
JP 4913302 B2 2012.4.11

10

20

(57)【特許請求の範囲】
【請求項１】
　言語サブセットの妥当性検査方法であって、
　プロセッサ上でメモリに記憶された命令を実行する段階を備え、上記実行する段階は、
言語サブセットの妥当性検査を含み、
　上記妥当性検査は、上記プロセッサ上で命令を実行することによって、複数のオブジェ
クト指向プログラムモジュールを含むコンピュータ実行可能プログラムのスタティックな
検査を行う段階を含み、
　　上記複数のオブジェクト指向プログラムモジュールは、クラスファイルを含み、
　　上記クラスファイルは、バイトコードを有するメソッド、及び、フィールドを含み、
　　上記バイトコードは、第１コンピュータ言語として定義され、
　　上記第１コンピュータ言語は、第２コンピュータ言語のハードウェア依存性サブセッ
トであり、上記妥当性検査方法は、更に、
　上記プロセッサ上で上記命令を実行することによって、複数のオブジェクト指向プログ
ラムモジュールを含む上記コンピュータ実行可能プログラムのカードベースの妥当性検査
を実行する段階を備え、
　上記第１コンピュータ言語は、第１実行環境において実行されるものであり、
　上記第２コンピュータ言語は、第２実行環境において実行されるものであり、上記第２
実行環境は、上記第１実行環境とは異なるものであり、
　上記スタティックな検査を行う前記段階は、

(2) JP 4913302 B2 2012.4.11

10

20

30

40

50

　　上記クラスファイルの１つを受け取り、
　　上記クラスファイルの上記１つの中のフィールドを読み出し、
　　上記フィールドのフィールド宣言が上記第１コンピュータ言語によってサポートされ
ていないとき、上記フィールドに対してエラー状態である旨を表示し、
　　上記第１コンピュータ言語の上記第１実行環境によってサポートされていない上記フ
ィールド宣言において使用される各任意の特徴に対してエラー状態である旨を表示し、
　　上記クラスファイルの上記１つにおいてメソッドを受け取り、
　　上記メソッドのメソッド宣言が上記第１コンピュータ言語によってサポートされてい
ない任意の特徴を含むとき、上記メソッドに対してエラー状態である旨を表示し、そして
、
　　上記メソッド宣言が、上記第１コンピュータ言語の上記第１実行環境にサポートされ
ていない任意の特徴を含まないとき、上記メソッドのメソッド宣言以降に記述されたバイ
トコードを検査するという段階を含み、
　上記カードベースの妥当性検査を実行する上記段階は、更に、
　　全ての上記プログラムモジュールに対するコード及びデータの使用量を加算すること
によりメモリ使用量を決定する段階、及び
　　上記メモリ使用量が最大メモリ使用量を越えたときにエラー状態である旨を表示する
段階を含む、方法。
【請求項２】
　上記バイトコードを検査する上記段階は、更に、
　上記バイトコードを読み取り、
　上記バイトコードが、上記第１コンピュータ言語によりサポートされていないデータ形
式を使用するときにエラー状態である旨を表示し、
　上記バイトコードが、上記第１コンピュータ言語によりサポートされていないデータ形
式の値に基づいて動作するときにエラー状態である旨を表示し、
　上記第１実行環境が上記第１コンピュータ言語の任意の特徴をサポートせずそして上記
命令が上記任意の特徴を使用するときにエラー状態である旨を表示し、そして
　上記第１実行環境が上記第１コンピュータ言語の任意の特徴をサポートせずそして上記
命令が上記任意の特徴の少なくとも１つの値に基づいて動作するときにエラー状態である
旨を表示するという段階を含む、請求項１に記載の方法。
【請求項３】
　上記妥当性検査方法は、更に、上記プロセッサ上で上記命令を実行することによって、
複数のオブジェクト指向プログラムモジュールを含む上記コンピュータ実行可能プログラ
ムのメソッドベースの妥当性検査を実行する段階を備え、上記メソッドベースの妥当性検
査を実行する上記段階は、更に、
　　上記クラスファイルの１つを受け取り、
　　上記クラスファイルの上記１つの内のメソッドに対するデータ流を発生し、そして
　　上記データ流を使用してローカル変数の形式を決定するとともに、決定したローカル
変数の形式に基づいて上記メソッド内の演算中間結果にオーバーフローの可能性が存在す
るかどうか決定するという段階を含み、このオーバーフローの可能性は、上記メソッドの
第２の最終結果とは意義的に異なる上記メソッドの第１の最終結果を形成し、この第１の
最終結果は、上記メソッドが上記第１実行環境において上記第１コンピュータ言語に対し
て実行されるときに得られ、そして上記第２の最終結果は、上記メソッドが上記第２実行
環境において上記第２コンピュータ言語に対して実行されるときに得られる、請求項１に
記載の方法。
【請求項４】
　上記妥当性検査方法は、更に、
　上記プロセッサ上で命令を実行することによって、複数のオブジェクト指向プログラム
モジュールを含むコンピュータ実行可能プログラムのメソッドのパッケージベースの妥当
性検査を実行する段階を備え、上記パッケージベースの妥当性検査を実行する上記段階は

(3) JP 4913302 B2 2012.4.11

10

20

30

40

50

、
　　クラスファイルを含むパッケージを受け取り、
　　上記パッケージにおけるメソッドの妥当性検査を行う段階を含み、上記パッケージに
おけるメソッドの妥当性検査を行う上記段階は、
　　上記パッケージにおける上記クラスファイルの１つにおいてメソッドを読み出し、
　　上記メソッド内のローカル変数及びパラメータの全数が変数及びパラメータの最大数
を越えるときにエラー状態である旨を表示し、
　　上記メソッド内のローカル変数及びパラメータの上記全数が変数及びパラメータの上
記最大数を越えないときに上記メソッド内の全てのバイトコードを上記第１コンピュータ
言語に基づいて変換して、変換されたバイトコードを形成し、
　　変換されたバイトコードの全数がバイトコードの最大数を越えたときにエラー状態で
ある旨を表示するという段階を含む、請求項１に記載の方法。
【請求項５】
　上記パッケージベースの妥当性検査は、更に、パッケージの制限の妥当性検査を行う段
階を含み、前記パッケージの制限の妥当性検査を行う上記段階は、ＣＡＰファイルコンポ
ーネントサイズの妥当性検査を行う段階を含み、前記ＣＡＰファイルコンポーネントサイ
ズの妥当性検査を行う上記段階は、
　　上記ＣＡＰファイルのメソッドコンポーネントによって使用されるバイトの全数を決
定し、そして
　　上記バイトの全数が最大メモリ使用量を越えたときにエラー状態である旨を表示する
段階を含む、請求項４に記載の方法。
【請求項６】
　パッケージベースの妥当性検査を実行する上記段階は、更に、
　上記パッケージ中のクラスの妥当性検査を行う段階を含み、上記パッケージ中のクラス
の妥当性検査を行う前記段階は、
　　上記パッケージ内の上記クラスファイルの少なくとも１つを読み出し、
　　上記少なくとも１つのクラスファイルのクラス内のインスタンスフィールドの全数が
インスタンスフィールドの最大数を越えたときにエラー状態である旨を表示し、
　　上記少なくとも１つのクラスファイルのクラス内のスタティックフィールドの全数が
スタティックフィールドの最大数を越えたときにエラー状態である旨を表示し、
　　上記少なくとも１つのクラスファイルのインスタンスメソッドを含む上記パッケージ
内のインスタンスメソッドの全数が上記インスタンスメソッドの最大数を越えたときにエ
ラー状態である旨を表示し、
　　上記パッケージ内のスタティックメソッドの全数がスタティックメソッドの最大数を
越えたときにエラー状態である旨を表示し、そして
　　上記パッケージの各クラス又は各インターフェイスのスーパーインターフェイスの全
数がスーパーインターフェイスの最大数を越えたときにエラー状態である旨を表示すると
いう段階を含む、請求項４に記載の方法。
【請求項７】
　クラスの妥当性検査を行う上記段階は、更に、アクセスの妥当性検査を行う段階を含み
、アクセスの妥当性検査を行う前記段階は、
　　パブリックインターフェイスが上記パッケージ内のパッケージ可視インターフェイス
を拡張するときにエラー状態である旨を表示し、そして
　　スーパークラスにおけるパッケージデフォールトメソッドのアクセス可視性が上記パ
ッケージ内のサブセットにおいてパブリック又は保護状態に変更されるときにエラー状態
である旨を表示するという段階を含む、請求項６に記載の方法。
【請求項８】
　上記第１コンピュータ言語は、Ｊａｖａ　Ｃａｒｄ（登録商標）バーチャルマシンに対
して定義され、
　上記第２コンピュータ言語は、Ｊａｖａ（登録商標）言語よりなる、請求項１に記載の

