(54) Title: A TRAFFIC SHAPING ATM NETWORK SWITCH

(57) Abstract

An ATM network switch includes a switch fabric (14), and a plurality of slot controllers (11) coupled to the switch fabric. Each slot controller has at least one external data link (12, 13), cell receiving circuitry (21) for receiving ATM cells from the data link and cell transmitting circuitry (22) for transmitting ATM cells outwardly on the data link. The cell transmitting circuitry of each slot controller includes traffic shaping circuitry (23) arranged to set, for each cell presented to the transmitting circuitry, a current onward transmission time where onward transmission at the input rate meets a predetermined flow rate criterion, and a delayed onward transmission time where onward transmission at the current time would cause the traffic on a VC to exceed a predetermined flow rate criterion. The traffic shaping circuitry includes a buffer (24) which stores each new cell at an address corresponding to the onward transmission time, and output logic (32 or 44) for outputting cells from the buffer at a time corresponding to the address thereof.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GE</td>
<td>Georgia</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GN</td>
<td>Guinea</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>IE</td>
<td>Ireland</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KE</td>
<td>Kenya</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LR</td>
<td>Liberia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LT</td>
<td>Lithuania</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LV</td>
<td>Latvia</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MC</td>
<td>Monaco</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolia</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>GAB</td>
<td>Gabon</td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
1. Field of the Invention

This invention relates to an asynchronous transfer mode (ATM) network switch. More particularly, this invention relates to a switch having means for controlling the flow of ATM cells constituting an individual virtual connection (VC).

2. Background of the Invention

In ATM data transmission, cells of data conventionally comprising fifty-three bytes (forty-eight bytes carrying data and the remaining five bytes defining the cell header, the address and related information) pass through the network on a virtual connection at an agreed upon rate related to the available bandwidth and the level or service paid for. The agreed upon rate will relate not only to the steady average flow of data, but will also limit the peak flow rates.

Over an extensive network, cells on a connection can become bunched together with different cells having different delays imposed upon them at different stages, so that the cell flow on a VC then does not conform with the agreed upon rates. To prevent rates being exceeded to the detriment of other VC’s in the network, the network will include, for example at the boundary between different networks, means for policing the flow. The flow policing means typically includes a “leaky bucket” device which assesses the peak and average flow rates of cells on a VC and if required either downgrades the cells’ priority or discards cells. An example of such a device is disclosed in co-owned UK Patent Application No. 9505358.3 which is hereby incorporated herein in its entirety. Since policing can result in the discarding of cells which should not be discarded, it is desirable to effect “traffic shaping” to space out the cells on a VC sufficiently so as to ensure that they meet the agreed upon rates, and in particular the peak rates.
A problem with traffic shaping is that it is desirable to delay the transmission of cells by variable amounts in an attempt to avoid cell loss. In practice, however, variable cell delay has been difficult to implement.

SUMMARY OF THE INVENTION

It is therefore an object of the invention to provide a traffic shaping means for an ATM switch.

It is another object of the invention to provide an ATM switch with a traffic shaping mechanism which delays the transmission of incoming cells by varying amounts of time.

It is a further object of the invention to provide a traffic shaping mechanism for an ATM switch which accounts for both peak and average cell flow rates.

In accord with the objects of the invention, an ATM network switch is provided with a traffic shaping means on the input or output side thereof. The traffic shaping means broadly comprises means for determining for each cell received at the traffic shaping means an onward transmission time dependent upon the time interval between the arrival of the cell and the time of arrival of the preceding cell on the same VC, buffer means for storing each new cell at an address corresponding to the onward transmission time, and means for outputting cells from the buffer means at a time corresponding to the address thereof.

In one embodiment of the invention, the switch comprises a cross-point switch (switch fabric) having a plurality of input ports (cell receiving means for receiving ATM cells from a data link) and a plurality of output ports (cell transmitting means for transmitting ATM cells outwardly on the data link), and one or more controllers (which are often called "slot controllers' or "link controllers") for switching data cells from any input port
to any output port. The cell transmitting means of each
controller includes the traffic shaping means arranged to set,
for each cell presented to the transmitting means, a current
onward transmission time when onward transmission at the input
rate meets a predetermined flow rate criterion, and a delayed
onward transmission time when onward transmission at the current
time would cause the traffic on a VC to exceed a predetermined
flow rate criterion. The traffic shaping means comprises at
least one leaky bucket processor for determining an onward
transmission time, buffer means for storing each new cell at an
address corresponding to the onward transmission time, and means
for outputting cells from the buffer means at a time
corresponding to the address thereof.

