8/016493 A1 I 10 00O 0000 O RO

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
7 February 2008 (07.02.2008)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

‘ﬂb’ A0 OO O

(10) International Publication Number

WO 2008/016493 Al

(51)

21

(22)
(25)
(26)

(30)

(1)

(72)

(81)

International Patent Classification:
GOGF 12/02 (2006.01) GOGF 12/00 (2006.01)

International Application Number:
PCT/US2007/016440

International Filing Date: 20 July 2007 (20.07.2007)

Filing Language: English
Publication Language: English
Priority Data:

11/496,109 31 July 2006 (31.07.2006) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventor: BECKER, Andrew James; Microsoft Cor-
poration, International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,

(34)

ES, F1, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(54) Title: DETECTION OF MEMORY LEAKS

covrar TN NETWORK N
PROCESSING INTERFACE HXSZZ:)(ZT,ET
UNIT 10 UNIT
g i
| I
ST L p MASSSTORAGE T~J*
- MEMORY DEVICE
RANDOM| | 24" T MANAGEMENT
18Nl ACCEss COMPONENT E-MAIL
MEMORY APPLICATION ~]_34
READ
, WORD
2 ONLY OPERATING
wbwonr| | o714 Smocen | | o
e SPREADSHEET
APPLICATION
—A

(57) Abstract: Embodiments are configured to manage memory, including detecting one or more memory leaks. The various em-
& bodiments are configured to detect memory leaks and/or associated data without adding extra space or overhead for each associated
& memory allocation as compared with current implementations. In an embodiment, memory is managed including the detection a

memory leak by using a fixed memory overhead, such as a fixed block or buffer of N pointers, instead of adding extra space per
memory allocation. The contents of the fixed block can be altered and used to detect when memory has been allocated but not freed
based on an analysis of a polynomial associated with one or more allocation and free operations. The polynomial can be solved to
determine leaked pointers under certain conditions.

WO 2008/016493 PCT/US2007/016440

DETECTION OF MEMORY LEAKS

BACKGROUND

[0001] Memory management has become a high priority in modern computing
systéms. Current memory management systems have the capability to dynamically
allocate and deallocate memory. Many memory management systems utilize some type of
a memory manager {0 manage memory operation§, such as memory allocation and
deallocation operations. For example, a memory manager can be used to freé data from
memory (e.g. a memory block) and to dedicate memory for use by a calling application.
As part of a memory allocation operation, a memory manager may locate free memory and
return a marker to a calling program which delineates the allocated memory. Calling
programs typically include diagnostic tools which verify that memory distributed to the
calling program is equal to an amount of memory that the program is aware of.

[0002] When finished with the memory, a calling program may return the allocated
memory to the memory manager. Thereafter, the memory manager may free the memory.
However, problems arise when a block of memory is not returned to the memory manager,
such as when the calling application loses track of a memory allocation. This scenario is
often referred to as a “memory leak” and is generally associated with some type of
software bug or error. Some current memory management methods attempt to detect
memory leaks by intentionally making each allocated block larger than asked for, and
storing memory tracking data in the extra space of each allocated block. This adds
overhead to the system. Such a method is commonly implemented for debug versions of a
product, but not for release versions. Consequently, such an implementation can result in
discrepancies between the behavior of the debug version and a ship version of the product,

which can potentially hide bugs.

SUMMARY
[0003] This summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This summary. is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended as an aid in determining the scope of the claimed subject matter.
[0004] Embodiments provide for detecting one or more memory leaks. In an

embodiment, memory is managed to detect memory leaks and/or associated data. The

WO 2008/016493 PCT/US2007/016440

2
memory is managed to detect memory leaks and/or associated data without adding extra

space or overhead for each associated memory allocation as compared with current
memory managing implementations. In an embodiment, memory is managed to detect a
memory leak by using a fixed memory overhead, such as a fixed block or buffer of N
pointers, rather than adding extra space for each memory allocation.

[0005] In one embodiment, contents of the fixed block of N pointers can be altered
and used to detect memory leaks as part of allocation and free operations. Accordingly,
the fixed block can be used to determine when allocated memory has not been freed or
released back to the system. In an embodiment, memory is managed to detect when
memory has been allocated but not freed if more than N pointers have been allocated but
not freed based on an analysis of a polynomial associated with one or more allocation and
free operations. As a result, less memory is required as overhead to keep track of one or
more memory leaks. Furthermore, fewer discrepancies may result between debug and ship
versions, since the debug and ship versions may differ by, at a maximum, a single
allocation of a fixed block of memory. _
[0006] These and other features and advantages will be apparent from a reading of the
following detailed description and a review of the associated drawings. It is to be
understood that both the foregoing general description and the following detailed

description are explanatory only and are not restrictive of the invention as claimed.

DESCRIPTION OF THE DRAWINGS
[0007] FIGURE 1 depicts a block diagram of a memory management application,
system memory, and a memory requesting application.
[0008] FIGURE 2 is a flow diagram depicting a method determining one or more
memoi'y leaks.)
[0009] FIGURE 3 is a block diagram illustrating a computing environment for

implementation of various embodiments described herein.

