Title: BENZONAPHTHYRIDINE-N-OXIDES COMPRISING A PDE3 AND PDE4 INHIBITING ACTIVITY

Bezeichnung: BENZONAPHTHYRIDIN-N-OXIDE MIT PDE3 UND PDE4 INHIBIERENDER AKTIVITÄT

Abstract

Compounds of formula (I), wherein R1, R2, R3 and R4 have the meanings cited in the description, are novel active bronchial therapeutic agents.

Zusammenfassung

Verbindungen der Formel (I), worin R1, R2, R3 und R4 die in der Beschreibung angegebenen Bedeutungen haben, sind neue wirksame Bronchialtherapeutika.
LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

<table>
<thead>
<tr>
<th>ISO 3166-1 alpha-2</th>
<th>Landesbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albanien</td>
</tr>
<tr>
<td>AM</td>
<td>Armenien</td>
</tr>
<tr>
<td>AT</td>
<td>Österreich</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
</tr>
<tr>
<td>AZ</td>
<td>Aserbaidschan</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnien-Herzegowina</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
</tr>
<tr>
<td>CF</td>
<td>Zentralafrikanische Republik</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
</tr>
<tr>
<td>CU</td>
<td>Kuba</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
</tr>
<tr>
<td>EE</td>
<td>Estland</td>
</tr>
<tr>
<td>ES</td>
<td>Spanien</td>
</tr>
<tr>
<td>FI</td>
<td>Finnland</td>
</tr>
<tr>
<td>FR</td>
<td>Frankreich</td>
</tr>
<tr>
<td>GA</td>
<td>Gabun</td>
</tr>
<tr>
<td>GB</td>
<td>Vereinigtes Königreich</td>
</tr>
<tr>
<td>GE</td>
<td>Georgien</td>
</tr>
<tr>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>GR</td>
<td>Griechenland</td>
</tr>
<tr>
<td>HU</td>
<td>Ungarn</td>
</tr>
<tr>
<td>IE</td>
<td>Irland</td>
</tr>
<tr>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>IS</td>
<td>Island</td>
</tr>
<tr>
<td>IT</td>
<td>Italien</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KE</td>
<td>Kenia</td>
</tr>
<tr>
<td>KG</td>
<td>Kasachstan</td>
</tr>
<tr>
<td>KP</td>
<td>Demokratische Volksrepublik</td>
</tr>
<tr>
<td>KR</td>
<td>Republik Korea</td>
</tr>
<tr>
<td>KZ</td>
<td>Kasachstan</td>
</tr>
<tr>
<td>LC</td>
<td>St. Lucia</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>LT</td>
<td>Litauen</td>
</tr>
<tr>
<td>LU</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>LV</td>
<td>Lettland</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MD</td>
<td>Republik Moldau</td>
</tr>
<tr>
<td>MG</td>
<td>Madagaskar</td>
</tr>
<tr>
<td>MK</td>
<td>Die ehemalige jugoslawische Republik Macedoniens</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolei</td>
</tr>
<tr>
<td>MR</td>
<td>Mauretanien</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>MX</td>
<td>Mexiko</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Niederlande</td>
</tr>
<tr>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>NZ</td>
<td>Neuseeland</td>
</tr>
<tr>
<td>PL</td>
<td>Polen</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Rumänien</td>
</tr>
<tr>
<td>RU</td>
<td>Russische Föderation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>SG</td>
<td>Singapur</td>
</tr>
<tr>
<td>SI</td>
<td>Slowenien</td>
</tr>
<tr>
<td>SK</td>
<td>Slowakei</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swasiland</td>
</tr>
<tr>
<td>TD</td>
<td>Tschad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tadschikistan</td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>TR</td>
<td>Türkei</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad und Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>UK</td>
<td>Vereinigte Staaten von Afrika</td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>UZ</td>
<td>Usbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
</tr>
<tr>
<td>YU</td>
<td>Jugoslawien</td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
BENZONAPHTHYRIDIN-N-OXIDE MIT PDE3 UND PDE4 INHIBIERENDER AKTIVITÄT

Anwendungsgebiet der Erfindung

Die Erfindung betrifft neue Benzonaphthyridin-N-Oxide, die in der pharmazeutischen Industrie zur Herstellung von Medikamenten verwendet werden.

Bekannter technischer Hintergrund

In der DE-OS 21 23 328 und im USP 3,899,494 werden substituierte Benzonaphthyridine beschrieben, die sich durch ausgeprägte Blutplättchenaggregationshemmung auszeichnen. In den internationalen Anmeldungen WO91/17991 und WO98/21208 werden 6-Phenylbenzonaphthyridine zur Behandlung entzündlicher Atemwegserkrankungen offenbart.

Beschreibung der Erfindung

Es wurde nun gefunden, daß die nachfolgend näher beschriebenen Verbindungen der Formel I, die sich von den Verbindungen der WO91/17991 bzw. WO98/21208 insbesondere durch die Substitution am 6-Phenylring und das Vorhandensein eines N-Oxids in 2-Position unterscheiden, überraschende und besonders vorteilhafte Eigenschaften besitzen.

Gegenstand der Erfindung sind somit Verbindungen der Formel I,

![Chemical Structure](image)

worin

\[R1 \] 1-4C-Alkyl bedeutet,
R2 Hydroxy, 1-4C-Alkoxy, 3-7C-Cycloalkoxy, 3-7C-Cycloalkylmethoxy oder ganz oder überwiegender durch Fluor substituiertes 1-4C-Alkoxy bedeutet,
R3 Hydroxy, 1-4C-Alkoxy, 3-7C-Cycloalkoxy, 3-7C-Cycloalkylmethoxy oder ganz oder überwiegender durch Fluor substituiertes 1-4C-Alkoxy bedeutet,
oder worin
R2 und R3 gemeinsam eine 1-2C-Alkylendioxygruppe bedeuten,
R4 einen durch R5 substituierten Phenylrest darstellt, wobei
R5 einen durch einen Rest R6 substituierten Tetrazol-5-ylrest darstellt, wobei
R6 Wasserstoff, 1-10C-Alkyl, 3-7C-Cycloalkyl, 3-7C-Cycloalkylmethy] oder Ar-1-4C-alkyl bedeutet, wobei
Ar einen unsubstituierten oder durch R7 und/oder R8 substituierten Phenylrest darstellt, und
R7 und R8 unabhängig voneinander 1-4C-Alkyl oder 1-4C-Alkoxy bedeuten,
sowie die Salze dieser Verbindungen.

