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IMPLEMENTATION OF AES ENCRYPTION
CIRCUITRY WITH CCM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of data encryption
using a symmetric algorithm, more particularly the Advanced
Encryption Standard (AES) algorithm. The present invention
relates to a circuit and method of encryption in a combined
counter and CBC-MAC mode (CCM).

The present invention applies to secured data transmission,
more particularly to secured wireless networks.

2. Background of the Invention

Network security related to wireless local area networks
(WLANS), forexample according to 802.11 (nor i) standards,
wireless USB etc., generally requires encryption according to
the Advanced Encryption Standard, implemented in CCM
mode. The CCM mode provides both privacy, as well as data
integrity. To achieve data privacy, data is encrypted using a
secret key known to the transmitting and receiving network
nodes. Data integrity is ensured by generating a tag (message
authentication code—MAC) based on the data to be transmit-
ted, and then recalculating the tag at the receiving end to
ensure that data has not been corrupted.

Messages to be transmitted are in the form of data packets.
Each packet comprises a header giving information such as
the destination address of the data and additional authenti-
cated data which can be used, for example, for authentication
of packet header, and a payload. The packet header and any
additional authenticated data (grouped hereafter under the
name header) are not encrypted as they are used for routing
the packet to its destination in the network. However, the
header is taken into account to compute the tag. The payload
is both encrypted and used to generate the tag, which is also
usually encrypted.

FIG. 1A is a block diagram illustrating a conventional
example of a process 100 for encrypting data packets in
counter mode. Header and payload are organized in groups
(blocks) of bits the size of which depends on the processing
granularity of the process. The example of FIG. 1 illustrates
the case when there are four payload data blocks of plain text
P, to P, to be processed, however the process can be expanded
to process any required number of data blocks. Each data
block P, to P, is combined (XOR gates 112,114,116 and 118)
with an encryption sequence SIto S, to produce four blocks of
cipher text C, to C,. Sequences S, to S, are generated by
encrypting (steps 122, 124, 126 and 128—algorithm E) dif-
ferent nonce values N, to N, with the same secret key K. In
counter mode, the successive nonce values N, to N, are
obtained by incrementing (steps 134, 136 and 138) a first
nonce N, corresponding to an initialization value IV (for
example, zero) of a counter. Encryption in counter mode is
preferred to an encryption in cipher block chaining as the
algorithm E can be applied (calculated) before receiving the
data block.

In a hardware implementation of the encryption to which
the present invention applies, a single unit (logic computation
core) implementing the algorithm E is successively loaded
with a result value of a counter incremented for each new data
block P, to P, and the result provided by this unit is linked to
afirstinput of an XOR gate the second input of which receives
the current data block. At each data block, the key K is
provided to the unit.

FIG. 1B is a block diagram illustrating a conventional
example of a process 200 for computing, according to a
cipher block chaining (CBC) method, data integrity data in
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the form of a tag. For data integrity, both the header and the
payload have to be processed. For simplicity, it is assumed
that a data block P, is the header of a packet comprising
payload data blocks P, to P,. Each data block P, to P, is
combined (XOR gates 212, 214, 216 and 218) with the result
of the application of a same encryption algorithm E (steps
222,224,226 and 228) to the former data block. A first data
block (here, the header P,) is combined (XOR gate 210),
before encryption (block 220), with an initialization value IV
(for example zero). The result of the encryption (output of
step 228) of the last data block P, of the packet provides the
message authentication code or. tag. The ciphering key K is
the same for each computation of the algorithm E.

For implementing the counter mode, a single logic core
computing the algorithm E is used for a hardware implemen-
tation of the CBC-MAC. This single core is successively
loaded by the output of a circuit forming an XOR gate, a first
input of which successively receives the initialization value
IV' and the successive results of the algorithm when a second
input receives the successive data blocks P, to P,. Again, at
each data block, the key K is provided to the circuit.

FIG. 2 illustrates in a schematic form a conventional
example of a process for combining the counter mode and the
CBC-MAC computation in order to provide both privacy and
integrity.

Assuming a message (in the form of data packet) compris-
ing r+1 data blocks B, to B, including h+1 blocks B, to B,
representing the packet header (and additional authenticated
data). Which are not to be encrypted and r-h payload data
blocks B,,, ; to B, to be encrypted. All the blocks are processed
according to the process 200 (CBC-MAC) of FIG. 1B to
generate a tag. The payload data blocks are processed a sec-
ond time according to the counter mode process 100 of FIG.
1A to obtain ciphered blocks CB,,, to CB,. The first h+1
blocks B, to B, are sent over the network with the r-h ciphered
blocks CB,,,, to CB, and the tag CTAG (usually ciphered
using the counter mode).

By recalculating the tag at the destination based on the
decrypted blocks, and comparing this to the transmitted tag,
the data integrity of the received packet can be checked. The
key K and the initialization values IV and IV' have to be
known by the receiver. Therefore choosing zero for the IV’s
avoids the need to transmit them.

According to the method described above, every part of the
payload of a message to be transmitted is processed twice,
once for encryption and a second time for data integrity.
Known hardware implementations provide a single comput-
ing core, surrounded by suitable logic and registers such that
it can be used once for encryption and then for data integrity.
Whilst the header of each packet need only be processed for
the generation of the tag, it is the payload of the packet that
forms the majority of the data in each packet, and thus the
throughput is limited by two full processing cycles of the
payload of each packet. This solution is thus disadvantageous
in that it is slow and inefficient at performing the required
algorithm.

