发明名称
新城疫病毒抗体检测阻断ELISA试剂盒

摘要
本发明公开了一种新城疫病毒抗体检测阻断ELISA试剂盒，本发明所述新城疫病毒抗体检测阻断ELISA试剂盒，包括：包被新城疫病毒灭活抗原的ELISA板，新城疫病毒阳性对照血清，阴性对照血清，辣根过氧化物酶标记的新城疫病毒NP蛋白单克隆抗体。所述新城疫病毒NP蛋白单克隆抗体的保藏编号为CCTCC No: C2016180的杂交瘤细胞株所分泌。本发明所述新城疫病毒抗体检测阻断ELISA试剂盒能够检测不同种属来源的疑似新城疫病毒感染的血清样品，区分MG7缺失苗免疫和野毒感染后的新城疫病毒感染，且与常见禽类病毒性病原阳性血清不存在交叉反应，检测敏感性和特异性高，重复性好，适用于高通量检测血清样品。
1. 一种新城疫病毒抗体检测阻断ELISA试剂盒，其特征在于，包括：包被新城疫病毒灭活抗原的ELISA板，新城疫病毒阳性对照血清，新城疫病毒阴性对照血清，辣根过氧化物酶标记的新城疫病毒NG蛋白单克隆抗体。

2. 按照权利要求1所述的新城疫病毒抗体检测阻断ELISA试剂盒，其特征在于，所述新城疫病毒NG蛋白单克隆抗体由保藏编号为：CCTCCN0；C2016180的杂交瘤细胞株所分泌。

3. 按照权利要求1所述的新城疫病毒抗体检测阻断ELISA试剂盒，其特征在于，所述新城疫病毒阳性对照血清为新城疫病毒灭活疫苗免疫鸡的血清；所述新城疫病毒阴性对照血清为SPF鸡血清。

4. 按照权利要求1所述的新城疫病毒抗体检测阻断ELISA试剂盒，其特征在于，还包括：血清稀释液、洗液、底物溶液和终止液；所述血清稀释液为含0.05％吐温和0.5％BSA的PBS溶液，所述PBS溶液的pH为7.4；所述洗液为PBST溶液；所述底物溶液为TMB底物溶液；所述终止液为2M H_2SO_4。

5. 按照权利要求1所述的新城疫病毒抗体检测阻断ELISA试剂盒，其特征在于，所述包被新城疫病毒灭活抗原的ELISA板的制备方法包括：制备新城疫病毒灭活抗原，然后用新城疫病毒灭活抗原包被ELISA板，即得。

6. 按照权利要求5所述的新城疫病毒抗体检测阻断ELISA试剂盒，其特征在于，所述包被的条件为：新城疫病毒灭活抗原的浓度为1ng/μL，100μL/孔，37℃孵育2h或者4℃过夜。

7. 按照权利要求5所述的新城疫病毒抗体检测阻断ELISA试剂盒，其特征在于，所述新城疫病毒灭活抗原的制备包括：新城疫病毒接种9-10日龄鸡胚，37℃孵育，弃掉24h内死去的鸡胚，收取孵育至72h的鸡胚尿囊液，离心，收集上清，用0-丙内酯4℃灭活过夜；将灭活后的病毒液离心，收集沉淀，即得。

8. 权利要求1至7任何一项所述的新城疫病毒抗体检测阻断ELISA试剂盒在检测新城疫病毒抗体中的应用。

9. 按照权利要求8所述的应用，其特征在于，包括以下步骤：将待检血清稀释，100μL/孔加入包被新城疫病毒灭活抗原的ELISA板；同时设置阴性、阳性对照孔，加入稀释的阴性对照血清，阳性对照血清，100μL/孔，37℃孵育1h；甩干ELISA板，用PBST洗涤3次，用吸水纸拍干；加入稀释的辣根过氧化物酶标记的新城疫病毒NG蛋白单克隆抗体，100μL/孔，37℃孵育30min；甩干ELISA板，用PBST洗涤3次，用吸水纸拍干；加入TMB底物溶液，100μL/孔，室温显色10min；加入终止液，100μL/孔；选择OD630nm读值，计算阻断率；

阻断率＝（阴性对照OD值-待检血清OD值）/阴性对照OD值×100％；

如果待检血清的阻断率≥30％，则判为阳性，如果待检血清的阻断率<30％，则判为阴性。

10. 按照权利要求9所述的应用，其特征在于：将待检血清用血清稀释液按体积比1:5稀释；

将阴性对照血清、阳性对照血清用血清稀释液按体积比1:2稀释；

将辣根过氧化物酶标记的新城疫病毒NG蛋白单克隆抗体用血清稀释液按体积比1:1000稀释。
说明书

新城疫病毒抗体检测阻断ELISA试剂盒

技术领域
[0001] 本发明涉及一种兽医学检测用试剂盒，尤其涉及一种用于新城疫病毒抗体检测阻断ELISA试剂盒，属于新城疫病毒抗体检测阻断ELISA试剂盒的制备领域。

背景技术
[0002] 新城疫(ND)是由新城疫病毒(NDV)引起禽类的一种高度接触性传染病，该病具有发病率高、死亡快和死亡率高等特点，给养禽业造成了巨大的经济损失，严重影响养禽业的发展。