DETAILED DESCRIPTION
[0010] Embodiments provide for tracking and/or detecting one or more memory
leaks, but are not so limited.
[0011] FIGURE 1 depicts a block diagram of a memory management component 100,

according to an embodiment. As described below, the memory management component

WO 2008/016493 PCT/US2007/016440

3
100 1s configured and can be used to track and/or detect memory leaks. The memory

management component 100 can also be configured to track data associated with a -
memory leak. The components described herein may be implemented in any combination
of software, firmware, and/or hardware running on one or more processors, where the
software may be stored on any suitable computer-readable medium. Various alternative
embodiments may distribute one or more functions among any number and/or type of
components, modules, and/or circuitry of or associated with the memory management
component 100 or other system.

[0012] As described above, the memory management component 100 can be used to
track and/or detect one or more memory leaks. For example, an application, such as the
memory requesting application 102, can request one or more blocks of memory as part of
one or more application operations. When the memory requesting application 102 no
longer requires a memory block, it may release the memory block. As shown in Figure 1,
a memory manager 104 can be associated with the memory management component 100.
While the memory manager 104 is shown to be included with the memory management
component 100, in alternative embodiments, the memory manager 104 can be configured
as a separate component with separate functionality. In one embodiment, the memory
manager 104 can be included as part of the memory requesting application 102. In other
alternative embodiments, the memory requesting application 102 can include the
functionality of the memory manager 104 and/or one or more components of the memory
management component 100. Other embodiments are available according to a desired
implementation.

[0013] As described briefly above, when the application 102 no longer requires a
memory block, the memory manager 104 is configured to release (also referred to as a
“free” operation) the memory block back to system memory 106, which allows re-use of
the memory block by the application 102 or some other application or operation. As
shown in FIGURE 1, the system memory 106 includes a buffer 108, which comprises a
fixed amount of memory. The memory management component 100 can use the buffer
108 to track and/or detect one or more memory leaks, as dcscribed below. The buffer 108
can be implemented to include various amounts of memory according to a number of leaks
to be detected. In altemative embodiments, the buffer 108 can be associated with other

storage, such as flash memory or other memory for example.

WO 2008/016493 PCT/US2007/016440

4
[0014] As described above, there are situations in which the memory requesting

application 102 can lose track of a memory block or operation, referred to as a “leak.” In
such a situation, the memory management component 100 can be used to detect the leak,
but is not so limited. In an embodiment, the memory management component 100 can
determine one or more leaks associated with one or more memory blocks by using its
components in conjunction with the buffer 108 (hereinafter referred to as tracking block
108) and a number of pointers 109, described further below.

[0015] With continuing reference to FIGURE 1, according to an embodiment, the
memory management component 100 includes a memory checking component 110 and a
memory marking component 112, but is not so limited. The memory checking component
110 is configured to track memory allocation and free operations. In an embodiment, the
memory checking component 110 is configured to provide an output, such as a notification
or other indication, regarding one or more unreturned memory blocks that the memory
manager 104 has previously allocated. The memory marking component 112 is
configured to inform the memory checking component 110 about known unreturned
memory blocks, but is not so limited. The memory checking component 110 is also
configured to output leak information in conjunction with the memory marking component
112, as described below. In alternative embodiments, the various components of the
memory management component 100 can be separately configured and utilized
individually as needed. In another embodiment, the various components can be combined
as a single component, such as a single application or module for example. .

[0016] As described above, the memory management component 100 can ascertain
whether there are one or more leaks associated with one or more memory blocks by
utilizing the tracking block 108, and a number of associated pointers 109. In an
embodiment, each pointer 109 can comprise an n-bit number that is used with the buffer
108 to detect one or more memory leaks. In alternative embodiments, each pointer 109
can represent an object, such as a memory block, code, or other information. For example,
cach pointer 109 can be 32-bits (ranging in value from 0 to over 4 billion).

[0017] In an embodiment, each pointer 109 comprises a non-zero element in a Galois
Extension Field. The Galois Extension Field may be used to remove a potential overflow
condition when performing various operations used in conjunction with the tracking and/or
detection of one or more memory leaks. Thus, as used in the description below, various

mathematical operations are in accordance with the Galois Extension Field GF(232) for

WO 2008/016493 PCT/US2007/016440

5
32-bit architectures, "and Galois Extension Field GF(2764) for 64-bit architectures.

However, the embodiments are not so limited.

[0018] In one embodiment, data associated with a leak can be tracked as well as one
or more pointers 109, by expanding the size of a field associated with one or more pointers
109 of the tracking block 108. A restriction on the associated data is that it must be known
~ at both the time of allocation and/or the time of freeing. For generic associated data, this
may require an extra allocation per allocated pointer. However, certain data may be
explicitly known at the time of an allocation and/or free operation, but may not be
inferable from a leaked pointer. In such a circumstance, this data may be tracked with a
fixed memory overhead (e.g. the maximum number of detectable leaks multiplied by the
size of each pointer and its maximum associated data set).

