
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0171957 A1

HaveWala et al.

US 20090171957A1

(43) Pub. Date: Jul. 2, 2009

(54) METHOD AND SYSTEM OF APPLYING
POLICY ON SCREENED FILES

(75)

(73)

(21)

(22)

(62)

Inventors: Sarosh Cyrus Havewala,
Redmond, WA (US); Neal R.
Christiansen, Bellevue, WA (US);
Ran Kalach, Bellevue, WA (US);
Ravinder S. Thind, Kirkland, WA
(US); Jeremiah J. Moon,
Glenview, IL (US)

Correspondence Address:
MERCHANT & GOULD (MICROSOFT)
P.O. BOX 2903
MINNEAPOLIS, MN 55402-0903 (US)

Assignee:

Appl. No.:

Filed:

Microsoft Corporation, Redmond,
WA (US)

12/255,549

Oct. 21, 2008

Related U.S. Application Data

Division of application No. 10/999,537, filed on Nov.
30, 2004.

204

Yes
(member)

File in Group

begin (Filename)

Does
Filename

Match Any Non
Member Pattern in

ile Group(s

Does
Filename

atch Any Member
Pattern in File

Group(S)
2

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/6; 707/E17.014

(57) ABSTRACT

Described is a mechanism comprising a data screening filter
and user mode service that applies (enforces) policies regard
ing allowing or blocking file content of a directory, based on
matching the filename against patterns associated with that
directory. An administrator configures a screening policy,
Such as the types of files to allow in a particular directory and
the types of files to block. File groups of member patterns and
non-member exclusion patterns are defined and selectively
collected in directory screening objects (DSOs). A directory
screening object (DSO) is associated with a directory. When
an I/O create request specifying a filename and a target direc
tory is received, the filename is evaluated against the member/
non-member patterns in the file groups referenced by the
DSO for that directory to make for an allow or block policy
decision. If not matched, DSOs on parent directories are
evaluated upwards seeking a policy decision.

(non-member)

File Not in Group

US 2009/0171957 A1 Jul. 2, 2009 Sheet 1 of 7 Patent Application Publication

_ SWVH9OHd 8k NOILWOITddy ELLOWER!!

SETTIGION

Patent Application Publication

204

Yes

File in Group

(member)

Jul. 2, 2009 Sheet 2 of 7 US 2009/0171957 A1

FIG. 2

begin (Filename)

Does
Filename

Match Any Non
Member Pattern in

File Group(s)/(non-member)

Does
Filename

atch Any Member
Pattern in File

Group(S)

File Not in Group

Patent Application Publication Jul. 2, 2009 Sheet 3 of 7 US 2009/0171957 A1

300 N. FIG. 3

Set of POSSible
Members in File Group p

(e.g., *.mp) Sets of Possible non- Set of POSSible Files in
W Members in File Group Namespace (...)

(e.g., *.mpp, *.mpv)

Patent Application Publication Jul. 2, 2009 Sheet 4 of 7 US 2009/0171957 A1

432

FIG. 4 FG and
DSO

400 Data Store 430

\ 402
Storage Resource

Management Service

404

User AP
440 Kernel

DATA SCREEN
OBJECT

Block FG(s) {...}
- - - - - - - - - - - - - -

Allow FG(s) {...} Higher Filter(s) v.
w ut 80 viv i---

4O6 --
I/O Manager

s

442 420 sa.

FILE GROUP Data Screen Filter Filter Manager

Members {...} 1.
Non-Members {...}

File System

444
DRECTORY /
STRUCTURE

446

410

CD
424

Volume

MSC.

US 2009/0171957 A1 Jul. 2, 2009 Sheet 5 of 7 Patent Application Publication

US 2009/0171957 A1 Jul. 2, 2009 Sheet 6 of 7 Patent Application Publication

Patent Application Publication Jul. 2, 2009 Sheet 7 of 7

700

714.

Set Current Directory
= Parent Directory

begin (File Create+Path)

Set Current Directory =
Directory of File Create Request

702
Any

Data Screening
Object on Current

Directory?

704

Filename
a Member of AllOW

File Group
(FIG. 2)

Yes

Filename
a Member of Block

File Group
(FIG.2)

Ye

NO 710

712

Does
Directory Have

Parent? Yes

US 2009/0171957 A1

FIG. 7

708

S

Apply Blocking
olicy

Notify User Mode
Service

7's Cend D
No AllOW File On

Directory

Poli

US 2009/0171957 A1

METHOD AND SYSTEM OF APPLYING
POLICY ON SCREENED FILES

FIELD OF THE INVENTION

0001. The invention relates generally to computer sys
tems, and more particularly to computer files and storage.

BACKGROUND

0002 Computer system administrators want to control the
content that is stored on the computer systems (e.g., indi
vidual user's managed computers and network server shares)
for which they are responsible. There are many reasons for
needing control, including blocking certain types of files from
being saved, preventing wasted space, organizing files on
particular storage Volumes for convenience and possibly
security, and in general just knowing what is and what is not
present on a file system Volume.
0003 For example, an enterprise may not want its employ
ees to store large video files on shares on an enterprise server,
as this consumes space. Similarly, an enterprise may also
want to prevent storage of content such as music files that
potentially make the enterprise liable for copyright infringe
ment.

0004 An enterprise or group therein may want only cer
tain types of files on a network share, such as shared files used
in day-to-day work operations. With respect to knowing what
is on a storage Volume, an administrator may want to know
when certain files are added to the storage Volume, such as to
know when a user has installed (or even attempted to install)
an executable program on a managed computer that is Sup
posed to have a carefully-controlled set of executables.
0005. At present, there is no known way to control content
storage in Such various ways, other than by manually inspect
ing file storage, or applying a utility program to do so, some
time after those files have already been stored and possibly
used. While a utility could scan the file system and remove
files deemed undesirable or move files where they do belong,
doing so is time-consuming as well as after the fact. Such
post-storage approaches also would lead to situations in
which incorrectly named files or files inadvertently stored on
the wrong file share Suddenly disappear without the user
knowing what happened.
0006 What is needed is a mechanism for administrators to
control the content on computer systems and storage Volumes
according to a policy, in which the policy may be applied in
conjunction with the initial request to create a file (including
copying the file from elsewhere) or rename a file on a storage
volume. Such a mechanism should be sufficiently flexible for
administrators to handle the many possible situations that
may arise in a given computing environment.

