具有抗菌活性的模板固定的肽模拟物

摘要

具有以下通式的模板固定的β-发夹肽模拟物

其中Z是12个α-氨基酸残基的模板固定的链。所述残基根据其在链中的位置（从N-端氨基酸开始计数）是Gly或Pro，或和以上结构式中的剩余的符号一样在说明书和权利要求中定义的某些种类。和其盐，具有选择性地抑制微生物如铜绿假单胞菌和不动杆菌属的生长或杀死它们的性能。它们可用作食品、化妆品、药物或其它含营养物的材料的消毒剂，或用作药物以治疗或预防感染。在一个具体实施方案中，模板基于D-Pro-L-Pro二肽。这些β-发夹肽模拟物可通过基于混合固体-和溶液相合成技术的方法而制成。
1. 具有以下通式的化合物

![化合物结构](image)

其中

是具有结构式 $^6 \text{Pro}^{-1} \text{Pro}$ 的基团

R^{50} 是 H；烷基；链烯基；或芳基 — 具有最高 6 个碳原子的烷基；
R^{33} 是 H；烷基；链烯基；$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{OR})^{55}$；$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{NR})^{54}R^{53}$；
$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{CONR})^{75}R^{82}$；$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{NR})^{59}\text{CONR}^{78}R^{82}$；
$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{CONR})^{38}R^{60}$；
$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{PO})(\text{OR})^{60}$；
$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{SO}_2)R^{63}$；或 $-(\text{CH}_2)_n(\text{CHR}^{61})_x\text{C}_n\text{H}_mR^{8}$；
R^{34} 是 H；具有最高 6 个碳原子的烷基；芳基，或芳基 — 具有最高 6 个碳原子的烷基；
R^{33} 和 R^{34} 在一起可形成 $-(\text{CH}_2)_n(\text{OH})_x(\text{CH}_2)_y$；$-(\text{CH}_2)_n(\text{S})(\text{CH}_2)_y$；或
$-(\text{CH}_2)_n(\text{NR})^{57}(\text{CH}_2)_y$；
R^{57} 是 H；F；Br；Cl；NO_2；CF_3；具有最高 6 个碳原子的烷基；
$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{OR})^{55}$；$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{NR})^{53}R^{34}$；
$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{CONR})^{33}R^{75}$；$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{NR})^{59}\text{CONR}^{33}R^{32}$；
$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{COOR})^{37}$；$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{CONR})^{38}R^{60}$；
$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{PO})(\text{OR})^{60}$；
$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{SO}_2)R^{63}$；或 $-(\text{CH}_2)_n(\text{CHR}^{61})_x\text{C}_n\text{H}_mR^{8}$；
R^{50} 是 H；具有最高 6 个碳原子的烷基；或芳基 — 具有最高 6 个碳原子的烷基；
R^{55} 是 H；具有最高 6 个碳原子的烷基；具有最高 6 个碳原子的链烯基；芳基 — 具有最高 6 个碳原子的烷基；
$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{OR})^{57}$；
$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{NR})^{54}R^{53}$；$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{CONR})^{75}R^{82}$；
$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{NR})^{59}\text{CONR}^{78}R^{82}$；
$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{CONR})^{38}R^{60}$；$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{COOR})^{37}$；或
$-(\text{CH}_2)_n(\text{CHR}^{61})_x(\text{CONR})^{38}R^{60}$；
R^{57} 是 H；具有最高 6 个碳原子的烷基；具有最高 6 个碳原子的链烯基；芳基具有最高 6 个碳原子的烷基；或杂芳基具有最高 6 个碳原子的烷基；
R^{58} 是 H；具有最高 6 个碳原子的烷基；具有最高 6 个碳原子的链烯基；芳基，杂芳基，芳基 — 具有最高 6 个碳原子的烷基；或杂芳基 — 具有最高 6 个碳原子的烷基；
R^{59} 是 H；具有最高 6 个碳原子的烷基；具有最高 6 个碳原子的链烯基；芳基，杂芳基，芳基 — 具有最高 6 个碳原子的烷基；
基 - 具有最高 6 个碳原子的烷基;或芳基 - 具有最高 6 个碳原子的烷基;或
R^{58} 和 R^{59} 一起可形成: -(CH$_2$)$_{2-6}$ - (CH$_2$)$_{2}$O (CH$_2$)$_{2}$ - -(CH$_2$)$_{2}$S (CH$_2$)$_{2}$ - ; 或
- (CH$_2$)$_{2}$NR5(CH$_2$)$_{2}$ - ;
R^{60} 是 H; 具有最高 6 个碳原子的烷基; 具有最高 6 个碳原子的链烯基; 芳基; 或芳基 - 具有
最高 6 个碳原子的烷基;
R^{61} 是烷基; 链烯基; 芳基; 杂芳基; 芳基 - 具有最高 6 个碳原子的烷基; 杂芳基 - 具有
最高 6 个碳原子的烷基; -(CH$_2$)$_{2}$OR55;
- (CH$_2$)$_{2}$NR53R54; -(CH$_2$)$_{2}$OCONR75R52; -(CH$_2$)$_{2}$NR20CONR78R52; -(CH$_2$)$_{2}$COOR57;
- (CH$_2$)$_{2}$NR59(CH$_2$)$_{2}$ - ;
R^{62} 是具有最高 6 个碳原子的烷基; 具有最高 6 个碳原子的链烯基; 芳基; 杂芳基; 或芳基
- 具有最高 6 个碳原子的烷基;
R^{63} 是 H; 具有最高 6 个碳原子的烷基; 具有最高 6 个碳原子的链烯基; 芳基; 杂芳基; 芳基
- 具有最高 6 个碳原子的烷基; 杂芳基 - 具有最高 6 个碳原子的烷基;
- COR51; - COOR57; - CONR20R59; - SO$_2$R52; 或 - PO (OR59)$_{2}$;
R^{64} 和 R^{53} 一起可形成: -(CH$_2$)$_{2-6}$ - (CH$_2$)$_{2}$O (CH$_2$)$_{2}$ - -(CH$_2$)$_{2}$S (CH$_2$)$_{2}$ - ; 或
- (CH$_2$)$_{2}$NR57(CH$_2$)$_{2}$ - ;
R^{65} 是 H; 具有最高 6 个碳原子的烷基; 具有最高 6 个碳原子的链烯基; 芳基; 杂芳基 - 具有
最高 6 个碳原子的烷基; 杂芳基 - 具有最高 6 个碳原子的烷基; - COR57;
- COOR57; 或 - CONR20R59;
R^{66} 是 H; 具有最高 6 个碳原子的烷基; 具有最高 6 个碳原子的链烯基; 芳基; 杂芳基 - 具有
最高 6 个碳原子的烷基; 杂芳基 - 具有最高 6 个碳原子的烷基; 或 - CONR20R59;

m 为 2 - 4; n 是 0 - 4; p 是 1 - 4; q 是 0 - 2; r 是 1 或 2; s 是 0 或 1;
Z 是 12 个 α - 氨基酸残基的链; 所述氨基酸残基在所述链中的位置从 N - 端氨基酸开始计数。这样这些氨基酸残基根据其在链中的位置是 Gly 或 Pro, 或是以下种类之一
C: -NR39CH (R23) CO - ;
D: -NR39CH (R73) CO - ;
E: -NR39CH (R73) CO - ;
F: -NR39CH (R81) CO - ; 和
H: - NR20CH (CO -) -(CH$_2$)$_{2}$ -(CH (CO -) - NR20 - ;
- NR20CH (CO -) -(CH$_2$)$_{2}$SS (CH$_2$)$_{2}$ -(CH (CO -) - NR20 - ; 和
- NR20CH (CO -) -(CH$_2$)$_{2}$NR20CO (CH$_2$)$_{2}$ - (CH (CO -) - NR20 - ; 和
- NR20CH (CO -) -(CH$_2$)$_{2}$NR20CONR20 (CH$_2$)$_{2}$ -(CH (CO -) - NR20 - ;
R^{2} 是 H; 具有最高 6 个碳原子的烷基; 具有最高 6 个碳原子的链烯基; -(CH$_2$)$_{2}$ (CHR41)58
2 OR55; 或 -(CH$_2$)$_{2}$ (CHR41)58SR85;
R^{73} 是 -(CH$_2$)$_{2}$R77; -(CH$_2$)$_{2}$O (CH$_2$)$_{2}$R77; -(CH$_2$)$_{2}$S (CH$_2$)$_{2}$R77; 或 -(CH$_2$)$_{2}$ NR20 (CH$_2$)$_{2}$R77;
R⁷¹ 是 -（CH₂）ₙNR⁷⁸R⁷⁹；-（CH₂）ₙNR⁷⁸R⁸⁰；-（CH₂）ₙC（=NR⁸⁰）NR⁷⁸R⁷⁹；-（CH₂）ₙC（=NOR⁵⁰）NR⁷⁸R⁷⁹；
-（CH₂）ₙC（=NNR⁷⁸R⁷⁹）NR⁷⁸R⁷⁹；-（CH₂）ₙNR⁸⁰C（=NR⁸⁰）NR⁷⁸R⁷⁹；
-（CH₂）ₙN = C（NR⁷⁸R⁸⁰）NR⁷⁸R⁸⁰；-（CH₂）ₙC₂H₅NR⁷⁸R⁷⁹；-（CH₂）ₙC₂H₅NR⁷⁸R⁸⁰；
-（CH₂）ₙC₂H₅C（=NR⁸⁰）NR⁷⁸R⁷⁹；-（CH₂）ₙC₂H₅C（=NOR⁵⁰）NR⁷⁸R⁷⁹；
-（CH₂）ₙC₂H₅N = C（NR⁷⁸R⁸⁰）NR⁷⁸R⁷⁹；-（CH₂）ₙC₂H₅NR⁸⁰C（=NR⁸⁰）NR⁷⁸R⁷⁹；
-（CH₂）ₙC₂H₅C（=NNR⁷⁸R⁷⁹）NR⁷⁸R⁷⁹；-（CH₂）ₙC₂H₅NR⁷⁸R⁷⁹；
R\(^{78}\) 是 H，具有最高 6 个碳原子的烷基；芳基；或芳基 - 具有最高 6 个碳原子的烷基；
R\(^{78}\) 和 R\(^{82}\) 一起可形成：-(CH\(_2\))\(_{2-6}\)-；-(CH\(_2\))\(_2\)O(CH\(_2\))\(_2\)-；-(CH\(_2\))\(_2\)S(CH\(_2\))\(_2\)-；或
-(CH\(_2\))\(_2\)NR\(^{57}\)(CH\(_2\))\(_2\)-；
R\(^{79}\) 是 H，具有最高 6 个碳原子的烷基；芳基；或芳基 - 具有最高 6 个碳原子的烷基；或
R\(^{78}\) 和 R\(^{79}\)，在一起可以是：-(CH\(_2\))\(_2\)-；-(CH\(_2\))\(_2\)O(CH\(_2\))\(_2\)-；或
-(CH\(_2\))\(_2\)NR\(^{57}\)(CH\(_2\))\(_2\)-；
R\(^{80}\) 是 H，具有最高 6 个碳原子的烷基；
R\(^{81}\) 是 H，具有最高 6 个碳原子的烷基；或芳基 - 具有最高 6 个碳原子的烷基；
R\(^{82}\) 是 H，具有最高 6 个碳原子的烷基；或芳基 - 具有最高 6 个碳原子的烷基；
R\(^{83}\) 和 R\(^{82}\) 一起可形成：-(CH\(_2\))\(_{2-6}\)-；-(CH\(_2\))\(_2\)O(CH\(_2\))\(_2\)-；-(CH\(_2\))\(_2\)S(CH\(_2\))\(_2\)-；或
-(CH\(_2\))\(_2\)NR\(^{57}\)(CH\(_2\))\(_2\)-；
R\(^{83}\) 是 H，具有最高 6 个碳原子的烷基；芳基；或
R\(^{84}\) 是 -(CH\(_2\))\(_n\)(CHR\(^{81}\))\(_n\)OH；-(CH\(_2\))\(_p\)CONR\(^{86}\)R\(^{79}\)；-(CH\(_2\))\(_p\)NR\(^{86}\)CONR\(^{86}\)R\(^{79}\)；-(CH\(_2\))\(_p\)C\(_6\)H\(_5\)CONR\(^{79}\)R\(^{79}\)；或
-(CH\(_2\))\(_p\)C\(_6\)H\(_5\)NR\(^{86}\)CONR\(^{86}\)R\(^{79}\)；
R\(^{85}\) 是具有最高 6 个碳原子的烷基；或具有最高 6 个碳原子的链烯基；
R^6是苯基、对羟基苯基、2-萘基、1-萘基、4-氯苯基、3-氯苯基、2-氯苯基、3,4-二氯苯基、4-氟苯基、3-氟苯基、2-氯苯基、对苄基氧基苯基、对联苯基或对苯甲酰基苯基；

前提是，在所述12个α-氨基酸残基的链Z中，1至12位上的氨基酸残基是：

- P1：种类E；
- P2：种类D；
- P3：种类C；
- P4：种类C或种类E；
- P5：种类E；
- P6：种类E；
- P7：种类E；
- P8：种类D；
- P9：种类C或种类E；
- P10：种类F，或种类D；
- P11：种类D或种类C或种类F；和
- P12：种类E；或
- P4和P9和/或P2和P11在一起可形成种类H的基团；

进一步的前提是

-P4中的氨基酸残基是种类C；和/或
-P9中的氨基酸残基是种类C；和/或
-P10中的氨基酸残基是种类F；和/或
-P11中的氨基酸残基是种类C或种类F；

和其药物可接受盐。

2. 根据权利要求1的化合物，其中位置P6上的氨基酸残基和/或位置P7上的氨基酸残基是D-异构体。

3. 根据权利要求1的化合物，其中链Z的1至12位中的α-氨基酸残基是：

- P1：Arg；
- P2：Trp；
- P3：Leu；
- P4：Lys或Val；
- P5：Lys；
- P6：Arg；
- P7：Arg；
- P8：Trp；
- P9：Leu、Val或Lys；
- P10：Tyr、Thr或Gln；
- P11：Val、Leu、Tyr或Gln；和
- P12：Arg；

前提是

-P4位中的氨基酸残基是Val；和/或
- P9 位中的氨基酸残基是 Leu 或 Val；和 / 或
- P10 位中的氨基酸残基是 Thr 或 Gln；和 / 或
- P11 位中的氨基酸残基是 Val 或 Leu 或 Gln。

4. 根据权利要求 1 的具有结构式 I 的化合物，其中 1-12 位中的氨基酸残基是：
 - P1 : Arg；
 - P2 : Trp；
 - P3 : Leu；
 - P4 : Lys；
 - P5 : Lys；
 - P6 : Arg；
 - P7 : Arg；
 - P8 : Trp；
 - P9 : Leu；
 - P10 : Tyr；
 - P11 : Tyr；和
 - P12 : Arg。

5. 根据权利要求 1 的具有结构式 I 的化合物，其中 1-12 位中的氨基酸残基是：
 - P1 : Arg；
 - P2 : Trp；
 - P3 : Leu；
 - P4 : Lys；
 - P5 : Lys；
 - P6 : Arg；
 - P7 : Arg；
 - P8 : Trp；
 - P9 : Lys；
 - P10 : Tyr；
 - P11 : Val；和
 - P12 : Arg。

6. 根据权利要求 1 的具有结构式 I 的化合物，其中 1-12 位中的氨基酸残基是：
 - P1 : Arg；
 - P2 : Trp；
 - P3 : Leu；
 - P4 : Lys；
 - P5 : Lys；
 - P6 : Arg；
 - P7 : Arg；
 - P8 : Trp；
 - P9 : Lys；
7. 根据权利要求 1 的具有结构式 1 的化合物, 其中 1-12 位中的氨基酸残基是:
 - P1: Arg
 - P2: Trp
 - P3: Leu
 - P4: Lys
 - P5: Lys
 - P6: Arg
 - P7: Arg
 - P8: Trp
 - P9: Lys
 - P10: Gln
 - P11: Tyr
 - P12: Arg

8. 根据权利要求 1 的具有结构式 1 的化合物, 其中 1-12 位中的氨基酸残基是:
 - P1: Arg
 - P2: Trp
 - P3: Leu
 - P4: Val
 - P5: Lys
 - P6: Arg
 - P7: Arg
 - P8: Trp
 - P9: Lys
 - P10: Tyr
 - P11: Tyr
 - P12: Arg

9. 根据权利要求 1 的具有结构式 1 的化合物, 其中 1-12 位中的氨基酸残基是:
 - P1: Arg
 - P2: Trp
 - P3: Leu
 - P4: Lys
 - P5: Lys
 - P6: Arg
 - P7: Arg
 - P8: Trp
 - P9: Val
• P10 : Tyr;
• P11 : Tyr; 和
• P12 : Arg.

10. 根据权利要求 1 的具有结构式 1 的化合物，其中 1-12 位中的氨基酸残基是:
• P1 : Arg;
• P2 : Trp;
• P3 : Leu;
• P4 : Lys;
• P5 : Lys;
• P6 : Arg;
• P7 : Arg;
• P8 : Trp;
• P9 : Lys;
• P10 : Tyr;
• P11 : Gln; 和
• P12 : Arg.

11. 一种包含根据权利要求 1 至 10 任何一项的化合物和药物学靶性载体的药物组合物。

12. 根据权利要求 11 的组合物，其形式适用于口服，局部，经皮，注射，煎，经粘膜，肺或
吸入给药。

13. 根据权利要求 11 或 12 的组合物，其形式为片剂，糖丸丸，胶囊，溶液，液体，凝胶，硬
膏，乳膏，软膏，糖浆，涂油，悬浮液，喷雾剂，纳米剂或栓剂。

14. 根据权利要求 1 至 10 任何一项的化合物在制造用于治疗或预防感染或与这些感染
有关的疾病的药物中的用途。

15. 根据权利要求 14 的用途，其中所述感染与以下疾病有关：呼吸道疾病，皮肤或软
组织疾病，胃肠疾病，眼疾病，耳疾病，SARS 疾病，骨疾病，心血管疾病，gastroirinal 疾病，
癌，HIV。

16. 根据权利要求 15 的用途，其中所述呼吸道疾病选自囊性纤维化，肺气肿和哮喘，所
述皮肤或软组织疾病选自外科伤口，创伤和烧伤，所述胃肠疾病选自流行性腹泻，坏死性小
肠结肠炎和盲肠炎，所述眼疾病选自角膜炎和眼内炎，所述耳疾病是耳炎，所述 CNS 疾病选
自脑膜肿和脑膜炎，所述骨疾病选自骨软骨炎和骨髓炎，所述心血管疾病选自心内膜炎和
心包炎，所述 gastroirinal 疾病选自附睾炎，前列腺炎和尿道炎。

17. 根据权利要求 1 至 10 任何一项的化合物在制备用于食品，化妆品和其它含营养物
的材料的消毒剂或防腐剂中的用途。

18. 根据权利要求 1-10 任何一项的化合物作为药物的消毒剂或防腐剂在制备药物中
的用途。

19. 一种用于制造根据权利要求 1-10 任何一项的化合物的方法，该方法包括
(a) 将适当官能化固体载体与在所需最终产物中处于 5,6 或 7 位的氨基酸的适当 N- 保
护的衍生物偶联，可存在于所述 N- 保护氨基酸衍生物中的任何官能团也被适当保护。
(b) 从如此得到的产物中去除 N- 保护基团；
(c) 将如此得到的产物与在所需最终产物中离 N- 端氨基酸残基更近一个位置的氨基酸的适当 N- 保护的衍生物偶联，可存在于所述 N- 保护氨基酸衍生物中的任何官能团也被适当保护；
(d) 从如此得到的产物中去除 N- 保护基团；
(e) 重复步骤 (c) 和 (d) 直至 N- 保护基团已被引入；
(f) 将如此得到的产物
(fa) 与 ^{1}Pro 的适当 N- 保护的衍生物偶联；
(fb) 从如此得到的产物中去除 N- 保护基团；
(fc) 将如此得到的产物与 ^{1}Pro 的适当 N- 保护的衍生物偶联；
(g) 去除在步骤 (fc) 所得产物的 N- 保护基团；
(h) 将如此得到的产物与在所需最终产物中处于 12 位的氨基酸的适当 N- 保护的衍生物偶联，可存在于所述 N- 保护氨基酸衍生物中的任何官能团也被适当保护；
(i) 从如此得到的产物中去除 N- 保护基团；
(j) 将如此得到的产物与在所需最终产物中离 12 位更远一个位置的氨基酸的适当 N- 保护的衍生物偶联，可存在于所述 N- 保护的氨基酸衍生物中的任何官能团也被适当保护；
(k) 从如此得到的产物中去除 N- 保护基团；
(l) 重复步骤 (j) 和 (k) 直至所有的氨基酸残基已被引入；
(m) 非必需地，选择性地去保护存在于分子中的一个或几个受保护的官能团和适当地取代如此释放的反应性基团；
(o) 从固体载体上脱离如此得到的产物；
(p) 环化从固体载体上切离的产物；
(q) 非必需地，在 B- 链区域的相对位置处适当氨基酸残基的侧链之间形成一个或两个键间键；
(r) 去除存在于氨基酸残基链的任何成员的官能团上的任何保护基团和，非必需地，可另外存在于该分子中的任何保护基团；
(s) 非必需地，将如此得到的产物转化成药物可接受的盐或将如此得到的药物可接受的或不可接受的盐转化成相应的结构式 I 的游离化合物或转化成不同的药物可接受盐。
20. 一种用于制造根据权利要求 1-10 任何一项的化合物的方法，该方法包括
(a’) 将适当官能化固体载体
(a’ a) 与 ^{1}Pro 的适当 N- 保护的衍生物偶联；
(a’ b) 从如此得到的产物中去除 N- 保护基团；
(a’ c) 将如此得到的产物与 ^{1}Pro 的适当 N- 保护的衍生物偶联；
(b’) 去除步骤 (a’ c) 中所得产物的 N- 保护基团；
(c’) 将如此得到的产物与在所需最终产物中处于 12 位的氨基酸的适当 N- 保护的衍生物偶联，可存在于所述 N- 保护的氨基酸衍生物中的任何官能团也被适当保护；
(d’) 从如此得到的产物中去除 N- 保护基团；
(e’) 将如此得到的产物与在所需最终产物中离 12 位更远一个位置的氨基酸的适当
N- 保护的衍生物偶联合，可存在于所述 N- 保护的氨基酸衍生物中的任何官能团也被适当保护；

(f') 从如此得到的产品中去除 N- 保护基团；

(g') 重复步骤 (e') 和 (f') 直至所有的氨基酸残基已被引入；

(h') 非必需地，选择性地去保护存在于该分子中的一个或几个受保护的官能团和适当取代导致其释放的反应性基团；

(i') 从固体载体上脱离如此得到的产物；

(j') 环化从固体载体上脱除的产物；

(k') 非必需地，在 β 链区域的相对位置处适当氨基酸残基的侧链之间形成一个或两个链间键；

(l') 去除存在于氨基酸残基链的任何成员的官能团上的任何保护基团和，非必需地，可另外存在于该分子中的任何保护基团；和

(m') 非必需地，将如此得到的产品转化成药物可接受的盐或将如此得到的药物可接受的或不可接受的盐转化成相应的结构式 I 的游离化合物或转化成不同的药物可接受盐。
具有抗菌活性的模板固定的肽模拟物

[0001] 本发明提供定义如下的引入12个α-氨基酸残基的模板固定链的模板固定β-发表肽模拟物（peptidomimetics），所述残基根据其在链中的位置是Gly，或Pro，或某些种类。这些模板固定的β-发表肽模拟物具有选择性抗菌质活性。另外，本发明提供一种有效的合成方法，这些化合物可根据需要制成平行库形式。这些β-发表肽模拟物具有改进的效力，生物利用率，半衰期和最为重要的明显增加的抗菌活性（一方面）和红细胞的溶血（另一方面）的比率。

[0006] Protegrin 1 在低和高盐分析中对革兰氏阳性和革兰氏阴性细菌以及真菌具有有效的和类似活性。该后抗微生物活性与快速作用模式, 和其杀死后耐受其它种类抗生素的细菌的能力相结合, 使得它们成为开发临床有用的抗生素的有吸引力的目标。对革兰氏阳性细菌的活性通常高于对革兰氏阴性细菌的活性。但 protegrin 1 还具有针对红细胞的高溶血活性, 和因此对微生物细胞的低选择性。定向 CD 实验 (W. T. Heller, A. J. Waring,

[0009] 在以下描述的化合物中, 引入了一种新的方法用于将具有选择性抗微生物活性的主链环状阳离子肽模拟物中的 β - 发夹构象稳定化。这包括将阳离子和憎水发夹序列移植到模板上, 后者的功能是将肽环主链限制成发夹几何。

[0011] 本发明 β - 发夹肽模拟物是具有以下通式的化合物。
[0013] 其中

[0014]

[0015] 是具有以下结构式之一的基团

[0016]

(a1) (a2)

(b1) (b2) (c1)
[0020] 其中
[0021]

[0022] 是 L-α-氨基酸的残基且 B 是具有式 \(-\text{NR}^{20}\text{CH}(\text{R}^{21})\)- 的残基或定义如下的基团 A1-A69 之一的对映异构体；
[0023]

[0024] 是具有以下结构式之一的基团
[0025]
[0027]
[0028]
[0029] R¹是H；低级烷基；或芳基－低级烷基；
[0030] R²是H；烷基；链烯基；(CH₂)n(CHRⁿ⁻¹)OR⁻ⁿ⁺¹；(CH₂)n(CHRⁿ⁻¹)SR⁻ⁿ⁺¹；
[0031] -(CH₂)n(CHRⁿ⁻¹)sNRⁿ⁻¹R⁻ⁿ⁺¹；-(CH₂)n(CHRⁿ⁻¹)sOCONRⁿ⁻¹R⁻ⁿ⁺¹；
[0032] -(CH₂)n(CHRⁿ⁻¹)sNRⁿ⁻¹CONRⁿ⁻¹R⁻ⁿ⁺¹；-(CH₂)n(CHRⁿ⁻¹)sCOOR⁻ⁿ⁺¹；
[0033] -(CH₂)n(CHRⁿ⁻¹)sCONRⁿ⁻¹R⁻ⁿ⁺¹；-(CH₂)n(CHRⁿ⁻¹)sPO(OR⁻ⁿ⁺¹)⁻ⁿ⁺¹；
[0034] -(CH₂)n(CHRⁿ⁻¹)sSO⁻ⁿ⁺¹R⁻ⁿ⁺¹；或-(CH₂)n(CHRⁿ⁻¹)sC⁻ⁿ⁺¹H⁻ⁿ⁺¹R⁻ⁿ⁺¹；
[0035] R³是H；烷基；链烯基；(CH₂)n(CHRⁿ⁻¹)OR⁻ⁿ⁺¹；(CH₂)n(CHRⁿ⁻¹)SR⁻ⁿ⁺¹；
[0036] -(CH₂)n(CHRⁿ⁻¹)sNRⁿ⁻¹R⁻ⁿ⁺¹；-(CH₂)n(CHRⁿ⁻¹)sOCONRⁿ⁻¹R⁻ⁿ⁺¹；
[0037] -(CH₂)n(CHRⁿ⁻¹)sNRⁿ⁻¹CONRⁿ⁻¹R⁻ⁿ⁺¹；-(CH₂)n(CHRⁿ⁻¹)sCOOR⁻ⁿ⁺¹；
[0038] -(CH₂)n(CHRⁿ⁻¹)sCONRⁿ⁻¹R⁻ⁿ⁺¹；-(CH₂)n(CHRⁿ⁻¹)sPO(OR⁻ⁿ⁺¹)⁻ⁿ⁺¹；
[0039] -(CH₂)n(CHRⁿ⁻¹)sSO⁻ⁿ⁺¹R⁻ⁿ⁺¹；或-(CH₂)n(CHRⁿ⁻¹)sC⁻ⁿ⁺¹H⁻ⁿ⁺¹R⁻ⁿ⁺¹；
[0040] R¹是H；烷基；链烯基；(CH₂)n(CHRⁿ⁻¹)OR⁻ⁿ⁺¹；(CH₂)n(CHRⁿ⁻¹)SR⁻ⁿ⁺¹；(CH₂)n(CHRⁿ⁻¹)sNRⁿ⁻¹R⁻ⁿ⁺¹；
[0041] -(CH₂)n(CHRⁿ⁻¹)sOCONRⁿ⁻¹R⁻ⁿ⁺¹；-(CH₂)n(CHRⁿ⁻¹)sNRⁿ⁻¹CONRⁿ⁻¹R⁻ⁿ⁺¹；
[0042] -(CH₂)n(CHRⁿ⁻¹)sCOOR⁻ⁿ⁺¹；-(CH₂)n(CHRⁿ⁻¹)sCONRⁿ⁻¹R⁻ⁿ⁺¹；-(CH₂)n(CHRⁿ⁻¹)sPO(OR⁻ⁿ⁺¹)⁻ⁿ⁺¹；
[0043] -(CH₂)n(CHRⁿ⁻¹)sSO⁻ⁿ⁺¹R⁻ⁿ⁺¹；或-(CH₂)n(CHRⁿ⁻¹)sC⁻ⁿ⁺¹H⁻ⁿ⁺¹R⁻ⁿ⁺¹；
[0044] R²是烷基；链烯基；(CH₂)n(CHRⁿ⁻¹)OR⁻ⁿ⁺¹；(CH₂)n(CHRⁿ⁻¹)SR⁻ⁿ⁺¹；(CH₂)n(CHRⁿ⁻¹)
\[\text{NR}^3\text{R}^3;\]
说明书