This drawback is particularly present for encryption algo-
rithms using a key schedule (for example, the AES algo-
rithm), i.e. according to which, for each block to be pro-
cessed, sub-keys are generated from a key K and are
successively used in rounds of an iterative process. In such
algorithms, computation time of the CCM mode encryption
can be critical for the rate of transmission of the data.

An example of the known method described above applied
to the AES is disclosed in “FPGA Implementation AES for
CCM Mode Encryption Using Xilinx Spartan-11"—Khoa Vu,
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David Zier—ECE 679, Advanced Cryptography, Oregon
State University, Spring 2003.

SUMMARY OF THE INVENTION

The present invention aims to at least partially address the
above problems discussed in relation to the prior art.

The present invention more specifically aims at providing
a fast unit for both encrypting and/or decrypting data for
privacy and generating and/or verifying a tag for integrity, in
a combined counter and CBC-MAC mode (CCM mode).

According to a first aspect of the present invention there is
provided circuitry for encrypting at least a part of an input
data flow and generating a tag based on said input data flow
with a same ciphering algorithm and a same key, said algo-
rithm comprising iterative computations by at least two
operation units, said circuitry comprising a pipeline compris-
ing: an input selection unit arranged to receive first data
values to generate encryption sequences with said ciphering
algorithm, second data values to generate temporary tags with
said ciphering algorithm and an output of the pipeline; a first
stage arranged to receive an output of said input selection unit
and comprising at least a first operation unit; and a second
stage arranged to receive an output of the first stage, compris-
ing at least a second operation unit and providing said output
of the pipeline.

According to a second aspect of the present invention there
is provided circuitry for decrypting at least a cipher part of an
input data flow and generating a tag based on said input data
flow with a same algorithm and a same key, said algorithm
comprising iterative computations by at least two operation
units, said circuitry comprising a pipeline comprising: an
input selection unit arranged to receive first data values to
generate decryption sequences with said ciphering algorithm,
second data values to generate temporary tags with said
ciphering algorithm and third data values representing an
output of the pipeline; a first stage receiving an output of said
input selection unit and comprising at least a first operation
unit; and a second stage receiving an output of the first stage,
comprising at least a second operation unit and providing said
output of the pipeline.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other purposes, features, aspects and
advantages of the invention will become apparent from the
following detailed description of a number of embodiments,
which is given by way of illustration only without limiting the
invention, and throughout which reference is made to the
accompanying drawings in which:

FIG. 1A (already described) illustrates in schematic form a
known process for encrypting data blocks;

FIG. 1B (already described) illustrates in schematic form a
known process for generating a tag;

FIG. 2 (already described) illustrates in schematic form a
known process for encrypting data and generating a tag;

FIG. 3 illustrates in schematic form circuitry for encrypting
data and generating a tag according to a first embodiment;

FIG. 4 illustrates in schematic form the key stages in an
encryption algorithm according to the Advanced Encryption
Standard;

FIG. 5 illustrates in schematic form circuitry for decrypting
data and generating a tag according to the first embodiment;

FIG. 6 illustrates in schematic form pipelined circuitry for
encrypting data and generating a tag according to a second
embodiment;
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FIG. 7 illustrates in schematic form pipelined circuitry for
decrypting data and recalculating a tag according to the sec-
ond embodiment; and

FIG. 8 illustrates in schematic form alternative pipelined
circuitry for encrypting data and generating a tag according to
the second embodiment.

DETAILED DESCRIPTION

For reasons of clarity, only steps and elements which are
useful for the understanding of the present invention have
been shown and will be described. In particular, details of the
steps of each round of the AES algorithm and of the key
schedule have not been described, the present invention being
compatible with any conventional application of the AES
algorithm.

The present invention will be described in connection with
an application to an AES algorithm. However, it applies more
generally to any symmetric algorithm using a key schedule,
such as for example DES, RCS5 (Rivest cipher 5) or RC6, i.e.
the operation of which can be-shared in a data part processing
the plain text (ciphering) or the cipher text (deciphering) and
a key part extracting sub-keys from a (secret) key to be used
in rounds of the data part. The simplest key schedule is a
duplication of key. However, the key schedule preferably
generates a function of the secret key, different for each
round.

In such algorithms the key schedule usually occupies a
significant area in a hardware implementation. The present
invention takes benefit from the fact that the same key is used
for both computing the counter mode and the cipher block
chaining message authentication code.

FIG. 3 illustrates in schematic form a processing unit 300
for performing both encryption for privacy and tag generation
for integrity according to a first embodiment.

As shown in FIG. 3, processing unit 300 comprises a first
round logic unit 302 for generating a tag according to CBC-
MAC (Cipher Block Chaining Message Authentication
Code), a second round logic unit 304 providing counter mode
functionality for encrypting packet payloads, and a common
key schedule unit 305 for generating sub-keys to be provided
to both the first and second, preferably identical, round logic
units 302 and 304.