3-7C-Cycloalkoxy steht für Cyclopropoxy, Cyclobutoxy, Cyclopentyloxy, Cyclohexyloxy und Cycloheptoxy, wovon Cyclopropoxy, Cyclobutoxy und Cyclopentyloxy bevorzugt sind.

3-7C-Cycloalkylmethoxy steht für Cyclopropylmethoxy, Cyclobutylmethoxy, Cyclopentylmethoxy, Cyclohexylmethoxy und Cycloheptylmethoxy, wovon Cyclopropylmethoxy, Cyclobutylmethoxy und Cyclopentylmethoxy bevorzugt sind.

Als ganz oder überwiegend durch Fluor substituiertes 1-4C-Alkoxy seien beispielsweise der 2,2,3,3,3-Pentafluorpropoxy-, der Perfluorethoxy-, der 1,2,2-Trifluorethoxy-, insbesondere der 1,1,2,2-Tetrafluorethoxy-, der Trifluormethoxy-, der 2,2,2-Trifluorethoxy- und bevorzugt der Difluormethoxyrest genannt.

1-2C-Alkylendioxy steht beispielsweise für den Methylendioxy- (-O-CH₂-O-) und den Ethylendioxyrest (-O-CH₃-CH₂-O-).
1-10C-Alkyl steht für geradkettige oder verzweigte Alkylreste mit 1 bis 10 Kohlenstoffatomen. Beispielsweise seien genannt der Decyl-, Nonyl-, Octyl-, Heptyl-, Isoheptyl- (5-Methylhexyl-), Hexyl-, Isohexyl- (4-Methylpentyl-), Neohexyl- (3,3-Dimethylbutyl-), Pentyl-, Isopentyl- (3-Methylbutyl-), Neopentyl- (2,2-Dimethylpropyl-), Butyl-, iso-Butyl-, sec.-Butyl-, tert.-Butyl-, Propyl-, Isopropyl-, Ethyl- und der Methylrest.

3-7C-Cycloalkyl steht für den Cyclopropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexyl- und Cycloheptylrest. Bevorzugt seien die 5-7C-Cycloalkylreste Cyclopentyl, Cyclohexyl und Cycloheptyl genannt.

3-7C-Cycloalkylmethyl steht für einen Methylrest, der durch einen der vorstehend genannten 3-7C-Cycloalkylreste substituiert ist. Beispielsweise seien genannt der Cyclopentylmethyl- und der Cyclohexylmethylrest.

Ar-1-4C-alkyl steht für einen der vorstehend genannten 1-4C-Alkylreste, der durch einen der vorstehend definierten Aryreste substituiert ist. Beispielsweise seien genannt p-Methoxybenzyl-, der Phenethyl- und der Benzylrest.

Pharmakologisch unverträgliche Salze, die beispielsweise bei der Herstellung der erfindungsgemäßen Verbindungen im industriellen Maßstab als Verfahrensprodukte zunächst anfallen können, werden durch dem Fachmann bekannte Verfahren in pharmakologisch verträgliche Salze übergeführt.

Dem Fachmann ist bekannt, daß die erfindungsgemäßen Verbindungen als auch ihre Salze, wenn sie zum Beispiel in kristalliner Form isoliert werden, verschiedene Mengen an Lösungsmitteln enthalten können. Die Erfindung umfaßt daher auch alle Solvate und insbesondere alle Hydrate der Verbindungen der Formel I, sowie alle Solvate und insbesondere alle Hydrate der Salze der Verbindungen der Formel I.

Hervorzuhebende Verbindungen der Formel I sind solche, worin

R1 1-2C-Alkyl bedeutet,
R2 1-4C-Alkoxy, 3-7C-Cycloalkoxy, 3-7C-Cycloalkylmethoxy oder ganz oder überwiegend durch Fluor substituiertes 1-4C-Alkoxy bedeutet,
R3 1-4C-Alkoxy, 3-7C-Cycloalkoxy, 3-7C-Cycloalkylmethoxy oder ganz oder überwiegend durch Fluor substituiertes 1-4C-Alkoxy bedeutet,
oder worin
R2 und R3 gemeinsam eine 1-2C-Alkyldioxygruppe bedeuten,
R4 einen durch R5 substituierten Phenylrest darstellt, wobei
R5 einen durch einen Rest R6 substituierten Tetrazol-5-ylrest darstellt, wobei
R6 Wasserstoff, 1-7C-Alkyl, 3-7C-Cycloalkyl, 3-7C-Cycloalkylmethyl oder Ar-1-4C-alkyl bedeutet, wobei
Ar einen unsubstituierten oder durch R7 und/oder R8 substituierten Phenylrest darstellt, und
R7 und R8 unabhängig voneinander 1-4C-Alkyl oder 1-4C-Alkoxy bedeuten,
sowie die Salze dieser Verbindungen.