[0019] FIGURE 2 is flow diagram for determining if there are one or more memory
leaks, under an embodiment. The components of FIGURE 1 will be referenced in the
description of FIGURE 2. At 200, the flow begins. For example, an application, such as
the memory requesting application 102 may be requesting a provision of an amount of
memory based on an operation that requires the amount of memory. At 202, the memory
manager 104 determines whether the operation is an allocation or free operation.

[0020] If the operation is an allocation or free operation, at 204, the memory manager
104 updates the tracking block 108 based on the type of operation (e.g. allocation, free,
etc.) In an embodiment, the tracking block 108 of memory is allocated initially of a size
“N” (where N is the maximum number of leaks that can be detected times a pointer size in
bytes). The tracking block 108 is initially filled with zeros.

[0021] When the memory manager 104 is called to allocate or free a bloci(of
memory, the memory checking component 110 updates the contents of the tracking block
108 at 204. Under an embodiment, the tracking block 108 comprises a contiguous set of
“N” numbers. Additionally, an allocated or freed pointer 109 comprises the number “X”’.
In an embodiment, the memory checking component 110 is configured to add successive
odd powers of X to the first N/2 (rounded up) numbers in the tracking block 108, and add
successive negative odd powers of X to the remaining N/2 (rounded down) numbers in the
tracking block 108.

[0022] For example, if N =5, add X to N[1], X’ to N[2], X° to N[3], 1/X to N[4], and
17X3 to N[5].

[0023) As further example, if N=9, then using a pointer “p”:

WO 2008/016493 PCT/US2007/016440

X1=Xl1+p

X2 =X2 + p*p*p

X3 = X3 + p*p*p*p*p

X4 = X4 + p*p*p*p*p*p*p

X5=XS5 +p*p*p*p*p*p*p*p*p

X6=X6+1/p

X7=XT7+ (1/p)* (1/p)* (1/p)

X8 = X8 + (L/p)* (1/p)* (1/p)* (1/p)* (1/p)

X9 = X9 + (1/p)* (1/p)* (1/p)* (1/p)* (1/p)* (1/p)* (1/p).

[0024] With continuing reference to FIGURE 2, at 206, it is determined whether
operations associated with detecting one or more leaks are to be executed. If leaks are not
to be detected at this point, the flow returns to 200. If leaks are to be detected at this point,
the flow proceeds to 208. For example, an application, such as the memory requesting
application 102, may include code to request a detection process to detect whether there
are any memory leaks. It will be appreciated that leak detection may occur at desired
times and/or requested at times. As described below, the memory checking component
110 works in conjunction with the memory marking component 112 to detect one or more
memory leaks.

[0025] The memory marking component 112 is configured to mark any known
outstanding pointers associated with one or more memory operations. Once the memory
marking component 112 has marked any known outstanding pointers at 208, the marked
pointers are combined with the pointers determined by the memory checking component
110 at 204. At 210, and in accordance with an embodiment, the combination of pointers
are then used at 210 by the memory checking component 110 to set-up and solve a specific
linear equation, which will translate the tracking block values into coefficients of a
polynomial. At 212, the memory checking component 110 can solve the polynomial (if
solvable) to find the roots of the polynomial which correspond to the pointers associated
with one or more lost memory blocks (leaks). If the pointers are zero at this point, such a
condition corresponds with no memory leaks. On the other hand, if the polynomial is
unsolvable, such a condition corresponds to a condition of more than N leaks. It will be
appreciated that any number of methods can be used by the memory checking component

110 to solve for the roots of the polynomial.

WO 2008/016493

7

[0026] An example scenario will be used to illustrate the operation of the memory
management component 100 and its components described above. It will be appreciated
that the method illustrated by the example below can be extended and/or restricted and
applied in a similar manner. Table 1 below is an addition/subtraction table to be used in
the example. Table 1 also serves as a subtraction table since “a+b” = “a-b” in the Galois
Extension Field. The numbers along the vertical axis and horizontal axis represent a

number of pointers 109. Accordingly, there are 16 possible values of the pointers for this

PCT/US2007/016440

example.
Table 1

+(or-) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
of 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1f1Tr o 3 2 5 4 7 6 9 8 11 10 13 12 15 14
212 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
313 2 1 0 7 6 5 411 10 9 8 15 14 13 12
414 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5sS 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6l 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
717 6 5 4 3 2 1 015 14 13 12 11 10 9 8

8] 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

91 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10]10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
1y 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12112 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13113 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14114 15 12 13 10 11 "8 9 6 7 4 5 2 3 0 1
15015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WO 2008/016493 PCT/US2007/016440