The unit 300 receives blocks B, (i taking successively the
values O to r, where r+1 represents the total number of data
blocks) to be processed on input line 306. Input line 306 and
the other lines described herein below are in fact parallel data
lines each providing a communication route for a number of
data bytes or bits in parallel. Input line 306 is connected to a
first exclusive OR (XOR) gate 308 which also receives an
input on line 310 from a temporary tag register 312. XOR gate
308 performs the XOR function on the signals on lines 306
and 310 and provides the result on line 313 to the first round
logic unit 302. The first round logic unit 302 performs the
encryption algorithm (for example AES) on this data, and
provides the result on line 314 to the temporary tag register
312, which stores the result before providing the result back
to XOR gate 308 on line 310 ready to be added bit by bit to the
next input data block. Elements 308, 302 and 312 perform a
CBC-MAC computation branch reusing the same unit 302 for
each computation of the encryption algorithm. The initializa-
tion value is, for example, given by the initial contents (pref-
erably zero) of the register 312.

A counter 316 is provided comprising an input for receiv-
ing an initialization value IV (for example, zero) on line 318
and a reset input for receiving an input signal on line 320. The
counter adds 1 on every full cycle of the second round logic
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unit 304, and the resulting counter value N, (j taking succes-
sively and arbitrarily the values 0 and 1 to r-h-1, where h+1
represents the number of header data blocks) is provided on
line 322 to the second round logic unit 304. Unit 304 performs
the encryption algorithm, which is the same encryption algo-
rithm as performed by the first round logic unit 302, and
provides the result on line 324 which is connected to a second
XOR gate 326. Unit 304 computes encryption sequences S, in
counter mode to be combined with the payload data blocks B,.
The second XOR gate 326 also receives the data block B,
(h+1=i=r) on line 327. The second XOR gate 326 provides
an output on line 328 which is the encrypted data block CB,.
In particular, encryption sequence S, is used to encrypt the
datablock B, |, the encryption sequence S, is used to encrypt
data block B,,, , etc.

Elements 316, 304 and 326 perform a counter mode com-
putation branch reusing the same unit 304 for each computa-
tion of the encryption algorithm.

The key schedule unit 305 receives a secret key 334, which
is known to both the transmitting and receiving parts (for
example the nodes of a communication network). Based on
the secret key 334, the key schedule block 305 generates a
series of sub keys K,, (I taking successively the values 0 to n,
where n represents the number of rounds of the ciphering
algorithm) which are provided both to the first round logic
unit 302 on line 336 and to the second round logic unit 304 on
line 338.

The elements of processing unit 300 also receive synchro-
nization and control signals not shown in FIG. 3 for control-
ling the operation of the circuitry as will now be described.
Processing unit 300 is preferably a logic array, and can be
programmable (FPGA) or not.

The first and second round logic units process in parallel
the data blocks B, for generating the tag and the nonce values
N, generated by counter 316 for encrypting the data blocks,
but the n+1 sub-keys for each computation of the AES (for
each block) are generated by the shared key schedule unit
305. For blocks B, to B,, the unit 304 is not activated. The
data blocks B, to B,,, which are not encrypted, are output on
line 329 directly from the input line 306 and are processed in
parallel by the unit 302. When the B,,, ,” data block arrives at
input line 306, both units 302 and 304 are active and the IV is
also provided on input line 318. The data blocks B,,, , to B, are
processed by the unit 302 and in parallel (using the same
sub-keys) the count values N; are ciphered by unit 304 which
generates the encryption sequences S, for encryption of the
data blocks at the XOR gate 326. Once the B,” data block has
been encrypted and processed by the first round logic unit
302, the tag at the output 314 is the final tag to be transmitted.

Preferably, an initial encryption sequence S, is used to
encrypt the tag. The content of the TEMP TAG register 312 is
provided to a third XOR gate 330 for encrypting the tag. In a
final iteration of the second unit 304 alone, the counter 316 is
reset (line 320), and the second round logic unit performs the
algorithm on the initialization value (first nonce N,). The
result is provided on line 324 to the third XOR gate 330. The
XOR function is applied to this value and the tag from the
TEMP TAG register 312, and the output on line 332 is the
encrypted tag C, which can be sent with the encrypted data
CB, (b+1=i=r) and the packet header B, (0=i=h).

An advantage of using the initial sequence S, for encrypt-
ing the tag is that tag encryption can be performed irrespec-
tively of the number r-h of data blocks that are to be
encrypted. In alternative embodiments, rather than resetting
the counter to generate to the initial encryption sequence S,
for encrypting the tag, the encryption sequence S, is gener-
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6

ated during processing of the data block B,,_, and is stored in
a register. It can then be reused for encrypting the tag.

In the example of the AES, the encryption and tag genera-
tion performed by the first and second unit 302, 304 both use
a series of either 11, 13 or 15 sub-keys of 128 bits, generated
by the key schedule circuit 305, the number of rounds com-
puted by each unit 302 or 304 being 11, 13 or 15 respectively.
Each block of data (circuit 302) or nonce (circuit 304) to be
processed is 128 bits. According to some alternative embodi-
ments the initial key addition is included in the first round and
then the encryption is executed in 10, 12 or 14 clock cycles.

FIG. 4 is a block diagram illustrating the operation of
identical round logic units 302 and 304 for the AES. This
encryption algorithm is described in more detail in the pub-
lication “The Design of Rijndael” by Joan Daemen and Vin-
cent Rijmen, available from Springer-Verlag (ISBN 3-540-
42580-2) and in the AES standard (FIPS PUB 197).

The algorithm encodes blocks of plain text (data or nonce)
each comprising 128 bits into an encoded block of the same
size. Each step in the algorithm processes a matrix of four
rows and four columns, each element in the matrix being a
byte such that the matrix represents a total of 128 bits.

