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IMPLEMENTATION OF AESENCRYPTION 
CIRCUITRY WITH CCM 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to the field of data encryption 

using a symmetric algorithm, more particularly the Advanced 
Encryption Standard (AES) algorithm. The present invention 
relates to a circuit and method of encryption in a combined 
counter and CBC-MAC mode (CCM). 
The present invention applies to secured data transmission, 

more particularly to secured wireless networks. 
2. Background of the Invention 
Network security related to wireless local area networks 

(WLANs), for example according to 802.11 (nori) standards, 
wireless USB etc., generally requires encryption according to 
the Advanced Encryption Standard, implemented in CCM 
mode. The CCM mode provides both privacy, as well as data 
integrity. To achieve data privacy, data is encrypted using a 
secret key known to the transmitting and receiving network 
nodes. Data integrity is ensured by generating a tag (message 
authentication code—MAC) based on the data to be transmit 
ted, and then recalculating the tag at the receiving end to 
ensure that data has not been corrupted. 

Messages to be transmitted are in the form of data packets. 
Each packet comprises a header giving information Such as 
the destination address of the data and additional authenti 
cated data which can be used, for example, for authentication 
of packet header, and a payload. The packet header and any 
additional authenticated data (grouped hereafter under the 
name header) are not encrypted as they are used for routing 
the packet to its destination in the network. However, the 
header is taken into account to compute the tag. The payload 
is both encrypted and used to generate the tag, which is also 
usually encrypted. 

FIG. 1A is a block diagram illustrating a conventional 
example of a process 100 for encrypting data packets in 
counter mode. Header and payload are organized in groups 
(blocks) of bits the size of which depends on the processing 
granularity of the process. The example of FIG. 1 illustrates 
the case when there are four payload data blocks of plain text 
P to P to be processed, however the process can be expanded 
to process any required number of data blocks. Each data 
block P to P is combined (XOR gates 112,114,116 and 118) 
with an encryption sequence SI to S to produce four blocks of 
cipher text C to C. Sequences S to S are generated by 
encrypting (steps 122, 124, 126 and 128 algorithm E) dif 
ferent nonce values N to N with the same secret key K. In 
counter mode, the Successive nonce values N to Na are 
obtained by incrementing (steps 134, 136 and 138) a first 
nonce N corresponding to an initialization value IV (for 
example, Zero) of a counter. Encryption in counter mode is 
preferred to an encryption in cipher block chaining as the 
algorithm E can be applied (calculated) before receiving the 
data block. 

In a hardware implementation of the encryption to which 
the present invention applies, a single unit (logic computation 
core) implementing the algorithm E is successively loaded 
with a result value of a counter incremented for each new data 
block P to P and the result provided by this unit is linked to 
a first input of an XOR gate the second input of which receives 
the current data block. At each data block, the key K is 
provided to the unit. 

FIG. 1B is a block diagram illustrating a conventional 
example of a process 200 for computing, according to a 
cipher block chaining (CBC) method, data integrity data in 
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2 
the form of a tag. For data integrity, both the header and the 
payload have to be processed. For simplicity, it is assumed 
that a data block Po is the header of a packet comprising 
payload data blocks P to P. Each data block P to P is 
combined (XOR gates 212, 214, 216 and 218) with the result 
of the application of a same encryption algorithm E (steps 
222, 224, 226 and 228) to the former data block. A first data 
block (here, the header Po) is combined (XOR gate 210), 
before encryption (block 220), with an initialization value IV 
(for example Zero). The result of the encryption (output of 
step 228) of the last data block P. of the packet provides the 
message authentication code or. tag. The ciphering key K is 
the same for each computation of the algorithm E. 

For implementing the counter mode, a single logic core 
computing the algorithm E is used for a hardware implemen 
tation of the CBC-MAC. This single core is successively 
loaded by the output of a circuit forming an XOR gate, a first 
input of which successively receives the initialization value 
IV and the successive results of the algorithm when a second 
input receives the Successive data blocks Po to P. Again, at 
each data block, the key K is provided to the circuit. 

FIG. 2 illustrates in a schematic form a conventional 
example of a process for combining the counter mode and the 
CBC-MAC computation in order to provide both privacy and 
integrity. 
Assuming a message (in the form of data packet) compris 

ing r+1 data blocks Bo to B, including h--1 blocks Bo to B, 
representing the packet header (and additional authenticated 
data). Which are not to be encrypted and r-h payload data 
blocks B to B, to be encrypted. All the blocks are processed 
according to the process 200 (CBC-MAC) of FIG. 1B to 
generate a tag. The payload data blocks are processed a sec 
ond time according to the counter mode process 100 of FIG. 
1A to obtain ciphered blocks CB to CB. The first h--1 
blocks Bo to B, are sent over the network with the r-h ciphered 
blocks CB to CB, and the tag CTAG (usually ciphered 
using the counter mode). 
By recalculating the tag at the destination based on the 

decrypted blocks, and comparing this to the transmitted tag, 
the data integrity of the received packet can be checked. The 
key K and the initialization values IV and IV have to be 
known by the receiver. Therefore choosing Zero for the IV’s 
avoids the need to transmit them. 

According to the method described above, every part of the 
payload of a message to be transmitted is processed twice, 
once for encryption and a second time for data integrity. 
Known hardware implementations provide a single comput 
ing core, Surrounded by Suitable logic and registers such that 
it can be used once for encryption and then for data integrity. 
Whilst the header of each packet need only be processed for 
the generation of the tag, it is the payload of the packet that 
forms the majority of the data in each packet, and thus the 
throughput is limited by two full processing cycles of the 
payload of each packet. This solution is thus disadvantageous 
in that it is slow and inefficient at performing the required 
algorithm. 