[0078] -(CH₂)₉(CH₆)₉COOR⁵₇-(CH₂)₉(CH₆)₉CONR⁵₈R⁵₉-(CH₂)₉(CH₆)₉PO(OR⁶₀)₂;
[0079] -(CH₂)₉(CH₆)₉SO₂R⁶¹;或-(CH₂)₉(CH₆)₉C₆H₆R⁶²;
[0080] R⁵₈是H;烷基;链烯基;-(CH₂)₉(CH₆)₉OR⁶₅;-(CH₂)₉(CH₆)₉NR⁵₃R⁵₄;
[0081] -(CH₂)₉(CH₆)₉CONR⁵₅R⁵₇;-(CH₂)₉(CH₆)₉NR⁵₀CONR⁵₅R⁵₆;
[0082] -(CH₂)₉(CH₆)₉COOR⁵₇;-(CH₂)₉(CH₆)₉CONR⁵₈R⁵₉;-(CH₂)₉(CH₆)₉PO(OR⁶₀)₂;
[0083] -(CH₂)₉(CH₆)₉SO₂R⁶²;或-(CH₂)₉(CH₆)₉C₆H₆R⁶²;
[0084] R⁵₉是烷基;链烯基;-(CH₂)₉(CH₆)₉OR⁶₅;-(CH₂)₉(CH₆)₉SR⁶₆;-(CH₂)₉(CH₆)₉SR⁶₇;
[0085] -(CH₂)₉(CH₆)₉CONR⁵₅R⁵₇;-(CH₂)₉(CH₆)₉NR⁵₀CONR⁵₅R⁶₂;
[0086] -(CH₂)₉(CH₆)₉COOR⁵₇;-(CH₂)₉(CH₆)₉CONR⁵₈R⁵₉;-(CH₂)₉(CH₆)₉PO(OR⁶₀)₂;
[0087] -(CH₂)₉(CH₆)₉SO₂R⁶²;或-(CH₂)₉(CH₆)₉C₆H₆R⁶²;
[0088] R⁶₀是烷基;链烯基;-(CH₂)₉(CH₆)₉OR⁶₅;-(CH₂)₉(CH₆)₉SR⁶₆;-(CH₂)₉(CH₆)₉SR⁶₇;
[0089] -(CH₂)₉(CH₆)₉CONR⁵₅R⁵₇;-(CH₂)₉(CH₆)₉NR⁵₀CONR⁵₅R⁶₂;
[0090] -(CH₂)₉(CH₆)₉COOR⁵₇;-(CH₂)₉(CH₆)₉CONR⁵₈R⁵₉;-(CH₂)₉(CH₆)₉PO(OR⁶₀)₂;
[0091] -(CH₂)₉(CH₆)₉SO₂R⁶²;或-(CH₂)₉(CH₆)₉C₆H₆R⁶²;
[0092] R⁶₁是烷基;链烯基;-(CH₂)₉(CH₆)₉OR⁶₅;-(CH₂)₉(CH₆)₉SR⁶₆;-(CH₂)₉(CH₆)₉SR⁶₇;
[0093] -(CH₂)₉(CH₆)₉CONR⁵₅R⁵₇;-(CH₂)₉(CH₆)₉NR⁵₀CONR⁵₅R⁶₂;
[0094] -(CH₂)₉(CH₆)₉COOR⁵₇;-(CH₂)₉(CH₆)₉CONR⁵₈R⁵₉;-(CH₂)₉(CH₆)₉PO(OR⁶₀)₂;
[0095] -(CH₂)₉(CH₆)₉SO₂R⁶²;或-(CH₂)₉(CH₆)₉C₆H₆R⁶²;
[0096] R⁶₂是烷基;链烯基;-(CH₂)₉(CH₆)₉OR⁶₅;-(CH₂)₉(CH₆)₉SR⁶₆;-(CH₂)₉(CH₆)₉SR⁶₇;
[0097] -(CH₂)₉(CH₆)₉CONR⁵₅R⁵₇;-(CH₂)₉(CH₆)₉NR⁵₀CONR⁵₅R⁶₂;
[0098] -(CH₂)₉(CH₆)₉COOR⁵₇;-(CH₂)₉(CH₆)₉CONR⁵₈R⁵₉;-(CH₂)₉(CH₆)₉PO(OR⁶₀)₂;
[0099] -(CH₂)₉(CH₆)₉SO₂R⁶²;或-(CH₂)₉(CH₆)₉C₆H₆R⁶²;
[0100] R⁶₃是低级烷基;-(CH₂)₉(CH₆)₉OR⁶₅;-(CH₂)₉(CH₆)₉SR⁶₆;-(CH₂)₉(CH₆)₉NR⁵₃R⁵₄;
[0101] -(CH₂)₉(CH₆)₉CONR⁵₅R⁵₇;-(CH₂)₉(CH₆)₉NR⁵₀CONR⁵₅R⁶₂;
[0102] -(CH₂)₉(CH₆)₉COOR⁵₇;-(CH₂)₉(CH₆)₉CONR⁵₈R⁵₉;-(CH₂)₉(CH₆)₉PO(OR⁶₀)₂;
[0103] -(CH₂)₉(CH₆)₉SO₂R⁶²;或-(CH₂)₉(CH₆)₉C₆H₆R⁶²;
[0104] R⁶₄和R⁶₅在一起可形成:-(CH₂)₂O-(CH₂)₂S-(CH₂)₂O-(CH₂)₂S-(CH₂)₂O-(CH₂)₂O;
[0105] -(CH₂)₉NR⁵₇(CH₂)₂O;
[0106] R⁶₅是H;烷基;链烯基;或芳基-低级烷基;
[0107] R⁶₆是H;烷基;链烯基;-(CH₂)₉(CH₆)₉OR⁶₅;-(CH₂)₉(CH₆)₉SR⁶₆;-(CH₂)₉(CH₆)₉SR⁶₇;
[0108] -(CH₂)₉(CH₆)₉CONR⁵₅R⁵₇;-(CH₂)₉(CH₆)₉NR⁵₀CONR⁵₅R⁶₂;
[0109] -(CH₂)₉(CH₆)₉COOR⁵₇;-(CH₂)₉(CH₆)₉CONR⁵₈R⁵₉;-(CH₂)₉(CH₆)₉PO(OR⁶₀)₂;
[0110] -(CH₂)₉(CH₆)₉SO₂R⁶²;或-(CH₂)₉(CH₆)₉C₆H₆R⁶²;
[0111] R²₂是H;烷基;链烯基;-(CH₂)₉(CH₆)₉OR⁶₅;-(CH₂)₉(CH₆)₉SR⁶₆;-(CH₂)₉(CH₆)₉SR⁶₇;-(CH₂)₉(CH₆)₉
$sNR^{23}R^{32}$

$[0112] - (CH_2)_n(CHR^{61})_oOCOR^{23}R^{75}; -(CH_2)_o(CHR^{61})_oNR^{30}CONR^{33}R^{82}$

$[0113] - (CH_2)_o(CHR^{61})_oCOOR^{77}; -(CH_2)_o(CHR^{61})_oCONR^{38}R^{59}; -(CH_2)_o(CHR^{61})_oPO(OR^{60})_2$

$[0114] - (CH_2)_o(CHR^{61})_oSO_3R^{62};$ or $-(CH_2)_o(CHR^{61})_oC_6H_5R^8$

$[0115] R^{23}$ 是 烷 基；链 烷 基；$-(CH_2)_o(CHR^{61})_oOR^{55}; -(CH_2)_o(CHR^{61})_oSR^{56}; -(CH_2)_o(CHR^{61})_oNR^{33}R^{32}$

$[0116] - (CH_2)_o(CHR^{61})_oOCOR^{38}R^{75}; -(CH_2)_o(CHR^{61})_oNR^{26}CONR^{35}R^{82}$

$[0117] - (CH_2)_o(CHR^{61})_oCOOR^{77}; -(CH_2)_o(CHR^{61})_oCONR^{38}R^{59}; -(CH_2)_o(CHR^{61})_oPO(OR^{60})_2$

$[0118] - (CH_2)_o(CHR^{61})_oSO_3R^{62};$ or $-(CH_2)_o(CHR^{61})_oC_6H_5R^8$

$[0119] R^{23}$ 是 烷 基；链 烷 基；$-(CH_2)_o(CHR^{61})_oOR^{55}; -(CH_2)_o(CHR^{61})_oSR^{56}; -(CH_2)_o(CHR^{61})_oNR^{33}R^{32}$

$[0120] - (CH_2)_o(CHR^{61})_oNR^{23}R^{34}; -(CH_2)_o(CHR^{61})_oOCOR^{23}R^{75}$

$[0121] - (CH_2)_o(CHR^{61})_oCOOR^{77}; -(CH_2)_o(CHR^{61})_oCONR^{38}R^{59}; -(CH_2)_o(CHR^{61})_oPO(OR^{60})_2$

$[0122] - (CH_2)_o(CHR^{61})_oSO_3R^{62};$ or $-(CH_2)_o(CHR^{61})_oC_6H_5R^8$

$[0123] R^{25}$ 是 双 断 只链 烷 基；$-(CH_2)_n(CHR^{61})_oOR^{55}; -(CH_2)_o(CHR^{61})_oSR^{56}$

$[0124] - (CH_2)_o(CHR^{61})_oNR^{23}R^{34}; -(CH_2)_o(CHR^{61})_oOCOR^{23}R^{75}$

$[0125] - (CH_2)_o(CHR^{61})_oNR^{26}CONR^{33}R^{82}; -(CH_2)_o(CHR^{61})_oCOOR^{77}$

$[0126] - (CH_2)_o(CHR^{61})_oCONR^{38}R^{59}; -(CH_2)_o(CHR^{61})_oPO(OR^{60})_2$

$[0127] - (CH_2)_o(CHR^{61})_oSO_3R^{62};$ or $-(CH_2)_o(CHR^{61})_oC_6H_5R^8$

$[0128] R^{25}$ 是 双 断 只链 烷 基；链 烷 基；$-(CH_2)_n(CHR^{61})_oOR^{55}; -(CH_2)_o(CHR^{61})_oSR^{56}$

$[0129] - (CH_2)_o(CHR^{61})_oNR^{23}R^{34}; -(CH_2)_o(CHR^{61})_oOCOR^{23}R^{75}$

$[0130] - (CH_2)_o(CHR^{61})_oNR^{26}CONR^{33}R^{82}; -(CH_2)_o(CHR^{61})_oCOOR^{77}; -(CH_2)_o(CHR^{61})_oSO_3R^{62}; -(CH_2)_o(CHR^{61})_oPO(OR^{60})_2$

$[0131] - (CH_2)_o(CHR^{61})_oSO_3R^{62};$ or $-(CH_2)_o(CHR^{61})_oC_6H_5R^8$

$[0132] R^{25}$ 和 R^{26} 在一起可形成：$-(CH_2)_2O(-CH_2)_0(CHR)_2; -(CH_2)_2S(CH_2); -(CH_2)_2NR_{57}; (CH_2)_2R^{77}$

$[0133] -(CH_2)_oNR^{57}; (CH_2)_2R^{77}$

$[0134] R^{25}$ 是 双 断 只链 烷 基；链 烷 基；$-(CH_2)_n(CHR^{61})_oOR^{55}; -(CH_2)_o(CHR^{61})_oSR^{56}; -(CH_2)_o(CHR^{61})_oNR^{33}R^{32}$

$[0135] - (CH_2)_o(CHR^{61})_oCOOR^{77}; -(CH_2)_o(CHR^{61})_oCONR^{38}R^{59}; -(CH_2)_o(CHR^{61})_oOCOR^{33}R^{75}$

$[0136] - (CH_2)_o(CHR^{61})_oSO_3R^{62};$ or $-(CH_2)_o(CHR^{61})_oC_6H_5R^8$

$[0137] - (CH_2)_o(CHR^{61})_oSO_3R^{62};$ or $-(CH_2)_o(CHR^{61})_oC_6H_5R^8$

$[0138] R^{25}$ 是 双 断 只链 烷 基；链 烷 基；$-(CH_2)_o(CHR^{61})_oOR^{55}; -(CH_2)_o(CHR^{61})_oSR^{56}; -(CH_2)_o(CHR^{61})_oNR^{33}R^{32}$

$[0139] - (CH_2)_o(CHR^{61})_oOCOR^{33}R^{75}; -(CH_2)_o(CHR^{61})_oNR^{26}CONR^{33}R^{82}$

$[0140] - (CH_2)_o(CHR^{61})_oCOOR^{77}; -(CH_2)_o(CHR^{61})_oCONR^{38}R^{59}; -(CH_2)_o(CHR^{61})_oPO(OR^{60})_2$

$[0141] - (CH_2)_o(CHR^{61})_oSO_3R^{62};$ or $-(CH_2)_o(CHR^{61})_oC_6H_5R^8$

$[0142] R^{25}$ 是 双 断 只链 烷 基；链 烷 基；$-(CH_2)_o(CHR^{61})_oOR^{55}; -(CH_2)_o(CHR^{61})_oSR^{56}; -(CH_2)_o(CHR^{61})_oNR^{33}R^{32}$

$[0143] - (CH_2)_o(CHR^{61})_oOCOR^{33}R^{75}; -(CH_2)_o(CHR^{61})_oNR^{26}CONR^{33}R^{82}$
[0180] (CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0181] R₆² 是 H; F; Br; Cl; NO₂; CF₃; 烷基; 链烯基; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0182] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0183] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0184] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0185] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0186] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0187] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0188] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0189] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0190] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0191] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0192] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0193] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0194] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0195] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0196] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0197] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0198] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0199] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0200] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0201] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0202] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0203] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0204] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0205] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0206] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0207] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0208] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0209] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0210] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0211] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0212] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0213] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0214] -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²; -(CH₃)₆(SO₃)₆R₆²;
[0215] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{CONR}^2\text{R}^5\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{PO}(\text{OR})_2\);
[0216] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{SO}_2\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{C}_2\text{H}_5\);
[0217] \(R^5\) 是 \(H\); 基键; 链烯基; \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{55}\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{NR}^{23}\text{R}^5\);
[0218] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{CONR}^{25}\text{R}^5\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{NR}^{25}\text{CONR}^{25}\text{R}^8\);
[0219] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{COOR}^{55}\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{CONR}^{25}\text{R}^8\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{C}_2\text{H}_5\);
[0220] \(R^5\) 是 \(H\); 低级烷基; 低级链烯基; 芳基 - 低级烷基; \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{57}\);
[0221] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{NR}^{23}\text{R}^5\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{CONR}^{25}\text{R}^8\);
[0222] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{NR}^{25}\text{CONR}^{25}\text{R}^8\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{C}_2\text{H}_5\);
[0223] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{CONR}^{25}\text{R}^5\);
[0224] \(R^5\) 是 \(H\); 低级烷基; 低级链烯基; 芳基 - 低级烷基; \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{57}\);
[0225] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{NR}^{23}\text{R}^5\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{CONR}^{25}\text{R}^8\);
[0226] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{NR}^{25}\text{CONR}^{25}\text{R}^8\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{C}_2\text{H}_5\);
[0227] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{CONR}^{25}\text{R}^5\);
[0228] \(R^5\) 是 \(H\); 低级烷基; 低级链烯基; 芳基 - 低级烷基; \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{57}\);
[0229] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{NR}^{23}\text{R}^5\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{CONR}^{25}\text{R}^8\);
[0230] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{NR}^{25}\text{CONR}^{25}\text{R}^8\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{C}_2\text{H}_5\);
[0231] \(R^5\) 和 \(R^5\) 在一起可形成; \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{55}\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{S}_2\text{R}^5\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{55}\);
[0232] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{NR}^{57}\text{R}^5\);
[0233] \(R^5\) 是 \(H\); 低级烷基; 低级链烯基; 芳基 - 低级烷基; \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{55}\);
[0234] \(R^5\) 是烷基; 链烯基; 芳基 - 低级烷基; \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{55}\);
[0235] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{CONR}^{25}\text{R}^5\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{NR}^{25}\text{CONR}^{25}\text{R}^5\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{COOR}^{55}\);
[0236] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{SO}_2\text{R}^5\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{PO}(\text{OR})_2\);
[0237] \(R^5\) 是低级烷基; 低级链烯基; 芳基 - 低级烷基; \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{55}\);
[0238] \(R^5\) 是 \(H\); 低级烷基; 低级链烯基; 芳基 - 低级烷基; \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{55}\);
[0239] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{NR}^{57}\text{R}^5\);
[0240] \(R^5\) 和 \(R^5\) 在一起可形成; \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{55}\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{S}_2\text{R}^5\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{55}\);
[0241] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{NR}^{57}\text{R}^5\);
[0242] \(R^5\) 是 \(H\); 低级烷基; 低级链烯基; 芳基 - 低级烷基; \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{55}\);
[0243] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{55}\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{S}_2\text{R}^5\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{55}\);
[0244] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{CONR}^{25}\text{R}^5\); \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{NR}^{25}\text{CONR}^{25}\text{R}^8\);
[0245] \(R^5\) 是 \(H\); 低级烷基; 低级链烯基; 芳基 - 低级烷基; \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{55}\);
[0246] \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{NR}^{25}\text{R}^5\);
[0247] \(R^5\) 是 \(H\); 低级烷基; 低级链烯基; 芳基 - 低级烷基; \(-\text{CH}_2\text{CHR}(\text{CHR})_n\text{OR}^{55}\);
[0248] \(-\text{CONR}^\text{R}^9\);
[0249] \(m \text{ is } 2-4; \alpha \text{ is } 0-4; \beta \text{ is } 1-4; \gamma \text{ is } 0-2; \tau \text{ is } 1 \text{ or } 2; \sigma \text{ is } 0 \text{ or } 1;\)
[0250] \(Z \text{ is } 12 \text{个 } \alpha \text{ -氨基酸残基的链，所述氨基酸残基在所述链中的位置从 } N-\text{端氨基酸开始计数，这样这些氨基酸残基根据其在链中的位置是 Gly 或 Pro，或具有结构式 } -\text{A-CO}-\),
或具有结构式 \(-\text{B-CO}-\), 或以下一种类型
[0251] \(C : \text{NR}^\text{R}^2\text{CH}(R^7)\text{CO}-\);
[0252] \(D : -\text{NR}^\text{R}^2\text{CH}(R^7)\text{CO}-\);
[0253] \(E : -\text{NR}^\text{R}^2\text{CH}(R^7)\text{CO}-\);
[0254] \(F : -\text{NR}^\text{R}^2\text{CH}(R^7)\text{CO}-\);
[0255] \(H : -\text{NR}^\text{R}^2\text{CH}(CO)- - (\text{CH}_2)_m-\text{CH}(CO)- - \text{NR}^\text{R}^2\);
[0256] \(-\text{NR}^\text{R}^2\text{CH}(CO)- - (\text{CH}_2)_m-\text{SS}(\text{CH}_2)_m-\text{CH}(CO)- - \text{NR}^\text{R}^2\);
[0257] \(-\text{NR}^\text{R}^2\text{CH}(CO)- - (\text{CH}_2)_m-\text{NR}^\text{R}^2\text{CO}(\text{CH}_2)_m-\text{CH}(CO)- - \text{NR}^\text{R}^2\);
和
[0258] \(-\text{NR}^\text{R}^2\text{CH}(CO)- - (\text{CH}_2)_m-\text{NR}^\text{R}^2\text{CONR}^\text{R}^2(\text{CH}_2)_m-\text{CH}(CO)- - \text{NR}^\text{R}^2\);
[0259] \(R^1 \) 是 \(H \); 低级烷基; 低级链烯基: \((\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0260] \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0261] \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0262] \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0263] \(R^2 \) 是 \(H \); 低级烷基; 低级链烯基: \((\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0264] \(R^3 \) 是 \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0265] \(R^4 \) 是 \((\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0266] \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0267] \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0268] \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0269] \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0270] \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0271] \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0272] \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0273] \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0274] \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0275] \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0276] \(- (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{OR}^\text{R}^5; - (\text{CH}_2)_m-\text{CHR}^\text{R}^1\text{SR}^\text{R}^5;\)
[0284] R²⁷ 是低级烷基；低级链烯基；或芳基 - 低级烷基；
[0285] R²³ 和 R⁷⁵ 在一起可形成 : -(CH₂)₂⁻₀ ; -(CH₂)₂⁻₀ (CH₂)₂⁻ ; -(CH₂)₂⁻₀ S (CH₂)₂⁻ ; 或
[0286] -(CH₂)₂⁻₀ NR⁵⁷ (CH₂)₂⁻ ;
[0287] R⁷⁵ 和 R⁸² 在一起可形成 : -(CH₂)₂⁻₀ ; -(CH₂)₂⁻₀ (CH₂)₂⁻ ; -(CH₂)₂⁻₀ S (CH₂)₂⁻ ; 或
[0288] -(CH₂)₂⁻₀ NR⁵⁷ (CH₂)₂⁻ ;
[0289] R⁰ 是 H；低级烷基；低级链烯基；芳基 - 低级烷基 ; -(CH₂)₂⁻₀ OR⁷² ; -(CH₂)₂⁻₀ SR⁷² ;
[0290] -(CH₂)₂⁻₀ NR⁵⁵ R³⁴ ; -(CH₂)₂⁻₀ OCONR³⁵ R⁷² ; -(CH₂)₂⁻₀ NR²⁰ CONR⁸⁰ R⁸² ;
[0291] -(CH₂)₂⁻₀ COOR⁷⁵ ; -(CH₂)₂⁻₀ COFR⁸⁰ R⁶⁹ ; -(CH₂)₂⁻₀ PO (OR⁶⁹)₂ ; -(CH₂)₂⁻₀ SO₂ R⁶² ; 或
[0292] -(CH₂)₂⁻₀ COR⁶⁴ ;
[0293] R²⁷ 是 -C₂⁻₀ R⁸⁵ R⁶⁹ R⁶⁹ R⁷⁵ ; 或具有以下结构式之一的杂芳基基团
[0294]
[0295]
[0296] R^{2b} 为 H；低级烷基：芳基；或芳基 – 低级烷基；
[0297] R^{2a} 和 R^{2b} 在一起可形成：$-(CH_2)_2O(CH_2)_2-$；$-(CH_2)_20(CH_2)_2-$；$-(CH_2)_2S(CH_2)_2-$；或
[0298] $-(CH_2)_2NR^{57}(CH_2)_2-$；
[0299] R^{2a} 为 H；低级烷基；芳基；或芳基 – 低级烷基；或
[0300] R^{2a} 和 R^{2b} 在一起可以是：$-(CH_2)_2O(CH_2)_2-$；$-(CH_2)_20(CH_2)_2-$；或 $-(CH_2)_2NR^{57}(CH_2)_2-$。
[0301] R^{2b} 为 H；低级烷基；
[0302] R^{2a} 为 H；低级烷基；或芳基 – 低级烷基；
[0303] R^{2b} 为 H；低级烷基；芳基；或芳基 – 低级烷基；
[0304] R^{2a} 和 R^{2b} 在一起可形成：$-(CH_2)_2O(CH_2)_2-$；$-(CH_2)_20(CH_2)_2-$；$-(CH_2)_2S(CH_2)_2-$；或
[0305] $-(CH_2)_2NR^{57}(CH_2)_2-$；
[0306] R^{2a} 为 H；低级烷基；芳基；或 $NR^{78}R^{79}$；
[0307] R^{2a} 是 $-(CH_2)_n(CHR^{61})_nOH$；$-(CH_2)_nCONR^{78}R^{79}$；$-(CH_2)_nNR^{80}CONR^{78}R^{79}$；$-(CH_2)_n$
进一步的前提是

- P4 中的氨基酸残基是种类 C 或 P5 中的氨基酸残基是种类 F 或
- P7 中的氨基酸残基是种类 C 或 P8 中的氨基酸残基是种类 F 或
- P9 中的氨基酸残基是种类 C 或 P10 中的氨基酸残基是种类 F 或
- P11 中的氨基酸残基是种类 C 或 P12 中的氨基酸残基是种类 F 或
- P4 和 P9 或 P11 在一起可形成种类 II 基团；且在 P6 和 P7，d-异构体也是可能的；

按照本发明，这些 β- 发夹肽模拟物可通过以下方法而制成，所述方法包括：

(a) 将适宜官能化固体载体 (support) 与在所需最终产物中处于 5,6 或 7 位的氨
基酸的适宜 N- 保护衍生物偶联，可存在于所述 N- 保护氨基酸衍生物中的任何官能团也被
适当保护；

(b) 从如此得到的产物中去除 N- 保护基团；

(c) 将如此得到的产物与在所需最终产物中离 N- 端氨基酸残基更近一个位置的氨
基酸的适宜 N- 保护衍生物偶联，可存在于所述 N- 保护氨基酸衍生物中的任何官能团也被
适当保护；

(d) 从如此得到的产物中去除 N- 保护基团；

(e) 重复步骤 (c) 和 (d) 直至 N- 端氨基酸残基已被引入；

(f) 将如此得到的产物与具有以下通式的化合物偶联
[0340] 其中
[0341]
[0342] 定义如下且 X 是 N- 保护基团，或，如果
[0343]
[0344] 是以上的基团 (a1) 或 (a2)，作为可替代方案，
[0345] (fa) 将在步骤 (e) 中得到的产物与具有以下通式的氨基酸的适当 N- 保护衍生物偶联
[0346] HOO- B-H III 或 HOO-C-A-H IV
[0347] 其中 B 和 A 定义如上，可存在于所述 N- 保护氨基酸衍生物中的任何官能团也被适当保护；
[0348] (fb) 从如此得到的产物中去除 N- 保护基团；和
[0349] (fc) 将如此得到的产物分别与具有以上通式 IV 和 III 的氨基酸的适当 N- 保护衍生物偶联，可存在于所述 N- 保护氨基酸衍生物中的任何官能团也被适当保护；
[0350] (g) 从在步骤 (f) 或 (fc) 中得到的产物中去除 N- 保护基团；
[0351] (h) 将如此得到的产物与在所需最终产物中处于 12 位的氨基酸的适当 N- 保护衍生物偶联，可存在于所述 N- 保护氨基酸衍生物中的任何官能团也被适当保护；
[0352] (i) 从如此得到的产物中去除 N- 保护基团；
[0353] (j) 将如此得到的产物与在所需最终产物中离 12 位更远一个位置的氨基酸的适当 N- 保护衍生物偶联，可存在于所述 N- 保护氨基酸衍生物中的任何官能团也被适当保护；
[0354] (k) 从如此得到的产物中去除 N- 保护基团；
[0355] (l) 重复步骤 (j) 和 (k) 直至所有的氨基酸残基已被引入；
[0356] (m) 如果需要，选择性地去保护存在于分子中的一个或几个受保护的官能团和适当取代的反应性基团；
[0357] (o) 将如此得到的产物与固体载体分离；
[0358] (p) 化合从固体载体上切离的产物；
[0359] (q) 如果需要，在 β- 链区域相对位置处的合适氨基酸残基的侧链之间形成一个或两个键间键；
[0360] (r) 去除存在于氨基酸残基链的任何成员的官能团上的任何保护基团和，如果需
要，可另外存在于分子中的任何保护基团；和

【0361】（s）如果需要，将如此得到的产物转化成药物可接受的盐或将如此得到的药物可
接受的，或不可接受的盐转化成相应的结构形式 I 的游离化合物或转化成不同的药物可接受
盐。

【0362】作为替代方案，本发明肽模拟物可如下制备

【0363】（a’）将适当官能化固体载体与具有以下通式的化合物偶联

【0364】

[图示]

其中

【0365】定义如上且 X 是 N-保护基团，或，如果

【0366】

【0367】是以上的基团 (a1) 或 (a2)，作为可替代方案

【0368】（a’ a）将所述适当官能化固体载体与具有以下通式的氨基酸的适当 N-保护衍生
物偶联

【0369】HOOCC-B-H III 或 HOOCC-A-H IV

【0370】其中 B 和 A 定义如上，可存在于所述 N-保护氨基酸衍生物中的任何官能团同样被
适当保护；

【0371】（a’ b）从如此得到的产物中去除 N-保护基团；和

【0372】（a’ c）将如此得到的产物分别与具有以上通式 IV 和 III 的氨基酸的适当 N-保
护衍生物偶联，可存在于所述 N-保护氨基酸衍生物中的任何官能团同样被适当保护；

【0373】（b’）从在步骤（a’）或 (a’ c) 中得到的产物中去除 N-保护基团；

【0374】（c’）将如此得到的产物与在所需最终产物中处于 12 位的氨基酸的适当 N-保护
衍生物偶联，可存在于所述 N-保护氨基酸衍生物中的任何官能团同样被适当保护；

【0375】（d’）从如此得到的产物中去除 N-保护基团；

【0376】（e’）将如此得到的产物与在所需最终产物中离 12 位更远一个位置的氨基酸的
适当 N-保护衍生物偶联，可存在于所述 N-保护氨基酸衍生物中的任何官能团同样被适当
保护；

【0377】（f’）从如此得到的产物中去除 N-保护基团；

【0378】（g’）重复步骤 (e’) 和 (f’) 直至所有的氨基酸残基已被引入；

【0379】

【0380】
（h’）如果需要，选择性地去保护存在于分子中的一个或几个受保护的官能团和适当取代如此释放的反应性基团；
（i’）将如此得到的产物与固态载体分离；
（j’）环化从固态载体上切离的产物；
（k’）如果需要，在β-链区域相对位置处的适当氨基酸残基的侧链之间形成一个或两个链间键；
（I’）去除存在于氨基酸残基链的任何成员的官能团上的任何保护基团和，如果需要，可另外存在于分子中的任何保护基团；和
（m’）如果需要，将如此得到的产物转化成药物可接受的盐或将如此得到的药物可接受的，或不可接受的盐转化成相应的结构式I的游离化合物或转化成不同的药物可接受盐。

本发明肽模拟物也可以是具有结构式I的化合物的对映异构体。这些对映异构体可通过改变以上方法而制成，其中使用所有的手性起始原料的对映异构体。

本说明书中所用的术语“烷基”单独或组合时表示具有最高24，优选最高12个碳原子的饱和，直链或支链烃基团。类似地，术语“链烯基”表示具有最高24，优选最高12个碳原子和包含至少一个或，取决于链长，最高四个烯烃双键的直链或支链烃基团。术语“低级”表示具有最高6个碳原子的基团和化合物。因此，例如，术语“低级烷基”表示具有最高6个碳原子的饱和，直链或支链烃基团，如甲基，乙基，n-丙基，异丙基，n-丁基，仲-丁基，异丁基，叔丁基和类似物。术语“芳基”表示包含一个或两个六元环的芳族环烃基团，如苯基或苯基，可被最高三个取代基如Br，Cl，F，CF₃，NO₂，低级烷基或低级链烯基取代。

术语”杂芳基”表示包含一个或两个五元和/或六元环的芳族杂环烃基团，其中至少一个环包含最高三个选自O，S和N的杂原子且所述环任选被取代；这些任选取代的杂芳基基团的代表性例子以上在定义R₇”时给出。

结构成分-A-CO-表示氨基酸结构单元，它与结构成分-B-CO-一起形成模板（a1）和（a2）。模板（a）-（p）构成具有N-末端和C-末端的结构单元，此N-末端和C-末端在空间中取向使得这两个基团之间的距离可以是4.0-5.5Å。肽链Z通过相应的N-和C-末端连接到模板（a）-（p）的C-末端和N-末端上，这样模板和链形成一种环状结构，如在结构式I中描述的那种。如果模板的N-和C-末端之间的距离是4.0-5.5Å，就象在这里的情形，则该模板将会诱导对于在肽链Z中形成β-发夹构象所需的H-键网络。这样模板和肽链形成β-发夹模拟物（mimetic）。

β-发夹构象对于本发明β-发夹模拟物的抗生素活性是高度相关的。模板（a）-（p）的β-发夹稳定化构象性能不仅对于选择性抗微生物活性而且对于定义如上的合成工艺起着关键作用，因为该模板在线性保护的肽前体的开始处的引入明显增加环化反应产率。

构成模板（a2）的不太优选的原型。

除了R，结构单元-A1-CO-至-A69-CO-可携带其它的称作R^2-R^7的取代基。其它取代基可以是H，和如果它不是H，它优选为小至中等尺寸的脂族或芳族基团。R^2-R^7的优选值的例子是：

-R^2 H；低级烷基：低级链烯基；(CH)_mOR^5（其中R^5；低级烷基：或低级链烯基）；
(CH)_nSR^6（其中R^6；低级烷基：或低级链烯基）；(CH)_nNR^3R^4（其中R^3；低级烷基；或低级链烯基：R^4 H；或低级烷基：R^3和R^4在一定形成：

- (CH)_2O-(CH)_2S-(CH)_2-；或 (CH)_2NR^6 (CH)_2-；或 (CH)_2S(CH)_2-；或 (CH)_2O (CH)_2-；或 (CH)_2S (CH)_2-；

拉低级烷基：低级链烯基：R^2 H；或低级烷基；R^3 H；或低级烷基：低级链烯基：R^2 H；或低级烷基：R^3和R^2在一定形成：

- (CH)_2O-(CH)_2S-(CH)_2-；或 (CH)_2O (CH)_2-；或 (CH)_2S (CH)_2-；

- (CH)_2NR^6 (CH)_2-；其中R^6；H；或低级烷基：- (CH)_2NR^6CONR^3R^4（其中R^6；H；或低级烷基：R^3和H；或低级链烯基：R^2和H；或低级烷基：R^3和R^2在一定形成：

- (CH)_2O-(CH)_2S-(CH)_2-；

- (CH)_2NR^6 (CH)_2-；其中R^6；H；或低级烷基：- (CH)_2NR^6CONR^3R^4（其中R^6；H；或低级烷基：R^3和H；或低级链烯基：R^2和H；或低级烷基：R^3和R^2在一定形成：

- (CH)_2O-(CH)_2S-(CH)_2-；
(CH)_2_5S(CH)_2_5; 或 (CH)_2_5NR(CH)_2_5; 其中 R_57: H; 或 低 级 烃 基); (CH)_2_5OH(OH)_2_5(其中 R_56: 低 级 烃 基) ; (CH)_2_5SO(OH)_2_5(其中 R_56: 低 级 烃 基)

0404 - (CH)_2_6H; 低 级 烃 基; 低 级 烃 基; -(CH)_2_6OR_55(其中 R_55: 低 级 烃 基) ; (CH)_2_6OH_55(其中 R_55: 低 级 烃 基)

0405 - (CH)_2_7N(CH)_2_7; 其中 R_57: H; 或 低 级 烃 基); -(CH)_2_7NR_55(其中 R_55: 低 级 烃 基) ; (CH)_2_7OH_55(其中 R_55: 低 级 烃 基)

0406 - (CH)_2_8N(CH)_2_8; 其中 R_57: H; 或 低 级 烃 基); -(CH)_2_8OR_55(其中 R_55: 低 级 烃 基) ; (CH)_2_8OH_55(其中 R_55: 低 级 烃 基)

0407 - (CH)_2_9S(CH)_2_9; 或 -(CH)_2_9NR_55(其中 R_55: 低 级 烃 基) ; (CH)_2_9OH_55(其中 R_55: 低 级 烃 基)

0408 - (CH)_2_10H; 低 级 烃 基; 低 级 烃 基; -(CH)_2_10OR_55(其中 R_55: 低 级 烃 基) ; (CH)_2_10OH_55(其中 R_55: 低 级 烃 基)

0409 - (CH)_2_11S(CH)_2_11; -(CH)_2_11OH_55(其中 R_55: 低 级 烃 基)

0410 - (CH)_2_12N(CH)_2_12; 其中 H; 或 低 级 烃 基); -(CH)_2_12OR_55(其中 R_55: 低 级 烃 基) ; (CH)_2_12OH_55(其中 R_55: 低 级 烃 基)

0411 - (CH)_2_13S(CH)_2_13; 其中 R_57: H; 或 低 级 烃 基); -(CH)_2_13OR_55(其中 R_55: 低 级 烃 基) ; (CH)_2_13OH_55(其中 R_55: 低 级 烃 基)