[0003] NDV属于副粘病毒科腮腺炎病毒属，具有囊膜结构，基因组为单股负链不分节段的RNA病毒，由8种结构蛋白组成，分别为NP、P、M、F、HN和L蛋白。NP蛋白为核衣壳蛋白，氨基酸保守性较高，大部分NDV病毒在NP蛋白443-460位置都具有较高的保守B细胞表位；P蛋白是病毒RNA合成的必需因子；M、F和HN蛋白与病毒囊膜的形成相关；F蛋白（融合蛋白）和HN蛋白（血凝素神经氨酸酶蛋白）是病毒的主要免疫原性蛋白，可诱导机体产生中和抗体。F蛋白介导病毒与宿主细胞的膜融合，其蛋白裂解位点与病毒毒力有关。HN蛋白具有神经氨酸酶及促进融合等作用；此外，该蛋白还与病毒毒力相关。L蛋白为病毒最大的蛋白，它在NDV 6种结构蛋白中最为保守，具有RNA聚合酶、转录后修饰等生物学活性，可与NP和P蛋白共同构成病毒复制复合体，该复合体参与病毒基因组的转录和复制。

[0004] NDV只有一个血清型，但其包含两个Class，分别为Class I和Class II，疫苗接种是预防该病的主要措施，且两个Class毒株具有较好的交叉保护性。对免疫家禽群体进行新城疫病毒抗体检测是评价疫苗免疫效果、评估易感禽群抗该病毒感染风险的有效手段。

[0005] 现有研究资料表明，新城疫病毒不仅感染鸡、鸭、鹅，还可感染鸽子等家养珍禽或野鸟等禽类，因此利用ELISA方法的血清学流行病学调查对该病的检测与监测至关重要。目前针对新城疫病毒抗体检测的ELISA方法为间接ELISA，此法只能针对鸡或火鸡血清样品。因此，亟待开发一种新城疫病毒抗体检测阻断ELISA试剂盒，不仅实现检测血清的抗体阴阳性，还能消除血清样品种属来源的差异，检测方法更加简单、方便、快速及廉价。

发明内容
[0006] 本发明所要解决的技术问题是提供一种用于检测新城疫病毒抗体的阻断ELISA试剂盒，不仅能够检测血清的抗体阴阳性，还能消除血清样品种属来源的差异，具有特异性和敏感性高、重复性好，操作简便、快速等特点。

[0007] 为解决上述技术问题，本发明所采取的技术方案是：

[0008] 本发明首先公开了一种新城疫病毒抗体检测阻断ELISA试剂盒，包括：包被新城疫病毒灭活抗原的ELISA板，新城疫病毒阳性对照血清，新城疫病毒阴性对照血清，辣根过氧化物酶标记的新城疫病毒NP蛋白单克隆抗体；其中，所述新城疫病毒NP蛋白单克隆抗体是由保藏编号为：CCTCC NO：C2016180的杂交瘤细胞株所分泌。

[0009] 其中，所述新城疫病毒阳性对照血清为新城疫病毒灭活疫苗免疫后的鸡血清；优
选为新城疫病毒MG7株（保藏编号：CCTCC V201505）灭活疫苗免疫SPF鸡7天、14天和21天后的血清，或者NP18+F新城疫全病毒灭活疫苗免疫后的鸡血清，所得新城疫病毒阴性对照血清为SPF鸡血清。

【0010】本发明单克隆抗体通过以下方法制备得到：本发明利用新城疫病毒MG7株NP蛋白443-460aa位的缺失肽段（GETQFLDFMRAVANGME）为抗原，在其C端偶联KLI，序列为KLI-Cys-GETQFLDFMRAVANGME，合成该多肽后于弗氏完全佐剂乳化后免疫Balb/C小鼠，取小鼠的脾脏分离细胞和SPF/0骨髓瘤细胞进行融合，筛选和鉴定阳性细胞。本发明从多株单克隆细胞株中筛选出反应较强的单克隆细胞株，其分泌的单克隆抗体8F9H3的效价最高，特异性最强，亚型鉴定结果表明，单克隆抗体8F9H3为IgG2b亚类。

【0011】本发明将分泌所致新城疫病毒NP蛋白单克隆抗体8F9H3的细胞株提交专利认可的机构进行保藏，其微生物保藏编号为：CCTCC NO：C2016180。保藏单位：中国典型培养物保藏中心；保藏时间是2016年10月25日；保藏地址：中国武汉，武汉大学。

【0012】所述新城疫病毒抗体检测阻断ELISA试剂盒，还包括：血清稀释液、洗液、单组分的底物溶液和终止液。所述血清稀释液为含0.05%吐温（V/V）和0.5%BSA（牛血清白蛋白）（mg/mL）的PBS溶液，所述PBS溶液的pH为7.4；所述洗液为PBST溶液；所述底物溶液为TMB（3,3',5,5'-四甲基联苯胺）底物溶液；所述终止液为2M H2SO4。

【0013】所述被包被新城疫病毒灭活抗原的ELISA板的制备方法包括：制备新城疫病毒灭活抗原，然后用新城疫病毒灭活抗原包被ELISA板，即得。所述新城疫病毒灭活抗原的制备方法包括：将新城疫病毒培养9-10日龄鸡蛋，37℃孵育30-40小时，弃掉24小时内死亡的鸡胚，收取孵育至72h的鸡胚尿囊液，离心，收集上清，用β-丙内酯4℃灭活过夜；将灭活后的病毒液离心，收集沉淀，即得。

