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Description

FIELD OF THE INVENTION

[0001] The invention relates to the field of computer programs and systems, andmore specifically to amethod, system
and program for designing a 3D modeled object via user-interaction.

BACKGROUND

[0002] A number of systems and programs are offered on the market for the design, the engineering and the
manufacturing of objects. CAD is an acronym for Computer-Aided Design, e.g. it relates to software solutions for
designing an object. CAE is an acronym for Computer-Aided Engineering, e.g. it relates to software solutions for
simulating the physical behavior of a future product. CAM is an acronym for Computer-Aided Manufacturing, e.g. it
relates to software solutions for defining manufacturing processes and operations. In such computer-aided design
systems, the graphical user interface plays an important role as regards the efficiency of the technique. These techniques
may be embedded within Product Lifecycle Management (PLM) systems. PLM refers to a business strategy that helps
companies to share product data, apply common processes, and leverage corporate knowledge for the development of
products fromconception to theendof their life, across the concept of extendedenterprise. ThePLMsolutionsprovidedby
Dassault Systèmes (under the trademarks CATIA, ENOVIA and DELMIA) provide an Engineering Hub, which organizes
product engineering knowledge, a Manufacturing Hub, which manages manufacturing engineering knowledge, and an
EnterpriseHubwhichenablesenterprise integrationsandconnections intoboth theEngineeringandManufacturingHubs.
All together the system delivers an open object model linking products, processes, resources to enable dynamic,
knowledge-based product creation and decision support that drives optimized product definition, manufacturing pre-
paration, production and service.
[0003] In this context and other contexts, machine-learning and in particular autoencoder and/or manifold learning is
gaining wide importance.
[0004] The following papers relate to this field and are referred to hereunder:

[1]: "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising
Criterion", P. Vincent, H. Larcohelle, I. Lajoie, Y. Bengio, P. Manzagol, in The Journal of Machine Learning Research,
2010.
[2]: "Reducing the Dimensionality of Data with Neural Networks", G.E. Hinton, R.R. Salakhutdinov, in Science, 2006.
[3]: "Learning Deep Architectures for Al", Y. Bengio, in Foundations and Trends in Machine Learning, 2009.
[4]: "Generative Adversarial Nets", I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, Y. Bengio, in Advances in Neural Information Processing Systems, 2014.
[5]: "Generative Visual Manipulation on the Natural Image Manifold", J-Y Zhu, P. Krähenbühl, E. Shechtman, A. A.
Efros, in ECCV 2016.
[6]: "Neural Photo Editing with Introspective Adversarial Networks", A. Brock, T. Lim, J.M. Ritchie, in ICLR 2017.

[0005] Given a dataset representing samples froma same class, for example a dataset of images of chairs, or a dataset
of 3Dmodels of cars, autoencoders (explained in [1,2]) aims at learning amapping between the original input space of this
dataset and a low-dimensional space, often called latent space. Moreover, autoencoders also learn a reverse mapping
from the latent space to the original input space. They may be used to do realistic non-linear interpolation in the original
spaces, extract meaningful features in the data, compress the data into a compact representation, etc.
[0006] Paper [4] introduces a generative adversarial network, a model which learns a decoder, but also sets a
probabilistic prior on the latent space to learn the distribution of the data. To do so, they train the decoder in order to
fool a discriminator, whereas the discriminator is trained to classify between real data and synthetized data. One can also
learn an encoder to project the data onto the latent space, using a reconstruction error like autoencoders.
[0007] Paper [5] learns a generative adversarial network on images. The modifications are finally retargeted onto the
original image with optical flow. Paper [6] also proposes an edition system onto images, by learning an introspective
adversarial network, an hybridization between a variational autoencoder and a generative adversarial network, but they
retarget the user modifications with masking techniques instead of optical flow.
[0008] However, the use of machine-learning techniques in the context of (e.g. 3D) design remains an uncommon and
relatively unknown approach.
[0009] Also known is EP3396603A1, which discloses a computer-implemented method for learning an autoencoder.
The method comprises providing a dataset of images. Each image includes a respective object representation. The
method also comprises learning the autoencoder based on the dataset. The learning includes minimization of a
reconstruction loss. The reconstruction loss includes a term that penalizes a distance for each respective image. The
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penalized distance is between the result of applying the autoencoder to the respective image and the set of results of
applying at least part of a group of transformations to the object representation of the respective image.
[0010] Also known is Q. Tan et. al. "Variational Autoencoders for Deforming 3D Mesh Models", 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. This document discloses a framework called mesh variational
autoencoders (mesh VAE), to explore the probabilistic latent space of 3D surfaces.
[0011] Also known isE.Yumeret. al. "LearningSemanticDeformationFlowswith3DConvolutionalNetworks",Springer
InternationalPublishingAG2016,B.Leibeetal. (Eds.):ECCV2016,PartVI, LNCS9910,pp. 294‑311,2016,DOI: 10.1007
/978‑3‑319‑46466‑4_18. This document discloses an end-to-end solution to the process of shape deformation using a
volumetric Convolutional Neural Network (CNN) that learns deformation flows in 3D. The network architectures take the
voxelized representation of the shape and a semantic deformation intention as input and generate a deformation flow at
the output.
[0012] Also known is J. Liu et. al. "Interactive 3DModelingwith aGenerativeAdversarial Network", arXiv:1706.05170v1
16 Jun 2017. This document discloses the idea of using a generative adversarial network (GAN) to assist a novice user in
designing real-world shapes with a simple interface. The user edits a voxel grid with a painting interface (like Mine craft).
Yet, at any time, he/she can execute a SNAPcommand, which projects the current voxel grid onto a latent shapemanifold
with a learned projection operator and then generates a similar, but more realistic, shape using a learned generator
network. Then the user can edit the resulting shape and snap again until he/ she is satisfied with the result.
[0013] Also known is Q. Tan et. al. "Mesh-based Autoencoders for Localized Deformation Component Analysis",
arXiv:1709.04304v113 Sep 2017. This document discloses a mesh-based autoencoder architecture that is able to cope
withmesheswith irregular topology. Sparse regularization is introduced in this framework, which alongwith convolutional
operations, helps localize deformations.
[0014] Also known is J-Y. Zhu et. al., "Generative Visual Manipulation on the Natural Image Manifold", ar-
Xiv:1609.03552V3 16 Dec 2018. This document discloses the learning of the natural image manifold directly from data
using a generative adversarial neural network. Then a class of image editing operations is defined, and their output is
constrained to lie on that learned manifold at all times. The model automatically adjusts the output keeping all edits as
realistic as possible. All themanipulations are expressed in terms of constrained optimization and are applied in near-real
time.
[0015] Within this context, there is still a need for an improved method for designing a 3D modeled object via user-
interaction.

SUMMARY OF THE INVENTION

[0016] It is therefore provided a computer-implemented method according to appended claim 1.
[0017] Such a method constitutes an improved method for designing a 3D modeled object via user-interaction.
[0018] Notably, themethodmakes use of amachine-learnt decoder in the context of designing a 3Dmodeled object via
user-interaction.
[0019] Furthermore, the user defines a deformation constraint for a part of the 3D modeled object. In other words, the
user provides a design intent of which purpose is to deform the 3D modeled object. The method then determines the
optimal latent vector, which is a vector minimizing an energy that penalizes non-respect of the deformation constraint on
the latent vector space. In other words, the determined optimal latent vector is a vector of the latent space tending to
respect the deformation constraint. In examples, the optimal latent vector respects (e.g. optimally) the deformation
constraint. The optimal latent vector is then decoded into an element of the 3Dmodeled object space. In other words, the
method finds a 3D modeled object which tends to respect (e.g. respects, e.g. optimally) the deformation constraint
provided by the user. Hence, the method allows to find a 3D modeled object which tends to respect (e.g. respects) the
user’s design intent.
[0020] Moreover, the determining of the optimal latent vector and the applying of the decoder to the optimal latent vector
may be carried out automatically, thus without involving user actions, as a result of the providing of the deformation
constraint by the user. Thus, not only does the method output a 3D modeled object tending to respect the user’s design
intent, but the method does so with few user-machine interactions. The method is thus efficient and ergonomic.
[0021] Also, the decodermay output only plausible 3Dmodeled objects because the decodermay have beenmachine-
learnt todoso.Forexample, the3Dmodeledobject spacemaybeaspaceofplausible3Dmodeledobjects. Inotherwords,
the method may output a plausible 3D modeled object tending to respect the user’s design intent in an ergonomic and
efficient way.
[0022] The method may comprise one or more of the features recited in the appended claims which depend on
appended claim 1.
[0023] It is further provided a computer program comprising instructions for performing the method.
[0024] It is further provided a computer readable storage medium having recorded thereon the computer program.
[0025] It is further provided a system comprising a processor coupled to a memory and a graphical user interface, the
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memory having recorded thereon the computer program.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] Embodiments of the invention will now be described, by way of non-limiting example, and in reference to the
accompanying drawings, where:

- FIG. 1 shows a flowchart of an example of the method;
- FIG.s 2 to 13 illustrate the method;
- FIG. 14 shows an example of a graphical user interface of the system; and
- FIG. 15 shows an example of the system.