(4) JP 4913302 B2 2012.4.11

10

20

30

40

50

方法。
【請求項９】
　上記第１コンピュータ言語は、Ｊａｖａ　Ｃａｒｄ（登録商標）バーチャルマシンに対
して定義され、
　上記第２コンピュータ言語は、Ｊａｖａ（登録商標）クラスファイルよりなる、請求項
１に記載の方法。
【請求項１０】
　コンピュータに言語サブセットの妥当性検査方法を実行させるためのプログラムを記憶
した記憶装置であって、前記プログラムは、前記コンピュータに、
　複数のオブジェクト指向プログラムモジュールを含むコンピュータ実行可能プログラム
のスタティックな検査を行うステップを実行させ、
　　上記複数のオブジェクト指向プログラムモジュールは、クラスファイルを含み、
　　上記クラスファイルは、バイトコードを有するメソッド、及び、フィールドを含み、
　　上記バイトコードは、第１コンピュータ言語として定義され、
　　上記第１コンピュータ言語は、第２コンピュータ言語のハードウェア依存性サブセッ
トであり、前記プログラムは、前記コンピュータに更に、
　複数のオブジェクト指向プログラムモジュールを含む上記コンピュータ実行可能プログ
ラムのカードベースの妥当性検査を実行するステップを実行させ、
　上記第１コンピュータ言語は、第１実行環境において実行されるものであり、
　上記第２コンピュータ言語は、第２実行環境において実行されるものであり、上記第２
実行環境は上記第１実行環境とは異なるものであり、
　上記のスタティックな検査を実行する前記ステップは、
　　上記クラスファイルの１つを受け取り、
　　上記クラスファイルの上記１つの中のフィールドを読み出し、
上記フィールドのフィールド宣言が上記第１コンピュータ言語によってサポートされてい
ないとき上記フィールドに対してエラー状態である旨を表示し、
　　上記第１コンピュータ言語の上記第１実行環境によってサポートされていないフィー
ルド宣言において使用される各任意の特徴に対してエラー状態である旨を表示し、そして
　　上記クラスファイルの上記１つにおいてメソッドを受け取り、
　　上記メソッドのメソッド宣言が上記第１コンピュータ言語によってサポートされてい
ない任意の特徴を含むとき、上記メソッドに対してエラー状態である旨を表示し、そして
、
　　上記メソッド宣言が、上記第１コンピュータ言語の上記第１実行環境にサポートされ
ていない任意の特徴を含まないとき、上記メソッドのメソッド宣言以降に記述されたバイ
トコードを検査するというステップを含み、
　上記カードベースの妥当性検査を実行する上記ステップは、更に、
　　全ての上記プログラムモジュールに対するコード及びデータの使用量を加算すること
によりメモリ使用量を決定するステップ、及び
　　上記メモリ使用量が最大メモリ使用量を越えたときにエラー状態である旨を表示する
ステップを含む、プログラム記憶装置。
【請求項１１】
　上記バイトコードを検査する前記ステップは、更に、
　上記バイトコードを読み取り、
　上記バイトコードが、上記第１コンピュータ言語によりサポートされていないデータ形
式を使用するときにエラー状態である旨を表示し、
　上記バイトコードが、上記第１コンピュータ言語によりサポートされていないデータ形
式の値に基づいて動作するときにエラー状態である旨を表示し、
　上記第１実行環境が上記第１コンピュータ言語の任意の特徴をサポートせずそして上記
命令が上記任意の特徴を使用するときにエラー状態である旨を表示し、そして
　上記第１実行環境が上記第１コンピュータ言語の任意の特徴をサポートせずそして上記

(5) JP 4913302 B2 2012.4.11

10

20

30

40

50

命令が上記任意の特徴の少なくとも１つの値に基づいて動作するときにエラー状態である
旨を表示するというステップを含む、請求項１０に記載のプログラム記憶装置。
【請求項１２】
　前記プログラムは、前記コンピュータに更に、複数のオブジェクト指向プログラムモジ
ュールを含む上記コンピュータ実行可能プログラムのメソッドベースの妥当性検査を実行
するステップを実行させ、上記メソッドベースの妥当性検査を実行する前記ステップは、
更に、
　　上記クラスファイルの１つを受け取り、
　　上記クラスファイルの上記１つの内のメソッドに対するデータ流を発生し、そして
　　上記データ流を使用してローカル変数の形式を決定するとともに、決定したローカル
変数の形式に基づいて上記メソッド内の演算中間結果にオーバーフローの可能性が存在す
るかどうか決定するというステップを含み、このオーバーフローの可能性は、上記メソッ
ドの第２の最終結果とは意義的に異なる第１の最終結果を形成し、この第１の最終結果は
、上記メソッドが上記第１実行環境において上記第１コンピュータ言語に対して実行され
るときに得られ、そして上記第２の最終結果は、上記メソッドが上記第２実行環境におい
て上記第２コンピュータ言語に対して実行されるときに得られる、請求項１０に記載のプ
ログラム記憶装置。
【請求項１３】
　前記プログラムは、前記コンピュータに更に、複数のオブジェクト指向プログラムモジ
ュールを含むコンピュータ実行可能プログラムのメソッドのパッケージベースの妥当性検
査を実行するステップを実行させ、上記パッケージベースの妥当性検査を実行する前記ス
テップは、
　　クラスファイルを含むパッケージを受け取り、
　　上記パッケージにおけるメソッドの妥当性検査を行うステップを含み、上記パッケー
ジにおけるメソッドの妥当性検査を行う上記ステップは、
　　上記パッケージにおける上記クラスファイルの１つにおいてメソッドを読み出し、
　　上記メソッド内のローカル変数及びパラメータの全数が変数及びパラメータの最大数
を越えるときにエラー状態である旨を表示し、
　　上記メソッド内のローカル変数及びパラメータの上記全数が変数及びパラメータの上
記最大数を越えないときに上記メソッド内の全てのバイトコードを上記第１コンピュータ
言語に基づいて変換して、変換されたバイトコードを形成し、
　　変換されたバイトコードの全数がバイトコードの最大数を越えたときにエラー状態で
ある旨を表示するというステップを含む、請求項１０に記載のプログラム記憶装置。
【請求項１４】
　上記パッケージベースの妥当性検査は、更に、パッケージの制限の妥当性検査を行う段
階を含み、前記パッケージの制限の妥当性検査を行う上記ステップは、ＣＡＰファイルコ
ンポーネントサイズの妥当性検査を行うステップを含み、前記ＣＡＰファイルコンポーネ
ントサイズの妥当性検査を行う上記ステップは、
　　上記ＣＡＰファイルのメソッドコンポーネントによって使用されるバイトの全数を決
定し、そして
　　上記バイトの全数が最大メモリ使用量を越えたときにエラー状態である旨を表示する
ステップを含む、請求項１３に記載のプログラム記憶装置。
【請求項１５】
　パッケージベースの妥当性検査を実行する上記ステップは、更に、
　上記パッケージ中のクラスの妥当性検査を行うステップを含み、上記パッケージ中のク
ラスの妥当性検査を行う前記ステップは、
　　上記パッケージ内の上記クラスファイルの少なくとも１つを読み出し、
　　上記少なくとも１つのクラスファイルのクラス内のインスタンスフィールドの全数が
インスタンスフィールドの最大数を越えたときにエラー状態である旨を表示し、
　　上記少なくとも１つのクラスファイルのクラス内のスタティックフィールドの全数が

(6) JP 4913302 B2 2012.4.11

10

20

30

40

50

スタティックフィールドの最大数を越えたときにエラー状態である旨を表示し、
　　上記少なくとも１つのクラスファイルのインスタンスメソッドを含む上記パッケージ
内のインスタンスメソッドの全数が上記インスタンスメソッドの最大数を越えたときにエ
ラー状態である旨を表示し、
　　上記パッケージ内のスタティックメソッドの全数がスタティックメソッドの最大数を
越えたときにエラー状態である旨を表示し、そして
　　上記パッケージの各クラス又は各インターフェイスのスーパーインターフェイスの全
数がスーパーインターフェイスの最大数を越えたときにエラー状態である旨を表示すると
いうステップを含む、請求項１３に記載のプログラム記憶装置。
【請求項１６】
　上記クラスの妥当性検査を行う上記ステップは、更に、アクセスの妥当性検査を行うス
テップを含み、アクセスの妥当性検査を行う前記ステップは、
　　パブリックインターフェイスが上記パッケージ内のパッケージ可視インターフェイス
を拡張するときにエラー状態である旨を表示し、そして
　　スーパークラスにおけるパッケージデフォールトメソッドのアクセス可視性が上記パ
ッケージ内のサブセットにおいてパブリック又は保護状態に変更されるときにエラー状態
である旨を表示するというステップを含む、請求項１５に記載のプログラム記憶装置。
【請求項１７】
　上記第１コンピュータ言語は、Ｊａｖａ　Ｃａｒｄ（登録商標）バーチャルマシンに対
して定義され、
　　上記第２コンピュータ言語は、Ｊａｖａ（登録商標）言語よりなる請求項１０に記載
のプログラム記憶装置。
【請求項１８】
　上記第１コンピュータ言語は、Ｊａｖａ　Ｃａｒｄ（登録商標）バーチャルマシンに対
して定義され、
　　上記第２コンピュータ言語は、Ｊａｖａ（登録商標）クラスファイルよりなる請求項
１０に記載のプログラム記憶装置。
【発明の詳細な説明】
【０００１】
【関連出願に対するクロスレファレンス】
本出願は、次のものに関連している。
「OBJECT-ORIENTED INSTRUCTION SET FOR RESOURCE-CONSTRAINED DEVICES」と題する１９
９９年２月２日出願のスサー及びシュワベ氏の米国特許出願；
「VIRTUAL MACHINE WITH SECURELY DISTRIBUTED BYTECODE VERIFICATION」と題する１９
９７年４月１５日出願のレビー及びシュワベ氏の米国特許出願；及び
「OPTIMIZATION OF N-BASE TYPED ARITHMETIC EXPRESSIONS」と題する１９９９年１１月
１２日出願のチェン及びシュワベ氏の米国特許出願。
【技術分野】
本発明は、コンピュータシステムに係る。より詳細には、本発明は、言語サブセットの妥
当性検査に係る。
【０００２】
【背景技術】
Ｊａｖａ（登録商標）プラットホームによって使用されるようなオブジェクト指向のプロ
グラミング技術が広範囲に利用されている。オブジェクト指向のプログラムの基本的なユ
ニットは、ここでメンバーと称されるメソッド（手順）及びフィールド（データ）を有す
るオブジェクトである。メンバーを共用するオブジェクトは、クラスにグループ分けされ
る。クラスとは、そのクラスにおけるオブジェクトの共用メンバーを定義する。従って、
各オブジェクトは、それが属するクラスの特定のインスタンスである。実際に、あるクラ
スは、同様の特徴をもつ多数のオブジェクト（多数のインスタンス）を形成するためのテ
ンプレートとしてしばしば使用される。