Besonders hervorzuhebende Verbindungen der Formel I sind solche, in denen

R1 Methyl bedeutet,
R2 1-4C-Alkoxy, 3-7C-Cycloalkoxy, 3-7C-Cycloalkylmethoxy oder ganz oder überwiegend durch Fluor substituiertes 1-2C-Alkoxy bedeutet,
R3 1-4C-Alkoxy, 3-7C-Cycloalkoxy, 3-7C-Cycloalkylmethoxy oder ganz oder überwiegend durch Fluor substituiertes 1-2C-Alkoxy bedeutet,
R4 einen durch R5 substituierten Phenylrest darstellt, wobei
R5 einen durch einen Rest R6 substituierten Tetrazol-5-ylrest darstellt, wobei
R6 Wasserstoff, 1-7C-Alkyl, 5-7C-Cycloalkyl, 3-7C-Cycloalkylmethyl oder Ar-1-2C-alkyl bedeutet, wobei
Ar einen unsubstituierten oder durch R7 substituierten Phenylrest darstellt, und
R7 1-2C-Alkyl oder 1-2C-Alkoxy bedeutet,
sowie die Salze dieser Verbindungen.

Bevorzugte Verbindungen der Formel I sind solche, in denen
R1 Methyl bedeutet,
R2 1-4C-Alkoxy bedeutet,
R3 1-4C-Alkoxy bedeutet,
R4 einen durch R5 substituierten Phenylrest darstellt, wobei
R5 einen durch einen Rest R6 substituierten Tetrazol-5-ylrest darstellt, wobei
R6 Wasserstoff, 1-7C-Alkyl, Cyclohexylmethyl oder 4-Methoxybenzyl bedeutet,
sowie die Salze dieser Verbindungen.

Besonders bevorzugte Verbindungen der Formel I sind solche, in denen
R1 Methyl bedeutet,
R2 Ethoxy bedeutet,
R3 Methoxy oder Ethoxy bedeutet,
R4 einen durch R5 substituierten Phenylrest darstellt, wobei
R5 einen durch einen Rest R6 substituierten Tetrazol-5-ylrest darstellt, wobei
R6 1-4C-Alkyl bedeutet,
sowie die Salze dieser Verbindungen.

Bei den Verbindungen der Formel I handelt es sich um chirale Verbindungen mit Chiralitätszentren in
den Positionen 2, 4a und 10b. Die Bezifferung (Numerierung) der Verbindungen der Formel I ist in
Formel 1a dargestellt.

Gegenstand der Erfindung sind alle acht denkbaren Enantiomeren in jedem beliebigen Mischungsver-
hältnis zueinander. Bevorzugt sind die Verbindungen der Formel I, in denen die Wasserstoffatome in
den Positionen 4a und 10b cis-ständig zueinander sind.
Besonders bevorzugt sind in diesem Zusammenhang solche Verbindungen der Formel I, die in den Positionen 4a und 10b dieselbe absolute Konfiguration haben wie die als Ausgangsprodukt einsetzbare Verbindung (−)-cis-4-Amino-3-(3-ethoxy-4-methoxyphenyl)-1-methylpiperidin Dihydrochlorid mit dem optischen Drehwert $[\alpha]_{D}^{20} = -65,5^\circ$ (c=1, Methanol).

Der Tetrazol-5-yrest R5 der Verbindungen der Formel I kann am Phenylrest R4 sowohl in ortho-, meta-, als auch in para-Position zum Benzonaphthyridinring angebunden sein.

Bevorzugt sind diejenigen Verbindungen der Formel I, bei denen der Tetrazol-5-yrest R5 in meta- oder para-Position zum Benzonaphthyridinring am Phenylrest R4 angebunden ist. Insbesondere bevorzugt sind in diesem Zusammenhang die Verbindungen der Formel I, bei denen der Tetrazol-5-yrest R5 in para-Position angebunden ist.

Verbindungen der Formel I, bei denen R1, R2, R3, R4 und R5 die oben angegebenen Bedeutungen haben und R6 für Wasserstoff steht, treten in mehreren tautomeren Formen auf, die miteinander im Gleichgewicht stehen (z.B. 1H- und 2H-Form des Tetrazol-5-yrestes). Die Erfindung umfaßt alle tautomeren Formen in jedem Mischungsverhältnis.

Durch Anbindung der Substituenten R6 (R6≠H) an die Tetrazol-5-yl-gruppe wird die Umwandlung der beiden tautomeren 1H- und 2H-Formen des Tetrazol-5-yrestes ineinander blockiert. Gegenstand der Erfindung sind daher auch die durch einen Rest R6 (R6≠H) substituierten 1H- und 2H-Tetrazol-5-yl-verbindungen der Formel I, sowohl in reiner Form, als auch in jedem Mischungsverhältnis. Bevorzugt sind jedoch die Verbindungen der Formel I, bei denen der Tetrazol-5-yrest in 2-Position durch einen der Reste R6 (R6≠H) substituiert ist.

Weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der Verbindungen der Formel I, worin R1, R2, R3 und R4 die oben angegebenen Bedeutungen besitzen, und ihrer Salze. Das Verfahren ist dadurch gekennzeichnet, daß man Verbindungen der Formel II,

![Chemical Structure](image)
in denen R1, R2, R3 und R4 die oben angegebenen Bedeutungen besitzen, einer N-Oxidation unter-
wenig und gewünschtenfalls anschließend die erhaltenen Verbindungen der Formel I in ihre Salze
überführt, oder daß man gewünschtenfalls anschließend erhaltene Salze der Verbindungen der For-
mel I in die freien Verbindungen überführt.

Die N-Oxidation erfolgt auf eine dem Fachmann vertraute Weise, z.B. mit Hilfe von Wasserstoffperoxid
in Methanol oder mit Hilfe von m-Chlorperoxibenzoësäure in Dichlormethan bei Raumtemperatur.
Welche Reaktionsbedingungen die Durchführung des Verfahrens im einzelnen erforderlich sind, ist
dem Fachmann aufgrund seines Fachwissens geläufig.