In a preferred embodiment, each leaky bucket processor of
the traffic shaping means comprises:

a timer means for timing the arrival of each ATM cell
presented to the transmitting means;

memory means for storing a predetermined regular bucket
increment, a current bucket level value and a bucket maximum
value, being the maximum capacity of the bucket;

calculating means for calculating the time difference
between the arrival time of the cell and a stored onward
transmission time for the preceding cell on the same VC, and for
calculating a new bucket level from the time difference, the
current bucket level, and the bucket increment;

subtraction means for subtracting the maximum level from the
new level to give an overflow value and, if the overflow value is
negative, for setting the value of the overflow to zero; and

means for adding the overflow value to the current time to
give the onward transmission time for the cell and for storing
the onward transmission time in the memory or buffer means.

According to a preferred arrangement, the traffic shaping
means comprises a leaky bucket processor which carries on two
leaky bucket calculations, and means for comparing the overflow
values calculated in the two leaky bucket calculations and for
passing only the greater of the two values to the adding means. Preferably, a first of the two leaky bucket calculations monitors peak cell flow rates, while the second leaky bucket calculation monitors average cell flow rates.

According to another preferred aspect of the invention, the buffer means comprises a FIFO for each VC for storing cells on that VC, and memory means for storing at an address corresponding to the onward transmission time for each cell the address of the cell. The buffer means is suitably configured dynamically in Random Access Memory (RAM), so that the VC FIFOs are set up as new VCs are set up. Also, the output means is preferably arranged to output cells from the FIFOs in accordance with the data stored in the memory means.

Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a representation of an ATM switch in accordance with the invention;

Figure 2 is a more detailed representation of one of the slot controllers of the switch shown in Figure 1;

Figure 3 is a representation of the buffer memory arrangement forming part of the traffic shaping means within the slot controller shown in Figure 2;

Figure 4 is a representation of an alternative buffer arrangement which can be used with the traffic shaping means within the slot controller shown in Figure 2; and
Figure 5 is a flow diagram of the leaky bucket algorithm used in the traffic shaping means shown in Figure 3.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to Figure 1, an ATM network switch is shown comprising a plurality of slot controllers 11a-11f and two separate switch fabrics 14a and 14b. In the simple arrangement illustrated, six slot controllers are shown, but a typical switch might have sixteen slot controllers. Each slot controller 11 has an external input link 12 and output link 13. The switch fabrics 14a and 14b are of a dynamic crosspoint type with input and output connections 15 and 16 respectively to each of the slot controllers 11. This type of arrangement is described in more detail in co-owned application #GB9507454.8 which is hereby incorporated by reference herein in its entirety. The structure of the slot controllers is, for example, of the general type described and claimed in previously incorporated patent application #GB9505358.3, and ATM cells arriving on a input link 12 may be processed in the general manner described in that application.

Figure 2 shows the structure of a slot controller 11 in more detail. In accord with the preferred embodiment of the invention, the slot controller 11 comprises an input cell processor 21, whose structure will not be described further since it has no bearing on the present invention. The input cell processor 21 is connected to the input link 12 and to the input connections 15 to the switch fabric. Cells output from the switch fabric on connections 16 are processed for the transmission on the output link 13 by an output cell processor 22 which includes a leaky bucket processing means 23 and a buffer memory 24. It is noted that in Figure 2, for the sake of clarity, only those components which relate to traffic shaping functions are illustrated. It will be appreciated, however, that the output cell processor 22 handles additional functions such as
the writing to the cell headers of the new VPI/VCI information, and output to the output link 13.

As previously mentioned, the output cell processor 22 comprises a leaky bucket processing means 23 and a buffer memory 24. The leaky bucket processing means 23 receives cells arriving from the switch fabric and determines for each cell, as hereinafter described with reference to Figure 4, whether the peak and sustained cell flow rates appropriate to the cell's VC have been exceeded. If the cell conforms with the peak and sustained flow rates specified, the cell is entered into a buffer memory 24 at an address corresponding to the current time. If one or the other of the peak and sustained rates has been exceeded, so that the leaky bucket overflows, the amount of the overflow, or of the greater of the overflows if both buckets overflow, is added to the current time as the address for the cell in the buffer memory 24. Thus, the onward transmission of the cell is delayed by the amount of the overflow, to ensure that the cell will conform with the specified rates. The cells are output from the buffer memory 24 in order of stored time slot; i.e., the cells are not transmitted onwards before the relevant time slot becomes due.