(7) JP 4913302 B2 2012.4.11

10

20

30

40

50

【０００３】
クラスの１つの特性は、そのクラス内のメンバーの実際のインプレメンテーションが、外
部のユーザ、及びインターフェイスにより露出されるもの以外の他のクラスから隠される
という特性を示すカプセル化である。これは、クラスを、例えば、ネットワークの異なる
サイトの異なる開発者による分散型開発に適したものにする。必要とされるクラスを組み
立て、それらを一緒にリンクし、そしてそれにより得られたプログラムを実行することに
より完全なプログラムを形成することができる。
クラスは、継承という特性も有する。継承とは、１つのクラスが別のクラスの全てのメン
バーを継承できるようにするメカニズムである。別のクラスから継承するクラスをサブク
ラスと称し、属性を与えるクラスはスーパークラスである。記号的には、これは、サブク
ラス←スーパークラス、又はスーパークラス→サブクラスと書き表すことができる。サブ
クラスは、付加的なメンバーを追加することによりスーパークラスの能力を拡張すること
ができる。サブクラスは、同じ名称及び形式をもつ交換メソッドを与えることによりスー
パークラスのバーチャルメソッドをオーバーライドすることができる。
【０００４】
クラス形式のメンバーは、フィールド及びメソッドであり、これらは、スーパークラスか
ら継承されたメンバーを含む。クラスファイルも、スーパークラスを命名する。メンバー
は、パブリックでもよく、これは、その宣言を含むクラスのメンバーによりこれにアクセ
スできることを意味する。メンバーは、プライベートであってもよい。クラスのプライベ
ートフィールドは、そのクラス内に定義されたメソッドにおいてのみ見ることができる。
同様に、プライベートメソッドは、クラス内のメソッドによってしか呼び出せない。プラ
イベートメンバーは、サブクラス内では見ることができず、他のメンバーと同様にサブク
ラスによって継承されない。メンバーは、保護することもできる。
【０００５】
インターフェイスの形式は、そのメンバーが定数及び抽象的メソッドであるような形式で
ある。この形式は、インプレメンテーションをもたないが、その他の非関連クラスは、そ
の抽象的メソッドに対するインプレメンテーションを与えることによりそれを実施するこ
とができる。インターフェイスは、クラスがサブクラスを有するのと同様に、サブインタ
ーフェイスを有することができる。サブインターフェイスは、そのスーパーインターフェ
イスから継承し、そして新たなメソッド及び定数も定義することができる。更に、あるイ
ンターフェイスは、一度に２つ以上のインターフェイスを拡張することができる。２つ以
上のインターフェイスを拡張するインターフェイスは、それらインターフェイスの各々か
ら全ての抽象的メソッド及び定数を継承し、そしてそれ自身の付加的なメソッド及び定数
を定義することができる。
【０００６】
Ｊａｖａ（登録商標）プログラミング言語では、クラスをグループ分けすることができる
と共に、グループに命名することができ、クラスの命名されたグループがパッケージとな
る。クラスメンバーが、パブリック、プライベート又は保護されたキーワードのいずれで
も宣言されない場合には、そのクラスメンバーは、それを定義するクラス内及び同じパッ
ケージの一部分であるクラス内でしか見ることができない。保護されたメンバーは、クラ
スを宣言するメンバーによりアクセスすることもできるし、又はそれが宣言されたパッケ
ージ内のどこからでもアクセスすることができる。Ｊａｖａ（登録商標）プログラミング
言語は、１９９６年８月のアジソン－ウェズリー・ロングマン・インク出版のゴースリン
グ氏等の「The JavaTM Language Specification」に詳細に説明されている。
【０００７】
バーチャルマシンは、プロセッサにより実行される命令のシーケンス又はソフトウェアア
プリケーションにより発生される抽象的計算マシンである。「アーキテクチャー・ニュー
トラル」という語は、Ｊａｖａ（登録商標）プログラミング言語で書かれたようなプログ
ラムであって、種々の異なるコンピュータアーキテクチャーを有する種々のコンピュータ
プラットホームにおいてバーチャルマシンにより実行できるプログラムを指す。従って、

(8) JP 4913302 B2 2012.4.11

10

20

30

40

50

例えば、Ｗｉｎｄｏｗｓ（登録商標）ベースのパーソナルコンピュータシステムで実施さ
れるバーチャルマシンは、ＵＮＩＸ（登録商標）ベースのコンピュータシステムで実施さ
れるバーチャルマシンと同じ命令セットを使用してアプリケーションを実行する。バーチ
ャルマシンの命令シーケンスのプラットホーム独立コード化の結果として、１つ以上のバ
イトコードのストリームが生じ、その各々は、例えば、１バイト長さの数値コードである
。
【０００８】
Ｊａｖａ（登録商標）バーチャルマシンは、バーチャルマシンの一例である。このＪａｖ
ａ（登録商標）バーチャルマシンにより実行されるべきコンパイルされたコードは、クラ
スファイルフォーマットとして知られている通常ファイルに記憶されるハードウェア及び
オペレーティングシステム独立の２進フォーマットを使用して表わされる。クラスファイ
ルは、Ｊａｖａ（登録商標）プログラミング言語で書かれたプログラムを表わすことがで
きるが他の多数のプログラミング言語もサポートできるオブジェクト指向の構造を取り扱
うように設計される。クラスファイルフォーマットは、プラットホーム特有のオブジェク
トファイルフォーマットにおいて許可されるとして取り上げられるバイト順序のような詳
細を含むクラス又はインターフェイスの表示を正確に定義する。セキュリティのために、
Ｊａｖａ（登録商標）バーチャルマシンは、クラスファイル内の命令に強力なフォーマッ
ト及び構造上の制約を課する。有効なクラスファイルに関して表現できる機能をもついか
なる言語も、Ｊａｖａ（登録商標）バーチャルマシンをホストとすることができる。クラ
スファイルは、Ｊａｖａ（登録商標）プログラミング言語で書かれたプログラムを表わす
ことができるが多数の他のプログラム言語もサポートできるオブジェクト指向の構造を取
り扱うように設計される。Ｊａｖａ（登録商標）バーチャルマシンは、１９９９年４月、
アジソン－ウェスリー・ロングマン・インク、第２版、リンドホルム氏等の「The JavaTM

 Virtual Machine Specification」に詳細に説明されている。
【０００９】
リソースに制約のある装置とは、一般に、典型的なデスクトップコンピュータ等に比して
、メモリ及び／又は計算能力又は速度に比較的制約がある装置であると考えられる。リソ
ースに制約のある他の装置は、例えば、セルラー電話、境界走査装置、現場でプログラム
可能な装置、パーソナルデジタルアシスタンス（ＰＤＡ）及びページャー、並びに他のミ
ニアチュア又は小型フットプリント装置を含む。本発明は、リソースに制約のない装置に
も使用できる。
説明上、「プロセッサ」という語は、物理的なコンピュータ又はバーチャルマシンを指す
のに使用される。
【００１０】
インテリジェントポータブルデータ搬送カードとしても知られているスマートカードは、
リソースに制約のある装置の一形式である。スマートカードは、プラスチック又は金属で
作られ、そしてプログラムを実行するためのマイクロプロセッサ又はマイクロコントロー
ラと、プログラム及びデータを記憶するためのメモリとが埋め込まれた電子チップを有し
ている。ほぼクレジットカードのサイズであるこのような装置は、８ビット又は１６ビッ
トアーキテクチャーのコンピュータチップを有する。更に、これら装置は、通常、メモリ
容量が限定されている。例えば、あるスマートカードは、１キロバイト（１Ｋ）未満のラ
ンダムアクセスメモリ（ＲＡＭ）、制限のあるリードオンリメモリ（ＲＯＭ）、及び／又
は電気的に消去可能なプログラマブルリードオンリメモリ（ＥＥＰＲＯＭ）のような不揮
発性メモリを有する。
【００１１】
Ｊａｖａ（登録商標）バーチャルマシンは、Ｊａｖａ（登録商標）プログラミング言語で
書かれたプログラムを実行し、そしてメモリが比較的豊富なデスクトップコンピュータに
おいて使用するように設計される。スマートカードのようなリソースに制約のある装置で
実行するためにＪａｖａ（登録商標）バーチャルマシンの完全インプレメンテーションを
使用するプログラムを書くことが要望される。しかしながら、スマートカードのようなリ