0412 - (CH)_2_14S(CH)_2_14; 其中 R_57: H; 或 低 级 烃 基); -(CH)_2_14OR_55(其中 R_55: 低 级 烃 基) ; (CH)_2_14OH_55(其中 R_55: 低 级 烃 基)

0413 - (CH)_2_15S(CH)_2_15; 其中 R_57: H; 或 低 级 烃 基); -(CH)_2_15OR_55(其中 R_55: 低 级 烃 基) ; (CH)_2_15OH_55(其中 R_55: 低 级 烃 基)

0414 - (CH)_2_16S(CH)_2_16; 其中 R_57: H; 或 低 级 烃 基); -(CH)_2_16OR_55(其中 R_55: 低 级 烃 基) ; (CH)_2_16OH_55(其中 R_55: 低 级 烃 基)
或低级烷基)；(CH₃)₂OCONR²⁻R⁷⁻(其中R²⁻: H；或低级烷基；或低级链烯基；R⁷⁻: 低级烷基)；或R³⁻和R⁷⁻在一起形成：(CH₃)₂S(CH₂)₂⁻；(CH₃)₂O(CH₂)₂⁻；(CH₃)₂S(CH₂)₂⁻；或
[0415] (CH₃)₂NR⁶⁻(CH₂)₂⁻；其中R⁶⁻: H；或低级烷基)；(CH₃)₂NR²⁻CONR²⁻R⁸⁻(其中R²⁻: H；或低级烷基；R³⁻: H；或低级烷基；或低级链烯基；R⁸⁻: H；或低级烷基；或R³⁻和R⁸⁻在一起形成：(CH₃)₂S(CH₂)₂⁻；(CH₃)₂O(CH₂)₂⁻；(CH₃)₂S(CH₂)₂⁻；或
[0416] (CH₃)₂NR⁵⁻(CH₂)₂⁻；其中R⁵⁻: H；或低级烷基)；(CH₃)₂N(R⁵⁻)COR⁶⁻(其中R⁵⁻: H；或低级烷基；R⁶⁻: 低级烷基；或低级链烯基)；(CH₃)₂COOR⁷⁻(其中R⁷⁻: 低级烷基；或低级链烯基)；(CH₃)₂CONR⁶⁻R⁷⁻(其中R⁶⁻: 低级烷基；或低级链烯基；和R⁷⁻: H；或低级烷基；或R⁶⁻和R⁷⁻在一起形成：(CH₃)₂S(CH₂)₂⁻；(CH₃)₂O(CH₂)₂⁻；(CH₃)₂S(CH₂)₂⁻；或
[0417] (CH₃)₂S(CH₂)₂⁻；或 (CH₃)₂NR⁵⁻(CH₂)₂⁻；其中R⁵⁻: H；或低级烷基)；(CH₃)₂PO(OR⁶⁻)₂(其中R⁶⁻: 低级烷基；或低级链烯基)；(CH₃)₂SO₃⁻R⁶⁻(其中R⁶⁻: 低级烷基；或低级链烯基)；或 (CH₃)₂C₆H₄R⁶⁻(其中R⁶⁻: H；或低级烷基；或低级链烯基)；(CH₃)₂SR⁶⁻(其中R⁶⁻: 低级烷基；或低级链烯基)；或 (CH₃)₂S₂R⁶⁻(其中R⁶⁻: 低级烷基)；(CH₃)₂OCH₂R⁶⁻(其中R⁶⁻: 低级烷基)；(CH₃)₂CONR⁶⁻R⁷⁻(其中R⁶⁻: 低级烷基；或低级链烯基)；(CH₃)₂CONR⁶⁻R⁷⁻(其中R⁶⁻: 低级烷基；或低级链烯基；和R⁷⁻: H；或低级烷基；或R⁶⁻和R⁷⁻在一起形成：(CH₃)₂S(CH₂)₂⁻；(CH₃)₂O(CH₂)₂⁻；(CH₃)₂S(CH₂)₂⁻；或
[0418] R⁻：低级烷基；低级链烯基；(CH₃)₂OR⁶⁻(其中R⁶⁻: 低级烷基；或低级链烯基)；(CH₃)₂SR⁶⁻(其中R⁶⁻: 低级烷基；或低级链烯基)；(CH₃)₂CONR⁶⁻R⁷⁻(其中R⁶⁻和R⁷⁻: 低级烷基；或低级链烯基)；(CH₃)₂OR⁶⁻R⁷⁻(其中R⁶⁻: 低级烷基)；(CH₃)₂OCH₂R⁶⁻(其中R⁶⁻: 低级烷基)；(CH₃)₂CONR⁶⁻R⁷⁻(其中R⁶⁻: 低级烷基；或低级链烯基；和R⁷⁻: H；或低级烷基；或R⁶⁻和R⁷⁻在一起形成：(CH₃)₂S(CH₂)₂⁻；(CH₃)₂O(CH₂)₂⁻；(CH₃)₂S(CH₂)₂⁻；或
[0419] (CH₃)₂S(CH₂)₂⁻；或 (CH₃)₂OR⁶⁻(其中R⁶⁻: 低级烷基)；(CH₃)₂N(R⁵⁻)COR⁶⁻(其中R⁵⁻: H；或低级烷基；R⁶⁻: 低级烷基；或低级链烯基)；(CH₃)₂COOR⁶⁻(其中R⁶⁻: 低级烷基；或低级链烯基)；或 (CH₃)₂C₆H₄R⁶⁻(其中R⁶⁻: H；或低级烷基；或低级链烯基)；(CH₃)₂CONR⁶⁻R⁷⁻(其中R⁶⁻: 低级烷基；或低级链烯基；和R⁷⁻: H；或低级烷基；或R⁶⁻和R⁷⁻在一起形成：(CH₃)₂S(CH₂)₂⁻；(CH₃)₂O(CH₂)₂⁻；(CH₃)₂S(CH₂)₂⁻；或
[0420] (CH₃)₂NR⁵⁻(CH₂)₂⁻；其中R⁵⁻: H；或低级烷基)；(CH₃)₂CONR⁶⁻R⁷⁻(其中R⁶⁻: 低级烷基；或低级链烯基；和R⁷⁻: H；或低级烷基；或R⁶⁻和R⁷⁻在一起形成：(CH₃)₂S(CH₂)₂⁻；(CH₃)₂O(CH₂)₂⁻；(CH₃)₂S(CH₂)₂⁻；或
[0421] (CH₃)₂NR⁵⁻(CH₂)₂⁻；其中R⁵⁻: H；或低级烷基)；(CH₃)₂N(R⁵⁻)COR⁶⁻(其中R⁵⁻: H；或低级烷基；R⁶⁻: 低级烷基；或低级链烯基)；(CH₃)₂C₆H₄R⁶⁻(其中R⁶⁻: H；或低级烷基；或低级链烯基)；(CH₃)₂CONR⁶⁻R⁷⁻(其中R⁶⁻: 低级烷基；或低级链烯基；和R⁷⁻: H；或低级烷基；或R⁶⁻和R⁷⁻在一起形成：(CH₃)₂S(CH₂)₂⁻；(CH₃)₂O(CH₂)₂⁻；(CH₃)₂S(CH₂)₂⁻；或
[0422] (CH₃)₂S(CH₂)₂⁻；或 (CH₃)₂NR⁵⁻(CH₂)₂⁻；其中R⁵⁻: H；或低级烷基)；(CH₃)₂PO(OR⁶⁻)₂(其中R⁶⁻: 低级烷基；或低级链烯基)；(CH₃)₂SO₃⁻R⁶⁻(其中R⁶⁻: 低级烷基；或低级链烯基)；或 (CH₃)₂C₆H₄R⁶⁻(其中R⁶⁻: H；或低级烷基；或低级链烯基)；(CH₃)₂SR⁶⁻(其中R⁶⁻: 低级烷基；或低级链烯基)；或 (CH₃)₂S₂R⁶⁻(其中R⁶⁻: 低级烷基)；(CH₃)₂OCH₂R⁶⁻(其中R⁶⁻: 低级烷基)；(CH₃)₂CONR⁶⁻R⁷⁻(其中R⁶⁻: 低级烷基；或低级链烯基；和R⁷⁻: H；或低级烷基；或R⁶⁻和R⁷⁻在一起形成：(CH₃)₂S(CH₂)₂⁻；(CH₃)₂O(CH₂)₂⁻；(CH₃)₂S(CH₂)₂⁻；或
[0423] R⁻：低级烷基；或低级链烯基；(CH₃)₂CONR⁶⁻R⁷⁻(其中R⁶⁻和R⁷⁻: 低级烷基；或低级链烯基)；(CH₃)₂SR⁶⁻(其中R⁶⁻: 低级烷基；或低级链烯基)；(CH₃)₂CONR⁶⁻R⁷⁻(其中R⁶⁻: 低级烷基；或低级链烯基；和R⁷⁻: H；或低级烷基；或R⁶⁻和R⁷⁻在一起形成：(CH₃)₂S(CH₂)₂⁻；(CH₃)₂O(CH₂)₂⁻；(CH₃)₂S(CH₂)₂⁻；或
[0424] (CH₃)₂S(CH₂)₂⁻；或 (CH₃)₂NR⁵⁻(CH₂)₂⁻；其中R⁵⁻: H；或低级烷基)；(CH₃)₂OCH₂R⁶⁻(其中R⁶⁻: 低级烷基)；(CH₃)₂CONR⁶⁻R⁷⁻(其中R⁶⁻和R⁷⁻: 低级烷基；或低级链烯基)；(CH₃)₂S₂R⁶⁻(其中R⁶⁻: 低级烷基；或低级链烯基)；(CH₃)₂OCH₂R⁶⁻(其中R⁶⁻: 低级烷基)；(CH₃)₂CONR⁶⁻R⁷⁻(其中R⁶⁻: 低级烷基；或低级链烯基；和R⁷⁻: H；或低级烷基；或R⁶⁻和R⁷⁻在一起形成：(CH₃)₂S(CH₂)₂⁻；(CH₃)₂O(CH₂)₂⁻；(CH₃)₂S(CH₂)₂⁻；或
[0425] (CH₃)₂OCHR²⁻R⁷⁻(其中R²⁻: H；或低级烷基；R³⁻: H；或低级烷基；或低级链烯基；R⁸⁻: H；或低级烷基；或R³⁻和R⁸⁻在一起形成：(CH₃)₂S(CH₂)₂⁻；(CH₃)₂O(CH₂)₂⁻；(CH₃)₂S(CH₂)₂⁻；或
[0426] (CH₃)₂O(CH₂)₂⁻；(CH₃)₂S(CH₂)₂⁻；或 (CH₃)₂NR⁵⁻(CH₂)₂⁻；其中R⁵⁻: H；或低级烷基)；
[0427] \(- (CH_2)_N(R^0)\text{CO}^N(R^4)\) (其中 \(R^0: H; \) 或低级烷基; \(R^4: \) 低级烷基; 或低级羧基基)；

[0428] \(- (CH_2)_N\text{COR}^N(R^5)\) (其中 \(R^5: \) 低级烷基; 或低级链烯基)；\(- (CH_2)_N\text{CO}^N(R^9)\) (其中 \(R^9: \) 低级烷基; 或低级链烯基; 和 \(R^0: H; \) 或低级烷基; 或 \(R^8 \) 和 \(R^9 \) 在一起形成)；

[0429] \(- (CH_2)_2\text{NR}^N(R^6)\) (其中 \(R^6: \) 低级烷基; 或低级链烯基; 和 \(R^0: H; \) 或低级烷基; 或 \(R^8 \) 和 \(R^9 \) 在一起形成)；

[0430] \(- (CH_2)_2\text{OR}^N(R^5)\) (其中 \(R^5: \) 低级烷基; 或低级链烯基)；\(- (CH_2)_2\text{SR}^N(R^5)\) (其中 \(R^5: \) 低级烷基; 或低级链烯基)；\(- (CH_2)_2\text{NR}^N(R^9)\) (其中 \(R^9: \) 低级烷基; 或低级链烯基; 低级烷基; 或低级链烯基; 或 \(R^4 \) 和 \(R^8 \) 在一起形成)；

[0431] \(- (CH_2)_2\text{PO}^N(R^6)\) (其中 \(R^6: \) 低级烷基; 或低级链烯基)；\(- (CH_2)_2\text{OR}^N(R^9)\) (其中 \(R^9: \) 低级烷基; 或低级链烯基; 低级烷基; 或低级链烯基; 和 \(R^8 \) 和 \(R^9 \) 在一起形成)；

[0432] \(- (CH_2)_2\text{NR}^N(R^5)\) (其中 \(R^5: \) 低级烷基; 或低级链烯基)；\(- (CH_2)_2\text{NR}^N(R^9)\) (其中 \(R^9: \) 低级烷基; 或低级链烯基; 和 \(R^8 \) 和 \(R^9 \) 在一起形成)；

[0433] \(- (CH_2)_2\text{OR}^N(R^6)\) (其中 \(R^6: \) 低级烷基; 或低级链烯基)；\(- (CH_2)_N\text{CO}^N(R^5)\) (其中 \(R^5: \) 低级烷基; 或低级链烯基; 和 \(R^9 \) 和 \(R^9 \) 在一起形成)；

[0434] \(- (CH_2)_2\text{PO}^N(R^9)\) (其中 \(R^9: \) 低级烷基; 或低级链烯基)；\(- (CH_2)_2\text{OR}^N(R^5)\) (其中 \(R^5: \) 低级烷基; 低级烷基; 或低级链烯基)；

[0435] \(- (CH_2)_2\text{OR}^N(R^6)\) (其中 \(R^6: \) 低级烷基; 低级烷基; 或低级链烯基)；\(- (CH_2)_2\text{OR}^N(R^9)\) (其中 \(R^9: \) 低级烷基; 低级烷基; 或低级链烯基; 和 \(R^8 \) 和 \(R^9 \) 在一起形成)；

[0436] \(- (CH_2)_2\text{NCO}^N(R^6)\) (其中 \(R^6: \) 低级烷基; 低级烷基; 或低级链烯基; 低级烷基; 或低级链烯基; 或 \(R^5 \) 和 \(R^7 \) 在一起形成)；

[0437] \(- (CH_2)_2\text{NR}^N(R^5)\) (其中 \(R^5: \) 低级烷基; 低级烷基; 或低级链烯基; 低级烷基; 低级烷基; 或 \(R^8 \) 和 \(R^9 \) 在一起形成)；

[0438] \(- (CH_2)_2\text{SR}^N(R^9)\) (其中 \(R^9: \) 低级烷基; 低级烷基; 低级烷基; 或低级链烯基; 和 \(R^8 \) 和 \(R^9 \) 在一起形成)；

[0439] \(- (CH_2)_2\text{OR}^N(R^5)\) (其中 \(R^5: \) 低级烷基; 低级烷基; 低级烷基; 或低级链烯基; 低级烷基; 或低级链烯基; 和 \(R^8 \) 和 \(R^9 \) 在一起形成)；

[0440] \(- (CH_2)_2\text{OR}^N(R^6)\) (其中 \(R^6: \) 低级烷基; 低级烷基; 低级烷基; 低级烷基; 或低级链烯基; 和 \(R^8 \) 和 \(R^9 \) 在一起形成)；

[0441] \(- (CH_2)_2\text{OR}^N(R^9)\) (其中 \(R^9: \) 低级烷基; 低级烷基; 低级烷基; 低级烷基; 或低级链烯基; 和 \(R^8 \) 和 \(R^9 \) 在一起形成)。
说明书

[0440] - R^{11}H；低级烷基；低级链烯基；(CH_{2})_{n}OR^{55}(其中 R^{55}：低级烷基；或低级链烯基)；(CH_{2})_{n}SR^{55}(其中 R^{55}：低级烷基；或低级链烯基)；(CH_{2})_{n}NR^{53}R^{34}(其中 R^{33}：低级烷基；或低级链烯基)；R^{34}H；或低级烷基；R^{33}H；或低级链烯基；R^{34}在一起来形成：-(CH_{2})_{2}C(SH_{2})_{2}－；(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或

[0441] - (CH_{2})_{n}NR^{57}(CH_{2})_{2}－；其中 R^{57}：H；或低级烷基；-(CH_{2})_{n}NR^{50}CONR^{52}R^{42}(其中 R^{42}：H；或低级烷基；R^{43}H；或低级链烯基；R^{42}H；或低级烷基；或 R^{43}和 R^{42}在一起形成：-(CH_{2})_{2}C(SH_{2})_{2}－；(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或

[0442] - (CH_{2})_{n}NR^{57}(CH_{2})_{2}－；其中 R^{57}：H；或低级烷基；-(CH_{2})_{n}NR^{50}CONR^{52}R^{42}(其中 R^{42}：H；或低级烷基；R^{43}H；或低级链烯基；R^{42}H；或低级烷基；或 R^{43}和 R^{42}在一起形成：-(CH_{2})_{2}C(SH_{2})_{2}－；(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或

[0443] - (CH_{2})_{n}NR^{50}(CH_{2})_{2}－；其中 R^{50}：H；或低级烷基；-(CH_{2})_{n}NR^{52}(CH_{2})_{2}－；其中 R^{52}：H；或低级烷基；-(CH_{2})_{n}NR^{54}(CH_{2})_{2}－；其中 R^{54}：H；或低级烷基；-(CH_{2})_{n}NR^{56}(CH_{2})_{2}－；其中 R^{56}：H；或低级烷基；-(CH_{2})_{n}NR^{58}(CH_{2})_{2}－；其中 R^{58}：H；或低级烷基；-(CH_{2})_{n}NR^{60}(CH_{2})_{2}－；其中 R^{60}：H；或低级烷基；或 R^{59}和 R^{58}在一起形成：-(CH_{2})_{2}C(SH_{2})_{2}－；(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或

[0444] - (CH_{2})_{n}NR^{57}(CH_{2})_{2}－；其中 R^{57}：H；或低级烷基；-(CH_{2})_{n}NR^{50}CONR^{52}R^{42}(其中 R^{42}：H；或低级烷基；R^{43}H；或低级链烯基；R^{42}H；或低级烷基；或 R^{43}和 R^{42}在一起形成：-(CH_{2})_{2}C(SH_{2})_{2}－；(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或

[0445] - (CH_{2})_{n}NR^{57}(CH_{2})_{2}－；其中 R^{57}：H；或低级烷基；-(CH_{2})_{n}NR^{50}CONR^{52}R^{42}(其中 R^{42}：H；或低级烷基；R^{43}H；或低级链烯基；R^{42}H；或低级烷基；或 R^{43}和 R^{42}在一起形成：-(CH_{2})_{2}C(SH_{2})_{2}－；(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或

[0446] - (CH_{2})_{n}NR^{57}(CH_{2})_{2}－；其中 R^{57}：H；或低级烷基；-(CH_{2})_{n}NR^{50}CONR^{52}R^{42}(其中 R^{42}：H；或低级烷基；R^{43}H；或低级链烯基；R^{42}H；或低级烷基；或 R^{43}和 R^{42}在一起形成：-(CH_{2})_{2}C(SH_{2})_{2}－；(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或

[0447] - (CH_{2})_{n}NR^{57}(CH_{2})_{2}－；其中 R^{57}：H；或低级烷基；-(CH_{2})_{n}NR^{50}CONR^{52}R^{42}(其中 R^{42}：H；或低级烷基；R^{43}H；或低级链烯基；R^{42}H；或低级烷基；或 R^{43}和 R^{42}在一起形成：-(CH_{2})_{2}C(SH_{2})_{2}－；(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或

[0448] - (CH_{2})_{n}NR^{57}(CH_{2})_{2}－；其中 R^{57}：H；或低级烷基；-(CH_{2})_{n}NR^{50}CONR^{52}R^{42}(其中 R^{42}：H；或低级烷基；R^{43}H；或低级链烯基；R^{42}H；或低级烷基；或 R^{43}和 R^{42}在一起形成：-(CH_{2})_{2}C(SH_{2})_{2}－；(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或

[0449] - (CH_{2})_{n}NR^{57}(CH_{2})_{2}－；其中 R^{57}：H；或低级烷基；-(CH_{2})_{n}NR^{50}CONR^{52}R^{42}(其中 R^{42}：H；或低级烷基；R^{43}H；或低级链烯基；R^{42}H；或低级烷基；或 R^{43}和 R^{42}在一起形成：-(CH_{2})_{2}C(SH_{2})_{2}－；(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或-(CH_{2})_{2}S(CH_{2})_{2}－；或

[0450] - (CH_{2})_{n}NR^{57}(CH_{2})_{2}－；其中 R^{57}：H；或低级烷基；-(CH_{2})_{n}NR^{50}CONR^{52}R^{42}(其中 R^{42}：H；或
低级烷基 \(R^3 \) : \(H \); 或低级烷基 \(R^6 \) : \(H \); 或低级烷基 \(R^3 \) 和 \(R^6 \) 在一起形成：

\[
- (C_2H_5)_2 - ; (CH_3)_2CO (CH_2)_2 - ; (CH_3)_2S (CH_2)_2 - ;
\]

或

\[
[0451] - (CH_2)_2NR^5 (CH_2)_2 - ; (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2N (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2NR^5 \text{ (其中 : R^5 \text{ : H} \text{ 或低级烷基})} ;
\]

低级烷基 \(R^6 \) : \(H \); 或低级烷基 \(R^3 \) : 低级烷基 ; 或低级链烯基 ; 或低级烷基 \(R^3 \) 和 \(R^6 \) 在一起形成：

\[
- (CH_2)_2 - ; (CH_2)_2O (CH_2)_2 - ; (CH_2)_2S (CH_2)_2 - ;
\]

或

\[
[0452] - (CH_2)_2NR^5 (CH_2)_2 - ; (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2N (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2NR^5 \text{ (其中 : R^5 \text{ : H} \text{ 或低级烷基})} ;
\]

或

\[
[0453] - (CH_2)_2NR^5 (CH_2)_2 - ; (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2N (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2NR^5 \text{ (其中 : R^5 \text{ : H} \text{ 或低级烷基})} ;
\]

或

\[
[0454] - (CH_2)_2NR^5 (CH_2)_2 - ; (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2N (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2NR^5 \text{ (其中 : R^5 \text{ : H} \text{ 或低级烷基})} ;
\]

或

\[
[0455] - (CH_2)_2NR^5 (CH_2)_2 - ; (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2N (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2NR^5 \text{ (其中 : R^5 \text{ : H} \text{ 或低级烷基})} ;
\]

或

\[
[0456] - (CH_2)_2NR^5 (CH_2)_2 - ; (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2N (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2NR^5 \text{ (其中 : R^5 \text{ : H} \text{ 或低级烷基})} ;
\]

或

\[
[0457] - (CH_2)_2NR^5 (CH_2)_2 - ; (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2N (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2NR^5 \text{ (其中 : R^5 \text{ : H} \text{ 或低级烷基})} ;
\]

或

\[
[0458] - (CH_2)_2NR^5 (CH_2)_2 - ; (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2N (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2NR^5 \text{ (其中 : R^5 \text{ : H} \text{ 或低级烷基})} ;
\]

或

\[
[0459] - (CH_2)_2NR^5 (CH_2)_2 - ; (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2N (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2NR^5 \text{ (其中 : R^5 \text{ : H} \text{ 或低级烷基})} ;
\]

或

\[
[0460] - (CH_2)_2NR^5 (CH_2)_2 - ; (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2N (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2NR^5 \text{ (其中 : R^5 \text{ : H} \text{ 或低级烷基})} ;
\]

或

\[
[0461] - (CH_2)_2NR^5 (CH_2)_2 - ; (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2N (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2NR^5 \text{ (其中 : R^5 \text{ : H} \text{ 或低级烷基})} ;
\]

或

\[
[0462] - (CH_2)_2NR^5 (CH_2)_2 - ; (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2N (R^5 \text{ : H} \text{ 或低级烷基}) \quad \text{或} \quad (CH_2)_2NR^5 \text{ (其中 : R^5 \text{ : H} \text{ 或低级烷基})} ;
\]

或
[0462] \(-\left(\text{CH}_2\right)_2\text{NR}_{57}\left(\text{CH}_2\right)_2\); 其中 \text{R}^{57}: \text{H}; 或低级烷基；\(-\left(\text{CH}_2\right)_3\text{PO}\left(\text{OR}^{56}\right)_2\); 其中 \text{R}^{56}: 低级烷基；或低级链烯基）；\(-\left(\text{CH}_2\right)_5\text{SO}_{12}\left(\text{O}^{52}\right)_2\); 其中 \text{R}^{52}: 低级烷基；或低级链烯基）；或

[0463] \(-\left(\text{CH}_2\right)_2\text{CH}_2\text{H}_4\text{R}^8\); 其中 \text{R}^8: \text{H}; \text{F}; \text{Cl}; \text{CF}_3; 低级烷基；或低级链烯基；或低级烷氧基）。

[0464] \(-\text{R}^{16}; \text{低级烷基}；低级烯基链；\(-\left(\text{CH}_2\right)_9\text{OR}\text{R}^{55}\); 其中 \text{R}^{55}: 低级烷基；或低级链烯基）；\(-\left(\text{CH}_2\right)_5\text{SR}_{85}\); 其中 \text{R}^{85}: 低级烷基；或低级链烯基）；\(-\left(\text{CH}_2\right)_4\text{NR}_{56}\text{R}^{54}\); 其中 \text{R}^{54}: 低级烷基；或低级链烯基；\text{R}^{54}: 或低级烷烃；或 \text{R}^{53} \text{和} \text{R}^{54} \text{在} 一起形成：

[0465] \(-\left(\text{CH}_2\right)_2\text{CH}_2\text{H}_4\text{R}^8\); 其中 \text{R}^8: \text{H}; \text{F}; \text{Cl}; \text{CF}_3; 低级烷基；或低级链烯基）；\(-\left(\text{CH}_2\right)_2\text{CH}_2\text{H}_4\text{R}^8\); 其中 \text{R}^8: \text{H}; \text{F}; \text{Cl}; \text{CF}_3; 低级烷基；或低级链烯基；\text{R}^{54}: 或低级烷烃；或 \text{R}^{53} \text{和} \text{R}^{54} \text{在} 一起形成：

[0466] \(-\left(\text{CH}_2\right)_2\text{CH}_2\text{H}_4\text{R}^8\); 其中 \text{R}^8: \text{H}; \text{F}; \text{Cl}; \text{CF}_3; 低级烷基；或低级链烯基；\text{R}^{54}: 或低级烷烃；或 \text{R}^{53} \text{和} \text{R}^{54} \text{在} 一起形成：

[0467] \(-\left(\text{CH}_2\right)_2\text{CH}_2\text{H}_4\text{R}^8\); 其中 \text{R}^8: \text{H}; \text{F}; \text{Cl}; \text{CF}_3; 低级烷基；或低级链烯基；\text{R}^{54}: 或低级烷烃；或 \text{R}^{53} \text{和} \text{R}^{54} \text{在} 一起形成：

[0468] \(-\left(\text{CH}_2\right)_2\text{CH}_2\text{H}_4\text{R}^8\); 其中 \text{R}^8: \text{H}; \text{F}; \text{Cl}; \text{CF}_3; 低级烷基；或低级链烯基；\text{R}^{54}: 或低级烷烃；或 \text{R}^{53} \text{和} \text{R}^{54} \text{在} 一起形成：

[0469] \(-\left(\text{CH}_2\right)_2\text{CH}_2\text{H}_4\text{R}^8\); 其中 \text{R}^8: \text{H}; \text{F}; \text{Cl}; \text{CF}_3; 低级烷基；或低级链烯基；\text{R}^{54}: 或低级烷烃；或 \text{R}^{53} \text{和} \text{R}^{54} \text{在} 一起形成：

[0470] \(-\left(\text{CH}_2\right)_2\text{CH}_2\text{H}_4\text{R}^8\); 其中 \text{R}^8: \text{H}; \text{F}; \text{Cl}; \text{CF}_3; 低级烷基；或低级链烯基；\text{R}^{54}: 或低级烷烃；或 \text{R}^{53} \text{和} \text{R}^{54} \text{在} 一起形成：

[0471] \(-\left(\text{CH}_2\right)_2\text{CH}_2\text{H}_4\text{R}^8\); 其中 \text{R}^8: \text{H}; \text{F}; \text{Cl}; \text{CF}_3; 低级烷基；或低级链烯基；\text{R}^{54}: 或低级烷烃；或 \text{R}^{53} \text{和} \text{R}^{54} \text{在} 一起形成：

[0472] \(-\left(\text{CH}_2\right)_2\text{CH}_2\text{H}_4\text{R}^8\); 其中 \text{R}^8: \text{H}; \text{F}; \text{Cl}; \text{CF}_3; 低级烷基；或低级链烯基；\text{R}^{54}: 或低级烷烃；或 \text{R}^{53} \text{和} \text{R}^{54} \text{在} 一起形成：

[0473] \(-\left(\text{CH}_2\right)_2\text{CH}_2\text{H}_4\text{R}^8\); 其中 \text{R}^8: \text{H}; \text{F}; \text{Cl}; \text{CF}_3; 低级烷基；或低级链烯基；\text{R}^{54}: 或低级烷烃；或 \text{R}^{53} \text{和} \text{R}^{54} \text{在} 一起形成：

[0474] 在结构单元 A1 至 A69 中，以下是优选的 : A5 (R^5 是 H), A8, A22, A25, A38 (R^6 是 H), A42, A47, 和 A50。最优选的是类 A87 的结构单元 :
说明书

[0476] 其中 R^0 是 H 或低级烷基；和 R^d 是烷基，链烯基，芳基，芳基-低级烷基；或杂芳基-低级烷基；尤其是其中 R^d 是 n-己基 (A8′-1)；n-庚基 (A8′-2)；4-(苯基) 苯基 (A8′-3)；二苯甲基甲基 (A8′-4)；3-氨基-丙基 (A8′-5)；5-氨基-戊基 (A8′-6)；甲基 (A8′-7)；乙基 (A8′-8)；异丙基 (A8′-9)；异丁基 (A8′-10)；n-丙基 (A8′-11)；环己基 (A8′-12)；环己基甲基 (A8′-13)；n-丁基 (A8′-14)；苯基 (A8′-15)；苄基 (A8′-16)；(3-吲哚基) 甲基 (A8′-17)；2-(3-吲哚基) 乙基 (A8′-18)；4-(苯基) 苯基 (A8′-19)；和 n-壬基 (A8′-20) 的那些。

[0479] 因此，就本发明而言，模板 (a1) 也可由其中结构单元 A70 至 A104 是 (D)-或 (L)-构型的 -A70-CO- 至 A104-CO-，以及 (L)-构型的结构单元 -B-CO- 组成。

[0480] A70 至 A104 中的 R^0 的优选值是 H 或低级烷基，其中甲基是最优选的。结构单元 A70 至 A104 中的 R^0, R^0 和 R^0 的优选值如下：