【0014】本发明对制备抗原的新城疫病毒没有特殊限制，任何来源的新城疫病毒毒株制备的新城疫病毒灭活抗原均适用于本发明。

【0015】所述新城疫病毒抗体检测阻断ELISA试剂盒能够应用于检测新城疫病毒抗体，包括以下步骤：将待检血清稀释100倍，100μL/孔加入包被新城疫病毒灭活抗原的ELISA板；同时设置阴性、阳性对照孔，加入稀释的阴性对照血清；阳性对照血清，100μL/孔；37℃孵育1h，甩干ELISA板；用PBS洗涤3次；用吸水纸纸润湿，加入稀释的辣根过氧化物酶标记的新城疫病毒NP蛋白单克隆抗体，100μL/孔；37℃暖育30min，甩干ELISA板，用PBST洗涤3次；用吸水纸纸润湿，加入TMB底物溶液，100μL/孔；室温显色10min，加入终止液，100μL/孔；选择OD50nm读值，计算阻断率。阻断率=（阴性对照OD值-待检血清OD值）/阴性对照OD值×100%；如果待检血清的阻断率≥30%，则判为阳性，如果待检血清的阻断率＜30%，则判为阴性。

【0016】本发明对新城疫病毒灭活抗原的包被浓度、阴性对照血清的稀释倍数、待检血清的稀释倍数、HRP标记的新城疫病毒NP蛋白单克隆抗体的稀释倍数，进行了优化。当两孔阴性对照OD50nm值至少一孔OD值大于1.0；两孔阳性对照孔至少一孔的阻断率大于50%时，最终确定反应条件：用新城疫灭活病毒包被ELISA板（100μL/孔），抗原浓度为100g/mL，37℃孵育2h或者4℃过夜；将待检血清用血清稀释液按照体积比1:5稀释；将阴性对照血清，阳性对照血清用血清稀释液按照体积比1:2稀释；将辣根过氧化物酶标记的新城疫病毒NP蛋白单克隆抗体用血清稀释液按照体积比1:1000稀释。
说明书

本发明将样品5倍稀释的OD值换算成反应阻断率，结果样品在5倍稀释度时，阻断率在30%时为阳性，血清分布范围最小。因此，本发明针对病毒抗体检测阻断ELISA试剂盒的阈值定为：样品在5倍稀释时阻断率≥30%，判为阳性；阻断率<30%时，判为阴性。

特异性与敏感性试验结果表明，利用本发明所述新城疫病毒抗体检测阻断ELISA试剂盒检测新城疫病毒抗体的敏感性为97.16%，特异性为100%。

交叉反应性试验结果表明，利用本发明所述新城疫病毒抗体检测阻断ELISA试剂盒检测呼肠孤病毒、羊肝炎病毒、细小病毒、禽类病毒、SPF鸡、小鸡、小猪、小兔、猴、小鼠和小鼠的抗体，结果只有新城疫病毒抗体阳性，表明本发明所述新城疫病毒抗体检测阻断ELISA试剂盒与常见禽类病毒性病无交叉反应。

重复性试验结果表明，利用本发明所述新城疫病毒抗体检测阻断ELISA试剂盒检测新城疫病毒抗体，具有良好的重复性。

符合性试验结果表明，利用本发明所述新城疫病毒抗体检测阻断ELISA试剂盒和爱德士检测新城疫抗体试剂盒分别检测新城疫病毒MG7株（NP蛋白443～460aa位置缺失18个氨基酸的a型和b型抗体）的抗体效价，结果显示MG7株免疫后14天和21天的血清抗体效价分别为1:80和1:160。爱德士试剂盒检测结果表明，MG7株免疫后14天和21天鸡血清为新城疫病毒抗体阳性，说明本发明所述新城疫病毒抗体检测阻断ELISA试剂盒能够区分MG7缺失苗免疫后和野毒感染后的新城疫病毒血清。

本发明技术方案与现有技术相比，具有以下有益效果：

1. 本发明利用HRP标记的新城疫病毒单克隆抗体（8F9H3）所建立的阻断ELISA试剂盒检测新城疫病毒抗体，能够检测新城疫病毒的血清样品，且能够区分MG7缺失苗免疫后和野毒感染后的新城疫病毒血清。

附图说明

图1为阴性、阳性对照图，N为阴性样品，P为阳性样品；图2为交叉反应性检测。

具体实施方式

下面结合具体实施例来进一步描述本发明，本发明的优点和特点将会随着描述而更为清楚。但是应理解，所述实施例仅是范例性的，不对本发明的范围构成任何限制。本领域技术人员应该理解的是，在不偏离本发明的精神和范围内可以对本发明技术方案的细节和形式进行修改或替换，但这些修改或替换均落入本发明的保护范围。
实施例1新城疫病毒抗体检测阻断ELISA试剂盒的制备

1. 新城疫病毒抗原的准备

待鸡胚孵化到9~10日龄，取-80℃保存的新城疫病毒（NDV/Chicken/Guangdong/2008/G7）（本发明实验室2008年从广东发病鸡群中分离鉴定），冰上融化后用PBS稀释，取0.1ml/枚接种鸡胚，37℃继续孵化24h后照胚，弃掉死去的鸡胚，37℃继续孵育至72h。收集鸡胚尿囊液，然后8000rpm高速离心10min，除去杂质蛋白，收集上清，用β-丙内酯（0.05%）4℃灭活过夜，灭活后的病毒35000rpm超速离心3h，弃上清，用PBS重悬沉淀，BCA方法进行蛋白浓度测定，纯化好的新城疫病毒于-80℃中保存备用。