This drawback is particularly present for encryption algo 
rithms using a key Schedule (for example, the AES algo 
rithm), i.e. according to which, for each block to be pro 
cessed, Sub-keys are generated from a key K and are 
Successively used in rounds of an iterative process. In Such 
algorithms, computation time of the CCM mode encryption 
can be critical for the rate of transmission of the data. 
An example of the known method described above applied 

to the AES is disclosed in “FPGA Implementation AES for 
CCM Mode Encryption Using Xilinx Spartan-II Khoa Vu, 
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David Zier ECE 679, Advanced Cryptography, Oregon 
State University, Spring 2003. 

SUMMARY OF THE INVENTION 

The present invention aims to at least partially address the 
above problems discussed in relation to the prior art. 
The present invention more specifically aims at providing 

a fast unit for both encrypting and/or decrypting data for 
privacy and generating and/or verifying a tag for integrity, in 
a combined counter and CBC-MAC mode (CCM mode). 

According to a first aspect of the present invention there is 
provided circuitry for encrypting at least a part of an input 
data flow and generating a tag based on said input data flow 
with a same ciphering algorithm and a same key, said algo 
rithm comprising iterative computations by at least two 
operation units, said circuitry comprising a pipeline compris 
ing: an input selection unit arranged to receive first data 
values to generate encryption sequences with said ciphering 
algorithm, second data values to generate temporary tags with 
said ciphering algorithm and an output of the pipeline; a first 
stage arranged to receive an output of said input selection unit 
and comprising at least a first operation unit; and a second 
stage arranged to receive an output of the first stage, compris 
ing at least a second operation unit and providing said output 
of the pipeline. 

According to a second aspect of the present invention there 
is provided circuitry for decrypting at least a cipher part of an 
input data flow and generating a tag based on said input data 
flow with a same algorithm and a same key, said algorithm 
comprising iterative computations by at least two operation 
units, said circuitry comprising a pipeline comprising: an 
input selection unit arranged to receive first data values to 
generate decryption sequences with said ciphering algorithm, 
second data values to generate temporary tags with said 
ciphering algorithm and third data values representing an 
output of the pipeline; a first stage receiving an output of said 
input selection unit and comprising at least a first operation 
unit; and a second stage receiving an output of the first stage, 
comprising at least a second operation unit and providing said 
output of the pipeline. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The foregoing and other purposes, features, aspects and 
advantages of the invention will become apparent from the 
following detailed description of a number of embodiments, 
which is given by way of illustration only without limiting the 
invention, and throughout which reference is made to the 
accompanying drawings in which: 

FIG. 1A (already described) illustrates in schematic form a 
known process for encrypting data blocks; 

FIG.1B (already described) illustrates in schematic form a 
known process for generating a tag: 

FIG. 2 (already described) illustrates in schematic form a 
known process for encrypting data and generating a tag: 

FIG.3 illustrates in schematic form circuitry for encrypting 
data and generating a tag according to a first embodiment; 

FIG. 4 illustrates in Schematic form the key stages in an 
encryption algorithm according to the Advanced Encryption 
Standard; 

FIG.5 illustrates in schematic form circuitry for decrypting 
data and generating a tag according to the first embodiment; 

FIG. 6 illustrates in schematic form pipelined circuitry for 
encrypting data and generating a tag according to a second 
embodiment; 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
FIG. 7 illustrates in schematic form pipelined circuitry for 

decrypting data and recalculating a tag according to the sec 
ond embodiment; and 

FIG. 8 illustrates in schematic form alternative pipelined 
circuitry for encrypting data and generating a tag according to 
the second embodiment. 

DETAILED DESCRIPTION 

For reasons of clarity, only steps and elements which are 
useful for the understanding of the present invention have 
been shown and will be described. In particular, details of the 
steps of each round of the AES algorithm and of the key 
schedule have not been described, the present invention being 
compatible with any conventional application of the AES 
algorithm. 
The present invention will be described in connection with 

an application to an AES algorithm. However, it applies more 
generally to any symmetric algorithm using a key Schedule, 
such as for example DES, RC5 (Rivest cipher 5) or RC6, i.e. 
the operation of which can be-shared in a data part processing 
the plain text (ciphering) or the cipher text (deciphering) and 
a key part extracting Sub-keys from a (secret) key to be used 
in rounds of the data part. The simplest key Schedule is a 
duplication of key. However, the key schedule preferably 
generates a function of the secret key, different for each 
round. 

In Such algorithms the key schedule usually occupies a 
significant area in a hardware implementation. The present 
invention takes benefit from the fact that the same key is used 
for both computing the counter mode and the cipher block 
chaining message authentication code. 