[0481] -R^0: 低级烷基。
低级烷基 : R \^33: H; 或低级烷基 ; R\^2: H; 或低级烷基 ; R\^3 和 R\^2 在一起形成 :
- (CH_2_2)_2_6_7; -(CH_2_0(CH_2_7; -(CH_2_2S(CH_2_7; 或
[0495] - (CH_2_2N_R\^57(CH_2_7; 其中 R\^57: H; 或低级烷基); -(CH_2_2R\^2O(R\^56), 其中 : R\^20: H; 或低级烷基 ; R\^61: 低级烷基; 或低级链烯基); -(CH_2_0CONR\^3(R\^77; 其中 R\^77: 低级烷基; 或低级链烯基); -(CH_2_0CONR\^89(其中 R\^89: 低级烷基, 或低级链烯基: 和 R\^20 : H; 低级烷基; 或 R\^88 和 R\^29 在一起形成 : -(CH_2_2_6_7; -(CH_2_2O(CH_2_7;
[0496] - (CH_2_2S(CH_2_7; 或 -(CH_2_0NR\^57(CH_2_7; 其中 R\^57: H; 或 低级烷基); -(CH_2_0PO(OR\^56), (其中 R\^56: 低级烷基; 或低级链烯基); -(CH_2_0SO_R\^62, (其中 R\^62: 低级烷基; 或低级链烯基); -(CH_2_0C_C_H_R\^89 (其中 R\^89: 低级烷基; 或低级链烯基; 或低级烷基汽油)。
[0497] - R\^23: H; 低级烷基; 低级链烯基; -(CH_2_0OR\^56, (其中 R\^56: 低级烷基; 或低级链烯基); -(CH_2_0SR\^89, (其中 R\^89: 低级烷基; 或低级链烯基); -(CH_2_0NR\^3R\^34, (其中 R\^33: 低级烷基; 或低级链烯基; R\^23: H; 或低级烷基; 或 R\^33 和 R\^23 在一起形成 :
[0498] - (CH_2_2_6_7; -(CH_2_0(CH_2_7; -(CH_2_2S(CH_2_7; 或 -(CH_2_0NR\^57(CH_2_7; 其中 R\^57: H; 或低级烷基); -(CH_2_0CONR\^3(R\^77; 其中 R\^33: H; 或低级烷基; 或低级链烯基; R\^77; 低级烷基; 或 R\^33 和 R\^77 在一起形成 : -(CH_2_2_6_7; -(CH_2_0(CH_2_7; -(CH_2_2S(CH_2_7; 或
[0499] - (CH_2_2N_R\^57(CH_2_7; 其中 R\^57: H; 或低级烷基); -(CH_2_2N_R\^2O(R\^56), (其中 R\^56: 低级烷基; 或低级链烯基); -(CH_2_2R\^62, (其中 R\^62: 低级烷基; 或低级链烯基); -(CH_2_2C_C_H_R\^89 (其中 R\^89: 低级烷基; 或低级链烯基)。
[0500] - (CH_2_0CONR\^3R\^90(其中 R\^88: 低级烷基, 或低级链烯基; 和 R\^20 : H; 低级烷基; 或 R\^88 和 R\^20 在一起形成 : -(CH_2_2_6_7; -(CH_2_0(CH_2_7; -(CH_2_2S(CH_2_7; 或
[0501] - (CH_2_0PO(OR\^56), (其中 R\^56: 低级烷基; 或低级链烯基); -(CH_2_0SO_R\^62, (其中 R\^62: 低级烷基; 或低级链烯基); -(CH_2_0C_C_H_R\^89 (其中 R\^89: 低级烷基; 或低级链烯基)。
[0503] - (CH_2_0CONR\^3R\^90(其中 R\^88: 低级烷基, 或低级链烯基; 和 R\^20 : H; 低级烷基; 或 R\^88 和 R\^20 在一起形成 : -(CH_2_2_6_7; -(CH_2_0(CH_2_7; -(CH_2_2S(CH_2_7; 或
[0504] - (CH_2_0CONR\^3R\^90(其中 R\^88: 低级烷基, 或低级链烯基; 和 R\^20 : H; 低级烷基; 或 R\^88 和 R\^20 在一起形成 : -(CH_2_2_6_7; -(CH_2_0(CH_2_7; -(CH_2_2S(CH_2_7; 或
[0505] - (CH_2_2_6_7; -(CH_2_0(CH_2_7; -(CH_2_2S(CH_2_7; 或 -(CH_2_0NR\^57(CH_2_7; 其中 R\^57: H; 或低级烷基); -(CH_2_0CONR\^3(R\^77; 其中 R\^33: H; 或低级烷基; 或低级链烯基; R\^77; 低级烷基; 或 R\^33 和 R\^77 在一起形成 : -(CH_2_2_6_7; -(CH_2_0(CH_2_7; -(CH_2_2S(CH_2_7; 或
[0506] - (CH_2_2N_R\^57(CH_2_7; 其中 R\^57: H; 或低级烷基); -(CH_2_0CONR\^3R\^90(其中 R\^90 : H; 或低级烷基; R\^23: H; 或低级烷基; 或低级链烯基; R\^23: H; 或低级烷基; 或 R\^33 和 R\^23 在一起形成 : -(CH_2_2_6_7; -(CH_2_0(CH_2_7; -(CH_2_2S(CH_2_7; 或
[0507] - (CH_2_0NR\^57(CH_2_7; 其中 R\^57: H; 或低级烷基); -(CH_2_0N(R\^20O(R\^56), (其中 R\^20 : H; 或低级烷基; R\^61: 低级烷基; 或低级链烯基); -(CH_2_0CONR\^3(R\^77; 其中 R\^77: 低级烷基; 或低级链烯基); -(CH_2_0CONR\^3(R\^77; 其中 R\^77: 低级烷基; 或低级链烯基)。
R^0 在一起形成：-(CH_2)_2=-(CH_2)_2O(CH_2)_2=-(CH_2)_2S(CH_2)_2=或；

[0509] -(CH_2)_nNR^5(CH_2)_2=；其中 R^5 : H ; 或低级烷基) ; -(CH_2)_2PO(OR^6)_2(其中 R^6 : 低级烷基 ; 或低级链烯基) ; -(CH_2)_2SO_R^6(其中 R^6 : 低级烷基 ; 或低级链烯基) ;

[0510] -(CH_2)_2C_6H_5R^8(其中 R^8 : H ; F ; Cl ; CF_3 ; 低级烷基 ; 低级链烯基 ; 或低级烷氧基)；

[0511] -R^5 ; H ; 低级烷基 ; 低级链烯基 ; -(CH_2)_nOR^5(其中 R^5 : 低级烷基 ; 或低级链烯基) ; -(CH_2)_nNR^5R^8(其中 R^8 : 低级烷基 ; 或低级链烯基) ; -(CH_2)_2OR^5R^8(其中 R^8 : 低级烷基 ; 或低级链烯基) ; -(CH_2)_2S(CH_2)_2= ;

[0512] -(CH_2)_2NR^5(CH_2)_2=；其中 R^5 : H ; 或低级烷基) ; -(CH_2)_nOCONR^5R^8(其中 R^8 : 低级烷基 ; 或低级链烯基 ; R^5 : 低级烷基 ; 或低级链烯基 ; R^5 和 R^5 在一起形成：-(CH_2)_2=-(CH_2)_2O(CH_2)_2=-(CH_2)_2S(CH_2)_2= ;

[0513] -(CH_2)_nNR^5CONR^5R^8(其中 R^5 : H ; 或低级烷基 ; R^5 : H ; 或低级烷基 ; 或低级链烯基 ; R^8 : H ; 或低级烷基 ; R^8 : H ; 或低级烷基 ; R^8 和 R^8 在一起形成：-(CH_2)_2=-(CH_2)_2O(CH_2)_2=-(CH_2)_2S(CH_2)_2= ;

[0514] -(CH_2)_2O(CH_2)_2=-(CH_2)_2S(CH_2)_2= ; 或 -(CH_2)_2NR^5(CH_2)_2=；其中 R^5 : H ; 或低级烷基) ;

[0515] -(CH_2)_2N(R^8)COR^8(其中 R^8 : H ; 或低级烷基 ; R^8 : 低级烷基 ; 或低级链烯基)；

[0516] -(CH_2)_nCOOR^5(其中 R^5 : 低级烷基 ; 或低级链烯基) ; -(CH_2)_nCONR^5R^8(其中 R^8 : 低级烷基 ; 或低级链烯基 ; R^5 : 低级烷基 ; 或低级烷基 ; R^5 和 R^5 在一起形成：-(CH_2)_2=-(CH_2)_2O(CH_2)_2=-(CH_2)_2S(CH_2)_2= ;

[0517] -(CH_2)_2NR^5(CH_2)_2=；其中 R^5 : H ; 或低级烷基) ; -(CH_2)_nOCONR^5R^8(其中 R^8 : 低级烷基 ; 或低级链烯基 ; R^5 : 低级烷基 ; 或低级烷基 ; R^5 和 R^5 在一起形成：-(CH_2)_2=-(CH_2)_2O(CH_2)_2=-(CH_2)_2S(CH_2)_2= ;

[0518] -R^8 ; H ; 低级烷基 ; 低级链烯基 ; -(CH_2)_2OR^5(其中 R^5 : 低级烷基 ; 或低级链烯基) ; -(CH_2)_2NR^5R^8(其中 R^8 : 低级烷基 ; 或低级链烯基 ; R^5 : 低级烷基 ; 或低级烷基 ; R^5 和 R^5 在一起形成：-(CH_2)_2=-(CH_2)_2O(CH_2)_2=-(CH_2)_2S(CH_2)_2= ;

[0519] -(CH_2)_2NR^5(CH_2)_2= ; 其中 R^5 : H ; 或低级烷基) ; -(CH_2)_nOCONR^5R^8(其中 R^8 : 低级烷基 ; 或低级链烯基 ; R^5 : 低级烷基 ; 或低级烷基 ; R^5 和 R^5 在一起形成：-(CH_2)_2=-(CH_2)_2O(CH_2)_2=-(CH_2)_2S(CH_2)_2= ;

[0520] -(CH_2)_2O(CH_2)_2=-(CH_2)_2S(CH_2)_2= ; 或 -(CH_2)_2NR^5(CH_2)_2=；其中 R^5 : H ; 或低级烷基) ;

[0521] -(CH_2)_nNR^5CONR^5R^8(其中 R^5 : H ; 或低级烷基 ; R^5 : H ; 或低级烷基 ; 或低级链烯基 ; R^8 : H ; 或低级烷基 ; R^8 : H ; 或低级烷基 ; R^8 和 R^8 在一起形成：-(CH_2)_2=-(CH_2)_2O(CH_2)_2=-(CH_2)_2S(CH_2)_2= ;

[0522] -(CH_2)_2O(CH_2)_2=-(CH_2)_2S(CH_2)_2= ; 或 -(CH_2)_2NR^5(CH_2)_2=；其中 R^5 : H ; 或低级烷基) ;

[0523] -(CH_2)_nN(R^8)COR^8(其中 R^8 : H ; 或低级烷基 ; R^8 : 低级烷基 ; 或低级链烯基)；

[0524] -(CH_2)_nCOOR^5(其中 R^5 : 低级烷基 ; 或低级链烯基) ; -(CH_2)_nCONR^5R^8(其中 R^8 : 低级烷基 ; 或低级链烯基 ; R^5 : 低级烷基 ; 或低级烷基 ; R^5 和 R^5 在一起形成：-(CH_2)_2=-(CH_2)_2O(CH_2)_2=-(CH_2)_2S(CH_2)_2= ;

[0525] -(CH_2)_2=-(CH_2)_2O(CH_2)_2=-(CH_2)_2S(CH_2)_2= ; 或 -(CH_2)_2NR^5(CH_2)_2=；其中 R^5 : H ; 或低级烷基) ; -(CH_2)_nPO(OR^5)^2(其中 R^8 : 低级烷基 ; 或低级链烯基) ; -(CH_2)_nSO_R^6(其中 R^6 : 低级烷基 ; 或低级链烯基 ; R^6 : 低级烷基 ; 或低级链烯基 ; R^6 : 低级烷基 ; 或低级链烯基) ;

(其中 R^8 : H ; F ; Cl ; CF_3 ; 低级烷基 ; 低级链烯基 ; 或低级烷氧基)。
[0526] - 或者，R^{55} 和 R^{56} 在一起可以是 - (CH_2)_2 - ; - (CH_2)_3 O(CH_2)_2 - ;
[0527] - (CH_2)_3 S (CH_2)_2 - ; 或 - (CH_2)_2 NR^{57} (CH_2)_2 - ; 其中 R^{57} : H ; 或低级烷基)。
[0528] - R^{57} : H ; 低级烷基 : 低级链烯基 : - (CH_2)_4 OR^{55} (其中 R^{55} : 低级烷基 ; 或低级链烯基) ; - (CH_2)_5 SN^{55} (其中 R^{55} : 低级烷基 ; 或低级链烯基) ; - (CH_2)_6 NR^{55} R^{54} (其中 R^{55} : 低级烷基 ; 或低级链烯基 ; R^{54} : H ; 或低级烷基 ; 或 R^{55} 和 R^{54} 在一起形成 :)
[0529] - (CH_2)_7 S (CH_2)_2 - ; - (CH_2)_8 O (CH_2)_2 - ; - (CH_2)_2 S (CH_2)_2 - ; 或 - (CH_2)_2 NR^{57} (CH_2)_2 - ; 其中 R^{57} : H ; 或低级烷基) ; - (CH_2)_4 OCONR^{35} R^{75} (其中 R^{35} : H ; 或低级烷基 ; 或低级链烯基 ; R^{75} : 低级烷基 ; 或 R^{35} 和 R^{75} 在一起形成 : - (CH_2)_6 - ; - (CH_2)_7 O (CH_2)_2 - ; - (CH_2)_2 S (CH_2)_2 - ; 或
[0530] - (CH_2)_3 NR^{57} (CH_2)_2 - ; 其中 R^{57} : H ; 或低级烷基) ; - (CH_2)_4 NR^{56} CONR^{35} R^{62} (其中 R^{56} : H ; 或低级烷基 ; R^{62} : H ; 或低级烷基 ; 或低级链烯基 ; R^{62} : H ; 或低级烷基 ; 或 R^{56} 和 R^{62} 在一起形成 : - (CH_2)_6 - ; - (CH_2)_7 O (CH_2)_2 - ; - (CH_2)_2 S (CH_2)_2 - ; 或
[0531] - (CH_2)_3 NR^{57} (CH_2)_2 - ; 其中 R^{57} : H ; 或低级烷基) ; - (CH_2)_4 NR^{56} CONR^{35} R^{64} (其中 R^{56} : H ; 或低级烷基 ; R^{64} : 低级烷基 ; 或低级链烯基) ; - (CH_2)_5 C(O) (CH_2)_2 - ; 其中 R^{57} : 低级烷基 ; 或低级链烯基 ; R^{57} : H ; 或低级烷基 ; 或低级链烯基 ; 和 R^{59} : H ; 低级烷基 ; 或 R^{58} 和 R^{59} 在一起形成 : - (CH_2)_6 - ; - (CH_2)_7 O (CH_2)_2 - ; - (CH_2)_2 S (CH_2)_2 - ; 或
[0532] - (CH_2)_4 S (CH_2)_2 - ; 或 - (CH_2)_5 NR^{57} (CH_2)_2 - ; 其中 R^{57} : H ; 或 低 级 烷 基) ; - (CH_2)_6 PO (OR^{60})_2 (其中 R^{60} : 低级烷基 ; 或低级链烯基) ; - (CH_2)_5 SOR^{62} (其中 R^{62} : 低级烷基 ; 或低级链烯基) ; - (CH_2)_6 CH_2 R^{6}(其中 R^{6} : H ; F ; Cl ; CF_3 ; 低级烷基 ; 低级链烯基 ; 或低级烷基)。
[0533] - R^{58} : 低级烷基 ; 低级链烯基 ; - (CH_2)_5 OR^{66} (其中 R^{66} : 低级烷基 ; 或低级链烯基) ; - (CH_2)_6 SN^{55} (其中 R^{55} : 低级烷基 ; 或低级链烯基) ; - (CH_2)_7 NR^{55} R^{54} (其中 R^{55} : 低级烷基 ; 或低级链烯基 ; 和 R^{54} : H ; 低级烷基 ; 或 R^{55} 和 R^{54} 在一起形成 : - (CH_2)_6 - ; - (CH_2)_7 O (CH_2)_2 - ; - (CH_2)_2 S (CH_2)_2 - ; 或
[0534] - (CH_2)_3 NC (CH_2)_2 - ; 其中 R^{55} : H ; 或低级烷基) ; - (CH_2)_4 NR^{57} (CH_2)_2 - ; 其中 R^{57} : H ; 或低级烷基) ; - (CH_2)_4 OCONR^{35} R^{75} (其中 R^{35} : H ; 或低级烷基 ; 或低级链烯基 ; R^{75} : 低级烷基 ; 或 R^{35} 和 R^{75} 在一起形成 : - (CH_2)_6 - ; - (CH_2)_7 O (CH_2)_2 - ; - (CH_2)_2 S (CH_2)_2 - ; 或
[0535] - (CH_2)_4 NR^{57} (CH_2)_2 - ; 其中 R^{57} : H ; 或低级烷基) ; - (CH_2)_4 NR^{56} CONR^{35} R^{62} (其中 R^{56} : H ; 或低级烷基 ; R^{62} : H ; 或低级烷基 ; 或低级链烯基 ; R^{62} : H ; 或低级烷基 ; 或 R^{56} 和 R^{62} 在一起形成 : - (CH_2)_6 - ; - (CH_2)_7 O (CH_2)_2 - ; - (CH_2)_2 S (CH_2)_2 - ; 或
[0536] - (CH_2)_4 NR^{57} (CH_2)_2 - ; 其中 R^{57} : H ; 或低级烷基) ; - (CH_2)_4 N (R^{55}) OR^{64} (其中 R^{55} : H ; 或低级烷基 ; R^{64} : 低级烷基 ; 或低级链烯基) ; - (CH_2)_5 C(O) (CH_2)_2 - ; 其中 R^{57} : 低级烷基 ; 或低级链烯基 ; R^{57} : H ; 或低级烷基 ; 或低级链烯基 ; 和 R^{59} : H ; 低级烷基 ; 或 R^{58} 和 R^{59} 在一起形成 : - (CH_2)_6 - ; - (CH_2)_7 O (CH_2)_2 - ; - (CH_2)_2 S (CH_2)_2 - ; 或
[0537] - (CH_2)_2 S (CH_2)_2 - ; 或 - (CH_2)_3 NR^{57} (CH_2)_2 - ; 其中 R^{57} : H ; 或 低 级 烷 基) ; - (CH_2)_3 PO (OR^{60})_2 (其中 R^{60} : 低级烷基 ; 或低级链烯基) ; - (CH_2)_4 SOR^{62} (其中 R^{62} : 低级烷基 ; 或低级链烯基) ; - (CH_2)_4 CH_2 R^{6}(其中 R^{6} : H ; F ; Cl ; CF_3 ; 低级烷基 ; 低级链烯基 ; 或低级烷基)。
[0538] - R^{59} : 低级烷基 ; 低级链烯基 ; - (CH_2)_4 OR^{56} (其中 R^{56} : 低级烷基 ; 或低级链烯基) ; - (CH_2)_4 SR^{6}(其中 R^{6} : H ; F ; Cl ; CF_3 ; 低级烷基 ; 低级链烯基 ; 或低级烷基) ; - (CH_2)_5 NR^{55} R^{34} (其中 R^{35} : 低级烷基 ; 或低级链烯基 ; R^{34} : H ; 或低级烷基 ; 或 R^{35} 和 R^{34} 在一起形成 : - (CH_2)_6 - ; - (CH_2)_7 O (CH_2)_2 - ; - (CH_2)_2 S (CH_2)_2 - ; 或
[0539] - (CH_2)_2 S (CH_2)_2 - ; 或 - (CH_2)_3 NR^{57} (CH_2)_2 - ; 其中 R^{57} : H ; 或低级烷基) ; - (CH_2)_3 PO (OR^{60})_2 (其中 R^{60} : 低级烷基 ; 或低级链烯基) ; - (CH_2)_4 SOR^{62} (其中 R^{62} : 低级烷基 ; 或低级链烯基) ; - (CH_2)_4 CH_2 R^{6}(其中 R^{6} : H ; F ; Cl ; CF_3 ; 低级烷基 ; 低级链烯基 ; 或低级烷基) ; - (CH_2)_5 C(O) (CH_2)_2 - ; 其中 R^{57} : 低级烷基 ; 或低级链烯基 ; R^{57} : H ; 或低级烷基) ; - (CH_2)_6 NR^{55} R^{34} (其中 R^{35} : 低级烷基 ; 或低级链烯基 ; R^{34} : H ; 或低级烷基 ; 或 R^{35} 和 R^{34} 在一起形成 : - (CH_2)_7 O (CH_2)_2 - ; - (CH_2)_2 S (CH_2)_2 - ; 或
R^{33} 和 R^{75} 一起形成：(CH_{2})_{2}O(\text{CH}_{2})_{2} ;(CH_{2})_{2}S(\text{CH}_{2})_{2} ; 或

[0540] - (CH_{2})_{2}NR^{57}(\text{CH}_{2})_{2} ; 中 R^{57} : H ; 或低级烷基 ; -(CH_{2})_{2}NR^{35}CONR^{35}R^{57} (其中 R^{57} : H ; 或低级烷基 ; R^{33} : H ; 低级烷基 ; 或低级链烯基 ; R^{3 \text{II}} : H ; 或低级烷基 ; R^{33} 和 R^{3 \text{II}} 在一起形成：
(\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;

[0541] - (\text{CH})_{2}NR^{57}(\text{CH}_{2})_{2} ; 中 R^{57} : H ; 或低级烷基 ; -(\text{CH})_{2}NR^{35}CONR^{35}R^{57} (其中 R^{57} : H ; 或低级烷基 ; R^{33} : H ; 低级烷基 ; 或低级链烯基) ; 其中 R^{33} 和 R^{3 \text{II}} 在一起形成：
(\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;

[0542] - (\text{CH})_{2}NR^{35}R^{57} (其中 R^{35} : R^{33} ; 低级烷基 ; 或低级链烯基 ; 和 R^{20} : H ; 低级烷基 ; R^{35} 和 R^{57} 在一起形成：
(\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;

[0543] - (\text{CH})_{2}NR^{57}(\text{CH}_{2})_{2} ; 中 R^{57} : H ; 或低级烷基 ; -(\text{CH})_{2}SO(\text{R}^{3 \text{II}})_{2} (其中 R^{35} : R^{33} ; 低级烷基 ; 或低级链烯基 ; R^{33} 和 R^{3 \text{II}} 在一起形成：
(\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;

[0544] - (\text{CH})_{2}NR^{57}R^{57} (其中 R^{57} : H ; 低级烷基 ; R^{33} : H ; 低级烷基 ; R^{33} 和 R^{57} 在一起形成：
(\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;

[0545] - (\text{CH})_{2}NR^{35}R^{57} (其中 R^{35} : R^{33} ; 低级烷基 ; 或低级链烯基 ; R^{33} 和 R^{3 \text{II}} 在一起形成：
(\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;

[0546] - (\text{CH})_{2}NR^{57}R^{57} (其中 R^{57} : H ; 低级烷基 ; R^{33} : H ; 低级烷基 ; R^{33} 和 R^{57} 在一起形成：
(\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;

[0547] - (\text{CH})_{2}NR^{57}(\text{CH}_{2})_{2} ; 中 R^{57} : H ; 或低级烷基 ; -(\text{CH})_{2}NR^{35}(\text{CH}_{2})_{2} ; 中 R^{35} : H ; 或低级烷基 ;

[0548] - (\text{CH})_{2}NR^{35}CONR^{35}R^{57} (其中 R^{57} : H ; 低级烷基 ; R^{33} : H ; 低级烷基 ; R^{33} 和 R^{57} 在一起形成：
(\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;

[0549] - (\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ; 或 - (\text{CH})_{2}NR^{57}(\text{CH}_{2})_{2} ; 其中 R^{57} : H ; 或低级烷基 ;

[0550] - (\text{CH})_{2}NR^{57}CONR^{35}R^{57} (其中 R^{57} : H ; 低级烷基 ; R^{33} : H ; 低级烷基 ; R^{33} 和 R^{57} 在一起形成：
(\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;

[0551] - (\text{CH})_{2}NR^{57}CONR^{35}R^{57} (其中 R^{57} : H ; 低级烷基 ; R^{33} : H ; 低级烷基 ; R^{33} 和 R^{57} 在一起形成：
(\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;

[0552] - (\text{CH})_{2}NR^{57}(\text{CH}_{2})_{2} ; 中 R^{57} : H ; 低级烷基 ; -(\text{CH})_{2}NR^{35}CONR^{35}R^{57} (其中 R^{57} : H ; 低级烷基 ; R^{33} : H ; 低级烷基 ; R^{33} 和 R^{57} 在一起形成：
(\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;

[0553] - (\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;

[0554] - (\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;

[0555] - (\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;

[0556] - (\text{CH})_{2}O(\text{CH}_{2})_{2} ; -(\text{CH})_{2}S(\text{CH}_{2})_{2} ;
【0557】-(CH₂)₃NR²⁺CONR³⁺R⁶⁺(其中 R²⁺ :H ;或低级烷基 ;R³⁺ :H ;或低级烷基 ;或低级链烯基 ;R⁶⁺ :H ;或低级烷基 ;或 R³⁺ 和 R⁶⁺ 在一起形成 :-(CH₂)₂⁺⁻ ;
【0558】-(CH₂)₂O(CH₂)₂⁻:-(CH₂)₂S(CH₂)₂⁻;或 -(CH₂)₂NR⁵⁺(CH₂)₂⁻;其中 R⁵⁺ :H ;或低级烷基 ;)
【0559】-(CH₂)₃N(R⁷⁺)COR⁸⁺(其中 :R⁷⁺ :H ;或低级烷基 ;R⁸⁺ :低级烷基 ;或低级链烯基 ;)
【0560】-(CH₂)₃COOR⁵⁺(其中 R⁵⁺ :低级烷基 ;或低级链烯基 ;)-(CH₂)₃CONR⁸⁺R⁹⁺(其中 R⁸⁺ :低级烷基 ;或低级链烯基 ;和 R⁹⁺ :低级烷基 ;或 R⁸⁺ 和 R⁹⁺ 在一起形成 :
【0561】-(CH₂)₂⁺⁻:-(CH₂)₂O(CH₂)₂⁻:-(CH₂)₂S(CH₂)₂⁻;或 -(CH₂)₂NR⁵⁺(CH₂)₂⁻;其中 R⁵⁺ :H ;或低级烷基 ;)-(CH₂)₂PO(OR⁵⁺)₂(其中 R⁵⁺ :低级烷基 ;或低级链烯基 ;)-(CH₂)₃SO₂R⁶⁺(其中 R⁶⁺ :低级烷基 ;或低级链烯基 ;)-(CH₂)₃C₆H₅R⁸⁺(其中 R⁸⁺ :H ;F ;Cl ;CF₃ ;低级烷基 ;或低级链烯基 ;或低级烷氧基 ;),最优选的是 -(CH₂)₃CONR⁸⁺R⁹⁺(R⁸⁺ :H ;或低级烷基 ;R⁹⁺ :低级烷基 ;或低级链烯基 ;)
【0562】-R³⁺ :H ;甲基。)
【0563】-R³⁺ :低级烷基 ;低级链烯基 ;-(CH₂)₃OR⁵⁺(其中 R⁵⁺ :低级烷基 ;或低级链烯基 ;)-(CH₂)₃N(R⁵⁺)OR⁵⁺(其中 R⁵⁺ :低级烷基 ;或低级链烯基 ;和 R⁵⁺ 在一起形成 :-(CH₂)₂⁺⁻:-(CH₂)₂O(CH₂)₂⁻:-(CH₂)₂S(CH₂)₂⁻;或
【0564】-(CH₂)₂NR⁵⁺(CH₂)₂⁻;其中 R⁵⁺ :H ;或低级烷基 ;)-(CH₂)₃COOR⁵⁺R⁶⁺(其中 R⁵⁺ :低级烷基 ;或低级链烯基 ;R⁶⁺ :H ;或低级烷基 ;或 R⁷⁺ 和 R⁸⁺ 在一起形成 :-(CH₂)₂⁺⁻:-(CH₂)₂O(CH₂)₂⁻:-(CH₂)₂S(CH₂)₂⁻;或 -(CH₂)₂NR⁵⁺(CH₂)₂⁻;其中 R⁵⁺ :H ;或低级烷基 ;)
【0565】-(CH₂)₂NR²⁺CONR⁷⁺R⁸⁺(其中 R²⁺ :H ;或低级烷基 ;R⁷⁺ :H ;或低级烷基 ;或低级链烯基 ;R⁸⁺ :H ;或低级烷基 ;或 R⁸⁺ 和 R⁹⁺ 在一起形成 :-(CH₂)₂⁺⁻;
【0566】-(CH₂)₂O(CH₂)₂⁻:-(CH₂)₂S(CH₂)₂⁻;或 -(CH₂)₂NR⁵⁺(CH₂)₂⁻;其中 R⁵⁺ :H ;或低级烷基 ;)
【0567】-(CH₂)₃N(R⁶⁺)COR⁸⁺(其中 :R⁶⁺ :H ;或低级烷基 ;R⁸⁺ :低级烷基 ;或低级链烯基 ;)
【0568】-(CH₂)₃COOR⁵⁺(其中 R⁵⁺ :低级烷基 ;或低级链烯基 ;)-(CH₂)₃CONR⁸⁺R⁹⁺(其中 R⁸⁺ :低级烷基 ;或低级链烯基 ;和 R⁹⁺ :低级烷基 ;或 R⁸⁺ 和 R⁹⁺ 在一起形成 :
【0569】-(CH₂)₂⁺⁻:-(CH₂)₂O(CH₂)₂⁻:-(CH₂)₂S(CH₂)₂⁻;或 -(CH₂)₂NR⁵⁺(CH₂)₂⁻;其中 R⁵⁺ :H ;或低级烷基 ;)
【0570】-R⁷⁺ :H ;或低级烷基。)
【0571】-R³⁺ :H ;低级烷基 ;低级链烯基 ;-(CH₂)₃OR⁵⁺(其中 R⁵⁺ :低级烷基 ;或低级链烯基 ;)-(CH₂)₃N(R⁵⁺)OR⁵⁺(其中 R⁵⁺ :低级烷基 ;或低级链烯基 ;和 R⁵⁺ 在一起形成 :-(CH₂)₂⁺⁻;
【0572】-(CH₂)₂O(CH₂)₂⁻:-(CH₂)₂S(CH₂)₂⁻;或
【0573】-(CH₂)₂NR⁵⁺(CH₂)₂⁻;其中 R⁵⁺ :H ;或低级烷基 ;)-(CH₂)₃COOR⁵⁺R⁶⁺(其中 R⁵⁺ :H ;或低级烷基 ;或低级链烯基 ;R⁶⁺ :低级烷基 ;或 R⁷⁺ 和 R⁸⁺ 在一起形成 :-(CH₂)₂⁺⁻;
【0574】-(CH₂)₂O(CH₂)₂⁻:-(CH₂)₂S(CH₂)₂⁻;或 -(CH₂)₂NR⁵⁺(CH₂)₂⁻;其中 R⁵⁺ :H ;或低级烷基 ;)
【0575】-(CH₂)₂NR²⁺CONR⁷⁺R⁸⁺(其中 R²⁺ :H ;或低级烷基 ;R⁷⁺ :H ;或低级烷基 ;或低级链烯基 ;R⁸⁺ :H ;或低级烷基 ;或 R³⁺ 和 R⁸⁺ 在一起形成 :-(CH₂)₂⁺⁻;
[0576] \(-\text{CH}_2\text{O} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{S} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{NR}{^57} (\text{CH}_2)_2^{-}\); 其中 R{^57} \cdot \text{H}; \text{或低级烷基}.