The process starts with an initial state 401 (STATE INIT) of
the four by four data matrix PT to be encrypted.

The first step 402 (ADDROUNDKEY) comprises per-
forming an XOR operation bit by bit on each of the elements
of the matrix with the first sub-key K, to obtain a first inter-
mediate state IS,. The sub-key is generated by the key sched-
ule unit as described above.

The second step in the process comprises performing a
number n-1 of rounds of the same transformation T, provid-
ing an intermediate state IS, by processing the previous inter-
mediate state IS,_, and a current sub-key K,. The number n-1
of'rounds required is the number of sub-keys generated minus
2. If the secret key is 128 bits, eleven sub-keys are generated,
and therefore this transformation is repeated nine times. Each
transformation T comprises four operations.

A first operation 403 (SUBBYTES) comprises anon-linear
transformation in which each byte of the matrix of the previ-
ous state IS, , is replaced by its image in a pre-calculated
substitution table, known as an S-box. The S-box can be
obtained by the combination of two transformations, a first
which inverses each byte of the matrix in the limited field of
size 2% (to correspond to a byte), each byte being replaced by
its own image. This inversion is followed by an affine trans-
formation. Since 128 bits are encrypted every round, sixteen
S-boxes are required in total.

The second operation 404 (SHIFTROWS) comprises per-
forming a rotation on the three bottom rows of the matrix
resulting from the previous operation 403, and rotates the
second row by one byte, the third row by two bytes, and the
fourth row by three bytes. The first and second operations can
be inverted.

A third operation 405 (MIXCOLUMNS) comprises con-
sidering each column of the matrix resulting from the previ-
ous operation as a polynomial within the limited field of size
28, and multiplying each of these polynomials by a combina-
tion polynomial P[X] modulo a polynomial M[X].

A fourth and final operation 406 (ADDROUNDKEY)
comprises applying the current sub-key K, by performing the
XOR function bit by bit with each bit of the sub-key and each
bit of each byte of the matrix resulting from the previous
operation 405. This operation is the same as the operation
402, but with a different sub-key and provides intermediate
state IS,. At the end of the n—1”round, operation 406 provides
intermediate state IS,,_;.
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Next, atransformation T', forming the last round, processes
the intermediate state IS, _| and last sub-key K . Transforma-
tion T' performs successively SUBBYTE operation 407,
SHIFTROWS operation 408 and ADDROUNDKEY opera-
tion 409 using the last sub-key K, . Hence, transformation T'
corresponds to transformation T without the MIXCOL-
UMNS operation.

If needed, a last step 410 (RESULT FORM) puts the result
(ciphered text CT) into the appropriated form to be outputted
(on line 314 for unit 302 and on line 324 for unit 304).

Whilst FIG. 4 illustrates multiple identical steps, for
example three ADDROUNDKEY steps 402, 406 and 409, in
practice only one function unit need be provided for perform-
ing each operation. Thus a total of four function units are
required for the four operations, and the matrix can be passed
through each of these units the required number of times, the
appropriate function unit being activated -on each cycle. Fur-
thermore, inputs and/or outputs of the operations are usually
buffered for synchronization purposes.

The sub-keys, a different one of each round of the encryp-
tion algorithm, are generated by the key schedule unit. The
key schedule uses S-boxes to generate the sub-keys from the
key K. Four S-boxes are used for generating the n+1 sub-keys
and are either to be stored or computed for each data block.

FIG. 5 illustrates in schematic form a processing unit 500
for decrypting encrypted messages at the destination node
according to the first embodiment. The circuitry 500 com-
prises a first round logic unit 502 for implementing CBC-
MAC, a second round logic unit 504 for implementing
counter mode, and a key schedule unit 506 for generating
sub-keys for use by the first and second round logic units. The
processing unit 500 receives on an input line 508 data blocks
B,, for i between O and h, which represent the header (and
additional authenticated data) and are not encrypted, the
encrypted data blocks CB,, for i between (h+1) and r, repre-
senting the payload, and the encrypted tag C,,;. These
blocks are added bit by bit to the current sequence S, provided
by the second round logic unit 504 by XOR gate 510, however
a value will only be provided on line 512 when payload data
blocks CB,,,, to CB, and encrypted tag C,, are being pro-
cessed as no decryption is required for the header. For data
blocks B, to B, zeros will be provided on line 512 to XOR
gate 510, such that these data blocks pass through gate 510 to
output line 514 without being altered. The decrypted output
of XOR 510 is provided on line 514, and represents the
decrypted blocks of data B,, which are also output directly on
an output line 515.

The output on line 514 is also provided to a second XOR
gate 516 where it is added bit by bit to the output on line 518
of a temporary tag register 520. The output of XOR gate 516
is provided on line 522 to the first round logic unit 502. The
result is provided to be stored in the temporary tag register
520 on line 524.

As with the encrypting processing unit 300, the second
round logic unit 504 generates the encryption sequences S,
based on count values (nonce values N) from a counter 526
which receives an initialization value IV on line 528 and a
reset signal on line 530. On each cycle, the counteradds 1, and
outputs the value on line 532.

Units 304 and 504, and 302 and 502 respectively, are iden-
tical.