Figure 3 shows a first arrangement of the buffer memory 24 forming part of the traffic shaping means in the slot controller illustrated in Figure 2. In the arrangement of Figure 3, the buffer memory 24 comprises a multi-dimensional FIFO 31 dynamically configured in Random Access Memory (RAM). For convenience of illustration, only a very small portion of the buffer is shown in Figure 3. The horizontal direction in the buffer represents different time slots arranged sequentially, the buffer being such that the current time pointer moves along the buffer until it reaches one end, and is then reset to the other end so that the buffer is effectively "circular". At each time slot, one or more ATM cells may be stored. The time slot may be empty if no cells are assigned the same onward transmission time. If more than one cell is assigned the same onward transmission
time, the time slot is treated as a FIFO memory, with the cells being written to the slot sequentially and read out of the time slot in the same order in which they are written to the slot. An output logic means 32 is arranged to step a current time pointer along the buffer according to the actual current time, but to control output of cells according to an output time pointer which lags behind the current time by up to approximately eight time slots (the algorithm attempts to maintain a maximum of eight time slots lag, but if many cells are present a greater lag can sometimes develop). Conveniently, the time slots are each of 640ns duration, being thirty-two clock periods of the system clock. In a convenient mode of operation, the output pointer waits until the current clock has advanced by eight slots relative to the output time, and then during the next time interval looks at each of the eight time slots to output the cells found. Thus, for the example shown in Figure 3, the time slot b has three cells awaiting transmission, and these are transmitted in turn. The next slot, c might for example have no cells waiting, so the output time pointer jumps to the next slot d and causes the two cells waiting there to be transmitted in turn. If all the waiting cells in the eight slots have not been transmitted in the next time interval of 640ns, the output time pointer continues to advance at eight-times the clock speed until it "catches up" and cells are being transmitted within the appropriate time interval. In practice, it is expected that the set of eight slots will allow the output to keep pace with the current time, but it will be appreciated that different numbers of slots, with appropriate speeds, may be selected if desired or if necessary.

Figure 4 illustrates an alternative arrangement for the buffer part of the traffic shaping means, in which the cells are stored in a series of FIFOs 41 defined dynamically in RAM, each VC having its own FIFO, and a buffer memory 42 stores at appropriate time slot addresses the address of the relevant FIFO 41. Leaky bucket processing logic 43 is used to process incoming cells in the manner hereinbefore described with reference to
Figure 2, and as further described hereinafter with reference to Figure 5. In a manner analogous to that described with reference to Figure 3, the buffer memory 42 is controlled by logic 44 to store in sequential time slots the addresses of the cells in the FIFOs 41 instead of the actual cells, and to output the addresses in sequence to cause the cells to be output from the FIFOs 41. More than one address can be stored at any time slot, and the addresses are then output in sequence on a "first in first out" basis, in the same way as the actual cells are output in the embodiment described with reference to Figure 3.

Figure 5 illustrates the algorithm used by the leaky bucket processor. The algorithm shown uses two buckets, one for peak flow and one for sustained flow, and each cell is process by both buckets, the result of the bucket having the greatest overflow being used to determine the time slot for the cell address (for the embodiment shown in Figure 4) or (in the case of the system illustrated in Figure 3) the time slot in the FIFO for the cell itself. The new cell is received at 50 to start the process. At 51, the algorithm calculates the time interval between the stored onward transmission time for the last cell on the same VC and the current time at which the new cell arrives. Then the new level of each bucket is determined at 52 by subtracting the calculated time interval from the existing bucket level, and the new level is used to calculate at 53 an overflow value by subtracting the bucket maximum from the new level. If it is determined at 54 that the overflow is negative, at 55 the overflow is set to zero. Regardless, the overflow values obtained from the two buckets (peak and average) are compared and the greatest overflow is selected at 56. At 57, the onward transmission time for the cell is set to the current time plus the amount of the overflow. Each bucket level is then incremented at 58 by the stored predetermined increment, which is equivalent to one cell, and the new bucket levels are written at 59 to the memory. The stored time is then set to the onward transmission time at 60 for use in the calculation for the next cell on the particular VC, and at 61 the system is ready to read the next cell on the VC.
The resulting transmission time from the performance of the algorithm is used to set the time slot in the buffer memory at which the cell (in the case of the embodiment is described with reference to Figure 3), or the cell FIFO address (in the case of the embodiment described with reference to Figure 4) is stored. The cell, or the address, then remains in the appropriate time slot until the output time pointer determines that its contents should be read and the cell output, either directly from the buffer, or, in the case of the Figure 4 embodiment, from the separate FIFO 41. The result of this operation is that the cells are transmitted onward from the slot controller in a more controlled manner, with the effects of bunching of the cells having been removed.