[0577] \(-\text{CH}_2\text{N}(\text{R}{^20})\text{COR}{^54}\) (其中 R{^20} \cdot \text{H}; \text{或低级烷基}； R{^54} \cdot \text{低级烷基}；或低级烷基)；

[0578] \(-\text{CH}_2\text{COOR}{^57}\) (其中 R{^57} \cdot \text{低级烷基}；或低级链烯基)； \(-\text{CH}_2\text{CONR}{^20}\text{R}{^59}\) (其中 R{^58} \cdot \text{低级烷基}；或低级链烯基)；和 R{^20} \cdot \text{H}; \text{低级烷基}；或 R{^58} \text{和 R}{^59} \text{在一起形成}；

[0579] \(-\text{CH}_2\text{O} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{S} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{NR}{^57} (\text{CH}_2)_2^{-}\); 其中 R{^57} \cdot \text{H}; \text{或低级烷基}。

[0580] \(-\text{R}{^38} \cdot \text{低级烷基}；或低级链烯基；或芳基－低级烷基。

[0581] \(-\text{R}{^57} \cdot \text{H}; \text{低级烷基}；或低级链烯基)； \(-\text{CH}_2\text{O} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{S} (\text{CH}_2)_2^{-}\); 或 \(-\text{R}{^57} \cdot \text{H}; \text{低级烷基}；或低级链烯基)； \(-\text{CH}_2\text{NR}{^57} (\text{CH}_2)_2^{-}\); 其中 R{^57} \cdot \text{H}; \text{低级烷基}；或低级链烯基)； \(-\text{CH}_2\text{O} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{S} (\text{CH}_2)_2^{-}\); 或 \(-\text{R}{^57} \cdot \text{H}; \text{低级烷基}；或低级链烯基)；

[0582] \(-\text{CH}_2\text{O} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{S} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{NR}{^57} (\text{CH}_2)_2^{-}\); 其中 R{^57} \cdot \text{H}; \text{低级烷基}；或低级链烯基)； \(-\text{CH}_2\text{O} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{S} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{NR}{^57} (\text{CH}_2)_2^{-}\); 其中 R{^57} \cdot \text{H}; \text{低级烷基}；或低级链烯基)；

[0583] \(-\text{CH}_2\text{O} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{S} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{NR}{^57} (\text{CH}_2)_2^{-}\); 其中 R{^57} \cdot \text{H}; \text{低级烷基}；或低级链烯基)；

[0584] \(-\text{CH}_2\text{O} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{S} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{NR}{^57} (\text{CH}_2)_2^{-}\); 其中 R{^57} \cdot \text{H}; \text{低级烷基}；或低级链烯基)；

[0585] \(-\text{CH}_2\text{N}(\text{R}{^57})\text{COR}{^54}\) (其中 R{^20} \cdot \text{H}; \text{低级烷基}；或低级链烯基)；

[0586] \(-\text{CH}_2\text{COOR}{^57}\) (其中 R{^57} \cdot \text{低级烷基}；或低级链烯基)； \(-\text{CH}_2\text{CONR}{^20}\text{R}{^59}\) (其中 R{^58} \cdot \text{低级烷基}；或低级链烯基)；和 R{^20} \cdot \text{H}; \text{低级烷基}；或 R{^58} \text{和 R}{^59} \text{在一起形成；}

[0587] \(-\text{CH}_2\text{O} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{S} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{NR}{^57} (\text{CH}_2)_2^{-}\); 其中 R{^57} \cdot \text{H}; \text{低级烷基}；或低级链烯基)； \(-\text{CH}_2\text{O} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{S} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{NR}{^57} (\text{CH}_2)_2^{-}\); 其中 R{^57} \cdot \text{H}; \text{低级烷基}；或低级链烯基)；

[0588] \(-\text{CH}_2\text{O} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{S} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{NR}{^57} (\text{CH}_2)_2^{-}\); 其中 R{^57} \cdot \text{H}; \text{低级烷基}；或低级链烯基)；

[0589] \(-\text{CH}_2\text{N}(\text{R}{^57})\text{COR}{^54}\) (其中 R{^20} \cdot \text{H}; \text{低级烷基}；或低级链烯基)；

[0590] \(-\text{CH}_2\text{N}(\text{R}{^20})\text{CONR}{^33}\text{R}{^58}\) (其中 R{^20} \cdot \text{H}; \text{低级烷基}；或低级链烯基)； \(-\text{CH}_2\text{O} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{S} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{NR}{^57} (\text{CH}_2)_2^{-}\); 其中 R{^57} \cdot \text{H}; \text{低级烷基}；或低级链烯基)；

[0591] \(-\text{CH}_2\text{O} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{S} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{NR}{^57} (\text{CH}_2)_2^{-}\); 其中 R{^57} \cdot \text{H}; \text{低级烷基}；或低级链烯基)；

[0592] \(-\text{CH}_2\text{N}(\text{R}{^57})\text{COR}{^54}\) (其中 R{^20} \cdot \text{H}; \text{低级烷基}；或低级链烯基)；

[0593] \(-\text{CH}_2\text{COOR}{^57}\) (其中 R{^57} \cdot \text{低级烷基}；或低级链烯基)； \(-\text{CH}_2\text{CONR}{^20}\text{R}{^59}\) (其中 R{^58} \cdot \text{低级烷基}；或低级链烯基)；和 R{^20} \cdot \text{H}; \text{低级烷基}；或 R{^58} \text{和 R}{^59} \text{在一起形成；}

[0594] \(-\text{CH}_2\text{O} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{S} (\text{CH}_2)_2^{-}\); \(-\text{CH}_2\text{NR}{^57} (\text{CH}_2)_2^{-}\); 其中 R{^57} \cdot \text{H}; \text{低级烷基}；或低级链烯基)；
或低级烷基)；-(CH₂)ₐPO(OR′)₂（其中 R⁰：低级烷基；或低级链烯基）；-(CH₂)ₐSO₃R⁰（其中 R⁰：低级烷基；或低级链烯基）；-(CH₂)ₐOR₅⁵（其中 R₅⁵：低级烷基；或低级链烯基）；-(CH₂)ₐN(R⁰)COR₅⁶（其中 R⁰：低级烷基；或低级链烯基）；-(CH₂)ₐCOOR₅⁷（其中 R₅⁷：低级烷基；或低级链烯基）；-(CH₂)ₐCONR₅⁸R₅⁹（其中 R₅⁸：低级烷基；或低级链烯基）；-(CH₂)ₐCONR₅⁸R₅⁹（其中 R₅⁸：低级烷基；或低级链烯基）；-(CH₂)ₐCONR₅⁸R₅⁹（其中 R₅⁸：低级烷基；或低级链烯基）；-(CH₂)₂O(Ch₂)₂-；-(CH₂)₂S(Ch₂)₂-；或-(CH₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

[0596] -R⁰₄；R₄₄：低级烷基；低级链烯基；或芳基 - 低级烷基。

[0597] -R⁰₄：低级烷基；低级链烯基；-(CH₂)ₐOR₅⁵（其中 R₅⁵：低级烷基；或低级链烯基）；-(CH₂)ₐNR₅⁶R₅⁷（其中 R₅⁶：低级烷基；或低级链烯基）；-(CH₂)₂O(Ch₂)₂-；(Ch₂)₂S(Ch₂)₂-；或-(Ch₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

[0598] -[(CH₂)₂O(Ch₂)₂-；(Ch₂)₂S(Ch₂)₂-；或-(Ch₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

[0599] -[(CH₂)₂O(Ch₂)₂-；(Ch₂)₂S(Ch₂)₂-；或-(Ch₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

[0600] -[(Ch₂)₂O(Ch₂)₂-；(Ch₂)₂S(Ch₂)₂-；或-(Ch₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

[0601] -[(Ch₂)₂O(Ch₂)₂-；(Ch₂)₂S(Ch₂)₂-；或-(Ch₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

[0602] -[(Ch₂)₂O(Ch₂)₂-；(Ch₂)₂S(Ch₂)₂-；或-(Ch₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

[0603] -[(Ch₂)₂O(Ch₂)₂-；(Ch₂)₂S(Ch₂)₂-；或-(Ch₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

[0604] -[(Ch₂)₂O(Ch₂)₂-；(Ch₂)₂S(Ch₂)₂-；或-(Ch₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

[0605] -[(Ch₂)₂O(Ch₂)₂-；(Ch₂)₂S(Ch₂)₂-；或-(Ch₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

[0606] -[(Ch₂)₂O(Ch₂)₂-；(Ch₂)₂S(Ch₂)₂-；或-(Ch₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

[0607] -[(Ch₂)₂O(Ch₂)₂-；(Ch₂)₂S(Ch₂)₂-；或-(Ch₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

[0608] -[(Ch₂)₂O(Ch₂)₂-；(Ch₂)₂S(Ch₂)₂-；或-(Ch₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

[0609] -[(Ch₂)₂O(Ch₂)₂-；(Ch₂)₂S(Ch₂)₂-；或-(Ch₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

[0610] -[(Ch₂)₂O(Ch₂)₂-；(Ch₂)₂S(Ch₂)₂-；或-(Ch₂)₂NR₅⁷(Ch₂)₂-；其中 R₅⁷：低级烷基）。

52
[0611] \(-\text{CH}_2\text{OOR}^7\) (其中 R\(^7\)：低级烷基；或低级酰基烯基)；\(\text{CH}_2\text{CONR}^6\text{R}^9\) (其中 R\(^8\)：低级烷基，或低级酰基烯基；和 R\(^9\)：低级烷基；或 R\(^8\) 和 R\(^9\) 在一起形成)；
[0612] \(-\text{CH}_2\text{O}\cdot\text{CH}_2\cdot\text{R}\)；\(\text{CH}_2\text{CONR}^6\text{R}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；\(\text{CH}_2\text{SR}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；
[0613] \(-\text{R}^9\text{R}^9\text{OR}^7\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；\(\text{CH}_2\text{CONR}^6\text{R}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；
[0614] \(-\text{CH}_2\text{O}\cdot\text{CH}_2\cdot\text{R}\)；\(\text{CH}_2\text{CONR}^6\text{R}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；\(\text{CH}_2\text{SR}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；
[0615] \(-\text{R}^9\text{R}^9\text{OR}^7\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；\(\text{CH}_2\text{CONR}^6\text{R}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；
[0616] \(-\text{CH}_2\text{O}\cdot\text{CH}_2\cdot\text{R}\)；\(\text{CH}_2\text{CONR}^6\text{R}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；\(\text{CH}_2\text{CONR}^6\text{R}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；
[0617] \(-\text{PO}\cdot\text{OR}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；\(\text{CH}_2\text{SR}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；
[0618] \(-\text{R}^9\text{R}^9\text{OR}^7\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；\(\text{CH}_2\text{CONR}^6\text{R}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；
[0619] \(-\text{CH}_2\text{O}\cdot\text{CH}_2\cdot\text{R}\)；\(\text{CH}_2\text{CONR}^6\text{R}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；
[0620] \(-\text{CH}_2\text{O}\cdot\text{CH}_2\cdot\text{R}\)；\(\text{CH}_2\text{CONR}^6\text{R}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；
[0621] \(-\text{CH}_2\text{O}\cdot\text{CH}_2\cdot\text{R}\)；\(\text{CH}_2\text{CONR}^6\text{R}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；
[0622] \(-\text{CH}_2\text{O}\cdot\text{CH}_2\cdot\text{R}\)；\(\text{CH}_2\text{CONR}^6\text{R}^9\) (其中 R\(^7\)：低级烷基，或低级酰基烯基)；
或低级链烯基；R34 : H；或低级烷基；或 R33 和 R34 在一起形成：

- (CH\textsubscript{2})\textsubscript{2}O (CH\textsubscript{2})\textsubscript{2}− ; (CH\textsubscript{2})\textsubscript{2}S (CH\textsubscript{2})\textsubscript{2}− ; R35 : H ;

- (CH\textsubscript{2})\textsubscript{2}NR\textsubscript{57} (CH\textsubscript{2})\textsubscript{2}− ; 其 中 R57 : H ;

- (CH\textsubscript{2})\textsubscript{2}OCONR33R35 (其中 R33 : H ; 或低级烷基 ; 低级链烯基 ; R35 : 低级烷基 ; 或 R33 和 R35 在一起形成 : (CH\textsubscript{2})\textsubscript{2}O (CH\textsubscript{2})\textsubscript{2}− ; (CH\textsubscript{2})\textsubscript{2}S (CH\textsubscript{2})\textsubscript{2}− ;

- (CH\textsubscript{2})\textsubscript{2}NR\textsubscript{57} (CH\textsubscript{2})\textsubscript{2}− ; 其 中 R57 : H ; 或低级烷基 ; R33 : H ; 或低级烷基 ; 低级链烯基 ; R35 : H ; 或低级烷基 ; R33 : H ;

- (CH\textsubscript{2})\textsubscript{2}OCONR33R35 (其中 R33 : H ; 或低级烷基 ; 低级链烯基 ; R35 : H ; 或低级烷基 ; R33 : H ; 或低级烷基 ; R33 和 R35 在一起形成：(CH\textsubscript{2})\textsubscript{2}O (CH\textsubscript{2})\textsubscript{2}− ; (CH\textsubscript{2})\textsubscript{2}S (CH\textsubscript{2})\textsubscript{2}− ;

- (CH\textsubscript{2})\textsubscript{2}NR\textsubscript{57} (CH\textsubscript{2})\textsubscript{2}− ; 其 中 R57 : H ; 或低级烷基 ; R33 : H ;

- (CH\textsubscript{2})\textsubscript{2}OR34 (其中 R34 : H ;

- (CH\textsubscript{2})\textsubscript{2}NR\textsubscript{57} (CH\textsubscript{2})\textsubscript{2}− ; 其 中 R57 : H ;

- (CH\textsubscript{2})\textsubscript{2}OCONR33R35 (其中 R33 : H ; 或低级烷基 ; 低级链烯基 ; R35 : 低级烷基 ; 或 R33 和 R35 在一起形成 : (CH\textsubscript{2})\textsubscript{2}O (CH\textsubscript{2})\textsubscript{2}− ; (CH\textsubscript{2})\textsubscript{2}S (CH\textsubscript{2})\textsubscript{2}− ;

- (CH\textsubscript{2})\textsubscript{2}NR\textsubscript{57} (CH\textsubscript{2})\textsubscript{2}− ; 其 中 R57 : H ;

- (CH\textsubscript{2})\textsubscript{2}OR34 (其中 R34 : H ;

- (CH\textsubscript{2})\textsubscript{2}NR\textsubscript{57} (CH\textsubscript{2})\textsubscript{2}− ; 其 中 R57 : H ;

- (CH\textsubscript{2})\textsubscript{2}OCONR33R35 (其中 R33 : H ; 或低级烷基 ; 低级链烯基 ; R35 : 低级烷基 ; 或 R33 和 R35 在一起形成 : (CH\textsubscript{2})\textsubscript{2}O (CH\textsubscript{2})\textsubscript{2}− ; (CH\textsubscript{2})\textsubscript{2}S (CH\textsubscript{2})\textsubscript{2}− ;

- (CH\textsubscript{2})\textsubscript{2}NR\textsubscript{57} (CH\textsubscript{2})\textsubscript{2}− ; 其 中 R57 : H ;

- (CH\textsubscript{2})\textsubscript{2}OR34 (其中 R34 : H ;

- (CH\textsubscript{2})\textsubscript{2}NR\textsubscript{57} (CH\textsubscript{2})\textsubscript{2}− ; 其 中 R57 : H ;

- (CH\textsubscript{2})\textsubscript{2}OCONR33R35 (其中 R33 : H ; 或低级烷基 ; 低级链烯基 ; R35 : 低级烷基 ; 或 R33 和 R35 在一起形成 : (CH\textsubscript{2})\textsubscript{2}O (CH\textsubscript{2})\textsubscript{2}− ; (CH\textsubscript{2})\textsubscript{2}S (CH\textsubscript{2})\textsubscript{2}− ;

- (CH\textsubscript{2})\textsubscript{2}NR\textsubscript{57} (CH\textsubscript{2})\textsubscript{2}− ; 其 中 R57 : H ;

- (CH\textsubscript{2})\textsubscript{2}OR34 (其中 R34 : H ;

- (CH\textsubscript{2})\textsubscript{2}NR\textsubscript{57} (CH\textsubscript{2})\textsubscript{2}− ; 其 中 R57 : H ;

- (CH\textsubscript{2})\textsubscript{2}OCONR33R35 (其中 R33 : H ; 或低级烷基 ; 低级链烯基 ; R35 : 低级烷基 ; 或 R33 和 R35 在一起形成 : (CH\textsubscript{2})\textsubscript{2}O (CH\textsubscript{2})\textsubscript{2}− ; (CH\textsubscript{2})\textsubscript{2}S (CH\textsubscript{2})\textsubscript{2}− ;

- (CH\textsubscript{2})\textsubscript{2}NR\textsubscript{57} (CH\textsubscript{2})\textsubscript{2}− ; 其 中 R57 : H ;
(CH₃)₂N⁺R²⁺(CH₂)₂⁻；其中 R²⁺: H (或低级烷基)；(CH₃)₂O⁻CONR³⁺R⁵⁺ (其中 R³⁺: H (或低级烷基)；或低级链烯)；R⁷⁻: 低级烷基；或 R³⁺ 和 R⁵⁺ 在一起形成：- (CH₂)₂-；

(0641) - (CH₂)₂O⁻(CH₂)₂⁻；- (CH₂)₂S⁻(CH₂)₂⁻；或 - (CH₂)₂N⁻R⁷⁺(CH₂)₂⁻；其中 R⁷⁻: H (或低级烷基)；

(0642) - (CH₂)₂N⁻R²⁺CONR³⁺R⁵⁺ (其中 R²⁺: H (或低级烷基)；R³⁺: H (或低级烷基)；或低级链烯)；R⁸⁻: H (或低级烷基)；或 R³⁺ 和 R⁸⁻ 在一起形成：- (CH₂)₂-；

(0643) - (CH₂)₂O⁻(CH₂)₂⁻；- (CH₂)₂S⁻(CH₂)₂⁻；或 - (CH₂)₂N⁻R⁷⁺(CH₂)₂⁻；其中 R⁷⁻: H (或低级烷基)；

(0644) - (CH₂)₂N⁺R²⁺OR⁶⁺ (其中 R²⁺: H (或低级烷基)；R⁶⁺: 低级烷基)；或低级链烯)；- (CH₂)₂N⁺R³⁺R⁴⁺ (其中 R³⁺: 低级烷基)；或低级链烯)；R⁶⁺: H (或低级烷基)；或 R³⁺ 和 R⁶⁺ 在一起形成：- (CH₂)₂-；- (CH₂)₂O⁻(CH₂)₂⁻；- (CH₂)₂S⁻(CH₂)₂⁻；或

(0645) - (CH₂)₂N⁻R⁷⁺(CH₂)₂⁻；其中 R⁷⁻: H (或低级烷基)；- (CH₂)₂O⁻CONR³⁺R⁵⁺ (其中 R³⁺: H (或低级烷基)；或低级链烯)；R⁷⁻: H (或低级烷基)；或 R³⁺ 和 R⁷⁻ 在一起形成：- (CH₂)₂-；

(0646) - (CH₂)₂O⁻(CH₂)₂⁻；- (CH₂)₂S⁻(CH₂)₂⁻；或 - (CH₂)₂N⁻R⁷⁺(CH₂)₂⁻；其中 R⁷⁻: H (或低级烷基)；或 - (CH₂)₂CO⁻R⁶⁺R⁷⁺ (其中 R⁶⁺: H (或低级烷基)；或低级链烯)；R⁷⁻: H (或低级烷基)；或 R⁶⁺ 和 R⁷⁻ 在一起形成：- (CH₂)₂-；

(0647) - R⁸⁻: H (或低级烷基)；低级链烯)；- (CH₂)₂N⁺OR⁶⁺ (其中 R⁶⁺: 低级烷基)；或低级链烯)；- (CH₂)₂N⁺R³⁺R⁴⁺ (其中 R³⁺: 低级烷基)；或低级链烯)；R⁸⁻: H (或低级烷基)；或 R³⁺ 和 R⁸⁻ 在一起形成：- (CH₂)₂-；- (CH₂)₂O⁻(CH₂)₂⁻；- (CH₂)₂S⁻(CH₂)₂⁻；或

(0648) - (CH₂)₂N⁺R⁷⁺(CH₂)₂⁻；其中 R⁷⁻: H (或低级烷基)；- (CH₂)₂O⁻CONR³⁺R⁵⁺ (其中 R³⁺: H (或低级烷基)；或低级链烯)；R⁷⁻: H (或低级烷基)；或 R³⁺ 和 R⁷⁻ 在一起形成：- (CH₂)₂-；

(0649) - (CH₂)₂O⁻(CH₂)₂⁻；- (CH₂)₂S⁻(CH₂)₂⁻；或 - (CH₂)₂N⁺R⁷⁺(CH₂)₂⁻；其中 R⁷⁻: H (或低级烷基)；

(0650) - (CH₂)₂N⁺R²⁺CONR³⁺R⁵⁺ (其中 R²⁺: H (或低级烷基)；R³⁺: H (或低级烷基)；或低级链烯)；R⁵⁺: H (或低级烷基)；或 R³⁺ 和 R⁵⁺ 在一起形成：- (CH₂)₂-；

(0651) - (CH₂)₂O⁻(CH₂)₂⁻；- (CH₂)₂S⁻(CH₂)₂⁻；或 - (CH₂)₂N⁻R⁷⁺(CH₂)₂⁻；其中 R⁷⁻: H (或低级烷基)；

(0652) - (CH₂)₂N⁺R²⁺OR⁶⁺ (其中 R²⁺: H (或低级烷基)；R⁶⁺: 低级烷基)；或低级链烯)；- (CH₂)₂O⁻CONR³⁺R⁵⁺ (其中 R³⁺: H (或低级烷基)；或低级链烯)；R⁶⁺: H (或低级烷基)；或 R³⁺ 和 R⁶⁺ 在一起形成：- (CH₂)₂-；

(0653) - (CH₂)₂O⁻(CH₂)₂⁻；- (CH₂)₂S⁻(CH₂)₂⁻；或 - (CH₂)₂N⁻R⁷⁺(CH₂)₂⁻；其中 R⁷⁻: H (或低级烷基)；或 - (CH₂)₂CO⁻R⁶⁺R⁷⁺ (其中 R⁶⁺: H (或低级烷基)；或低级链烯)；R⁷⁻: H (或低级烷基)；或 R⁶⁺ 和 R⁷⁻ 在一起形成：- (CH₂)₂-；

(0654) - (CH₂)₂O⁻(CH₂)₂⁻；- (CH₂)₂S⁻(CH₂)₂⁻；或 - (CH₂)₂N⁻R⁷⁺(CH₂)₂⁻；其中 R⁷⁻: H (或低级烷基)；或 - (CH₂)₂CO⁻R⁶⁺R⁷⁺ (其中 R⁶⁺: H (或低级烷基)；或低级链烯)；R⁷⁻: H (或低级烷基)；或 R⁶⁺ 和 R⁷⁻ 在一起形成：- (CH₂)₂-；

(0655) - R⁵⁺: H (或低级烷基)；低级链烯)；- (CH₂)₂O⁻OR⁶⁺ (其中 R⁵⁺: 低级烷基)；或低级链烯)；- (CH₂)₂N⁺R³⁺R⁴⁺ (其中 R³⁺: 低级烷基)；或低级链烯)；R⁵⁺: H (或低级烷基)；或 R³⁺ 和 R⁵⁺ 在一起形成：- (CH₂)₂-；- (CH₂)₂O⁻(CH₂)₂⁻；- (CH₂)₂S⁻(CH₂)₂⁻；或

(0656) - (CH₂)₂N⁺R⁷⁺(CH₂)₂⁻；其中 R⁷⁻: H (或低级烷基)；- (CH₂)₂O⁻CONR³⁺R⁵⁺ (其中 R³⁺: H (或低级烷基)；或低级链烯)；R⁷⁻: H (或低级烷基)；或 R³⁺ 和 R⁷⁻ 在一起形成：- (CH₂)₂-；

(0657) - (CH₂)₂O⁻(CH₂)₂⁻；- (CH₂)₂S⁻(CH₂)₂⁻；或 - (CH₂)₂N⁻R⁷⁺(CH₂)₂⁻；其中 R⁷⁻: H (或低级烷基)；

(0658) - (CH₂)₂N⁺R²⁺CONR³⁺R⁵⁺ (其中 R²⁺: H (或低级烷基)；R³⁺: H (或低级烷基)；或低级链烯)；R⁵⁺: H (或低级烷基)；或 R³⁺ 和 R⁵⁺ 在一起形成：- (CH₂)₂-；
<table>
<thead>
<tr>
<th>结构单元</th>
<th>氨基酸名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>L- 丙氨酸</td>
</tr>
<tr>
<td>Arg</td>
<td>L- 精氨酸</td>
</tr>
<tr>
<td>Asn</td>
<td>L- 天冬酰胺</td>
</tr>
<tr>
<td>Cys</td>
<td>L- 半胱氨酸</td>
</tr>
<tr>
<td>Gln</td>
<td>L- 谷氨酰胺</td>
</tr>
<tr>
<td>Gly</td>
<td>甘氨酸</td>
</tr>
<tr>
<td>His</td>
<td>L- 组氨酸</td>
</tr>
<tr>
<td>Ile</td>
<td>L- 异亮氨酸</td>
</tr>
<tr>
<td>Leu</td>
<td>L- 亮氨酸</td>
</tr>
<tr>
<td>Lys</td>
<td>L- 赖氨酸</td>
</tr>
<tr>
<td>Met</td>
<td>L- 蛋氨酸</td>
</tr>
<tr>
<td>Phe</td>
<td>L- 苯丙氨酸</td>
</tr>
<tr>
<td>Pro</td>
<td>L- 脯氨酸</td>
</tr>
</tbody>
</table>

说明：模板 (a1) 和 (a2) 内的结构单元 -B-CO- 表示 L- 氨基酸残基。B 的优选值是 -NR²⁻⁰⁵CH(R⁷⁻) 所得基团 A5 (R² 是 H), A8, A22, A25, A38 (R² 是 H), A42, A47, 和 A50 的对映异构体。最优选的是 L- 丙氨酸。
<table>
<thead>
<tr>
<th>氨基酸代号</th>
<th>氨基酸名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>L-丙氨酸</td>
</tr>
<tr>
<td>Ser</td>
<td>L-丝氨酸</td>
</tr>
<tr>
<td>Thr</td>
<td>L-苏氨酸</td>
</tr>
<tr>
<td>Trp</td>
<td>L-色氨酸</td>
</tr>
<tr>
<td>Tyr</td>
<td>L-酪氨酸</td>
</tr>
<tr>
<td>Val</td>
<td>L-缬氨酸</td>
</tr>
<tr>
<td>Cit</td>
<td>L-瓜氨酸</td>
</tr>
<tr>
<td>Orn</td>
<td>L-鸟氨酸</td>
</tr>
<tr>
<td>tBuA</td>
<td>L-t-丁基丙氨酸</td>
</tr>
<tr>
<td>Sar</td>
<td>肌氨酸</td>
</tr>
<tr>
<td>t-BuG</td>
<td>L-叔丁基甘氨酸</td>
</tr>
<tr>
<td>4AmPhe</td>
<td>L-对-氨基苯基丙氨酸</td>
</tr>
<tr>
<td>3AmPhe</td>
<td>L-间-氨基苯基丙氨酸</td>
</tr>
<tr>
<td>2AmPhe</td>
<td>L-邻-氨基苯基丙氨酸</td>
</tr>
<tr>
<td>Phe(mC(NH)₂ = NH)</td>
<td>L-间-脯基苯基丙氨酸</td>
</tr>
<tr>
<td>Phe(pC(NH)₂ = NH)</td>
<td>L-对-脯基苯基丙氨酸</td>
</tr>
<tr>
<td>Phe(mNHC(NH)₂ = NH)</td>
<td>L-间-胍基苯基丙氨酸</td>
</tr>
<tr>
<td>Phe(pNHC(NH)₂ = NH)</td>
<td>L-对-胍基苯基丙氨酸</td>
</tr>
<tr>
<td>Phg</td>
<td>L-苯基甘氨酸</td>
</tr>
<tr>
<td>Cha</td>
<td>L-环己基丙氨酸</td>
</tr>
<tr>
<td>C₃al</td>
<td>L-3-环丁基丙氨酸</td>
</tr>
<tr>
<td>Ala</td>
<td>L-丙氨酸</td>
</tr>
<tr>
<td>C₃al</td>
<td>L-3-环戊基丙氨酸</td>
</tr>
<tr>
<td>Nle</td>
<td>L-正亮氨酸</td>
</tr>
<tr>
<td>2-Nal</td>
<td>L-2-萘基丙氨酸</td>
</tr>
<tr>
<td>1-Nal</td>
<td>L-1-萘基丙氨酸</td>
</tr>
<tr>
<td>4Cl-Phe</td>
<td>L-4-氯苯基丙氨酸</td>
</tr>
<tr>
<td>3Cl-Phe</td>
<td>L-3-氯苯基丙氨酸</td>
</tr>
<tr>
<td>2Cl-Phe</td>
<td>L-2-氯苯基丙氨酸</td>
</tr>
<tr>
<td>3,4Cl₂-Phe</td>
<td>L-3,4-二氯苯基丙氨酸</td>
</tr>
<tr>
<td>4F-Phe</td>
<td>L-4-氟苯基丙氨酸</td>
</tr>
<tr>
<td>3F-Phe</td>
<td>L-3-氟苯基丙氨酸</td>
</tr>
<tr>
<td>2F-Phe</td>
<td>L-2-氟苯基丙氨酸</td>
</tr>
<tr>
<td>Tic</td>
<td>L-1,2,3,4-四氢异喹啉-3-羧酸</td>
</tr>
<tr>
<td>Thi</td>
<td>L-β-2-噻吩基丙氨酸</td>
</tr>
<tr>
<td>Tza</td>
<td>L-2-噻唑基丙氨酸</td>
</tr>
<tr>
<td>Mso</td>
<td>L-蛋氨酸亚砜</td>
</tr>
<tr>
<td>AcLys</td>
<td>L-N-乙酰基赖氨酸</td>
</tr>
<tr>
<td>Dpr</td>
<td>L-2,3-二氨基丙酸</td>
</tr>
<tr>
<td>A₂Bu</td>
<td>L-2,4-二氨基丁酸</td>
</tr>
<tr>
<td>Dbu</td>
<td>(S)-2,3-二氨基丁酸</td>
</tr>
<tr>
<td>Abu</td>
<td>γ-氨基丁酸 (GABA)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ala</td>
<td>L-丙氨酸</td>
</tr>
<tr>
<td>Aha</td>
<td>ε-氨基酸</td>
</tr>
<tr>
<td>Aib</td>
<td>α-氨基异丁酸</td>
</tr>
<tr>
<td>Y(Bz1)</td>
<td>L-0-苄基酪氨酸</td>
</tr>
</tbody>
</table>
| Bip | L-联苯基丙氨酸
 (L-Biphenylalanine) |
<p>| S(Bz1) | L-0-苄基丝氨酸 |
| T(Bz1) | L-0-苄基苏氨酸 |
| hCha | L-高-环己基丙氨酸 |
| hCys | L-高-半胱氨酸 |
| hSer | L-高-丝氨酸 |
| hArg | L-高-精氨酸 |
| hPhe | L-高-苯基丙氨酸 |
| Bpa | L-4-苯甲酰基苯基丙氨酸 |
| Pip | L-2-哌啶酸 |
| OctG | L-辛基甘氨酸 |
| MePhe | L-N-甲基苯基丙氨酸 |
| MeNle | L-N-甲基正亮氨酸 |
| MeAla | L-N-甲基丙氨酸 |
| Melle | L-N-甲基异亮氨酸 |
| MeVal | L-N-甲基缬氨酸 |</p>
<table>
<thead>
<tr>
<th>Ala</th>
<th>L- 丙氨酸</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeLeu</td>
<td>L-N- 甲基亮氨酸</td>
</tr>
</tbody>
</table>

另外，B 的最优选的值还包括 (1) - 构型的种类 A8" 的基团。

其中 R^{20}_{m} 是 H 或低级烷基且 R^{64}_{m} 是烷基；链烯基；芳基；芳基 - 低级烷基；或杂芳基 - 低级烷基；尤其那些基团，其中 R^{20}_{m} 是 n- 己基 (A8" - 21); n- 丙基 (A8" - 22); 4- (芳基) 苯基 (A8" - 23); 二苯基甲基 (A8" - 24); 3- 氨基 - 丙基 (A8" - 25); 5- 氨基 - 戊基 (A8" - 26); 甲基 (A8" - 27); 乙基 (A8" - 28); 异丙基 (A8" - 29); 异丁基 (A8" - 30); n- 丙基 (A8" - 31); 丁基 (A8" - 32); 二苯基甲基 (A8" - 33); n- 丁基 (A8" - 34); 苯基 (A8" - 35); 芳基 (A8" - 36); 3- 吡啶基 (A8" - 37); 2- (3- 吡啶基) 乙基 (A8" - 38); (4- 芳基) 苯基 (A8" - 39); 和 n- 壬基 (A8" - 40)。

本文描述的 β - 发夹模物的肽链 Z 一般根据属于以下种类之一的氨基酸残基而定义:

- 种类 C-NR^{20}_{m}CH(R^{64}_{m})CO-；” 淡水“，小至中等尺寸”
- 种类 D-NR^{20}_{m}CH(R^{64}_{m})CO-；” 淡水“，大芳基或杂芳基”
- 种类 E-NR^{20}_{m}CH(R^{64}_{m})CO-；” 极性 - 阳离子“ 和” 鼠衍生的”
- 种类 F-NR^{20}_{m}CH(R^{64}_{m})CO-；” 极性 - 非带电的”
- 种类 H-NR^{20}_{m}-CH(CO-)-(CH_{2})_{4}-CH(CO)-NR^{20}_{m} ;
- NR^{20}_{m}-CH(CO-) - (CH_{2})_{p}S(CH_{2})_{p}-CH(CO-) - NR^{20}_{m} ;
- NR^{20}_{m}-CH(CO-) - (CH_{2})_{p}NR^{20}_{m}CO(CH_{2})_{p}-CH(CO-) - NR^{20}_{m} ; 和
- NR^{20}_{m}-CH(CO-) - (CH_{2})_{p}NR^{20}_{m}CONR^{20}_{m}(CH_{2})_{p}-CH(CO-) - NR^{20}_{m} ; ” 链间键”
- 另外，链 Z 中的氨基酸残基也可具有结构式 -A-CO- 或具有结构式 -B-CO-，其中 A 和 B 定义如上。最后，Gly 也可以是链 Z 中的氨基酸残基，且 Pro 也可以是链 Z 中的氨基酸残基，但其中可能存在链间键 (H) 的位置除外。
- 种类 C 包括根据对取代基 R^{2}_{m} 的一般定义具有小至中等尺寸淡水侧链基团的氨基酸残基。淡水残基是指在生理 pH 下不带电和被水溶液排斥的氨基酸侧链。另外，这些侧链一般不包含氢键，如（但不限于）伯和仲酰胺，伯和仲胺和其相应的质子化盐，硫醇，醇，磷酰酯 (phosphonates)，磷酸酯 (phosphates), 肌肉或肌酸类。但它们可包含氢键受体碳基团如碳，硫醚，酯，酸酰胺，烷基 - 或芳基磷酸酯和磷酸二酯或脂肪。基因编码的小至中等尺寸氨基酸包括丙氨酸，异亮氨酸，亮氨酸，甲硫氨酸和缬氨酸。