FIG. 3 illustrates in schematic form a processing unit 300 
for performing both encryption for privacy and tag generation 
for integrity according to a first embodiment. 
As shown in FIG. 3, processing unit 300 comprises a first 

round logic unit 302 for generating a tag according to CBC 
MAC (Cipher Block Chaining Message Authentication 
Code), a second round logic unit 304 providing counter mode 
functionality for encrypting packet payloads, and a common 
key schedule unit 305 for generating sub-keys to be provided 
to both the first and second, preferably identical, round logic 
units 302 and 304. 
The unit 300 receives blocks B, (i taking successively the 

values 0 to r, where r-1 represents the total number of data 
blocks) to be processed on input line 306. Input line 306 and 
the other lines described herein below are in fact parallel data 
lines each providing a communication route for a number of 
data bytes orbits in parallel. Input line 306 is connected to a 
first exclusive OR (XOR) gate 308 which also receives an 
input online 310 from a temporary tag register 312. XOR gate 
308 performs the XOR function on the signals on lines 306 
and 310 and provides the result on line 313 to the first round 
logic unit 302. The first round logic unit 302 performs the 
encryption algorithm (for example AES) on this data, and 
provides the result on line 314 to the temporary tag register 
312, which stores the result before providing the result back 
to XOR gate 308 online310 ready to be added bit by bit to the 
next input data block. Elements 308,302 and 312 perform a 
CBC-MAC computation branch reusing the same unit 302 for 
each computation of the encryption algorithm. The initializa 
tion value is, for example, given by the initial contents (pref 
erably zero) of the register 312. 
A counter 316 is provided comprising an input for receiv 

ing an initialization value IV (for example, Zero) on line 318 
and a reset input for receiving an input signal online 320. The 
counter adds 1 on every full cycle of the second round logic 
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unit 304, and the resulting counter value N, (taking succes 
sively and arbitrarily the values 0 and 1 to r-h-1, where h--1 
represents the number of header data blocks) is provided on 
line 322 to the second round logic unit 304. Unit 304 performs 
the encryption algorithm, which is the same encryption algo 
rithm as performed by the first round logic unit 302, and 
provides the result online 324 which is connected to a second 
XOR gate 326. Unit 304 computes encryption sequences S, in 
counter mode to be combined with the payload data blocks B. 
The second XOR gate 326 also receives the data block B, 
(h+1 sisr) on line 327. The second XOR gate 326 provides 
an output online 328 which is the encrypted data block CB. 
In particular, encryption sequence S is used to encrypt the 
data block B, the encryption sequence S is used to encrypt 
data block B, etc. 

Elements 316,304 and 326 perform a counter mode com 
putation branch reusing the same unit 304 for each computa 
tion of the encryption algorithm. 

The key schedule unit 305 receives a secret key 334, which 
is known to both the transmitting and receiving parts (for 
example the nodes of a communication network). Based on 
the secret key 334, the key schedule block 305 generates a 
series of subkeys K. (I taking Successively the values 0 to n, 
where n represents the number of rounds of the ciphering 
algorithm) which are provided both to the first round logic 
unit 302 online 336 and to the second round logic unit 304 on 
line 338. 
The elements of processing unit 300 also receive synchro 

nization and control signals not shown in FIG. 3 for control 
ling the operation of the circuitry as will now be described. 
Processing unit 300 is preferably a logic array, and can be 
programmable (FPGA) or not. 
The first and second round logic units process in parallel 

the data blocks B, for generating the tag and the nonce values 
N, generated by counter 316 for encrypting the data blocks, 
but the n+1 sub-keys for each computation of the AES (for 
each block) are generated by the shared key schedule unit 
305. For blocks Bo to B, the unit 304 is not activated. The 
data blocks Bo to B, which are not encrypted, are output on 
line 329 directly from the input line 306 and are processed in 
parallel by the unit 302. When the B" data block arrives at 
input line 306, both units 302 and 304 are active and the IV is 
also provided on input line 318. The data blocks B to B, are 
processed by the unit 302 and in parallel (using the same 
sub-keys) the count values N, are ciphered by unit 304 which 
generates the encryption sequences S, for encryption of the 
data blocks at the XOR gate 326. Once the B," data block has 
been encrypted and processed by the first round logic unit 
302, the tag at the output 314 is the final tag to be transmitted. 

Preferably, an initial encryption sequence So is used to 
encrypt the tag. The content of the TEMPTAG register 312 is 
provided to a third XOR gate 330 for encrypting the tag. In a 
final iteration of the second unit 304 alone, the counter 316 is 
reset (line 320), and the second round logic unit performs the 
algorithm on the initialization value (first nonce No). The 
result is provided on line 324 to the third XOR gate 330. The 
XOR function is applied to this value and the tag from the 
TEMP TAG register 312, and the output on line 332 is the 
encrypted tag Co. which can be sent with the encrypted data 
CB, (h+1sisr) and the packet header B, (0sish). 
An advantage of using the initial sequence So for encrypt 

ing the tag is that tag encryption can be performed irrespec 
tively of the number r-h of data blocks that are to be 
encrypted. In alternative embodiments, rather than resetting 
the counter to generate to the initial encryption sequence So 
for encrypting the tag, the encryption sequence So is gener 
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6 
ated during processing of the data block B and is stored in 
a register. It can then be reused for encrypting the tag. 

In the example of the AES, the encryption and tag genera 
tion performed by the first and second unit 302,304 both use 
a series of either 11, 13 or 15 sub-keys of 128 bits, generated 
by the key schedule circuit 305, the number of rounds com 
puted by each unit 302 or 304 being 11, 13 or 15 respectively. 
Each block of data (circuit 302) or nonce (circuit 304) to be 
processed is 128 bits. According to Some alternative embodi 
ments the initial key addition is included in the first round and 
then the encryption is executed in 10, 12 or 14 clock cycles. 