SUMMARY OF THE INVENTION

0007 Briefly, the present invention is directed towards a
system and method by which the I/O requests issued by
programs are screened to determine whether to allow certain
file system-related operations (e.g., file creates) with respect
to individual directories in a directory hierarchy. For
example, based on a relationship between a filename pro
vided with a create request and pre-established pattern data,
certain files or types of files trigger policy, which may include
blocking that file from being created (or renamed to a blocked
name) on the target directory for which file creation has been

Jul. 2, 2009

requested. Instead of or in addition to blocking, additional
policy Such as writing an audit log record, or sending an
e-mail, may be applied.
0008. In one implementation, the administrator uses file
groups containing pattern data (sets of file namespace pat
terns which may include wildcards) arranged into member
patterns and/or non-member patterns (a list of exceptions to
member patterns). A file group is a logical classification of
files based on certain properties, such as the name and exten
sion of the file. For a given filename, membership of a file in
a file group is determined by establishing whether the file
name matches any of the non-member patterns; if so then the
file is not a member of the group. If not, the filename is
evaluated to determine whether it matches any of the member
patterns; if so, then the file is a member of the group. If there
is not a match with the non-member patterns or member
patterns, the file is not a member of the group. Thus, the
non-member list takes precedence over the member list,
enabling an administrator to grant file group membership to
certain categories of files yet specify exceptions to member
ship via the non-member patterns list.
0009 Via pattern data arranged within file groups, an
administrator applies policy to a directory based on whether a
given file is a member of a file group or set of file groups. To
tie the pattern data to a directory, a data screen object is used
as an association unit, in which the data screen object contains
lists of one or more file groups to associate with a directory,
and thereby defines the screening policy on a directory.
0010. A Data Screen Object is defined by a list of zero or
more “allow' file groups, and a list of Zero or more “block”
file groups. When a create request is received, the screening
decision for a file with respect to the target directory is deter
mined by establishing whether the file (based on the filename)
is a member of any of the “allow' file groups listed in the data
screen object on the directory; if so, a first policy is applied,
which is typically NULL policy, wherein the requested opera
tion is not considered a violation and the request is allowed to
proceed.
(0011. If the file is a member of any of the “block” file
groups of the data screen object on the directory, a second
policy is applied, typically corresponding to a violation.
Thus, on the same directory, allow takes precedence over
block, so that a data screen object enables the administrator to
block certain types of files in the directory, with the allow
overriding the blocking action for certain groups of files.
0012. If neither a member of an allow file group or a block

file group, the parent of the directory is checked for a data
screen object to look for policy to apply. If no policy is found,
the mechanism walks up the tree to the next parent directory
and so forth, looking for a data screen object that has an allow
or block match, until a policy is applied orthere is no parent.
If no parent, the allow policy (typically no action, thereby
allowing the request to proceed) is applied. Thus, Screening
policies on Sub-directories take precedence over parent direc
tories in an upward direction, whereby an administrator set a
screening policy on a directory and also set one on a Subdi
rectory to exclude the Sub-directory from Some screening
policy effective on its parent. The screening for a subdirectory
may be more restrictive.
0013. In one implementation, the screening mechanism
comprises a kernel mode data screen filter and a user-mode
storage resource management service. As computer programs
(e.g., user mode programs and kernel mode components
above the data screen filter) make file system-directed create

US 2009/0171957 A1

requests via API calls, corresponding I/O requests reach the
data screen filter. The data screen filter then processes the
request using data screen objects with their references to file
groups as described above to match filenames against patterns
for the directory, and if necessary for parent directories, until
a policy application is determined. In this manner, file creates
and other file I/O requests can be blocked by policy before
occurring, providing dynamic screening for content on a per
directory basis.
0014. Other advantages will become apparent from the
following detailed description when taken in conjunction
with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

0015 FIG. 1 is a block diagram generally representing a
computing environment into which the present invention may
be incorporated;
0016 FIG. 2 is a flow diagram generally representing
logic for determining whether a given filename is a member
or non-member of a file group, in accordance with various
aspects of the present invention;
0017 FIG. 3 is a representation for visualizing the con
cepts of a file group having a member set and a non-member
set in a file system namespace, in accordance with various
aspects of the present invention;
0018 FIG. 4 is a block diagram including a filter manager
architecture and components for applying per-directory
policy based on a filename versus pattern data, in accordance
with various aspects of the present invention;
0019 FIGS. 5 and 6 comprise representations of directory
structures, each structure having directory nodes with asso
ciated data screen objects that relate to file group patterns that
are used for determining whether to apply policy in accor
dance with various aspects of the present invention; and
0020 FIG. 7 is a flow diagram generally representing
logic for handling a request to create a file on a directory by
determining whether to apply policy, in accordance with vari
ous aspects of the present invention.

DETAILED DESCRIPTION

Exemplary Operating Environment

0021 FIG. 1 illustrates an example of a suitable comput
ing system environment 100 on which the invention may be
implemented. The computing system environment 100 is
only one example of a suitable computing environment and is
not intended to suggest any limitation as to the scope of use or
functionality of the invention. Neither should the computing
environment 100 be interpreted as having any dependency or
requirement relating to any one or combination of compo
nents illustrated in the exemplary operating environment 100.
0022. The invention is operational with numerous other
general purpose or special purpose computing system envi
ronments or configurations. Examples of well known com
puting systems, environments, and/or configurations that
may be suitable for use with the invention include, but are not
limited to: personal computers, server computers, hand-held
or laptop devices, tablet devices, multiprocessor systems,
microprocessor-based systems, set top boxes, programmable
consumer electronics, network PCs, minicomputers, main
frame computers, distributed computing environments that
include any of the above systems or devices, and the like.
0023 The invention may be described in the general con
text of computer-executable instructions, such as program

Jul. 2, 2009

modules, being executed by a computer. Generally, program
modules include routines, programs, objects, components,
data structures, and so forth, which perform particular tasks
or implement particular abstract data types. The invention
may also be practiced in distributed computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib
uted computing environment, program modules may be
located in local and/or remote computer storage media
including memory storage devices.
0024. With reference to FIG. 1, an exemplary system for
implementing the invention includes a general purpose com
puting device in the form of a computer 110. Components of
the computer 110 may include, but are not limited to, a pro
cessing unit 120, a system memory 130, and a system bus 121
that couples various system components including the system
memory to the processing unit 120. The system bus 121 may
be any of several types of bus structures including a memory
bus or memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include Indus
try Standard Architecture (ISA) bus, Micro Channel Archi
tecture (MCA) bus, Enhanced ISA (EISA) bus, Video Elec
tronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus also known as
Mezzanine bus.

