(12) STANDARD PATENT (11) Application No. AU 2007238099 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(87)
(30)

(31)

(43)
(44)

(71)

(72)

(74)

(56)

Title

Systems and methods for accelerating delivery of a computing environment to remote
user

International Patent Classification(s)
HO4L 29/08 (2006.01) HO4L 29/06 (2006.01)

Application No: 2007238099 (22) Date of Filing: 2007.04.11
WIPO No: WO007/121241

Priority Data

Number (32) Date (33) Country
60/744,720 2006.04.12 us
Publication Date: 2007.10.25

Accepted Journal Date: 2012.02.23

Applicant(s)
Citrix Systems, Inc.

Inventor(s)
Pedersen, Brad J.;Treder, Terry;Sinha, Rajiv;Sundarrajan, Prabakar

Agent / Attorney
Pizzeys, Level 2, Woden Plaza Offices Woden Town Square Woden, Canberra, ACT,
2606

Related Art
WO 2005/088476 A1 (FIRST HOP OY et al) 22 September 2005

7121241 A3 I TP 0 OO

0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 October 2007 (25.10.2007)

PO 0000000 O O O

(10) International Publication Number

WO 2007/121241 A3

(51) International Patent Classification:
HO4L 29/08 (2006.01) HO4L 29/06 (2006.01)

(21) International Application Number:
PCT/US2007/066433

(22) International Filing Date: 11 April 2007 (11.04.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/744,720 12 April 2006 (12.04.2006) US
(71) Applicant (for all designated States except US): CITRIX
SYSTEMS, INC. [US/US]J; 851 West Cypress Creek Road,

Fort Lauderdale, FL 33309 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PEDERSEN, Brad,
J. [US/US]; C/o Citrix Systems, Inc, 851 West Cypress
Creek Road, Fort Lauderdale, FL. 33309 (US). SUNDAR-
RAJAN, Prabakar [US/GB]; C/o Citrix Silicon Valley,
4988 Great America Parkway, Santa Clara, CA 95054
(US). SINHA, Rajiv [US/US]; C/o Citrix Silicon Valley,
4988 Great America Parkway, Santa Clara, CA 95054
(US). TREDER, Terry [US/US]; C/o Citrix Systems,
Inc., 851 West Cypress Creek Road, Fort Lauderdale, FL.
33309 (US).

(74) Agent: MCKENNA, Christopher, J.; Choate, Hall &

Stewart, Two International Place, Boston, MA 02110 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN,
IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, T™M, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(88) Date of publication of the international search report:
13 December 2007

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEMS AND METHODS FOR ACCELERATING DELIVERY OF A COMPUTING ENVIRONMENT TO RE-

MOTE USER

i Computing
Environment 15

I; Application)
; Data file :

Network
40

ClientC1 10

Application

Network Application
40’ Delivery
Appiiance System §00
Server $1 30

(57) Abstract: The present invention is directed towards the acceleration of delivery of a computing environment to a remote user
of a client at a remote location. The computing environment may include an application and a data file used or processed by the
application. The application and data file may be stored or provided via a server remote to the client. The user can request a com-
puting environment from the server that provides for execution of the application by the user via the remote computer. For example,
& the server may stream the application to the remote client. The client and server may communicate via an appliance that accelerates
communications between the client and server. For example, the appliance may accelerate the streaming of the application to the
remote user. In some cases, the application or remote user may also request a data file from the server, and the appliance accelerates
the delivery of the data file to the remote user. As such, users at remote locations obtain accelerated access via any network connected

device to applications and data files located remotely to the user.

WO 2007/121241 PCT/US2007/066433

SYSTEMS AND METHODS FOR ACCELERATING
DELIVERY OF A COMPUTING ENVIRONMENT TO A REMOTE USER

Related Applications

The present application claims the benefit of and priority to U.S. Provisional
Patent Application No. 60/744,720, entitled “Systems and Methods for Accelerating
Delivery of a Computing Environment to a Remote User ” and filed on April 12, 2006,
which is incorporated herein by reference.

Field of the Invention

The present invention is directed towards systems and methods for accelerating
the delivery of a computing environment, including an application and a data file, to a

remote user of a client at a location remote to the server.

Background of the Invention

Administering and managing enterprise environments consumes time, money
and resources. In many cases, this is because the application and data management
process is decentralized and labor-intensive. For example, a significant portion of an
administrator’s time may be spent providing more storage or performing backups for the
corporate data, or updating servers to handle growth in corporate data. Also, an
administrator may need to create and provision new servers to handle the growth in
data. Additionally, an administrator may spend time updating or provisioning a server to
provide a particular user application. Additionally, a significant portion of corporate data
may reside outside the corporate data center. For example, corporate documents, files
and data may exist on or are distributed to various computers remote to the data center.

In an effort to reduce the time, money, and resources required to administer and
manage corporate data and applications, many companies have consolidated and
centralized servers, corporate data and applications. Although consolidation and
centralization have reduced some costs and have produced some benefits, centralized
data and applications introduce additional challenges in providing access to data and

1

WO 2007/121241 PCT/US2007/066433

applications. One such challenge involves a remote user trying to access a file over a
wide area network (WAN) connection. For example, a remote user at a branch office
which typically has a network connection to the corporate data center that operates
much slower than a LAN connection may try to open over the WAN a Microsoft Office
document stored in at a corporate data center. The remote user’s access over the
network to the file may be delayed due to the latency, reliability and bandwidth with the
WAN. The delays may be larger for larger files. Furthermore, as the distance between
the remote user and the corporate data center grows, the frequency and length of
network delays in accessing files also may increase. Adding virtual private network,
security and other network layers on the WAN may further reduce bandwidth available
to the remote users and increase delays in accessing the file. The lower speed and
bandwidth of the remote office may cause unacceptable delays in accessing remote
files. To avoid the delays in remote file access, remote users may copy and use files
locally, defeating the purpose of centralized operations. Additionally, WAN connections
may be less reliable than LAN connections, resulting in packet loss and network
disconnection. WAN interruptions may occur during a file operation, such as saving or
opening a document, further causing delays experienced by the remote user.

Therefore, systems and methods are desired to improve access by remote users
to centralized applications and data files, including acceleration of the delivery of
applications and data files to remote users.

Summary of the Invention

The present invention relates to systems and methods to accelerate delivery of a
computing environment of an application and data file to a remote user. The application
and data file may be stored or provided via a server remote to the client. For example a
user, such as a remote employee, may use at a branch office a computer that does not
have the application and/or data file available locally. The user may want to edit a
corporate document with a word processing application not available on the remote
client. The user can request a computing environment from the server that provides for

execution of the desired application by the user via the remote client. For example, the

2

WO 2007/121241 PCT/US2007/066433

server may stream the application to the remote client. The remote client and server
may communicate via an appliance that accelerates communications between the
remote client and server. For example, the appliance may accelerate the streaming of
the application to the remote user. In some cases, the application or remote user may
also request a data file from the server, and the appliance accelerates the delivery of
the data file to the remote user. As such, the present invention provides users at
remote locations accelerated access via any network connected device to applications
and data files located remotely to the user.

In one aspect, the present invention is related to a method for accelerating
delivery of a computing environment of an application and a data file to a user of a client
at a remote location. The method includes receiving, by the server, a request from a
remote client to execute an application. The remote client and server communicate via
an appliance. The method also includes streaming, by the server, to the remote client
an application for execution. The client transmits a request to the server for a data file
useable by the application, and the appliance accelerates transmission of the data file to
the remote client.

In one embodiment of the present invention, the method includes accelerating by
the appliance streaming of the application to the remote client. In another embodiment,
the appliance accelerates the transmission of the data file or the streaming of the
applications by performing one of the following acceleration techniques: 1)
compression; 2) decompression; 3) Transmission Control Protocol pooling; 4)
Transmission Control Protocol multiplexing; 5) Transmission Control Protocol buffering;
and 6) caching. In another embodiment, the method includes accelerating, by an
acceleration program on the remote client, communications between the remote client
and the server. In some embodiments of the method, the appliance establishes a
virtual private network connection or Secure Socket Layer (SSL) connection with the
remote client. In other embodiments, the method includes accelerating, by the
appliance, a payload of a network packet communicated via a transport layer

connection between the remote client and the server.

WO 2007/121241 PCT/US2007/066433

In one embodiment of the present invention, the method includes transmitting, by
the appliance, an acceleration program to the remote client upon a request from the
remote client to establish a connection or a session with the server. In some
embodiments, the remote client automatically installs and executes an acceleration
program upon receipt from the appliance. In other embodiments, the method includes
performing, by an acceleration program on the remote client, one of the following
acceleration techniques:

1) compression; 2) decompression; 3) Transmission Control Protocol pooling; 4)
Transmission Control Protocol multiplexing; 5) Transmission Control Protocol buffering;
and 6) caching. In some embodiments, the remote client executes the acceleration
program transparently to the application or the server.

In some embodiments of the present invention, the method includes determining
by the appliance, the application is capable of being accelerated, and transmitting in
response to the determination an acceleration program to the remote client. In other
embodiments, the appliance caches the data file. In one embodiment, the appliance
intercepts the request for the data file and transmits to the remote client the cached data
file in response to the request.

In another aspect, the present invention is related to a system for accelerating
delivery to a remote user a computing environment of an application and a data file to a
client at a remote location. The system includes an appliance for accelerating
communications between one or more remote clients and one or more servers. The
system also includes a server receiving a request from a remote client to execute an
application. The remote client and the server communicate via the appliance. The
server streams to the remote client an application for execution. The client transmits a
request to the server for a data file useable by the application, and the appliance
accelerates transmission of the data file to the remote client.