8
[0027] Table 2 below is a multiplication table to be used in the following example.
Table 2
* 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
6jo o o 0 0 0 0 0 0 O O O O O O O
1o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
210 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13
310 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2
410 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9
500 5 1015 7 213 8 1411 4 1 9 12 3 6
6] 0 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4
710 7 14 915 8 1 6 13 10 3 4 2 5 12 11
810 8 3 11 6 14 5 13 12 4 15 7 10 2 9 1
910 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14
1010 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12
11yo 11 5 14 10 115 4 7 12 2 9 13 6 8 3
120 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8
1310 13 9 4 1 12 8 5 2 1511 6 3 14 10 7
1410 14 15 1 13 3 212 9 7 6 8 4 10 11 5
151015 13 2 9 6 4 11 1 14 12 3 8 7 5 10

[0028] Tables 1 and 2 can be constructed as follows:

[0029] Given a prime power q = pn, a finite field “GF(q)” having q elements can be
constructed as follows. First, select an irreducible polynomial f(T) of degree n with
coefficients in GF(p). Such an f exists, knowing that the finite field GF (q) exists: use the
minimal polynomial of any element that generates GF(q) over the subfield GF(p). Then
GF(q) = GF(p)[T]/ <f(T)>.

[0030] GF(p)[T] denotes the ring of all polynomials with coefficients in GF ().
[0031] <f(T)> denotes the ideal generated By RT).

[0032] The quotient is the set of polynomials with coefficients in GF(p) on division
by f(T). See also “http://en.wikipedia.org/wiki/Galois_field.”

[0033] The following illustrative example uses Tables 1 and 2, also referred to as
transformation components, for the various mathematical operations described below. For
example, as seen from Table 1 and 2: “3+5 = 6” and “7 x 11 = 4", Additionally, for this
example, the tracking block 108 is represented as a static array of 3 numbers, herein
referred to as “X”, “Y”, and “Z”. X, Y, and Z can be used to detect and/or track at least 3
memory leaks. However, any size array may be used depending on the desired number of

leaks to detect and/or track. Additionally, according to an embodiment, X, Y, and Z

WO 2008/016493 PCT/US2007/016440

9
represent a running total of allocated pointers, their cubes, and their inverses. Initially, X,

Y, and Z are set to zero.

[0034] According to this example, the pointer “5” is first allocated by the memory
manager 104. As part of the pointer tracking, the memory checking component 110 adds
the number 5 to X, so X is now equal to 5 (X = 0+5 = 5). Using Table 2 above, the
memory checking component 110 adds the cube of 5 to Y, so Y is now equal to 10 (Y =0
+ 5%(5*5) = 10). Again using Table 2, the memory checking component 110 adds the
inverse of 5 to Z. Stated a different way, the inverse of 5 is the number that when
multiplied by 5 results in 1, and according to Table 2, 11 is such a number. Thus, at this
point: X=5, Y= 10, and Z=11.

[0035] After the pointer “5” has been allocated, the pointer “6” is allocated by the
memory manager 104. Using Table 1, the memory checking component 110 adds the
number 6 to X, so X is now equal to 3 (X = 5+6 = 3). Using Tables 1 and 2, the memory
checking component 110 adds the cube of 6 to Y, so Y is now equal to 11 (Y = 10 +
6*(6*6) = 11). Again using Tables 1 and 2, the memory checking component 110 adds
the inverse of 6 to Z. Z is now equal to 12 (Z =11 + 7 = 12). Thus, at this point: X=3, Y=
11, and Z~=12.

[0036] After the pointer “6” has been allocated, the pointer “13” is allocated by the
memory manager 104. Using Table 1, the ‘memory checking component 110 adds the
number 13 to X, so X is now equal to 14 (X = 3+13 = 14). Using Tables 1 and 2, the
memory checking component 110 adds the cube of 13 to Y, so Y is now equalto 1 (Y =11
+ 13*(13*13) = 1). Using Tables 1 and 2, the memory checking component 110 adds the
inverse of 13 to Z. Z is now equal to 8 (Z =12 + 4 = 8). Thus, at this point: X=14, Y=1,
and Z=8.

[0037] After the pointer “13” has been allocated, the pointer “1” is allocated by the
memory manager 104. Using Table 1, the memory checking component 110 adds the
number 1 to X, so X is now equal to 15 (X = 14+1 = 15). Using Tables 1 and 2, the
memory checking component 110 adds the cube of 1 to Y, so 'Y is now equalto 0 (Y =1+
1*(1*1) = 0). Using Tables 1 and 2, the memory checking component 110 adds the
inverse of 1 to Z. Zisnowequalto9(Z=8+ 1= 9). Thus, at this point: X=15, Y= 0,
and Z=9.

[0038] After the pointer “1” has been allocated, the pointer “11” is allocated by the
memory manager 104. Using Table 1, the memory checking component 110 adds the

WO 2008/016493 PCT/US2007/016440

10
number 11 to X, so X is now equal to 4 (X = 15+11 = 4). Using Tables 1 and 2, the

memory checking component 110 adds the cube of 11 to Y, so Y is now equal to 12 (Y =0
+ 11*(11*11) = 12). Again using Tables 1 and 2, the memory checking component 110
adds the inverse of 11 to Z. Z is now equal to 12 (Z =9 + 5 = 12). Thus, at this point:
X=4, Y= 12, and Z=12. _
[0039] After the pointer “11”” has been allocated, the pointer *10” is allocated by the
memory manager 104. Using Table 1, the memory checking component 110 adds the
number 10 to X, so X is now equal to 14 (X = 4+10 = 14). Using Tables 1 and 2, the
memory checking component 110 adds the cube of 10 to Y, so Y is now equal to 3 (Y=12
+ 10*(10*10) = 3). Again using Tables 1 and 2, the memory checking component 110
adds the inverse of 10 to Z. Z is now equal to 0 (Z = 12 + 12 = 0). Thus, at this point:
X=14,Y=3, and Z=0.