FIG. 4 is a block diagram illustrating the operation of 
identical round logic units 302 and 304 for the AES. This 
encryption algorithm is described in more detail in the pub 
lication “The Design of Rijndael’ by Joan Daemen and Vin 
cent Rijmen, available from Springer-Verlag (ISBN 3-540 
42580-2) and in the AES standard (FIPS PUB 197). 
The algorithm encodes blocks of plain text (data or nonce) 

each comprising 128 bits into an encoded block of the same 
size. Each step in the algorithm processes a matrix of four 
rows and four columns, each element in the matrix being a 
byte such that the matrix represents a total of 128 bits. 
The process starts with an initial state 401 (STATE INIT) of 

the four by four data matrix PT to be encrypted. 
The first step 402 (ADDROUNDKEY) comprises per 

forming an XOR operation bit by bit on each of the elements 
of the matrix with the first sub-key Ko to obtain a first inter 
mediate state IS. The sub-key is generated by the key sched 
ule unit as described above. 
The second step in the process comprises performing a 

number n-1 of rounds of the same transformation T. provid 
ing an intermediate state IS by processing the previous inter 
mediate state IS and a current Sub-key K. The number n-1 
of rounds required is the number of Sub-keys generated minus 
2. If the secret key is 128 bits, eleven sub-keys are generated, 
and therefore this transformation is repeated nine times. Each 
transformation T comprises four operations. 
A first operation 403 (SUBBYTES) comprises a non-linear 

transformation in which each byte of the matrix of the previ 
ous state IS is replaced by its image in a pre-calculated 
substitution table, known as an S-box. The S-box can be 
obtained by the combination of two transformations, a first 
which inverses each byte of the matrix in the limited field of 
size 2 (to correspond to a byte), each byte being replaced by 
its own image. This inversion is followed by an affine trans 
formation. Since 128 bits are encrypted every round, sixteen 
S-boxes are required in total. 
The second operation 404 (SHIFTROWS) comprises per 

forming a rotation on the three bottom rows of the matrix 
resulting from the previous operation 403, and rotates the 
second row by one byte, the third row by two bytes, and the 
fourth row by three bytes. The first and second operations can 
be inverted. 
A third operation 405 (MIXCOLUMNS) comprises con 

sidering each column of the matrix resulting from the previ 
ous operation as a polynomial within the limited field of size 
2, and multiplying each of these polynomials by a combina 
tion polynomial PX modulo a polynomial MX. 
A fourth and final operation 406 (ADDROUNDKEY) 

comprises applying the current sub-key K by performing the 
XOR function bit by bit with each bit of the sub-key and each 
bit of each byte of the matrix resulting from the previous 
operation 405. This operation is the same as the operation 
402, but with a different sub-key and provides intermediate 
state IS. At the end of then-1"round, operation 406 provides 
intermediate State IS. 
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Next, a transformation T, forming the last round, processes 
the intermediate state IS, and last sub-key K. Transforma 
tion T" performs successively SUBBYTE operation 407, 
SHIFTROWS operation 408 and ADDROUNDKEY opera 
tion 409 using the last sub-key K. Hence, transformation T' 
corresponds to transformation T without the MIXCOL 
UMNS operation. 

If needed, a last step 410 (RESULT FORM) puts the result 
(ciphered text CT) into the appropriated form to be outputted 
(on line 314 for unit 302 and on line 324 for unit 304). 

Whilst FIG. 4 illustrates multiple identical steps, for 
example three ADDROUNDKEY steps 402,406 and 409, in 
practice only one function unit need be provided for perform 
ing each operation. Thus a total of four function units are 
required for the four operations, and the matrix can be passed 
through each of these units the required number of times, the 
appropriate function unit being activated-on each cycle. Fur 
thermore, inputs and/or outputs of the operations are usually 
buffered for synchronization purposes. 

The sub-keys, a different one of each round of the encryp 
tion algorithm, are generated by the key schedule unit. The 
key schedule uses S-boxes to generate the sub-keys from the 
key K. Four S-boxes are used for generating the n+1 Sub-keys 
and are either to be stored or computed for each data block. 

FIG. 5 illustrates in schematic form a processing unit 500 
for decrypting encrypted messages at the destination node 
according to the first embodiment. The circuitry 500 com 
prises a first round logic unit 502 for implementing CBC 
MAC, a second round logic unit 504 for implementing 
counter mode, and a key Schedule unit 506 for generating 
sub-keys for use by the first and second round logic units. The 
processing unit 500 receives on an input line 508 data blocks 
B, for i between 0 and h, which represent the header (and 
additional authenticated data) and are not encrypted, the 
encrypted data blocks CB, for i between (h+1) and r, repre 
senting the payload, and the encrypted tag C. These 
blocks are added bit by bit to the current sequence S, provided 
by the second round logic unit 504 by XOR gate 510, however 
a value will only be provided on line 512 when payload data 
blocks CB to CB, and encrypted tag Ci are being pro 
cessed as no decryption is required for the header. For data 
blocks Bo to B, Zeros will be provided on line 512 to XOR 
gate 510, such that these data blocks pass through gate 510 to 
output line 514 without being altered. The decrypted output 
of XOR 510 is provided on line 514, and represents the 
decrypted blocks of data B, which are also output directly on 
an output line 515. 
The output on line 514 is also provided to a second XOR 

gate 516 where it is added bit by bit to the output online 518 
of a temporary tag register 520. The output of XOR gate 516 
is provided on line 522 to the first round logic unit 502. The 
result is provided to be stored in the temporary tag register 
520 on line 524. 
As with the encrypting processing unit 300, the second 

round logic unit 504 generates the encryption sequences S, 
based on count values (nonce values N) from a counter 526 
which receives an initialization value IV on line 528 and a 
reset signal online 530. On each cycle, the counter adds 1, and 
outputs the value on line 532. 

Units 304 and 504, and 302 and 502 respectively, are iden 
tical. 