In some embodiments of the present invention, the appliance accelerates
streaming of the application to the remote client. In one embodiment, the appliance
accelerates the transmission of the data file or the streaming of the application by
performing one of the following acceleration techniques: 1) compression; 2)

4

WO 2007/121241 PCT/US2007/066433

decompression; 3) Transmission Control Protocol pooling; 4) Transmission Control
Protocol multiplexing; 5) Transmission Control Protocol buffering; and 6) caching.

In another embodiment, the system includes an acceleration program on the remote
client accelerating communications between the remote client and the server. In one
embodiment, the appliance establishes a virtual private network connection or Secure
Socket Layer (SSL) connection with the remote client.

In some embodiments of the system of the present invention, the appliance
accelerates a payload of a network packet communicated via a transport layer
connection between the remote client and the server. In one embodiment, the
appliance transmits an acceleration program to the remote client upon a request from
the client to establish a connection or a session with the server. In other embodiments,
the remote client automatically installs and executes an acceleration program upon
receipt from the appliance. The acceleration program on the remote client may perform
one of the following acceleration techniques: 1) compression; 2) decompression; 3)
Transmission Control Protocol pooling; 4) Transmission Control Protocol multiplexing;
5) Transmission Control Protocol buffering; and 6) caching. In one embodiment, the
remote client executes the acceleration program transparently to the application or the
server.

In another embodiment of the system of the present invention, the appliance
determines the application is capable of being accelerated, and transmits an
acceleration program to the remote client in response to the determination. In one
embodiment, the appliance comprises a cache for caching the data file. In some
embodiments, the appliance intercepts the request for the data file and transmits to the
remote client the cached data file in response to the request.

Brief Description of the Drawings

These and other aspects of this invention will be readily apparent from the
detailed description below and the appended drawings, which are meant to illustrate
and not to limit the invention, and in which:

FIG. 1A is a block diagram depicting a network environment;

5

WO 2007/121241 PCT/US2007/066433

FIG. 1B is a block diagram depicting an embodiment of a computing environment
of a remote in a network environment;

FIG. 1C and 1D are block diagrams depicting embodiments of computers useful
in connection with embodiments described;

FIG. 1E is a block diagram depicting an environment suitable for delivering a
computing environment to a client;

FIG. 1F is a block diagram depicting one embodiment of a system for providing a
plurality of application programs available to the local machine via publishing of GUIs in
a web service directory;

FIG. 2 is a flow diagram depicting one embodiment of the steps taken to select a
method of execution of an application program;

FIG. 3A is a block diagram depicting one embodiment of a local machine initiating
execution of a Program Neighborhood application via the World Wide Web;

FIG. 3B is a flow diagram depicting one embodiment of the steps taken by a local
machine to access an application program enumerated using a web service directory;

FIG. 4A is a block diagram of an embodiment of a network environment providing
policy-based access to application programs for a local machine;

FIG. 4B is a block diagram depicting a more detailed embodiment of a policy
engine;

FIG. 4C a flow diagram depicting one embodiment of the steps taken by a policy
engine to make an access control decision based upon information received about a
local machine;

FIG. 4D is a block diagram depicting an embodiment of a computer network in
which authorized remote access to a plurality of application sessions is provided;

FIG. 4E is a flow diagram depicting one embodiment of the steps taken by a
session server to connect a local machine with its associated application sessions;

FIG. 5 is a flow diagram depicting one embodiment of the steps taken by a
session server to connect a client node with its associated application sessions;

FIG. 6 is a block diagram depicting one embodiment of a remote machine
including a management service providing an application enumeration;

6

WO 2007/121241 PCT/US2007/066433

FIG. 7 is a flow diagram depicting one embodiment of the steps taken to access
a plurality of files comprising an application program;

FIG. 8A is a block diagram depicting one embodiment of a computer running
under control of an operating system that has reduced application compatibility and
application sociability problems;

FIG. 8B is a block diagram depicting one embodiment of a multi-user computer
having reduced application compatibility and application sociability problems;

FIG. 8C is a flow diagram depicting one embodiment of the steps taken in a
method for associating a process with an isolation scope;

FIG. 9 is a flow diagram depicting one embodiment of steps taken in a method
for executing an application program;

FIG. 10 is a flow diagram depicting one embodiment of a plurality of application
files residing on a remote machine;

FIG. 11 is a flow diagram depicting one embodiment of the steps taken in a
method for responding locally to requests for file metadata associated with files stored
remotely;

FIG. 12 is a block diagram depicting one embodiment of a system for responding
locally to requests for file metadata associated with files stored remotely;

FIG. 13 is a flow diagram depicting one embodiment of the steps taken in a
method for accessing a remote file in a directory structure associated with an
application program executing locally;

FIG. 14 is a block diagram depicting one embodiment of a system for accessing
a file in a directory structure associated with an application;

FIG. 15 is a block diagram of one embodiment of a remote machine including a
license management subsystem;

FIG. 16 is a block diagram depicting one embodiment of components in a
management service on a remote machine;

FIG. 17 is a flow diagram depicting one embodiment of the steps taken to

request and maintain a license from a remote machine;

WO 2007/121241 PCT/US2007/066433

FIG. 18 is a block diagram depicting one embodiment of states that may be
associated with a session monitored by a management service;

FIG. 19 is a block diagram depicting an embodiment of a package including two
targets, each target comprising a plurality of application files comprising an application;

FIG. 20 is a flow diagram depicting one embodiment of the steps taken in a
policy-based method for installing an application program without rebooting an
operating system;

FIG. 21 is a flow diagram depicting one embodiment of the steps taken in a
policy-based method for installing an application program without rebooting an
operating system;

FIG. 22 is a screen shot depicting one embodiment of an enumeration of scripts
to be executed on the local machine;

FIG. 23 is a block diagram depicts an embodiment of a system including a
packaging mechanism executing an installer program into an isolation environment;

FIG. 24 is a flow chart depicting one embodiment of the steps taken in an
environment in which execution of an installer program requires rebooting an operating
system;

FIG. 25 is a block diagram depicting one embodiment of a remote machine onto
which a packaging mechanism installs an application program;

FIG. 26 is a flow diagram depicting one embodiment of the steps taken to install
an application in an application isolation environment;

FIG. 27 is a block diagram illustrating one embodiment of an architecture of an
appliance that performs integrated caching;

FIG. 28A is a flow diagram of steps taken in an embodiment of a method for
integrating device operations with packet processing and the packet processing timer;

FIG. 28B is a flow diagram of steps taken in an embodiment of a method for
practicing invalidation granularity techniques in view of FIG. 3A,

FIG. 29A is a flow diagram of steps taken in an embodiment of a method using

invalidation commands to invalidate stale objects;

WO 2007/121241 PCT/US2007/066433

FIG. 29B is a flow diagram of steps taken in an embodiment of a method
incorporating invalidation of groups of objects;

FIG. 29C is a flow diagram of steps taken in an embodiment of a method wherein
a client request is parsed for object determinants;

FIG. 29D is a flow diagram of steps taken in an embodiment of a method
incorporating invalidation of groups of objects using object determinants;

FIG. 30 is a flowchart of steps taken in one embodiment of a method of
connection pooling;

FIG. 31 is a flowchart of steps taken in one embodiment of a method of
translating client and server requests;

FIG. 32 illustrates one embodiment of a content length parameter;

FIG. 33 illustrates one embodiment of chunk-size fields;

FIG. 34 is a message flow diagram depicting one embodiment of connection
pooling;

FIG. 35 is a detailed flow diagram illustrating one embodiment of the steps taken
to use the content length parameter to increase efficiency of connection pooling
between clients and servers;

FIG. 36 is a flowchart depicting one embodiment of the steps taken to use the
content length parameter to increase efficiency of connection pooling between clients
and servers;

FIG. 37 is a detailed flow diagram illustrating one embodiment of the steps taken
to use chunk-size fields to increase efficiency of connection pooling between clients and
servers;

FIG. 38 is a flowchart depicting one embodiment of the steps taken to use chunk-
size fields to increase efficiency of connection pooling between clients and servers;

FIG. 39 is a flowchart of one embodiment of the steps taken to a provide
integrated caching functionality;

FIG. 40A is a block diagram of an embodiment of a client-side acceleration

program,

WO 2007/121241 PCT/US2007/066433

FIG. 40B is a block diagram of an embodiment of an appliance for providing a
client-side acceleration program;

FIG. 41A is a step diagram of an embodiment of a method for dynamically
providing and automatically installing and executing a client-side acceleration program;

FIG. 41B is a step diagram of an embodiment of a method for determining an
application can be accelerated;

FIG. 41C is a step diagram of another embodiment of a method of performing a
plurality of acceleration techniques by the acceleration program for intercepting at the
transport layer and using a kernel-level data structure;

FIG. 42A is a step diagram of another embodiment of a method to automatically
install and execute the acceleration program on the client via a first program;

FIG. 42B is a step diagram of an embodiment of a method for a first program and
the acceleration program to provide a virtual private network connectivity and perform
one or more acceleration techniques;

FIG. 43 is a step diagram of an embodiment of a method for redirecting a client’s
communication to a server to bypass an intermediary determined not useable to
transmit the communication to the server;

FIG. 44 is a step diagram of an embodiment of a method for performing a client-
side acceleration technique of transport control protocol buffering;

FIG. 45A is a step diagram of an embodiment of a method for performing a
client-side acceleration technique of transport control protocol connection pooling;

FIG. 45B is a diagrammatic view of a set of HTTP transactions performed by a
plurality of applications via a pool of one or more transport layer connections in one
embodiment;

FIG. 46 is a step diagram of an embodiment of a method for performing a client-
side acceleration technique of transport control protocol multiplexing;

FIG. 47 is a diagrammatic view of an embodiment of a content length identifier of
a transport layer packet;

FIG. 48 is a diagrammatic view of another embodiment of a content length
identifier of a message transmitted via multiple chunks;

10

WO 2007/121241 PCT/US2007/066433

FIG. 49A is a block diagram depicting an example embodiment of a networked
computer system for accelerating the delivery of a computing environment to a remote
client; and

FIG. 49B is a flow diagram depicting one embodiment of steps of a method for

accelerating the delivery of a computing environment to a remote client.