(9) JP 4913302 B2 2012.4.11

10

20

30

40

50

ソースに制約のある装置の限定されたアーキテクチャー及びメモリのために、このような
装置では完全なＪａｖａ（登録商標）バーチャルマシンプラットホームを実施することが
できない。従って、個別のＪａｖａ　Ｃａｒｄ（登録商標）（Ｊａｖａ（登録商標）プロ
グラミング言語をサポートするスマートカード）技術が、リソースに制約のある装置に対
してＪａｖａ（登録商標）プログラミング言語のサブセットをサポートする。
【００１２】
Ｊａｖａ（登録商標）技術でサポートされる幾つかのアイテムは、Ｊａｖａ　Ｃａｒｄ（
登録商標）技術においてサポートされない。例えば、Ｊａｖａ（登録商標）技術は、形式
チャー(char)、ダブル、フロート及びロングをサポートするが、Ｊａｖａ　Ｃａｒｄ（登
録商標）技術は、それらをサポートしない。更に、あるＪａｖａ（登録商標）言語特徴は
、限定された形態でサポートされ、Ｊａｖａ　Ｃａｒｄ（登録商標）技術は、これら特徴
のオペレーションの範囲を、Ｊａｖａ（登録商標）技術の範囲未満に制限する。例えば、
Ｊａｖａ（登録商標）技術は、二次元以上のアレーを許すが、Ｊａｖａ　Ｃａｒｄ（登録
商標）技術は、一次元のアレーしか許さない。
【００１３】
Ｊａｖａ　Ｃａｒｄ（登録商標）技術において、Ｊａｖａ　Ｃａｒｄ（登録商標）コンバ
ータは、通常のクラスファイルを入力として取り上げそしてそれらをＣＡＰ（変換された
アプレット）ファイルに変換する。ＣＡＰフォーマットは、クラスファイル情報のサブセ
ットをサポートする。各ＣＡＰファイルは、１つのＪａｖａ（登録商標）パッケージに定
義された全てのクラス及びインターフェイスを含む。ＣＡＰファイルは、コンパクトな最
適化されたフォーマットを有し、従って、Ｊａｖａ（登録商標）パッケージを、リソース
に制約のある装置に効率的に記憶しそして実行することができる。変換の後に、Ｊａｖａ
　Ｃａｒｄ（登録商標）技術でイネーブルされる装置にＣＡＰファイルがインストールさ
れる。
Ｊａｖａ　Ｃａｒｄ（登録商標）技術に対してＪａｖａ（登録商標）言語のサブセットが
存在することは、Ｊａｖａ　Ｃａｒｄ（登録商標）サブセットによりサポートされないア
イテムを含む有効なＪａｖａ（登録商標）プログラムモジュールを形成できることを意味
する。リソースに制約のある装置においてこれらプログラムモジュールを実行すると、エ
ラーのある結果を招く。従って、公知技術では、リソースに制約のある装置においてアプ
リケーションの正しい実行を容易にする言語サブセット妥当性検査方法及び装置が要望さ
れている。
【００１４】
【発明の開示】
　言語サブセット妥当性検査方法は、プログラムを構成する多数のプログラムモジュール
を妥当性検査する段階を含む。各プログラムモジュールは、第１コンピュータ言語として
定義された多数のバイトコードを含み、その第１コンピュータ言語は、第２コンピュータ
言語のハードウェア依存性サブセットである。上記妥当性検査段階は、第１コンピュータ
言語として定義されない多数のプログラムモジュール内の各アイテムに対してエラー状態
である旨を表示し、第１コンピュータ言語の実行環境によりサポートされない多数のプロ
グラムモジュール内の各アイテムに対してエラー状態である旨を表示し、そして第１コン
ピュータ言語として定義されるが、第１コンピュータ言語に一致しないやり方で使用され
る複数のプログラムモジュール内の各アイテムに対してエラー状態である旨を表示するこ
とを含む。言語サブセットの妥当性検査装置は、プログラム命令を有する少なくとも１つ
のメモリと、そのプログラム命令を使用して、プログラムを一緒に形成する多数のプログ
ラムモジュールを妥当性検査するように構成された少なくとも１つのプロセッサとを備え
ている。このプロセッサは、更に、上記プログラム命令を使用して、第１コンピュータ言
語として定義されない多数のプログラムモジュール内の各アイテムに対してエラー状態で
ある旨を表示し、第１コンピュータ言語の実行環境によってサポートされない多数のプロ
グラムモジュール内の各アイテムに対してエラー状態である旨を表示し、そして第１コン
ピュータ言語として定義されるが第１コンピュータ言語に一致しないやり方で使用される

(10) JP 4913302 B2 2012.4.11

10

20

30

40

50

多数のプログラムモジュール内の各アイテムに対してエラー状態である旨を表示するよう
に構成される。
【００１５】
【発明を実施するための最良の形態】
当業者であれば、本発明の以下の説明は、例示に過ぎないことが明らかであろう。この開
示の利益を得る当業者であれば、本発明の他の実施形態も明らかとなろう。
本発明は、コンピュータシステムに係る。より詳細には、本発明は、言語サブセットの妥
当性検査に係る。更に、本発明は、（１）本発明のレイアウトパラメータ、及び／又は（
２）本発明を使用してコンピュータにおけるオペレーションを遂行するためのプログラム
命令が記憶されたマシン読み取り可能な媒体にも係る。このような媒体は、例えば、磁気
テープ、磁気ディスク、光学的に読み取り可能な媒体、例えば、ＣＤ　ＲＯＭ、及び半導
体メモリ、例えば、ＰＣＭＣＩＡカードを含む。又、媒体は、小型ディスク、ディスケッ
ト又はカセットのようなポータブル装置の形態もとり得る。又、媒体は、ハードディスク
ドライブ、又はコンピュータＲＡＭのような大型即ち不動装置の形態をとってもよい。
【００１６】
図１Ａ及び１Ｂは、高レベル言語ソース及びクラスファイルレベルの両方においてサポー
トされた言語と言語サブセット特徴との間の関係を示す。図１Ａを参照すれば、これは、
言語ソースレベルにおける言語と言語サブセットとの間の関係を示すブロック図である。
Ｊａｖａ　Ｃａｒｄ（登録商標）技術は、参照番号１００で示すように、Ｊａｖａ（登録
商標）言語のサブセットをサポートする。又、Ｊａｖａ　Ｃａｒｄ（登録商標）技術は、
参照番号１０２で示すように、幾つかのサポートされたＪａｖａ（登録商標）言語特徴に
対してオペレーションの範囲を制限する。更に、あるＪａｖａ（登録商標）特徴は、特定
のＪａｖａ　Ｃａｒｄ（登録商標）バーチャルマシンにより任意にサポートされる。これ
ら任意の特徴は、参照番号１０４で示されている。Ｊａｖａ（登録商標）技術によってサ
ポートされるが、Ｊａｖａ　Ｃａｒｄ（登録商標）技術によってサポートされない特徴は
、参照番号１０６で示されている。
【００１７】
図１Ｂを参照すれば、これは、クラスファイルレベルにおいて言語と言語サブセットとの
間の関係を示すブロック図である。Ｊａｖａ　Ｃａｒｄ（登録商標）技術は、参照番号１
１０で示すように、Ｊａｖａ（登録商標）クラスファイルに含まれた情報のサブセットを
サポートする。又、Ｊａｖａ　Ｃａｒｄ（登録商標）技術は、幾つかのサポートされたＪ
ａｖａ（登録商標）特徴に対するオペレーションの範囲を制限し、これらの限界は、参照
番号１１２で示すように、クラスファイルレベルにおいてチェックすることができる。更
に、特定のＪａｖａ　Ｃａｒｄ（登録商標）バーチャルマシンにより任意にサポートされ
るＪａｖａ（登録商標）特徴も、クラスファイルレベルにおいてチェックすることができ
る。これら任意の特徴は、参照番号１１４によって表わされる。Ｊａｖａ（登録商標）技
術によりサポートされるが、Ｊａｖａ　Ｃａｒｄ（登録商標）技術によりサポートされな
い特徴も、クラスファイルレベルにおいてチェックされ、参照番号１１６で表わされる。
従って、図１Ｂは、ソースレベルにおいてサポートされる言語特徴と、クラスファイルレ
ベルにおいてサポートされる言語特徴との間に直接的な関係があることを示している。更
に、クラスファイルレベルにおいてチェックすることにより、高レベル言語ソースレベル
で書かれたプログラムが、Ｊａｖａ　Ｃａｒｄ（登録商標）によって定義されない特徴を
使用したかどうか決定することができる。
【００１８】
本発明によれば、言語サブセットを使用するシステムにおける命令レベルプログラムファ
イルは、言語サブセットに対して妥当性検査される。サポートされないアイテムが検出さ
れ、そして制限された形態でサポートされたアイテムは、それらが適切に使用されるかど
うか決定するためにチェックされる。更に、特定の実行環境がチェックされて、それが任
意の特徴をサポートするかどうか決定する。実行環境が任意の特徴をサポートする場合に
は、命令レベルプログラムファイルがチェックされ、任意の特徴が適切に使用されるかど