DETAILED DESCRIPTION OF THE INVENTION

[0027] With reference to the flowchart of FIG. 1, it is proposed a computer-implemented method for designing a 3D
modeled object via user-interaction. The method comprises providing S10 the 3D modeled object and a machine-learnt
decoder. Themachine-learnt decoder is a differentiable function taking values in a latent space and outputting values in a
3Dmodeled object space. Themethod further comprises definingS30, by a user, a deformation constraint for a part of the
3D modeled object. The method further comprises determining S40 an optimal vector. The optimal vector minimizes an
energy. Theenergyexplores latent vectors. Theenergy comprisesa termwhichpenalizes, for eachexplored latent vector,
non-respect of the deformation constraint by the result of applying the decoder to the explored latent vector. The method
further comprises applying S50 the decoder to the optimal latent vector.
[0028] The method is computer-implemented. This means that steps (or substantially all the steps) of the method are
executedbyat least onecomputer, or any systemalike.Thus, stepsof themethodareperformedby thecomputer, possibly
fully automatically, or, semi-automatically. In examples, the triggering of at least some of the steps of the method may be
performed through user-computer interaction. The level of user-computer interaction requiredmay depend on the level of
automatism foreseen and put in balance with the need to implement user’s wishes. In examples, this level may be user-
defined and/or pre-defined.
[0029] A typical example of computer-implementation of a method is to perform the method with a system adapted for
this purpose. The system may comprise a processor coupled to a memory and a graphical user interface (GUI), the
memory having recorded thereon a computer program comprising instructions for performing the method. The memory
may also store a database. Thememory is any hardware adapted for such storage, possibly comprising several physical
distinct parts (e.g. one for the program, and possibly one for the database).
[0030] Themethodgenerallymanipulatesmodeledobjects.Amodeledobject is anyobject definedbydata storede.g. in
the database. By extension, the expression "modeled object" designates the data itself. According to the type of the
system, the modeled objects may be defined by different kinds of data. The system may indeed be any combination of a
CAD system, a CAE system, a CAM system, a PDM system and/or a PLM system. In those different systems, modeled
objects are defined by corresponding data. One may accordingly speak of CAD object, PLM object, PDM object, CAE
object, CAMobject, CADdata, PLMdata, PDMdata, CAMdata,CAEdata. However, these systemsare not exclusive one
of the other, as a modeled object may be defined by data corresponding to any combination of these systems. A system
may thus well be both a CAD and PLM system, as will be apparent from the definitions of such systems provided below.
[0031] ByCAD system, it is additionally meant any system adapted at least for designing amodeled object on the basis
of a graphical representation of the modeled object, such as CATIA. In this case, the data defining a modeled object
comprisedataallowing the representationof themodeledobject.ACADsystemmay for exampleprovidea representation
of CAD modeled objects using edges or lines, in certain cases with faces or surfaces. Lines, edges, or surfaces may be
represented in variousmanners, e.g. non-uniform rational B-splines (NURBS). Specifically, aCAD file contains specifica-
tions, fromwhichgeometrymaybegenerated,which in turnallows for a representation tobegenerated.Specificationsof a
modeled objectmay be stored in a single CAD file ormultiple ones. The typical size of a file representing amodeled object
in aCADsystem is in the rangeofoneMegabyteper part.Andamodeledobjectmay typically beanassemblyof thousands
of parts.
[0032] The concept of "3D modeled object" involved in the method is now discussed.
[0033] In the context of CAD, amodeled object may typically be a 3Dmodeled object, e.g. representing a product such
asapart or anassembly of parts, or possibly anassembly of products. By "3Dmodeledobject", it ismeant anyobjectwhich
is modeled by data allowing its 3D representation. A 3D representation allows the viewing of the part from all angles. For
example, a 3D modeled object, when 3D represented, may be handled and turned around any of its axes, or around any
axis in thescreenonwhich the representation isdisplayed.Thisnotablyexcludes2D icons,whicharenot 3Dmodeled.The
display of a 3D representation facilitates design (i.e. increases the speed at which designers statistically accomplish their
task). This speeds up themanufacturing process in the industry, as the design of the products is part of themanufacturing
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process.
[0034] In the context of themethod, the 3Dmodeledobjectmay represent the geometry of a product to bemanufactured
in the realworld subsequent to thecompletionof its virtual designwith for exampleaCADsoftwaresolutionorCADsystem,
such as a (e.g. mechanical) part or assembly of parts (or equivalently an assembly of parts, as the assembly of parts may
be seenas apart itself from thepoint of viewof themethod, or themethodmaybeapplied independently to eachpart of the
assembly), or more generally any rigid body assembly (e.g. a mobile mechanism). A CAD software solution allows the
design of products in various and unlimited industrial fields, including: aerospace, architecture, construction, consumer
goods, high-tech devices, industrial equipment, transportation, marine, and/or offshore oil/gas production or transporta-
tion. The 3D modeled object designed by the method may thus represent an industrial product which may be any
mechanical part, such as a part of a terrestrial vehicle (including e.g. car and light truck equipment, racing cars,
motorcycles, truck and motor equipment, trucks and buses, trains), a part of an aerial vehicle (including e.g. airframe
equipment, aerospace equipment, propulsion equipment, defense products, airline equipment, space equipment), a part
of a naval vehicle (including e.g. navy equipment, commercial ships, offshore equipment, yachts and workboats, marine
equipment), a general mechanical part (including e.g. industrial manufacturing machinery, heavy mobile machinery or
equipment, installed equipment, industrial equipment product, fabricated metal product, tire manufacturing product), an
electro-mechanical or electronic part (including e.g. consumer electronics, security and/or control and/or instrumentation
products, computing and communication equipment, semiconductors, medical devices and equipment), a consumer
good (including e.g. furniture, homeand garden products, leisure goods, fashion products, hard goods retailers’ products,
soft goods retailers’ products), a packaging (including e.g. food and beverage and tobacco, beauty and personal care,
household product packaging).
[0035] In examples, any 3D modeled object designed by the method and/or involved in the method may represent a
mechanical part which is one or a plausible combination of a molded part (i.e. a part manufactured by a molding
manufacturing process), a machined part (i.e. a part manufactured by a machining manufacturing process), a drilled part
(i.e. a part manufactured by a drilling manufacturing process), a turned part (i.e. a part manufactured by a turning
manufacturing process), a forgedpart (i.e.apartmanufacturedbya forgingmanufacturing process), a stampedpart (i.e.a
part manufactured by a stamping manufacturing process) and/or a folded part (i.e. a part manufactured by a folding
manufacturing process).
[0036] Any 3Dmodeled object designed by themethod and/or involved in themethodmay be a plausible (e.g. realistic)
3D modeled object. A plausible 3D modeled object may designate a 3D modeled object representing a plausible (e.g.
realistic) mechanical part. A plausible mechanical part may designate a mechanical part realistically manufacturable in a
real-world industrialmanufacturing process. A plausiblemechanical partmay refer to amechanical part which respects all
the constraints that must be respected in order to realistically manufacture the mechanical part in a real-world industrial
manufacturing process. The constraints may comprise one or any plausible combination of the following: mechanical
constraints (e.g. constraints resulting from the laws of classic mechanics), functional constraints (e.g. constraints relative
to one or more mechanical functions to be performed by the mechanical part once manufactured), manufacturing
constraints (e.g. constraints pertaining to the ability of applying one or more manufacturing tools to the mechanical part
during one or more manufacturing processes for manufacturing the mechanical part), structural constraints (e.g.
constraints pertaining to the strength and/or resistance of the mechanical part) and/or assembly constraints (e.g.
constraints defining how the mechanical part can be assembled with one or more other mechanical parts).
[0037] "Designing a 3Dmodeled object" designates any action or series of actions which is at least part of a process of
elaborating a 3D modeled object. Thus, the method may comprise creating the 3D modeled object from scratch.
Alternatively, the method may comprise providing a 3D modeled object previously created, and then modifying the 3D
modeled object.
[0038] The method may be included in a manufacturing process, which may comprise, after performing the method,
producing a physical product corresponding to the modeled object. In any case, the modeled object designed by the
methodmay representamanufacturingobject.Themodeledobjectmay thusbeamodeledsolid (i.e. amodeledobject that
represents a solid). The manufacturing object may be a product, such as a part, or an assembly of parts. Because the
method improves the design of the modeled object, the method also improves the manufacturing of a product and thus
increases productivity of the manufacturing process.
[0039] The providing S10 of the 3D modeled object is now discussed.
[0040] The providing of the 3D modeled object may comprise displaying the 3D modeled object on a display of a
computer such as a CAD system. The providing of the 3D modeled object may result from an action of a user, e.g. an
interactionbetween theuser and the computer. In examples, the3Dmodeledobjectmayhavebeendesignedbyaanother
user on another computer and optionally stored in a memory and/or sent (e.g. through a network) to the computer. The
providing of the 3Dmodeled object may comprise retrieving the 3Dmodeled object from amemory. In examples, the user
and the another user are different, and the computer and the another computer are different. In these examples, the
computer and the another computer may be connected by a network. In examples, the user and the another user are the
same, and the computer and the another computer are the same.
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[0041] The 3Dmodeled object may be provided S10 as amesh or as a point cloud. Alternatively, the providing S10may
comprise providing the 3D modeled object in any format (e.g. as a CAD file) and meshing the 3D modeled object and/or
determining (e.g. inferring, e.g. extracting, e.g. computing), from the (e.g. meshed) 3D modeled object, a point cloud
representing the 3D modeled object.
[0042] The machine-learnt decoder is now discussed.
[0043] The machine-learnt decoder is a differentiable function. The function is machine-learnt. The function takes is
values in a latent space. The latent space is a vector space. The function outputs values in a 3Dmodeled object space, i.e.
a space comprising (e.g.made of) 3Dmodeled objects. In other words, applying the function to vectors of the latent space
(hereinafter referred to as "latent vectors") outputs 3Dmodeled objects. In other words, the image of each latent vector by
the function is a 3Dmodeled object of the 3Dmodeled object space. The image of the latent space by the functionmay be
the 3Dmodeled object space or a strict subset of the 3Dmodeled object space. Decoding a latent vector means applying
the decoder to the latent vector. The result of the decoding may thus be referred to as "the decoded latent vector". In
examples, the latent space features a probabilistic prior. In other words, a probabilistic prior, whichmay be denoted p(z) in
the following,may be given over the latent space, z being a notation for a vector of the latent space. In these examples, the
prior may be an a priori probability distribution expressing how the latent vectors are distributed over the latent space. A
priorimeans that the probability distributionmaybedetermined (e.g. computed,e.g.established)without having complete
knowledgeof the latent space. For example, theprior over the latent spacemaybe inferred (e.g.deduced) fromanexisting
(e.g. probability) distribution of the 3Dmodeled objects over the 3Dmodeled object space, such that the prior expresses a
distribution of the latent vectors over the latent space that (e.g. substantially) corresponds to the distribution of the 3D
modeled objects over the 3D modeled object space.
[0044] The machine-learnt decoder may be the decoder of an autoencoder. In the context of the method, an
autoencoder may be defined as the composition of two feedforward deep neural networks (see [3])