The secret key 538, which is the same secret key as that 
used by processing unit 300, is provided to the key schedule 
unit 506 on line 540. The key schedule unit calculates a 
Sub-key for each round of the first and second round logic 
units, and outputs these on both line 542 to the first round 
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8 
logic unit 502 and line 544 to the second round logic unit 504. 
The order of generation of the sub-keys is the same for 
encrypting and decrypting. 
As for FIG. 3, elements of unit 500 receive control and 

synchronization signals (not shown). 
Once the tag has been calculated using all of the data blocks 

B, the result is provided to a comparison unit 534 online 518. 
Comparator 534 also receives the decrypted tag on line 519. 
The received tag C is decrypted using, as for encryption, 
the initial sequence So, which is calculated by resetting 
counter 526 to the IV, or in an alternative embodiment stored 
in a register when originally generated during processing of 
block B. Sequence So is provided online 512 to XOR gate 
510 to decrypt the tag, and the decrypted tag is then provided 
on line 519 to the comparator. 
The comparator 534 provides a result on line 536 indicat 

ing whether the tags match. If the tags match, the decrypted 
data blocks are deemed to be accurate, and can be processed 
as required. If the tags do not match however, this implies that 
the data has been corrupted, and therefore all the received data 
blocks and the tag are, for example, destroyed. 
The tag generation and ciphering (FIG. 4)—or deciphering 

(FIG. 5)—according to the first embodiment require r+2 
cycles, compared to the 20r-1)-h cycles required with the 
known solution of FIG. 3. 

FIG. 6 illustrates encryption processing unit 600 for 
encrypting data blocks B, and for generating a tag for data 
integrity according to a second embodiment. As will now be 
described, the encryption unit 600 is pipelined. Furthermore, 
a single pipeline is used for providing the functionality of 
both the CBC-MAC and counter mode round logic units. 

Data blocks B, are received on an input line 602 and added 
bit by bit, by an XOR gate 604, to the output 606 of a 
temporary tag register 608. The output of XOR gate 604 is 
provided on line 610 to a first input of a three input multi 
plexer 612. Multiplexer 612 also receives at a second input an 
input on line 614 from a counter 616 which receives an 
initialization value on line 618 and adds 1 on each payload 
data block cycle. The counter also receives a reset input on 
line 620. At a third input, multiplexer 612 receives a signal on 
line 622 from the output of the pipeline. 
A select input line 624 is provided for receiving an input 

signal SEL that selects which input of multiplexer 612 is 
selected for output on output line 626 of the multiplexer. 
The output line 626 is connected to a first stage 627 of the 

pipeline. The first stage comprises a register 628 connected by 
line 630 to an unit 632 performing the SUBBYTES opera 
tions as described above with references 403 and 407 of FIG. 
4. Register 628 acts as a buffer buffering data blocks received 
via the multiplexer 612. The SUBBYTES operation is par 
ticularly demanding on processing time and therefore it is 
preferable to arrange the pipeline with this function as the 
only function in a stage. 
The output of unit 632 is provided to a second stage 635 of 

the pipeline online 634. The second stage comprises a regis 
ter 636 for buffering the data output from unit 632. The 
register outputs data values online 638 to a unit 640 perform 
ing the SHIFTROWS operations 404 and 408 of FIG. 4. The 
output of unit 640 is provided on line 642 to a unit 644 
performing the MIXCOLUMNS operation 405 of FIG. 4. 
The output of the unit 644 is provided online-646 to a unit 

648 performing the ADDROUNDKEY operation which 
receives sub-keys K, online 650 from a key schedule unit 652. 
The key schedule unit.652 generates sub-keys based on a 
secret key 654 provided on line 656. 
The output of the unit 648 on line 658 provides the output 

of the second stage 635 of the pipeline. This data value is 
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selectively provided to the temporary tag register 608 on line 
659, and to the multiplexer 612 online 622. The output is also 
provided to an XOR gate 660 which also receives the output 
of the temporary tag register on line 606, and generates the 
encrypted tag C. on its output line 662. The second stage 
output is also provided to an XOR gate 664 which also 
receives online 666 the payload data block B, to be encrypted 
and performs the XOR function bit by bit providing the 
encrypted data block CB, (h+1sisr) on line 668. Line 666 is 
one of two outputs of a further multiplexer 625, the single 
input of which is connected to line 602. The second output of 
multiplexer 625 outputs the header data blocks Bo to B. 
which are not encrypted, on line 669. 

The processing unit 600 of FIG. 6 operates by alternatively 
processing first count values provided by counter 616 for 
generating encryption sequences for encrypting the data 
blocks, and processing input data blocks for calculating the 
tag, the second stage being used for ending around with either 
the nonce or the data associated with the current data block 
while the first stage starts another round with the data or the 
nonce. It should be noted that the same sub-key is needed for 
each round of the CBC-MAC algorithm for calculating the 
tag as for the equivalent round of the counter algorithm. 