11

WO 2007/121241 PCT/US2007/066433

Detailed Description of the Invention

For purposes of reading the description of the various embodiments below, the
following descriptions of the sections of the specification and their respective contents
may be helpful:

- Section A describes a network environment and computing environment

which may be useful for practicing embodiments described herein;

- Section B describes embodiments of systems and methods for delivering

a computing environment to a remote user;

- Section C describes embodiments of systems and methods for

accelerating communications between a client and a server; and

- Section D describes an illustrative example embodiment of accelerating

the delivery of a computing environment to a remote user using the systems and

methods described in Section B and C.

12

WO 2007/121241 PCT/US2007/066433

A. NETWORK AND COMPUTING ENVIRONMENT
Prior to discussing the specifics of embodiments of the systems and methods, it

may be helpful to discuss the network and computing environments in which
embodiments may be deployed. Referring now to Figure 1A, a network environment 5
is depicted. In brief overview, the network environment 5 comprises one or more clients
10-10" (also generally referred to as clients 10, or local machines 10) in communication
with one or more servers 30-30” (also generally referred to as servers 30, or remote
machines 30) via one or more networks 40, 40”. In some embodiments, a client 10
communicates with a server 30 via an appliance 1250.

Although FIG. 1A shows a network 40 and a network 40’ between the clients 10-
10-10” and the servers 30-30", the clients 10-10’ and the servers 30-30” may be on the
same network 40. The networks 40 and 40’ can be the same type of network or
different types of networks. The network 40 and/or the network 40’ can be a local-area
network (LAN), such as a company Intranet, a metropolitan area network (MAN), or a
wide area network (WAN), such as the Internet or the World Wide Web. In one
embodiment, network 40’ may be a private network and network 40 may be a public
network. In some embodiments, network 40 may be a private network and network 40’
a public network. In another embodiment, networks 40 and 40’ may both be private
networks. In some embodiments, clients 10-10” may be located at a branch office of a
corporate enterprise communicating via a WAN connection over the network 40 to the
servers 30-30” located at a corporate data center.

The network 40 and/or 40’ be any type and/or form of network and may include
any of the following: a point to point network, a broadcast network, a wide area network,
a local area network, a telecommunications network, a data communication network, a
computer network, an ATM (Asynchronous Transfer Mode) network, a SONET
(Synchronous Optical Network) network, a SDH (Synchronous Digital Hierarchy)
network, a wireless network and a wireline network. The topology of the network 40
and/or 40’ may be a bus, star, or ring network topology. The network 40 and/or 40’ and
network topology may be of any such network or network topology as known to those
ordinarily skilled in the art capable of supporting the operations described herein.

13

WO 2007/121241 PCT/US2007/066433

As shown in FIG. 1A, the appliance 1250 (also referred to herein as an interface
unit 1250) is shown between the networks 40 and 40’. In some embodiments, the
appliance 1250 may be located on network 40. For example, a branch office of a
corporate enterprise may deploy an appliance 1250 at the branch office. In other
embodiments, the appliance 1250 may be located on network 40’. For example, an
appliance 1250 may be located at a corporate data center. In yet another embodiment,
a plurality of appliances 1250 may be deployed on network 40. In some embodiments,
a plurality of appliances 1250 may be deployed on network 40’. In one embodiment, a
first appliance 1250 communicates with a second appliance 1250’. In other
embodiments, the appliance 1250 could be a part of any client 10-10’ or server 30-30”
on the same or different network 40,40’ as the client 10-10”. One or more appliances
1250 may be located at any point in the network or network communications path
between a client 10-10” and a server 30-30".

In one embodiment, the system may include multiple, logically-grouped remote
machines 30, one or more of which is available to execute applications on behalf of a
local machine 10. In these embodiments, the logical group of remote machines may be
referred to as a server farm 38 or a farm 38 In some of these embodiments, the remote
machines 30 may be geographically dispersed. A farm 38 may be administered as a
single entity.

The remote machines 30 within each farm 38 can be heterogeneous. That is,
one or more of the remote machines 30 can operate according to one type of operating
system platform (e.g., WINDOWS NT, manufactured by Microsoft Corp. of Redmond,
Washington), while one or more of the other remote machines 30 can operate on
according to another type of operating system platform (e.g., Unix or Linux). The
remote machines 30 comprising each farm 38 do not need to be physically proximate to
each other remote machine 30 in its farm 38. Thus, the group of remote machines 30
logically grouped as a farm 38 may be interconnected using a wide-area network (WAN)
connection or medium-area network (MAN) connection. For example, a farm 38 may
include remote machines 30 physically located in different continents or different

regions of a continent, country, state, city, campus, or room. Data transmission speeds

14

WO 2007/121241 PCT/US2007/066433

between remote machines 30 in the farm 38 can be increased if the remote machines
30 are connected using a local-area network (LAN) connection or some form of direct
connection.

Remote machines 30 may be referred to as servers, file servers, application
servers, or remote machines. In some embodiments, remote machines 30 may have
the capacity to function as either application servers or as a master application server.
In one embodiment, a remote machine 30 may include an Active Directory. The local
machines 10 may also be referred to as client nodes or endpoints. In some
embodiments, the local machines 10 have the capacity to function as both client nodes
seeking access to applications and as application servers providing access to hosted
applications for other local machines 10.

In one embodiment, the local machine 10 communicates directly with one of the
remote machines 30 in a farm 38. In another embodiment, the local machine 10
executes a program neighborhood application to communicate with the remote machine
30 in a farm 38. In still another embodiment, the remote machine 30 provides the
functionality of a master node. In some embodiments, the local machine 10
communicates with the remote machine 30 in the farm 38 through a network 40. Over
the network 40, the local machine 10 can, for example, request execution of various
applications hosted by the remote machines 30, 30, 30", and 30" in the farm 38 and
receive output of the results of the application execution for display. The network 40
may comprise synchronous or asynchronous connections and may be a LAN, MAN
(Medium-Area Network), or a WAN. Additionally, a network 40 may comprise a wireless
link, such as an infrared channel or satellite band. In some embodiments, only the
master node provides the functionality required to identify and provide address
information associated with a remote machine 30’ hosting a requested application.

In some embodiments, a local machine 10 communicates with a remote machine

30™. In one of these embodiment, the remote machine 30" provides functionality of a

web server. In another of these embodiments, the remote machine 30 receives
requests from the local machine 10, forwards the requests to a remote machine 30 and

responds to the request by the local machine 10 with a response to the request from the

15

WO 2007/121241 PCT/US2007/066433

remote machine 30. In still another of these embodiments, the remote machine 30
acquires an enumeration of applications available to the local machine 10 and address
information associated with a remote machine 30’ hosting an application identified by
the enumeration of applications. In yet another of these embodiments, the remote
machine 30™ presents the response to the request to the local machine 10 using a web
interface. In one embodiment, the local machine 10 communicates directly with the
remote machine 30’ to access the identified application. In another embodiment, the
local machine 10 receives application output data from the remote machine 30, the
application output data generated by an execution of the identified application on the
remote machine 30'.

Referring now to FIG. 1B, a network environment for delivering and/or operating
a computing environment on a client 10 is depicted. In brief overview, a server 30
includes an application delivery system 500 for delivering a computing environment or
an application and data file to one or more clients. The client 10 may include a
computing environment 15 for executing an application that uses or processes a data
file. The client 10 in communication with the server 30 via networks 40, 40’ and
appliance 1250 may request an application and data file from the server 30, or
appliance 1250 may forward a request from the client 10 to the server 30. For example,
the client 10 may not have locally the application and data file stored or accessible
locally. In response to the request, the server 30 may deliver the application and data
file to the client 10. For example, in one embodiment, the server 30 may transmit the
application as an application stream to operate in computing environment 15 on client
10.

Figures 1C and 1D are block diagrams depicting embodiments of the architecture
of a general purpose computer 135 useful as client computing devices 10 and server
computing devices 30. As shown in FIGs. 1C and 1D, each computer 135 includes a
central processing unit 102, and a main memory unit 122. Each computer 135 may also
include other optional elements, such as one or more input/output devices 130a-130-b
(generally referred to using reference numeral 130), and a cache memory 140 in

communication with the central processing unit 102.

16

WO 2007/121241 PCT/US2007/066433

The central processing unit 102 is any logic circuitry that responds to and
processes instructions fetched from the main memory unit 122. In many embodiments,
the central processing unit is provided by a microprocessor unit, such as those
manufactured by Intel Corporation of Mountain View, California; those manufactured by
Motorola Corporation of Schaumburg, lllinois; the Crusoe and Efficeon lines of
processors manufactured by Transmeta Corporation of Santa Clara, California; the lines
of processors manufactured by International Business Machines of White Plains, New
York; or the lines of processors manufactured by Advanced Micro Devices of
Sunnyvale, California.