0025. The computer 110 typically includes a variety of
computer-readable media. Computer-readable media can be
any available media that can be accessed by the computer 110
and includes both volatile and nonvolatile media, and remov
able and non-removable media. By way of example, and not
limitation, computer-readable media may comprise computer
storage media and communication media. Computer storage
media includes Volatile and nonvolatile, removable and non
removable media implemented in any method or technology
for storage of information Such as computer-readable instruc
tions, data structures, program modules or other data. Com
puter storage media includes, but is not limited to, RAM,
ROM, EEPROM, flash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can accessed by the computer 110. Communica
tion media typically embodies computer-readable instruc
tions, data structures, program modules or other data in a
modulated data signal Such as a carrier wave or other transport
mechanism and includes any information delivery media. The
term "modulated data signal” means a signal that has one or
more of its characteristics set or changed in Such a manner as
to encode information in the signal. By way of example, and
not limitation, communication media includes wired media
Such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared and other wire
less media. Combinations of the any of the above should also
be included within the scope of computer-readable media.
0026. The system memory 130 includes computer storage
media in the form of volatile and/or nonvolatile memory such
as read only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con
taining the basic routines that help to transfer information
between elements within computer 110, such as during start
up, is typically stored in ROM 131. RAM 132 typically con
tains data and/or program modules that are immediately

US 2009/0171957 A1

accessible to and/or presently being operated on by process
ing unit 120. By way of example, and not limitation, FIG. 1
illustrates operating system 134, application programs 135,
other program modules 136 and program data 137.
0027. The computer 110 may also include other remov
able/non-removable, Volatile/nonvolatile computer storage
media. By way of example only, FIG. 1 illustrates a hard disk
drive 141 that reads from or writes to non-removable, non
Volatile magnetic media, a magnetic disk drive 151 that reads
from or writes to a removable, nonvolatile magnetic disk 152,
and an optical disk drive 155 that reads from or writes to a
removable, nonvolatile optical disk 156 such as a CDROM or
other optical media. Other removable/non-removable, vola
tile/nonvolatile computer storage media that can be used in
the exemplary operating environment include, but are not
limited to, magnetic tape cassettes, flash memory cards, digi
tal versatile disks, digital video tape, solid state RAM, solid
state ROM, and the like. The hard disk drive 141 is typically
connected to the system bus 121 through a non-removable
memory interface Such as interface 140, and magnetic disk
drive 151 and optical disk drive 155 are typically connected to
the system bus 121 by a removable memory interface, such as
interface 150.

0028. The drives and their associated computer storage
media, described above and illustrated in FIG. 1, provide
storage of computer-readable instructions, data structures,
program modules and other data for the computer 110. In
FIG. 1, for example, hard disk drive 141 is illustrated as
Storing operating System 144, application programs 145.
other program modules 146 and program data 147. Note that
these components can either be the same as or different from
operating system 134, application programs 135, other pro
gram modules 136, and program data 137. Operating system
144, application programs 145, other program modules 146.
and program data 147 are given different numbers herein to
illustrate that, at a minimum, they are different copies. A user
may enter commands and information into the computer 110
through input devices such as a tablet, or electronic digitizer,
164, a microphone 163, a keyboard 162 and pointing device
161, commonly referred to as mouse, trackball or touchpad.
Other input devices not shown in FIG. 1 may include a joy
Stick, game pad, satellite dish, Scanner, or the like. These and
other input devices are often connected to the processing unit
120 through a user input interface 160 that is coupled to the
system bus, but may be connected by other interface and bus
structures, such as a parallel port, game port or a universal
serial bus (USB). A monitor 191 or other type of display
device is also connected to the system bus 121 via an inter
face, such as a video interface 190. The monitor 191 may also
be integrated with a touch-screen panel or the like. Note that
the monitor and/or touch screen panel can be physically
coupled to a housing in which the computing device 110 is
incorporated. Such as in a tablet-type personal computer. In
addition, computers such as the computing device 110 may
also include other peripheral output devices such as speakers
195 and printer 196, which may be connected through an
output peripheral interface 194 or the like.
0029. The computer 110 may operate in a networked envi
ronment using logical connections to one or more remote
computers, such as a remote computer 180. The remote com
puter 180 may be a personal computer, a server, a router, a
network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to the computer 110, although only a memory

Jul. 2, 2009

storage device 181 has been illustrated in FIG.1. The logical
connections depicted in FIG. 1 include a local area network
(LAN) 171 and a wide area network (WAN) 173, but may also
include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets and the Internet.

0030. When used in a LAN networking environment, the
computer 110 is connected to the LAN 171 through a network
interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over the
WAN 173, such as the Internet. The modem 172, which may
be internal or external, may be connected to the system bus
121 via the user input interface 160 or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored in the remote memory storage device. By way
of example, and not limitation, FIG. 1 illustrates remote
application programs 185 as residing on memory device 181.
It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between the computers may be used.