2. 血清的制备

（1）新城疫病毒阳性鸡血清的制备：血清来源于MG7株（保藏编号：CCTCC V201505）（NP蛋白443~460aa位置缺失18个氨基酸）制备的灭活疫苗免疫SPF鸡7天、14天和21天后采集的血清；以及本发明实验室自制的NP18+F新城疫全病毒灭活疫苗免疫后的鸡血清。

（2）SPF鸡阴性血清的制备：阴性血清来源于北京梅里亚维通实验动物技术有限公司和山东昊泰实验动物繁育有限公司的SPF鸡血清。

3. 单克隆抗体的制备

抗原MG7株NP蛋白缺失肽段（GETQFLDFMRARAVANGMRE）位于MG7株NP蛋白443~460aa位置，在其C端耦联KLH，序列为KLH-Cys-GETQFLDFMRARAVANGMRE，多肽纯度85%以上，由上海吉尔生化有限公司合成，免疫程序是：100μg合成多肽按照1：1的比例与弗氏完全佐剂乳化后对Balb/C小鼠进行腹腔注射免疫，21天后相同剂量的多肽按照1：1的比例与弗氏不完全佐剂乳化进行第二次免疫，28天后（进行细胞融合前3天）用200μg多肽（不加佐剂）进行加强免疫，取其中一只小鼠的脾脏分离细胞，并和对数生长期的SP2/0骨髓瘤细胞进行融合实验，融合剂PEG4000，用HAT培养基制备的饲养细胞和融合后的细胞混合培养，7~10天后换成HAT培养基，每天观察细胞生长情况，待融合细胞长至细胞孔1/4时，细胞上清变黄时，进行抗体检测。然后根据有限稀释法进行三轮阳性细胞的筛选和鉴定（方法为间接ELISA，包被抗原为NP多肽），最后挑选反应性较强的单克隆细胞株进行扩大培养并建立细胞株，其分泌的单克隆抗体8F9H3的效价最高，特异性最强。

本发明将分泌新城疫病毒NP蛋白单克隆抗体8F9H3的细胞株提交中国典型培养物保藏中心进行保藏，其微生物保藏编号为CCTCC NO: C2016180。

利用鼠源单克隆抗体亚型鉴定试剂盒对本发明的单克隆抗体进行亚型鉴定，结果表明8F9H3单抗为Ig G2b亚类，按照抗体纯化试剂盒的步骤进行NP特异性单克隆抗体的纯化，并和HRP进行标记后用于该阻断ELISA方法的建立。HRP标记的单克隆抗体（8F9H3）效价和特异性检测结果见表1。

多肽被浓缩：NP-KLH多肽，NP 18个氨基酸原核表达蛋白；禽流感病毒NA多肽（RLRTQSEC-KLH）作为阴性对照，包被液是1μg/ml，100μl/孔，包被液PBS（pH7.4）。

单克隆抗体效价判定标准为最高稀释度的数值/空白对照孔的数值≥2.1所对应的抗体稀释度。+表示酶标仪读数超出检测范围。

表1 HRP标记的NP单克隆抗体（8F9H3）的效价和特异性鉴定结果
<table>
<thead>
<tr>
<th>Titer</th>
<th>Titer</th>
<th>Diluted from 1 mg/ml (from 1 mg/ml开始稀释)</th>
<th>Antibody Concentration (抗体浓度) (ng/ml)</th>
<th>8F9H13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Diluted from 1 mg/ml (从1 mg/ml开始稀释)</td>
<td>Antibody Concentration (抗体浓度) (ng/ml)</td>
<td>8F9H13</td>
</tr>
<tr>
<td>1</td>
<td>1:1,000</td>
<td>1,000.00</td>
<td>+</td>
<td>0.159</td>
</tr>
<tr>
<td>2</td>
<td>1:2,000</td>
<td>500.00</td>
<td>+</td>
<td>0.132</td>
</tr>
<tr>
<td>3</td>
<td>1:4,000</td>
<td>250.00</td>
<td>+</td>
<td>0.112</td>
</tr>
<tr>
<td>4</td>
<td>1:8,000</td>
<td>125.00</td>
<td>+</td>
<td>0.106</td>
</tr>
<tr>
<td>5</td>
<td>1:16,000</td>
<td>62.50</td>
<td>3.699</td>
<td>0.106</td>
</tr>
<tr>
<td>6</td>
<td>1:32,000</td>
<td>31.25</td>
<td>3.075</td>
<td>0.095</td>
</tr>
<tr>
<td>7</td>
<td>1:64,000</td>
<td>15.62</td>
<td>2.580</td>
<td>0.080</td>
</tr>
<tr>
<td>8</td>
<td>1:128,000</td>
<td>7.81</td>
<td>1.886</td>
<td>0.074</td>
</tr>
<tr>
<td>9</td>
<td>1:256,000</td>
<td>3.90</td>
<td>1.224</td>
<td>0.081</td>
</tr>
<tr>
<td>10</td>
<td>1:512,000</td>
<td>1.95</td>
<td>0.732</td>
<td>0.073</td>
</tr>
<tr>
<td>11</td>
<td>Blank</td>
<td>Blank</td>
<td>0.074</td>
<td>0.069</td>
</tr>
<tr>
<td>12</td>
<td>Blank</td>
<td>Blank</td>
<td>0.074</td>
<td>0.072</td>
</tr>
</tbody>
</table>