[0040]) After the pointer “10” has been allocated, the pointer “9” is allocated by the
memory manager 104. Using Table 1, the memory checking component 110 adds the
number 9 to X, so X is now equal to 7 (X = 14+9 = 7). Using Tables 1 and 2, the memory
checking component 110 adds the cube of 9 to Y, so Y is now equal to 12 (Y =3 +
9*(9*9) = 12). Again using Tables 1 and 2, the memory checking component 110 adds the
inverse of 9 to Z. Z is now equal to 2 (Z =0+ 2 = 2). Thus, at this point: X=7, Y=12, and
Z=2.

[0041] At this point, an application which has called on the memory manager 104 to
allocate the pointers above, no longer requires pointer “10”, and it is handed back to the
memory manager 104 to free. Using Table 1, the memory checking component 110
subtracts the number 10 from X, so X is now equal to 13 (X = 7-10 = 13). Recall that
addition and subtraction are equivalent operations in this example. Using Tables 1 and 2,
the memory checking component 110 subtracts the cube of 10 from Y, so Y is now equal
to 3 (Y = 12 - 10%(10*10) = 3). Again using Tables 1 and 2, the memory checking
component 110 subtracts the inverse of 10 from Z, and Z is now equalto 14 (Z=2-12=
14). Thus, at this point: X=13, Y=3, and Z=14.

[0042] At this point, the application no longer requires pointer “6”, so it is handed
back to the memory manager 104 to free. Using Table 1, the memory checking
component 110 subtracts the number 6 from X, so X is now equal to 11. Using Tables 1

and 2, the memory checking component 110 subtracts the cube of § from Y, so Y is now

WO 2008/016493 PCT/US2007/016440

11
equal to 2. Again using Tables 1 and 2, the memory checking component 110 subtracts

the inverse of 6 from Z, and Z is now equal to 9. Thus, at this point: X=11, Y=2, and Z=9.
[0043] The application also no longer requires pointer “13”, so it is handed back to
the memory manager 104 to free. Using Table 1, the memory checking component 110
subtracts the number 13 from X, so X is now equal to 6. Using Tables 1 and 2, the
memory checking component 110 subtracts the cube of 13 from Y, so Y is now equal to 8.
Again using Tables 1 and 2, the memory checking component 110 subtracts the inverse of
13 from Z, and Z is now equal to 13. Thus, at this point: X=6, Y=8, and Z=13.

[0044] After the pointer “13” has been freed, the application requests that the memory
manager 104 allocate the pointer “8”. Using Table 1, the memory checking component
110 adds the number 8 to X, so X is now equal to 14. Using Tables 1 and 2, the memory
checking component 110 adds the cube of 8 to Y, so Y is now equal to 2. Again using
Tables 1 and 2, the memory checking component 110 adds the inverse of 8 to Z, and Z is
now equal to 2. Thus, at this point: X=14, Y=2, and Z=2.

[0045] At this point, the pointers 1, 5, 6, 8, 9,10, 11, and 13 have been allocated.
However, the pointers 6, 10, and 13 have been freed, leaving the outstanding pointers 1, 5,
8,9, and 11. Stated another way, the unreturned memory blocks are 1, 5, 8,9,and 11. At
this point, it may be desirable to check for any leaks. In accordance with an embodiment,
the memory marking component 112 can be used to mark all of the outstanding pointers.
However, for this example, it is assumed that the application has a bug and has lost track
of pointers 5, 8, and 11. Thus, the application only has knowledge of pointers 1 and 9.
[0046] As described below, the memory checking component 110 works in
conjunction with the memory marking component 112 to determine if there are any leaks.
The memory marking component 112 begins and uses a similar procedure as described
above with X’, Y’, and Z’ representing a running total of allocated pointers, their cubes,
and their inverses which are initially set to zero (0) (X’ =0, Y’ = 0, and Z’ = 0). Since the
application only has knowledge of two outstanding pointers (1 and 0) the memory marking
component 112 starts by marking pointer “1”. Thus, similar to the procedure described
above, the memory marking component 112 adds the number 1 to X’, s0 X’ is now equal
to 1 (X’ = 0+1 =1). Using Table 2, the memory marking component 112 adds the cube of
1toY’,so Y’ isnowequalto 1 (Y’ =0+ 1*(1*1) =1). Again, using Table 2, the memory
marking component 112 adds the inverse of 1 to Z’, and Z’ is now equal to 1. Thus, at this
point: X’=1, Y’=1, and Z’=1.