Data Screening

0031. The present invention is generally directed towards
a system and method by which the I/O requests issued by
computer programs are screened to determine whether to
allow certain file system-related operations (e.g., file creates)
with respect to individual directories in a directory hierarchy.
For example, based on a relationship between a filename
provided in association with the create request and pre-estab
lished pattern data, certain files or types of files trigger policy,
which may include blocking that file from being created (or
renamed to a blocked name) on the target directory for which
file creation has been requested. As will be understood, this is
accomplished by code that analyzes each Such request
dynamically, as it occurs, so that among other things, if policy
is to block a certain file's creation, the blocked file is never
created, eventemporarily, and the user can know immediately
that the file was not successfully created, as well as the reason.
0032. Thus, the present invention is primarily directed
towards evaluating a file system operation (e.g., a file create)
to determine whether based on the full path information asso
ciated with the file system request, (e.g., Volume, directory
path and filename or UNC path), policy is applied (e.g.,
blocking creation of that file in the directory on which cre
ation is requested). However, as will be understood, the
present invention is not limited to blocking file creation or
renames, but can apply other policy in addition to blocking or
instead of blocking. For example, the creation may be
allowed to occur, but as determined by policy, some other
action may be taken, e.g., the create event may be logged such
as to an audit file, a message may be sent (e.g., to the system
administrator), and so forth. Policy that blocks file creation
also may cause additional policy to be applied. Further, the
present invention is not limited to applying policy only on
create or rename requests, but can apply policy on other types
of file system requests; different policies may apply to differ
ent types of requests, and different policies may apply
depending on the evaluation result. Thus, although the
examples herein are primarily directed towards applying
policy or not with respect to file creation/renaming request

US 2009/0171957 A1

based on evaluation of a filename and the directory informa
tion accompanying the request, it is understood that these are
only examples.
0033. As will be also understood, numerous ways to
implement the present invention are feasible, and only some
of the alternatives are described herein. For example, the
present invention is primarily described below with reference
to I/O request packets (IRPs) that pass through a set of filter
drivers, in which the IRP passing may be controlled by a filter
manager via pre-callbacks and post-callbacks. However, the
present invention may alternatively be implemented in an
arrangement in which the passing may be through a stack of
filter drivers, sequentially from one filter driver to the next,
and/or in the file system itself. Moreover, the program having
its I/Os evaluated may be writing to one or more local file
system Volumes and/or to one or more network servers, and
each may have different directory structures and associated
policy-related data. Notwithstanding, other types of filter
driver arrangements, I/O passing and/or storage options are
feasible. For example, the present invention may be config
ured to work in an architecture where requests are not passed
as IRPs, but in some other format. As such, the present inven
tion is not limited to any particular examples used herein, but
rather may be used various ways that provide benefits and
advantages in computing in general.
0034. In order to configure the I/O subsystem to determine
what policy, if any, should be applied, the administrator needs
a way to distinguish various types of filenames from one
another. Although the administrator could individually list
each filename for which policy would be applied, this would
be time-consuming and highly inefficient, as frequently it is
types of files, as denoted by their file extension, to which an
administrator wants policy applied. To this end, a data screen
pattern, or simply a pattern for short, defines a set of filenames
(pattern data) that can be compared against a requested file
name. In one implementation, pattern data may include file
names specified in the form of a wildcard (such as “”or “?),
e.g., *.exe will identify any file with an .exe extension, the
well-known extension for executable files. Note that *.ex? is
a pattern which *.exe executable files match, as do files of
type *.exa, *.exb. *.ex2 and the like, essentially representing
a three-character filename extension that substitutes any third
alphanumeric character (or other suitable character) that is a
valid character for filenames for the “?' wildcard.

0035 Although the availability to use wildcards in pattern
data is efficient, wildcards are not required in the present
invention, as other alternatives including individual filename
listings and/or ranges of files/extensions (such as file exten
sions mp0 through mp9 inclusive) may be used to specify
files. Notwithstanding, wildcards are described herein as one
suitable mechanism for identifying files, because of their
efficiency in allowing administrators to identify entire types
of files at once, and because the usage and handling of wild
cards is a well established and understood part of file system
technology. Further, wildcard use is optional in that even with
wildcard availability, an entire filename and/or extension
without wildcards may be used instead, meaning that listing
individual files is still an option. Note that while the present
invention is primarily described with reference to file types as
recognized by their extensions, any Suitable part or all of a
filename may correspond to a pattern. Thus, with wildcards,
several thousand files that range from a2..text to a999999.txt
may be simply represented in pattern data by a .txt, demon
strating another advantage of wildcards.

Jul. 2, 2009

0036 Because wildcards can encompass more files and
file type than desired, one implementation uses the concept of
maintaining various sets of pattern data in file groups,
wherein a file group is a logical classification of files based on
certain properties, e.g., the name and extension of the file.
Each file group contains a list of Zero or more member pat
terns corresponding to filenames to include as part of the
group, and/or a list a Zero or more non-members patterns,
comprising a list of exceptions to the member patterns. As
described below, non-members override and thus exclude
filenames that may be otherwise identified by a pattern in the
member group.
0037. By way of example, consider a file group of music
type files defined by member pattern(s) of *.mp and non
member patterns of *.mpp and *.mpV. Any music files, such
as one named mySong.mp3, is considered a member of the
group, whereas a project file named myproject.mpp is con
sidered a non-member, as would any files that do not match
the member pattern at all, e.g., myspreadsh.xls. This result
occurs because the default is that a file is a non-member
unless listed as a member, with an exception non-member list
that takes precedence over the member list. This allows an
administrator to grant file group membership to one or more
certain categories of files, and then specify exceptions to
membership granted by the member patterns list, with com
pletely unrelated files (of course) not being considered as
members. Note that it is essentially equivalent, although
Somewhat less intuitive, to do this in reverse, e.g., start with
every file being a member unless specified as a non-member,
and then specify exceptions that make files members within
the non-member set.
0038 FIG. 2 shows example logic for determining
whether a given filename is within a given file group or set of
file groups. As can be seen, Step 202 first looks for non
member exclusions. If the filename fits into any non-member
pattern, (there may be from Zero to any practical number of
non-member patterns), the file is excluded from that group,
and an indication provided (e.g., FALSE) as appropriate via
step 206. Note that the exclusion is immediate, regardless of
whether any non-member patterns remain to be evaluated and
regardless of the member patterns, because matching any one
non-member pattern is sufficient to exclude the file from the
file group, and exclusions override inclusions in a member
group.
0039 Returning to step 204, if no match is found using the
non-member patterns (including if there are Zero non-mem
ber patterns), step 202 instead branches to step 204, where an
evaluation of the filename is performed against the member
patterns in the file group or set of file groups. If the filename
fits into any member pattern, (there may be from Zero to any
practical number of member patterns), the file is immediately
considered to be a member of that group regardless of
whether any member patterns remain to be evaluated, (since
the file group is essentially a union of patterns), and an indi
cation (e.g., TRUE) provided as appropriate via step 204.
0040. If step 204 cannot locate a matching member pat
tern, (which includes when the member set is a NULL set),
the file is not in the group, and thus step 204 branches to step
206 where a “not-in-group' indication is provided (e.g.,
FALSE) as appropriate.
0041. The patterns in a file group or set of file groups may
be arranged in any order, such as sorted for efficiency, e.g.,
patterns believed (or measured in some way) to correspond to
more common types of filenames may be arranged to be