The pipelined round is controlled to perform the same 
operations as disclosed in relation to FIG. 4. The header and 
payload of each packet is provided on line 602. For each data 
block Bo to B, of the header (and associated data) which is 
only used to generate the tag and not encrypted, the pipeline 
operates only generating temporary tags TT, 

For each data block Bo to B, the result of the combina 
tion of data block B, with a previous temporary tag TT 
(initialized with zero for combination with block Bo) is 
loaded into the pipeline via multiplexer 612. This result is an 
intermediate tag IT. On the first round only the 
ADDROUNDKEY unit 648 is used, and therefore the data 
block passes through the SUBBYTES unit 632 without being 
processed and is stored in register 636. Then, the data block 
passes straight through the SHIFTROWS unit 640 and the 
MIXCOLUMNS unit 644 without being processed and is 
added bit by bit by the ADDROUNDKEY unit 648 to the first 
sub-key Ko generated by the key schedule unit 652. The 
output (intermediate state IS) is returned on line-622 to the 
multiplexer 612. On the second round and on subsequent 
rounds until the n-1th round, SUBBYTES operation 632 is 
applied, as are all of the operations in the second stage of the 
processing unit 600. At the end of each round, the intermedi 
ate state IS, is passed back on line 622 to be processed again. 
On the n' and final round, all of the functions are applied 
except for the MIXCOLUMNS unit 644, and the output of the 
ADDROUNDKEY unit represents the temporary tag TT, 
which is stored in the register 608, ready to be combined with 
the next data block to be processed. 
When the B," data block is to be processed, the encryption 

of the first payload data blocks B can be prepared by 
encrypting nonce Ni(IV+1) to obtain the corresponding 
encryption sequence S for the counter mode. Data block 
B, is provided on line 602, and combined at XOR gate 604 
with the temporary tag TT to produce the intermediate tag 
noted IT on line 610. An IV value is also provided on line 
618, which is provided via counter 616 as a nonce N to the 
multiplexer 612 on line 614. On a first half round period, the 
value IT, is selected by the multiplexer 612 to be loaded into 
the pipeline and is transferred to register 636 (without pro 
cessing). On a second half round period, the nonce N on 
line 614 is selected to be loaded into the pipeline and trans 
ferred to register 636 (without processing). During this sec 
ond half round period, the first sub-key Ko is applied to the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
value IT, to produce the first intermediate state IS (IT) of the 
encryption of the value IT, which is transferred, through line 
622 and multiplexer 612, to register 628. On a third half round 
period, the intermediate state IS (IT) is processed by the first 
stage 627 (SUBBYTES operation) and the result is trans 
ferred to register 636 while the first sub-key Ko is applied to 
the nonce N to produce the first intermediate state IS 
(N) of the encryption of the nonce N which is trans 
ferred, through line 622 and multiplexer 612, in register 628. 
The same pipelined processing is reproduced for each 

intermediate state, the intermediate state IS,(IT) of rank I of 
the intermediate tag being processed by the first stage 627 
while processing the previous intermediate value IS (N) 
of the nonce by the second stage 635 and the intermediate 
state IS (N) of rank I of the nonce being processed by the 
first stage 627 while processing of the intermediate value 
IS,(IT) of the same rank of the intermediate tag by the second 
stage 635. The current sub-key is buffered at the output of unit 
652 or at the input of unit 648 to remain available for two 
Successive computations by the second stage. Preferably, the 
sub-key K is computed by unit 652 during the half period 
where the intermediate state IS of the intermediate tag IT, 
is processed by the first stage 627 and the intermediate state 
IS of the nonce N is processed by the second stage 635. 
On the 20n+1)" half period, first and second stages process 
intermediate states of rank n-1. The second stage produces 
the ciphered value of the intermediate tag IT, which repre 
sents temporary tag TT, of rankh. On the (2n+3)' halfperiod, 
the second stage produces the encryption sequence S. 
which is combined (gate 664) with the data block Barriv 
ing on line 666 (trough the multiplexer 625 and line 602) to 
produce the first ciphered block CB. The data block B is 
also combined (gate 604) with the temporary tag TT, and the 
resulting intermediate tag IT transferred in the register 628 
through the multiplexer 624. Further, the counter is incre 
mented to produce the nonce N on line 614. Then, the 
operation explained above is reproduced for value IT and 
nonce N, and so on until value IT and nonce N. 
The first half round period of a cycle processing value IT, 

and nonce N corresponds to the last half round period 
(2n+3)") of a cycle processing value IT and nonce N, 
Hence, n+1 round periods are enough to process both 
ciphered data block and corresponding temporary tag. 
On the (2n+3)' half period of the n+1 cycle, as the Br" is 

combined with the sequence S, to produce the last cipher 
block CB, the counter 616 is reinitialized (signal reset 620) to 
produce the nonce No (preferably equal to the initialization 
value IV). Both stages are used, in a non-pipelined fashion as 
explained for the h--1 first blocks, to produce a Sequence So. 
This sequence is inputted with the content of the register 608 
to XOR gate 660 to produce the ciphered tag C. 
The tag generation and ciphering (FIG. 6) according to the 

second embodiment require approximately r+3 cycles com 
pared to the 20r-1)-h cycles required with the known solution 
of FIG. 3. Further, this second embodiment saves approxi 
mately the area of a round logic unit of the first embodiment. 

According to an alternative embodiment, the first sequence 
So is computed in a pipelined way with the intermediate tag 
IT and stored in a buffered input of gate 660. An additional 
cycle is then saved. 

Other alternatives can be provided, for example the posi 
tioning of the registers organizing the pipeline can be varied. 
Further, even if the sharing of the operations presented in FIG. 
6 is a preferred embodiment for time saving, the 
SHIFTROWS operation can be provided in the first stage (for 
example, before the SUBBYTES operation). Furthermore, a 
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round could be sub-divided further, providing additional 
pipeline stages, or the stages could be arranged in a different 
a. 

Pipelined decryption of data can be provided by similar 
circuitry to the encryption circuitry 600 used for encryption 
of data. 

FIG. 7 illustrates one embodiment ofpipelined decryption 
circuitry. In FIG. 7, the parts identical or similar with the 
circuitry of FIG. 6 have been labeled with the same reference 
numerals as FIG. 6, and these elements will not be described 
again. The first and second pipeline stages 627. 635 have not 
been shown in detail in FIG. 7, but are similar to those stages 
in FIG. 6. 