and , parameterized by the weights w and w’, where p « m. fw is the encoder,

and gw, the decoder. is the latent space, i.e. the vector space where the encoder fw outputs its values and where the

decodergw, takes its values.p is thedimensionof the latent space. is thespacewhere theencoder fw takes its values

andwhere the decoder gw, outputs its values. may be referred to as "the original input space".m is the dimension of
the original input space. In the case of themachined-learnt decoder provided by themethod, the original input spacemay
be the3Dmodeledobject space.Alternatively, the 3Dmodeledobject spacemaybeasubset of the original input space. In
other words, the encoder fw(x) takes its values in the original input space, but the image of the latent space by the decoder
gw’, i.e. the 3Dmodeled object space in the context of themethod,may be a subset of the original input space. A vector z =
fw(x) may be referred to as "a latent vector" or "a hidden vector". The autoencoder gw’ ∘ fw(x) may also be referred to as "a
reconstruction". The reconstruction takes as input a first element of the original input space (for example, a first 3D
modeled object of the 3Dmodeled object space), maps it onto a latent vector of the latent vector space, and then reverse
themappingbyoutputtingasecondelementof theoriginal input space (for example, asecond3Dmodeledobject of the3D
modeled object space) from the latent vector. The second element may be referred to as "a reconstruction" of the first
element. In examples it means that the second element represents an approximation of the first element. In examples, if x
is a 3Dmodeledobject, the3Dmodeledobjectgw’ ∘ fw(x)maybe referred to as the reconstructed3Dmodeledobject. xmay
also be referred to as the input and gw’ ∘ fw(x) as the reconstructed input.. In the context of themethod, the encoder fw, and
the decoder gw may be machined-learnt (e.g. separately or simultaneously), e.g. by minimizing a reconstruction error.
Encoding an object means applying the encoder to the object. The result of the encoding may thus be referred to as "the
encoded object". Decoding a latent vectormeans applying the decoder to the latent vector. The result of the decodingmay
thus be referred to as "the decoded latent vector".
[0045] The providing S10 of the machine-learnt decoder is now discussed.
[0046] The providing S10 of the machine-learnt decoder may comprise retrieving the machine-learnt decoder from a
database. In other words, the machine-learnt decoder may have been previously learnt and stored in a database for later
use. In examples, the providing S10 of the machine-learnt decoder may be carried out by a user which accesses the
decoder inadatabase.Additionallyor alternatively, theprovidingS10maycomprise learning thedecoder fromscratchand
making it available for use by the method.
[0047] The 3D modeled object space is now discussed.
[0048] The 3Dmodeled object space generally refers to a space made of 3Dmodeled objects. The 3Dmodeled object
space may be included in a vector space. In examples, the 3D modeled object space is a manifold, for example a
connected manifold, of a vector space. In examples, the 3D modeled object space is made of 3D modeled objects of a
same class of 3D modeled objects. A class of 3D modeled objects may correspond to a connected manifold of a vector
space. Additionally or alternatively, a class of 3Dmodeled objectsmay designate a set of 3Dmodeled objects which has a
the following property: any first 3Dmodeled object of the set is similar to, e.g. has a shape similar to, at least a second 3D
modeled object of the set.
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[0049] In examples, the class of 3Dmodeled object is made of 3Dmodeled object representing respective mechanical
parts, the mechanical parts relative (i.e. corresponding) to the class all respecting any one or any combination of the
following conditions:

• the mechanical parts relative to the class are all manufactured in the same manufacturing process or in the same
combination of manufacturing processes;

• the mechanical parts relative to the class are all plausible mechanical parts;
• the mechanical parts relative to the class are all from a same field of technology and/or industry;
• the mechanical parts relative to the class all perform a same mechanical function;
• themechanical parts relative to the class eachbeing representedbya3Dmodeledobjectwhich hasa shape similar to

at least one other 3D modeled object of the class (thus representing another mechanical part relative to the class);
and/or

• themechanical parts relative to theclassall obey to (e.g. satisfy,e.g. respect e.g. verify) samemechanical constraints,
functional constraints, manufacturing constraints, structural constraints and/or assembly constraints.