Main memory unit 122 may be one or more memory chips capable of storing
data and allowing any storage location to be directly accessed by the microprocessor
102, such as Static random access memory (SRAM), Burst SRAM or SynchBurst
SRAM (BSRAM), Dynamic random access memory (DRAM), Fast Page Mode DRAM
(FPM DRAM), Enhanced DRAM (EDRAM), Extended Data Output RAM (EDO RAM),
Extended Data Output DRAM (EDO DRAM), Burst Extended Data Output DRAM
(BEDO DRAM), Enhanced DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC
SRAM, PC100 SDRAM, Double Data Rate SDRAM (DDR SDRAM), Enhanced SDRAM
(ESDRAM), SyncLink DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM), or
Ferroelectric RAM (FRAM). In the embodiment shown in FIG. 1C, the processor 102
communicates with main memory 122 via a system bus 120 (described in more detail
below). FIG. 1B depicts an embodiment of a computer system 135 in which the
processor communicates directly with main memory 122 via a memory port. For

example, in FIG. 1B the main memory 122 may be DRDRAM.

FIGs. 1C and 1D depict embodiments in which the main processor 102
communicates directly with cache memory 140 via a secondary bus, sometimes
referred to as a “backside” bus. In other embodiments, the main processor 102
communicates with cache memory 140 using the system bus 120. Cache memory 140
typically has a faster response time than main memory 122 and is typically provided by
SRAM, BSRAM, or EDRAM.

17

WO 2007/121241 PCT/US2007/066433

In the embodiment shown in FIG. 1C, the processor 102 communicates with
various I/O devices 130 via a local system bus 120. Various busses may be used to
connect the central processing unit 102 to the 1/0 devices 130, including a VESA VL
bus, an ISA bus, an EISA bus, a MicroChannel Architecture (MCA) bus, a PCI bus, a
PCI-X bus, a PCI-Express bus, or a NuBus. For embodiments in which the 1/O device is
an video display, the processor 102 may use an Advanced Graphics Port (AGP) to
communicate with the display. FIG. 1D depicts an embodiment of a computer system
135 in which the main processor 102 communicates directly with 1/0 device 130b via
HyperTransport, Rapid I/O, or InfiniBand. FIG. 1D also depicts an embodiment in which
local busses and direct communication are mixed: the processor 102 communicates
with 1/0 device 130a using a local interconnect bus while communicating with 1/0 device
130b directly.

A wide variety of I1/0O devices 130 may be present in the computer system 135.

Input devices include keyboards, mice, trackpads, trackballs, microphones, and drawing
tablets. Output devices include video displays, speakers, inkjet printers, laser printers,
and dye-sublimation printers. An I/O device may also provide mass storage for the
computer system 135 such as a hard disk drive, a floppy disk drive for receiving floppy
disks such as 3.5-inch, 5.25-inch disks or ZIP disks, a CD-ROM drive, a CD-R/RW
drive, a DVD-ROM drive, tape drives of various formats, and USB storage devices such
as the USB Flash Drive line of devices manufactured by Twintech Industry, Inc. of Los

Alamitos, California.

In further embodiments, an 1/0O device 130 may be a bridge between the system
bus 120 and an external communication bus, such as a USB bus, an Apple Desktop
Bus, an RS-132 serial connection, a SCSI bus, a FireWire bus, a FireWire 800 bus, an
Ethernet bus, an AppleTalk bus, a Gigabit Ethernet bus, an Asynchronous Transfer
Mode bus, a HIPPI bus, a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP bus, a

FibreChannel bus, or a Serial Attached small computer system interface bus.

General-purpose computers of the sort depicted in FIG. 1C and FIG. 1D typically

operate under the control of operating systems, which control scheduling of tasks and

18

WO 2007/121241 PCT/US2007/066433

access to system resources. Typical operating systems include: MICROSOFT
WINDOWS, manufactured by Microsoft Corp. of Redmond, Washington; MacOS,
manufactured by Apple Computer of Cupertino, California; OS/2, manufactured by
International Business Machines of Armonk, New York; and Linux, a freely-available

operating system distributed by Caldera Corp. of Salt Lake City, Utah, among others.

For embodiments in which a client machine 10 or a server 30 comprise a mobile
device, the device may be a JAVA-enabled cellular telephone, such as the i55sr, i58sr,
i85s, or the i88s, all of which are manufactured by Motorola Corp. of Schaumburg,
lllinois; the 6035 or the 7135, manufactured by Kyocera of Kyoto, Japan; or the i300 or
i330, manufactured by Samsung Electronics Co., Ltd., of Seoul, Korea. In other
embodiments comprising mobile devices, a mobile device may be a personal digital
assistant (PDA) operating under control of the PalmOS operating system, such as the
Tungsten W, the VII, the VIlIx, the i705, all of which are manufactured by palmOne, Inc.
of Milpitas, California. In further embodiments, the client 113 may be a personal digital
assistant (PDA) operating under control of the PocketPC operating system, such as the
iPAQ 4155, iPAQ 5555, iPAQ 1945, iPAQ 2215, and iPAQ 4255, all of which
manufactured by Hewlett-Packard Corporation of Palo Alto, California; the ViewSonic
V36, manufactured by ViewSonic of Walnut, California; or the Toshiba PocketPC €405,
manufactured by Toshiba America, Inc. of New York, New York. In still other
embodiments, the mobile device is a combination PDA/telephone device such as the
Treo 180, Treo 270, Treo 600, Treo 650, or the Treo 700w, all of which are
manufactured by palmOne, Inc. of Milpitas, California. In still further embodiments, the
mobile device is a cellular telephone that operates under control of the PocketPC
operating system, such as the MPx200, manufactured by Motorola Corp. A typical
mobile device may comprise many of the elements described above in FIG. 1C and 1D,
including the processor 102 and the main memory 104.

19

WO 2007/121241 PCT/US2007/066433

B. SYSTEMS AND METHODS FOR DELIVERING A COMPUTING ENVIRONMENT

An embodiment is directed towards systems and methods for delivering a

computing environment to a remote user at a client 10 located at a remote location from
the server 30. While the methods and systems in this section generally speak of
servers 30, the methods and systems below may utilize either servers 30, network
appliances 1250, or any combination thereof.

Referring now to FIG. 1E, one embodiment of a system in which remote
machines 30 comprise a farm 38 as depicted in FIG. 1A is shown. Each remote
machine 30 includes a network-side interface 202 and a farm-side interface 204. The
network-side interface 202 of the remote machine 30 may be in communication with one
or more local machines 10 or a network 210. The network 210 can be a WAN, LAN, or
international network such as the Internet or the World Wide Web. Local machines 10
may establish connections with the remote machines 30 using the network 210.

The farm-side interfaces 204 of the remote machines 30 are interconnected with
each over communication links 200 so that the remote machines 30 may communicate
with one another. On each remote machine 30, the farm-side interface 204
communicates with the network-side interface 202. The farm-side interfaces 204 also
communicate (designated by arrows 220) with a persistent store 230 and, in some
embodiments, with a dynamic store 240. The combination of remote machines 30, the
persistent store 230, and the dynamic store 240, when provided, are collectively
referred to as a farm 38. In some embodiments, a remote machine 30 communicates
with the persistent store 230 and other remote machines 30° communicate with the
remote machine 30 to access information stored in the persistent store.

Persistent store 230 may be physically implemented on a disk, disk farm, a
redundant array of independent disks (RAID), writeable compact disc, or any other
device that allows data to be read and written and that maintains written data if power is
removed from the storage device. A single physical device may provide storage for a
plurality of persistent stores, i.e., a single physical device may be used to provide the

persistent store 230 for more than one farm 38. The persistent store 230 maintains

20

WO 2007/121241 PCT/US2007/066433

static data associated with each remote machine 30 in farm 38 and global data used by
all remote machines 30 within the farm 38. In one embodiment, the persistent store 230
may maintain the remote machine data in a Lightweight Directory Access Protocol
(LDAP) data model. In other embodiments, the persistent store 230 stores remote
machine data in an ODBC-compliant database. For the purposes of this description,
the term "static data" refers to data that do not change frequently, i.e., data that change
only on an hourly, daily, or weekly basis, or data that never change. Each remote
machine uses a persistent storage subsystem to read data from and write data to the
persistent store 230.

The data stored by the persistent store 230 may be replicated for reliability
purposes physically or logically. For example, physical redundancy may be provided
using a set of redundant, mirrored disks, each providing a copy of the data. In other
embodiments, the database itself may be replicated using standard database
techniques to provide multiple copies of the database. In further embodiments, both
physical and logical replication may be used concurrently.

The dynamic store 240 (i.e., the collection of all record tables) can be embodied
in various ways. In one embodiment, the dynamic store 240 is centralized; that is, all
runtime data are stored in the memory of one remote machine 30 in the farm 38. That
remote machine operates as a master network node with which all other remote
machines 30 in the farm 38 communicate when seeking access to that runtime data. In
another embodiment, each remote machine 30 in the farm 38 keeps a full copy of the
dynamic store 240. Here, each remote machine 30 communicates with every other
remote machine 30 to keep its copy of the dynamic store 240 up to date.

In another embodiment, each remote machine 30 maintains its own runtime data
and communicates with every other remote machine 30 when seeking to obtain runtime
data from them. Thus, for example, a remote machine 30 attempting to find an
application program requested by the local machine 10 may communicate directly with
every other remote machine 30 in the farm 38 to find one or more remote machines

hosting the requested application.