There have been described and illustrated herein a traffic shaping ATM network switch. While particular embodiments of the invention have been described, it is noted intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while particularly preferred processor apparatus disclosed in co-owned applications was described, it will be appreciated that other processor apparatus could be utilized in accord with the principles of the invention. Likewise, while processing of two leaky buckets for peak and average flow rates was described, it will be appreciated that the leaky bucket processor could process any number of leaky buckets. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as so claimed.
I claim:

1. An ATM switch, comprising:
 traffic shaping means for regulating outgoing transmission of ATM cells from said ATM switch, said traffic shaping means comprising
 means for determining an onward transmission time for each ATM cell received at said traffic shaping means, said onward transmission time being dependent for each ATM cell upon a time interval between a first time of arrival of a particular ATM cell on a virtual connection (VC) and a second time of arrival of the ATM cell which preceded said particular ATM cell on said VC,
 buffer means for storing each said ATM cell received at an address corresponding to said onward transmission time determined for that ATM cell, and
 means for outputting from said buffer means each of said ATM cells at times corresponding to the addresses of said buffer means.

2. An ATM switch according to claim 1, wherein:
 said means for determining an onward transmission time comprises a leaky bucket processor having
 timer means for timing the arrival of each ATM cell presented to the said traffic shaping means,
 memory means for storing a predetermined regular bucket increment, a current bucket level value, a bucket maximum value, and an onward transmission time for the previous cell on a given VC,
 calculating means for calculating the time difference between the arrival time of the cell and the stored onward transmission time for the preceding cell on the same VC, and for calculating a new bucket level from the time difference, the current bucket level, and the bucket level increment,
 subtraction means for subtracting the maximum level from the new level to give an overflow value and, if the overflow value is negative, for setting the value of the overflow to zero, and
adding means for adding the overflow value to the current
time to give the onward transmission time for the cell and for
storing said time in the memory means.

3. An ATM switch according to claim 2, wherein:
said leaky bucket processor monitors for a VC both a peak
cell flow rate and an average cell flow rate, and said leaky
bucket processor includes means for comparing overflow values
calculated for said peak cell flow rate and said average cell
flow rate by said subtraction means, and for passing only the
greater of said overflow values to said adding means.

4. An ATM switch according to claim 1, wherein:
said buffer means comprises a FIFO for each VC for storing
ATM cells on that VC, and memory means for storing at an address
Corresponding to the onward transmission time for each cell the
address FIFO containing the cell, and the output means is
arranged to output cells from the FIFOs in accordance with the
data stored in the memory means.

5. An ATM switch according to claim 4, wherein:
said buffer means is configured dynamically in Random Access
Memory (RAM), whereby the VC FIFOs are set up as new VCs are set
up.

6. An ATM network switch, comprising:
a) a plurality of controllers, each controller having cell
receiving means for receiving ATM cells from a data link and cell
transmitting means for transmitting ATM cells outwardly on said
data link;
b) a switch fabric means coupled to said plurality of
controllers, said switch fabric means for switching a cell
received from one of said plurality controller to a selected one
of the other of said plurality of controllers for transmission on
the external data link connected thereto, wherein
each cell transmitting means of each slot controller
includes traffic shaping means arranged to set, for each cell
presented to the cell transmitting means, a current onward transmission time where onward transmission at the input rate meets a predetermined flow rate criterion, and a delayed onward transmission time where onward transmission at the current time would cause the traffic on a VC to exceed a predetermined flow rate criterion, said traffic shaping means comprising buffer means for storing each new cell at an address corresponding to the onward transmission time for a particular cell, and means for outputting cells from the buffer means at a time corresponding to the address thereof.

7. An ATM network switch according to claim 6, wherein:
 said traffic shaping means comprises a leaky bucket processor having
 timer means for timing the arrival of each ATM cell presented to the said traffic shaping means,
 memory means for storing a predetermined regular bucket increment, a current bucket level value, a bucket maximum value, and an onward transmission time for the previous cell on a given VC,
 calculating means for calculating the time difference between the arrival time of the cell and the stored onward transmission time for the preceding cell on the same VC, and for calculating a new bucket level from the time difference, the current bucket level, and the bucket level increment,
 subtraction means for subtracting the maximum level from the new level to give an overflow value and, if the overflow value is negative, for setting the value of the overflow to zero, and
 adding means for adding the overflow value to the current time to give the onward transmission time for the cell and for storing said time in the memory means.

8. An ATM switch according to claim 7, wherein:
 said leaky bucket processor monitors for a VC both a peak cell flow rate and an average cell flow rate, and said leaky bucket processor includes means for comparing overflow values
calculated for said peak cell flow rate and said average cell flow rate by said subtraction means, and for passing only the greater of said overflow values to said adding means.