Verbindungen der Formel II, worin R1, R2 und R3 die oben angegebenen Bedeutungen haben, R4
einen durch einen 1H- oder 2H-Tetrazol-5-yrest R5 substituierten Phenylrest darstellt, können bei-
spielsweise aus den entsprechenden Verbindungen der Formel II, in denen R4 einen durch eine Cy-
nogruppe substituierten Phenylrest darstellt, durch Umsetzung mit einem Alkynamid und einem
Ammoniumhalogenid (z.B. Ammoniumchlorid) hergestellt werden. Entsprechende Reaktionen sind

Die auf diese Weise erhaltenen Verbindungen der Formel II können gewünschtenfalls durch eine Alky-
liersreaktion in weitere Verbindungen der Formel II übergeführt werden, wobei der Wasserstoff am
Tetrazol-5-yrest durch einen der für R6 oben genannten Reste – ausgenommen Wasserstoff – ersetzt
wird.

Die Alkylierungsreaktionen erfolgen zweckmäßigerweise analog zu den dem Fachmann bekannten
Methoden, z.B. durch Reaktion der 1H- oder 2H-Tetrazolverbindungen der Formel II mit Verbindungen
der Formel R6-X in Gegenwart einer Base, wobei R6 die oben genannten Bedeutungen - ausgenom-
men Wasserstoff - hat und X eine geeignete Abgangsgruppe wie beispielsweise ein Chlor-, Brom-
oder Jodatom oder einen Alkylsulfatrest darstellt. Die bei der Alkylierung gewöhnlich entstehenden 1-
und 2-substituierten Tetrazolregiosomereengemische werden durch dem Fachmann bekannte Metho-
den wie Kristallisation oder Chromatographie an geeigneten Trägermaterialien getrennt. Eine analoge
1996, 39, 2354 beschrieben.

Verbindungen der Formel II, worin R1, R2 und R3 die oben angegebenen Bedeutungen haben und R4
einen durch einen Tetrazol-5-yrest R5 substituierten Phenylrest darstellt, wobei der Tetrazol-5-yrest
R5 seinerseits durch R6 (R6 kein Wasserstoff) substituiert ist, können alternativ auch durch eine Cyclo-
kondensationsreaktion der entsprechenden Verbindungen der Formel III
erhalten werden.

Verbindungen der Formel III, worin R1, R2, R3 und R4 die oben angegebenen Bedeutungen haben sind aus den entsprechenden Verbindungen der Formel IV,

wborin R1, R2 und R3 die oben angegebenen Bedeutungen haben, durch Umsetzung mit Verbindungen der Formel R4-CO-Y, worin R4 die oben angegebenen Bedeutungen hat und Y eine geeignete Ab-

Verbindungen der Formel R4-CO-Y sind entweder bekannt oder können durch Umsetzung auf eine dem Fachmann geläufige Weise aus den entsprechenden Carbonsäuren R4-COOH, worin R4 die oben angegebenen Bedeutungen hat, hergestellt werden.

Die Isolierung und Reinigung der erfindungsgemäßen Substanzen erfolgt in an sich bekannter Weise z.B. derart, daß man das Lösungsmittel im Vakuum abdestilliert und den erhaltenen Rückstand aus einem geeigneten Lösungsmittel umkristallisiert oder einer der üblichen Reinigungsverfahren, wie beispielsweise der Säulenchromatographie an geeignetem Trägermaterial, unterwirft.

Salze erhält man durch Auflösen der freien Verbindung in einem geeigneten Lösungsmittel (z. B. einem Keton, wie Aceton, Methylglyoxalketon oder Methyliobutylketon, einem Ether, wie Diethylether, Tetrahydrofuran oder Dioxan, einem chlorierten Kohlenwasserstoff, wie Methylenchlorid oder Chloroform, oder einem niederemolekularen aliphatischen Alkohol wie Ethanol oder Isopropanol), das die gewünschte Säure bzw. Base enthält, oder dem die gewünschte Säure bzw. Base anschließend zuge-

Die nachfolgenden Beispiele dienen der näheren Erläuterung der Erfindung, ohne sie einzuschränken. Ebenso können weitere Verbindungen der Formel I, deren Herstellung nicht explizit beschrieben ist, in analoger oder in einer dem Fachmann an sich vertrauten Weise unter Anwendung üblicher Verfahrenstechniken hergestellt werden.

In den Beispielen steht Schmp. für Schmelzpunkt, h für Stunde(n), RT für Raumtemperatur, SF für Summenformel, MG für Molgewicht, DC für Dünnenschichtchromatographie, Ber. für Berechnet, Gef. für Gefunden. Die in den Beispielen genannten Verbindungen und ihre Salze sind bevorzugter Gegenstand der Erfindung.
Beispiele

Endprodukte

1. **cis-9-Ethoxy-8-methoxy-2-methyl-6-[4-(2H-2-ethyltetrazol-5-yl)phenyl]-1,2,3,4,4a,10b-hexahydrobenzo[c][1,6]naphthyridin-N-2-oxid**

Eine Lösung von 2,23 g (-)-cis-9-Ethoxy-8-methoxy-2-methyl-6-[4-(2H-2-ethyltetrazol-5-yl)phenyl]-1,2,3,4,4a,10b-hexahydrobenzo[c][1,6]naphthyridin (Ausgangsverbindung A) in 12 ml Methanol wird mit 6 ml 30 % Wasserstoffperoxid ca. 2 Tage bei RT gerührt. Nach vollständiger Oxidation (DC-Kontrolle) versetzt man das Reaktionsgemisch mit 7 g festem Natriumsulfit und rührt noch ca. 1 h bei RT nach. Nach dem Absaugen des Reaktionsgemisches extrahiert man das Filtrat mit Dichlormethan, wäscht die organische Phase mit Wasser und trocknet sie über Natriumsulfat. Nach dem Absaugen und Einengen der Produktlösung kristallisiert man den erhaltenen festen Rückstand in einem Ethylacetat/Diethylether-Gemisch (2:1) um. Man erhält 1,9 g der Titelverbindung als farblose feine Kristalle vom Schmp. 168 - 170 °C.