[0041] +: 表示超出读值范围。

[0042] 4. 反应条件的优化

[0043] 通过矩阵法确定新城疫病毒灭活抗原的包被浓度、阴阳性对照血清的稀释比、待检血清的稀释比和HPR标记的新城疫病毒蛋白NPR单克隆抗体的稀释比，当两孔阳性对照OD450值至少一孔OD值大于1.0；两孔阳性对照孔至少一孔的阻断率大于50%时，确定反应条件：用新城疫灭活病毒将包被ELISA板(100μL/孔)，抗原浓度为1ng/μL,37℃孵育2h或者4℃过夜；将待检血清用血清稀释液按照1:5稀释(100μL/孔)，阳性对照血清按照1:2稀释(100μL/孔),HPR标记的新城疫病毒单抗用血清稀释液按照1:1000稀释(100μL/孔)。

[0044] 阻断ELISA操作步骤：

[0045] 将待检血清按照1:5稀释，100μL/孔加入包被新城疫病毒灭活抗原的ELISA板，同时设置阴性、阳性对照，加入稀释1:2稀释的阴性对照血清，阳性对照血清，100μL/孔；37℃孵育1h；洗步ELISA板，用PBST洗涤3次，用吸水纸拍干，加入按照1:1000稀释的辣根过氧化物酶标记的新城疫病毒NPR蛋白单克隆抗体，100μL/孔，37℃孵育30min；洗步ELISA板，用PBST洗涤3次，用吸水纸拍干；加入TMB底物溶液，100μL/孔，室温显色10min；加入终止液，100μL/孔；选择OD450读值，计算阻断率。

[0046] 5. 阈值的确定

[0047] 经阻断ELISA检测的282份鸡新城疫病毒阳性血清与235份鸡新城疫病毒阴性血清，用已确定的反应条件和步骤进行检测，样品检测分布情况见图1。

[0048] 将样品5倍稀释的OD值按如下换算成反应阻断率：

[0049] 反应阻断率 = (阴性对照OD值−样品OD值)/阴性对照OD值

[0050] 将阴性样品的阻断率按区间分布制作柱状图，从图中可见样品在5倍稀释度，阻断率在30%时阴性血清分布交叉最小(图1)。因此新城疫病毒抗体检测阻断ELISA试剂盒的阈值定为：样品在5倍稀释时阻断率≥30%判为阳性，阻断率<30%时判为阴性。

[0051] 6. 特异性和敏感性确定

[0052] 根据样品在5倍稀释度阻断率的分布情况，阳性样品中阻断率大于30%的有276份阳性样品，见图1，利用公式：敏感性 = 阳性样品数/阳性样品总数×100%，则该方法的敏感性为276/282×100% = 97.16%。
断率小于30%的有235份，见图1和表2，利用公式：特异性 = 阴性样品数 / 阴性样品总数 × 100%，则该检测方法的特异性为235/235×100% = 100%。

【0053】 表2敏感性和特异性检测依据

<table>
<thead>
<tr>
<th>阈值范围</th>
<th><0.1</th>
<th>0.1-0.15</th>
<th>0.15-0.20</th>
<th>0.20-0.25</th>
<th>0.25-0.30</th>
<th>0.3-0.4</th>
<th>0.4-0.5</th>
<th>>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>15</td>
<td>34</td>
<td>225</td>
</tr>
<tr>
<td>N</td>
<td>146</td>
<td>58</td>
<td>22</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

【0055】 7、交叉反应性试验

【0056】 用呼肠孤病毒阴性血清、鸭肝炎病毒阳性血清、细小病毒阳性血清、坦布苏病毒阳性血清、禽白血病阳性血清、禽流感病毒阳性血清（H9和H5）、禽法氏囊病阳性血清、新城疫病毒阳性血清、小鹅瘟阳性血清和SPF鸡阴性血清检测已建立方法的交叉反应性，结果见图2，结果显示，只有新城疫病毒阳性血清的阻断率大于30%，说明该方法与常见禽类病毒性疾病原阳性血清不存在交叉反应。

【0057】 8、重复性试验

【0058】 随机抽取48份新城疫病毒阴性血清和42份新城疫病毒阳性血清，此90份血清进行重复性试验，每份血清重复3次，阻断率结果见表3，4，5。从结果中可以看出该检测方法具有良好的重复性。