[0050] In examples, the provided 3D modeled object and (e.g. substantially) all the 3D modeled objects of the 3D
modeledobject spaceare3Dmodeledobjectsof asameclassof3Dmodeledobjects. In theseexamples, thedecodermay
have been machine-learnt based on a dataset of 3D modeled objects of said same class. For example, the decoder may
havebeenmachine-learnt tomapany latent vector ontoa3Dmodeledobject of said sameclass. In examples, thedecoder
may be the decoder of an autoencoder that further comprises an encoder, the decoder and the encoder having both being
machine-learnt based on a dataset of 3Dmodeled objects of said same class. In these examples, the encoder may have
beenmachine-learnt to map any 3D object of said same class onto a latent vector of the latent space. In these examples,
the decoder may have been machine-learnt to map any latent vector onto a 3D modeled object of said same class. In
examples, all modeled object of the 3D modeled object space are plausible 3D modeled objects.
[0051] FIG. 2showsaclassof 3Dmodeledobjects forminganexampleof theset 20of 3Dmodeledobject of themethod.
The 3D modeled objects are chairs. The chairs form a class of 3D modeled object because they all perform the same
mechanical function,which is supportingaweight (e.g. of ahumanbeing).Performing thismechanical functionalsomeans
that thechairsall obey tosamemechanical constraints, functional constraintsandstructural constraints. ThechairsofFIG.
2 are plausible mechanical parts, because they respect mechanical constraints, functional constraints, manufacturing
constraintsandstructural constraints, therebyallowing theirmanufacturing in the real-world byoneormoremanufacturing
process.
[0052] FIG. 3showsaclassof 3Dmodeledobjects forminganexampleof theset 30of 3Dmodeledobject of themethod.
The 3D modeled objects are chairs with four legs (each). The chairs with four legs form a class of 3D modeled object
because theyall perform thesamemechanical function,which is supportingaweight (e.g.of ahumanbeing), andbecause
performing this mechanical function with four legs also means that the chairs all obey to same mechanical constraints,
functional constraintsandstructural constraints. Thechairs ofFIG.3areplausiblemechanical parts, because they respect
mechanical constraints, functional constraints, manufacturing constraints and structural constraints, thereby allowing
their manufacturing in the real-world by one or more manufacturing process.
[0053] The 3Dmodeled object spacemay be a spacemade of discrete representations of 3Dmodeled objects, such as
meshes and/or point clouds. In other words, the 3Dmodeled object space is made of respective discrete representations
(such asmeshes and/or point clouds) of 3Dmodeled objects of the space. In such cases, the elements of the 3Dmodeled
object spacemay still be referred to as the 3Dmodeled objects themselves, and not their respective discrete representa-
tions, for the sake of simplicity.
[0054] In examples, the method comprises projecting S20 the 3D modeled object onto the latent space. In these
examples, themachine-learnt decoder may be the decoder of amachine-learnt autoencoder also comprising amachine-
learnt encoder. Projecting S20 the 3Dmodeled object may consist in applying the encoder to the 3Dmodeled object, the
applying of the encoder to the 3Dmodeled object resulting in a latent vector. The latent vectormay be called the projection
of the 3D modeled object on the latent space. Alternatively, the providing S10 of the 3D modeled object may comprise
providing, besides the 3Dmodeled object, the latent vector which is the result of applying the encoder to the 3Dmodeled
object. In any case, the projecting S20 may result in that a latent vector which is the projection of the 3D modeled object
onto the latent space is made available for further use in the method, as discussed herein after.
[0055] The part of the 3D modeled object is now discussed.
[0056] In examples, any 3D modeled objects designed by the method or involved in the method may be divided into
parts. For a 3Dmodeled object representing amechanical part, a part of the 3Dmodeled object may designate a layout of
material of the mechanical part, the layout of material performing a mechanical function. In other words, the 3D modeled
object representing themechanical part may be divided into parts each representing a respective layout of material of the
mechanical parts, the respective layout of material performing a respective mechanical function. In the context of the
invention, a function performed by a layout of material of a mechanical part may be one or a plausible combination of a
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supporting function, a strengthening function, a resistance function, a connecting function between other layouts of
material, a mass reduction function, a space reservation function, a fixture function, a tightness function, an adjustment
function, a positioning function, a mechanical joint function, a cooling function, a space reservation function, a revolute or
cylindrical mechanical joint function, an assembly function, a stiffening function, a positioning pin function, a revolute or
cylindrical mechanical joint function and/or a support for all machined and drilled protrusions function.
[0057] For example, a leg of a chair, such as a leg of any one of the chairs represented in FIG. 2 or FIG. 3, is a layout of
material of the chair performing a supporting function. In other words, the leg of the chair is involved (e.g. as well as other
legs) in performing the function of supporting the weight of further material forming the chair as well as the weight of a
human sitting on the chair.
[0058] Another example is a (e.g. bent) chair back, such as a chair back of any one of the chairs represented in FIG. 2 or
FIG. 3. The chair back is a layout ofmaterial of the chair performing a supporting function. In other words, the chair back is
involved in performing the function of supporting the back of a human sitting on the chair.
[0059] Another example is a chair seat, such as a chair seat of any one of the chairs represented in FIG. 2 or FIG. 3. The
chair seat is a layout of material of the chair performing a supporting function. In other words, the chair seat is involved in
performing the functionof supporting theweight of furthermaterial forming the chair aswell as theweight of ahumansitting
on the chair. The chair seat also performs a connecting function, since it connects other parts of the chair such as the chair
back and/or the chair legs.
[0060] Other examples of 3D modeled objects are now discussed.
[0061] Any 3D modeled object involved in the method may represent a car. In such a case, the part of the 3D modeled
objectmay represent awheel of the car (performingasupporting functionaswell as the functionof rollingand/or turning) or
a part of the car body (performing a connecting function and/or a resistance function and/or a strengthening function) such
asa door, a hood, or a deck lid. Carsmay formaclass of 3Dmodeled objects. Alternatively or additionally, any3Dmodeled
object involved in the method may represent a plane. In such a case, the part of the 3D modeled object may represent a
wingof the plane (performing a function of producing lift whilemoving througha fluid) or anengine of the plane (performing
a function of producing force to move the plane) or the fuselage of the plane (performing a connecting function and/or a
resistance function and/or a strengthening function). Planes may form a class of 3D modeled objects.
[0062] The defining S30 of the deformation constraint for the part of the 3D modeled object is now discussed.
[0063] Thedeformation constrain is definedS30byauser, i.e.may result fromauser action. Thedeformation constraint
may designate a set of (e.g. geometric) specifications that determine a deformation (e.g. a transformation, e.g. a
displacement) of a geometrical shape of the part of the 3D modeled object into another geometrical shape (which
may be referred to as "the new geometrical shape" in the following). In other words, the deformation may not be directly
defined by the user, but the user action rather results in specifications forcing the deformation. In examples, it means that
the user provides (e.g. declares, e.g. specifies), e.g. by using a keyboard and/or a touch and/or a haptic device, the set of
specifications. Alternatively, the set of specifications may be (e.g. automatically) retrieved from a user action on (e.g. the
part of) the 3Dmodeled object. Alternatively, the set of specificationsmay be (e.g. automatically) retrieved from a drawing
of theuseronascreencomprising the3Dmodeledobject. Thedeformationdefinedby thedeformationconstraintmay thus
deform the 3Dmodeled object into a deformed 3Dmodeled object by deforming the geometrical shape of the part into the
new geometrical shape.
[0064] The defining S30 of the deformation constraint results from a graphical-interaction of the user with the part of the
3D modeled object. The graphical-interaction may comprise clicking on the 3D modeled object, e.g. with a haptic device
such as a mouse, or touching the 3D modeled object with an appendage such as a finger. The graphical interaction may
further comprise moving the clicked on or touched 3D modeled object, for example by performing a drag and drop
operation.Forexample, theuser selectsoneormorepointson thepart of the3Dmodeledobject,e.g.byclickingon theone
ormore points with a haptic device such as amouse andmoves them by a drag and drop operation (e.g.moves them one
by one by oneor through a one-shot drag anddrop operation), as known in the art. The respective one ormore locations of
themoved one ormore points determine (e.g. form,e.g. result in) the newgeometrical shape of the part of the 3Dmodeled
object. In otherwords, the 3Dmodeled object has agiven geometrical shapeat the providingS10, and theuser defines the
new geometrical shape by moving the points. The deformation of the given geometrical shape into the new geometrical
shape is thus constrained by the respective one or more locations of the one or more points moved by the user. In other
words,moving the one ormore points defines the newgeometrical shape of the part and the newgeometrical shape of the
part defines the deformation constraint.
[0065] Alternatively, the user may define the deformation constraint by drawing (e.g. by using a haptic device) a 2D
drawing (e.g. on a display) which represents the newgeometrical shape for the part of the 3Dmodeled object, which has a
given geometrical shape at the providing S10. The deformation of the given geometrical shape into the new geometrical
shape is thus constrained by the drawing of the user. In other words, the drawing of the user defines the new geometrical
shape of the part and the new geometrical shape of the part defines the deformation constraint.
[0066] The determining S40 of the optimal latent vector is now discussed.
[0067] The optimal latent vector minimizes an energy. Thus, the determining S40 of the latent vector may consist in
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minimizing the energy, the optimal latent vector being the result of the minimizing. The energy explores latent vectors. In
examples, this means that the energy is a function of at least a variable representing latent vectors, i.e. the at least one
variable belongs to the latent space or to a subspace of the latent space. Minimizing the energy may be carried out
iteratively, i.e. by iteratively visiting latent vectors of at least a subspace of the latent space until (e.g. an approximation of)
the latent vector minimizing the energy (i.e. the optimal latent vector) is found. Minimizing the energy may be carried out
automatically upon the defining S30 the deformation constraint. Minimizing the energymay be carried out by running any
minimization algorithm, such as an iteratively reweighted least squares algorithm.
[0068] The energy comprises a term which, penalizes, for each explored latent vector, non-respect of the deformation
constraint by the result of applying the decoder to the explored latent vector. In exampleswhere the energy is a function of
at least a variable representing latent vectors, the term may depend on the at least variable and may provide a measure
(e.g. a quantification) of the non-respect of the deformation constraint by the result of applying the decoder to the at least
variable. In these examples, penalizingmaymean that the term is an increasing function of the largeness of themeasure.
[0069] The method thus determines an optimal latent vector by exploring latent vectors and verifying that the decoded
latent vectors (i.e. the results of applying the decoder to the explored latent vectors) respect or do not respect the
deformation constraint. Non-respect is penalized, such that the decoder optimal latent vector tends to respect (e.g.
respects) the deformation constraint. The decoded latent vector may be a plausible 3Dmodeled object, such that, in this
case, the method outputs a 3D modeled object which is plausible, and which tends to respect (e.g. respects) de
deformation constraint. All decoded explored latent vectors may also be plausible 3D modeled objects. In other words,
the method may determine a plausible 3D modeled object which tends to respect (e.g. respects, e.g. respects best) the
deformation constraint amongaplurality of plausible 3Dmodeledobjects.Moreover, the3Dmodeledobject spacemaybe
a class of 3Dmodeled object, such that, in this case, themethodmay determine a plausible 3Dmodeled object of a class
which tends to respect (e.g. respects, e.g. respects best) the deformation constraint among a plurality of plausible 3D
modeledobjects of theclass. Furthermore, themethodmaydosoautomatically, such that in theseexamples themethod is
efficient and ergonomic.
[0070] Thedeformation constraint defines a geometrical shape, and the termpenalizes a disparity between the result of
applying the decoder to the explored latent vector and the geometrical shape.
[0071] Thedeformationdefinedby thedeformationconstraintmaydeform theshapeof thepart of the3Dmodeledobject
into a new geometrical shape of part of the 3Dmodeled object. As a result, the deformationmay also deform thewhole 3D
modeled object into a new 3D modeled object (which may be also referred to as the deformed input) by deforming the
geometrical shape of the part. In other words, the new 3Dmodeled object may differ from the provided 3Dmodeled object
in that the geometrical shape of the part is deformed. The geometrical shape defined by the deformation constraint may
thus designate the new 3Dmodeled object. In exampleswhere the decoder is the decoder of an autoencoder, the new 3D
modeled objectmay be computed from the reconstructed 3Dmodeled object. That is, the autoencoder is applied to the 3D
modeled object, thereby outputting a reconstructed 3D modeled object, and the new 3D modeled object is computed by
applying the deformation defined by the deformation constraint to the reconstructed 3Dmodeled object. Alternatively, the
geometrical shape defined by the deformation constraint may designate the new geometrical shape of the part of the 3D
modeled object.
[0072] The disparity between the result of applying the decoder to the explored latent vector and the geometrical shape
may be a quantity relative to (e.g. that is a function of) a difference or an error between the result of applying the decoder to
theexplored latent vectorand thegeometrical shapedefinedby thedeformationconstraint. Inotherwords, thegeometrical
shape being defined by the deformation constraint, the disparity may be a quantity which provides a measure (e.g. a
quantification) of the non-respect of the deformation constraint by the result of applying the decoder to the explored latent
vector. In theseexamples, penalizingmaymean that thequantity is an increasing function of the largenessof themeasure.
[0073] In exampleswhere the3Dmodeledobjects involved in themethodareplausible 3Dmodeledobjects, themethod
thus visits plausible 3D modeled objects (i.e. the decoded explored latent vectors) and penalized disparities between
visited plausible 3Dmodeled objects and the geometrical shape definedby the deformation constraint, until a 3Dmodeled
object (the decoded optimal latent vector) for which the disparity is acceptable (e.g. is the less penalized) is determined. In
other words, the method determines a plausible 3D modeled object of which geometrical shape is (e.g. best) compliant
with the geometrical shape defined by the deformation constraint.
[0074] The disparity involves a distance between a derivative of the result of applying the decoder to the explored latent
vector and the geometrical shape.
[0075] The derivative of the result of applying the decoder to the explored latent vector may be amathematical quantity
obtained from the result of applying the decoder to the explored latent vector, e.g. by applying one or more mathematical
formulae. In otherwords, the derivative of the result of applying the decoder to the explored latent vectormay be a function
of the result of applying the decoder to the explored latent vector. The disparity involves the distance between a derivative
of the result of applying thedecoder to theexplored latent vector and thegeometrical shape. In examples, itmeans that the
disparity is a function of the distance.
[0076] Using the distance between a derivative of the result of applying the decoder to the explored latent vector and the
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geometrical shape isasimpleandefficientway tomeasure (e.g. toquantify) non-respect of thedeformationconstraint.The
method is thus efficient in these examples.
[0077] The disparity is a monotonic function of the distance.
[0078] The method thus measures efficiently, in these examples, non-respect of the deformation constraint: the more
the deformation constraint is not respected, the larger the distance is, and the larger the disparity is. Conversely, the less
the deformation constraint is not respected, the smaller the distance is, and the smaller the disparity is. Themethod is thus
efficient.
[0079] The geometrical shape may be defined in a 3D space, in which case the derivative is the result of applying the
decoder to the explored latent vector. In these examples, the geometrical shape may thus represent a new geometrical
shapeof the3Dmodeledobject, i.e. thegeometrical shapeof the3Dmodeledobject after thepart of the3Dmodeledobject
has undergone the deformation corresponding to the deformation constraint.
[0080] Alternatively, the geometrical shapemay be defined in a 2D plane, in which case the derivative is a projection of
the result of applying the decoder to the explored latent vector. In examples, the geometrical shape may thus be a 2D
drawing of the user representing the new geometrical shape for the part of the 3D modeled object.
[0081] The 3D modeled object is a 3D mesh. The 3D modeled object space is a space made of 3D meshes. The
machine-learnt decoder thus takes values in the latent space and outputs 3D meshes.
[0082] When thegeometrical shape is defined ina3Dspaceand thederivative is the result of applying thedecoder to the
explored latent vector, the term is of the type:

[0083] In formula (1), z is the explored latent vector,g the provideddecoder, andg(z) is the result of applying thedecoder
to theexplored latent vector. v1, v2, ... , vkare the indicesofk vertices ofg(z) representing thepart of the 3Dmodeledobject.
In otherwords, the 3Dmodeledobject is a 3Dmesh, the part of the 3Dmodeledobject is a submeshof the 3Dmesh,g(z) is
also a 3Dmesh (since the 3Dmodeled object space is a 3Dmesh space), and v1, v2, ... , vk are the indices of k vertices of
g(z) representing the sub mesh of the 3D mesh. Representing may mean approximating, such that the sub mesh with
indices v1, v2, ... , vk is the sub mesh of g(z) which approximates the best (e.g. which is the closest to) the part of the 3D
modeled object.M is a sampling size of the 3Dmodeled object, e.g.anumber of points of the 3Dmesh.ρ is a non-negative
and non-increasing function. In example, ρ is compactly supported. y is the geometrical shape. Formula (1) features

squaresof anormof theL2norm type,namely the termsof the type . Itmust beunderstood that sucha
norm is an example, put in formula (1) for the sake of clarity. The norm may however be replaced by any other norm or
distance.
[0084] Alternatively,when thegeometrical shape is defined in a2Dplaneand thederivative is a projectionof the result of
applying the decoder to the explored latent vector, the term is of the type:

[0085] In formula (2), z is the explored latent vector, M is a sampling size of the 3D modeled object, S is a set of pixel
coordinates of the geometrical shape, g(z) is the result of applying the decoder to the explored latent vector and P is the
projection. In examples, theuser has sketched thedeformation constraint bydrawingover the3Dmodeledobject. In these
examples, the geometrical shape is thus a set of pixels defined by the user’s sketch. P may be a projection from the 3D
modeled object space over a 2D space of objects definedwith pixel coordinates.Once,more it is to be understood that the
norm of the L2 norm type of formula (2) is an example, put in the formula for the sake of clarity. The normmay however be
replaced by any other norm or distance.
[0086] The applying S50 of the decoder to the optimal latent vector is now discussed.
[0087] Applying S50 the decoder to the optimal latent vector outputs a 3D modeled object. The 3D modeled object is
inferred from the optimal latent vector. In other words, the method outputs the 3D modeled object corresponding to a
minimum of the energy, that is a 3D modeled object which tends to respect (e.g. respects, e.g. respects best) the
deformation constraint. In exampleswhere 3Dmodeled objects involved in themethod are plausible 3Dmodeled objects,
themethod thus outputs a plausible 3Dmodeledobject (e.g.of a class)which tends to respect (e.g. respects,e.g. respects
best) the deformation constraint among several plausible 3D modeled objects (e.g. of the class).
[0088] In examples, the method further comprises computing S60 a deformation operation, from the result of applying
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thedecoder to theprojectionof the3Dmodeledobject onto the latent space, to the result of applyingS50 thedecoder to the
optimized latent vector. In theseexamples, themethod further comprisesapplyingS70 thedeformationoperation to the3D
modeled object.
[0089] Computing S60 the deformation operation, from the result of applying the decoder to the projection of the 3D
modeled object onto the latent space to the result of applying the decoder to the optimized latent vector means finding the
deformation operation. The deformation operation transforms the result of applying the decoder to the projection of the 3D
modeledobject onto the latent space into the result of applyingS50 thedecoder to theoptimized latent vector. In examples
where projecting the 3D modeled object onto the latent space means applying an encoder of an autoencoder also
comprising the machine-learnt decoder to the 3D modeled object, the method thus computes S60 a deformation which
transforms the reconstructed 3D modeled object into the 3D modeled object corresponding to a minimum of the energy,
that is a 3Dmodeled object which tends to respect (e.g. respects, e.g. respects best) the deformation constraint. Applying
S70 the deformation operation to the 3D modeled object thus deforms the 3D modeled object into another 3D modeled
object that tends to respect (e.g. respects, e.g. respects optimally) the deformation constraint. Such a deformation may
preserve (e.g. topological) details of the 3D modeled object.
[0090] In exampleswhere the3Dmodeledobjects involved in themethodareplausible 3Dmodeledobjects, themethod
may thus compute a transformation which transforms the 3D modeled object into another 3D modeled object that is
plausible and that tends to respect (e.g. respects, e.g. respects best) the deformation constraint. In other words, upon the
providing of the deformation constraint, the method may thus automatically deform the 3D modeled object into a 3D
modeled object (e.g. of a class) which is plausible, and which tends to respect (e.g. respects, e.g. respects best) the
deformation constraint among several other plausible objects (e.g. of the class). Also, deforming the 3D modeled object
allows to preserve (e.g. topological) details of the 3D modeled object that the decoded optimal latent vector may not
feature. In otherwords, outputting thedecoded latent vector by itselfmayprovide aplausible 3Dmodeledobject tending to
respect (e.g. respecting) the deformation constraint, but outputting in addition a deformation of the 3Dmodeled object into
the decoded latent vector allows to output a plausible 3D object tending to respect (e.g. respecting) the deformation
constraint as well as topological details of the provided 3D modeled object. The method is thus efficient, accurate and
ergonomic.
[0091] Examples of the determining S40 are now discussed.
[0092] In examples, the machine-learnt decoder may be the decoder of an (e.g. machine-learnt) autoencoder that also
comprises an encoder. In these examples, the determining S40 of the optimal latent vectormay reward similarity between
the result of applying the decoder to the explored latent vector and the 3D modeled object.
[0093] Rewardingmay generally mean that theminimizing of the energy is conceived to tend to a result (i.e. the optimal
latent vector) which is close to the projection of the 3Dmodeled object onto the latent space. Rewarding the similaritymay
comprise exploring latent vectorswhich are (e.g. relatively) close to the projection of the 3Dmodeled object onto the latent
space. For example theexploringof the latent vectorsmaybeperformed iteratively (that is, latent vectors areexploredone
by one, until the optimal latent vector is found) and may start from a first latent vector which is the projection of the 3D
modeled object onto the latent space. Alternatively or additionally, rewarding the similarity may be performed by
considering an energy that comprises a quantity that is an increasing function of an error between the result of applying
the decoder to the explored latent vector and the 3D modeled object.
[0094] Rewarding similarity allows to reward 3D modeled objects (i.e. decoded latent vector) which are similar to the
provided 3D modeled object. Thus, the decoded optimal latent vector is not only a 3D modeled object which fits the
deformation constraint but is alsoa3Dmodeledobjectwhich is similar to theprovided3Dmodeledobject. In examples, the
method thus allows to determine a plausible 3Dmodeled object (e.g.of a class)which, amongother plausible 3Dmodeled
objects (e.g. of the class), fits (e.g. best) the deformation constraint defined by the user and the shape of the provided 3D
modeled object. The method is thus efficient and accurate.
[0095] In these examples, the determining S40 of the optimal latent vector is performed iteratively, starting from a first
explored latent vectorwhich is the result of applying theencoder to the3Dmodeledobject. Starting this first explored latent
vector is a particular efficient way to minimize the energy with an optimal latent vector which is relatively close to the
encoded 3D modeled object, since exploration of latent vectors is carried out near the encoded 3D modeled object.
[0096] Additionally or alternatively the energymay comprise another term that rewards similarity between the explored
latent vector and the result of applying the encoder to the 3D modeled object. Rewarding the similarity between the
explored latent vector and the result of applying the encoder to the 3D modeled object allows to avoid exploring latent
vectors which are too far from the encoded 3D modeled object.
[0097] In examples, the other term involves a distance between the explored latent vector and the result of applying the
encoder to the 3D modeled object. The distance is an efficient way to measure and reward closeness between latent
vectors and the encoded 3D modeled object.
[0098] Rewarding the similarity between the explored latent vector and the result of applying the encoder to the 3D
modeled object maymean that the other term is an increasing function of the distance between the explored latent vector
and the result of applying the encoder to the 3D modeled object.
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[0099] In examples, the energy comprises another term which rewards a likelihood of the explored latent vector on the
latent space. Inexampleswhereaprobability priorp(z) is givenover the latent space, z beinga variable representing latent
vectors, the term may measure the largeness of p(z). The term may for example be a decreasing function of p(z). Thus,
when p(z) is close to 1, that is when the latent vector has a large likelihood, the term is small. The likelihood of the optimal
latent vector, and thus of the decoded optimal latent vector, is thus maximized.
[0100] Two examples of the method are now discussed. In the first example, the geometrical shape is defined in a 3D
space and the derivative is the result of applying the decoder to the explored latent vector is now discussed. In the second
example, the geometrical shape is defined in a 2D plane and the derivative is a projection of the result of applying the
decoder to the explored latent vector. FIG. 4‑9 illustrate the first example. FIG. 10‑13 illustrate the second example.
[0101] In both examples, the user providesS10 the3Dmodeledobjectwhich is a 3Dmesh x that is a discretization of the
provided 3D modeled object. In other words, the provided 3D modeled object is a 3D mesh. It is also provided S10 a
machine-learnt autoencodergo f,whereg is themachine-learntdecoderandwhere f is amachine-learntencoder.g(f(x)) is
the reconstructedmesh representing the provided 3Dmodeled object, and letM be a notation for its number of points (i.e.
its sampling size). In examples, a probabilistic prior p(z) is given over the latent space. In examples where this is not the
case, p(z) may simply be replaced by p(z) = 1 in all equations where p(z) appears, corresponding to a uniform prior. In
examples, the method comprises projecting S20 x onto the latent space, by computing z0 = f(x).
[0102] In the first example, the mesh x comprises control points a1, ..., an at characteristic places, using 3D interest
points to find appropriate places. The user defines S30 a deformation constraint by pulling (e.g. through a drag and drop
operation) one or several of these control points denoteda1, ..., ak in order to deform the part of the 3Dmesh. Leta’1, ..., a’n
be the coordinates of the control points after defining the deformation constraint. The deformation relative to the
deformation constraint (i.e. the deformation resulting from applying the deformation constraint) may be computed with
a Radial Basis Function (RBF) interpolation. Themethodmay consider the RBF by a well-chosen function φ. Themethod

may fit a deformation field by solving the three following linear
systems for r, s and t:

[0103] FIG. 4 illustrate anexample of themeshx. Themesh represents aplausible chair 40with four legs, suchasoneof
the chairs of FIG. 3. The chair is meshed, and themesh comprises a control point a1. As illustrated in FIG. 5, the user pulls
the point a1 in order to deform a leg of the chair 40 (which is a part of the chair). FIG. 5 shows the control point a1’ after
deformation.
[0104] In this first example v1, ...,vkbe the indicesof theclosest verticesof the reconstructed3Dmeshg(z) toa1, ...,ak. In
this example, y = g(z0) + δ(g(z0)) is the deformed reconstructed 3Dmesh under the deformation field δ. In other words, y is
the new geometrical shape defined by the deformation constraint. FIG. 6 shows the reconstruction 60 of the 3D meshed
chair 40 and FIG. 7 shows the deformed reconstructed 3D mesh 70.
[0105] The optimal latent vector is determined S40 by minimizing the energy, which is of the form:

whereρ is non-negative non-increasing function, e.g.with a compact support.ρ is used to fit the reconstruction to the user
deformation only around where the user has pulled control points, so as to penalize non-respect of the deformation
constraint byg(z).Themethodmayoptimize the latent vector z starting from z0, tomodify the reconstructed inputg(z) such
that it fits the deformation given by the user.
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[0106] The energy may comprise another term . In examples, γ equals zero such the other term is not
comprised in the energy. In other examples, γ is not equal to zero, such that the other term is comprised in the energy. The
other term is a smoothness term that is a distance between the explored latent vector z and the result z0 of applying the
encoder to the 3Dmodeled object. The other term prevents the optimization frommowing z too far away from z0, and thus
remains as close as possible to the original input, while fitting to the user-defined deformation field.
[0107] ‑β log(p(z)) is another term that rewards a likelihoodof the explored latent vector z on the latent space, p(z) being
aprobabilistic prior givenover the latent space.Theanother term isused tomaximize the likelihoodof theoptimizedshape.
In examples,βequals zero, such that the other term is not comprised in the energy. In other examples,β is strictly positive,
such that the other term is comprised in the energy.
[0108] The minimizing of E (i.e. the determining of the optimal latent vector) may comprise applying an iteratively
reweighted least squares method, meaning that at each optimization iteration the method updates the least squares
weights ρ(∥g(z)vi ‑ g(z)j∥), but considers them fixed during the optimization step.
[0109] FIG. 8 illustrates the result of applying the decoder to the optimized latent vector in the case of the first example.
The chair 80 is a mesh representing a plausible chair that fits the deformation constraint defined by the user. The method
may further comprise computing a deformation from the reconstructed chair 60 to the chair 80 fitting the deformation
constraint. The result of applying the deformation to the chair 40 is a plausible chair 90 of FIG. 9 that respects both the
deformation constraints and the initial shape of chair 40.
[0110] An implementation of the computing and the applying the deformation in the case of the first example is now
further discussed.
[0111] Theminimizingof theenergyaccording to thefirst example led toanoptimized latent vectorẑ=argminzE(z)which
is as close as possible to the original input, while fitting to the user constraints, either given by control points or sketch.
Nevertheless, this optimized shape is computed starting from the reconstruction g(z0) (illustrated by chair 80), which is not
necessarily an exact reconstruction with perfect accuracy. Especially, the reconstruction does not have necessarily the
same topology (e.g. number of chair rungs), and the local details of the input 3D modeled object 40 are not necessarily
included in the reconstruction. In order to remain as close as possible to the style of the original chair 40, while fitting to the
user constraints, the methodmay retarget the deformations between g(z0) (illustrated by chair 80) and g(ẑ) (illustrated by
chair 70) to the original chair x. The method may use RBF interpolation to compute the deformation field θ between g(z0)
and g(ẑ). The techniquemay be the same as the previously discussed RBF interpolation, except that themethodmay not
use any control points, but insteadmay compute the deformation field using directly the vertices of the reconstruction (or a
characteristic subset of these vertices).

[0112] Thus, to derive , the method may solve the linear
system

[0113] The final edited mesh 90 is simply given by the deformation field applied to the original mesh x:

[0114] Notice that other retargeting methods could also be used to compute the deformation field, such that non rigid
registration (See "GlobalCorrespondenceOptimization forNon-RigidRegistration ofDepthScans."H. Li, R.Sumner, and
M. Pauly, in Comput. Graph. Forum 27 (5): 1421‑1430, 2008), or kernel regression.
[0115] In the second example, the user sketches over the 3D modeled object x. in a chosen view. FIG. 10 shows an
example of the 3Dmodeled object x,which is a chair 100 with four legs such as the ones of FIG. 10. FIG. 10 shows a front
view of the chair 100. Let P be the projection associated to the chosen view. Pmay be the projection from the 3Dmodeled
object space to which the chair belongs and onto the 2D space of pixel coordinates on the screen. The user defines the
deformation constraint by sketchingashape102on thescreen. LetSbe thepixels coordinatesof thedrawnsketch, or sub-
sampled version of this drawing.
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[0116] The optimal latent vector is determined S40 by minimizing the energy, which is of the form:

[0117] Themethodmayoptimize the latent vector z starting from z0, tomodify the reconstructed inputg(z) such that it fits
the sketch given by the user.

[0118] The energy may comprise another term . In examples, γ equals zero such the other term is not
comprised in the energy. In other examples, γ is not equal to zero, such that the other term is comprised in the energy. The
other term is a smoothness term that is a distance between the explored latent vector z and the result z0 of applying the
encoder to the 3Dmodeled object. The other term prevents the optimization frommowing z too far away from z0, and thus
remains as close as possible to the original input, while fitting to the user-defined deformation field.
[0119] ‑β log(p(z)) is another term that rewards a likelihood of the explored latent vector z on the latent space,p(z) being
a probabilistic prior given over the latent space.. The another term is used to maximize the likelihood of the optimized
shape. In examples,β equals zero, such that the other term is not comprised in the energy. In other examples,β is strictly
positive, such that the other term is not comprised in the energy.
[0120] FIG.12showsanexampleof the result of applyingS50 thedecoder to theoptimized latent vector. Thechair 120 is
a mesh representing a plausible chair that fits the deformation constraint defined by the user. The method may further
comprise computing S60 a deformation from the reconstructed chair 110 of FIG. 11 to the chair 120 fitting the deformation
constraint. The result of applying S70 the deformation to the chair 100 is a plausible chair 130 that respects both the
deformation constraints and the initial shape of chair 100.
[0121] An implementationof thecomputingS60and theapplyingS70 thedeformation in thecaseof thesecondexample
is now further discussed.
[0122] Theminimizing of the energy according to the second example led to an optimized latent vector ẑ = argminzE(z)
which is as close as possible to the original input, while fitting to the user constraints, either given by control points or
sketch. Nevertheless, this optimized shape is computed starting from the reconstruction g(z0) (illustrated by chair 100),
which is not necessarily an exact reconstruction with perfect accuracy. Especially, the reconstruction does not have
necessarily the same topology (e.g. numberof chair rungs), and the local details of the input 3Dmodeledobject 100arenot
necessarily included in the reconstruction. Inorder to remainas closeaspossible to the style of theoriginal chair 100,while
fitting to the user constraints, the method may retarget the deformations between g(z0) (illustrated by chair 100) and g(ẑ)
(illustrated by chair 120) to the original chair x. Themethodmay use RBF interpolation to compute the deformation field θ
between g(z0) and g(ẑ). The technique may be the same as the previously discussed RBF interpolation, except that the
method may not use any control points, but instead may compute the deformation field using directly the vertices of the
reconstruction (or a characteristic subset of these vertices).