21

WO 2007/121241 PCT/US2007/066433

For farms 38 having a large number of remote machines 30, the network traffic
produced by these embodiments can become heavy. One embodiment alleviates
heavy network traffic by designating a subset of the remote machines 30 in a farm 38,
typically two or more, as "collector points." Generally, a collector point is a remote
machine that collects run-time data. Each collector point stores runtime data collected
from certain other remote machines 30 in the farm 38. Each remote machine 30 in the
farm 38 is capable of operating as, and consequently is capable of being designated as,
a collector point. In one embodiment, each collector point stores a copy of the entire
dynamic store 240. In another embodiment, each collector point stores a portion of the
dynamic store 240, i.e., it maintains runtime data of a particular data type. The type of
data stored by a remote machine 30 may be predetermined according to one or more
criteria. For example, remote machines 30 may store different types of data based on
their boot order. Alternatively, the type of data stored by a remote machine 30 may be
configured by an administrator using administration tool 140. In these embodiments,
the dynamic store 240 is distributed among two or more remote machines 30 in the farm
38. Anotherln another embodiment an appliance 1250 may alleviate heavy network
traffic by acceleratingaccelerate data passed between the remote machines 30, the
dynamic store 16240, and the persistent store 230. Such acceleration may be provided
by any of the techniques discussed herein.further in Section C. For example, the
appliance 1250 may be used to alleviate heavy network traffic.

Remote machines 30 not designated as collector points know the remote
machines 30 in a farm 38 that are designated as collector points. A remote machine
180 not designated as a collector point may communicate with a particular collector
point when delivering and requesting runtime data. Consequently, collector points
lighten network traffic because each remote machine 30 in the farm 38 communicates
with a single collector point remote machine 30, rather than with every other remote
machine 30, when seeking to access the runtime data.

Each remote machine 30 can operate as a collector point for more than one type
of data. For example, remote machine 30” can operate as a collector point for licensing
information and for loading information. In these embodiments, each collector point

22

WO 2007/121241 PCT/US2007/066433

may amass a different type of run-time data. For example, to illustrate this case, the
remote machine 30™ can collect licensing information, while the remote machine 30"
collects loading information.

In some embodiments, each collector point stores data that is shared between all
remote machines 30 in a farm 38. In these embodiments, each collector point of a
particular type of data exchanges the data collected by that collector point with every
other collector point for that type of data in the farm 38. Thus, upon completion of the
exchange of such data, each collector point 30" and 30 possesses the same data. Also
in these embodiments, each collector point 30 and 30" also keeps every other collector
point abreast of any updates to the runtime data.

Browsing enables a local machine 10 to view farms 38, remote machines 30, and
applications in the farms 38 and to access available information such as sessions
throughout the farm 38. Each remote machine 30 includes an ICA browsing subsystem
260 to provide the local machine 10 with browsing capability. After the local machine 10
establishes a connection with the ICA browser subsystem 260 of any of the remote
machines 30, that browser subsystem supports a variety of local machine requests.
Such local machine requests include: (1) enumerating names of remote machines in the
farm, (2) enumerating names of applications published in the farm, (3) resolving a
remote machine name and/or application name to a remote machine address that is
useful the local machine 10. The ICA browser subsystem 260 also supports requests
made by local machines 10 running a program neighborhood application that provides
the local machine 10, upon request, with a view of those applications within the farm 38
for which the user is authorized. The ICA browser subsystem 260 forwards all of the
above-mentioned local machine requests to the appropriate subsystem in the remote
machine 30.

In one embodiment, each remote machine 30 in the farm 38 that has a program
neighborhood subsystem 270 can provide the user of a local machine 10 with a view of
applications within the farm 38. The program neighborhood subsystem 270 may limit
the view to those applications for which the user of the local machine 10 has

23

WO 2007/121241 PCT/US2007/066433

authorization to access. Typically, this program neighborhood service presents the
applications to the user as a list or a group of icons.

The functionality provided by the program neighborhood subsystem 270 is
available to two types of local machines, (1) program neighborhood-enabled local
machines that can access the functionality directly from a local machine desktop, and
(2) non-program neighborhood-enabled local machines (e.g., legacy local machines)
that can access the functionality by running a program neighborhood-enabled desktop
on the remote machine.

Communication between a program neighborhood-enabled local machine and
the program neighborhood subsystem 270 may occur over a dedicated virtual channel
that is established on top of an ICA virtual channel. In other embodiments, the
communication occurs using an XML service. In one of these embodiments, the
program neighborhood-enabled local machine communicates with an XML subsystem,
such as the XML service 516 described in connection with FIG. 6 below, providing
program neighborhood functionality on a remote machine 30.

In one embodiment, the program neighborhood-enabled local machine does not
have a connection with the remote machine with a program neighborhood subsystem
270. For this embodiment, the local machine 10 sends a request to the ICA browser
subsystem 260 to establish an ICA connection to the remote machine 30 in order to
identify applications available to the local machine 10. The local machine 10 then runs
a client-side dialog that acquires the credentials of a user. The credentials are received
by the ICA browser subsystem 260 and sent to the program neighborhood subsystem
270. In one embodiment, the program neighborhood subsystem 270 sends the
credentials to a user management subsystem for authentication. The user
management subsystem may return a set of distinguished names representing the list
of accounts to which the user belongs. Upon authentication, the program neighborhood
subsystem 270 establishes the program neighborhood virtual channel. This channel
remains open until the application filtering is complete. In some embodiments, an
acceleration program 6120 as described in section C may also be transmitted to the
local machine 10 in response to a local machine 10 request.

24

WO 2007/121241 PCT/US2007/066433

The program neighborhood subsystem 270 then requests the program
neighborhood information from the common application subsystem 524 associated with
those accounts. The common application subsystem 524 obtains the program
neighborhood information from the persistent store 230. On receiving the program
neighborhood information, the program neighborhood subsystem 270 formats and
returns the program neighborhood information to the local machine over the program
neighborhood virtual channel. Then the partial ICA connection is closed.

For another example in which the program neighborhood-enabled local machine
establishes a partial ICA connection with a remote machine, consider the user of the
local machine 10 who selects a farm 38. The selection of the farm 38 sends a request
from the local machine 10 to the ICA browser subsystem 260 to establish an ICA
connection with one of the remote machines 30 in the selected farm 38. The ICA
browser subsystem 260 sends the request to the program neighborhood subsystem
270, which selects a remote machine 30 in the farm 38. Address information
associated with the remote machine 30 is identified and returned to the local machine
10 by way of the ICA browser subsystem 260. The local machine 10 can then
subsequently connect to the remote machine 30 corresponding to the received address
information.

In another embodiment, the program neighborhood-enabled local machine 10 an
ICA connection upon which the program neighborhood-virtual channel is established
and remains open for as long as the ICA connection persists. Over this program
neighborhood virtual channel, the program neighborhood subsystem 270 pushes
program neighborhood information updates to the local machine 10. This pushing of
updates to a local machine 10 may be accelerated according to any of the accelerating
techniques discussed herein. To obtain updates, the program neighborhood subsystem
270 subscribes to events from the common application subsystem 524 to allow the
program neighborhood subsystem 270 to detect changes to published applications.

Referring to FIG. 1F, a block diagram depicts another embodiment of a system
architecture for providing a plurality of application programs available to the local
machine via publishing of GUIs in a web service directory. The system includes the

25

WO 2007/121241 PCT/US2007/066433

local machine 10, and a plurality of remote machines 30. One remote machine 30
functions as a content server. A remote machine 30’ provides web server functionality.
A remote machine 30" provides functionality for providing access to application files and
acts as an application server or a file server. The local machine 10 can download
content from the content server 30, the web server 30°, and the application server 30"
over the network 155. In one embodiment, the local machine 10 can download content
(e.g., an application) from the application server 30” over the client-application server

communication channel 1150.

In one embodiment, the web browser 11 on the local machine 10 uses Secure
Socket Layer (SSL) support for communications to the content server 30 and/or the web
server 30'. SSL is a secure protocol developed by Netscape Communication
Corporation of Mountain View, California, and is now a standard promulgated by the
Internet Engineering Task Force (IETF). The web browser 11 can alternatively connect
to the content server 30 and/or the web server 30’ using other security protocols, such
as, but not limited to, Secure Hypertext Transfer Protocol (SHTTP) developed by Terisa
Systems of Los Altos, CA, HTTP over SSL (HTTPS), Private Communication
Technology (PCT) developed by Microsoft Corporation of Redmond, Washington, and
the Transport Level Security (TLS) standard promulgated by the IETF. In other
embodiments, the web browser 11 communicates with the servers 30 using a
communications protocol without encryption, such as the HyperText Transfer Protocol
(HTTP).

Additionally, the local machine 10 includes an application client 13 for
establishing and exchanging communications with the application server 30" over the
client-application server communication channel 1150. In one embodiment, the
application client 13 is a GUI application. In some embodiments, the application client
13 is an Independent Computing Architecture (ICA) client, developed by Citrix Systems,
Inc. of Fort Lauderdale, Florida, and is also referred to below as ICA client 13. Other
embodiments of the application client 13 include a Remote Display Protocol (RDP)
client, developed by Microsoft Corporation of Redmond, Washington, an X-Windows

26

WO 2007/121241 PCT/US2007/066433

client 13, a client-side player, interpreter or simulator capable of executing multimedia
applications, email, Java, or .NET code. Moreover, in one embodiment the output of an
application executing on the application server 30” can be displayed at the local
machine 10 via the ICA client 13. In some embodiments, the application client 13 is an
application client such as the application streaming client 552, described in greater
detail in connection with FIG. 5. In some embodiments, the application client 13
comprises an acceleration program in accordance with any of the embodiments

described herein6120 for accelerating communications between client 10 and server 30.

The local machine 10 searches the web service directory 160 for a web service.
In one embodiment, the search is a manual search. Alternatively, the search is an
automatic search. The web service directory 160 may also provide a service based
view, such as white and yellow pages, to search for web services in the web service
directory. In another embodiment, the web service directory 160 supports a hierarchical
browsing based on a structured service name and service kind for GUI applications. In
one embodiment, the web service directory 160 executes on a remote machine
independent of the content server 30, such as a directory server. In other

embodiments, the web service directory 160 executes on multiple servers.