The secret key 538, which is the same secret key as that
used by processing unit 300, is provided to the key schedule
unit 506 on line 540. The key schedule unit calculates a
sub-key for each round of the first and second round logic
units, and outputs these on both line 542 to the first round
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logic unit 502 and line 544 to the second round logic unit 504.
The order of generation of the sub-keys is the same for
encrypting and decrypting.

As for FIG. 3, elements of unit 500 receive control and
synchronization signals (not shown).

Oncethe tag has been calculated using all of the data blocks
B,, the result is provided to a comparison unit 534 on line 518.
Comparator 534 also receives the decrypted tag on line 519.
The received tag C,,; is decrypted using, as for encryption,
the initial sequence S, which is calculated by resetting
counter 526 to the IV, or in an alternative embodiment stored
in a register when originally generated during processing of
block B,,, ;. Sequence S, is provided on line 512 to XOR gate
510 to decrypt the tag, and the decrypted tag is then provided
on line 519 to the comparator.

The comparator 534 provides a result on line 536 indicat-
ing whether the tags match. If the tags match, the decrypted
data blocks are deemed to be accurate, and can be processed
as required. If the tags do not match however, this implies that
the data has been corrupted, and therefore all the received data
blocks and the tag are, for example, destroyed.

The tag generation and ciphering (FIG. 4)—or deciphering
(FIG. 5)—according to the first embodiment require r+2
cycles, compared to the 2(r+1)-h cycles required with the
known solution of FIG. 3.

FIG. 6 illustrates encryption processing unit 600 for
encrypting data blocks B,, and for generating a tag for data
integrity according to a second embodiment. As will now be
described, the encryption unit 600 is pipelined. Furthermore,
a single pipeline is used for providing the functionality of
both the CBC-MAC and counter mode round logic units.

Data blocks B, are received on an input line 602 and added
bit by bit, by an XOR gate 604, to the output 606 of a
temporary tag register 608. The output of XOR gate 604 is
provided on line 610 to a first input of a three input multi-
plexer 612. Multiplexer 612 also receives at a second input an
input on line 614 from a counter 616 which receives an
initialization value on line 618 and adds 1 on each payload
data block cycle. The counter also receives a reset input on
line 620. At a third input, multiplexer 612 receives a signal on
line 622 from the output of the pipeline.

A select input line 624 is provided for receiving an input
signal SEL that selects which input of multiplexer 612 is
selected for output on output line 626 of the multiplexer.

The output line 626 is connected to a first stage 627 of the
pipeline. The first stage comprises a register 628 connected by
line 630 to an unit 632 performing the SUBBYTES opera-
tions as described above with references 403 and 407 of FIG.
4. Register 628 acts as a buffer buffering data blocks received
via the multiplexer 612. The SUBBYTES operation is par-
ticularly demanding on processing time and therefore it is
preferable to arrange the pipeline with this function as the
only function in a stage.

The output of unit 632 is provided to a second stage 635 of
the pipeline on line 634. The second stage comprises a regis-
ter 636 for buffering the data output from unit 632. The
register outputs data values on line 638 to a unit 640 perform-
ing the SHIFTROWS operations 404 and 408 of FIG. 4. The
output of unit 640 is provided on line 642 to a unit 644
performing the MIXCOLUMNS operation 405 of FIG. 4.

The output of the unit 644 is provided on line-646 to a unit
648 performing the ADDROUNDKEY operation which
receives sub-keys K on line 650 from akey schedule unit 652.
The key schedule unit.652 generates sub-keys based on a
secret key 654 provided on line 656.

The output of the unit 648 on line 658 provides the output
of the second stage 635 of the pipeline. This data value is
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selectively provided to the temporary tag register 608 on line
659, and to the multiplexer 612 on line 622. The output is also
provided to an XOR gate 660 which also receives the output
of the temporary tag register on line 606, and generates the
encrypted tag C, on its output line 662. The second stage
output is also provided to an XOR gate 664 which also
receives on line 666 the payload data block B, to be encrypted
and performs the XOR function bit by bit providing the
encrypted data block CB,(h+1=i=r) on line 668. Line 666 is
one of two outputs of a further multiplexer 625, the single
input of which is connected to line 602. The second output of
multiplexer 625 outputs the header data blocks B, to B,,
which are not encrypted, on line 669.

The processing unit 600 of FIG. 6 operates by alternatively
processing first count values provided by counter 616 for
generating encryption sequences for encrypting the data
blocks, and processing input data blocks for calculating the
tag, the second stage being used for ending a round with either
the nonce or the data associated with the current data block
while the first stage starts another round with the data or the
nonce. It should be noted that the same sub-key is needed for
each round of the CBC-MAC algorithm for calculating the
tag as for the equivalent round of the counter algorithm.

The pipelined round is controlled to perform the same
operations as disclosed in relation to FIG. 4. The header and
payload of each packet is provided on line 602. For each data
block B, to B,, of the header (and associated data) which is
only used to generate the tag and not encrypted, the pipeline
operates only generating temporary tags TT,.