Circuit 700 comprises an input line 702 on which are 
inputted the received header data blocks which have not been 
encrypted, the encrypted data blocks CB, and the encrypted 
tag C. The circuit comprises an XOR gate 704 which 
decrypts the encrypted data blocks by performing an XOR 
function on them with the output of the second pipeline stage 
635 received on line 706, and in particular with the appropri 
ate pre-calculated decryption sequence S. The output of 
XOR gate 704 on line-708 is provided to an XOR gate 604, 
and is also output on line 710 providing the decrypted data 
block output of the circuit. This output is also provided via 
line 712 to a comparator 714, which also receives the output 
of the temporary tag register 608. Once the final tag has been 
calculated based on all of the received data blocks, it is stored 
in the temporary tag register 608 before being compared with 
the received decrypted tag on line 712. As before, if the tags 
match, the decrypted data blocks are deemed to be accurate, 
and can be processed as required. If the tags do not match 
however, this implies that the data has been corrupted, and 
therefore all of the received data block and the tag are, for 
example, destroyed. 

Operation of the circuit of FIG. 7 is essentially the same as 
the operation of the circuit 600 of FIG. 6, except that the 
decryption sequence for each data block of the payload 
should be calculated in advance of the arrival of the encrypted 
data block so that the block may be decrypted before it is 
processed for calculating the tag value. Due to the nature of 
the XOR function, the decryption sequence for decrypting 
encrypted data blocks is in fact identical to the encryption 
sequence used to encrypt the data blocks. 

FIG. 8 illustrates a variation to the pipelined encryption 
circuitry which provides a further reduction in the required 
hardware. Although not illustrated in FIG. 8, the first stage 
827 of the pipeline is slightly different from the first stage 627 
illustrated in FIG. 6 in that the SUBBYTES unit 632 of stage 
827 comprises only four S-boxes rather than the full sixteen 
S-boxes required for the 128-bit data blocks. Thus data is 
provided to the pipeline in Sub-blocks each comprising 32 
bits. For this, the circuit comprises three additional input 
registers 802, 804 and 806 for receiving the input data block 
on line 610, the counter value on line 614, and the previous 
output of the pipeline on line 622 respectively. Each of these 
input registers receives 128 bits of data and divides these 
blocks into four sub-blocks of 32 bits for outputting sequen 
tially to the pipeline. 

The pipeline operates in the same fashion as previously, 
except that instead of processing a block it processes a Sub 
block on each period. The multiplexer 612 alternatively 
selects CBC-MAC data values and counter mode data values 
to be processed. 

The 32-bit output from the pipeline online 658 is provided 
to a multiplexer 808 which has two outputs on lines 810 and 
812. The multiplexer is controlled to route the result to either 
a CBC-MAC output register 814 on line 810 or a counter 
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12 
mode register 818 on line 812. Once four processed sub 
blocks have filled either of these output registers the 128-bit 
data value is provided to the output XOR gate 664, to the 
temporary tag register 608, or to the return register 806 ready 
to be processed again by the-pipeline. 

Thus embodiments have been described above that reduce 
the hardware requirements of CCM encryption and decryp 
tion circuitry, and increase the processing speed of this cir 
cuitry. 

Such encryption or decryption circuitry is of particular 
benefit in, for example, for wireless USB or in wireless LAN 
environments as described in the IEEE 802.11 protocol. 
By providing two processing cores, one for performing the 

round logic for CBC-MAC, and one for performing counter 
mode round logic, the payload of a packet can be processed 
twice as quickly as if a single conventional processor core 
were used, one for generating the tag, and again for encrypt 
ing the payload. Furthermore, hardware resources are mini 
mized by using a common key schedule unit for generating 
sub-keys for both processor cores at the same time. This is 
made possible by arranging the processor cores to operate on 
blocks of data approximately synchronously. 
By pipelining a single processor core, it is possibly to 

process packet payloads for encryption and for generating a 
tag concurrently, and to perform these operations in approxi 
mately the time it would have taken to perform just one of 
these operations on a conventional single core architecture. 
The nature of the algorithms being performed do not make 
them immediately ideal for pipelining, particularly given that 
the output of one round is required before the next round may 
begin. By implementing a pipeline in which stages can be 
divided between the tag generation steps and the encryption 
generating steps, such that these processes can be performed 
concurrently, the throughput can be increased as well as 
reducing the required hardware. Again only a single key 
schedule block is required. 

Whilst a number of particular embodiments have been 
described above, there are many variations or alterations to 
these embodiments that may be applied. In particular, fea 
tures of any of the described embodiments may be combined 
in alternative embodiments. 

Whilst the example of encrypting data and generating a tag 
based on a 128-bit key have been provided, the key, and the 
size of each data block, may be alternative lengths. The key 
schedule unit has been described as comprising S-boxes for 
generating Sub-keys, however in alternative embodiments the 
Sub-keys are a duplication of the secret key, or an alternative 
function there of 
The initialization value can be any value, and could for 

example comprise the Source and/or destination address of 
the data. Furthermore, the unique count value can be gener 
ated using circuitry other than a counter. 

Whilst the encryption or decryption of data has been 
described as being performed by XOR gates, it could be 
performed using alternative logic. This equally applies to the 
XOR gate in the ADDROUNDKEY operation which could 
comprise alternative logic. 