US 2009/0171957 A1

evaluated first. The file groups can also be ordered within the
data screening object, Such as for similar purposes. Note that
file groups may be used for other applications that operate
based on file classification.
0042 FIG. 3 is a representation (not to any scale) to help
visualize via namespaces the members and non-members in a
file group. In general, all files (*.*) are not members of a given
file group unless listed in the file group. A file group. Such as
the music-related file group that had mp as a pattern in its
member list, defines a set of files within the possible file
namespace. This is represented in FIG. 3 by the smaller
non-shaded area (the member list namespace) within the
large shaded area (the total possible namespace). Within the
member area are the non-member exclusions, comprising the
namespaces represented by the Smaller shaded areas. AS is
readily apparent from FIG. 3, the only files that remain in the
member file group namespace are those in the non-shaded
area. As seen in FIG. 2, described above, if a file falls into the
Small shaded areas, it is immediately not in the group; if not
within such an exception area, the file is then tested for
whetherit falls in the remaining non-shaded area; only if so is
the file within the file group.
0043. Via pattern data arranged within file groups, an
administrator can now apply policy based on whether a given
file is a member of a file group or set of file groups. To tie
pattern data to a directory, a data screen object is used as an
association unit, in which the data screen object contains lists
of one or more file groups to associate with a directory, and
thereby defines the screening policy on a directory. In one
implementation, each directory may have only one data
screen object (DSO), but in alternative implementations, a
directory may have multiple data screen objects, which may
all apply or selectively apply, e.g., possibly different ones for
different categories of users/usergroups, different ones for
different types of evaluations (e.g., a file create request has
one and a file read request has another) and so on. For pur
poses of simplicity, an implementation having only one data
screen object per directory will be described herein.
0044 As described below, a data screen object is defined
by a list of Zero or more “allow' file groups and a list of Zero
or more “block” file groups. Note that the terms “block” and
“allow comes from the likelihood that the most typical
policy decision will be to block or allow file creation,
although as described below actual blocking of a file create is
not required when applying "blocking policy.
0045. In addition to the file group information, it is also
feasible to put different policy information in each data screen
object and thereby have differing policies apply to different
directories depending on its associated data screen object,
however for purposes of simplicity, the policy will be the
same for all directories. Further, note that it is feasible to have
the data screening objects be set up with the member and
non-member pattern lists directly, rather than indirectly via
references to the file groups that contain those lists, however
the use of file groups provides administrators with flexibility
and ease of use, as well as the include with exclude override.
Note that after setup, when needed in actual operation, the
data screen object in-memory structure may indeed contain
the (e.g., unioned) member and non-member pattern lists
directly, pre-processed into the block and allow lists, rather
than containing references to file groups, such as for purposes
of efficiency. For purposes of explanation herein, the present
invention will be described with data screen objects that con
tain reference(s) to file group(s).

Jul. 2, 2009

0046. In operation, the data screen objects and file groups
are used to determine whether to apply policy when a relevant
file-system related request is received, such as a request to
create a given file on a given directory. As is known, Such a
request contains information (e.g., a full path) from which the
desired directory and desired file are identifiable. FIG. 4
shows an architecture in which a filter driver evaluates such a
request in accordance with various aspects of the present
invention. In general, a filter driver (or simply “filter') is
software code that is able to inspect and possibly modify data
sent to or received from a file system. For example, an anti
virus filter driver may look for virus signatures, a quota filter
driver may watch a user's disk space consumption, an encryp
tion filter driver may encrypt data on its way to the file system
and decrypt it on the way back, and so forth.
0047. As represented in FIG. 4, one exemplary arrange
ment 400 of components of a system is provided into which
the present invention may be incorporated via a filter driver.
The components include one or more user-mode (e.g., appli
cation or shell) programs 402, a set of application program
ming interfaces (APIs) 404, an input/output (I/O) manager
406, a filter manger 408, a file system 410, storage volume
412, and filters 420-422. As is generally known with filter
drivers, there may be any number (including Zero) of higher
level filters 420 and/or lower-level filters 422 installed rela
tive to another driver in any given implementation. Note that
the present invention may work with multiple file systems
and/or multiple storage Volumes, as long as the directory
structure and data screening object associations are known for
each volume, however for purpose of simplicity, FIG. 4 shows
one file system 410 and one storage Volume 424, which may
be local or remote.

0048. In accordance with an aspect of the present inven
tion, two components shown in FIG. 4 are directed towards
evaluating file system create requests received as I/OS to
determine whether policy is to be applied to those requests.
These components include a user-mode storage resource
management service 430 and one of the filter drivers, namely
the data screen filter 421. For various purposes described
below, the user-mode storage resource management service
430 has an associated data store 432 containing file group
(FG) information and data screen object (DSO) information,
(although the data screen filter 421 may persist this informa
tion instead). A user interface (not shown) or the like allows
administrators to maintain the data store 432 as necessary.
0049. As will be understood, the separation of the data
screen filter 421 and storage resource management service
430 is for convenience and efficiency in this architecture, and
the division in structure and/or functionality between them is
Somewhat arbitrary except that in general, kernel-mode com
ponents are generally written to be highly efficient and as
straightforward as possible to avoid potential errors. Thus,
although it is understood that essentially all of the present
invention's screening operations may be implemented in the
filter driver component 421, having some of the work per
formed in the user-mode component 430 provides certain
advantages and benefits, and thus is used in environments
where some communication channel exists between the user
mode component 430 and the kernel-mode component 421.
Notwithstanding, it is feasible to implement a filter driver that
is installed and configured, such as following system boot or
on demand, that obtains the data needed to screen I/Os and
apply policy until halted in Some manner.