In some embodiments, the content server 30 enables the local machine 10 to
select web services based on additional analysis or information by providing this
information or analysis in the web service directory 160. Examples of service
information that the web service directory 160 can list includes, but is not limited to, the
name of the business offering the service, the service type, a textual description of the
service, one or more service access points (SAPs), the network type, the path to use
(e.g., TCP or HTTPS), and quality of service (QoS) information. Moreover, service
information can be client device type or user (e.g., role) specific. Thus, service

selection can be based on one or more of the above attributes.

In one embodiment, the service type denotes a programming interface that the
local machine 10 must use to access the web service. For instance, the service type

27

WO 2007/121241 PCT/US2007/066433

can state that the service is encoded by an interface description language, such as Web
Services Description Language (WSDL).

The service access point, or SAP, is a unique address for an application. The
SAPs enable the computer system to support multiple applications at the local machine
10 and each remote machine 30. For example, the application server 30" may support
an electronic malil (i.e., e-mail) application, a file transfer application, and/or a GUI
application. In one embodiment, these applications would each have a SAP that is
unique within the application server 30”. In one embodiment, the SAP is a web or
Internet address (e.g., Domain Name System (DNS) name, IP/port, or Uniform
Resource Locator (URL)). Thus, in one embodiment the SAP identifies the address of
the web server 30’ as part of the address for an application stored on the web server
30’. In some embodiments, the SAP identifies the address of a publishing server plug-
in 165 as part of the address for an application stored on the web server 30’, as
described below. In one embodiment, the SAP is an “accessPoint” from the UDDI

registry.

To prepare an item for publishing in the web service directory 160, the content
server 30 includes a web publishing tool 170. In one embodiment, the web publishing
tool 170 is a software module. Alternatively, the web publishing tool 170 is another

server that may be externally located from or internally located in the content server 30.

In one embodiment, the web server 30’ delivers web pages to the local machine
10. The web server 30’ can be any remote machine 30 capable of providing web pages
to the local machine 10. In another embodiment, the web server 30’ is an Enterprise
Information Portal (e.g., corporate Intranet or secured business-to-business extranet).
Enterprise portals are company web sites that aggregate, personalize and serve
applications, data and content to users, while offering management tools for organizing
and using information more efficiently. In some companies, portals have replaced
traditional desktop software with browser-based access to a virtual workplace. In some
embodiments , an appliance 1250 accelerates delivery of the provision of web pages is

28

WO 2007/121241 PCT/US2007/066433

accelerated using any of the acceleration techniques discussed herein.. In other
embodiments an acceleration program 6120 accelerates delivery of the web pages.

The web server 30’ also includes a publishing server plug-in 165 to enable the
publishing of graphical user interface (GUI) applications. More specifically, the
publishing server plug-in 165 translates a new web service entry URL into a GUI
application service so that the GUI can be accessed via the web service directory 160.
In one embodiment, the publishing server plug-in 165 is a Common Gateway Interface
(CGI) script, which is a program designed to accept and return data that conforms to the
CGl specification. The program can be written in any programming language, such as
C, Perl, Java, or Visual Basic. In another embodiment, the publishing server plug-in
165 is a Java Server Page (JSP). Using the publishing server plug-in 165 to facilitate
the publishing of remote GUI applications, the local machine 10 can thereby access the
web service, not through a programming interface or a web page, but through a full GUI
interface, such as with Citrix’s ICA or Microsoft's RDP. In some embodiments, an
appliance 1250 or acceleration program 6120 accelerates the delivery of said GUI to the
client is accelerated using any of the acceleration techniques discussed herein in
Section C.

The application server 30” hosts one or more applications that are available for
the local machine 10. Examples of such applications include word processing programs
such as MICROSOFT WORD and spreadsheet programs such as MICROSOFT
EXCEL, both manufactured by Microsoft Corporation of Redmond, Washington,
financial reporting programs, customer registration programs, programs providing
technical support information, customer database applications, or application set

managers.

In one embodiment, the web publishing tool 170 stores information about an
application that the web publishing tool 170 is publishing in the web service directory
160 in a persistent mass storage 225. In one embodiment the information is a URL for
the dynamic publishing server plug-in 165. The persistent mass storage 225 may be a

magnetic disk or magneto-optical drive. In one embodiment, the persistent mass

29

WO 2007/121241 PCT/US2007/066433

storage 225 is a database server, which stores data related to the published application
in one or more local service databases. The persistent mass storage 225 may be a
component internally located in or externally located from any or all of the remote
machines 30.

In other embodiments, the content server 30 or the web server 30’ communicate
with a remote machine 30 in the farm 38 to retrieve the list of applications. In one of
these embodiments, the content server 30 or the web server 30° communicate with the
farm 38 instead of with the persistent mass storage 225.

Referring now to FIG. 2, a flow diagram depicts one embodiment of the steps
taken to select a method of execution of an application program. In brief overview,
credentials associated with the local machine or with a user of the local machine are
received, with a request for an enumeration of applications available for execution by
the local machine (step 202). An enumeration of a plurality of application programs
available to the local machine is provided, responsive to the received credentials (step
204). Arequest is received to execute an enumerated application (step 206). One of a
predetermined number of methods for executing the enumerated application is selected,
responsive to a policy, the predetermined number of methods including a method for
application streaming of the enumerated application (step 208).

Credentials associated with the local machine or with a user of the local machine
are received, with a request for an enumeration of applications available for execution
by the local machine (step 202). In one embodiment, the remote machine receives a
request for enumeration of available applications from the local machine 10 with the
credentials. In another embodiment, an XML service on the remote machine 30
receives the request and the credentials and transmits the request and credentials to a
management service on the remote machine 30.

In some embodiments, a remote machine 30 functioning as a web server
receives communications from the local machine 10 and forwards the communications
to a remote machine 30'. In one of these embodiments, the web server forwards the
communications to an XML service on the remote machine 30’. In another of these

embodiments, the web server resides on the local machine. In other embodiments

30

WO 2007/121241 PCT/US2007/066433

where communications from the local machine 10 are routed to a remote machine 30’
by the web server, the remote machine 30 may be selected responsive to an Internet
Protocol (IP) address of the local machine 10.

In some embodiments, a local machine 10 requests access to an application
residing on a remote machine 30. In one of these embodiments, the local machine 10
requests execution by the remote machine 30 of the application residing on the remote
machine 30. In another of these embodiments, the local machine 10 requests retrieval
of a plurality of application files that comprise the application.

In some embodiments, the user provides credentials to the remote machine 30
via a graphical user interface presented to the local machine 10 by the remote machine
30. In other embodiments, a remote machine 30" having the functionality of a web
server provides the graphical user interface to the local machine 10. In still other
embodiments, a collection agent transmitted to the local machine 10 by the remote
machine 30 gathers the credentials from the local machine 10. In one embodiment, a
credential refers to a username and password. In another embodiment, a credential is
not limited to a username and password but includes, without limitation, a machine ID of
the local machine 10, operating system type, existence of a patch to an operating
system, MAC addresses of installed network cards, a digital watermark on the client
device, membership in an Active Directory, existence of a virus scanner, existence of a
personal firewall, an HTTP header, browser type, device type, network connection
information such as internet protocol address or range of addresses, machine ID of the
remote machine 30, date or time of access request including adjustments for varying
time zones, and authorization credentials.

In some embodiments, a credential associated with a local machine is
associated with a user of the local machine. In one of these embodiments, the
credential is information possessed by the user. In another of these embodiments, the
credential is user authentication information. In other embodiments, a credential
associated with a local machine is associated with a network. In one of these
embodiments, the credential is information associated with a network to which the local

machine may connect. In another of these embodiments, the credential is information

31

WO 2007/121241 PCT/US2007/066433

associated with a network collecting information about the local machine. In still other
embodiments, a credential associated with a local machine is a characteristic of the
local machine.

An enumeration of a plurality of application programs available to the local
machine is provided, responsive to the received credentials (step 204). In one
embodiment, a user of a local machine 10 may learn of the availability of application
programs hosted by the remote machines 30 in the network 40 without knowing where
to find such applications and without technical information necessary to link to such
applications. These available application programs comprise the "program
neighborhood" of the user. A system for determining a program neighborhood for a
local machine includes an application program (hereafter referred to as the "Program
Neighborhood" application), memory for storing components of the application program,
and a processor for executing the application program. The Program Neighborhood
(PN) application can be installed in memory of the local machine 10 and/or on a remote
machine 30 as described below.

A remote machine 30 operating according to the Program Neighborhood
application collects application-related information from each of the remote machines 30
in a farm 38. The application-related information for each hosted application can be a
variety of information including, for example, an address of the remote machine hosting
that application, the application name, the users or groups of users who are authorized
to use that application, and the minimum capabilities required of the local machine 10
before establishing a connection to run the application. For example, the application
may stream video data, and therefore a required minimum capability may be that the
local machine supports video data. Other examples are requirements that the local
machine support audio data or have the capacity to process encrypted data. The
application-related information can be stored in a database.

When a local machine 10 connects to the network 40, the user of the local
machine 10 provides user credentials. User credentials may include the username of a
user of the local machine 10, the password of the user, and the domain name for which
the user is authorized. Alternatively, the user credentials may be obtained from smart

32

WO 2007/121241 PCT/US2007/066433

cards, time-based tokens, social security numbers, user passwords, personal
identification (PIN) numbers, digital certificates based on symmetric key or elliptic curve
cryptography, biometric characteristics of the user, or any other means by which the
identification of the user of the local machine 10 can be obtained and submitted for
authentication. The remote machine 30 responding to the local machine 10 can
authenticate the user based on the user credentials. The user credentials can be stored
wherever the Program Neighborhood application is executing. For embodiments in
which the local machine 10 executes the Program Neighborhood application, the user
credentials may be stored at the local machine 10. For embodiments in which a remote
machine 30 executes the Program Neighborhood, the user credentials can be stored at
that remote machine 30.