【0059】 表3第一次重复性实验

<table>
<thead>
<tr>
<th>编号</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>阻断率</td>
<td>-1.88%</td>
<td>-1.85%</td>
<td>0.47%</td>
<td>3.67%</td>
<td>-1.38%</td>
<td>1.97%</td>
<td>3.17%</td>
<td>2.53%</td>
<td>1.67%</td>
<td>1.32%</td>
<td>2.38%</td>
<td>0.32%</td>
</tr>
<tr>
<td>阻断性</td>
<td>-</td>
</tr>
<tr>
<td>编号</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>阻断率</td>
<td>-0.59%</td>
<td>-1.32%</td>
<td>2.26%</td>
<td>2.82%</td>
<td>0.76%</td>
<td>3.58%</td>
<td>3.32%</td>
<td>4.17%</td>
<td>4.35%</td>
<td>1.41%</td>
<td>3.47%</td>
<td>-1.73%</td>
</tr>
<tr>
<td>阻断性</td>
<td>-</td>
</tr>
<tr>
<td>编号</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>阻断率</td>
<td>-0.79%</td>
<td>-1.67%</td>
<td>10.43%</td>
<td>9.69%</td>
<td>11.07%</td>
<td>10.48%</td>
<td>20.26%</td>
<td>14.54%</td>
<td>10.46%</td>
<td>14.24%</td>
<td>7.93%</td>
<td>3.41%</td>
</tr>
<tr>
<td>阻断性</td>
<td>-</td>
</tr>
<tr>
<td>编号</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>阻断率</td>
<td>7.84%</td>
<td>37.18%</td>
<td>18.83%</td>
<td>9.28%</td>
<td>20.50%</td>
<td>45.32%</td>
<td>14.10%</td>
<td>16.35%</td>
<td>70.57%</td>
<td>18.41%</td>
<td>7.34%</td>
<td>8.90%</td>
</tr>
</tbody>
</table>
[0061]

<table>
<thead>
<tr>
<th>编号</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>检出率</td>
<td>84.14%</td>
<td>89.09%</td>
<td>92.78%</td>
<td>91.16%</td>
<td>96.83%</td>
<td>95.31%</td>
<td>96.21%</td>
<td>96.33%</td>
<td>96.53%</td>
<td>98.13%</td>
<td>87.87%</td>
<td>92.22%</td>
</tr>
<tr>
<td>检查</td>
<td>+</td>
</tr>
<tr>
<td>编号</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>检出率</td>
<td>70.75%</td>
<td>83.14%</td>
<td>98.50%</td>
<td>96.33%</td>
<td>97.74%</td>
<td>96.80%</td>
<td>91.81%</td>
<td>97.36%</td>
<td>95.71%</td>
<td>96.80%</td>
<td>95.68%</td>
<td>93.51%</td>
</tr>
<tr>
<td>检查</td>
<td>+</td>
</tr>
<tr>
<td>编号</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>检出率</td>
<td>39.37%</td>
<td>63.76%</td>
<td>67.67%</td>
<td>63.64%</td>
<td>55.80%</td>
<td>78.80%</td>
<td>70.75%</td>
<td>41.17%</td>
<td>36.48%</td>
<td>98.06%</td>
<td>5.79%</td>
<td>0.00%</td>
</tr>
<tr>
<td>检查</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>编号</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>检出率</td>
<td>61.17%</td>
<td>63.60%</td>
<td>65.20%</td>
<td>42.03%</td>
<td>56.04%</td>
<td>49.75%</td>
<td>58.83%</td>
<td>35.36%</td>
<td>55.21%</td>
<td>98.06%</td>
<td>5.79%</td>
<td>0.00%</td>
</tr>
<tr>
<td>检查</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0063]

表4第二次重复性实验

[0065]

表5第三次重复性实验
9、符合性试验

用确定的阻断ELISA检测方法和爱德士检测新城疫抗体试剂盒（产品编号：5080.00）分别检测48份SPF鸡阴性血清，78份MG7株(NP蛋白443-460aa位置缺失18个氨基酸的优势B细胞表达) 疫苗免疫14天和21天的血清，30份NP18+F免疫鸡7天、14天和21天后血清，结果如表6，7，8所示。

表6 SPF鸡阴性血清符合性检测结果

<table>
<thead>
<tr>
<th>编号</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>阴断率</td>
<td>1.56%</td>
<td>4.15%</td>
<td>6.65%</td>
<td>8.95%</td>
<td>7.77%</td>
<td>12.81%</td>
<td>10.22%</td>
<td>11.37%</td>
<td>10.04%</td>
<td>13.28%</td>
<td>6.89%</td>
<td>4.59%</td>
</tr>
<tr>
<td>阳性判断</td>
<td>-</td>
</tr>
<tr>
<td>爱德士S/P值</td>
<td>-0.0221</td>
<td>-0.0683</td>
<td>0.0353</td>
<td>-0.1148</td>
<td>-0.1192</td>
<td>0.1325</td>
<td>-0.1148</td>
<td>-0.0353</td>
<td>-0.1104</td>
<td>-0.128</td>
<td>-0.0751</td>
<td>-0.0397</td>
</tr>
</tbody>
</table>