US 2009/0171957 A1

0050. User-mode computer programs 402 often make file
system-directed create requests via API calls through the API
set 404 to the I/O manager 406, such as when creating a new
file or copying or moving an existing file from another storage
location. In general, the I/O manager 406 may determine
what I/O request or requests should be issued to fulfill each
program request, and sends the corresponding request or
requests to the filter manager 408. In the example implemen
tation described herein, the I/O manager sends requests in the
form of an I/O request packet, or IRP. The I/O manager 404
also returns status codes and/or data to the user-mode pro
grams 402 in response to the API calls. Note that kernel mode
components can also make file-system directed I/O requests,
and thus the data screen filter 421 may receive IRPs initiated
by kernel mode components that are above the data screen
filter, as well as receive IRPs corresponding to file-system
directed requests initiated by user-mode programs.
0051. In one implementation, described in U.S. patent
application Ser. No. 10/315,384, filter drivers may register
(e.g., during an initialization procedure) with a registration
mechanism with the filter manager 408. For efficiency, each
filter driver typically will only register for file system requests
in which it may be interested in processing. To this end, as part
of registration, each filter driver notifies the filter manager
408 of the types of I/O requests in which it is interested (e.g.,
create, read, write, close, rename, and so forth). For example,
an encryption filter driver may register for read and write
I/Os, but not for others wherein data does not need to be
encrypted or decrypted. Similarly, a quota filter driver may be
interested only in object creates and object writes.
0052. In the current example described herein in which the

filter driver 421 wants to screen newly created or renamed
files, the data screening filter driver registers for any I/O
request that creates or renames a file on a directory. Note that
the opening of an existing file may cause policy to be applied,
however if the policy blocked the opening of the file, in one
implementation the file could not be deleted if the open was
blocked because an open is necessary to delete the file, and
thus opens are not blocked. Notwithstanding, with the present
invention, policy may be applied per directory for files with
respect to any type of file system-directed request, including
opens, reads, writes, deletes, closes and so forth.
0053. In addition to specifying the types of I/O requests in
which it is interested, a filter driver may further specify
whether the filter driver should be notified for pre-callbacks
and post callbacks for each of the types of I/O. A pre-callback
is called as data associated with an I/O request propagates
from the I/O manager 406 towards the file system 410, while
a post-callback is called during the completion of the I/O
request as data associated with the I/O request propagates
from the file system 410 towards the I/O manager 406. During
pre-callback, a filter driver can opt out of receiving a post
callback for a particular IRP even if it is generally registered
for those types of IRPs. In general, the filter manager 408
receives IRPs from the I/O manager 406 and sequentially
passes data associated with that IRP to each filter driver
registered for that type of request, in an order that generally
depends on whether and how the filter driver modifies the data
or not, e.g., an antivirus filter driver should come before an
encryption filter driver for data on its way to the file system so
that the antivirus filter driver can see the data in its unen
crypted form.
0054 As described below, for efficient operation, the filter
driver 421 may store a needed amount of data in memory so

Jul. 2, 2009

that it does not need to communicate with user mode code to
retrieve regularly-needed data. In one implementation, the
data maintained by the filter driver is primarily provided to it
by the user-mode storage resource management service 430.
To this end, the user-mode storage resource management
service 430 and the corresponding filter driver 421 have a
communication channel, e.g., the filter manager 408 recog
nizes and appropriately routes Such communications, which
are thus essentially private. This communication channel is
represented in FIG. 4 by the relatively-wide gray arrow; note
that this channel may be protected Such that administrator
level privileges are required to communicate over it.
0055. In the present example in which the filter driver 421

is evaluating create requests on a per-directory basis, the filter
driver obtains the data screening objects 440 and file groups
442, as well as a representation (e.g., a set of nodes) of the
current Volume's directory structure 444, which also contains
information indicating which directories are associated with
which data screening objects; a given directory need not have
any association. The data screen filter 421 then has knowl
edge of the data screen object for each directory (e.g., node)
of the directory structure, and the data screen objects in turn
tie the file groups to the directory, whereby that the filter 421
can begin its filtering operation. Miscellaneous working data
446 is also shown, Such as for storing some policy-related
data (e.g., actually block on a policy violation or not). In
keeping with the present invention, with this information, the
data screen filter 421 may evaluate file-system requests (such
as create requests) against membership information, on a
per-directory basis, and thereby produce a policy-related
result.

0056 FIGS. 5 and 6 show example directory structures
(for different volumes) with data screen objects associated
with administrator-selected directories, whereinas described
above, the data screen objects contain references to file
groups that in turn contain the member and/or non-member
patterns. Thus, in FIG. 5, it is seen that an administrator has
set one data screen object DSO1 to be associated with a
“Users' directory, and another data screen object DSO2 to be
associated with a particular user directory, U3. Different data
screen objects (e.g., DSO1 and DSO2) can both contain ref
erences to a common file group (e.g., MusicFG), and
although not readily apparent from FIG. 5, an administrator
can reuse data screen objects among different directories. In
FIG. 6, it is seen that that an administrator has set a data screen
object DSO4 to be associated with a “Shared Files' directory,
another data screen object DSO3 to be associated with a
particular directory, Spreadsheets, and another data screen
object DSO11 to be associated with a particular directory,
WordDocs. The evaluation of a filename using the data screen
objects is described below with reference to FIG. 7.
0057 Returning to FIG.4, in a typical configuration, the

filter driver 421 may be configured to block file creation on a
particular directory for a given file, which it can do by stop
ping the I/O request (e.g., during the pre-callback phase), and
may instruct the filter manager 408 to report a status code
(e.g., failure) for the I/O request. As described below, the filter
driver 421 will also notify the user-mode storage resource
management service 430 anytime policy is deemed to apply,
so that the user-mode storage resource management service
430 may apply the policy (or additional policy). The notifi
cation may include identification as to which data screening
object, directory and/or filename caused the policy violation,
so that the user mode service 430 has this knowledge. Note

