。因此，基于铬/介质/铬薄膜元件的透明安全元件在视觉上是不明显的。

【0046】相比之下，对称的银/介质/银结构的透射谱在垂直观看（曲线 54，实线）和倾斜观看（曲线 56，虚线）时，清楚显示了明显的最大点 55 和 57，进而显示出透射光的强烈的色彩。该结构中，介质层的层厚度优选为 300nm，银层的厚度优选为 25nm。

【0047】在垂直观看时（曲线 54），最大点 55 约为 560nm，位于蓝色和绿色之间的界线处。如果观察者倾斜该透明安全元件，那么透射最大点向短波范围偏移。当以 60° 倾直观看时，最大点 57 位于约 450nm 和 500nm 之间，那里显示为鲜艳的蓝色。由于鲜艳的颜色和色调上的明显变化，观察者还可以看到明显而难忘的透明的色移效应。

【0048】透射的色彩可以通过确定透明的色彩的色度，在 CIELAB 色彩空间中更准确的描述。在 CIELAB 色彩空间中，每种颜色可以通过三个坐标 L*、a* 和 b* 来表示，可变的 L* 对应于明亮度，可以在 1-100 之间取值。a* 轴表示颜色的绿或红部分，a* 的负值表示绿色，正值表示红色。b* 轴表示颜色的蓝或黄部分，b* 的负值表示蓝色，正值表示黄色。a* 轴和 b* 轴的比例包括从 -150 到 +100 或者从 -100 到 +150 的一组数字，但是其中不是所有的组合都可以辨识的色彩。

【0049】色度用来说明一种色彩如何鲜明或明亮，其由以下公式定义：

\[C_{ab}^* = \sqrt{(a^*)^2 + (b^*)^2} \]

【0050】换句话说，其由色坐标 (a*, b*) 到原点 (0, 0) 的距离定义。色度越大，呈现的各个色彩越鲜明或明亮。对于色度为 0 的铬，其亮度决定其会呈现黑色、灰色或白色印象。

【0051】色彩的色相可以通过颜色角度来说明，该颜色角度由以下公式定义：
具有某色调的浅而鲜明的色彩具有相同的颜色角度和不同的色度。图 5 中计算出的彩色/介质/表面体系的色坐标 (y, x) 和本发明的色坐标 (y, x) 透射色坐标。介质层 (SiO	extsubscript{2}) 厚度在 d = 200nm (起点 62 或 72 处) 和 d = 400nm (终点 64 或 74 处) 的多个层厚度的色坐标分别由曲线 60, 70 表示。这里，透色光的颜色不仅由层体系决定，还由使用的光源决定。图 5 中的计算结果是基于欧洲常用的标准光源 D65，其色温为 6500k。

在图 5 的图中，根据前述关系，每个色坐标 (a*, b*) 的色度 C*ab 为从所述坐标系的原点 66 到所述色坐标的距离。图 5 可以直接证实，在所述介质层的所示层厚度范围内，本发明的色坐标 (a*, b*) 和透射色坐标的色度图 60 和传统的色坐标 (a*, b*) 透射色坐标 (y, x) 透射色坐标。介质层 (SiO	extsubscript{2}) 厚度在 d = 200nm (起点 62 或 72 处) 和 d = 400nm (终点 64 或 74 处) 的多个层厚度的色坐标分别由曲线 60, 70 表示。这里，透色光的颜色不仅由层体系决定，还由使用的光源决定。图 5 中的计算结果是基于欧洲常用的标准光源 D65，其色温为 6500k。

在图 5 的图中，根据前述关系，每个色坐标 (a*, b*) 的色度 C*ab 为从所述坐标系的原点 66 到所述色坐标的距离。图 5 可以直接证实，在所述介质层的所示层厚度范围内，本发明的色坐标 (a*, b*) 和透射色坐标的色度图 60 和传统的色坐标 (a*, b*) 透射色坐标 (y, x) 透射色坐标。介质层 (SiO	extsubscript{2}) 厚度在 d = 200nm (起点 62 或 72 处) 和 d = 400nm (终点 64 或 74 处) 的多个层厚度的色坐标分别由曲线 60, 70 表示。这里，透色光的颜色不仅由层体系决定，还由使用的光源决定。图 5 中的计算结果是基于欧洲常用的标准光源 D65，其色温为 6500k。

对于不同介质层的层厚度的合适选择，可能同时产生这样两种薄膜元件，一种在透射中显示强烈的色调和强烈的色移效应，一种在透射中显示强烈的色调但是在倾斜时很难改变它们的颜色。在后一种情况下，可以创建特别容易理解的透明安全元件，该透明安全元件在俯视外观（基本上无色的金属光泽）和透视（强烈饱和的色彩）之间显示出明显对照，但是当所述安全元件被倾斜时，它们的透明色彩实际上不变化。本发明的两种变型展示在图 6 中。其中显示了本发明的两个色坐标 (a*, b*) 的色度图 60 和传统的色坐标 (a*, b*) 透射色坐标 (y, x) 透射色坐标。介质层 (SiO	extsubscript{2}) 厚度在 d = 200nm (起点 62 或 72 处) 和 d = 400nm (终点 64 或 74 处) 的多个层厚度的色坐标分别由曲线 60, 70 表示。这里，透色光的颜色不仅由层体系决定，还由使用的光源决定。图 5 中的计算结果是基于欧洲常用的标准光源 D65，其色温为 6500k。
花图案相结合。

【0066】为此，具有期望的全息压花图案的透明的压花涂层 104 先被涂覆在透明的薄片基底 102 上。然后，在涂覆涂层之后，图未示，具有干涉层结构的薄膜元件（比如图 2 中所述类型的薄膜元件 30）被气相沉积在所述压花图案上。这样，可以将全息压花图案的光学可变效应和上述明显的透射色彩效应相结合。例如，所述薄膜元件可以在钞票的窗口中，以上凹或下凸的数字或者上凸或下凸的符号显示。

【0067】所述薄膜元件还可以用于制造具有光学可变彩色颜料的印刷油墨。这种印刷油墨显示在图 8 中。为了制造印刷油墨 110，首先，大面积薄膜元件施加在前述类型的支撑薄片上。所述薄膜元件被机械地从所述支撑薄片上剥离，如果需要，被剥离的薄片被研磨至颗粒尺寸。然后，产生的干涉层颗粒被加入印刷油墨 110 的粘结剂中，作为光学可变彩色颜料 112。这样，可以简单、经济地制造大量不同的具有在视觉上吸引人的颜色印象的颜料。
图 3a

图 3b

图 4a

图 4b