- 种类 D 包括根据对取代基 R^{2}_{m} 的一般定义具有芳族和杂芳族侧链基团的氨基酸残基。芳族氨基酸残基是指具有包含至少一个环的侧链的淡水氨基酸，所述环具有共轭
π-电子体系（芳族基团）。另外它们可包含氢键给体基团如（但不限于）伯和仲酰胺，伯和仲胺和其相应的质子化盐，硫醇，醇，膦酸酯，磷酸酯，脲类或硫脲类，和氢键受体基团如（但不限于）醚，硫醚，酯，叔酰胺，烷基 - 或芳基膦酸酯 - 和磷酸酯或叔胺。基因编码的芳族氨基酸包括苯基丙氨酸和酪氨酸。

[0683] 杂芳族氨基酸残基是指根据对取代基 R**7** 的一般定义具有包含至少一个环的侧链的氨基酸溶液，所描述环中引入至少一个杂原子如（但不限于）0, S 和 N 的共轭 π-体系。另外，这类残基可包含氢键给体基团如（但不限于）伯和仲酰胺，伯和仲胺和其相应的质子化盐，硫醇，醇，膦酸酯，磷酸酯，脲类或硫脲类，和氢键受体基团如（但不限于）醚，硫醚，酯，叔酰胺，烷基 - 或芳基膦酸酯 - 和磷酸酯或叔胺。基因编码的杂芳族氨基酸包括色氨酸和组氨酸。

[0684] 种类 F 包括根据对取代基 R**6** 的一般定义包含具有极性 - 阳离子，酰氨基 - 和脲 - 衍生的残基的侧链的氨基酸。极性 - 阳离子是指在生理 pH 下被质子化的碱性侧链。基因编码的极性 - 阳离子氨基酸包括精氨酸，赖氨酸和组氨酸。瓜氨酸是酰衍生物的氨基酸残基的一个例子。

[0686] 如前所述，链间键的位置是在一起的 P4 和 P9 位，和 / 或 P2 和 P11。这些链间键已知能够稳定性 β - 发夹构象和因此构成用于设计 β - 发夹模拟物的重要结构成分。

[0687] 链 Z 中的最优选的氨基酸残基是衍生自天然 α-氨基酸的那些。以下列举本身或其残基适用于本发明的氨基酸，其中简称对应于一般采用的惯例。

[0688]
三字母代码

<table>
<thead>
<tr>
<th>三字母代码</th>
<th>单字母代码</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>L</td>
</tr>
<tr>
<td>Arg</td>
<td>L</td>
</tr>
<tr>
<td>Asn</td>
<td>L</td>
</tr>
<tr>
<td>Asp</td>
<td>L</td>
</tr>
<tr>
<td>Cys</td>
<td>L</td>
</tr>
<tr>
<td>Glu</td>
<td>L</td>
</tr>
<tr>
<td>Gin</td>
<td>L</td>
</tr>
<tr>
<td>Gly</td>
<td>甘氨酸</td>
</tr>
<tr>
<td>His</td>
<td>L</td>
</tr>
<tr>
<td>Ile</td>
<td>L</td>
</tr>
<tr>
<td>Leu</td>
<td>L</td>
</tr>
<tr>
<td>Lys</td>
<td>L</td>
</tr>
<tr>
<td>Met</td>
<td>L</td>
</tr>
<tr>
<td>Phe</td>
<td>L</td>
</tr>
<tr>
<td>Pro</td>
<td>L</td>
</tr>
<tr>
<td>^Pro</td>
<td>D</td>
</tr>
<tr>
<td>Ser</td>
<td>L</td>
</tr>
<tr>
<td>Thr</td>
<td>L</td>
</tr>
<tr>
<td>Trp</td>
<td>L</td>
</tr>
<tr>
<td>Tyr</td>
<td>L</td>
</tr>
<tr>
<td>Val</td>
<td>L</td>
</tr>
</tbody>
</table>

[0689] 本身或其残基适用于本发明的其它的 α-氨基酸包括：

[0690]
Cit	L-瓜氨酸
	L-鳥氨酸
Orn	L-t-丁基丙氨酸
tBuA	肌氨酸
Ser	L-青果胺
Pen	L-叔丁基甘氨酸
t-BuG	L-对-氨基苯基丙氨酸
4AmPhe	L-间-氨基苯基丙氨酸
3AmPhe	L-邻-氨基苯基丙氨酸
2AmPhe	L-间-苯基苯基丙氨酸
Phe (mC (NH₂)=NH)	L-对-苯基苯基丙氨酸
Phe (pC (NH₂)=NH)	L-间-苯基苯基丙氨酸
Phe (mNH₂ (NH₂)=NH)	L-对-苯基苯基丙氨酸
Phe (pNH₂ (NH₂)=NH)	L-苯基甘氨酸
Phg	L-环己基丙氨酸
Cha	L-3-环丁基丙氨酸
Ca1	L-3-环戊基丙氨酸
Ca1	L-正庚氨酸
Nle	L-苯基丙氨酸
2-Nal	L-1-苯基丙氨酸
1-Nal	L-4-氟苯基丙氨酸
4Cl-Phe	L-3-氟苯基丙氨酸
3Cl-Phe	L-2-氟苯基丙氨酸
2Cl-Phe	L-3, 4-二氟苯基丙氨酸
3, 4Cl₂-Phe	L-3-氟苯基丙氨酸
4F-Phe	L-2-氟苯基丙氨酸
4F-Phe	L-1, 2, 3, 4-四氟苯基丙氨酸
Tic	L-β-丁基苯基丙氨酸
Thi	L-2-喹啉基丙氨酸
Tza	L-蛋氨酸亚砜
Mso	N-乙酰基赖氨酸
AcLys	2, 3-二氨基丙酸
Dpr	2, 4-二氨基丁酸
A₅Bu	(S)-2, 3-二氨基丁酸
Dbu	γ-氨基丁酸 (GABA)
Abu	e-氨基己酸
Aha	α-氨基异丁酸
Aib	L-0-苄基酯氨酸
Y(Bz1)	L-(4-苄基)苯基丙氨酸
Bip	L-0-苄基丝氨酸
S(Bz1)	L-0-苄基苏氨酸
T(Bz1)	L-高环己基丙氨酸
hCha	L-高半胱氨酸
hCys	L-高丝氨酸
hSer	L-高精氨酸
种类 C 的尤其优选的残基是：

L-高苯基丙氨酸
L-4-苯环基苯基丙氨酸
(2S, 4S) -4-氨基-吡咯烷-L-羧酸
(2S, 4R) -4-氨基-吡咯烷-L-羧酸
(2S, 5R) -4-苯基-吡咯烷-L-羧酸
(2S, 5S) -4-苯基-吡咯烷-L-羧酸
(2S, 5R) -5-苯基-吡咯烷-L-羧酸
(2S, 5S) -5-苯基-吡咯烷-L-羧酸
(4S)-L-羟基脯氨酸
(4R)-L-羟基脯氨酸
L-哌可酸
D-哌可酸
L-辛基甘氨酸
L-N-甲基苯基丙氨酸
L-N-甲基正亮氨酸
L-N-甲基丙氨酸
L-N-甲基异亮氨酸
L-N-甲基缬氨酸
L-N-甲基亮氨酸

[0692]
[0693]
<table>
<thead>
<tr>
<th>氨基酸</th>
<th>中文名</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>丙氨酸</td>
</tr>
<tr>
<td>Ile</td>
<td>异亮氨酸</td>
</tr>
<tr>
<td>Leu</td>
<td>亮氨酸</td>
</tr>
<tr>
<td>Met</td>
<td>蛋氨酸</td>
</tr>
<tr>
<td>Val</td>
<td>缬氨酸</td>
</tr>
<tr>
<td>tBuAl</td>
<td>丁基丙氨酸</td>
</tr>
<tr>
<td>t-BuGl</td>
<td>叔丁基甘氨酸</td>
</tr>
<tr>
<td>Cha</td>
<td>环己基丙氨酸</td>
</tr>
<tr>
<td>C₂Al</td>
<td>环丁基丙氨酸</td>
</tr>
<tr>
<td>C₃Al</td>
<td>环戊基丙氨酸</td>
</tr>
<tr>
<td>N1eL</td>
<td>正亮氨酸</td>
</tr>
<tr>
<td>hCha</td>
<td>高环己基丙氨酸</td>
</tr>
<tr>
<td>OctGl</td>
<td>辛基甘氨酸</td>
</tr>
<tr>
<td>MePhe</td>
<td>甲基苯基丙氨酸</td>
</tr>
<tr>
<td>MeN1eL</td>
<td>甲基正亮氨酸</td>
</tr>
<tr>
<td>MeAla</td>
<td>甲基丙氨酸</td>
</tr>
<tr>
<td>MeIle</td>
<td>甲基异亮氨酸</td>
</tr>
<tr>
<td>MeVal</td>
<td>甲基缬氨酸</td>
</tr>
<tr>
<td>MeLeu</td>
<td>甲基亮氨酸</td>
</tr>
</tbody>
</table>

[0694] 种类 D 的特别优选的残基是：

[0695]
种类E的尤其优选的残基是

[hPheL - 高苯基丙氨酸]
[BpaL - 芳甲酰基苯基丙氨酸]
ArgL- 精氨酸
LysL- 赖氨酸
OrnL- 鸟氨酸
DprL- 2,3- 二氨基丙酸
A.Bul- 2,4- 二氨基丁酸
Dbu(S)- 2,3- 二氨基丁酸
Phe(pNH₂)L- 对 - 氨基苯基丙氨酸
Phe(mNH₂)L- 间 - 氨基苯基丙氨酸
Phe(oNH₂)L- 邻 - 氨基苯基丙氨酸
hArgL- 高精氨酸
Phe(mC(NH₂) = NH)L- 间 - 胱基苯基丙氨酸
Phe(pC(NH₂) = NH)L- 对 - 胱基苯基丙氨酸
Phe(mNHC(NH₂) = NH)L- 间 - 胍基苯基丙氨酸
Phe(pNHC(NH₂) = NH)L- 对 - 胍基苯基丙氨酸
CitL- 瓜氨酸

Aasl- 天冬酰胺
CysL- 半胱氨酸
GlnL- 谷氨酰胺
SerL- 丝氨酸
ThrL- 苏氨酸
CitL- 瓜氨酸
PenL- 青霉胺
AcLysL- N¹- 乙酰基赖氨酸
hCysL- 高半胱氨酸
hSerL- 高丝氨酸

一般，本发明 β - 发夹模拟物内的肽链 Z 包含 12 个氨基酸残基。链 Z 中的每个氨基酸残基的 P1-P12 位明确定义如下 : P1 表示以其 N- 末端偶联到模板 (b) - (p) 或模板 (a1) 中的基团 -B-CO-, 或模板 a2 中的基团 -A-CO- 的 C- 末端上的链 Z 中的第一个氨基酸，且 P12 表示以其 C- 末端偶联到模板 (b) - (p) 或模板 (a1) 中的基团 -A-CO- 或模板 (a2) 中的基团 -B-CO- 的 N- 末端上的链 Z 中的最后氨基酸。P1-P12 位分别优选如下包含属于以上种类 C-F，或结构式 -A-CO- 或结构式 -B-CO- 之一的氨基酸残基：

- P1 : 类型 C 或类型 D 或类型 E 或类型 F；
- P2 : 类型 D；
- P3 : 类型 C；
- P4 : 类型 E，或类型 C；
P5: 种类 E, 或种类 F；
P6: 种类 E, 或种类 F, 或具有结构式 -A-CO-；
P7: 种类 E, 或种类 F, 或具有结构式 -B-CO-；
P8: 种类 D, 或种类 C, 或种类 F；
P9: 种类 C, 或种类 E；
P10: 种类 F, 或种类 D, 或种类 C；
P11: 种类 D, 或种类 C, 或种类 F；
P12: 种类 C 或种类 D 或种类 E 或种类 F；
在 P6 和 P7 处, D- 异构体也是可能的；
前提是
P4 位中的氨基酸残基是种类 C; 和 / 或
P5 位中的氨基酸残基是种类 F; 和 / 或
P8 位中的氨基酸残基是种类 F; 和 / 或
P9 位中的氨基酸残基是种类 C; 和 / 或
P10 位中的氨基酸残基是种类 F; 和 / 或
P11 位中的氨基酸残基是种类 C 或 F。
最优选, P1 至 P12 位中的氨基酸残基是:
P1: Arg;
P2: Trp;
P3: Leu;
P4: Lys 或 Val;
P5: Lys;
P6: Arg;
P7: Arg;
P8: Trp;
P9: Leu, Val 或 Lys;
P10: Tyr, Thr 或 Gln;
P11: Val, Leu, Tyr 或 Gln; 和
P12: Arg;
前提是
P4 位中的氨基酸残基是 Val; 和 / 或
P9 位中的氨基酸残基是 Leu 或 Val; 和 / 或
P10 位中的氨基酸残基是 Thr 或 Gln; 和 / 或
P11 位中的氨基酸残基是 Val 或 Leu 或 Gln。
本发明尤其优选的 β- 肽模拟物包括描述于实施例 1 至 8 的那些。
本发明方法可有利地作为平行列阵合成（parallel arraysynthesises）而进行，得到具有以上通式 I 的模板固定的 β- 发夹肽模拟物的库。这些平行合成可以高产率和规定纯度得到许多（通常 24-192, 典型地 96 种）具有通式 I 的化合物的阵列, 尽量减少形成二聚体和聚物副产物。对官能团固体载体（即固体载体加上连接剂分子）, 模板和环化反应
位的合适选择因此起着重要作用。

【0742】 固体载体利用连接剂，即在端包含固定基团用于连接到固体载体上和在另一端包含可选择性断裂的官能团用于随后化学转化和断裂步骤的双官能团分子而官能化。本发明而言，连接剂必须设计成在不影响存在于各种氨基酸侧链中的任何官能团上的保护基团的温和酸性条件下最终释放羧基基团。适用于本发明的连接剂与氨基酸的羧基基团形成酸不稳定的酯，通常酸不稳定的苯基，二苯甲基和三苯甲基酯；这种连接剂结构的例子包括 2-甲氧基-4-羟基甲基苯氧基 (Sasrin® 连接剂)，4-(2,4-二甲氧基苯基-羟基甲基)-苯氧基 (Rink 连接剂)，4-(4-羟基甲基-3-甲氧基苯氧基) 丁酸 (HMPB 连接剂)，三苯甲基和 2-氯三苯甲基。

【0743】 优选，载体衍生自用（优选 1-5%）二乙烯基苯交联和利用 2-氯三苯甲基连接剂官能化的聚苯乙烯。

【0744】 如果作为平行阵列合成而进行，本发明方法可以是有利地如下所述而进行，但本领域熟练技术人员显然立即知道在需要合成具有以上结构式 1 的单个化合物时如何对这些方法进行必要调整。

【0745】 反应容器的数目（通常 24-192，典型地 96）等于通过平行方法所要合成的化合物的总数，向其中加载 25-1000mg，优选 100mg 的合适的官能化固体载体，优选 1-3% 交联的聚苯乙烯或 tentagel 树脂。

【0746】 所选使用的溶剂必须能够溶胀树脂并且包括，但不限于，二氯甲烷 (DCM)，二甲基甲酰胺 (DMF)，N-甲基吡咯烷酮 (NMP)，二噁烷，甲苯，四氢呋喃 (THF)，乙醇 (EtOH)，三氟乙醇 (TFE)，异丙醇和类似物。包含极性溶剂作为至少一种组分的溶剂混合物 (如 20% TFE/DCM, 35% THF/NMP) 对于确保树脂键接的肽链的高反应性和溶剂化是有益的 (Fields, G. B., Fields, C. G., J. Am. Chem. Soc. 1991, 113, 4202-4207)。

【0747】 随着开发出在不影响保护侧链中的官能团的酸不稳定基团的温和酸性条件下释放 C-端羧酸基团的各种连接剂，在被保护肽片段的合成方面取得显著进展。2-甲氧基-4-羟基苄基衍生的连接剂 (Sasrin® 连接剂，Mergler 等人，四面体通讯，1988, 294005-4008) 可用稀三氟乙酸 (0.5-1% TFA，在 DCM 中）断裂和在肽合成过程中对 Fmoc 去保护条件稳定，其中 Boc/tBu-基附加保护基团与该保护方案相适应。适用于本发明方法的其它连接剂包括超酸不稳定的 4-(2,4-二甲氧基苯基-羟基甲基)-苯氧基连接剂 (Rink 连接剂，Rink, H. 四面体通讯，1987, 28, 3787-3790)，其中肽的去除需要 10%乙酸 (在 DCM 中) 或 0.2%三氯乙酸 (在 DCM 中)；4-(4-羟基甲基-3-甲氧基苯氧基) 丁酸衍生的连接剂 (HMPB-连接剂，Flörzheimer & Riniker, 脉, 1991, 1990, 131)，它也用 1% TFA/DCM 断裂以得到包含所有酸不稳定侧链保护基团的肽片段；另外，2-氯三苯甲基氯连接剂 (Barlos 等人，四面体通讯，1989, 30, 3943-3946)，它使得能够在 30 分钟内使用冰乙酸 / 三氯乙酸 /DCM(1 : 2 : 7) 的混合物进行肽脱离。

【0748】 适用于氨基酸和相应地适用于其残基的保护基团是，例如,
说明 书

- **[0749]** 对于氨基基团（如也存在于赖氨酸的侧链中）

<table>
<thead>
<tr>
<th></th>
<th>一方基氧基羰基</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cbz</td>
<td>苯基氧基羰基</td>
</tr>
<tr>
<td>Boc</td>
<td>叔丁基氧基羰基</td>
</tr>
<tr>
<td>Fmoc</td>
<td>9- 奈基甲氧基羰基</td>
</tr>
<tr>
<td>Alloc</td>
<td>烯丙基氧基羰基</td>
</tr>
<tr>
<td>Teoc</td>
<td>三甲基甲硅烷基乙氧基羰基</td>
</tr>
<tr>
<td>Tcc</td>
<td>三氯乙氧基羰基</td>
</tr>
<tr>
<td>Nps</td>
<td>o- 硝基苯基磺酰基</td>
</tr>
<tr>
<td>Trt</td>
<td>三苯基甲基或三苯甲基</td>
</tr>
</tbody>
</table>

- **[0751]** 对于羧基基团（如也存在于天门冬氨酸和谷氨酸的侧链中），其中与酶组分反应而转化成酯

<table>
<thead>
<tr>
<th></th>
<th>一方基氧基羰基</th>
</tr>
</thead>
<tbody>
<tr>
<td>tBu</td>
<td>叔丁基</td>
</tr>
<tr>
<td>Bn</td>
<td>苯基</td>
</tr>
<tr>
<td>Me</td>
<td>甲基</td>
</tr>
<tr>
<td>Ph</td>
<td>苯基</td>
</tr>
<tr>
<td>Pac</td>
<td>苯甲酰甲基</td>
</tr>
<tr>
<td>Alloc</td>
<td>烯丙基</td>
</tr>
<tr>
<td>Tse</td>
<td>三甲基甲硅烷基乙基</td>
</tr>
<tr>
<td>Tcc</td>
<td>三氯乙基</td>
</tr>
</tbody>
</table>

- **[0753]** 对于胍基基团（如存在于精氨酸的侧链中）

- **[0754]**
说明 书

<table>
<thead>
<tr>
<th>Pmc</th>
<th>2,2,5,7,8-五甲基色拉-6-磺酰基</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ts</td>
<td>对甲苯磺酰基 (即 p-甲苯磺酰基)</td>
</tr>
<tr>
<td>Cbz</td>
<td>N-甲基氧基羰基</td>
</tr>
<tr>
<td>Pbfs</td>
<td>五甲基二氯苯并呋喃-5-磺酰基</td>
</tr>
</tbody>
</table>

[0755] 对于羟基基团（如存在于苏氨酸和丝氨酸的侧链中）

[0756]

<table>
<thead>
<tr>
<th>tBu</th>
<th>叔丁基</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bn</td>
<td>苯基</td>
</tr>
<tr>
<td>Trt</td>
<td>三苯甲基</td>
</tr>
</tbody>
</table>

[0757] 和对于巯基基团（如存在于半胱氨酸的侧链中）

[0758]

<table>
<thead>
<tr>
<th>Acm</th>
<th>乙酰氨基甲基</th>
</tr>
</thead>
<tbody>
<tr>
<td>tBu</td>
<td>叔丁基</td>
</tr>
<tr>
<td>Bn</td>
<td>苯基</td>
</tr>
<tr>
<td>Trt</td>
<td>三苯甲基</td>
</tr>
<tr>
<td>Mtr</td>
<td>4-甲氧基三苯甲基</td>
</tr>
</tbody>
</table>

[0759] 9-芴基甲氧基羰基-(Fmoc)-保护的氨基酸衍生物优选用作结构单元以构造具有结构式 I 的模板固定 B-发夹环模拟物。为了去保护，即切离出 Fmoc 基团，可以使用 20% 呋喃（在 DMF 中）或 2% DBU/2%呋喃（在 DMF 中）。

[0760] 反应物，即氨基酸衍生物的量通常是 1-20 当量，基于起始称重至反应管中的官能团固载体的毫克当量 / 克 (meq/g) 加载量（典型为 0.1-2.85meq/g，对于聚苯乙烯树脂）。如果需要在合理时间内完成，可以使用附加当量的反应物。反应管以及夹具组 (holderblock) 和歧管 (manifold) 被重新插入储器组 (reservoir block) 中并使该装置固定在一起。开始使气流流过歧管以提供受控环境，例如，氨，氮，空气和类似环境。气体流动也可在流过歧管之前被加热或冷却。反应井的加热或冷却通过加热反应区或用丙酮 / 干冰和类似物外部冷却以达到所需合成反应而实现。搅动通过振荡或磁搅拌（在反应管内）而实现。优选的工作站（但不限于）是 Labsource’s Combi-chemstation 和 MultiSynTech’s-Syro 合成仪。

[0761] 酰胺键形成需要活化用于酰基化步骤的 α-羧基基团。如果该活化利用常用的碳

由于近定量偶联反应是必需的, 因此希望掌握反应完成的实验证据。苯三酰试验 (Kaiser 等人, 分析生物化学, 1970, 34, 595) 可在每个偶联步骤之后容易和快速地进行, 其中对树脂链接的肽的等分试样的阳性比色响应定性地表示酯的区别。Fmoc 化学能够在 Fmoc 发色团用硫释放时对其进行分光光度检测 (Meienhofer 等人, Int. J. Peptide Protein Res. 1979, 13, 35–42)。

在每个反应管内的树脂链接的中间体通过两种以下方法之一通过重复暴露于纯溶剂而被洗洗掉的保留试剂, 溶剂, 和副产物：

1. 反应并用溶剂 (优选 5ml) 填充, 将反应管以及夹具组和岐管浸入并搅拌 5–500 分钟, 优选 15 分钟, 然后通过重力而流干, 随后通过经岐管入口 (在关闭出口的同时) 施加气压以排出溶剂；

2. 气励从夹具组中去除, 将溶剂的等分试样 (优选 5ml) 通过反应管的顶部分散并利用重力通过过滤器排放至预热容器如试验管或小瓶中。

重复以上的洗涤步骤最高约 50 次 (优选约 10 次), 其中通过 TLC, GC, 或检查洗涤物之类的方法检测试剂, 溶剂, 和副产物去除的效率。

对于每次连续的转化过程, 重复使树脂链接的化合物与试剂在反应管内反应, 然后去除过量试剂, 副产物和溶剂的上述程序, 直至得到最终的树脂链接的完全保护的线性肽。

在该完全保护的线性肽从固体载体上脱离之前, 如果需要, 可选择性地去保护一个或多个存在于分子中的保护的官能团和合适地取代如此释放出的反应性基团。为此, 所述官能团必须起始被这样的保护基团所保护, 所述保护基团可选择性地被去除而不会影响所存在的其余保护基团。Alloc (烯丙基氧基铵基) 是氨基的这种保护基团的一个例子, 它可例如利用 Pd0 和苯基硅烷在 CH2Cl2 中被选择性地去除而不会影响存在于分子中的其余保护基团, 如 Fmoc。如此释放的反应性基团可随后用一种适用于需所需取代基的试剂处理。因此, 例如, 氨基基团可利用对二醛基取代基的酰化试剂而被酰化改。
[0769] 完全保护的线性肽从固体载体中的分离通过将反应管，以及夹具组和歧管浸入包含断裂试剂的溶液（优选 3-5mL）的反应井中而实现。气体流，温度控制，搅拌，和反应监控如上所述并根据需要实施以进行分离反应。反应管，以及夹具组和歧管从储器组中拆开并升高到溶液液位之上但低于反应井的上唇，然后通过歧管入口（在关闭出口的同时）施加气压以有效地将最终产物溶液排出到储器井中。留在反应管中的树脂随后如上用 3-5mL 合适的溶剂洗涤 2-5 次以萃取（洗出）尽可能多的分离产物。将如此得到的产物溶液合并，注意避免交叉混合。各个溶液 / 提取物随后根据需要进行处理以分离出最终化合物。典型的处理包括，但不限于此，蒸发，浓缩，液体 / 液体萃取，酸化，碱化，中和或在溶液中的其它的反应。

[0770] 蒸发包含已从固体载体切离并用碱中和的完全保护的线性肽生物化的溶液。环化反应随后在溶液中使用溶剂如 DCM, DMF, 二嗯烷, THF 和类似物来进行。较早提及的各种偶联试剂可用于环化反应。环化反应持续时间是约 6-48 小时，优选约 24 小时。反应进程用例如 RP-HPLC（反相高效液体色谱）监检。随后溶剂通过蒸发被去除，将完全保护的环肽衍生物溶解在与水不混溶的溶剂，如 DCM 中，并将溶液用水或水湿溶性溶剂的混合物萃取以去除所有过量的偶联试剂。

[0771] 在将保护基团从完全保护的环肽中去除之前，如果需要，可在 β-链区域的相对位置上形成合适的氨基酸残基的侧链之间的链间键。

[0772] 链间键和其形成以上已在解释种类 II 的基团时讨论，例如，可以是通过在 β-链的相对位置上的半胱氨酸和高半胱氨酸形成的二硫桥，或通过酰胺键形成而分别连接位于相对的 β-链位的鸟氨酸和赖氨酸的谷氨酸和天门冬氨酸残基。这些链间键的形成可通过本领域熟知的方法而进行。

[0773] 最后，种类 I 的完全保护的肽衍生物用 95% TFA, 2.5% H2O, 2.5% TIS 或清除剂另一组合进行处理以进行保护基团的切离。切离反应时间通常是 30 分钟 -12 小时，优选约 2 小时。然后大多数 TFA 被蒸发并将产物用甲 / 己烷 (1:1) 或适用于此的其它溶剂沉淀。在小心去除溶剂之后，可分离出作为最终产物得到的环肽衍生物。根据其纯度，该肽衍生物可直接用于生物分析，或它必须例如通过制备性 HPLC 而进一步纯化。

[0774] 如上所述，根据需要，可随后将如此得到的完全去保护产物转化成药物可接受盐或将如上所述的方法可接受的或在不考虑盐转化反应式 I 的相应游离化合物或转化成不同的药物可接受盐。任何这些操作可通过本领域熟知的方法而进行。

[0775] 现详细讨论用于本发明方法的起始原料，用于此的预起始原料，以及这些起始和预起始原料的制备。

E. Dziadulewicz, L. Behrendt, S. Cantoreggi, R. Fitzi, Liebigs Ann. Chem. 1989, 1215-1232 \((R^1 = Me; R^2 = H) \).

A7: 参见 Fichter, J. Prakt. Chem. 1906, 74, 310 (R² = Me; R³ = Ph).

Pharm. Bull. 1976, 24, 1362-1369 (R¹ = CH₃; R⁶ = H).

[0790] A14：种类 A14 的氨基酸可根据方案 1 制成。

[0791] 方案 1

![Chemical Structure Diagram]

[i: NaH, BrCH(R¹)COOMe, DMF; ii: LiOHx1H₂O, MeOH, H₂O; iii: 多磷酸 (PPA); iv: NaH, ClCOOMe, THF; v: 酶催拆分（如酯酶）; vi: NaOH, MeOH, H₂O, 加热; vii: FmocOSu, Na₂CO₃aq., 二噁烷]

[0799] A19: 参见 Beilstein, 注册号 648833 (R¹ = R² = R³ = H)。这种化合物可根据方案 2 制备。

[0800] 方案 2

[0801]

[0802] i: NaH, CH₃(COOMe)₂, DMSO; ii: NaH, R¹-X, DMSO; iii: NaOHaq., MeOH, 75°; iv: DBU, MeOH, DMF; v: LDA, BocN = NBoc; vi: TFA, CH₂Cl₂; vii: CbzCl, Na₂CO₃aq.; 二噁烷; viii: 酶促拆分（如脂肪酶）; 然后 DBu, Mel, DMF; ix: NaH, R¹-X, THF; x: Pd/C, H₂, EtOH; xi: LiOH, H₂O, MeOH, H₂O; xii: FmocOSu, Na₂CO₃aq.; 二噁烷

[A0809] 种类 A25 的化合物也可根据方案 3 制备:

[A0810] 方案 3

[A0811]
[0812] i: Lawesson 试剂，甲苯，80°C；ii: DBU，Mel，DMF；iii: NaBH₄ or NaCNBH₃，MeOH；iv: Boc₂O，THF；v: LiOH·H₂O，MeOH·H₂O；vi: Pd/C，H₂，EtOH；vii: FmocOSu，Na₂CO₃aq.，二嗯烷

[0813] A26：参见 Koegel, J. Biol. Chem. 1953, 201, 547 (R¹ = R² = H)。

[0817] A30 和 A31 可根据方案 4 和 5 制备。
方案 4

1: NaH, N-苯酰甘氨酸叔丁酯, DMF; 2: NaH, Pd(0), 甲苯; 3: TFA, CHCl₃; 4: 多磷酸; 5: NaOHaq., MeOH, 75°; 之后 HClaq.; 6: DBU, MeI, DMF; 7: lithium hexamethyl-disilazide, THF, 三甲基氯硅烷, -78°; 之后 R¹-x; 8: 酶促脱分 (如酯酶); 之后分离为甲基酯; DBU, MeI, DMF; 9: NaOHaq., MeOH, 加热; x: FmocOSu, Na₂CO₃aq., 二噁烷

方案 5

Boc₂O, Na₂CO₃aq., 二噁烷; 2: DBU, MeI, DMF; 3: lithium hexamethyl-disilazide, THF, 三甲基氯硅烷, -78°; 之后 R²-x; 4: LiOHxH₂O, MeOH, H₂O; 5: TFA, CHCl₃; 6: FmocOSu, Na₂CO₃aq., 二噁烷

[0827] A35: 参见 Beilstein 注册号 530775, 883013 (R^1 = R^8 = H).