For each data block B, to B,,_,, the result of the combina-
tion of data block B, with a previous temporary tag TT,_;
(initialized with zero for combination with block B) is
loaded into the pipeline via multiplexer 612. This result is an
intermediate tag IT,, On the first round only the
ADDROUNDKEY unit 648 is used, and therefore the data
block passes through the SUBBYTES unit 632 without being
processed and is stored in register 636. Then, the data block
passes straight through the SHIFTROWS unit 640 and the
MIXCOLUMNS unit 644 without being processed and is
added bit by bit by the ADDROUNDKEY unit 648 to the first
sub-key K, generated by the key schedule unit 652. The
output (intermediate state IS,) is returned on line-622 to the
multiplexer 612. On the second round and on subsequent
rounds until the n-1th round, SUBBYTES operation 632 is
applied, as are all of the operations in the second stage of the
processing unit 600. At the end of each round, the intermedi-
ate state IS, is passed back on line 622 to be processed again.
On the n™ and final round, all of the functions are applied
except for the MIXCOLUMNS unit 644, and the output of the
ADDROUNDKEY unit represents the temporary tag TT,
which is stored in the register 608, ready to be combined with
the next data block to be processed.

When the B,” data block is to be processed, the encryption
of the first payload data blocks B,,; can be prepared by
encrypting nonce N, (=IV+1) to obtain the corresponding
encryption sequence S, for the counter mode. Data block
B,, is provided on line 602, and combined at XOR gate 604
with the temporary tag TT,,_, to produce the intermediate tag
noted IT,, on line 610. An IV value is also provided on line
618, which is provided via counter 616 as anonce N, , to the
multiplexer 612 on line 614. On a first half round period, the
value IT,, is selected by the multiplexer 612 to be loaded into
the pipeline and is transferred to register 636 (without pro-
cessing). On a second half round period, the nonce N,,,; on
line 614 is selected to be loaded into the pipeline and trans-
ferred to register 636 (without processing). During this sec-
ond half round period, the first sub-key K, is applied to the
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value IT, to produce the first intermediate state IS, (IT,,) of the
encryption of the value IT, which is transferred, through line
622 and multiplexer 612, to register 628. On a third half round
period, the intermediate state IS, (IT),) is processed by the first
stage 627 (SUBBYTES operation) and the result is trans-
ferred to register 636 while the first sub-key K, is applied to
the nonce N,,,; to produce the first intermediate state IS,
(N,,, ) of the encryption of the nonce N,,,; which is trans-
ferred, through line 622 and multiplexer 612, in register 628.

The same pipelined processing is reproduced for each
intermediate state, the intermediate state IS(IT,) of rank I of
the intermediate tag being processed by the first stage 627
while processing the previous intermediate value IS, (N, )
of the nonce by the second stage 635 and the intermediate
state IS{N,, , ,) of rank I of the nonce being processed by the
first stage 627 while processing of the intermediate value
ISIT,,) of the same rank of the intermediate tag by the second
stage 635. The current sub-key is buffered at the output of unit
652 or at the input of unit 648 to remain available for two
successive computations by the second stage. Preferably, the
sub-key K, is computed by unit 652 during the half period
where the intermediate state IS,_; of the intermediate tag I'T),
is processed by the first stage 627 and the intermediate state
IS, , of the nonce N, , is processed by the second stage 635.
On the 2(n+1)"” half period, first and second stages process
intermediate states of rank n—1. The second stage produces
the ciphered value of the intermediate tag IT, which repre-
sents temporary tag TT, of rank h. On the (2n+3)” half period,
the second stage produces the encryption sequence S,
which is combined (gate 664) with the data block B,,, , arriv-
ing on line 666 (trough the multiplexer 625 and line 602) to
produce the first ciphered block CB,,, ;. The datablock B, , | is
also combined (gate 604) with the temporary tag TT, and the
resulting intermediate tag I'T, , | transferred in the register 628
through the multiplexer 624. Further, the counter is incre-
mented to produce the nonce N, ,, on line 614. Then, the
operation explained above is reproduced for value IT,,; and
nonce N, ,, and so on until value IT,_,and nonce N,

The first half round period of a cycle processing value IT,
and nonce N,,, corresponds to the last half round period
((2n+3)™) of a cycle processing value IT,, and nonce N,.
Hence, n+1 round periods are enough to process both
ciphered data block and corresponding temporary tag.

On the (2n+3)” half period of the n+1 cycle, as the Br” is
combined with the sequence S, to produce the last cipher
block CB,, the counter 616 is reinitialized (signal reset 620) to
produce the nonce N, (preferably equal to the initialization
value IV). Both stages are used, in a non-pipelined fashion as
explained for the h+1 first blocks, to produce a Sequence S,.
This sequence is inputted with the content of the register 608
to XOR gate 660 to produce the ciphered tag C, .

The tag generation and ciphering (FIG. 6) according to the
second embodiment require approximately r+3 cycles com-
pared to the 2(r+1)-h cycles required with the known solution
of FIG. 3. Further, this second embodiment saves approxi-
mately the area of a round logic unit of the first embodiment.

According to an alternative embodiment, the first sequence
S, 1s computed in a pipelined way with the intermediate tag
IT,,_, and stored in a buffered input of gate 660. An additional
cycle is then saved.

Other alternatives can be provided, for example the posi-
tioning of the registers organizing the pipeline can be varied.
Further, even if the sharing of the operations presented in FIG.
6 is a preferred embodiment for time saving, the
SHIFTROWS operation can be provided in the first stage (for
example, before the SUBBYTES operation). Furthermore, a
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round could be sub-divided further, providing additional
pipeline stages, or the stages could be arranged in a different
manner.

Pipelined decryption of data can be provided by similar
circuitry to the encryption circuitry 600 used for encryption
of data.