(11) JP 4913302 B2 2012.4.11

10

20

30

40

50

うか決定される。実行環境が任意の特徴をサポートしない場合には、命令レベルプログラ
ムファイルがチェックされ、サポートされない任意の特徴が使用されるかどうか決定され
る。プロセスは、多数の段階で進行し、比較的完全な妥当性検査を与える。
【００１９】
この説明全体を通して、本発明は、Ｊａｖａ（登録商標）技術及びＪａｖａ　Ｃａｒｄ（
登録商標）技術に関して説明する。しかしながら、当業者であれば、本発明は、他のプラ
ットホームにも適用できることが明らかであろう。更に、当業者であれば、本発明は、言
語サブセットに対する異なる形式の妥当性検査にも適用できることが明らかであろう。
図２を参照すれば、本発明の１つの実施形態に基づき言語サブセットの妥当性検査を遂行
する方法が示されている。参照番号１３０において、スタティックな妥当性検査が実行さ
れる。説明上、「スタティックな妥当性検査」とは、他のプログラムユニットやプログラ
ム実行状態を参照せずにクラスファイルのみを検査することにより実行される妥当性検査
を指す。スタティックな妥当性検査では、サポートされない特徴が検出される。更に、任
意の特徴が妥当性検査される。参照番号１３５では、メソッドをベースとする妥当性検査
が実行される。メソッドをベースとする妥当性検査では、メソッドの命令に基づいてデー
タ流分析が実行され、演算オペレーションの中間値がチェックされる。この段階を使用し
て、考えられるオーバーフロー状態が検出される。参照番号１４０では、パッケージをベ
ースとする妥当性検査が実行される。パッケージをベースとする妥当性検査では、限定さ
れた範囲をもつサポートされた特徴が検出される。参照番号１４５では、カードをベース
とする妥当性検査が実行される。カードをベースとする妥当性検査では、全てのプログラ
ムにより使用されるメモリの合計量がチェックされて、プログラムがターゲット装置のメ
モリ制約を越えるかどうか決定される。
【００２０】
図３を参照すれば、これは、本発明の１つの実施形態に基づきスタティックな妥当性検査
を実行するところを示すフローチャートである。参照番号１６０において、クラスファイ
ルが受け取られる。参照番号１６５において、フィールドに対しスタティックな妥当性検
査が実行される。参照番号１７０において、メソッドに対しスタティックな妥当性検査が
実行される。参照番号１７５において、妥当性検査されるべき別のクラスファイルが残っ
ているかどうか決定するためのチェックが行われる。別のクラスファイルがある場合には
、参照番号１６０において実行が続けられる。このプロセスは、全てのクラスファイルが
妥当性検査されるまで続けられる。
【００２１】
　図４を参照すれば、これは、本発明の１つの実施形態に基づきメソッドに対しスタティ
ックな妥当性検査を遂行するところを示すフローチャートである。参照番号１９０におい
て、メソッドが受け取られる。参照番号１９２において、メソッドの宣言が言語サブセッ
トによりサポートされるかどうか決定するためのチェックが行われる。Ｊａｖａ　Ｃａｒ
ｄ（登録商標）技術では、パラメータ形式、返送形式及びアクセスフラグをチェックして
、それらが妥当かどうか決定される。例えば、キャラクターストリング、ロング、ダブル
及びフロート形式は、Ｊａｖａ（登録商標）技術によりサポートされるが、これら形式は
、Ｊａｖａ　Ｃａｒｄ（登録商標）ではサポートされない。更に、Ｊａｖａ（登録商標）
技術は、「同期された」及び「ネーティブな」アクセスフラグをサポートするが、Ｊａｖ
ａ　Ｃａｒｄ（登録商標）技術は、サポートしない。形式又はアクセスフラグがサポート
されない場合には、参照番号１９４においてエラー状態である旨が表示される。
【００２２】
　メソッドの宣言がサポートされる場合には、参照番号１９６において、特定の実行環境
が任意の特徴をサポートするかどうか決定するためのチェックがなされる。Ｊａｖａ　Ｃ
ａｒｄ（登録商標）技術では、形式ｉｎｔが任意の特徴の一例である。特定の実行環境（
Ｊａｖａ　Ｃａｒｄ（登録商標）バーチャルマシン）は、その任意の特徴がサポートされ
るかどうか決定する。実行環境が任意の特徴をサポートしない場合には、参照番号１９８
において、メソッドの宣言が任意の特徴を含むかどうか決定するためのチェックが行われ

(12) JP 4913302 B2 2012.4.11

10

20

30

40

50

る。メソッドの宣言が任意の特徴を含む場合には、参照番号１９４においてエラー状態で
ある旨が表示される。参照番号２００において、メソッドのバイトコードが妥当性検査さ
れる。参照番号２０２において、妥当性検査されるべき別のメソッドが残されているかど
うかチェックされる。別のメソッドがあれば、参照番号１９０において実行が続けられる
。このプロセスは、クラスファイルの全てのメソッドが妥当性検査されるまで続けられる
。
【００２３】
図４Ｂを参照すれば、これは、本発明の１つの実施形態に基づきメソッドのバイトコード
を妥当性検査するところを示すフローチャートである。参照番号２１０において、バイト
コードが受け取られる。参照番号２１２において、バイトコードが言語サブセットにより
サポートされるかどうかについて決定がなされる。バイトコードは、サポートされないデ
ータ形式が使用されるかどうかそしてサポートされないデータ形式の値に対するオペレー
ションが使用されるかどうか決定するためにチェックされる。又、バイトコードは、サポ
ートされない特徴が使用されるかどうか決定するためにチェックされる。例えば、Ｊａｖ
ａ　Ｃａｒｄ（登録商標）技術では、スレッドはサポートされない。キーワード「同期さ
れた」は、スレッドを同期するためにモニタを使用することを指示し、このキーワードは
、特定のバイトコード表示を有する。バイトコードにおけるその存在は、モニタの使用を
指示する。
【００２４】
　バイトコードがサポートされないか、又はこれを使用して、サポートされない形式のデ
ータに対してオペレーションする場合には、参照番号２１４においてエラー状態である旨
が表示される。バイトコードがサポートされる場合には、参照番号２１６において、特定
の実行環境が任意の特徴をサポートするかどうか決定するためのチェックがなされる。実
行環境が任意の特徴をサポートしない場合には、参照番号２１８において、そのチェック
されたバイトコードが任意の特徴を表わすかどうか決定するためのチェックがなされる。
そのチェックされたバイトコードが任意の特徴を表わす場合には、参照番号２１４におい
てエラー状態である旨が表示される。参照番号２２０において、更なるバイトコードがメ
ソッドに残っているかどうか決定するためのチェックがなされる。更なるバイトコードが
残っている場合には、参照番号２１０において実行が続けられる。このプロセスは、メソ
ッドの全バイトコードがチェックされるまで続けられる。
【００２５】
　図５を参照すれば、これは、本発明の１つの実施形態に基づきフィールドに対するスタ
ティックな妥当性検査を遂行するところを示すフローチャートである。フィールドに対す
るスタティックな妥当性検査は、メソッドに対するスタティックな妥当性検査と同様に実
行される。Ｊａｖａ　Ｃａｒｄ（登録商標）技術では、無効のアクセスフラグ又はフィー
ルドは、例えば、「揮発性」及び「過渡」を含む。フィールドの宣言が、サポートされな
い形式及びアクセスフラグを使用する場合には、エラー状態である旨が表示される。フィ
ールドの宣言が、実行環境によってサポートされないＪａｖａ　Ｃａｒｄ（登録商標）技
術の形式ｉｎｔのような任意の特徴を使用する場合にも、エラー状態である旨が表示され
る。
【００２６】
Ｊａｖａ（登録商標）バーチャルマシン命令セットは、積分形式バイト、ショート及びｉ
ｎｔの値を取り扱うように命令セットを定義する。形式バイト及びショートの変数は、コ
ンパイル中に積分形式ｉｎｔへと広げられる。それ故、計算された値も、３２ビットのｉ
ｎｔ値である。しかしながら、Ｊａｖａ　Ｃａｒｄ（登録商標）バーチャルマシンは、積
分形式ｉｎｔの変数を取り扱うための命令セットに加えて、形式バイト及びショートの変
数を取り扱うように個別の命令セットを定義する。
【００２７】
　Ｊａｖａ　Ｃａｒｄ（登録商標）プラットホームに対して３２ビットのｉｎｔ形式をサ
ポートすることは、任意である。３２ビットｉｎｔ形式をサポートしないターゲットプラ