[0831] A39: 参见 Beilstein, 注册号 782885。

[0833] 方案 6

[0834] i: BocNH_2, NaCNBH_3, MeOH, AcOH; ii: CbzCl, Et_3N, CH_2Cl_2; iii: TFA, CH_2Cl_2; 之后哌啶, DMAP, 加热; iv: 拆分（如酯酶）; v: DBU, Mel, DMF; vi: Lawesson 试剂, 甲苯, 75°; vii: DBU, Mel, DMF; viii: NaBH_4 或 NaCNBH_3, MeOH; ix: 通过还原性胺化、烷基化或酰基化引入

83
R₃; x: LiOH Å 1H₂O, MeOH, H₂O; xi: Pd/C, H₂, EtOH; xii: FmocOSu, Na₂CO₃aq., 二噁烷

[0836] A41: 这种化合物可根据方案制备。
[0837] 方案 7

[0838] i: 拆分（如酯酶）；然后分离为甲基酯:DBU, Mel, DMF; ii: NaH, R⁻⁻⁻⁻X, THF; iii: LiOH Å 1H₂O, MeOH, H₂O; iv: Pd/C, H₂, EtOH; v: FmocOSu, Na₂CO₃aq., 二噁烷

[0841] 方案 8

[0842] i: lithium hexamethyldisilazide, THF, 三甲基氯硅烷, -78°; 之后 R⁻⁻⁻⁻X; ii: HBr; iii: DBU, Mel, DMF; iv: DIBAL-H, THF; v: EtOH. 对甲苯磺酸吡啶钠, 分子筛 4A; vi: lithium hexamethyldisilazide, THF, -78°, 33; vii: Pd/C, H₂, EtOH; 之后 DBU, Mel, DMF; 之后 TFA, CH₂Cl₂; viii: HClaq., THF; 之后 Na(OAc)₃BH, AcOH, 二氯乙烷; ix: LiOH Å 1H₂O, MeOH, H₂O; x: FmocOSu, Na₂CO₃aq. 二噁烷

[0844] 方案 9

[0845]
[0846] i: lithium hexamethyldisilazide, THF, 三甲基氯硅烷，-78°；之后 R'-X；ii: HBr; iii: DBU, Mel, DMF; iv: DIBAL-H, THF; v: EtOH, 甲苯磺酰氯, 分子筛 4A; vi: lithium hexamethyldisilazide, THF, -78°, 39; vii: Pd/C, H₂, EtOH; 之后 DBU, Mel, DMF; 之后 TFA, CH₂Cl₂; viii: HClaq., THF; 之后 Na(OAc)₃BH, AcOH, 二氯乙烷; vii: Boc₂O, Et₂N, CH₂Cl₂; ix: Bu₃NF, 10H₂O, THF; ix: 氯代酸氯烷; x: LiOH·H₂O, MeOH, H₂O; xi: TFA, CH₂Cl₂; xii: FmocOSu, Na₂CO₃aq., 二噁烷

[0847] 方案 10

[0848]

[0849] i: HBr; ii: DBU, Mel, DMF; iii: DIBAL-H, THF; iv: EtOH, 甲苯磺酰氯, 分子筛 4A; v: lithium hexamethyldisilazide, THF, -78°, 43; vi: Pd/C, H₂, EtOH; 之后 DBU, Mel, DMF; 之后 TFA, CH₂Cl₂; vii: HClaq., THF; 之后 Na(OAc)₃BH, AcOH, 二氯乙烷; viii: LiOH·H₂O, MeOH, H₂O; ix: FmocOSu, Na₂CO₃aq., 二噁烷

[0850] 方案 11

[0851]
[0852] i: HBr; ii: DBU, Mel, DMF; iii: DIBAL-H, THF; iv: EtOH, 对甲苯磺酸吡啶鎓，分子筛 4Å; v: lithium hexamethyldisilazide, THF, -78°, 47; vi: Pd/C, H₂, EtOH; 之后 DBU, MeI, DMF; 之后 TFA, CH₂Cl₂; vii: HClaq., THF; 之后 Na(OAc)₃BH, AcOH, 二氯乙烷; viii: Boc₂O, Et₃N, CH₂Cl₂; ix: Bu₄NF, 10H₂O, THF; x: 氯化亚砜; xi: LiOH·H₂O, MeOH, H₂O; xii: TFA, CH₂Cl₂; xiii: FmocOSu, Na₂CO₃aq., 二噁烷

[0853] 方案 12

[0854]

[0855] i: HBr; ii: DBU, Mel, DMF; iii: DIBAL-H, THF; iv: EtOH, 对甲苯磺酸吡啶鎓，分子筛 4Å; v: lithium hexamethyldisilazide, THF, -78°, 51; vi: Pd/C, H₂, EtOH; 之后 DBU, MeI, DMF; 之后 TFA, CH₂Cl₂; vii: HClaq., THF; 之后 Na(OAc)₃BH, AcOH, 二氯乙烷; viii: Boc₂O, Et₃N, CH₂Cl₂; ix: Bu₄NF, 10H₂O, THF; ix: 氯化亚砜; xi: LiOH·H₂O, MeO H, H₂O; xii: TFA, CH₂Cl₂; xiii: FmocOSu, Na₂CO₃aq., 二噁烷

方案 13

i: NaH, CbzNH(CH₂)₂Br, THF; ii: Pd/C, H₂, EtOH; iii: EDCI, CH₂Cl₂, 二异丙基乙胺; iv: NaH, R¹²-X, THF; v: LiOHxH₂O, MeOH, H₂O; vi: TFA, CH₂Cl₂; vii: FmocOSu, Na₂CO₃aq., 二噁烷

方案 14

A50 和 A51; 这些种类的化合物可根据方案 14 和 15 制备。

方案 15

i: HBr; ii: DBU, Mel, DMF; iii: DIBAL-H, THF; iv: EtOH, 对甲苯磺酸吡啶鎓, 分子筛 4A; v: lithium hexamethyldisilazide, THF, -78°, 59; vi: Pd/C, H₂, EtOH; 之后 DBU, Mel, DMF; 之后 TFA, CH₂Cl₂; vii: HClaq., THF; 之后 Na(ΟAc)₃BH, AcOH, 二氯乙烷; viii: LiOHxH₂O, MeOH, H₂O; ix: FmocOSu, Na₂CO₃aq., 二噁烷
[0868] i : HBr; ii : DBU, Mel, DMF; iii : DIBAH, THF; iv : EtOH, 对甲苯磺酸吡啶鎓, 分子篩 4A; v : lithium hexamethyldisilazide, THF, -78 °; 63 vi : Pd/C, H₂, EtOH; 之后 DBU, Mel, DMF; 之后 TFA, CH₂Cl₂; vili : HClaq., THF; 之后 Na(OAc)₃, BH, AcOH, 二氯乙烷; viii : Boc₂O, Et₃N, CH₂Cl₂; ix : Bu₄NF × 1H₂O, THF; x : 氟化铵吡啶鎓; xi : LiOH x 1H₂O, MeOH, H₂O; xii : TFA, CH₂Cl₂; xili : FmocOSu, Na₂CO₃aq., 二嗯烷

[0870] A52 和 A54: 这种化合物可根据方案 16 和 17 制备。

[0871] 方案 16

[0872]

[0873] i : iBuMgCl, THF; ii : NaH, THF; iii : lithium hexamethyldisilazide, THF, 三
甲基氯硅烷，-78°；之后 R^1-X；iv : NaOHaq., MeOH, 75°；之后 HClaq.; v : DBU, Mel, DMF; vi : lithium hexamethyl-disilazide, THF, 三甲基氯硅烷, -78°；之后 R^2-X；vii : 拆分（如酯酶）；之后 DBU, Mel, DMF; viii : LiOHx1H_2O, MeOH, H_2O; ix : TFA, CH_2Cl_2; x : FmocOSu, Na_2CO_3aq., 二𫫇烷

[0874] 方案 17

[0875]

[0876] i : NaN_3, DMSO; ii : NaH, THF, CH_2 = CHCOOBn; iii : Pd/C, H_2, EtOH; iv : EDCI, CH_2Cl_2, 二异丙基乙胺; v : NaH, R^12-X, THF; vi : LiOHx1H_2O, MeOH, H_2O; vii : TFA, CH_2Cl_2; viii : FmocOSu, Na_2CO_3aq., 二𫫇烷

[0877] A55 和 A56 ; 这种化合物可根据方案 18 和 19 制备。

[0878] 方案 18

[0879]

[0880] i : NaH, THF, CbzNH(CH_2)_3Br; ii : Pd/C, H_2, EtOH; 之后甲苯, 加热; iii : 拆分（如酯酶）; iv : DBU, Mel, DMF; v : NaH, R^12-X, THF; vi : LiOHx1H_2O, MeOH, H_2O; vii : TFA, CH_2Cl_2; viii : FmocOSu, Na_2CO_3aq., 二𫫇烷

[0881] 方案 19

[0882]

89
[0883] i: HBr; ii: DBU, Mel, DMF; iii: DIBAL-H, THF; iv: EtOH, 对甲苯磺酸吡啶盐; 分子筛 4A; v: lithium hexamethyldisilazide, THF, -78°C, 86; vi: Pd/C, H₂, EtOH; 之后 DBU, Mel, DMF; 之后 TFA, CH₂Cl₂; vii: HClaq., THF; 之后 Na(OAc)₃BH, AcOH, 二氯乙烷; viii: LiOH·H₂O, MeOH, H₂O; ix: FmocOSu, Na₂CO₃aq., 二噁烷

[0884] A57: 这类化合物可根据方案 20 制备。

[0885] 方案 20

[0886]

[0887] i: NaOMe, MeOH; ii: NaH, THF; iii: NaOHaq., MeOH, 75°C; 之后 HClaq.; iv: DBU, Mel, DMF; v: lithium hexamethyldisilazide, THF, 三甲基氯硅烷, -78°C; 之后 R¹·X; vi: 拆分（如酯酶）; 之后分离甲基酯: DBU, Mel, DMF; vii: LiOH·H₂O, MeOH, H₂O; viii: TFA, CH₂Cl₂; ix: FmocOSu, Na₂CO₃aq., 二噁烷

[0889] A59: 可根据方案 21 制备。

[0890] 方案 21

[0891]
[0892] i: NaOMe, MeOH; ii: NaH, THF; iii: NaODaq., MeOH, 75 °; 之后 HClaq.; iv: DBU, Mel, DMF; v: lithium hexamethyldisilazide, THF, 三甲基氯硅烷, -78 °; 之后 R¹-X; vi: 拆分（如酯酶）; 之后分离甲基酯: DBU, Mel, DMF; vii: LiOHxH₂O, MeOH, H₂O; viii: TFA, CH₂Cl₂; ix: FmocOSu, Na₂CO₃aq., 二噁烷

[0893] A60: 这类化合物可根据方案 22 制备。

[0894] 方案 22

[0895]

[0896] i: NaH, DMSO; ii: NaODaq., MeOH, 75 °; 之后 HClaq.; iii: DBU, Mel, DMF; iv: NaOMe (2.2 equiv.), R¹-X; v: Raney-Ni, H₂, EtOH; vi: CbzCl, Et₃N, CH₂Cl₂; vii: NaH, Br(CH₂)₃Br, THF; viii: 拆分（如酯酶）; 之后 DBU, Mel, DMF; ix: Pd/C, H₂, EtOH; x: NaH, R¹-X, THF; xi: LiOHxH₂O, MeOH, H₂O; xii: TFA, CH₂Cl₂; xiii: FmocOSu, Na₂CO₃aq., 二噁烷

[0898] A62：这类化合物可根据方案 23 制备。

[0899] 方案 23

[0900]

[0901] i: 拆分（如脂肪酶）; 之后 DBU, Mel, DMF; ii: lithium hexamethyldisilazide, THF, 三甲基氯硅烷, -78\(^\circ\)C; 之后 R\(^6\)-X; iii: LiOH·H\(_2\)O, MeOH, H\(_2\)O; iv: TFA, CH\(_2\)_Cl\(_2\); v: FmocOSu, Na\(_2\)CO\(_3\)aq., 二噁烷

[0903] A64：这类化合物可根据方案 24 制备。

[0904] 方案 24

[0905]

[0906] i: Na\(_2\), DMSO; ii: Pd/C, H\(_2\), EtOH; iii: iBuOCOC\(_2\)H; 之后重氮甲烷; iv: HBr, CH\(_2\)_Cl\(_2\); v: NaH, THF; vi: NaOH, MeOH, 75\(^\circ\)C; 之后 HCl, vii: DBU, Mel, DMF; viii: 二异丙基氯化铝, THF, 三甲基氯硅烷, -78\(^\circ\)C; 之后 R\(^1\)-X; ix: 拆分（如脂肪酶）; 之后分离甲基酯; DBU, Mel, DMF; x: LiOH·H\(_2\)O, MeOH, H\(_2\)O; xi: TFA, CH\(_2\)_Cl\(_2\); xii: FmocOSu, Na\(_2\)CO\(_3\)aq., 二噁烷

[0907] A65 和 A67：这些种类的化合物可根据方案 25 和 26 制备。
[0908] 方案 25

[0909]

[0910] i: NaH, DMSO, BrCH(R')COOMe; ii: LiOHxH₂O, MeOH, H₂O; iii: 多磷酸; iv: NaH, ClCOOMe, THF; v: 拆分（如酯酶）; 之后分离为甲基酯; DBU, Mel, DMF; vi: LiOHxH₂O, MeOH, H₂O; vii: TFA, CH₂Cl₂; viii: FmocOSu, Na₂CO₃aq., 二𫫇烷

[0911] 方案 26

[0912]

[0913] i: NaH, THF, CH₃; ii: NaH, DMSO; iii: Bu₄NFxH₂O, THF; iv: 甲磺酰氯, Et,N, CH₂Cl₂; 之后 NaH, THF; v: NaOHaq., MeOH, 75 °; 之后 HClaq.; vi: DBU, Mel, DMF; vii: lithiumhexamethyldisilazide, THF, 三甲基氯硅烷, -78 °; 之后 R'-X; viii: Pd/C, H₂, EtOH; ix: NaH, THF, R'-X; x: 拆分（如酯酶）; 之后分离甲基酯; DBU, Mel, DMF; xi: LiOHxH₂O, MeOH, H₂O; xii: TFA, CH₂Cl₂; xiii: FmocOSu, Na₂CO₃aq., 二𫫇烷 A66; 参见 G. L. Grunewal ld, L. H. Dahanukar, J. Heterocycl. Chem. 1994, 31, 1609-1618 (R¹ = H; R⁸ = H, 8-NO₂; C(1) = 0).

[0914] A68; 参见 Griesbeck, H. Mauder, I. Müller, Chem. Ber. 1992, 11, 2467-2476; (R¹ = R⁸ = H; C(1) = 0).
说明

0916 如上所述，结构单元A70属于开链α-取代的α-氨基酸，A71和A72属于相应的β-氨基酸类似物且A73-A104属于A70的环状类似物。

0918 方案27

0919
[0920] i: KCN, (NH₄)₂CO₃, EtOH/H₂O; ii: Ba(OH)₂, H₂O; iii: aq. NaOH, PhCOCl, 二噁烷; 之后 DCC, CH₂Cl₂; iv: NaH, DMF, R₁¹⁻X or R¹⁻X; v: L- 苯丙氨酸环己基酰胺；N- 甲基吡咯烷酮，70°; vi: CH₂SO₂H, MeOH, 80°; vii: 6N HClaq., 二噁烷, 100°; viii: Me₃SiCl, DIEA, CH₂Cl₂; 之后 FmocCl

[0924] i:KCN, (NH₂)₂CO₃, EtOH/H₂O; ii: Ba(OH)₂, H₂O; iii: aq. NaOH, PhCOCl, 二噁烷; 之后 DCC, CH₂Cl₂; iv: L-苯丙氨酸环己基酰胺, N-甲基吡咯烷酮, 70°; v: CH₃SO₂H, MeOH, 80°; vi: 6N HCl aq., 二噁烷, 100°; vii: Me₃SiCl, DIPEA, CH₂Cl₂; the FmocCl

A71: 这类氨基酸结构单元 (参见结构式 147) 可适宜地由相应的二取代琥珀酸酯 146 通过方案 29 所示的 Curtius-重排而制备。

方案 29

146

\[\text{HOOC} \rightleftharpoons \text{COOMe} \quad \xrightarrow{i} \quad \text{CbzHN} \rightleftharpoons \text{COOMe} \]

147

[i: 二苯基磷酸酰基叠氮化物, 甲苯, 80°C; 之后苯醇]

方案 30

148

\[\text{BochHN} \rightleftharpoons \text{COOH} \quad \xrightarrow{i} \quad \text{BochHN} \rightleftharpoons \text{COOH} \]

149

[i: iBuOCOCl, 二并丙基乙胺, CH₂Cl₂, 之后重氮甲烷, hv or Cu(I)]

[0937] A74: 这类化合物可根据描述于方案 28 的一般方法由相应的环丁酮开始制备。

[0941] A79: 这类化合物可根据描述于方案 28 的一般方法由相应的吡咯烷-3-酮开始制备。

[0943] A83: 这类化合物可根据描述于方案 28 的一般方法由相应的吡唑啉-4-酮开始制备。

[0945] A85: 这类化合物可根据描述于方案28的一般方法由相应的肼 -1,3- 二酮开始制备。

[0946] A86: 这类化合物可根据描述于方案28的一般方法由相应的腙 -2-酮开始制备。

[0949] A89: 这类化合物可根据描述于方案28的一般方法由相应的哌啶 -3- 酮开始制备。

[0950] A90: 这类化合物可根据描述于方案28的一般方法由相应的四氢嘧啶 -3- 酮开始制备。

[0951] A91: 这类化合物可根据描述于方案28的一般方法由相应的四氢吡喃 -3- 酮开始制备。

[0952] A92: 这类化合物可根据描述于方案28的一般方法由相应的哌啶 -2,5- 二酮开始制备。

[0953] A93: 这类化合物可根据描述于方案28的一般方法由相应的环己酮开始制备。

[0956] A96: 这类化合物可根据描述于方案28的一般方法由相应的四氢吡喃 -4- 酮开始制备。

[0957] A97: 这类化合物可根据描述于方案28的一般方法由相应的哌啶 -2,4- 二酮开始制备。

[0959] A99: 这类化合物可根据描述于方案28的一般方法由相应的四氢萘 -1,4- 二酮单 - 二乙基缩醛开始制备。

[0960] A100: 这类化合物可根据描述于方案28的一般方法由相应的四氢嘧啶 -4- 酮开始制备。

[0961] A101: 这类化合物可根据描述于方案28的一般方法由相应的四氢嘧啶 -2,4- 二酮开始制备。

[0964] 种类 (bi) 的模板可根据方案 31 和 32 制备。

[0965] 方案 31

[0966]

[0967] i : 150 用脱水试剂如亚硝酸氯在甲醇中在升高温度下, 适宜地在回流下处理。

[0968] ii : 如在合适的溶剂如二氯甲烷中使用二碳酸二叔丁基酯 (di-tert.-butyl dicarbonate) 和三乙基胺而引入 Boc; 任何其它合适的 N- 保护基团 (在反应方案 31 中没有显示) 可按照类似方式引入。

[0970] iv : 将 151 用三氟乙酸在二氯甲烷中处理。

[0971] v : 152 在标准肽偶联条件下与 Cbz-Asp(tBu)OH 在 DMF 中使用试剂如 HBTU 和 1-羟基苯并三唑 (HOBr) 使用碱如二异丙基二苯基偶联得到 153。

[0972] vi : 适宜地通过使用 H2 和催化剂如在室温上的钯, 在溶剂如乙醇, DMF 和乙酸乙酯中氢化而去除 Cbz- 基团。

[0973] vii : 邻苯二甲酰亚胺基团适宜地通过用肼在合适的溶剂如乙醇中在升高的温度, 合适地在约 80 °C 下处理并将其所形成的产物用三氯乙酸在 CH2Cl2 中断裂而从所得产物切离。

[0977] i: 将 150 用脱水试剂如亚硫酸氢在合适的溶剂如甲醇中在升高的温度下回流下处理。

[0978] ii: 所得氨基酸酯在用于引入 Cbz- 基团的标准条件下, 如在合适的溶剂如二氯甲烷中使用苯基氨基甲酸苯甲酰氯和三乙基胺而被 N- 保护。

[0981] v: 所得产物使用 H2 和合适的催化剂如在木炭上的钯在溶剂如乙酸乙酯, DMF 或乙醇中氯化; 随后分离非对映体并得到 156。

[0982] vi: 156 与 Fmoc-Asp(烯丙基)OH 在标准胺偶联条件下使用试剂如 HATU, HOAt 和碱如二异丙基乙基胺在合适的溶剂如 DMF 中偶联。

[0983] vii: 适宜地用 DBU 在 DMF 中环化得到 157。

[0984] viii: 邻苯二甲酰亚胺基团适宜地通过脱解, 如用甲基酯在合适的溶剂如 DMF 中处理而从所得产物切离。

[0985] ix: 所形成的产物适宜地使用碱如碳酸氢钠或三乙基胺在合适的溶剂或溶剂的混合物如二嗯烷和水, 或二氯甲烷中用试剂如 9- 萘基甲氧基羰基氯或 9- 萘基甲氧基羰基琥珀
酰亚胺保护得到 158。

[0986] x; 使用如钯 (0) 作为催化剂进行烯丙基酯基团的标准去除, 得到 159。

[0987] (b2) 类型模板可根据方案 33 制备。

[0988] 方案 33

[0989]

[0991] ii; 邻苯二甲酰亚胺基团适当地通过解解, 如通过用甲基苯在合适的溶剂如 DMF 中处理而从产物中切除。

[0992] iii; 氨基基团通过用苯甲酰基化试剂如苯甲酸酐或苯甲酰氯和碱如三乙基胺或

[0993] 4-二甲基氨基吡啶在合适的溶剂如二氯甲烷或 DMF 中处理而被保护。

[0994] iv; 例如用 K₂S₂O₈ 和 Na₂HPO₄ 在含水乙腈中在升高的温度, 如在约 80 ℃下去除 2, 4-二甲氧基苄基基团。

[0995] v; 在合适的溶剂如二氯甲烷中使用如二-叔丁基氧基羰基二碳酸酯 (di-tert.-butyloxy carbonyl dicarbonate), 三乙基胺和催化量的 4-二甲基氨基吡啶而引入叔丁氧基羰基基团。

[0996] vi; 与含水碳酸钠在四氢呋喃中反应, 随后酸化。

[0997] vii; 适当地用重氮甲烷在合适的溶剂如乙基醚中酰化羧酸基团, 得到 161。

xi: 适宜地使用在二氯甲烷中的三氟乙酸或在二噁烷中的 4N 氢氟酸而切离叔丁基酯和叔丁基氧基羰基基团。

(c1) 类型模板可根据方案 34-37 制备。

方案 34

[1006] i: 166 可根据 P. Waldmeier, “用于合成 β- 转角稳定化环肽库的高度取代的咕吨衍生物的模板的固体承栽合成”（博士论文, 苏黎世大学, 1996）而由 165 合成。为了切离邻苯二甲酰亚胺基团，166 适宜地进行脱解，如用肼水合物在合适的溶剂如乙醇中在升高的温度，如在约 80°C 下处理。

[1007] ii: 中间体氨基酯适宜地在碱性条件下，如使用含水氢氧化钠在合适的溶剂如乙醇中在升高的温度，适宜地在回流下皂化，得到 167。

[1009] iv:167 的区域选择性溴化优选使用溴在乙酸和二氯甲烷中进行。按照类似的方式，$R^{37} = NO_2$ 可通过用 HNO_3 在乙酸中处理而引入和 $R^{37} = CH_2-NPh$ 通过用羟基甲基邻苯二甲酰亚胺在 H_2SO_4 中处理而引入。

[1010] v: 氨基基团适宜地用试剂如苄基氧基羰基氯或琥珀酰亚胺在合适的溶剂如二嗯烷中在碱如含水氢氧化钠的存在下进行 Cbz- 保护。

[1011] vi: 羧酸基团优选使用 DBU 和甲基碘在 DMF 中被酯化，得到 169。

[1013] viii: 如通过使用 H_2 和催化剂如在木炭上的钯在合适的溶剂如乙醇，DMF 和乙酸乙酯中氢化而去除 Cbz- 基团。

[1014] ix: 适宜地在酸性条件下，如使用 25% 含水氯化酸在合适的溶剂如二嗯烷中在升高温度，优选在约 100℃ 下水解酯基团。

[1015] x: 形成的中间体游离氨基酸适宜地通过在合适的溶剂或溶剂的混合物如二嗯烷和水，或二氯甲烷中使用碱如碳酸钠或三乙基胺而用试剂如 9- 苄基甲氧基羰基氯或 9- 苄基甲氧基羰基琥珀酰亚胺保护，得到 170。

[1016] 方案 35

[1017]

[1018] i: 171 的双邻 - 溴化优选使用过量溴在乙醇和二氯甲烷中进行。按照类似的方式，$R^{37} = R^{38} = NO_2$ 可通过用 HNO_3 在乙酸中处理而引入和 $R^{37} = R^{38} = CH_2-NPh$ 通过用羟基甲基邻苯二甲酰亚胺在 H_2SO_4 中处理而引入。

[1019] ii: 氨基基团使用试剂如氨基氧基羰基氯或琥珀酰亚胺在合适的溶剂如二嗯烷中在碱如含水氢氧化钠的存在下被保护，适宜地 Cbz- 保护。
[1020] iii:羧酸基团优选使用 DBU 和甲基醇在 DMF 中被酯化，得到 172。
[1022] v:如通过使用 HCl 和催化剂如在木炭上的钯在合适的溶剂如乙醇，DMF 或乙酸乙酯中氯化而去除 173 的Cbz-基团。
[1023] vi:适宜地在酸性条件下，如使用 25% 含水氢氧化在合适的溶剂如二氧烷中在升高的温度，适宜地在约 100 ℃下水解酯基团。
[1024] vii:所形成的中间体游离氨基酸适宜地通过在合适的溶剂或溶剂的混合物如二氧烷和水，或二氧甲烷中使用碱如碳酸钠或三乙基胺而被试剂如 9- 苄基甲氧基羰基氯或 9- 苄基甲氧基羰基琥珀酰亚胺保护得到 174。
[1025] 方案 36
[1026]

[1027] i:优选通过用过量三溴化硼在合适的溶剂如二氯甲烷中处理而切离 166 的甲氧基基团。
[1028] ii:氟基基团在酸性条件下，优选使用 25% 含水氢氧化在合适的溶剂如二氧烷中在升高的温度，适宜地在约 100 ℃下水解。
[1029] iii:所得酸用脱水剂如亚硫酰氯在合适的溶剂如二氧烷中处理得到 175。
[1030] iv:175 用合适的三氟甲磺酸化试剂，优选三氟甲烷磺酸酯在碱如 2,6- 二 - 叔丁基 - 吡啶的存在下在合适的溶剂如二氯甲烷中处理。
[1031] v:适宜地在合适的溶剂如甲醇中加热中间体。
[1032] vi:通过烷基化引入低级烷基或芳基 - 低级烷基 (R²), 得到 177。已知用于苯酚基
团的任何其它官能化可用于引入取代基 R^35。
[1034] viii: 酯基团在酸性条件下, 适宜地与 25% 含水氢氧酸在合适的溶剂如二噁烷中在升高的温度, 如在约 100℃ 下水解。
[1035] ix: 适宜地通过硼酸, 如在合适的溶剂如乙醇中使用硼水合物而切离邻苯二甲亚氨基基团。
[1036] x: 所形成的中间体离氨酸宜地通过在合适的溶剂或溶剂如二噁烷和水的混合物, 或二氯甲烷中使用碱如碳酸钠或三乙基胺而被试剂如 9- 芳基甲氧基羰基氯或 9- 芳基甲氧基羰基琥珀酰亚胺保护得到 179。
[1037] 方案 37
[1038]

![Chemical structure diagram]

[1039] i: 175 使用试剂如溴在乙酸和二氯甲烷的混合物中在约 0℃ 至约室温的温度下溴化。
[1040] ii: 羟基基团使用合适的酰基化剂如苯甲酰氯或苯甲酸酯, 碱如吡啶或三乙基胺和合适的溶剂如二氯甲烷进行苯甲酰化基得到 180。
[1041] iii: 180 在加热下用甲醇和催化量的酸性催化剂如樟脑磺酸处理。
[1042] iv: 通过在溶剂如四氢呋喃, 二甲氧基乙烷或 DMF 中使用碱如氢化钠或叔丁醇钾烷基化而引入低级烷基或芳基 - 低级烷基 (R^35), 得到 181。
于引入取代基 R^{38}。

[1044] vi: 为了除去氮气氧气基团，中间体适宜地与吸附在氧化铝上的氯化钠和甲醇一起加热。

[1045] vii: 用合适的三氟甲磺酸化试剂，优选三氟甲烷磺酸酯，在碱如 2,6-二-叔丁基-吡啶的存在下在合适的溶剂如二氯甲烷中处理。

[1047] ix: 在标准条件下如使用溴在乙酸和二氯甲烷在约 0℃至约室温的温度下溴化。

[1049] xi: 酯基团在酸性条件下，适宜地使用 25% 含水氢氯酸在合适的溶剂如二嗯烷中在升高的温度，如在约 100℃下水解。

[1050] xii: 邻苯二甲亚氨基基团如通过肼解，适宜地使用肼水合物在合适的溶剂如乙醇中而切离。

[1051] xiii: 所形成的中间体游离氨基酸适宜地通过在合适的溶剂或溶剂的混合物如二嗯烷和水，或二氯甲烷中使用碱如碳酸钠或三乙基胺而被试剂如 9-芴基甲氧基羰基氯或 9-芴基甲氧基羰基硫鎓酰胺保护得到 185。

[1052] (c2) 类型模板可如方案 38 和 39 所示而制备。

[1053] 方案 38

[1054]

[1056] ii: 通过使用合适的烷基化剂 (R^3-X'; X' = OTf, Br, I) 和强碱如氢氧化钠在液氨或氢化钠在四氢呋喃, 二亚烷或 DMF 中相转移催化剂如 TDA-1 的存在下烷基化而引入低级烷基 (R^3)。按照类似方式, 可引入取代的低级烷基 (R^3); 因此, 例如 R^3 = CH_2COOR^5 与 CH_2CH_2COOR^5 可通过分别用合适的 2- 卤代乙酸和 3- 卤代丙酸衍生物处理而被引入。已知用于二芳基胺的任何其它官能化可用于引入取代基 R^3。

[1057] iii: 甲氧基基团 188 适宜地通过用过量三溴化硼在合适的溶剂如二氯甲烷中在约 -20°C 至约室温的温度下处理而切离。

[1058] iv: 为了引入低级烷基, 取代的低级烷基或芳基 - 低级烷基取代基 (R^30 和 R^30), 中间体双酚衍生物适宜地与具有结构式 R^30- 和 R^30-X' (X' = OTf, Br, I) 的试剂在强碱如氢氧化钠的存在下在四氢呋喃, 二亚烷或 DMF 中相转移催化剂如 TDA-1 的存在下反应。已知用于酚基团的任何其它官能化可用于引入取代基 R^30 和 R^30。

[1059] v: 188 和 189 的氮基基团分别适宜地在酸性条件下, 如使用 25% 含水氢氯酸在合适的溶剂如二亚烷中在升高的温度, 如在约 100°C 下水解。

[1060] vi: 中间体的邻苯二甲酰亚胺基团适宜地通过肼解, 如在合适的溶剂如乙醇中使
用肼水合物而切离。

【1061】i：将含有氨基团适宜地通过在合适的溶剂或溶剂的混合物如二噁烷和水，或二氯甲烷中使用碱如碳酸钠或三乙基胺而被试剂如9-苯基甲氧基羰氯基或9-羟基甲氧基羰基琥珀酰亚胺保护，分别得到190和191。

【1062】方案39

【1063】

【1064】i：188的氨基团适宜地在酸性条件下，如使用25％含水氢氧化钠在合适的溶剂如二噁烷中在升高的温度，如在约100℃下水解。

【1065】ii：中间体的邻苯二甲酰亚胺基团适宜地通过肼解，如在合适的溶剂如乙醇中使用肼水合物而脱离，得到192。

【1066】iii：192的双杂-溴化优选使用过量溴在乙酸和二氯甲烷中进行。按照类似的方式，R^II = R^III = NO_2 可通过用 HNO_2 在乙酸中处理而引入和 R^II = R^III = CH_2-NPht 通过用羟基甲基邻苯二甲酰亚胺在 H_2SO_4 中处理而引入。已知通过亲电性芳族取代的任何其它官能团可用于引入取代基 R^II 和 R^III。

【1067】iv：氨基团使用试剂如苯基甲氧基羰基氯或琥珀酰亚胺在合适的溶剂如二噁烷中在碱如含水氢氧化钠的存在下被保护，适宜地Cbz-保护。

【1068】v：羧酸基团优选使用 DBU 和甲基砜在 DMF 中被酯化，得到193。

【1069】vi：192的区域选择性溴化优选使用溴在乙酸和二氯甲烷中进行。按照类似的方式，R^II = NO_2 可通过用 HNO_2 在乙酸中处理而被引入和 R^II = CH_2-NPht 通过用羟基甲基邻苯二甲酰亚胺在 H_2SO_4 中处理而被引入。已知通过亲电性芳族取代的任何其它官能团可用于引入取代基 R^II。