[0123] Thus, to derive , the method may solve the linear
system

[0124] The final edited mesh 130 is simply given by the deformation field applied to the original mesh x:

[0125] Notice that other retargeting methods could also be used to compute the deformation field, such that non rigid
registration (See "GlobalCorrespondenceOptimization forNon-RigidRegistration ofDepthScans."H. Li, R.Sumner, and
M. Pauly, in Comput. Graph. Forum 27 (5): 1421‑1430, 2008), or kernel regression.
[0126] FIG. 14 shows an example of the GUI of the system, wherein the system is a CAD system.
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[0127] TheGUI2100maybea typicalCAD-like interface, having standardmenubars 2110, 2120, aswell as bottomand
side toolbars 2140, 2150. Suchmenu‑and toolbars contain a set of user-selectable icons, each icon beingassociatedwith
one ormore operations or functions, as known in the art. Some of these icons are associatedwith software tools, adapted
for editing and/or working on the 3Dmodeled object 2000 displayed in the GUI 2100. The software tools may be grouped
into workbenches. Each workbench comprises a subset of software tools. In particular, one of the workbenches is an
editionworkbench, suitable for editing geometrical features of themodeled product 2000. In operation, a designermay for
example pre-select a part of the object 2000 and then initiate an operation (e.g. change the dimension, color, etc.) or edit
geometrical constraints by selecting an appropriate icon. For example, typical CAD operations are the modeling of the
punching or the folding of the 3D modeled object displayed on the screen. The GUI may for example display data 2500
related to thedisplayedproduct 2000. In theexampleof thefigure, thedata2500,displayedasa "feature tree", and their 3D
representation 2000pertain to abrakeassembly including brake caliper anddisc. TheGUImay further showvarious types
of graphic tools 2130, 2070, 2080 for example for facilitating 3D orientation of the object, for triggering a simulation of an
operation of an edited product or render various attributes of the displayed product 2000. A cursor 2060may be controlled
by a haptic device to allow the user to interact with the graphic tools.
[0128] FIG. 15 shows an example of the system,wherein the system is a client computer system, e.g. aworkstation of a
user.
[0129] The client computer of the example comprises a central processing unit (CPU) 1010 connected to an internal
communication BUS 1000, a random access memory (RAM) 1070 also connected to the BUS. The client computer is
further provided with a graphical processing unit (GPU) 1110 which is associated with a video random access memory
1100 connected to the BUS. Video RAM 1100 is also known in the art as frame buffer. A mass storage device controller
1020manages accesses to amassmemory device, such as hard drive 1030. Massmemory devices suitable for tangibly
embodying computer program instructions and data include all forms of nonvolatile memory, including byway of example
semiconductormemory devices, such asEPROM,EEPROM, and flashmemory devices;magnetic disks such as internal
hard disks and removable disks; magneto-optical disks; and CD-ROM disks 1040. Any of the foregoing may be
supplemented by, or incorporated in, specially designed ASICs (application-specific integrated circuits). A network
adapter 1050 manages accesses to a network 1060. The client computer may also include a haptic device 1090 such
as cursor control device, a keyboard or the like. A cursor control device is used in the client computer to permit the user to
selectively positionacursor at anydesired locationondisplay1080. In addition, the cursor control deviceallows theuser to
select various commands, and input control signals. The cursor control device includes a number of signal generation
devices for input control signals to system. Typically, a cursor control device may be a mouse, the button of the mouse
being used to generate the signals. Alternatively or additionally, the client computer systemmay comprise a sensitive pad,
and/or a sensitive screen.
[0130] The computer programmay comprise instructions executable by a computer, the instructions comprisingmeans
for causing the above system to perform the method. The program may be recordable on any data storage medium,
including the memory of the system. The program may for example be implemented in digital electronic circuitry, or in
computer hardware, firmware, software, or in combinations of them. The programmay be implemented as an apparatus,
for example a product tangibly embodied in a machine-readable storage device for execution by a programmable
processor.Method stepsmay be performed by a programmable processor executing a programof instructions to perform
functions of themethod by operating on input data and generating output. The processormay thus be programmable and
coupled to receive data and instructions from, and to transmit data and instructions to, a data storage system, at least one
input device, and at least one output device. The application program may be implemented in a high-level procedural or
object-oriented programming language, or in assembly ormachine language if desired. In any case, the languagemay be
a compiled or interpreted language. The programmay be a full installation program or an update program. Application of
the program on the system results in any case in instructions for performing the method.

Claims

1. A computer-implemented method for designing a 3D modeled object via graphical user-interaction with a displayed
representation of the 3D modeled object, the method comprising:

• providing (S10):

▪ the 3D modeled object; and
▪ a machine-learnt decoder which is a differentiable function taking values in a latent space and outputting
values in a 3D modeled object space;

• defining (S30), by graphical user interaction with the displayed representation of the 3D modeled object, a
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deformed geometrical shape of the 3Dmodeled object, the deformed geometrical shape defining a deformation
constraint for a part of the 3D modeled object;
• determining (S40) an optimal latent vector which minimizes an energy, the energy exploring latent vectors and
comprising a termwhich penalizes, for each explored latent vector, non-respect of the deformation constraint by
the result of applying the decoder to the explored latent vector; and
• applying (S50) the decoder to the optimal latent vector,
wherein the deformation constraint defines a geometrical shape and the term penalizes a disparity between the
result of applying the decoder to the explored latent vector and the geometrical shape,
wherein thedisparity involvesadistancebetweenaderivative of the result of applying thedecoder to theexplored
latent vector and the geometrical shape,
wherein:

• the geometrical shape is defined in a 3D space and the derivative is the result of applying the decoder to the
explored latent vector; or
• the geometrical shape is defined in a 2D plane and the derivative is a projection of the result of applying the
decoder to the explored latent vector,

wherein the disparity is a monotonic function of the distance,
wherein the 3D modeled object is a 3D mesh and:

• when the geometrical shape is defined in a 3D space and the derivative is the result of applying the decoder
to the explored latent vector, the term is of the type:

where

▪ z is the explored latent vector;
▪ g(z) is the result of applying the decoder to the explored latent vector;
▪ v1, v2, ... , vk are the indices of k vertices of g(z) representing the part of the 3D modeled object;
▪ M is a sampling size of the 3D modeled object;
▪ ρ is a non-negative and non-increasing function;
▪ γ is the geometrical shape; or

•when thegeometrical shape isdefined ina2Dplaneand thederivative is aprojectionof the result of applying
the decoder to the explored latent vector, the term is of the type:

where

▪ z is the explored latent vector;
▪ M is a sampling size of the 3D modeled object;
▪ S is a set of pixel coordinates of the geometrical shape;
▪ g(z) is the result of applying the decoder to the explored latent vector;
▪ P is the projection,

wherein:

• when the geometrical shape is defined in a 3D space, the graphical user interaction which defines the
deformation constraint consists in defining the geometrical shape by clicking or touching a portion of the
displayed 3D modeled object and deforming said portion with a drag and drop operation, or
• when the geometrical shape is defined in a 2D plane, the graphical user interaction which defines the
deformation constraint consists in defining the geometrical shape by graphically drawing a 2D drawing that
forms the geometrical shape.
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2. The method of claim 1, further comprising:

• computing (S60) a deformation operation, from the result of applying the decoder to the projection of the 3D
modeled object onto the latent space, to the result of applying (S50) the decoder to the optimized latent vector;
and
• applying (S70) the deformation operation to the 3D modeled object.

3. Themethodof anyoneof claims1 to2,wherein themachine-learnt decoder is thedecoder of anautoencoder that also
comprises an encoder, and wherein the determining (S40) of the optimal latent vector rewards similarity between the
result of applying the decoder to the explored latent vector and the 3D modeled object.

4. Themethodof claim3,wherein thedetermining (S40) of the optimal latent vector is performed iteratively, starting from
a first explored latent vector which is the result of applying the encoder to the 3D modeled object.

5. Themethod of claim 3 or 4, wherein the energy comprises another term that rewards similarity between the explored
latent vector and the result of applying the encoder to the 3D modeled object.

6. Themethod of claim 5, wherein the other term involves a distance between the explored latent vector and the result of
applying the encoder to the 3D modeled object.

7. Themethod of any one of claims 1 to 6, wherein the energy comprises another termwhich rewards a likelihood of the
explored latent vector on the latent space.

8. Acomputer programcomprising instructionswhich,when theprogram isexecutedbyacomputer, cause thecomputer
to carry out the method according to any one of the claims 1 to 7.

9. A computer readable storage medium having recorded thereon the computer program of claim 8.

10. A computer comprising a processor coupled to a memory and a display, the memory having recorded thereon the
computer program of claim 8.

Patentansprüche

1. Computerimplementiertes Verfahren zum Konstruieren eines modellierten 3D-Objekts über eine grafische Benut-
zerinteraktion mit einer angezeigten Darstellung des modellierten 3D-Objekts, das Verfahren umfassend:

• Bereitstellen (S10):

▪ des modellierten 3D-Objekts; und
▪ eines maschinell gelernten Decoders, der eine differenzierbare Funktion ist, die Werte in einem latenten
Raum annimmt und Werte in einem modellierten 3D-Objektraum ausgibt;

• Definieren (S30), durch grafische Benutzerinteraktion mit der angezeigten Darstellung des modellierten 3D-
Objekts, einer deformierten geometrischen Form des modellierten 3D-Objekts, wobei die deformierte geomet-
rische Form eine Deformationsbeschränkung für einen Teil des modellierten 3D-Objekts definiert;
• Bestimmen (S40) eines optimalen latenten Vektors, der eine Energie minimiert, wobei die Energie latente
Vektoren erkundet und einen Term umfasst, der für jeden erkundeten latenten Vektor eine Nichteinhaltung der
Deformationsbeschränkung durch das Resultat eines Anwendens des Decoders auf den erkundeten latenten
Vektor bestraft; und
• Anwenden (S50) des Decoders auf den optimalen latenten Vektor,
wobei dieDeformationsbeschränkungeinegeometrischeFormdefiniert undderTermeineDiskrepanz zwischen
demResultat eines Anwendens des Decoders auf den erkundeten latenten Vektor und der geometrischen Form
bestraft,
wobei die Disparität einen Abstand zwischen einer Ableitung des Resultats eines Anwendens des Decoders auf
den erkundeten latenten Vektor und der geometrischen Form involviert,
wobei:
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• die geometrische Form in einem3D-Raumdefiniert ist und die Ableitung ist dasResultat eines Anwendens
des Decoders auf den erkundeten latenten Vektor ist; oder
• die geometrische Form in einer 2D-Ebene definiert ist und die Ableitung ist eine Projektion des Resultats
eines Anwendens des Decoders auf den erkundeten latenten Vektor ist,

wobei die Disparität eine monotone Funktion des Abstands ist,
wobei das modellierte 3D-Objekt ein 3D-Netz ist und:

• wenn die geometrische Form in einem 3D-Raum definiert ist und die Ableitung das Resultat eines
Anwendens des Decoders auf den erkundeten latenten Vektor ist, der Term folgender Art ist:

wobei:

▪ z der erkundete latente Vektor ist;
▪ g(z) das Resultat eines Anwendens des Decoders auf den erkundeten latenten Vektor ist;
▪ v1, v2, ... , vk die Indizes von kScheitelpunkten von g(z) sind, die denTeil desmodellierten 3D-Objekts
darstellen;
▪ M der Stichprobenumfang des modellierten 3D-Objekts ist;
▪ ρ eine nicht-negative und nicht-erhöhende Funktion ist;
▪ y die geometrische Form ist; oder

• wenn die geometrische Form in einer 2D-Ebene definiert ist und die Ableitung eine Projektion des Resultat
eines Anwendens des Decoders auf den erkundeten latenten Vektor ist, der Term folgender Art ist:

wobei:

▪ z der erkundete latente Vektor ist;
▪ M der Stichprobenumfang des modellierten 3D-Objekts ist;
▪ S ein Satz von Pixelkoordinaten der geometrischen Form ist;
▪ g(z) das Resultat eines Anwendens des Decoders auf den erkundeten latenten Vektor ist;
▪ P die Projektion ist,

wobei:

• wenn die geometrische Form in einem 3D-Raum definiert ist, die grafische Benutzerinteraktion, die die
Deformationsbeschränkung definiert, darin besteht, die geometrische Form durch Anklicken oder Berühren
eines Teils des angezeigten modellierten 3D-Objekts zu definieren und diesen Teil durch Ziehen und
Ablegen zu deformieren, oder
• wenn die geometrische Form in einer 2D-Ebene definiert ist, die grafische Benutzerinteraktion, die die
Deformationsbeschränkung definiert, darin besteht, die geometrische Form durch grafisches Zeichnen
einer 2D-Zeichnung, die die geometrische Form bildet, zu definieren.

2. Verfahren nach Anspruch 1, ferner umfassend:

• Berechnen (S60) einer Deformationsoperation aus dem Resultat eines Anwendens des Decoders auf die
Projektion des modellierten 3D-Objekts auf den latenten Raum und dem Resultat eines Anwendens (S50) des
Decoders auf den optimierten latenten Vektor; und
• Anwenden (S70) der Deformationsoperation auf das modellierte 3D-Objekt.

3. Verfahren nach einem der Ansprüche 1 bis 2, wobei der maschinell gelernte Decoder der Decoder eines Auto-
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encoders ist, der auch einen Encoder umfasst, und wobei das Bestimmen (S40) des optimalen latenten Vektors die
Ähnlichkeit zwischen dem Resultat eines Anwendens des Decoders auf den erkundeten latenten Vektor und dem
modellierten 3D-Objekt belohnt.

4. Verfahren nach Anspruch 3, wobei das Bestimmen (S40) des optimalen latenten Vektors iterativ durchgeführt wird,
ausgehend von einem ersten erkundeten latenten Vektor, der das Resultat eines Anwendens des Encoders auf das
modellierte 3D-Objekt ist.

5. Verfahren nachAnspruch3oder 4,wobei dieEnergie einenanderenTermumfasst, der dieÄhnlichkeit zwischendem
erkundeten latentenVektorunddemResultat einesAnwendensdesEncodersaufdasmodellierte3D-Objekt belohnt.

6. Verfahren nach Anspruch 5, wobei der andere Term einen Abstand zwischen dem erkundeten latenten Vektor und
dem Resultat eines Anwendens des Encoders auf das modellierte 3D-Objekt involviert.

7. Verfahren nach einem der Ansprüche 1 bis 6, wobei die Energie einen anderen Term umfasst, der eine Wahr-
scheinlichkeit des erkundeten latenten Vektors auf dem latenten Raum belohnt.

8. Rechnerprogramm, umfassend Anweisungen, die, wenn das Programm von einem Rechner ausgeführt wird, den
Rechner veranlassen, das Verfahren nach einem der Ansprüche 1 bis 7 durchzuführen.

9. Rechnerlesbares Speichermedium, auf dem das Rechnerprogramm nach Anspruch 8 aufgezeichnet ist.

10. Rechner, umfassend einen Prozessor, der mit einem Speicher und einer Anzeige gekoppelt ist, wobei in dem
Speicher das Rechnerprogramm nach Anspruch 8 aufgezeichnet ist.

Revendications

1. Procédémis enœuvre par ordinateur pour concevoir un objet modélisé en 3D par le biais d’une interaction utilisateur
graphique avec une représentation affichée de l’objet modélisé en 3D, le procédé comprenant le fait de :

• fournir (S10) :

▪ l’objet modélisé en 3D ; et
▪undécodeur appris par apprentissageautomatique qui est une fonction différentiable prenant des valeurs
dans un espace latent et fournissant en sortie des valeurs dans un espace d’objets modélisés en 3D ;

• définir (S30), par une interaction utilisateur graphique avec la représentation affichée de l’objetmodélisé en 3D,
une forme géométrique déformée de l’objet modélisé en 3D, la forme géométrique déformée définissant une
contrainte de déformation pour une partie de l’objet modélisé en 3D ;
• déterminer (S40) un vecteur latent optimal qui minimise une énergie, l’énergie explorant les vecteurs latents et
comprenant un terme qui pénalise, pour chaque vecteur latent exploré, le non-respect de la contrainte de
déformation par le résultat de l’application du décodeur au vecteur latent exploré ; et
• appliquer (S50) le décodeur au vecteur latent optimal,
dans lequel la contrainte de déformation définit une forme géométrique et le terme pénalise une disparité entre le
résultat de l’application du décodeur au vecteur latent exploré et la forme géométrique,
dans lequel la disparité implique une distance entre une dérivée du résultat de l’application du décodeur au
vecteur latent exploré et la forme géométrique, dans laquelle :

• la formegéométrique est définie dans unespace 3Det la dérivée est le résultat de l’application dudécodeur
au vecteur latent exploré ; ou
• la forme géométrique est définie dans un plan 2Det la dérivée est une projection du résultat de l’application
du décodeur au vecteur latent exploré,

dans lequel la disparité est une fonction monotone de la distance,
dans lequel l’objet modélisé en 3D est un maillage 3D et :

• lorsque la forme géométrique est définie dans un espace 3D et que la dérivée est le résultat de l’application
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du décodeur au vecteur latent exploré, le terme est du type :

où

▪ z est le vecteur latent exploré ;
▪ g(z) est le résultat de l’application du décodeur au vecteur latent exploré ;
▪ v1, v2, ..., vk sont les indices de k sommets de g(z) représentant la partie de l’objet modélisé en 3D ;
▪ M est une taille d’échantillonnage de l’objet modélisé en 3D ;
▪ p est une fonction non négative et non croissante ;
▪ y est la forme géométrique ; ou

• lorsque la forme géométrique est définie dans un plan 2D et que la dérivée est une projection du résultat de
l’application du décodeur au vecteur latent exploré, le terme est du type :

où

▪ z est le vecteur latent exploré ;
▪ M est une taille d’échantillonnage de l’objet modélisé en 3D ;
▪ S est un ensemble de coordonnées de pixels de la forme géométrique ;
▪ g(z) est le résultat de l’application du décodeur au vecteur latent exploré ; ▪ P est la projection,

dans lequel :

• lorsque la forme géométrique est définie dans un espace 3D, l’interaction utilisateur graphique qui définit la
contrainte de déformation consiste à définir la forme géométrique en cliquant ou en effleurant une partie de
l’objet modélisé 3D affiché et en déformant ladite partie par une opération de glisser-déposer, ou
• lorsque la forme géométrique est définie dans un plan 2D, l’interaction utilisateur graphique qui définit la
contrainte de déformation consiste à définir la forme géométriqueen dessinant graphiquement un dessin 2D
qui forme la forme géométrique.

2. Procédé selon la revendication 1, comprenant en outre le fait de :

• calculer (S60) une opération de déformation, du résultat de l’application du décodeur à la projection de l’objet
modélisé en 3D sur l’espace latent, au résultat de l’application (S50) du décodeur au vecteur latent optimisé ; et
• appliquer (S70) l’opération de déformation à l’objet modélisé en 3D.

3. Procédé selon l’une quelconque des revendications 1 à 2, dans lequel le décodeur appris par apprentissage
automatique est le décodeur d’un auto-encodeur qui comprend également un encodeur, et dans lequel la détermina-
tion (S40) du vecteur latent optimal récompense la similarité entre le résultat de l’application du décodeur au vecteur
latent exploré et l’objet modélisé en 3D.

4. Procédé selon la revendication 3, dans lequel la détermination (S40) du vecteur latent optimal est effectuée
itérativement, à partir d’un premier vecteur latent exploré qui est le résultat de l’application de l’encodeur à l’objet
modélisé en 3D.

5. Procédé selon la revendication 3 ou 4, dans lequel l’énergie comprend un autre terme qui récompense la similarité
entre le vecteur latent exploré et le résultat de l’application du codeur à l’objet modélisé en 3D.

6. Procédé selon la revendication 5, dans lequel l’autre terme implique une distance entre le vecteur latent exploré et le
résultat de l’application de l’encodeur à l’objet modélisé en 3D.
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7. Procédé selon l’une quelconque des revendications 1 à 6, dans lequel l’énergie comprend un autre terme qui
récompense une vraisemblance du vecteur latent exploré sur l’espace latent.

8. Programme informatique comprenant des instructions qui, lorsque le programme est exécuté par un ordinateur,
amènent l’ordinateur à mettre en œuvre le procédé selon l’une quelconque des revendications 1 à 7.

9. Support de stockage lisible par ordinateur sur lequel est enregistré le programme informatique selon la revendication
8.

10. Ordinateur comprenant un processeur couplé à une mémoire et à un écran, sur laquelle mémoire est enregistré le
programme informatique selon la revendication 8.
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