From the user credentials and the application-related information, the remote
machine 30 can also determine which application programs hosted by remote machines
30 are available for use by the user of the local machine 10. The remote machine 30
transmits information representing the available application programs to the local
machine 10. This process eliminates the need for a user of the local machine 10 to
establish application connections. Additionally, an administrator of the remote machine
30 may control access to applications among multiple users of a local machine 10.

In some embodiments, the user authentication performed by the remote machine
30 may suffice to authorize the use of each hosted application program presented to the
local machine 10, although such applications may reside at another remote machine
30’. Accordingly, when the local machine 10 launches (i.e., initiates execution of) one of
the hosted applications, additional input of user credentials by the local machine 10 may
be unnecessary to authenticate use of that application. Thus, a single entry of the user
credentials may serve to determine the available applications and to authorize the
launching of such applications without an additional, manual log-on authentication
process by the user.

Either a local machine 10 or remote machine 30 can launch the Program
Neighborhood application. The results are displayed on the display screen 12, 22 of the
local machine 10, 20. In a graphical windows-based implementation, the results can be

33

WO 2007/121241 PCT/US2007/066433

displayed in a Program Neighborhood graphical window and each authorized application
program can be represented by a graphical icon in that window.

In one embodiment, the Program Neighborhood application filters out application
programs that the local machine 10 is unauthorized to execute and displays only
authorized (i.e., available) programs. In other embodiments, the Program
Neighborhood application can display authorized and unauthorized applications. When
unauthorized applications are not filtered from the display, a notice can be provided
indicating that such applications are unavailable. Alternatively, the Program
Neighborhood application can report all applications hosted by the remote machines 30
to the user of a local machine 10, without identifying which applications the local
machine 10 is authorized or unauthorized to execute. Authorization can be
subsequently determined when the local machine 10 attempts to run one of those
applications.

The local machine 10 may request application enumeration from a remote
machine 30. Application enumeration enables a user of the local machine 10 to view
the names of every published application. In one embodiment, the user of the local
machine 10 can view the application names regardless of whether the user has
authorization to execute the application. In another embodiment, the user views only
those application names that the user is authorized to execute.

Requests for application enumeration pass to the ICA browser subsystem 260, to
the program neighborhood subsystem 270, or to a common application subsystem 524,
depending upon the particular process being run by the local machine 10. For example,
when the local machine 10 is running program neighborhood application, the requests
for application enumeration are sent to the program neighborhood subsystem 270 on a
remote machine 30. When the local machine 10 submits the enumeration request
through a web page, the requests pass to the common access point subsystem 524.
For these embodiments, the common application subsystem 524 serves as an initial
access point for the program neighborhood subsystem 270, ICA browser subsystem
260, and common application subsystems when the local machine 10 wants to
enumerate applications. In some embodiments, when the local machine 10 submits the

34

WO 2007/121241 PCT/US2007/066433

enumeration request through a web page, an intermediate remote machine 30 hosting a
web server receives the request and forwards the request to a remote machine 30'.

Upon receiving the enumeration requests, a common application subsystem 524
queries the persistent store 230 for a list of all applications. For requests received from
the program neighborhood subsystem 270 and common access point 645 subsystems,
this list of applications is filtered according to the credentials of the user of the local
machine 10 (i.e., the user views only those applications for which the user is
authorized).

The local machine 10 can also request remote machine enumeration. Remote
machine enumeration enables a user of the local machine 10 to view a list of remote
machines in the farm 38. In one embodiment, the list of remote machines can be
filtered according to the type of remote machine, as determined by the specialized
remote machine subsystem on that remote machine.

Requests for remote machine enumeration pass to the ICA browser subsystem
260 or to the common access point subsystem 645, depending upon the particular
process being run by the local machine 120. For example, when the local machine 120
submits the remote machine enumeration request through a web page, the requests
pass to the common access point subsystem 645. For these embodiments, the
common remote machine subsystem 300 serves as an initial access point for the ICA
browser subsystem 260 and common access point 645 subsystems. Upon receiving
the remote machine enumeration requests, the common remote machine subsystem
queries the persistent store 230 for a list of all remote machines. Optionally, the list of
remote machines is filtered according to the remote machine type.

Fig. 3A is a block diagram depicting another embodiment of the process by which
a local machine 10 initiates execution of the Program Neighborhood application, in this
example via the World Wide Web. A local machine 10 executes a web browser
application 80, such as NETSCAPE NAVIGATOR, manufactured by Netscape
Communications, Inc. of Mountain View, California or MICROSOFT INTERNET
EXPLORER, manufactured by Microsoft Corporation of Redmond, Washington, or
FIREFOX, manufactured by Mozilla Foundation of Mountain View, California, or OPERA,

35

WO 2007/121241 PCT/US2007/066433

manufactured by Opera Software ASA, of Oslo, Norway, or SAFARI, manufactured by
Apple Computer, Inc., of Cupertino, California.

The local machine 10, via the web browser 80, transmits a request 82 to access
a Uniform Resource Locator (URL) address corresponding to an HTML page residing on
remote machine 30. In some embodiments the first HTML page returned 84 to the local
machine 10 by the remote machine 30 is an authentication page that seeks to identify
the local machine 10.

Still referring to Fig. 3A, once the local machine 10 is authenticated by the
remote machine 30, the remote machine 30 prepares and transmits to the local
machine 10 an HTML page 88 that includes a Program Neighborhood window 58 in
which appears graphical icons 57, 57' representing application programs to which the
local machine 10 has access. A user of local machine 10 invokes execution of an
application represented by icon 57 by clicking that icon 57.

In some embodiments, the remote machine 30 executes the Program
Neighborhood application on behalf of a user of the local machine 10. In one of these
embodiments, the remote machine 30 is an intermediate remote machine residing
between the local machine 10 and a remote machine 30'.

Referring to FIG. 3B, a flow diagram depicts one embodiment of the steps taken
to provide a plurality of application programs available to the local machine via
publishing of GUIs in a web service directory. The web publishing tool 170 receives a
web service description and access information for an application (e.g., GUI application)
for publishing (step 300). In one embodiment, the web service description includes the
service information described above (e.g., the name of the business offering the web
service, the service type, a textual description of the service, and a SAP). The access
information may include, for example, a published application name, a Transmission
Control Protocol (TCP) browsing server farm address, and a MetaFrame server |IP
address. In some embodiments, the access information specifies the address to use
and a ticket to use to traverse network or security gateways or bridge devices.

The web publishing tool 170 then constructs a service-publishing request to
request the publication of the web service (i.e., GUI application) (step 305). In one

36

WO 2007/121241 PCT/US2007/066433

embodiment, the service-publishing request includes a SAP. In some embodiments,
the SAP is a URL including the web address of the web server 30’ and the publishing
server plug-in 165. Further, the web address can be a Uniform Resource Identifier
(URI), which is the generic term for the types of names and addresses that refer to
objects on the web. A URL is one kind of URI. An example of the URI is the name of
the web server 30’ (e.g., “web-server”) and the CGl script name (e.g., “dynamic-
component”) for the publishing server plug-in 165.

The web publishing tool 170 stores a SAP entry associated with the SAP in the
persistent mass storage 225 (step 310). In some embodiments, the web publishing tool
170 also associates published application information (e.g., ICA-published-app-info)
with the GUI application. In further embodiments, the web publishing tool 170 also
includes a key in the service-publishing request to identify the SAP entry that the
content server 30 stores in the persistent mass storage 225. For instance, the key can
have the value of “123456677.” An example of a SAP identifying the web server 30’,
the CGlI script name of the publishing server plug-in 165, and the key described above
is “http://web-server/dynamic-component/?app=123456677."

An example of the SAP entry associated with the SAP described above is
“key=123456677, value=ICA-published-app-info.” The key can be any length (e.g., 56
bit key, 128 bit key). In one embodiment, the key is a cryptographic random number.
The key may also provides an access right to the key holder. Although illustrated with a
key, any means can be used to provide a form of security to the SAP entry stored in the
persistent mass storage 225.

The web publishing tool 170 provides the service-publishing request to the
content server 30 for publishing in the web service directory 160 (step 315). Moreover,
in one embodiment, the content server 30 transmits the key of the SAP to the local
machine 10 requesting the particular web service for subsequent use in locating the
SAP entry. In one embodiment, the publishing of the service-publishing request
enables users of the local machine 10 to access the service. In one embodiment, GUI
applications are published on the web service directory 160 using NFUSE developed by
Citrix Systems, Inc. of Fort Lauderdale, Florida. In some embodiments, a publisher of a

37

http://web-server/dynamic-component/?app=123456677.%25e2%2580%259d

WO 2007/121241 PCT/US2007/066433

GUI application customizes the publication of the GUI application on the web service
directory 160 using Application Launching And Embedding (ALE), also developed by
Citrix Systems, Inc. ALE enables the launching of a GUI application from or the
embedding of the application into an HTML page.

The local machine 10 then queries a service name from the web service directory
160 (step 320). The content server 30 receives the query from the local machine 10
(step 325) and finds the requested service name in the web service directory 160. In
another embodiment, the user of the local machine 10 navigates the web service
directory 160 until locating a particular service name that the user of the local machine
10 was attempting to find. Although illustrated with the local machine 10, any web
service directory client (e.g., UDDI client or LDAP browser) can query or navigate the
web service directory 160 to discover published web services.