【1070】vii：氨基团使用试剂如苯基甲氧基羰基氯或琥珀酰亚胺在合适的溶剂如二噁烷中在碱如含水氢氧化钠的存在下被适宜地Cbz-保护。
[1071] viii;羧酸基团优选使用 DBU 和甲基碘在 DMF 中被酯化,得到 194.
[1072] ix ; 194 (R^{1r}) 和 193 (R^{1i} 和 R^{2r}) 的低级烷基,取代的低级烷基和芳基取代基适宜地通过钯 (0)- 催化 Stille- (Stille, J. K. Angew. Chem. 1986, 68, 504) 和 Suzuki- 偶联 (Oh-e, T. ;Mijaura, N. ;Suzuki, A. J. Org. Chem. 1993, 58, 2201) 而被引入,已知用于芳基溴的任何其它官能化可用于引入取代基 R^{1l} 和 R^{2l}。
[1073] x ; 如通过使用 H_2 和催化剂如在木炭上的钯在合适的溶剂如乙醇, DMF 和乙酸乙酯中氢化而去除 Cbz- 基团。
[1074] xi ; 酯基团适宜地在酸性条件下, 如使用 25% 含水氢氯酸在合适的溶剂如二噁烷中在升高的温度,优选在约 100°C 下水解。
[1075] xii ; 所形成的中间体游离氨基酸通过在合适的溶剂或溶剂的混合物如二噁烷和水,或二氯甲烷中使用碱如碳酸钠或三乙基胺而适宜地被试剂如 9- 芳基甲氧基羰基氯或 9- 芳基甲氧基羰基琥珀酰亚胺保护,得到 195 和 196。
[1076] (c3) 型模板可如方案 40 和 41 所示而制备。
[1077] 方案 40
[1078] 说明书
[1080] ii : 使所使有二氢化钠在液氨或氢化钠在四氢呋喃, 二噁烷或 DMF 中在相转移催化剂如 TDA-1 的存在下用过 R15-X’ (X’ = OTf, Br, I) 烷基化而引入低级烷基 (R16)，得到 199。按照类似方式，取代的低级烷基 (R14) 可被引入；因此，例如，R15 = CH3COOR16 和 CH2CH2COOR16 可分别用过合合适的 2-卤代乙酸和 3-卤代丙酸衍生物处理而被引入。已知用于苯基氢基团的任何其它官能团可用于引入取代基 R16。
[1081] iii : 199 的甲氧基基团适宜地通过用过匠三溴化扉在二氯甲烷中在约 -20° 至约室温的温度下处理而切离。
[1082] iv : 中间体双酚衍生物优选与 R16 和 R17-X’ (X’ = OTf, Br, I) 在强碱如氢化钠的存在下在四氢呋喃, 二噁烷或 DMF 中在相转移催化剂如 TDA-1 的存在下反应。用于醛基团的任何其它官能团可用于引入取代基 R16 和 R17。
[1083] v : 199 和 200 的氨基基团分别在酸性条件下, 如使用 25% 含水氢氟酸在合适的溶剂如二噁烷中在升高的温度, 适宜地在约 100°C 下水解。
[1084] vi : 邻苯二甲酰亚胺基团适宜地通过胺解, 如在合适的溶剂如乙醇中使用肼基化合物而切离。
[1085] vii: 使二氢化钠在液氨或氢化钠在四氢呋喃, 二氯甲烷中使用乙酸钠或三乙基胺而被试剂如 9-芴基甲氧基羰基氯或 9-芴基甲氧基羰基琥珀酰亚胺保护, 分别得到 201 和 202。
[1086] viii: 方案 41
[1087]
说明书

二噁烷中在升高的温度，如在约 100°C 下水解。

【1009】iii: 中间体的苯二甲酰亚胺基团适宜地通过肼解，如在合适的溶剂如乙醇使用肼水合物而切离，得到 203。

【1090】iii: 203 的双醇 - 溴化优选使用过量溴在乙酸和二氯甲烷中进行。按照类似的方式，R^1 = R^2 = NO_2 可通过用 HNO_3 在乙酸中处理而引入和 R^1 = R^2 = CH_3-NPh 通过用羟基甲基基苯二甲酰亚胺在 H_2SO_4 中处理而引入。已知通过亲电性芳族取代的任何其它官能化可用于引入取代基 R^1 和 R^2。

【1091】iv: 氨基基团使用试剂如苄基氧基羰基氯或琥珀酰亚胺在合适的溶剂如二噁烷中在碱如含氫氯化钠的存在下保护，适宜地 Cbz- 保护。

【1092】v: 硼酸基团优选使用 DBU 和甲基磺在 DMF 中酯化，得到 204。

【1093】vi: 203 的区域选择性溴化优选使用溴在乙酸和二氯甲烷中进行。按照类似的方式，R^1 = NO_2 可通过用 HNO_3 在乙酸中处理而被引入和 R^1 = CH_3-NPh 通过用羟基甲基基苯二甲酰亚胺在 H_2SO_4 中处理而被引入。

【1094】vii: 氨基基团适宜地使用试剂如苄基氧基羰基氯或琥珀酰亚胺在合适的溶剂如二噁烷中在碱如含氫氧化钠的存在下被 Cbz- 保护。

【1095】viii: 硼酸基团优选使用 DBU 和甲基磺在 DMF 中酯化得到 205。

【1096】ix: 适宜地通过钯 (0) - 催化 Stille (Stille, J.K. Angew.Chem.1986, 68, 504) 和 Suzuki- 偶联 (Oh-e, T.; Mijaura, N.; Suzuki, A. J. Org. Chem. 1993, 58, 2201) 而为 205(R^1) 和 R^2(R^1) 引入低级烷基，取代的低级烷基和基基取代基。已知用于芳基溴的任何其它官能化可用于引入取代基 R^1 和 R^2。

【1097】x: 如通过使用 H_2 和催化剂如在木炭上的钯在合适的溶剂如乙醇，DMF 和乙酸乙酸中氢化而去除 Cbz- 基团。

【1098】xi: 酯基适应地在酸性条件下，如使用 25% 含氫氨酸在合适的溶剂如二噁烷中在升高的温度，优选在约 100°C 下水解。

【1099】xii: 所形成的中间体oxide氮基酸适宜地通过在合适的溶剂或溶剂的混合物如二噁烷和水，或二氯甲烷中使用碱如碳酸钠或三乙基胺而被试剂如 9- 芬基甲氧基羰基氯或 9- 芳基甲氧基羰基琥珀酰亚胺保护，得到 206 和 207。

【1105】模板 (g): 参见 D. Gramberg, C. Weber, R. Beeli, J. Inglis, C. Bruns,
说明书

[1116] 本发明 β-发胶肽模拟物可用于广泛的抗微生物生原或杀死微生物。尤其是它们可用于选择性地抑制细菌如铜绿假单胞菌 (Pseudomonas aeruginosa) 和不動杆菌属 (Acinetobacter) 的生原或杀死它们。

[1117] 它们可例如用作材料如食品、化妆品、药物和其它含营养物的材料的消毒剂或防腐剂。本发明 β-发胶肽模拟物也可用于治疗或预防与植物和动物的微生物感染有关的疾病。

[1118] 为了用作消毒剂或防腐剂, β-发胶肽模拟物可单个地, 作为几种 β-发胶肽模拟物的混合物或与其它抗微生物剂结合而加入所需材料中。β-发胶肽模拟物可自身给药或可作为与本领域熟知的载体, 稀释剂或赋形剂的合适配方而施用。

[1119] 本发明 β-发胶肽模拟物可单个地, 作为几种 β-发胶肽模拟物的混合物, 与其它抗微生物剂或抗生素剂或
抗菌剂，或抗病毒（如抗HIV）剂结合，或与其它药物活性剂结合而给药。β－发夹肽模拟物可本身或作为药物组合物给药。

[1120] 含本发明 β－发夹肽模拟物的药物组合物可利用常规混合，溶解，造粒，包衣片剂制造，磨细，乳化，胶囊化，包埋或冻干工艺而制造。药物组合物可按照常规方式使用一种或多种有助于将活性 β－发夹肽模拟物加工成可药用的制剂的生理可接受的载体，稀释剂，赋形剂或助剂而配制。合适的配方取决于所选的给药方法。

[1121] 对于局部给药，本发明 β－发夹肽模拟物可被配制成溶液，凝胶，软膏，霜剂，悬液，等，这是本领域熟知的。

[1122] 全身性配方包括设计通过注射，如皮下，静脉内，肌内，肠内或腹膜内注射而给药的那些，以及设计用于透皮，透粘膜，口服或肺部给药的那些。

[1123] 对于注射，本发明的 β－发夹肽模拟物可在水溶液，优选在生理相容的缓冲剂如Hink’s溶液，Ringer’s溶液，或生理盐水缓冲剂中配制。该溶液可包含配制剂如悬浮，稳定化和/或分散剂。或者，本发明的 β－发夹肽模拟物可以是粉末形式，在使用之前与合适的载体，如，无菌无热原的水混合。

[1124] 对于透粘膜给药，适合所要渗透的屏障的渗透剂用于配方，这是本领域已知的。

[1125] 对于口服给药，这些化合物可通过将本发明的活性 β－发夹肽模拟物与本领域熟知的药物可接受的载体相结合而容易配制。这些载体使得本发明的 β－发夹肽模拟物能够配制成片剂，药丸，糖衣丸，胶囊，液体，凝胶，胶浆，淤浆，悬浮液等，用于所要治疗的病人的口服摄入。对于口服配方如，例如，粉末，胶囊和片剂，合适的赋形剂包括填充如糖，乳糖，蔗糖，甘露糖醇和山梨醇；纤维素制品如玉米淀粉，小麦淀粉，米淀粉，马铃薯淀粉，明胶，黄芪胶，甲基纤维素，羟基丙基甲基纤维素，羧基甲基纤维素钠，和/或聚乙烯基吡咯烷酮（PVP）；成粒剂；和粘结剂。如果需要，可以加入崩解剂，如交联聚乙烯基吡咯烷酮，琼脂，或海藻酸或其盐，如海藻酸钠。如果需要，固体剂型可使用标准技术糖包衣或肠道包衣。

[1126] 对于口服液体制剂如，例如，悬浮液，酏剂和溶液，合适的载体，赋形剂或稀释剂包括水，乙醇，油，醇，等。另外，可以加入增容剂，防腐剂，着色剂和类似物。

[1127] 对于口腔给药，组合物可以是按照常规配制的片剂，糖锭，等，形式。

[1128] 为了通过吸入而给药，本发明的 β－发夹肽模拟物适宜地以气溶胶喷剂形式从增压包装或喷雾器中，利用合适的抛射剂，如二氯二氟甲烷，三氯氟甲烷，二氧化碳或另一合适的气体而递送。在增压气溶胶的情况下，剂量单位可通过提供阀而确定以递送计量的量。用于吸入器或吹入器的如明胶的胶囊和药筒可配制成包含本发明 β－发夹肽模拟物和合适的粉末基质如乳糖或淀粉的粉末混合物。

[1129] 这些化合物也可与合适的栓剂基质如可可脂或其它甘油酯一起配制成直肠或阴道组合物如栓剂。

[1130] 除了先前描述的配方，本发明的 β－发夹肽模拟物也可配制成储藏制剂。这些长效配方可通过植入（如皮下或肌内）或通过肌内注射而给药。为了制造这些储存制剂，本发明的 β－发夹肽模拟物可与合适的聚合物或惰性材料（如作为在可接受的油中的乳液）或离子交换树脂一起配制，或配制成几乎不可溶盐。

[1131] 另外，可以使用其它药物递送体系如本领域熟知的脂质体和乳液。也可使用某些有机溶剂如二甲基亚砜。另外，本发明的 β－发夹肽模拟物可使用持续释放体系，如包含治
疗剂的固体聚合物的半透基质而递送。各种持续释放材料已被确立为本领域熟练技术人员所熟知。持续释放胶囊可根据其化学性质释放化合物达数周至 100 天以上。根据治疗剂的化学性质和生物稳定性，可以使用其它技术用于蛋白质稳定。

【1132】因为本发明的 β - 发夹肽模拟物可包含带电残基，它们可就此或作为药物可接受盐包括在任何上述配方中。药物可接受盐往往比相应的游离碱形式更可溶于含水和其它质量溶剂。

【1133】本发明的 β - 发夹肽模拟物，或其组合物一般以有效地实现预期目的。量使用。可以理解，用量取决于特定应用。

【1134】例如，为了用来作消毒剂或防腐剂，将抗微生物有效量的本发明 β - 发夹肽模拟物，或其组合物施用或加入被消毒或防腐的材料中。抗微生物有效量是指本发明 β - 发夹肽模拟物或组合物抑制靶微生物群体的生长，或对它们致死的量。尽管抗微生物有效量取决于特定应用，对于用作消毒剂或防腐剂，本发明 β - 发夹肽模拟物，或其组合物通常由相对低的量加入或施用到所要消毒或防腐的材料中。典型地，本发明 β - 发夹肽模拟物包含低于消毒溶液或所要防腐的材料的约 5% 重量，优选低于 1% 重量和更优选低于 0.1% 重量。普通技术人员能够使用，例如，在实施例中提供的体外分析确定本发明特定 β - 发夹肽模拟物用于特定条件下的抗微生物有效量而无需进行过度实验。

【1135】为了用于治疗或预防微生物感染或与这种感染有关的疾病，本发明的 β - 发夹肽模拟物或其组合物用于治疗有效量给药或施用。治疗有效量是指有效地改善微生物感染或与之有关的疾病的症状，或改善治疗或预防微生物感染或与其有关的疾病的量。治疗有效量的确定完全在本领域熟练技术人员的能力之内，尤其是考虑到本专利提供的详细描述。

【1136】如同消毒剂和防腐剂的情形一样，对于用于治疗或预防细菌感染的局部给药，治疗有效的剂量可使用，例如，在实施例中提供的体外分析来确定。可以在感染可见时，或甚至在不可见时进行治疗。普通技术人员能够确定用于治疗局部感染的治疗有效量而无需过度实验。

【1137】对于全身给药，治疗有效的剂量可起始由体外分析判断。例如，剂量可在动物模型中配制以实验这样的循环 β - 发夹肽模拟物浓度范围，该范围包括如在细胞培养物中测定的 IC_{50}（即对 50% 细胞培养物致死的试验化合物的浓度），如在细胞培养物中测定的 MIC（即对 100% 细胞培养物致死的试验化合物的浓度）。这些信息可用于更精确地确定可用于人的剂量。

【1138】起始剂量也可由体外数据，如动物模型，使用本领域熟知的技术确定。本领域普遍技术人员可容易基于动物数据而优化对人的给药。

【1139】用作抗微生物剂的剂量可各自调节以提供本发明 β - 发夹肽模拟物足以保持治疗作用的血浆水平。治疗有效的血浆水平可通过每天多次给药而实现。

【1140】在局部给药或选择吸收的情况下，本发明 β - 发夹肽模拟物的有效局部浓度可能不与血浆浓度有关。本领域熟练技术人员能够优化治疗有效的局部剂量而无需过度实验化。

【1141】β - 发夹肽模拟物的给药量当然取决于所要治疗的主体，主体的重量，疾病的严重性，给药的方式和处方医师的判断。

【1142】抗微生物治疗可在感染可检测时或甚至在它们不可检测时间歇地重复。治疗可单
独提供或与其它药物，例如抗生素或其它抗微生物剂结合。

通常，本文所述的β-发夹肽模拟物的治疗有效的剂型提供治疗益处而不造成明显毒性。

红细胞的溶血常用于评估相关化合物如protegrin或tachyplesin的毒性。值以在浓度100μg/ml下观察到的红细胞的%溶血率。对于宽范围的病原体，可能还如protegrin和tachyplesin所测定的典型值是30~40%，平均MIC值是1~5μg/ml。通常，本发明β-发夹肽模拟物在相当于以上对protegrin和tachyplesin所述的活性水平下具有溶血值在范围0.5~10%，通常1~5%。因此优选的化合物具有低MIC值和在浓度100μg/ml下观察到的红细胞的低%溶血。

本发明β-发夹肽模拟物的毒性在此可通过标准药物步骤在细胞培养物或实验动物中，如，通过确定LD₅₀（群体的50%的致死剂量）或LD₅₀（群体的100%的致死剂量）而测定。毒性和治疗作用之间的剂量比是治疗指数。具有高治疗指数的化合物是优选的。由这些细胞培养物分析和动物研究得到的数据可用于确定对人使用没有毒性的剂量范围。本发明β-发夹肽模拟物的剂量优选在包括具有较小或没有毒性的有效剂量的循环毒性浓度范围内。剂量可取决于所用剂量形式和所用给药途径在该范围内变化。确切的配方，给药途径和剂量可由各个医师根据病人的状态而选择（参见，如Fingl等人，1975；治疗的药理基础，Ch. 1, p. 1）。

以下实施例更详细举例说明本发明而无意于以任何方式限定其范围。以下简称为这些实施例中使用：

HOBt:1-羟基苯并三唑；

DIEA:二异丙基乙基胺；

HOAT:7-氮杂-L-羟基苯并三唑；

实施例

1. 芽合成

第一个保护的氨基酸残基与树脂的偶联

将0.5g 2-氯三苯甲基氯树脂（Barlos等人，四面体通讯，1989, 30, 3943-3946）(0.83mMol/g, 0.415mmol)填充到干燥烧瓶中。将树脂悬浮在CH₂Cl₂(2.5ml)中和在室温下在恒定搅拌下溶胀30min。树脂用0.415mMol(1eq)第一个被合适地保护的氨基酸残基（参见以下）和284μl（4eq）二异丙基乙基胺（DIEA）在CH₂Cl₂(2.5ml)中处理，将混合物在25°C下振荡4小时。树脂颜色变为紫色而溶液保持黄色。将树脂振荡（CH₂Cl₂/MethOH/DIEA：17/2/1), 30min, 30min; 洗涤和在室温下干燥6小时。

加载量典型地是0.6~0.7mMol/g。

制备以下预加载的树脂：Fmoc-Pro-氯三苯甲基树脂。
完全保护的肽片段的合成

使用 Syro-肽合成仪（Multisynotech）使用 24–96 个反应容器而进行合成。在每个容器中放置 60mg（树脂在加载之前的重量）以上树脂。编程进行以下反应循环：

<table>
<thead>
<tr>
<th>步骤</th>
<th>试剂</th>
<th>时间</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH₂Cl₂，洗涤和溶胀（手工）</td>
<td>3 x 1 min.</td>
</tr>
<tr>
<td>2</td>
<td>DMF，洗涤和溶胀</td>
<td>1 x 5 min</td>
</tr>
<tr>
<td>3</td>
<td>40%浓胺/DMF</td>
<td>1 x 5 min</td>
</tr>
<tr>
<td>4</td>
<td>DMF，洗涤</td>
<td>5 x 2 min</td>
</tr>
<tr>
<td>5</td>
<td>5当量 Fmoc 氨基酸/DMF
+5 eq. HBTU
+5 eq. HOBT
+5 eq. DIEA</td>
<td>1 x 120 min</td>
</tr>
<tr>
<td>6</td>
<td>DMF，洗涤</td>
<td>4 x 2 min</td>
</tr>
<tr>
<td>7</td>
<td>CH₂Cl₂，洗涤（在合成结束时）</td>
<td>3 x 2 min</td>
</tr>
</tbody>
</table>

重复步骤 3–6 以加入每种氨基酸。

完全保护的肽片段的切离

在合成完成之后，将树脂悬浮在 1ml（0.39mMol）TFA 在 CH₂Cl₂（v/v）的 1% 溶液中 3 分钟，过滤并将滤液用 1 毫升（1.77mMol，3 eq.）DIEA 在 CH₂Cl₂（v/v）中的 20% 溶液中和。该步骤重复两次以保证切离的完成。滤液被蒸发至无水且产物被完全去保护 [包含 95% 三氟乙酸（TFA），2.5% 水和 2.5% 三异丙基硅烷 (TIS) 的切离混合物]，通过反相–HPLC（柱 C₁₈）和 ESI–MS 分析以检测线性肽合成的效率。

线性肽的环化反应

100mg 完全保护的线性肽溶解在 DMF(9ml，conc. 10mg/ml) 中。随后加入 41.8mg（0.110mMol，3 eq.）HATU，14.9mg（0.110mMol，3 eq）HOAt 和 1ml（0.584mMol）10% DIEA（在 DMF（v/v）中）并将混合物在 20°C 下搅拌 16 小时和随后在高真空下浓缩。残余物在 CH₂Cl₂ 和 H₂O/CH₂Cl₂（90/10 v/v）之间分配。CH₂Cl₂ 相被蒸发得到完全保护的环肽。

环肽的去保护和纯化

将所得环肽溶解在 1ml 包含 95% 三氟乙酸（TFA），2.5% 水和 2.5% 三异丙基硅烷 (TIS) 的分解混合物中。将混合物在 20°C 下放置 2.5 小时并随后在真空下浓缩。将残余物溶解在 H₂O/乙酸（75/25 v/v）的溶液中并将混合物用二异丙基醚萃取。

水相在真空下干燥并随后将产物通过制备型反相 HPLC 纯化。

在冻干之后，得到一种作为白色粉末的产物并通过 ESI–MS 进行分析。包括 HPLC 停留时间和 ESI–MS 的分析数据在表 1 中给出。

分析性 HPLC 停留时间（RT，分钟）使用 VYDAC 218MS5215 柱测定，其中使用以下溶剂 A（H₂O+0.02% TFA）和 B（CH₂CN）和梯度：0min:92%A,8%B;8min:62%A,38%B;9–12min:0%A,100%B。

实施例 1–7（n = 12）示于表 1。肽由被接枝到树脂上的氨基酸 Pro 开始合成。起始树脂是如上所述制备的 Fmoc-ProO–氯三苯基甲基树脂。线性肽在固体载体上根据上述步骤合成。
骤按照以下顺序合成：树脂-Pro-Pro-P12-P11-P10-P9-P8-P7-P6-P5-P4-P3-P2-P1，从树脂上切除环化，去保护和按照所述进行纯化。

[1171] HPLC-停时间（分钟）使用上述的梯度测定：
[1172] 实施例 1 (5.73 6.29)*；实施例 2 (5.13 5.51 5.75)*；实施例 3 (4.83 5.37)*；
实施例 4 (4.79 5.43)*；实施例 5 (5.27 5.85)*；实施例 6 (5.31 6.03)；实施例 7 (4.59)。
[1173] *显示正确的 MS 和手性氨基酸分析的双峰。在 60°，仅观察到一个峰。
表 1: 实施例 (Ex)

<table>
<thead>
<tr>
<th>Ex.</th>
<th>SEQ ID NO:</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
<th>P9</th>
<th>P10</th>
<th>P11</th>
<th>P12</th>
<th>模板</th>
<th>纯度%</th>
<th>[m/z], z=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SEQ ID NO: 1</td>
<td>Arg</td>
<td>Trp</td>
<td>Leu</td>
<td>Lys</td>
<td>Lys</td>
<td>Arg</td>
<td>Arg</td>
<td>Trp</td>
<td>Leu</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Arg</td>
<td>Pro</td>
<td>100</td>
<td>1000.3</td>
</tr>
<tr>
<td>2</td>
<td>SEQ ID NO: 2</td>
<td>Arg</td>
<td>Trp</td>
<td>Leu</td>
<td>Lys</td>
<td>Lys</td>
<td>Arg</td>
<td>Arg</td>
<td>Trp</td>
<td>Lys</td>
<td>Tyr</td>
<td>Val</td>
<td>Arg</td>
<td>Pro</td>
<td>100</td>
<td>976.1</td>
</tr>
<tr>
<td>3</td>
<td>SEQ ID NO: 3</td>
<td>Arg</td>
<td>Trp</td>
<td>Leu</td>
<td>Lys</td>
<td>Lys</td>
<td>Arg</td>
<td>Arg</td>
<td>Trp</td>
<td>Lys</td>
<td>Thr</td>
<td>Tyr</td>
<td>Arg</td>
<td>Pro</td>
<td>54</td>
<td>977.0</td>
</tr>
<tr>
<td>4</td>
<td>SEQ ID NO: 4</td>
<td>Arg</td>
<td>Trp</td>
<td>Leu</td>
<td>Lys</td>
<td>Lys</td>
<td>Arg</td>
<td>Arg</td>
<td>Trp</td>
<td>Lys</td>
<td>Gln</td>
<td>Tyr</td>
<td>Arg</td>
<td>Pro</td>
<td>100</td>
<td>991.1</td>
</tr>
<tr>
<td>5</td>
<td>SEQ ID NO: 5</td>
<td>Arg</td>
<td>Trp</td>
<td>Leu</td>
<td>Val</td>
<td>Lys</td>
<td>Arg</td>
<td>Arg</td>
<td>Trp</td>
<td>Lys</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Arg</td>
<td>Pro</td>
<td>100</td>
<td>993.4</td>
</tr>
<tr>
<td>6</td>
<td>SEQ ID NO: 6</td>
<td>Arg</td>
<td>Trp</td>
<td>Leu</td>
<td>Lys</td>
<td>Lys</td>
<td>Arg</td>
<td>Arg</td>
<td>Trp</td>
<td>Val</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Arg</td>
<td>Pro</td>
<td>100</td>
<td>993.5</td>
</tr>
<tr>
<td>7</td>
<td>SEQ ID NO: 7</td>
<td>Arg</td>
<td>Trp</td>
<td>Leu</td>
<td>Lys</td>
<td>Lys</td>
<td>Arg</td>
<td>Arg</td>
<td>Trp</td>
<td>Lys</td>
<td>Tyr</td>
<td>Gln</td>
<td>Arg</td>
<td>Pro</td>
<td>100</td>
<td>991.2</td>
</tr>
<tr>
<td>8</td>
<td>SEQ ID NO: 8</td>
<td>Arg</td>
<td>Trp</td>
<td>Leu</td>
<td>Lys</td>
<td>Lys</td>
<td>Arg</td>
<td>Arg</td>
<td>Trp</td>
<td>Lys</td>
<td>Tyr</td>
<td>Leu</td>
<td>Arg</td>
<td>Pro</td>
<td>24</td>
<td>983.1</td>
</tr>
</tbody>
</table>

a) 化合物在制备型 HPLC 之后的%—纯度。
冻干肽在微天平（Mettler MT5）上称重和溶解在包含0.01%乙酸的无菌水中。

2.2. 肽的抗菌生物活性。

肽的选择性抗菌生物活性通过标准NCCLS肉汤微稀释方法（参见以下的参考文献）测定，其中在无菌96-孔板（Nunclon聚苯乙烯微滴定板）中包含100 μl的总体积中检查。微生物的接种物使用0.5McFarland标准物体制备并随后稀释到Mueller-Hinton（MH）肉汤。对于细菌得到约10^6个菌落形成单位（CFU）/ml。将接种物的等分等样（50 μl）加入50 μl包含连续倍稀释的肽的MH肉汤中。为了筛选具有选择性的肽，使用以下微生物：大肠杆菌（ATCC 25922），铜绿假单胞菌（P. aeruginosa）（ATCC 27853），金黄色葡萄球菌（ATCC 29213 和 ATCC25923），和铜绿假单胞菌（P. aeruginosa）V02 16085和不动杆菌属（不动杆菌属V04 19905/1，不动杆菌属V12 21143/1 和不动杆菌属V1221193/1）的临床分离物。肽的抗菌生物活性表示在37℃下18-20小时培养微滴定板之后没有观察到可见生长时的最小抑菌浓度（MIC），单位为μg/ml。

2.3. 肽在0.9%盐水中的抗菌生物活性。

肽的盐敏感度通过如上所述的微滴定系列稀释分析测试。仅MH肉汤被替代为包含0.9%NaCl的MH肉汤。

2.4. 肽在人血清中的抗菌生物活性。

肽的血清结合通过如上所述的微滴定系列稀释分析测试。仅MH肉汤被替代为包含90%人血清（BioWhittaker）的MH肉汤。

2.5. 溶血。

测试肽针对人血液红细胞（hRBC）的溶血活性。新鲜hRBC用磷酸盐缓冲盐水（PBS）通过在2000xg下离心10min后洗涤三次。将浓度100μg/ml的肽与20%v/v hRBC在37℃下培养1小时。最终红血球浓度约9×10^5/ml。0%和100%溶血值分别通过在仅PBS和0.1% Triton X-100（在H_2O中）的存在下培养hRBC而测定。将样品离心处理并将上层清液在PBS缓冲剂中稀释20倍后，然后测定样品在540nm下的光密度（OD）。100%溶血值（OD_{540,H_2O}）得到约1.6-2.0的OD。%溶血计算如下：(OD_{540,肽}/OD_{540,H_2O})×100%。

2.6. 结果。

上述实验的结果在表2和表3中得出。

参考文献。

1. 临床实验室标准国家委员会，1993。有氧生长的细菌的稀释抗微生物易感性试验方法，第三版，准纳的标准M7-A3。临床实验室标准国家委员会，Villanova，Pa。
表 2. 在 Mueller-Hinton 肉汤中的最小抑制浓度 (MIC, μg/ml) 和在肽浓度 100μg/ml 下的百分溶血作用

| 实施例 | 大肠杆菌 ATCC25922 | 大肠杆菌 ATCC43827 | 金黄色葡萄球菌 ATCC29213 | 金黄色葡萄球菌 ATCC25923 | 铜绿假单胞菌 ATCC27853 | 铜绿假单胞菌 V0216085 | 不动杆菌属 V1221143/1 | 不动杆菌属 V1221193/1 | 在 100 μg/ml 的溶血
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>12.5</td>
<td>9.4</td>
<td>6.2</td>
<td>6.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>3.1</td>
<td>3.1</td>
<td>6.2</td>
<td>6.2</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>100</td>
<td>6.2</td>
<td>6.2</td>
<td>25</td>
<td>100</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>3.1</td>
<td>3.1</td>
<td>6.2</td>
<td>12.5</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>n.d.</td>
<td>100</td>
<td>100</td>
<td>6.2</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>12.5</td>
<td>n.d.</td>
<td>100</td>
<td>100</td>
<td>6.2</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>n.d.</td>
<td>200</td>
<td>25</td>
<td>9.4</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.7</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>n.d.</td>
<td>100</td>
<td>100</td>
<td>6.2</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.4</td>
</tr>
</tbody>
</table>

n. d.: 没有测定
<table>
<thead>
<tr>
<th>实施例</th>
<th>ATCC 25922</th>
<th>ATCC 43827</th>
<th>ATCC 278853</th>
<th>VO216085</th>
<th>V12 21143/1</th>
<th>V12 21193/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>200</td>
<td>50</td>
<td>6.2</td>
<td>6.2</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>100</td>
<td>9.4</td>
<td>12.5</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>200</td>
<td>9.4</td>
<td>25</td>
<td>12.5</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>200</td>
<td>6.2</td>
<td>3.1</td>
<td>12.5</td>
<td>25</td>
</tr>
</tbody>
</table>

[1193]
[1196] 〈120〉模板固定的肽模拟物
[1197] 〈130〉P1065PCT
[1198] 〈140〉PCT/EP 02/09278
[1199] 〈141〉2002-08-20
[1200] 〈160〉8
[1201] 〈170〉PatentIn Ver. 2.1
[1202] 〈210〉1
[1203] 〈211〉14
[1204] 〈212〉PRT
[1205] 〈213〉人工序列
[1206] 〈220〉
[1207] 〈223〉人工序列说明: 环肽
[1208] 〈220〉
[1209] 〈223〉第 13 位的 Xaa 是 D-Pro
[1210] 〈400〉1
[1211] Arg Trp Leu Lys Lys Arg Arg Trp Leu Tyr Tyr Arg Xaa Pro
[1212] 1 5 10
[1213] 〈210〉2
[1214] 〈211〉14
[1215] 〈212〉PRT
[1216] 〈213〉人工序列
[1217] 〈220〉
[1218] 〈223〉人工序列说明: 环肽
[1219] 〈220〉
[1220] 〈223〉第 13 位的 Xaa 是 D-Pro
[1221] 〈400〉2
[1222] Arg Trp Leu Lys Lys Arg Arg Trp Lys Tyr Val Arg Xaa Pro
[1223] 1 5 10
[1224] 〈210〉3
[1225] 〈211〉14
[1226] 〈212〉PRT
[1227] 〈213〉人工序列
[1228] 〈220〉
[1229] 〈223〉人工序列说明: 环肽
[1230] 〈220〉
[1231] 〈223〉第 13 位的 Xaa 是 D-Pro
[1232] 〈400〉3
[1233] Arg Trp Leu Lys Lys Arg Arg Trp Lys Thr Tyr Arg Xaa Pro
[1234] 1 5 10
1235	<210>4
1236	<211>14
1237	<212>PRT
1238	<213>人工序列
1239	<220>
1240	<223>人工序列说明：环肽
1241	<220>
1242	<223>第13位的Xaa是D-Pro
1243	<400>4
1244	Arg Trp Leu Lys Lys Arg Arg Trp Lys Gln Tyr Arg Xaa Pro
1245	1 5 10
1246	<210>5
1247	<211>14
1248	<212>PRT
1249	<213>人工序列
1250	<220>
1251	<223>人工序列说明：环肽
1252	<220>
1253	<223>第13位的Xaa是D-Pro
1254	<400>5
1255	Arg Trp Leu Val Lys Arg Arg Trp Lys Tyr Tyr Arg Xaa Pro
1256	1 5 10
1257	<210>6
1258	<211>14
1259	<212>PRT
1260	<213>人工序列
1261	<220>
1262	<223>人工序列说明：环肽
1263	<220>
1264	<223>第13位的Xaa是D-Pro
1265	<400>6
1266	Arg Trp Leu Lys Lys Arg Arg Trp Val Tyr Tyr Arg Xaa pro
1267	1 5 10
1268	<210>7
1269	<211>14
1270	<212>PRT
1271	<213>人工序列
1272	<220>
1273	<223>人工序列说明：环肽
第13位的Xaa是D-Pro

Arg Trp Leu Lys Lys Arg Arg Trp Lys Tyr Gln Arg Xaa Pro

第13位的Xaa是D-Pro