WO 2008/016493 PCT/US2007/016440

12
[0047] Moving to the remaining known outstanding pointer, “9”, the memory

marking component 112 marks pointer “9”. Thus, the memory marking component 112
adds the number 9 to X’, so X’ is now equal to 8. Using Tables 1 and 2, the memory
marking component 112 adds the cube of 9 to Y”, so Y’ is now equal to 14. Again using
Tables 1 and 2, the memory marking component 112 adds the inverse of 9 to Z’, and Z’ is
now equal to 3. Thus, at this point: X’=8, Y = 14, and Z’=3.

[0048] Since there are no further known outstanding pointers, the operations
associated with memory marking component 112 are complete. Next, the X value (14), Y
value (2), and Z value (2), resulting from the operations of the memory checking
component 110 are combined with the X’ value (8), Y’ value (14), and Z* value (3) which
resulted from the operations of the memory marking component 112. That is, X’ =
(14+8) =6, Y’ = (2+14) = 12, Z = (2+3) = 1. If X**, Y”’, and Z"’ were each equal to
zero (0), then there are no memory leaks. However, since X’’, Y*’, and Z’’, are nonzero,
the memory checking component 110 recognizes that there is at least one memory leak.
[0049] To determine specific pointer information associated with a leak, under an
embodiment, the memory checking component 110 sets up and solves a system of linear

equations, which include, but are not limited to:

a=Xx";
X7’*b+c=X""*X""*X"" + Y’’; and
b+Z’*c=0.

[0050] The memory checking component 110 plugs in the values of X’’, Y*’, and Z”’
above, resulting in:

a=6;

6b+c=13; and,

bt+c=0.

[0051] The memory checking component 110 is configured to solve the system of
linear equations. For example, the memory checking component 110 can use
diagonalization and backsubstitution operations to solve the system of linear equations,
which yields:

[0052] a=6,b =8, c=8. These values represent coefficients of a third-order
polynomial which the memory checking component 110 is configured to create from the

solution to the system of linear equations. The resulting polynomial is:

WO 2008/016493 PCT/US2007/016440

13
[0053] x*+ 6x* + 8x + 8. It will be appreciated that the order of the polynomial is

directly related to the number of leaks to be tracked and/or detected.

[0054] The memory checking component 110 is further configured to solve the
polynomial and can in certain circumstances identify the lost pointers based on the
solution. For example, the polynomial can be factored by algorithms and methodologies
known to those skilled in the art, yielding the lost pointers 5, 8, and 11. That is, the
solution to the polynomial results in the foots: 5, 8, and 11, which represent the lost
pointers. That is, the exact pointers that were leaked can be determined. This solution can
be easily checked: (x+5)*(x+8)*(x+11) = x>+ 6x% + 8x + 8. It will be appreciated that the
teachings of the example above can be extended to detect and/or track any number of
memory leaks for permanent, temporary, and other memory architectures.

[0055] Other embodiments are contemplated. For example, the systems and methods
described above may be used to track other objects, such as inventory, customer
information, code revisions, etc., and other tangible and intangible items that may be

represented by a unique number.

Exemplary Operating Environment
[0056) Referring now to FIGURE 3, the following discussion is intended to provide a

brief, general description of a suitable computing environment in which embodiments of
the invention may be implemented. Whilf: the invention will be described in the general
context of program modules that execute in conjunction with program modules that run on
an operating system on a personal computer, those skilled in the art will recognize that the
invention may also be implemented in combination with other types of computer systems
and program modules.

[0057] Generally, program modules include routines, programs, components, data
structures, and other types of structures that perform particular tasks or implement
particular abstract data types. Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer system configurations, including hand-
held devices, multiprocessor systems, microprocessor-based or programmable consumer
electronics, minicomputers, mainframe computers, and the like. The invention may also
be practiced in distributed computing environments where tasks are performed by remote

processing devices that are linked through a communications network. In a distributed

WO 2008/016493 PCT/US2007/016440

14
computing environment, program modules may be located in both local and remote

memory storage devices.

[0058] Referring now to FIGURE 3, an illustrative operating environment for
embodiments of the invention will be described. As shown in FIGURE 3, computer 2
comprises a general purpose desktop, laptop, handheld, or other type of computer capable
of executing one or more application programs. In particular, according to the various
embodiments, the computer 2 is operative to execute a memory management compoﬁent
24, as described in detail above. The computer 2 includes at least one central processing
unit 8 ("CPU"), a system memory 12, including a random access memory 18 ("RAM") and
a read-only memory ("ROM") 20, and a system bus 10 that couples the memory to the
CPU 8. A basic input/output system containing the basic routines that help to-transfer
information between elements within the computer, such as during startup, is stored in the
ROM 20. The computer 2 further includes a mass storage device 14 for storing an
operating system 32, application programs, and other program modules.