SF: C_{29}H_{30}N_{6}O_{3} x 1,19 H_{2}O; MG: 484,07

Elementaranalyse: Ber.: C 62,14 H 6,74 N 17,39
Gef.: C 62,18 H 7,04 N 17,44

Ausgangsverbindungen:

A. **(-)-cis-9-Ethoxy-8-methoxy-2-methyl-6-[4-(2H-2-ethyltetrazol-5-yl)phenyl]-1,2,3,4,4a,10b-hexahydrobenzo[c][1,6]naphthyridin**

6,7 g (-)-cis-3-(3-Ethoxy-4-methoxyphenyl)-4-[4-(2H-2-ethyltetrazol-5-yl)-benzamido]-1-methylpiperidin werden in 20 ml Phosphoroxychlorid und 80 ml Acetonitril 16 h unter Rückfluß zum Sieden erhitzt. Nach Abdampfen des überschüssigen Phosphoroxychlorids verteilt man den Rückstand zwischen Dichlormethan und gesättigter Natriumhydrogencarbonatlösung. Die organische Phase wird mit Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt. Den festen Rückstand reinigt man durch Kieselgelchromatographie, separiert die Hauptproduktfraktion und engt diese ein. Der Rückstand wird aus Petrolether/Diethylether (2:1) umkristallisiert. Man erhält 4,6 g der Titelverbindung (hellgelbe Kristalle) vom Schmp. 151-152°C.

SF: C_{29}H_{30}N_{6}O_{3}, MG: 503,44
Optischer Drehwert: $[\alpha]_D^{20} = -106,4^\circ$ (c=1, Methanol)

B. \textit{(--)\texttext{-}cis-3-(3-Ethoxy-4-methoxyphenyl)-4-[4-(2H-2-ethyltetrazol-5-yl)-benzamido]-1-methyl-piperidin}

Zur im Eis/Wasserbad gekühlten Lösung von 1,82 g \textit{(--)\texttext{-}cis-4-Amino-3-(3-ethoxy-4-methoxyphenyl)-1-methylpiperidin} (freie Base, hergestellt durch Behandlung des Di Hydrochlorids mit Natronlauge und Extraktion der freien Base mit Dichlormethan) in 60 ml Dichlormethan und 1 ml Triethylamin wird eine Lösung von 4-(2H-2-Ethyltetrazol-5-yl)benzyolchlorid (hergestellt durch Erhitzen unter Rückfluß von 1,5 g 4-(2H-2-Ethyltetrazol-5-yl)benzosäure mit 2 ml Thionylchlorid in 60 ml absolutem Toluol für ca. 2 h und vollständigem Einengen) innerhalb von 10 Min zugetropft. Das Reaktionsgemisch wird unter Rühren auf RT erwärmt und noch ca. 2 h nachgerührt. Nach Extraktion mit einem Gemisch aus gesättigter Natriumhydrogencarbonatlösung und Dichlormethan engt man die organische Phase vollständig ein und kristallisiert den Rückstand in Methanol/Diethylether (1+1) um. Man erhält 3,15 g farblose Kristalle der Titelverbindung vom Schmp. 165-167,5°C.

SF: C_{25}H_{32}N_{4}O_{3}, MG: 464,57
Optischer Drehwert: $[\alpha]_D^{20} = -89,7^\circ$ (c=1, Methanol)
Elementaranalyse: Ber.: C 64,64 H 6,94 N 18,09
Gef.: C 64,74 H 7,08 N 18,21

C. \textit{(--)\texttext{-}cis-4-Amino-3-(3-ethoxy-4-methoxyphenyl)-1-methylpiperidin Dihydrochlorid}

Die Titelverbindung wird analog dem in DE 42 17 401 für \textit{(--)\texttext{-}cis-4-Amino-3-(3,4-dimethoxyphenyl)-1-methylpiperidin Dihydrochlorid beschriebenen Verfahren erhalten, wenn in den dort beschriebenen Beispielen die entsprechenden 3-Ethoxy-4-methoxyverbindungen eingesetzt werden.

SF: C_{18}H_{22}N_{2}O_{2} \times 2\text{HCl} \times 0,96 \text{H}_{2}\text{O}, MG: 354,52; Schmp. 252-254°C
Optischer Drehwert: $[\alpha]_D^{20} = -65,5^\circ$ (c=1, Methanol)
Gewerbliche Anwendbarkeit

Hierbei zeichnen sich die erfindungsgemäßen Verbindungen durch eine geringe Toxizität, eine gute Humanakzeptanz, eine gute enterale Resorption und eine hohe Bioverfügbarkeit, eine große therapeutische Breite, das Fehlen wesentlicher Nebenwirkungen und eine gute Wasserlöslichkeit aus.

Aufgrund ihrer PDE-hemmenden Eigenschaften können die erfindungsgemäßen Verbindungen in der Human- und Veterinärmedizin als Therapeutika eingesetzt werden, wobei sie beispielsweise zur Behandlung und Prophylaxe folgender Krankheiten verwendet werden können: Akute und chronische (insbesondere entsündliche und allergeninduzierte) Atemwegserkrankungen verschiedener Genese (Bronchitis, allergische Bronchitis, Asthma bronchiale, Emphysema, COPD); Erkrankungen mit einer Einschränkung der Zilientätigkeit oder verstärkten Anforderungen an die ziliäre Clearance (Bronchitis, Mucoviscidose), Dermatosen (vor allem proliferativ, entsündlicher und allergischer Art) wie beispielsweise Psoriasis (vulgaris), toxisches und allergisches Kontaktekzem, atopisches Ekzem, seborrhoisches Ekzem, Lichen simplex, Sonnenbrand, Pruritus im Genitoanalbereich, Alopecia areata, hypertrophe Narben, diskoider Lupus erythematodes, folliculäre und flächenhafte Pyodermien, endogene und exogene Akne, Akne rosacea sowie andere proliferative, entsündliche und allergische Hauterkrankungen; Erkrankungen, die auf einer überhöhten Freisetzung von TNF und Leukotrien en beruhen, so z.B. Erkrankungen aus dem Formenkreis der Arthritis (Rheumatoide Arthritis, Rheumatoide Spon-

Aufgrund ihrer gefäßrelaxierenden Wirksamkeit können die erfindungsgemäßen Verbindungen auch zur Behandlung von Bluthochdruckerkrankungen verschiedener Genese wie z.B. pulmonarer Hochdruck und den damit zusammenhängenden Begleiterscheinungen, zur Behandlung erektiler Dysfunktion oder Koliken der Nieren und der Harnleiter im Zusammenhang mit Nierensteinen, verwendet werden.