(13) JP 4913302 B2 2012.4.11

10

20

30

40

50

ットホームは、３２ビットｉｎｔ形式の変数を使用することができない。又、Ｊａｖａ（
登録商標）クラスファイルに使用される３２ビットの演算バイトコードは、Ｊａｖａ　Ｃ
ａｒｄ（登録商標）命令セットに使用される１６ビット命令に変換されねばならない。従
って、１６ビット命令によって計算された値は、１６ビットｉｎｔ値である。この変換は
、１６ビット表示を越えて拡張するオーバーフローの可能性を形成する。オーバーフロー
の可能性をもつ値が、オーバーフローに敏感な命令へ供給された場合、又はそれがアレー
インデックスとして使用された場合には、エラー性の結果が生じる。オーバーフローの可
能性が存在するかどうかの決定は、データ流を発生することを含む。オーバーフローの可
能性が存在するときを決定するこのプロセスの詳細は、１９９９年１１月１５日に出願さ
れた「OPTIMIZATION OF N-BASE TYPED ARITHMETIC EXPRESSIONS」と題するチェン及びシ
ュワベ氏の米国特許出願に開示されており、本発明の混乱を防止するためにここでは詳細
に説明しない。
【００２８】
　図６を参照すれば、これは、本発明の１つの実施形態に基づきメソッドベースの妥当性
検査を遂行するところを示すフローチャートである。メソッドベースの妥当性検査では、
潜在的なオーバーフロー状態が存在するかどうか決定するためにメソッドが分析される。
参照番号２７０において、メソッドが受け取られる。参照番号２７５において、潜在的な
オーバーフロー状態に対してメソッドがチェックされる。
　参照番号２８５において、ローカル変数形式が妥当性検査される。Ｊａｖａ　Ｃａｒｄ
（登録商標）技術では、コンパイルディレクティブは、コンパイラーがコード発生プロセ
スの一部分としてローカル変数属性テーブルを発生するかどうか決定する。ローカル変数
属性テーブルは、ローカル変数に対する形式情報を含む。ローカル変数属性テーブルが存
在する場合には、有効形式に対する妥当性検査ローカル変数が、上記「スタティックな妥
当性検査」段階で行われる。ローカル変数属性テーブルが存在しない場合には、データ流
がこの段階で使用されて、ローカル変数の形式を決定する。ローカル変数が、サポートさ
れない形式を有するか、又はターゲット装置によってサポートされない任意の形式を有す
る場合には、エラー状態である旨が表示される。
【００２９】
参照番号２９０において、妥当性検査されるべき別のメソッドが残っているかどうか決定
するためにチェックがなされる。別のメソッドが残っている場合には、参照番号２７０に
おいて実行が続けられる。このプロセスは、クラスファイルの全てのメソッドが妥当性検
査されるまで続けられる。
図７を参照すれば、これは、本発明の１つの実施形態に基づきパッケージベースの妥当性
検査を遂行するところを示すフローチャートである。パッケージベースの妥当性検査では
、制限された範囲をもつサポートされた特徴が検出される。参照番号３００において、パ
ッケージを構成するクラスファイルが受け取られる。参照番号３０５において、パッケー
ジ内のメソッドが妥当性検査される。参照番号３１０において、パッケージ内のクラスが
妥当性検査される。参照番号３１５において、パッケージの制限が妥当性検査される。
【００３０】
　図８を参照すれば、これは、本発明の１つの実施形態に基づきパッケージにおけるメソ
ッドを妥当性検査するところを示すフローチャートである。参照番号３３０において、メ
ソッドが受け取られる。参照番号３３５において、変数及びパラメータの全数が所定数を
越えるかどうか決定するためにチェックがなされる。Ｊａｖａ　Ｃａｒｄ（登録商標）技
術では、変数及びパラメータの全数が２５５を越えることがない。全数が所定数を越える
場合には、参照番号３５０においてエラー状態である旨が表示される。参照番号３３７に
おいて、ＪａｖａバイトコードがＪａｖａ　Ｃａｒｄ（登録商標）バイトコードに変換さ
れる。参照番号３４０において、メソッド内のＪａｖａ　Ｃａｒｄ（登録商標）バイトコ
ードの全数が所定数を越えるかどうか決定するためのチェックがなされる。Ｊａｖａ　Ｃ
ａｒｄ（登録商標）技術では、Ｊａｖａ　Ｃａｒｄ（登録商標）バイトコードの全数が３
２，７６７を越えることがない。バイトコードの数がこの限界を越える場合には、参照番

(14) JP 4913302 B2 2012.4.11

10

20

30

40

50

号３５５においてエラー状態である旨が表示される。参照番号３６５において、パッケー
ジの全てのメソッドが妥当性検査されたかどうか決定するためのチェックがなされる。別
のメソッドが残っている場合には、参照番号３３０において実行が続けられる。このプロ
セスは、全てのメソッドが妥当性検査されるまで続けられる。
【００３１】
図９Ａを参照すれば、これは、本発明の１つの実施形態に基づきパッケージにおけるクラ
ス及びインターフェイスを妥当性検査するところを示すフローチャートである。参照番号
３８０において、クラスファイルが受け取られる。参照番号３８２において、クラス内の
インスタンスフィールドの数が妥当性検査される。Ｊａｖａ　Ｃａｒｄ（登録商標）技術
では、クラス当りのインスタンスフィールドの全数が２５５を越えてはならない。この数
は、クラスにおいて宣言されたフィールドと、クラスの各スーパークラスにおいて宣言さ
れた全インスタンスフィールドとを含む。典型的に、スーパークラス内のフィールドに関
する情報は、サブクラスに対するクラスファイル内に含まれない。それ故、スーパークラ
スに対するクラスファイルを読み取って、スーパークラス内のインスタンスフィールドの
数を決定しなければならない。このプロセスは、ルートスーパークラスが検査されるまで
繰り返し形態で続けられる。このようにして得られたインスタンスフィールドの全数は、
インスタンスフィールドの最大数と比較される。
【００３２】
参照番号３８４において、スタティックフィールドの数がチェックされる。Ｊａｖａ　Ｃ
ａｒｄ（登録商標）技術では、クラス当りのパブリック及び保護されたスタティックフィ
ールドの全数が２５６を越えることがない。インスタンスフィールドとは異なり、スタテ
ィックフィールドのインカーネーションは、１つしか存在しない。従って、スタティック
フィールドに対する最大数は、クラスの各スーパークラスではスタティックフィールドに
適用されない。
参照番号３８６において、インスタンスメソッドの数がチェックされる。Ｊａｖａ　Ｃａ
ｒｄ（登録商標）技術では、パッケージ可視インスタンスメソッドの全数が１２８を越え
てはならず、そしてパブリック及び保護されたインスタンスメソッドの全数が１２８を越
えてはならない。これらの数は、クラスにおいて宣言されたメソッドと、クラスの各スー
パークラスにおいて宣言された全メソッドとを含む。典型的に、スーパークラス内のメソ
ッドに関する情報は、サブクラスに対するクラスファイル内には含まれない。それ故、ス
ーパークラスに対するクラスファイルを読み取って、スーパークラスにおけるインスタン
スメソッドの数を決定しなければならない。パブリック及び保護されたインスタンスメソ
ッドについては、このプロセスは、ルートスーパークラスが検査されるまで繰り返し形態
で続けられる。パッケージ可視メソッドについては、この繰り返しは、チェックされたパ
ッケージ内の全スーパークラスが検査されるまで続けられる。最後に、複写が除去される
。
【００３３】
参照番号３８８において、スタティックなメソッドの数がチェックされる。Ｊａｖａ　Ｃ
ａｒｄ（登録商標）技術では、パブリック及び保護されたスタティックなメソッドの全数
が２５６を越えてはならない。インスタンスメソッドとは異なり、クラス内にスタティッ
クメソッドのインカーネーションは、１つしか存在しない。従って、スタティックメソッ
ドの最大数は、クラス形式の各スーパークラスにおいてスタティックなメソッドには適用
されない。
参照番号３９０において、クラスアクセス制御が妥当性検査される。この妥当性検査は、
パブリックインターフェイスがパッケージ可視インターフェイスを不適切に拡張するかど
うか決定し、そしてスーパークラスにおけるパッケージデフォールトメソッドのアクセス
可視性がサブクラスにおけるパブリック又は保護へと不適切に変更されたかどうか決定す
る。
【００３４】
参照番号３９２において、クラス又はインターフェイスが所定数より多いスーパーインタ

(15) JP 4913302 B2 2012.4.11

10

20

30

40

50

ーフェイスを有するかどうか決定するためのチェックが行われる。Ｊａｖａ　Ｃａｒｄ（
登録商標）技術では、スーパーインターフェイスの最大数が１５である。クラスファイル
がクラスを表わす場合には、このクラスのスーパーインターフェイスは、このクラスによ
って直接実施されるインターフェイスと、各々の直接実施されるインターフェイスのスー
パーインターフェイスと、いずれかのスーパークラスによって実施されるインターフェイ
スとを含む。従って、スーパーインターフェイスの全数は、全てのインターフェイスがカ
ウントされるまで各スーパーインターフェイス及びスーパークラスに繰り返し訪問するこ
とにより決定される。複写が除去された後に残っているインターフェイスの数は、実施さ
れるインターフェイスの最大数と比較される。
【００３５】
クラスファイルがインターフェイスを表わす場合には、このチェックされたインターフェ
イスのスーパーインターフェイスは、このインターフェイスによって直接継承されるイン
ターフェイスと、各直接的スーパーインターフェイスのスーパーインターフェイスとを含
む。従って、スーパーインターフェイスの全数は、各インターフェイス及びそのスーパー
インターフェイスがどのインターフェイスから継承されるかを繰り返し決定することによ
り決定される。複写が除去された後に残っているインターフェイスの数は、継承可能なイ
ンターフェイスの最大数と比較される。
参照番号３９６において、妥当性検査されるべきクラスファイルが更に残っているかどう
かに関して決定がなされる。更にクラスが残っている場合には、参照番号３８０において
実行が続けられる。このプロセスは、全てのクラスが妥当性検査されるまで続けられる。
【００３６】
図９Ｂを参照すれば、これは、本発明の１つの実施形態に基づきクラスのスーパーインタ
ーフェイスの数をカウントするところを示すブロック図である。３つのクラスが、Ｃ1　
４００、Ｃ2　４０２及びＣ3　４０４で表わされる。３つのインターフェイスは、Ｉ1　
４０６、Ｉ2　４０８及びＩ3　４１０で表わされる。クラスＣ3及びインターフェイスＩ3

は、パッケージＢ４１４にあり、一方、他のメンバーは、パッケージＡ４１２にある。ク
ラスＣ1でスタートして、そのクラスにより直接実施されるインターフェイス及びそれら
全てのスーパーインターフェイスの数は、そのクラスのスーパークラスにより実施される
インターフェイスの数に追加され、そして複写が除去される。ここで、Ｃ1により実施さ
れた第１のインターフェイスが検査される。クラスＣ1は、Ｉ1を実施する。Ｉ1は、Ｉ2を
継承する。従って、Ｉ1及びＩ2がカウントされる。Ｉ2もいずれかのインターフェイスを
継承する場合には、これらインターフェイスもカウントされる。次いで、Ｃ1のスーパー
クラスが検査される。クラスＣ1は、Ｃ2から延びる。クラスＣ2は、いずれのインターフ
ェイスも実施せず、Ｃ3を拡張する。クラスＣ3は、（Ｉ2、Ｉ3）を実施する。従って、ク
ラスＣ2は、（Ｉ2、Ｉ3）も実施する。クラスＣ1へ戻ると、クラスＣ1は、インターフェ
イスＩ1及びインターフェイスＩ1のスーパーインターフェイスＩ2と、そのスーパークラ
スＣ2により実施されるインターフェイスを実施する。それ故、Ｃ1は、（Ｉ1、Ｉ2）＋（
Ｉ2、Ｉ3）を実施する。複写を除去した後に、Ｃ1は、３つのインターフェイス（Ｉ1、Ｉ