[0059] The mass storage device 14 is connected to the CPU 8 through a mass storage
controller (not shown) connected to the bus 10. The mass storage device 14 and its
associated computer-readable media provide non-volatile storage for the computer 2.
Although the description of computer-readable media contained herein refers to a mass
storage device, such as a hard disk or CD-ROM drive, it should be appreciated by those
skilled in the art that computer-readable media can be any available media that can be
accessed or utilized by the computer 2.

[0060] By way of example, and not limitation, computer-readable media may
comprise computer storage media and communication media. Computer storage media
includes volatile and non-volatile, removable and non-removable media implemented in
any method or technology for storage of information such as computer-readable
instructions, data structures, program modules or other data. Computer storage media
includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other
solid state memory technology, CD-ROM, digital versatile disks (“DVD”), or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to store the desired information
and which can be accessed by the computer 2.

[0061] According to various embodiments of the invention, the computer 2 ma)}

operate in a networked environment using logical connections to remote computers

WO 2008/016493 PCT/US2007/016440

15
through a network 4, such as a local network, the Internet, etc. for example. The computer

2 may connect to the network 4 through a network interface unit 16 connected to the bus
10. It should be appreciated that the network interface unit 16 may also be utilized to
connect to other types of networks and remote computing systems. The computer 2 may
also include an input/output controller 22 for receiving and processing input from a
number of other devices, including a keyboard, mouse, etc. (not shown). Similarly, an
input/output controller 22 may provide output to a display screen, a printer, or other type
of output device.

[0062] As mentioned briefly above, a number of program modules and data files may
be stored in the mass storage device 14 and RAM 18 of the computer 2, including an
operating system 32 suitable for controlling the operation of a networked personal
computer, such as the WINDOWS XP operating system from MICROSOFT
CORPORATION of Redmond, Washington. The mass storage device 14 and RAM 18
may also store one or more program modules. In particular, the mass storage device 14
and the RAM 18 may store a memory management component 24, as described above, and
other components, such as a word processing application 28, a spreadsheet application 30,
operating system 32, e-mail application 34, etc. '

[0063] It should be appreciated that various embodiments of the present invention can
be implemented (1) as a sequence of bomputer implemented acts or program modules
running on a computing system and/or (2) as interconnected machine logic circuits or
circuit modules within the computing system. The implementation is a matter of choice
dependent on the performance requirements of the computing system implementing the
invention. Accordingly, logical operations including related algorithms can be referred to
variously as operations, structural devices, acts or modules. It will be recognized by one
skilled in the art that these operations, structural devices, acts and modules may be
implemented in software, firmware, special purpose digital logic, and any combination
thereof without deviating from the spirit and scope of the present invention as recited
within the claims set forth herein.

[0064) Although the invention has been described in connection with various
exemplary embodiments, those of ordinary skill in the art will understand that many
modifications can be made thereto within the scope of the claims that follow.

Accordingly, it is not intended that the scope of the invention in any way be limited by the

WO 2008/016493 PCT/US2007/016440

16
above description, but instead be determined entirely by reference to the claims that

follow.

WO 2008/016493 PCT/US2007/016440

17

CLAIMS:

1. A system for managing memory comprising:

a tracking block of memory (106) including an associated number of tracking
pointers (109);

a memory marking component (112) to mark an outstanding pointer (208)
associated with the tracking block of memory (106); and,

| a memory checking component (110) to track a memory allocation operation (202)

or a memory free operation (202) using one or more of the number of tracking pointers
(109), wherein the memory checking component (110) is operative to use information
provided by the memory marking component (112) and the number of tracking pointers
(109) to detect a memory leak (212).

2. The system of claim 1, further comprising a memory manager (104) to manage the

memory allocation operation (202) or memory free operation (202).

3. The system of claim 1, wherein the memory checking component (1 10) is further
configured to detect data associated with the number of tracking pointers (109).

4. The system of claim 1, wherein the memory checking component (110) is further
configured to construct a polynomial (210) based at least in part on the number of tracking
pointers (109) and the outstanding pointer to detect the memory leak (212).

S. The system of claim 4, wherein the memory checking component (110) is further
configured to solve the polynomial (210) to detect the memory leak (212).

6. The system of claim 1, wherein the memory checking component (110) is further
configured to construct a polynomial (210) based at least in part on a solution to a system
of linear equations associated with the number of tracking pointers (109) and the

outstanding pointer.

WO 2008/016493 PCT/US2007/016440

18
7. The system of claim 1, wherein each tracking pointer (109) comprises a Galoi;
Extension Field.
8. The system of claim 1, the tracking block further comprising a contiguous set of N

values and an allocated and a freed pointer each comprise a number; and,

wherein the memory checking component (110) is further configured to add successive
odd powers of the number to the first N/2 values in the tracking block (106), and add
successive negative odd powers of the number to the remaining N/2 values in the tracking
block (106).

9. A method of managing memory comprising:

marking an outstanding pointer (208) associated with a tracking block of memory
(106) having a number of tracking pointers (109);

trackiné a memory allocation operation or a memory free operation using the
number of tracking pointers (109); and,

identifying a memory leak (212) by using information provided by the outstanding

pointer and the number of tracking pointers (109).