Aufgrund ihrer cAMP-steligernden Wirkung können sie aber auch für Erkrankungen des Herzens, die durch PDE-Hemmostoffe behandelt werden können, wie beispielsweise Herzensuffizienz, sowie als antithrombotische, die Plättchen-Aggregation hemmende Substanzen verwendet werden.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Behandlung von Säugetieren einschließlich Menschen, die an einer der oben genannten Krankheiten erkrankt sind. Das Verfahren ist dadurch gekennzeichnet, daß man dem erkrankten Säugetier eine therapeutisch wirksame und pharmakologisch verträgliche Menge einer oder mehrerer der erfindungsgemäßen Verbindungen verabreicht.

Weiterer Gegenstand der Erfindung sind die erfindungsgemäßen Verbindungen zur Anwendung bei der Behandlung und/oder Prophylaxe von Krankheiten, insbesondere den genannten Krankheiten.

Ebenso betrifft die Erfindung die Verwendung der erfindungsgemäßen Verbindungen zur Herstellung von Arzneimitteln, die zur Behandlung und/oder Prophylaxe der genannten Krankheiten eingesetzt werden.
Weiterhin sind Arzneimittel zur Behandlung und/oder Prophylaxe der genannten Krankheiten, die eine oder mehrere der erfindungsgemäßen Verbindungen enthalten, Gegenstand der Erfindung.

Ein weiterer Gegenstand der Erfindung ist ein Handelsprodukt, bestehend aus einem üblichen Sekundärpackmittel, einem das Arzneimittel enthaltenden Primärpackmittel (beispielsweise eine Ampulle oder ein Blister) und gewünschenfalls einem Beipackzettel, wobei das Arzneimittel antagonistische Wirkung gegen zyklisch-nukleotid Phosphodiesterasen des Typs 3 und 4 zeigt und zur Abschwächung der Symptome von Krankheiten führt, die in Zusammenhang mit zyklisch-nukleotid Phosphodiesterasen des Typs 3 und 4 stehen, und wobei auf dem Sekundärpackmittel und/oder auf dem Beipackzettel des Handelsprodukts auf die Eignung des Arzneimittels zur Prophylaxe oder Behandlung von Krankheiten, die im Zusammenhang mit zyklisch-nukleotid Phosphodiesterasen des Typs 3 und 4 stehen, hingewiesen wird, und wobei das Arzneimittel ein oder mehrere erfindungsgemäße Verbindungen der Formel I enthält. Das Sekundärpackmittel, das das Arzneimittel enthaltende Primärpackmittel und der Beipackzettel entsprechen ansonsten dem, was der Fachmann als Standard für Arzneimittel dieser Art ansehen würde.

Die Arzneimittel werden nach an sich bekannten, dem Fachmann geläufigen Verfahren hergestellt. Als Arzneimittel werden die erfindungsgemäßen Verbindungen (= Wirkstoffe) entweder als solche, oder vorzugsweise in Kombination mit geeigneten pharmazeutischen Hilfsstoffen z.B. in Form von Tabletten, Dragees, Kapseln, Suppositorien, Pflastern, Emulsionen, Suspensionen, Gelen oder Lösungen eingesetzt, wobei der Wirkstoffgehalt vorteilhafterweise zwischen 0,1 und 95 % beträgt.

Für die Behandlung von Dermatosen erfolgt die Anwendung der erfindungsgemäßen Verbindungen insbesondere in Form solcher Arzneimittel, die für eine topische Applikation geeignet sind. Für die Herstellung der Arzneimittel werden die erfindungsgemäßen Verbindungen (= Wirkstoffe) vorzugsweise mit geeigneten pharmazeutischen Hilfsstoffen vermischt und zu geeigneten Arzneiformulierungen weiterverarbeitet. Als geeignete Arzneiformulierungen seien beispielsweise Puder, Emulsionen, Suspensionen, Sprays, Öle, Salben, Fettsalben, Cremes, Pasten, Gele oder Lösungen genannt.

Die erfindungsgemäßen Arzneimittel werden nach an sich bekannten Verfahren hergestellt. Die Dosierung der Wirkstoffe erfolgt in der für PDE-Hemmstoffe üblichen Größenordnung. So enthalten topische Applikationsformen (wie z.B. Salben) für die Behandlung von Dermatosen die Wirkstoffe in einer Konzentration von beispielsweise 0,1-99 %. Die Dosis für die inhalative Applikation beträgt üblicherweise zwischen 0,1 und 3 mg pro Tag. Die übliche Dosis bei systemischer Therapie (p.o. oder i.v.) liegt zwischen 0,01 und 10 mg pro Kilogramm und Tag.
Biologische Untersuchungen