US 2009/0171957 A1

that for efficiency, rather than waiting for instructions from
the user mode code 430, the data screen filter 421 may be
instructed in advance whether to block file creation when a
file is found to be a member of a blocked file group (as well as
notify the storage resource management service 430), or
allow the file creation and only notify. As described above,
Such policy data may be provided during initialization, and is
typically for all directories but may be per directory if pro
vided (e.g., within the directory structure 444), or per data
screen object (e.g., if provided within the data screen object).
0058. To determine whether to apply policy when a file
create request is received (the full path is essentially identi
fiable via the request), FIG. 7 shows example logic used by
the data screen filter 421, beginning at step 700 where the
target directory in which the file create is being requested
(typically but not necessarily a subdirectory in the directory
tree) is located and set as the current directory.
0059 Step 702 evaluates whether this current directory
has a data screening object associated with it, e.g., found via
the directory structure 444. If not, then this directory is not
directly subject to policy, however it may inherit policy from
a higher parent directory, and thus step 702 branches to step
712 to essentially walk up the directory tree until some policy
is found that either allows the file or blocks the file, or the root
is reached without any policy to apply.
0060. If instead at step 702 there is a data screening object,
then its file group or file groups need to be evaluated against
the filename to determine whether policy is to be applied to
this particular file. First, the allow file groups are tested,
generally using the logic of FIG. 2 to determine if there is
membership in an allow file group, because if specifically
allowed by being a member of any allow file group(s) listed in
the data screen object associated with the current directory,
the requested operation is deemed to not be a violation of
policy. In this event, step 704 branches to step 716 where the
allow “policy” is applied, (in this example, there is no allow
policy other than to do nothing, which is equivalent to apolicy
of NULL), whereby the file is allowed to be created on the
target directory as originally requested. Note that in alterna
tive implementations, there may be an allow policy that actu
ally performs some action at step 716, whether in the driver or
by a notification to the user mode service 420; for example,
the file creation may be still conditional on Some other policy,
e.g., allow the create if the file size is less than 10 MB,
otherwise block creation. Further, note that creation may be
prevented for another reason, such as prevented in another
driver or the file system, and thus “allow” as used in this
context means allow the request to proceed further.
0061. If instead at step 704 the file name is not a member
of an allow group (or there are no allow groups, which essen
tially means the same thing), step 704 branches to step 706 to
evaluate the filename against the “block file group or groups
listed in the data screen object. If at step 706 the file is a
member of any block file group(s) of the data screen object for
the current directory, the operation is a violation of policy, and
step 706 branches to step 708 where any blocking policy that
the driver 421 can apply is applied (e.g., the file create is
blocked), followed by step 710 where the user mode service
is notified of the policy violation.
0062. In the event that the filename was not a member of
either the allow file group(s) or block file group(s), then the
parent directory, if the current directory is not already the
root, needs to be evaluated. This is because policy screening
decisions associated with a directory apply to that directory as

Jul. 2, 2009

well as any subdirectories, unless overridden by policy at the
subdirectory. Steps 712 and 714 are repeated as necessary to
walk up the tree towards the root looking for a data screening
object that will result in a decision, until one is found or there
is no parent because the current directory is already at the root
directory.
0063 As can be understood from FIG.7, by starting at the
target directory that the file request has specified and walking
up as necessary, screening policies on lower directories take
precedence over their parent directories. This allows an
administrator to set a screening policy on a directory, and also
set one on a Subdirectory, while giving the Subdirectory policy
precedence. This is generally because a Subdirectory is fre
quently a narrower Subset of a parent, and thus may require an
exception to a general rule for a parent. In other words, this
semantic allows an administrator to exclude a Subdirectory
from Some screening policy effective on its parent. It also
allows the administrator to set up more restrictive screening
on a Subdirectory.
0064 Moreover, by evaluating for an allow result before a
block result on the same directory, membership in an allow
file group takes precedence over membership in a block file
group. This is because the default behavior in a directory is to
allow all files, whereas a data screen object allows the admin
istrator to block certain types of files in the directory. Thus
“allow' may be used to override the blocking action for
certain groups of files. Note that again, it would be largely
equivalent to do this in reverse.
0065 FIG. 5 shows how allowing and blocking works in
an example directory. In FIG. 5, the administrator has essen
tially set up the directory and data screen objects so that music
file group files and picture file group files are blocked from
users, unless there is an exception set. This is accomplished
by setting DSO1 up with two block file groups, one for music
file membership (e.g., *.mp3) and one for picture file group
membership (e.g., *.jpg or *.bmp). These lists have been kept
small for purposes of this example, however other music files
and picture files may be listed in a given group, and moreover,
a larger file group may be defined that contains both pictures
and music files in a single member list. Note that administra
tors may be provided with sets of data screen objects and/or
file groups in advance for common types of issues, whereby
an administrator need not start from Scratch.

0066. As can be seen by following the logic of FIG. 7 and
FIG. 2, a file named X.mp3 will violate policy (e.g., be
blocked) if an attempt is made to create the file in the U2
directory. This is because while the U2 directory does not
have an associated data screen object, a higher parent (Users)
does, and a *.mp3 file is a member of the music file group
MusicFG, which is blocked by the block list in the directory
screen object DSO1. However, X.mpp does not violate
policy, because it is not a member of the music file group
MusicFG due to the file extension listed as a non-member.
0067. A different user, corresponding to the U3 directory,
will get different results with respect to music files. For
example considera user that needs to work with music files as
part of his or her job; in such a situation the administrator will
make an exception. To this end, the administrator sets a data
screen object DSO2 which has the music file group MusicFG
on its allow list. Because directly allowed, X.mp3 will not
have blocking policy applied. However, there is no Such
exception for pictures, and thus an attempt to create Y.jpg in
the same directory will fail because of DSO1, which also lists
the picture file group PictureFG in its block list. Thus, as can