表7 MG7株疫苗免疫SPF鸡14天和21天后鸡血清符合性检测结果

<table>
<thead>
<tr>
<th>编号</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>阴断率</td>
<td>5.01%</td>
<td>8.39%</td>
<td>8.86%</td>
<td>9.78%</td>
<td>11.66%</td>
<td>12.63%</td>
<td>11.90%</td>
<td>8.69%</td>
<td>14.02%</td>
<td>12.46%</td>
<td>1.35%</td>
<td>5.36%</td>
</tr>
<tr>
<td>阳性判断</td>
<td>-</td>
</tr>
<tr>
<td>爱德士S/P值</td>
<td>-0.1325</td>
<td>-0.0971</td>
<td>-0.1325</td>
<td>-0.1192</td>
<td>-0.0927</td>
<td>-0.1325</td>
<td>-0.0883</td>
<td>-0.0927</td>
<td>-0.0618</td>
<td>-0.0706</td>
<td>-0.0397</td>
<td>0.0442</td>
</tr>
<tr>
<td>阳性判断</td>
<td>-</td>
</tr>
<tr>
<td>等号</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>阴断率</td>
<td>3.74%</td>
<td>1.83%</td>
<td>6.60%</td>
<td>12.75%</td>
<td>14.25%</td>
<td>13.87%</td>
<td>15.58%</td>
<td>13.04%</td>
<td>8.33%</td>
<td>11.57%</td>
<td>12.51%</td>
<td>9.66%</td>
</tr>
<tr>
<td>阳性判断</td>
<td>-</td>
</tr>
<tr>
<td>爱德士S/P值</td>
<td>-0.1236</td>
<td>-0.1236</td>
<td>-0.0574</td>
<td>-0.1369</td>
<td>-0.1236</td>
<td>-0.1325</td>
<td>-0.1545</td>
<td>-0.1325</td>
<td>0.0309</td>
<td>-0.0971</td>
<td>-0.0927</td>
<td>0.053</td>
</tr>
<tr>
<td>阳性判断</td>
<td>-</td>
</tr>
<tr>
<td>等号</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>阴断率</td>
<td>2.00%</td>
<td>1.27%</td>
<td>11.60%</td>
<td>13.02%</td>
<td>15.99%</td>
<td>16.05%</td>
<td>15.87%</td>
<td>6.33%</td>
<td>13.07%</td>
<td>13.37%</td>
<td>14.61%</td>
<td>0.77%</td>
</tr>
<tr>
<td>阳性判断</td>
<td>-</td>
</tr>
<tr>
<td>爱德士S/P值</td>
<td>-0.0927</td>
<td>-0.1325</td>
<td>-0.0883</td>
<td>-0.1148</td>
<td>-0.1236</td>
<td>-0.0486</td>
<td>-0.1236</td>
<td>-0.128</td>
<td>-0.1148</td>
<td>-0.0839</td>
<td>-0.0353</td>
<td>-0.0088</td>
</tr>
<tr>
<td>阳性判断</td>
<td>-</td>
</tr>
</tbody>
</table>
[0072]

<table>
<thead>
<tr>
<th>編號</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>隨機率</td>
<td>-17.29%</td>
<td>12.09%</td>
<td>1.07%</td>
<td>2.89%</td>
<td>5.78%</td>
<td>-4.99%</td>
<td>-14.16%</td>
<td>-2.68%</td>
<td>5.90%</td>
<td>-15.93%</td>
<td>-14.11%</td>
<td>10.44%</td>
</tr>
<tr>
<td>隨機性判斷</td>
<td>-</td>
</tr>
<tr>
<td>愛德氏S/P值</td>
<td>0.2062</td>
<td>0.2848</td>
<td>0.2095</td>
<td>0.5466</td>
<td>0.3077</td>
<td>0.6939</td>
<td>0.2291</td>
<td>0.3699</td>
<td>0.4223</td>
<td>0.3404</td>
<td>0.3928</td>
<td>1.5155</td>
</tr>
<tr>
<td>隨機性判斷</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>編號</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>隨機率</td>
<td>-9.12%</td>
<td>-1.82%</td>
<td>5.04%</td>
<td>15.77%</td>
<td>6.27%</td>
<td>-3.51%</td>
<td>-10.65%</td>
<td>-6.89%</td>
<td>16.55%</td>
<td>-13.00%</td>
<td>-8.30%</td>
<td>-11.27%</td>
</tr>
<tr>
<td>隨機性判斷</td>
<td>-</td>
</tr>
<tr>
<td>愛德氏S/P值</td>
<td>0.3339</td>
<td>0.3535</td>
<td>0.8085</td>
<td>1.1414</td>
<td>0.946</td>
<td>0.275</td>
<td>0.2848</td>
<td>1.6825</td>
<td>0.8151</td>
<td>0.9656</td>
<td>1.2962</td>
<td>0.9329</td>
</tr>
<tr>
<td>隨機性判斷</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>編號</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>隨機率</td>
<td>22.53%</td>
<td>12.55%</td>
<td>5.78%</td>
<td>14.86%</td>
<td>11.68%</td>
<td>2.85%</td>
<td>14.24%</td>
<td>13.58%</td>
<td>0.58%</td>
<td>-14.44%</td>
<td>-4.83%</td>
<td>11.23%</td>
</tr>
<tr>
<td>隨機性判斷</td>
<td>-</td>
</tr>
<tr>
<td>愛德氏S/P值</td>
<td>1.1293</td>
<td>0.1899</td>
<td>1.1064</td>
<td>0.311</td>
<td>0.4812</td>
<td>0.3863</td>
<td>1.0245</td>
<td>0.7954</td>
<td>0.2029</td>
<td>0.1931</td>
<td>0.5401</td>
<td>0.2488</td>
</tr>
<tr>
<td>隨機性判斷</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>編號</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>隨機率</td>
<td>6.60%</td>
<td>2.77%</td>
<td>4.42%</td>
<td>1.49%</td>
<td>7.02%</td>
<td>1.03%</td>
<td>-4.70%</td>
<td>-3.84%</td>
<td>13.95%</td>
<td>-4.17%</td>
<td>7.76%</td>
<td>28.97%</td>
</tr>
<tr>
<td>隨機性判斷</td>
<td>-</td>
</tr>
<tr>
<td>愛德氏S/P值</td>
<td>0.5303</td>
<td>0.4026</td>
<td>0.2848</td>
<td>0.3928</td>
<td>0.5969</td>
<td>0.3568</td>
<td>0.5827</td>
<td>0.2717</td>
<td>0.3502</td>
<td>0.1997</td>
<td>0.5237</td>
<td>0.9624</td>
</tr>
<tr>
<td>隨機性判斷</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>編號</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>隨機率</td>
<td>6.27%</td>
<td>22.04%</td>
<td>21.96%</td>
<td>7.06%</td>
<td>32.32%</td>
<td>11.64%</td>
<td>-0.25%</td>
<td>19.03%</td>
<td>-13.78%</td>
<td>7.97%</td>
<td>-4.46%</td>
<td>15.39%</td>
</tr>
<tr>
<td>隨機性判斷</td>
<td>-</td>
</tr>
</tbody>
</table>