10. The method of claim 9, further comprising managing the memory allocation

operation or the memory free operation using a memory manager (104).

11. The method of claim 9, further comprising detecting data associated with the
number of tracking pointers (109).

12. The method of claim 9, further comprising constructing a polynomial based at least
in part on the number of tracking pointers (109) and the outstanding pointer to identify the
memory leak (212).

13. The method of claim 12, further comprising constructing the polynomial based at
least in part on the outstanding pointer and a solution to a system of linear equations

associated with the number of tracking pointers (109).

WO 2008/016493 PCT/US2007/016440

19
14. The method of claim 12, further comprising solving the polynomial to identify the

memory leak (212).

15. The method of claim 9, further comprising adding successive odd powers of a
number to a first set of values in the tracking block (106), and adding successive negative

odd powers of the number to the remaining values in the tracking block (106).

16. The method of claim 9, further comprising representing the tracking pointers (109)

and the outstanding pointer with a Galois Extension Field.

17. The method of claim 9, further comprising establishing a relationship to identify
the memory leak (212), wherein the relationship is based at least in part on a solution to a

system of equations.

18. A computer readable medium including executable instructions which, when
executed, manage memory by:

identifying an outstanding pointer (208) associated with a number of tracking
pointers (109);

tracking a memory operation using the number of tracking pointers (109); and,

detecting a memory leak (212) by using information provided by the outstanding
pointer and the number of tracking pointers (109).

19. The computer-readable medium of claim 18, wherein the instructions, when
executed, manage memory by establishing a relationship to identify the memory leak
(212), wherein the relationship is based at least in part on a solution to a system of

equations associated with the outstanding pointer and the number of tracking pointers
(109). ‘

20. The computer-readable medium of claim 19, wherein the instructions, when
executed, manage memory by constructing a polynomial (210) based at least in part on the

solution to the system of equations.

WO 2008/016493 PCT/US2007/016440

1/3

104

/\100

\ MEMORY MANAGEMENT COMPONENT
MEMORY MEMORY
ymone || cimtene || aanianc |
COMPONENT COMPONENT \
T 112
110
10% MEMORY REQUESTING
SYSTEM MEMORY —————Q—*APPL TCATICN \
BUFFER 102
j | _|POINTERS
109
108

FIGURE 1

WO 2008/016493 PCT/US2007/016440

2/3

200 '\

Enter

[§

20

Allocation or o Detect Leaks?

206
; :
Mark
Update Tracking ~ Outstanding
4 Block 208 Pointers

!

Determine
~— Polynomial

210 Coefficients

Determine

Memory
Leaks

204

Return Control to Program

212

FIGURE 2

INo

PCT/US2007/016440

WO 2008/016493

3/3

(44

€ JANOI

Al

NOLLVOITddV || g —
L13THSAVIAAS | =
AN] [| [
ONLLV¥IdO THOM AINO - N]_02
avay
P¢ N NOLLVOITddV XIOWIN
TYW-3 ININOdWOD 55300V TN-8I
INIWIOVNVIN W 57 | |Woanvy
dDIATA RJONWIN XIOWIN
SN FOVHOLS SSVI 2L WEISAS
_
9L IINR v IIND
o i oo
, YHOMIIN ~ TVAINDD
- m B

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2007/016440

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 12/02(2006.01)i, GOGF 12/00(20006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 8 : GOG6F 12/00, 9/44

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean Utility Models and applications for Utility Model since 1975
Japanese Utility Models and applications for Utility Model sinc 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKIPASS(KIPO internal) "memory leak", "pointer”, "track"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2005/0240747 A1 (RAUT DEVENDRA) 27 October 2005 1-20
See abstract, paragraph [0018] column 1 - paragraph [0027] column 3, claims
A US 2004/0078540 A1 (CIRNE LEWIS K. et al.) 22 April 2004 1-20
See abstract, paragraph [0015] column 2 - paragraph [0022] column 2, claims
A US 2003/0163661 A1 (MARION NEAL RICHARD, et al.) 28 August 2003 1-20
See abstract, paragraph [0010] column 1 - paragraph [00160 column 2, claims
A US 6658652 B1 (ALEXANDER WILLIAM PRESTONII, et al.) 02 December 2003 1-20

See abstract, claims

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later

than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

e

ey

ng"

Date of the actual completion of the international search

03 DECEMBER 2007 (03.12.2007)

Date of mailing of the international search report

03 DECEMBER 2007 (03.12.2007)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701,
Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer .

LEE, Jong Ick

Telephone No. 82-42-481-8373

Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2007/016440

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2005/0240747 Al 27.10.2005 US 2007143562 AA 21.06.2007
us 7200731 BB 03.04.2007

US 2004/0078540 A1 22.04.2004 US 2004075690 A1 22.04.2004
US 2004078691 A1l 22.04.2004
US 7234080 BB 19.06.2007

US 2003/0163661 Al 28.08.2003 US 6782462 B2 24.08.2004

US 6658652 B1 02.12.2003 NONE

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - wo-search-report
	Page 25 - wo-search-report