FIG. 7 illustrates one embodiment of pipelined decryption
circuitry. In FIG. 7, the parts identical or similar with the
circuitry of FIG. 6 have been labeled with the same reference
numerals as FIG. 6, and these elements will not be described
again. The first and second pipeline stages 627, 635 have not
been shown in detail in FIG. 7, but are similar to those stages
in FIG. 6.

Circuit 700 comprises an input line 702 on which are
inputted the received header data blocks which have not been
encrypted, the encrypted data blocks CB, and the encrypted
tag C,,i. The circuit comprises an XOR gate 704 which
decrypts the encrypted data blocks by performing an XOR
function on them with the output of the second pipeline stage
635 received on line 706, and in particular with the appropri-
ate pre-calculated decryption sequence S, The output of
XOR gate 704 on line-708 is provided to an XOR gate 604,
and is also output on line 710 providing the decrypted data
block output of the circuit. This output is also provided via
line 712 to a comparator 714, which also receives the output
of'the temporary tag register 608. Once the final tag has been
calculated based on all of the received data blocks, it is stored
in the temporary tag register 608 before being compared with
the received decrypted tag on line 712. As before, if the tags
match, the decrypted data blocks are deemed to be accurate,
and can be processed as required. If the tags do not match
however, this implies that the data has been corrupted, and
therefore all of the received data block and the tag are, for
example, destroyed.

Operation of the circuit of FIG. 7 is essentially the same as
the operation of the circuit 600 of FIG. 6, except that the
decryption sequence for each data block of the payload
should be calculated in advance of the arrival of the encrypted
data block so that the block may be decrypted before it is
processed for calculating the tag value. Due to the nature of
the XOR function, the decryption sequence for decrypting
encrypted data blocks is in fact identical to the encryption
sequence used to encrypt the data blocks.

FIG. 8 illustrates a variation to the pipelined encryption
circuitry which provides a further reduction in the required
hardware. Although not illustrated in FIG. 8, the first stage
827 of the pipeline is slightly different from the first stage 627
illustrated in FIG. 6 in that the SUBBYTES unit 632 of stage
827 comprises only four S-boxes rather than the full sixteen
S-boxes required for the 128-bit data blocks. Thus data is
provided to the pipeline in sub-blocks each comprising 32
bits. For this, the circuit comprises three additional input
registers 802, 804 and 806 for receiving the input data block
on line 610, the counter value on line 614, and the previous
output of the pipeline on line 622 respectively. Each of these
input registers receives 128 bits of data and divides these
blocks into four sub-blocks of 32 bits for outputting sequen-
tially to the pipeline.

The pipeline operates in the same fashion as previously,
except that instead of processing a block it processes a sub-
block on each period. The multiplexer 612 alternatively
selects CBC-MAC data values and counter mode data values
to be processed.

The 32-bit output from the pipeline on line 658 is provided
to a multiplexer 808 which has two outputs on lines 810 and
812. The multiplexer is controlled to route the result to either
a CBC-MAC output register 814 on line 810 or a counter
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mode register 818 on line 812. Once four processed sub-
blocks have filled either of these output registers the 128-bit
data value is provided to the output XOR gate 664, to the
temporary tag register 608, or to the return register 806 ready
to be processed again by the-pipeline.

Thus embodiments have been described above that reduce
the hardware requirements of CCM encryption and decryp-
tion circuitry, and increase the processing speed of this cir-
cuitry.

Such encryption or decryption circuitry is of particular
benefit in, for example, for wireless USB or in wireless LAN
environments as described in the IEEE 802.11 protocol.

By providing two processing cores, one for performing the
round logic for CBC-MAC, and one for performing counter
mode round logic, the payload of a packet can be processed
twice as quickly as if a single conventional processor core
were used, one for generating the tag, and again for encrypt-
ing the payload. Furthermore, hardware resources are mini-
mized by using a common key schedule unit for generating
sub-keys for both processor cores at the same time. This is
made possible by arranging the processor cores to operate on
blocks of data approximately synchronously.

By pipelining a single processor core, it is possibly to
process packet payloads for encryption and for generating a
tag concurrently, and to perform these operations in approxi-
mately the time it would have taken to perform just one of
these operations on a conventional single core architecture.
The nature of the algorithms being performed do not make
them immediately ideal for pipelining, particularly given that
the output of one round is required before the next round may
begin. By implementing a pipeline in which stages can be
divided between the tag generation steps and the encryption
generating steps, such that these processes can be performed
concurrently, the throughput can be increased as well as
reducing the required hardware. Again only a single key
schedule block is required.

Whilst a number of particular embodiments have been
described above, there are many variations or alterations to
these embodiments that may be applied. In particular, fea-
tures of any of the described embodiments may be combined
in alternative embodiments.

Whilst the example of encrypting data and generating a tag
based on a 128-bit key have been provided, the key, and the
size of each data block, may be alternative lengths. The key
schedule unit has been described as comprising S-boxes for
generating sub-keys, however in alternative embodiments the
sub-keys are a duplication of the secret key, or an alternative
function there of.

The initialization value can be any value, and could for
example comprise the source and/or destination address of
the data. Furthermore, the unique count value can be gener-
ated using circuitry other than a counter.

Whilst the encryption or decryption of data has been
described as being performed by XOR gates, it could be
performed using alternative logic. This equally applies to the
XOR gate in the ADDROUNDKEY operation which could
comprise alternative logic.