2）＋（Ｉ2、Ｉ3）＝（Ｉ1、Ｉ2、Ｉ3）を実施する。この数は、Ｊａｖａ　Ｃａｒｄ（登
録商標）技術に対する最大数より小さい。
【００３７】
図９Ｃを参照すれば、これは、本発明の１つの実施形態に基づきインターフェイスのスー
パーインターフェイスの数をカウントするところを示すブロック図である。５つのインタ
ーフェイスが、Ｉ1　４１６、Ｉ2　４１８、Ｉ3　４２０、Ｉ4　４２２及びＩ5　４２４
により表わされる。インターフェイスＩ4及びＩ5は、パッケージＤ４２８に配置され、そ
して他のインターフェイスは、個別のパッケージＣ４２６に配置される。インターフェイ
スＩ1は、Ｉ2及びＩ3から延び、従って、インターフェイスＩ1は、スーパーインターフェ
イスＩ2及びＩ3を有する。更に、インターフェイスＩ1は、Ｉ2が継承するもの及びＩ3が
継承するものから継承する。図９Ｃに示すように、Ｉ3は、Ｉ2及びＩ4から延び、Ｉ4は、
Ｉ5から延び、そしてＩ5は、Ｉ2から延びる。従って、Ｉ4は（Ｉ2）＋（Ｉ5）＝（Ｉ2、

(16) JP 4913302 B2 2012.4.11

10

20

30

40

50

Ｉ5）から継承する。Ｉ3は、（Ｉ4）＋（Ｉ2、Ｉ5）＋（Ｉ2）＝（Ｉ2、Ｉ4、Ｉ5）から
継承する。従って、Ｉ1は、（Ｉ2）＋（Ｉ3）＋（Ｉ2、Ｉ4、Ｉ5）から継承する。複写が
除去された後に、Ｉ1は、４つのインターフェイス（Ｉ2、Ｉ3、Ｉ4、Ｉ5）から継承する
。この数は、Ｊａｖａ　Ｃａｒｄ（登録商標）技術に対する最大数より小さい。
【００３８】
図１０Ａを参照すれば、これは、本発明の１つの実施形態に基づいてアクセス制御を妥当
性検査するところを示すフローチャートである。クラスファイルは、クラス又はインター
フェイスのいずれも表わすことができるので、検査されたクラスファイルがインターフェ
イスを含むかどうかが参照番号４３０においてチェックされる。クラスファイルがインタ
ーフェイスを表わす場合には、インターフェイスがパブリックであるかどうかが参照番号
４３１においてチェックされる。Ｊａｖａ　Ｃａｒｄ（登録商標）技術では、パブリック
インターフェイスは、パッケージ可視インターフェイスを拡張してはならない。インター
フェイスは、少なくとも１つのスーパーインターフェイスを拡張できるので、この決定は
、パッケージ内の各スーパーインターフェイスを検査して、チェーン内のいずれかのイン
ターフェイスがパッケージ可視インターフェイスであるかどうか決定することを必要とす
る。
【００３９】
　インターフェイスがパブリックである場合には、参照番号４３２において、現在インタ
ーフェイスがいずれかのインターフェイスを拡張するかどうか決定するためのチェックが
なされる。現在インターフェイスがインターフェイスを直接継承する場合には、そのイン
ターフェイスが参照番号４３４において受け取られる。参照番号４３６において、直接的
なスーパーインターフェイスがパッケージデフォールト可視性を有するかどうかに関して
決定がなされる。直接的なスーパーインターフェイスは、現在インターフェイスによって
直ちに継承されるインターフェイスである。直接的なスーパーインターフェイスがパッケ
ージデフォールト可視性を有する場合には、参照番号４３８においてエラー状態である旨
が表示される。直接的なスーパーインターフェイスがパッケージデフォールト可視性をも
たない場合には、参照番号４４０において、別のスーパーインターフェイスが残っている
かどうか決定するためのチェックが行われる。別のスーパーインターフェイスがある場合
には、参照番号４３４において実行が続けられる。
【００４０】
又、Ｊａｖａ　Ｃａｒｄ（登録商標）技術では、スーパークラスにおけるパッケージデフ
ォールトメソッドのアクセス可視性がサブクラスにおけるパブリック及び保護状態へと変
更されてはならない。これは、参照番号４４２から始めてチェックされる。現在クラスフ
ァイルがクラスを表わす場合には、参照番号４４２において、現在クラスがスーパークラ
スを有するかどうかに関して決定がなされる。現在クラスがスーパークラスを有する場合
には、現在クラスのパブリック又は保護されたメソッドが参照番号４４４において受け取
られる。参照番号４４６では、そのメソッドが、パッケージデフォールト可視性を有する
スーパークラスにおいても定義されたかどうか決定するために、メソッドがチェックされ
る。参照番号４４８では、更にパブリック又は保護されたメソッドが現在クラスにあるか
どうかに関する決定がなされる。更にあれば、参照番号４４４において実行が続けられる
。このプロセスは、現在クラスにおける全てのパブリック及び保護されたメソッドが検査
されるまで続けられる。
【００４１】
　図１０Ｂを参照すれば、これは、本発明によりパッケージデフォールトメソッドがパブ
リック及び保護されたメソッドとされたかどうか決定するところを示すフローチャートで
ある。参照番号４６０において、現在クラスが同じパッケージにスーパークラスを有する
かどうか決定するためのチェックがなされる。現在クラスが同じパッケージにスーパーク
ラスを有する場合には、参照番号４６２において、メソッドがスーパークラスにおいても
定義されるがパッケージデフォールト可視性を有するかどうかに関する決定がなされる。
対応するメソッドがスーパークラスにおいてパッケージデフォールト可視性を有する場合

(17) JP 4913302 B2 2012.4.11

10

20

30

40

50

には、参照番号４６４においてエラー状態である旨が表示される。対応するメソッドがス
ーパークラスにおいて定義されないか又はパッケージデフォールト可視性をもたない場合
には、参照番号４６０でスタートして、現在クラスが現在クラスのスーパークラスにセッ
トされ、そしてプロセスが繰り返される。メソッドをチェックするこのプロセスは、スー
パークラスのルート又はパッケージの境界に到達するまで繰り返し形態で続けられる。
【００４２】
　図１１を参照すれば、これは、本発明の１つの実施形態に基づきパッケージの限界を妥
当性検査するところを示すフローチャートである。参照番号４７６において、パッケージ
デ定義されたクラス及びインターフェイスの数がチェックされる。Ｊａｖａ　Ｃａｒｄ（
登録商標）技術では、パッケージにおけるクラス及びインターフェイスの最大数は２５５
である。この数が最大値を越えた場合には、参照番号４７８においてエラー状態である旨
が表示される。参照番号４８０において、このチェックされたパッケージによりインポー
トされるパッケージの数が所定数より大きいかどうかの決定がなされる。Ｊａｖａ　Ｃａ
ｒｄ（登録商標）技術では、パッケージは、１２８より多数のパッケージをインポートす
ることができない。
【００４３】
参照番号４９０では、パッケージにおけるクラスファイルがＣＡＰファイルに変換された
後に、ＣＡＰファイルコンポーネントサイズが妥当性検査される。Ｊａｖａ　Ｃａｒｄ（
登録商標）技術では、ＣＡＰファイルは、１組のコンポーネントより成る。各コンポーネ
ントは、定義されたＪａｖａ（登録商標）パッケージにおける１組のエレメント、又はＣ
ＡＰファイルのアスペクトを記述する。全てのコンポーネントは、次の一般的フォーマッ
トを有する。
Component {
u1 tag
u2 size
u1 info[]
}

【００４４】
　「size」アイテムは、「info」アレーコンポーネントにおけるバイトの数を指示する。
サイズコンポーネントによって表わされる最大サイズは、６４Ｋバイトである。「info」
アレーの内容及びフォーマットは、コンポーネントの形式と共に変化する。コンポーネン
トの１つの形式は、メソッドコンポーネントである。メソッドコンポーネントは、次のよ
うな一般的フォーマットを有する。
　Method_component　{
　　　u1　tag
　　　u2　size
　　　　・
　　　　・
　method_info methods[]
　}
　メソッドアレーは、多数のメソッドを含むことができ、そして各メソッドは、３２Ｋバ
イト未満である。しかしながら、全てのメソッドに使用されるバイトの合計数が６４Ｋ限
界を越えることが考えられる。従って、各コンポーネント内のバイトの数を加算し、そし
てその合計を最大サイズ（６４Ｋ）と比較する。合計がこの限界より大きい場合には、参
照番号４９５においてエラー状態である旨が表示される。
【００４５】
Ｊａｖａ　Ｃａｒｄ技術では、「エクスポート」ファイルは、Ｊａｖａパッケージの全て
の一般的にアクセスできる情報を含む２進ファイルである。本発明の別の実施形態によれ
ば、パッケージベースの妥当性検査を遂行する段階において、スーパークラス又はスーパ