Having thus described at least one illustrative embodiment 
of the invention, various alterations, modifications and 
improvements will readily occur to those skilled in the art. 
Such alterations, modifications and improvements are 
intended to be within the scope of the invention. Accordingly, 
the foregoing description is by way of example only and is not 
intended to be limiting. Further, the practical implementation 
of the present invention is in the ability of one with an ordi 
nary skill in the art using common tools to obtain either a 
processor in wired logic, preferably programmable (FPGA). 
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The invention is limited only as defined in the following 
claims and the equivalent thereto. 

What is claimed is: 
1. At least one circuit for encrypting at least a part of an 

input data flow and generating a tag based on said input data 
flow with a same ciphering algorithm and a same key, said at 
least one circuit comprising a pipeline comprising: 

an input selection unit arranged to receive and to select one 
of: 
first input data for generating encryption sequences with 

said ciphering algorithm; 
second input data for generating temporary tags with 

said ciphering algorithm; and 
output data of the pipeline; 

a first stage comprising a first temporary storage element 
configured to receive an output of said input selection 
unit and at least a first operation unit; and 

a second stage comprising a second temporary storage 
element configured to receive an output of the first stage 
and at least a second operation unit and providing said 
output data of the pipeline, the first and second stages 
performing iterative computations of the ciphering algo 
rithm, one or more operation units of the first and second 
stages being activated only in selected rounds of the 
iterative computations, the first and second stages of the 
pipeline, on Successive rounds of the iterative computa 
tions, alternating between generating encryption 
sequences with said ciphering algorithm and generating 
the tag for data integrity, wherein common circuitry in 
the pipeline generates encryption sequences with said 
ciphering algorithm and generates the tag for data integ 
rity on Successive rounds of the iterative computations. 

2. The at least one circuit of claim 1, further comprising a 
key Schedule unit arranged to receive said key, to generate at 
least one sub-key based on said key, and to provide said at 
least one sub-key to said first or second stage. 

3. The at least one circuit of claim 1, further comprising a 
first logic unit arranged to receive the output data of said 
second stage to encrypt said at least part of said input data 
flow. 

4. The at least one circuit of claim 1, further comprising: 
a temporary tags storage unit adapted to receive the output 

data of said second stage; and 
a second logic unit arranged to receive said temporary tags 

and said input data flow, and to provide said second input 
data. 

5. The at least one circuit according to claim 1, further 
comprising a logic unit for encrypting said tag. 

6. The at least one circuit according to claim 1, wherein 
said input selection unit is arranged to, on each new first and 
second input data, output said new first and second input data 
alternately to said first stage. 

7. The at least one circuit according to claim 6, wherein 
said ciphering algorithm comprises iterative loop rounds 
based on a plurality of Sub-keys, said input selection unit 
being arranged to output said output data to said first stage of 
said pipeline after completion of at least one round processing 
at least one of the first and second input data. 

8. The at least one circuit according to claim 7, wherein 
said algorithm is the AES algorithm. 

9. The at least one circuit according to claim 8, further 
comprising temporary storage elements for synchronizing 
operation of the pipeline according to Sub-blocks of data 
blocks. 
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10. At least one circuit for decrypting at least a cipher part 

of an input data flow and generating a tag based on said input 
data flow with a same algorithm and a same key, said at least 
one circuit comprising a pipeline comprising: 

an input selection unit arranged to receive and to select one 
of: 
first input data for generating decryption sequences with 

said ciphering algorithm; 
second input data for generating temporary tags with 

said ciphering algorithm; and 
output data of the pipeline; 

a first stage comprising a first temporary storage element 
configured to receive an output of said input selection 
unit and at least a first operation unit; and 

a second stage comprising a second temporary storage 
element configured to receive an output of the first stage 
and at least a second operation unit and providing said 
output data of the pipeline, the first and second stages 
performing iterative computations of the ciphering algo 
rithm, one or more operation units of the first and second 
stages being activated only in selected rounds of the 
iterative computations, the first and second stages of the 
pipeline, on Successive rounds of the iterative computa 
tions, alternating between generating encryption 
sequences with said ciphering algorithm and generating 
the tag for data integrity, wherein common circuitry in 
the pipeline generates encryption sequences with said 
ciphering algorithm and generates the tag for data integ 
rity on Successive rounds of the iterative computations. 

11. The at least one circuit of claim 10, further comprising 
a key schedule unit arranged to receive said key, to generate at 
least one sub-key based on said key, and to provide said at 
least one sub-key to said first or second stage. 

12. The at least one circuit of claim 10, further comprising 
a first logic unit arranged to receive the output data of said 
second stage to decrypt said at least part of said input data 
flow. 

13. The at least one circuit of claim 10, further comprising: 
a temporary tags storage unit adapted to receive the output 

data of said second stage; and 
at least one second logic unit arranged to receive said 

temporary tags and said input data flow, and to provide 
said second input data. 

14. The at least one circuit according to claim 10, further 
comprising a comparison unit to compare said generated tag 
with a received tag. 

15. The at least one circuit according to claim 10, wherein 
said input selection unit is arranged to, on each new first and 
second input data, output said new first and second input data 
alternately to said first stage. 

16. The at least one circuit according to claim 15, wherein 
said ciphering algorithm comprises iterative loop rounds 
based on a plurality of Sub-keys, said input selection unit 
being arranged to output said output data to said first stage of 
said pipeline after completion of at least one round processing 
at least one of the first and second input data. 

17. The at least one circuit according to claim 16, wherein 
said algorithm is the AES algorithm. 

18. A wireless local area network element comprising at 
least one circuit for encrypting input data according to claim 
1. 

19. A wireless local area network element comprising at 
least one circuit for decrypting input data according to claim 
10. 
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