A. Methodik

1. Hemmung der PDE Isoenzyme

Die PDE-Aktivität wurde gemäß Thompson et al. (1) mit einigen Modifikationen (2) bestimmt. Die Prüfproben enthielten 40 mM Tris-HCl (pH 7,4), 5 mM MgCl₂, 0,5 μM cAMP oder cGMP, [³H]cAMP oder [³H]cGMP (ca. 50.000 cpm/Probe), die unten näher beschriebenen PDE Isoenzym-spezifischen Zusätze, die angegebenen Konzentrationen an Hemmstoff und ein Aliquot der Enzymlösung bei einem Gesamtprobenvolumen von 200 μl. Stammösungen der zu untersuchenden Verbindungen in DMSO wurden in solchen Konzentrationen hergestellt, daß der DMSO-Gehalt - zur Vermeidung einer Beeinflussung der PDE-Aktivität - in den Prüfproben 1 Vol-% nicht überschritt. Nach 5-minütiger Vorinkubation bei 37°C wurde die Reaktion durch Zugabe des Substrates (cAMP oder cGMP) in Gang gesetzt. Die Proben wurden für weitere 15 Min. bei 37°C inkubiert. Durch Zugabe von 50 μl 0,2 N HCl wurde die Reaktion abgebrochen. Nach 10-minütiger Kühlung auf Eis und Zugabe von 25 μg 5'-Nukleotidase (Schlangengift von Crotalus atrox) wurde erneut für 10 Min. bei 37°C inkubiert und die Proben dann auf QAE Sephadex A-25-Säulen aufgetragen. Die Säulen wurden mit 2 ml 30 mM Ammoniumformiat (pH 6,0) eluiert. Die Radioaktivität des Eluats wurde gemessen und um die entsprechenden Leerwerte korrigiert. Der Anteil an hydrolysiertem Nucleotid überschritt in keinem Fall 20 % der ursprünglichen Substratkonzentration.

PDE1 (Ca²⁺/Calmodulin-abhängig) aus Rinderhirn: Die Hemmung dieses Isoenzymes wurde in Gegenwart von Ca²⁺ (1 mM) und Calmodulin (100 nM) unter Verwendung von cGMP als Substrat untersucht (3).

PDE2 (cGMP-stimuliert) aus Rattenherzen wurde chromatografisch gereinigt [Schudt et al. (4)] und in Gegenwart von cGMP (5 μM) unter Verwendung von cAMP als Substrat untersucht.

PDE3 (cGMP-inhibiert) und PDE5 (cGMP-spezifisch) wurden in Homogenaten von menschlichen Blutplättchen [Schudt et al. (4)] unter Verwendung von cAMP bzw. cGMP als Substrat untersucht.

PDE4 (cAMP-spezifisch) wurde im Zytoplasm von humanen polymorphonuklearen Leukozyten (PMNL) [isoliert aus Leukozytenkonzentraten, siehe Schudt et al. (5)] unter Verwendung von cAMP als Substrat untersucht. Der PDE3-Hemmstoff Motapizon (1 μM) wurde verwendet um die von verunreinigenden Blutplättchen ausgehende PDE3 Aktivität zu unterdrücken.
2. **Statistik**

Die IC₅₀-Werte wurden aus den Konzentrations-Hemmkurven durch nichtlineare Regression unter Verwendung des Programms GraphPad InPlot™ (GraphPad Software Inc., Philadelphia, USA) ermittelt.

3. **Literatur**

(3) Gietzen K., Sadofr I. und Bader H., A model for the regulation of the calmodulin-dependent enzymes erythrocyte Ca²⁺-transport ATPase and brain phosphodiesterase by activators and inhibitors; Biochem. J. 1982, **207**, 541-548

(4) Schudt C., Winder S., Müller B. und Ukena D., Zardaverine as a selective inhibitor of phosphodiesterase isoenzymes; Biochem. Pharmacol. 1991, **42**, 153-162

B. Ergebnisse

In der nachfolgenden Tabelle 1 sind die gemäß Punkt A1 ermittelten Hemmkonzentrationen [Hemmkonzentrationen als -log IC\textsubscript{50} (mol/l)] für die Verbindung 1 für verschiedene PDE Isoenzyme angegeben. Die Nummer der Verbindung entspricht der Nummer des Beispiels im Abschnitt Endprodukte.

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>PDE4</th>
<th>PDE3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-log IC\textsubscript{50} mol/l</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7,53</td>
<td>6,11</td>
</tr>
</tbody>
</table>
1. Verbindungen der Formel I,

![Chemical Structure](image)

worin

R1 1-4C-Alkyl bedeutet,
R2 Hydroxy, 1-4C-Alkoxy, 3-7C-Cycloalkoxy, 3-7C-Cycloalkylmethoxy oder ganz oder überwiegend durch Fluor substituiertes 1-4C-Alkoxy bedeutet,
R3 Hydroxy, 1-4C-Alkoxy, 3-7C-Cycloalkoxy, 3-7C-Cycloalkylmethoxy oder ganz oder überwiegend durch Fluor substituiertes 1-4C-Alkoxy bedeutet,

oder worin

R2 und R3 gemeinsam eine 1-2C-Alkylendioxygruppe bedeuten,
R4 einen durch R5 substituierten Phenylrest darstellt, wobei
R5 einen durch einen Rest R6 substituierten Tetrazol-5-ylrest darstellt, wobei
R6 Wasserstoff, 1-10C-Alkyl, 3-7C-Cycloalkyl, 3-7C-Cycloalkylmethylen oder Ar-1-4C-alkyl bedeutet, wobei
Ar einen unsubstituierten oder durch R7 und/oder R8 substituierten Phenylrest darstellt, und
R7 und R8 unabhängig voneinander 1-4C-Alkyl oder 1-4C-Alkoxy bedeuten,

sowie die Salze dieser Verbindungen.