Having thus described at least one illustrative embodiment
of the invention, various alterations, modifications and
improvements will readily occur to those skilled in the art.
Such alterations, modifications and improvements are
intended to be within the scope of the invention. Accordingly,
the foregoing description is by way of example only and is not
intended to be limiting. Further, the practical implementation
of the present invention is in the ability of one with an ordi-
nary skill in the art using common tools to obtain either a
processor in wired logic, preferably programmable (FPGA).
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The invention is limited only as defined in the following
claims and the equivalent thereto.

What is claimed is:
1. At least one circuit for encrypting at least a part of an
input data flow and generating a tag based on said input data
flow with a same ciphering algorithm and a same key, said at
least one circuit comprising a pipeline comprising:
an input selection unit arranged to receive and to select one
of:
first input data for generating encryption sequences with
said ciphering algorithm;

second input data for generating temporary tags with
said ciphering algorithm; and

output data of the pipeline;

a first stage comprising a first temporary storage element
configured to receive an output of said input selection
unit and at least a first operation unit; and

a second stage comprising a second temporary storage
element configured to receive an output of the first stage
and at least a second operation unit and providing said
output data of the pipeline, the first and second stages
performing iterative computations of the ciphering algo-
rithm, one or more operation units of the first and second
stages being activated only in selected rounds of the
iterative computations, the first and second stages of the
pipeline, on successive rounds of the iterative computa-
tions, alternating between generating encryption
sequences with said ciphering algorithm and generating
the tag for data integrity, wherein common circuitry in
the pipeline generates encryption sequences with said
ciphering algorithm and generates the tag for data integ-
rity on successive rounds of the iterative computations.

2. The at least one circuit of claim 1, further comprising a
key schedule unit arranged to receive said key, to generate at
least one sub-key based on said key, and to provide said at
least one sub-key to said first or second stage.

3. The at least one circuit of claim 1, further comprising a
first logic unit arranged to receive the output data of said
second stage to encrypt said at least part of said input data
flow.

4. The at least one circuit of claim 1, further comprising:

atemporary tags storage unit adapted to receive the output
data of said second stage; and

asecond logic unit arranged to receive said temporary tags
and said input data flow, and to provide said second input
data.

5. The at least one circuit according to claim 1, further

comprising a logic unit for encrypting said tag.

6. The at least one circuit according to claim 1, wherein
said input selection unit is arranged to, on each new first and
second input data, output said new first and second input data
alternately to said first stage.

7. The at least one circuit according to claim 6, wherein
said ciphering algorithm comprises iterative loop rounds
based on a plurality of sub-keys, said input selection unit
being arranged to output said output data to said first stage of
said pipeline after completion of at least one round processing
at least one of the first and second input data.

8. The at least one circuit according to claim 7, wherein
said algorithm is the AES algorithm.

9. The at least one circuit according to claim 8, further
comprising temporary storage elements for synchronizing
operation of the pipeline according to sub-blocks of data
blocks.
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10. At least one circuit for decrypting at least a cipher part
of'an input data flow and generating a tag based on said input
data flow with a same algorithm and a same key, said at least
one circuit comprising a pipeline comprising:
an input selection unit arranged to receive and to select one
of:
first input data for generating decryption sequences with
said ciphering algorithm;

second input data for generating temporary tags with
said ciphering algorithm; and

output data of the pipeline;

a first stage comprising a first temporary storage element
configured to receive an output of said input selection
unit and at least a first operation unit; and

a second stage comprising a second temporary storage
element configured to receive an output of the first stage
and at least a second operation unit and providing said
output data of the pipeline, the first and second stages
performing iterative computations of the ciphering algo-
rithm, one or more operation units of the first and second
stages being activated only in selected rounds of the
iterative computations, the first and second stages of the
pipeline, on successive rounds of the iterative computa-
tions, alternating between generating encryption
sequences with said ciphering algorithm and generating
the tag for data integrity, wherein common circuitry in
the pipeline generates encryption sequences with said
ciphering algorithm and generates the tag for data integ-
rity on successive rounds of the iterative computations.

11. The at least one circuit of claim 10, further comprising
akey schedule unit arranged to receive said key, to generate at
least one sub-key based on said key, and to provide said at
least one sub-key to said first or second stage.

12. The at least one circuit of claim 10, further comprising
a first logic unit arranged to receive the output data of said
second stage to decrypt said at least part of said input data
flow.

13. The at least one circuit of claim 10, further comprising:

a temporary tags storage unit adapted to receive the output
data of said second stage; and

at least one second logic unit arranged to receive said
temporary tags and said input data flow, and to provide
said second input data.

14. The at least one circuit according to claim 10, further
comprising a comparison unit to compare said generated tag
with a received tag.

15. The at least one circuit according to claim 10, wherein
said input selection unit is arranged to, on each new first and
second input data, output said new first and second input data
alternately to said first stage.

16. The at least one circuit according to claim 15, wherein
said ciphering algorithm comprises iterative loop rounds
based on a plurality of sub-keys, said input selection unit
being arranged to output said output data to said first stage of
said pipeline after completion of at least one round processing
at least one of the first and second input data.

17. The at least one circuit according to claim 16, wherein
said algorithm is the AES algorithm.

18. A wireless local area network element comprising at
least one circuit for encrypting input data according to claim
1.

19. A wireless local area network element comprising at
least one circuit for decrypting input data according to claim
10.
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