9. An ATM switch according to claim 6, wherein:
 said buffer means comprises a FIFO for each VC for storing ATM cells on that VC, and memory means for storing at an address corresponding to the onward transmission time for each cell the address FIFO containing the cell, and the output means is arranged to output cells from the FIFOs in accordance with the data stored in the memory means.

10. An ATM switch according to claim 9, wherein:
 said buffer means is configured dynamically in Random Access Memory (RAM), whereby the VC FIFOs are set up as new VCs are set up.

11. An ATM switch, comprising:
 a) a switch fabric means for switching ATM cells;
 b) a plurality of input data links and output data links coupled to said switch fabric; and
 c) a plurality of traffic shaping means coupled to said switch fabric and to said output data links for regulating outgoing transmission of ATM cells from said ATM switch, each said traffic shaping means comprising
 i) means for determining an onward transmission time for each ATM cell received at said traffic shaping means, said onward transmission time being dependent for each ATM cell upon a time interval between a first time of arrival of a particular ATM cell on a virtual connection (VC) and a second time of arrival of the ATM cell which preceded said particular ATM cell on said VC,
 ii) buffer means for storing each said ATM cell received at an address corresponding to said onward transmission time determined for that ATM cell, and
 iii) means for outputting from said buffer means each of said ATM cells at times corresponding to the addresses of said buffer means.
12. An ATM network switch according to claim 11, wherein:
 said plurality of traffic shaping means are included within
 a plurality of controller means, each said controller means for
 controlling presentation of said ATM cells to said switch fabric
 means.
START: RECEIVE NEW CELL

CALCULATE TIME INTERVAL BETWEEN TRANSMISSION OF LAST CELL ON SAME VC AND ARRIVAL OF NEW CELL

NEW LEVEL\textsubscript{av} = BUCKET LEVEL\textsubscript{av} TIME INTERVAL

CALCULATE OVERFLOW = NEW LEVEL\textsubscript{av} = BUCKET MAXIMUM\textsubscript{av}

IF OVERFLOW < 0, SET OVERFLOW = 0

SET OVERFLOW = GREATER OF OVERFLOW VALUES

TRANSMISSION TIME = CURRENT TIME + OVERFLOW

BUCKET LEVEL\textsubscript{av} = BUCKET LEVEL\textsubscript{av} + INCREMENT\textsubscript{av}

WRITE NEW LEVEL\textsubscript{av}

BUCKET LEVEL\textsubscript{pk} = BUCKET LEVEL\textsubscript{pk} + INCREMENT\textsubscript{pk}

WRITE NEW LEVEL\textsubscript{pk}

WRITE TIME = TRANSMISSION TIME

READ NEXT CELL ON VC

FIG. 5

SUBSTITUTE SHEET (RULE 26)
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION NO.
PCT/US96/05606

A. CLASSIFICATION OF SUBJECT MATTER

US CL.: 370/60, 60.1, 79, 84, 94.1, 94.2

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S.: 370/60, 60.1, 79, 84, 94.1, 94.2

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US, A. 5,381,407 (CHAO) 10 January 1995, see col. 1, line 61 to col. 2, line 61</td>
<td>1-12</td>
</tr>
<tr>
<td></td>
<td>to col. 2, line 36, col. 2, line 46 to col. 3, line 12, col. 7, lines 33-51, col. 8,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61 to col. 9, line 25, and col. 11, lines 38-51.</td>
<td></td>
</tr>
<tr>
<td>Y,P</td>
<td>US, A. 5,448,567 (DIGHE ET AL.) 05 September 1995, see col. 3, lines 16-33, col. 4,</td>
<td>1-12</td>
</tr>
<tr>
<td></td>
<td>line 48 to col. 5, line 6, col. 8, lines 3-36, col. 10, line 49-57, and col. 12,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lines 25-44 and 51-56.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US, A. 5,280,475 (YANAGI ET AL.) 18 January 1994, see entire document.</td>
<td>1-12</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "A" document published prior to the international filing date but later than the priority date claimed
 "F" document member of the same patent family

Date of the actual completion of the international search
24 JUNE 1996

Date of mailing of the international search report
15 JUL 1996

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
Douglas Olma

Telephone No. (703) 305-4703

Form PCT/ISA/210 (second sheet) (July 1992)*
B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

APS
search terms: ATM cell, traffic shaping, buffer, addresses, bucket level, overflow, subtraction, calculating, peak flow rate, average rate, FIPO, RAM