(18) JP 4913302 B2 2012.4.11

10

20

30

40

50

ーインターフェイスに対するチェックが、スーパークラス又はスーパーインターフェイス
を定義するパッケージを表わす「エクスポート」ファイルをチェックすることにより実行
される。このエクスポートファイルは、スーパークラス又はスーパーインターフェイスの
クラスファイルに代わって使用される。しかしながら、エクスポートファイルは、一般に
アクセスできる情報しか含まないので、パッケージデフォールトクラス及びインターフェ
イス、パッケージデフォールト及びプライベートメソッド並びにフィールドは含まれない
。それ故、パッケージベースの妥当性検査における幾つかのチェックは、充分な情報が得
られないためにカードベースの妥当性検査まで延期する必要がある。
【００４６】
カードベースの妥当性検査までチェックを延期する例として、スーパーインターフェイス
の数を正確にカウントするときには、パッケージ及びパブリック可視インターフェイスの
両方が含まれることを必要とする。エクスポートファイルは、一般にアクセスできる情報
しか含まないので、パッケージ可視インターフェイスは含まれない。従って、パブリック
スーパーインターフェイスの数が、パッケージベースの妥当性検査中に、最大量より少な
いと決定された場合には、パッケージ可視インターフェイスに関する情報が得られるとき
に、パブリック及びパッケージ可視インターフェイスの数がカードベースの妥当性検査に
おいて後で繰り返されねばならない。しかしながら、パブリックスーパーインターフェイ
スの数のカウントが最大量より多い場合には、スーパーインターフェイスの最大量を既に
越えているので、それ以上の評価は不必要となる。
【００４７】
カードベースの妥当性検査が必要となるまでチェックを延期する別のケースは、クラスに
おけるインスタンスフィールドの数をカウントすることである。スーパークラスにおける
プライベート及びパッケージデフォールトインスタンスフィールドは、エクスポートファ
イルに得られないので、正確なカウントを得ることができない。従って、クラスにおける
インスタンスフィールドの数を、カードベースの妥当性検査において、全てのクラスの情
報が得られるときにカウントし直さねばならない。
本発明の別の実施形態によれば、パッケージベースの妥当性検査において実行される妥当
性検査は、以下に述べるカードベースの妥当性検査まで延期される。この場合に、カード
に対する全てのクラスの情報が得られるときに妥当性検査が実行される。
【００４８】
　図１２を参照すれば、これは、本発明の１つの実施形態に基づきカードベースの妥当性
検査を遂行するところを示すフローチャートである。参照番号５００において、実行可能
なランタイムイメージに必要なクラスファイル又はＣＡＰファイルが受け取られる。参照
番号５０５において、実行可能なイメージ内の全てのプログラムユニットに対するメモリ
使用量が加算される。参照番号５１０において、計算されたメモリ使用量が最大量と比較
される。合計メモリ使用量が、実行可能なイメージに対して定義された最大値より大きい
場合には、参照番号５１５においてエラー状態である旨が表示される。Ｊａｖａ　Ｃａｒ
ｄ（登録商標）技術では、全てのプログラムユニットが、Ｊａｖａ　Ｃａｒｄ（登録商標
）バーチャルマシンにより参照されるメモリスペースである６４Ｋ境界内に適合しなけれ
ばならない。
【００４９】
本発明は、Ｊａｖａ　Ｃａｒｄ（登録商標）技術に関連して説明したが、当業者であれば
、本発明は、他の多数のプラットホームにも適用できることが理解されよう。これらプラ
ットホームは、例えば、Ｋバーチャルマシン（ＫＶＭ）技術を含む。ＫＶＭ技術は、１９
９９年６月８日、サン・マイクロシステムズ・インクの「The K Virtual Machine (KVM)-
A White Paper」に説明されている。
本発明は、ソフトウェア又はファームウェア、並びにプログラマブルゲートアレーデバイ
ス、アプリケーション指向の集積回路（ＡＳＩＣ）及び他のハードウェアにおいて実施さ
れてもよい。
【００５０】

(19) JP 4913302 B2 2012.4.11

10

20

30

40

従って、言語サブセットの妥当性検査を行う新規な方法が開示された。本発明の実施形態
及び用途を図示して説明したが、この開示の利益を得る当業者であれば、本発明の概念か
ら逸脱せずに、多数の変更がなされ得ることが明らかであろう。それ故、本発明は、特許
請求の範囲によってのみ限定されるものとする。
【図面の簡単な説明】
【図１Ａ】　ソースレベルにおける言語と言語サブセットとの間の関係を示すブロック図
である。
【図１Ｂ】　クラスファイルレベルにおける言語と言語サブセットとの間の関係を示すブ
ロック図である。
【図２】　本発明の１つの実施形態に基づき言語サブセット妥当性検査を遂行する方法を
示すフローチャートである。
【図３】　本発明の１つの実施形態に基づきスタティックな妥当性検査を遂行するところ
を示すフローチャートである。
【図４Ａ】　本発明の１つの実施形態に基づきメソッドに対するスタティックな妥当性検
査を遂行するところを示すフローチャートである。
【図４Ｂ】　本発明の１つの実施形態に基づきメソッドのバイトコードに対するスタティ
ックな妥当性検査を遂行するところを示すフローチャートである。
【図５】　本発明の１つの実施形態に基づきフィールドに対するスタティックな妥当性検
査を遂行するところを示すフローチャートである。
【図６】　本発明の１つの実施形態に基づきメソッドベースの妥当性検査を遂行するとこ
ろを示すフローチャートである。
【図７】　本発明の１つの実施形態に基づきパッケージベースの妥当性検査を遂行すると
ころを示すフローチャートである。
【図８】　本発明の１つの実施形態に基づきパッケージにおけるメソッドを妥当性検査す
るところを示すフローチャートである。
【図９Ａ】　本発明の１つの実施形態に基づきパッケージにおけるクラスを妥当性検査す
るところを示すフローチャートである。
【図９Ｂ】　本発明の１つの実施形態に基づき実施されたインターフェイスの数をカウン
トするところを示すブロック図である。
【図９Ｃ】　本発明の１つの実施形態に基づき継承したインターフェイスの数をカウント
するところを示すブロック図である。
【図１０Ａ】　本発明の１つの実施形態に基づきクラスアクセス制御を妥当性検査すると
ころを示すフローチャートである。
【図１０Ｂ】　本発明の１つの実施形態に基づきパッケージデフォールトメソッドがパブ
リック及び保護されたメソッドとされたかどうか決定するところを示すフローチャートで
ある。
【図１１】　本発明の１つの実施形態に基づきパッケージの限界を妥当性検査するところ
を示すフローチャートである。
【図１２】　本発明の１つの実施形態に基づきカードをベースとする妥当性検査を遂行す
るところを示すフローチャートである。

(20) JP 4913302 B2 2012.4.11

【図１Ａ】 【図１Ｂ】

【図２】 【図３】

(21) JP 4913302 B2 2012.4.11

【図４Ａ】 【図４Ｂ】

【図５】 【図６】

(22) JP 4913302 B2 2012.4.11

【図７】 【図８】

【図９Ａ】 【図９Ｂ】

(23) JP 4913302 B2 2012.4.11

【図９Ｃ】 【図１０Ａ】

【図１０Ｂ】 【図１１】

(24) JP 4913302 B2 2012.4.11

【図１２】

(25) JP 4913302 B2 2012.4.11

10

20

フロントページの続き

(56)参考文献 特開平１１－０７３３２８（ＪＰ，Ａ）
 国際公開第９９／０４９３９２（ＷＯ，Ａ１）
 国際公開第９８／０３７５２６（ＷＯ，Ａ１）
 河南 敏，最新Ｊａｖａコンセプトｖｏｌ．３　Java Card: プラットフォーム非依存の多機能
 アプリケーションの実現，Ｃｏｍｐｕｔｅｒ Ｔｏｄａｙ，日本，株式会社サイエンス社，１９
 ９９年　１月　１日，第16巻、第１号，第68-73頁
 早坂 利之，プログラマに聞く　アプリケーション配布につまずかないための注意点，日経ソフ
 トウェア，日本，日経ＢＰ社，１９９９年　８月２４日，第２巻、第10号，第108-115頁
 平鍋 健児，Ｊａｖａとオブジェクト指向の真価を引き出すソフトウェア設計基礎講座 特別編
 Ｊａｖａのデザイン・パターン，Ｊａｖａ ＷＯＲＬＤ，日本，株式会社ＩＤＧコミュニケーシ
 ョンズ，１９９９年１１月　１日，第３巻、第11号，第88-92頁
 高田・田丸著，オープン化の為のリアルタイム技術とITRONプロジェクトにおける取組み，シス
 テム／制御／情報，日本，システム制御情報学会，１９９９年　１月１５日，第43巻、第１号，
 第34-41頁
 チェン ジクン，Ｊａｖａが切り開くデバイス・ディベロップメントの新地平 Ｊａｖａデバイ
 ス・フロンティア 第２回　Ｊａｖａ　Ｃａｒｄ用のアプレットを作成する，Ｊａｖａ ＷＯＲ
 ＬＤ，日本，株式会社ＩＤＧコミュニケーションズ，１９９９年１１月　１日，第３巻、第11号
 ，第102-109頁

(58)調査した分野(Int.Cl.，ＤＢ名)
 G06F 11/36
 G06F 9/44
 G06F 11/28

	biblio-graphic-data
	claims
	description
	drawings
	overflow