[0073]

愛德氏S/P值	1.0016	0.7527	0.2553	0.874	1.6465	0.2684	0.671	0.5237	0.2946	0.5794	0.3372	0.6285
隨機性判斷	+	+	-	+	+	+	+	+	+	+	+	+
編號	61	62	63	64	65	66	67	68	69	70	71	72
隨機率	20.80%	25.92%	20.22%	-5.57%	-0.08%	11.23%	-10.94%	4.79%	13.17%	10.85%	2.19%	20.55%
隨機性判斷	-	-	-	-	-	-	-	-	-	-	-	-
愛德氏S/P值	0.7692	1.2897	0.8609	0.8543	0.3961	0.6448	0.347	0.4779	0.2259	0.1571	0.491	0.3797
隨機性判斷	-	-	-	-	-	-	-	-	-	-	-	-
編號	73	74	75	76	77	78						
隨機率	18.04%	10.94%	13.17%	-0.87%	7.18%	3.96%						
隨機性判斷	-	-	-	-	-	-						
愛德氏S/P值	0.2881	0.6547	0.2717	0.1997	0.3273	0.4714						
隨機性判斷	-	-	-	-	-	-						

[0074]
表8 NP18+F疫苗免疫后7天、14天和21天的血清符合性检测结果

[0075]

<table>
<thead>
<tr>
<th>編號</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>隨機率</td>
<td>36.51%</td>
<td>21.94%</td>
<td>74.12%</td>
<td>28.36%</td>
<td>31.50%</td>
<td>26.80%</td>
<td>18.46%</td>
<td>41.43%</td>
<td>29.00%</td>
<td>22.23%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>隨機性判斷</td>
<td>-</td>
</tr>
<tr>
<td>愛德氏S/P值</td>
<td>-0.0000</td>
<td>-0.106</td>
<td>-0.0839</td>
<td>-0.0637</td>
<td>-0.0736</td>
<td>-0.0809</td>
<td>-0.1286</td>
<td>-0.1023</td>
<td>-0.0807</td>
<td>0.0177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>隨機性判斷</td>
<td>-</td>
</tr>
<tr>
<td>編號</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>隨機率</td>
<td>82.54%</td>
<td>67.28%</td>
<td>50.38%</td>
<td>76.44%</td>
<td>81.01%</td>
<td>59.81%</td>
<td>79.58%</td>
<td>87.16%</td>
<td>70.26%</td>
<td>47.38%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
爱德士试剂盒检测结果表明，MG7株免疫后14天和21天鸡血清为新城疫病毒抗体阳性，本发明建立的阻断ELISA检测方法结果显示MG7株免疫后14天和21天鸡血清为新城疫病毒抗体阴性，因此，可区分MG7缺失苗免疫后和野毒感染后的新城疫病毒血清。

爱德士试剂盒检测NP18+F免疫7天后的鸡血清结果为阴性，本发明建立的阻断ELISA检测方法能够检测7天后的鸡血清，部分血清为新城疫病毒抗体阳性。通过和HI实验结果相比较，免疫后一周的鸡血清能够产生红细胞凝集抑制反应。说明本发明建立的阻断ELISA方法比商品化的爱德士检测方法有更高的敏感性。

实施例2新城疫病毒抗体检测阻断ELISA试剂盒的组装

新城疫病毒抗体检测阻断ELISA试剂盒，包括：辣根过氧化物酶标记的新城疫病毒NP蛋白单克隆抗体、包被新城疫病毒灭活抗原的ELISA板、新城疫病毒阴性对照血清、新城疫病毒阳性对照血清、血清稀释液、洗液、底物溶液和终止液。

辣根过氧化物酶标记的新城疫病毒NP蛋白单克隆抗体：由保藏编号为CCTCC NO：C2016180的细胞株分泌，然后经纯化制得。

包被新城疫病毒灭活抗原的ELISA板：将新城疫病毒灭活抗原的浓度稀释为1ng/μL，100μL/孔包被ELISA板，37℃孵育2h或者4℃过夜。

阳性对照血清：新城疫病毒灭活疫苗免疫后的鸡血清，可以为新城疫病毒MG7株灭活疫苗免疫SPF鸡7天、14天和21天后的血清，或NP18+F新城疫全病毒灭活疫苗免疫后的鸡血清。

阴性对照血清：SPF鸡血清。

血清稀释液：含0.05%（V/V）吐温和0.5%BSA（mg/ml）的PBS（pH7.4）溶液。

洗液：PBS-T溶液；

底物溶液：TMB底物溶液；

终止液：2M H₂SO₄。