US 2009/0171957 A1

be seen from FIG. 5, administrators have the ability to easily
apply policy to select file types (or even individual files) on a
per directory basis based on file group memberships, with the
policy applied down the directory tree; allow exceptions can
be made as desired.
0068 FIG. 6 shows another example way in which the
highly-flexible mechanisms of the present invention produce
a desirable result. In FIG. 6, the administrator wants to restrict
a directory named Shared Files to having only certain types of
files in directories under it, namely word processing files
(*.doc) and spreadsheet files (*.xls, *.123 and possibly others
not shown as indicated by the ellipsis). In this example, Such
files also need to be created in their respective directories.
0069. To accomplish this, the administrator simply blocks

all files on the Shared Files directory via the data screening
object DSO4, and then makes exceptions for its subdirecto
ries via DSO3 and DSO11, as should be readily apparent in
FIG. 6. Because files are evaluated for policy violations walk
ing up the tree, document file creation requests with the
proper filename made to the proper corresponding directory
do not violate policy, while all others do.
0070. It should be noted that if only creation and renaming

is prevented, pre-existing files will still existand be opened on
a directory. These can be allowed to stay or be cleaned up in
Some other manner.
0071. Further, with the example implementation
described herein, even the administrator is blocked from
overriding the policy, unless the administrator removes the
screening object or objects that apply the policy. However, in
an alternative arrangement, different directory screening
objects (or none instead of one) may be selected by the filter
driver 421 based on the credentials of the requesting entity,
whereby an administrator can have different rules for differ
ent users and groups, including the administrators group. To
this end, the user information would be used to see if there
was data screening object for that user at the current directory
(at a modified step 702), and if so, to use the file groups of that
particular per-user data screening object as needed at similar
steps 702 and/or 704. Note that user information is already
known to the filter driver stack via the IRP. (an indeed is used
in other scenarios such as by per-user quota filter drivers).
0072. As can be seen from the foregoing detailed descrip

tion, there is provided a method and system that applies policy
as specified for user mode I/O requests, such as to allow or
block create file requests, based on a directory identity and a
filename. The use of data screen objects and file groups makes
it easy for administrators to apply policy to individual direc
tories and thus control the content of storage Volumes.
0073 While the invention is susceptible to various modi
fications and alternative constructions, certain illustrated
embodiments thereof are shown in the drawings and have
been described above in detail. It should be understood, how
ever, that there is no intention to limit the invention to the
specific forms disclosed, but on the contrary, the intention is
to cover all modifications, alternative constructions, and
equivalents falling within the spirit and scope of the inven
tion.

1. In a computing environment, a system comprising:
a data screen mechanism that receives an I/O request

directed towards a file in a target directory of a file
system Volume, the I/O request containing information
corresponding to the filename and the target directory;

a set of one or more data screening objects, each data
screening object associated with a directory of the file

Jul. 2, 2009

system Volume and having information corresponding
to pattern data that relates to filenames; and

the data screen mechanism determining based on the target
directory whether a data screening object applies to the
I/O request, and if so, evaluating the filename corre
sponding to the I/O request against the pattern data to
determine policy application based on a relationship
between the filename and the pattern data.

2. The system of claim 1 further comprising a set of at least
one file group, each file group containing pattern data, and
wherein the information corresponding to the pattern data in
the data screening object comprises a reference to at least one
file group in the set.

3. The system of claim 2 wherein each file group includes
a first field for member patterns and a second field for non
member patterns.

4. The system of claim3 wherein the filename is a member
of a group when the filename does not fit a pattern in the
second field and fits a pattern in the first field.

5. The system of claim 4 wherein the data screen mecha
nism determines policy application based on a relationship
between the filename and the pattern data by determining
whether the filename is a member of a group.

6. The system of claim 5 wherein the data screening object
contains a first field for listing a first set of Zero or more file
groups and corresponding to a first policy, and a second field
for listing a second set of Zero or more file groups correspond
ing to a second policy, and wherein the data screen mecha
nism applies the first policy if the filename is a member of any
file group in the first field and applies the second policy if the
filename is a member of any file group in the second field.

7. The system of claim 6 wherein the first field corresponds
to an allow policy and the second field corresponds to a block
policy, and wherein the allow policy overrides the block
policy.

8. The system of claim 6 wherein the filename is neither a
member of any file group in the first field nor a member of any
file group in the second field, and wherein the data screen
mechanism determines whether a data screening object
applies to the I/O request by looking for another data screen
ing object associated with at least one parent directory of the
target directory.

9. The system of claim 1 wherein the data screen mecha
nism comprises a filter driver.

10. The system of claim 9 further comprising a user mode
service coupled for communication with the data screen
mechanism, the data screen mechanism configured to provide
a notification to the user mode service upon at least one type
of policy application.

11. In a computing environment, a method comprising:
associating pattern data corresponding to a set of one or
more namespaces with a directory;

receiving an I/O request, the request I/O including data
corresponding to a filename and a target directory; and

determining whether the filename relates to the pattern
data, and if so, determining a policy to apply based on
the relationship of the filename to that pattern.

12. The method of claim 11 wherein the pattern data
includes at least one pattern having a wildcard.

13. The method of claim 11 wherein associating the pattern
data with the directory comprises associating a data screen
object containing information corresponding to the pattern
data with the directory.

US 2009/0171957 A1

14. The method of claim 13 wherein the data screen object
includes a first and second data fields, with at least one field
containing information corresponding to at least some of the
pattern data.

15. The method of claim 14 wherein the information cor
responding to at least Some of the pattern data comprises at
least one reference to the pattern data.

16. The method of claim 14 wherein the first field corre
sponds to a first policy and the second field corresponds to a
second policy.

17. The method of claim 16 wherein the first field corre
sponds to an allow policy and the second field corresponds to
a block policy, and wherein determining the policy to apply
comprises evaluating the first field for pattern data to attempt
to obtain a policy result before evaluating the second field for
pattern data.

18. The method of claim 11 wherein determining whether
the filename relates to the pattern data comprises determining
whether the filename fits any pattern data for the target direc
tory, and if so, applying a policy.

19. The method of claim 18 wherein determining whether
the filename fits any pattern data for the target directory

Jul. 2, 2009

comprises determining whether a data screen object is asso
ciated with the target directory.

20. The method of claim 18 wherein a data screen object is
associated with the target directory and contains a first field
for one policy and a second field for another policy, each field
arranged to contain information corresponding to file group
data in which any file group contains at least Some of the
pattern data, and wherein determining whether the filename
relates to the pattern data comprises determining whether the
filename is a member of a file group.

21. The method of claim 20 wherein each file group con
tains a data field for member patterns and a data field for
non-member patterns, and wherein determining whether the
filename is a member of a file group comprises evaluating the
filename against any non-member patterns before evaluating
the filename against any member patterns, wherein when the
filename is not a member of the group if it fits any non
member pattern or does not fit any member pattern.

23-39. (canceled)