2. Verbindungen der Formel I nach Anspruch 1, in denen

R1 1-2C-Alkyl bedeutet,
R2 1-4C-Alkoxy, 3-7C-Cycloalkoxy, 3-7C-Cycloalkylmethoxy oder ganz oder überwiegend durch Fluor substituiertes 1-4C-Alkoxy bedeutet,
R3 1-4C-Alkoxy, 3-7C-Cycloalkoxy, 3-7C-Cycloalkylmethoxy oder ganz oder überwiegend durch Fluor substituiertes 1-4C-Alkoxy bedeutet,

oder worin

R2 und R3 gemeinsam eine 1-2C-Alkylendioxygruppe bedeuten,
R4 einen durch R5 substituierten Phenylrest darstellt, wobei
R5 einen durch einen Rest R6 substituierten Tetrazol-5-yrest darstellt, wobei
R6 Wasserstoff, 1-7C-Alkyl, 3-7C-Cycloalkyl, 3-7C-Cycloalkylmethyl oder Ar-1-4C-alkyl bedeutet, wobei
Ar einen unsubstituierten oder durch R7 und/oder R8 substituierten Phenylrest darstellt, und
R7 und R8 unabhängig voneinander 1-4C-Alkyl oder 1-4C-Alkoxy bedeuten, sowie die Salze dieser Verbindungen.

3. Verbindungen der Formel I nach Anspruch 1, in denen
R1 Methyl bedeutet,
R2 1-4C-Alkoxy, 3-7C-Cycloalkoxy, 3-7C-Cycloalkylmethoxy oder ganz oder überwiegend durch Fluor substituiertes 1-2C-Alkoxy bedeutet,
R3 1-4C-Alkoxy, 3-7C-Cycloalkoxy, 3-7C-Cycloalkylmethoxy oder ganz oder überwiegend durch Fluor substituiertes 1-2C-Alkoxy bedeutet,
R4 einen durch R5 substituierten Phenylrest darstellt, wobei
R5 einen durch einen Rest R6 substituierten Tetrazol-5-yrest darstellt, wobei
R6 Wasserstoff, 1-7C-Alkyl, 5-7C-Cycloalkyl, 3-7C-Cycloalkylmethyl oder Ar-1-2C-alkyl bedeutet, wobei
Ar einen unsubstituierten oder durch R7 substituierten Phenylrest darstellt, und
R7 1-2C-Alkyl oder 1-2C-Alkoxy bedeutet, sowie die Salze dieser Verbindungen.

4. Verbindungen der Formel I nach Anspruch 1, in denen
R1 Methyl bedeutet,
R2 1-4C-Alkoxy bedeutet,
R3 1-4C-Alkoxy bedeutet,
R4 einen durch R5 substituierten Phenylrest darstellt, wobei
R5 einen durch einen Rest R6 substituierten Tetrazol-5-yrest darstellt, wobei
R6 Wasserstoff, 1-7C-Alkyl, Cyclohexylmethyl oder 4-Methoxybenzyl bedeutet, sowie die Salze dieser Verbindungen.

5. Verbindungen der Formel I nach Anspruch 1, in denen
R1 Methyl bedeutet,
R2 Ethoxy bedeutet,
R3 Methoxy oder Ethoxy bedeutet,
R4 einen durch R5 substituierten Phenylrest darstellt, wobei
R5 einen durch einen Rest R6 substituierten Tetrazol-5-yrest darstellt, wobei
R6 1-4C-Alkyl bedeutet,
sowie die Salze dieser Verbindungen.

6. Verbindungen der Formel I nach Anspruch 1, in denen die Wasserstoffatome in den Positionen
 4a und 10b cis-ständig zueinander sind, sowie die Salze dieser Verbindungen.

7. Verbindungen der Formel I nach Anspruch 1, die in den Positionen 4a und 10b dieselbe absolute
 Konfiguration haben, wie die als Ausgangsprodukt einsetzbare Verbindung (-)-cis-4-Amino-3-(3-
 ethoxy-4-methoxyphenyl)-1-methylpiperidin Dihydrochlorid mit dem optischen Drehwert $[\alpha]^D_{20} = -65,5^\circ$
 (c=1, Methanol).

8. Arzneimittel enthaltend eine oder mehrere Verbindungen nach Anspruch 1 zusammen mit den
 üblichen pharmazeutischen Hilfs- und/oder Trägerstoffen.

9. Verwendung von Verbindungen nach Anspruch 1 zur Herstellung von Arzneimitteln für die Be-
 handlung von Atemwegserkrankungen und/oder Dermatosen.

10. Verwendung von Verbindungen nach Anspruch 1 zur Herstellung von Arzneimitteln für die Be-
 handlung von Bluthochdruckerkrankungen verschiedener Genese und den damit zusammenhängen-
 den Begleiterkrankungen.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C07D471/04 A61K31/4745

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 98 21208 A (BYK GULDEN LOMBERG CHEM FAB ; FLOCKERZI DIETER (DE)) 22 May 1998 (1998-05-22) cited in the application the whole document</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patient family members are listed in annex.

"A" Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 6 December 1999

Date of mailing of the international search report: 13/12/1999

Name and mailing address of the ISA
European Patent Office, P.B. 5816 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer
Fink, D
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 0937074 A</td>
<td>25-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 992282 A</td>
<td>11-05-1999</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

<table>
<thead>
<tr>
<th>A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPK 7 C07D471/04 A61K31/4745</td>
</tr>
</tbody>
</table>

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

<table>
<thead>
<tr>
<th>B. RECHERCHIERTE GEBIETE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)</td>
</tr>
<tr>
<td>IPK 7 C07D</td>
</tr>
</tbody>
</table>

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

<table>
<thead>
<tr>
<th>C. ALS WESENTLICH ANGESEHENE UNTERLAGEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kategorie*</td>
</tr>
<tr>
<td>-------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datum des Abschlusses der internationalen Recherche</th>
<th>Absendetermin des internationalen Recherchenberichts</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Dezember 1999</td>
<td>13/12/1999</td>
</tr>
</tbody>
</table>

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5816 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter
Fink, D
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 0937074 A</td>
<td>25-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 992282 A</td>
<td>11-05-1999</td>
</tr>
</tbody>
</table>