Upon location of the SAP associated with the received query, the content server
30 transmits the SAP to the local machine 10 (step 330). The local machine 10
receives the SAP (step 335) and determines the address of the publishing server plug-
in 165 from the SAP. The local machine 10 subsequently transmits a request for the
GUI application to the web server 30’ (step 340). In some embodiments, the request
from the local machine 10 is an HTTP request transmitted from the web browser 11 to
the web server 30'. In other embodiments, an application (e.g., general directory
browser or HTML Ul) executing on the local machine 10 receives the SAP from the
content server 30 and provides the SAP as an argument to the web browser 11. The
web browser 1 may then automatically transmit an HTTP request (for the GUI
application) to the web server 30’. Following along the lines of the previous examples, a
particular example of the application request to the web server 30’ is htip://web-
server/dynamic-component/7app=123456677).

The web server 30’, and, more particularly, the publishing server plug-in 165,
receives the application request associated the SAP (step 345) and determines the SAP
entry associated with the request (step 350). In one embodiment, the publishing server
plug-in 165 receives the request from the local machine 10 and retrieves the published
application information associated with the request that had been stored (as part of the

38

http://web-server/dynamic-component/Vapp-l_23456677
http://web-server/dynamic-component/Vapp-l_23456677

WO 2007/121241 PCT/US2007/066433

SAP entry) in the persistent mass storage 225. In some embodiments, the publishing
server plug-in 165 uses the SAP (or part of the SAP) that the local machine 10 received
from the content server 30 as the key to access the proper service entry (e.g., the
published application information) stored in the persistent mass storage 225.

The publishing server plug-in 165 then constructs a file or document having the
published application information (e.g., HTTP address of the application server 30”)
(step 352) and transmits this document to the local machine 10 (step 355). The
publishing server plug-in 165 constructs the file so that the file has a format compatible
with the application client 13. In one embodiment, the document is a Multipurpose
Internet Mail Extensions (MIME) or a secure MIME (S/MIME) document. In another
embodiment, the document is an HTML document containing an ICA web client
embedded object HTML tag. In still another embodiment, the document is an HTML
document containing an application streaming client embedded object HTML tag.

The web browser 11 subsequently receives the document and attempts to open
the document. In one embodiment, if the application client 13 is not installed on the
local machine 10, the local machine 10 communicates with the application server 30" to
download and install the application client 13. Upon installation of the application client
13 or, alternatively, if the application client 13 has already been installed on the local
machine 10, the local machine 10 launches the application client 13 to view the
document received from the web server 30’ (step 360).

Once the application client 13 is installed and executing on the local machine 10,
the application server 30” then executes the application and displays the application on
the application client 13 (step 365). In an alternative embodiment, the application
server 30” transmits a plurality of application files comprising the application to the
application client 13 for execution on the local machine 10, as described in further detail
below in connection with FIG. 7. In another embodiment, the local machine 10 views
the document (even before launching the application client 13) and uses the information
in the document to obtain the GUI application from the application server 30”. In this
embodiment, the display of the GUI application includes the installation and execution of
the application client 30”. Moreover, the viewing of the document may be transparent to

39

WO 2007/121241 PCT/US2007/066433

the user of the local machine 10. For example, the local machine 10 may receive the
document from the web server 30’ and interpret the document before automatically
requesting the GUI application from the application server 30”.

Thus, the application client 13 provides service-based access to published
applications, desktops, desktop documents, and any other application that is supported
by the application client 13. Examples of applications that the application client 13 can
provide access to include, but are not limited to, the WINDOWS desktops, WINDOWS
documents such as MICROSOFT EXCEL, WORD, and POWERPOINT, all of which
were developed by Microsoft Corporation of Redmond, Washington, Unix desktops
such as SUN SOLARIS developed by Sun Microsystems of Palo Alto, California, and
GNU/Linux distributed by Red Hat, Inc. of Durham, North Carolina, among others.

In some embodiments, an enumeration of a plurality of application programs
available to the local machine 10 is provided (step 204) responsive to a determination
by a policy engine regarding whether and how a local machine may access an
application. The policy engine may collect information about the local machine prior to
making the determination. Referring now to FIG. 4A, one embodiment of a computer
network is depicted, which includes a local machine 10, a collection agent 404, a policy
engine 406, a policy database 408, a farm 38, and an application server 30'. In one
embodiment, the policy engine 406 is a remote machine 30. In another embodiment,
the application server 30’ is a remote machine 30'. Although only one local machine 10,
collection agent 404, policy engine 406, farm 38, and application server 30’ are depicted
in the embodiment shown in Figure 4A, it should be understood that the system may
provide multiple ones of any or each of those components.

In brief overview, when the local machine 10 transmits a request 410 to the
policy engine 406 for access to an application, the collection agent 404 communicates
with local machine 10, retrieving information about the local machine 10, and transmits
the local machine information 412 to the policy engine 406. The policy engine 406
makes an access control decision by applying a policy from the policy database 408 to
the received information 412.

40

WO 2007/121241 PCT/US2007/066433

In more detail, the local machine 10 transmits a request 410 for a resource to the
policy engine 406. In one embodiment, the policy engine 406 resides on an application
server 30". In another embodiment, the policy engine 406 is a remote machine 30. In
still another embodiment, an application server 30’ receives the request 410 from the
local machine 10 and transmits the request 410 to the policy engine 406. In yet another
embodiment, the local machine transmits a request 410 for a resource to a remote
machine 30, which transmits the request 410 to the policy engine 406.

Upon receiving the request, the policy engine 406 initiates information gathering
by the collection agent 404. The collection agent 404 gathers information regarding the
local machine 10 and transmits the information 412 to the policy engine 406.

In some embodiments, the collection agent 404 gathers and transmits the
information 412 over a network connection. In some embodiments, the collection agent
404 comprises bytecode, such as an application written in the bytecode programming
language JAVA. In some embodiments, the collection agent 404 comprises at least one
script. In those embodiments, the collection agent 404 gathers information by running
at least one script on the local machine 10. In some embodiments, the collection agent
comprises an Active X control on the local machine 10. An Active X control is a
specialized Component Object Model (COM) object that implements a set of interfaces
that enable it to look and act like a control.

In one embodiment, the policy engine 406 transmits the collection agent 404 to
the local machine 10. In another embodiment, an appliance 1250 may store or cache
the collection agent. The appliance 1250 may then transmit the collection agent to a
local machine 10. In other embodiments, an appliance 1250 may intercept the
transmission of a collection agent 404. In still another embodiment, an appliance 1250
may accelerate the delivery of a collection agent. In one embodiment, the policy engine
406 requires a second execution of the collection agent 404 after the collection agent
404 has transmitted information 412 to the policy engine 406. In this embodiment, the
policy engine 406 may have insufficient information 412 to determine whether the local
machine 10 satisfies a particular condition. In other embodiments, the policy engine

41

WO 2007/121241 PCT/US2007/066433

406 requires a plurality of executions of the collection agent 404 in response to received
information 412.

In some embodiments, the policy engine 406 transmits instructions to the
collection agent 404 determining the type of information the collection agent 404
gathers. In those embodiments, a system administrator may configure the instructions
transmitted to the collection agent 404 from the policy engine 406. This provides
greater control over the type of information collected. This also expands the types of
access control decisions that the policy engine 406 can make, due to the greater control
over the type of information collected. The collection agent 404 gathers information 412
including, without limitation, machine ID of the local machine 10, operating system type,
existence of a patch to an operating system, MAC addresses of installed network cards,
a digital watermark on the client device, membership in an Active Directory, existence of
a virus scanner, existence of a personal firewall, an HTTP header, browser type, device
type, network connection information such as internet protocol address or range of
addresses, machine ID of the remote machine 30, date or time of access request
including adjustments for varying time zones, and authorization credentials. In some
embodiments, a collection agent gathers information to determine whether an
application can be accelerated on the client using an acceleration program 6120.

In some embodiments, the device type is a personal digital assistant. In other
embodiments, the device type is a cellular telephone. In other embodiments, the device
type is a laptop computer. In other embodiments, the device type is a desktop
computer. In other embodiments, the device type is an Internet kiosk.

In some embodiments, the digital watermark includes data embedding. In some
embodiments, the watermark comprises a pattern of data inserted into a file to provide
source information about the file. In other embodiments, the watermark comprises data
hashing files to provide tamper detection. In other embodiments, the watermark
provides copyright information about the file.

In some embodiments, the network connection information pertains to bandwidth
capabilities. In other embodiments, the network connection information pertains to
Internet Protocol address. In still other embodiments, the network connection

42

WO 2007/121241 PCT/US2007/066433

information consists of an Internet Protocol address. In one embodiment, the network
connection information comprises a network zone identifying the logon agent to which
the local machine provided authentication credentials.

In some embodiments, the authorization credentials include a number of types of
authentication information, including without limitation, user names, client names, client
addresses, passwords, PINs, voice samples, one-time passcodes, biometric data,
digital certificates, tickets, etc. and combinations thereof. After receiving the gathered
information 412, the policy engine 406 makes an access control decision based on the
received information 412.

Referring now to FIG. 4B, a block diagram depicts one embodiment of a policy
engine 406, including a first component 420 comprising a condition database 422 and a
logon agent 424, and including a second component 430 comprising a policy database
432. The first component 420 applies a condition from the condition database 422 to
information received about local machine 10 and determines whether the received
information satisfies the condition.

In some embodiments, a condition may require that the local machine 10 execute
a particular operating system to satisfy the condition. In some embodiments, a
condition may require that the local machine 10 execute a particular operating system
patch to satisfy the condition. In still other embodiments, a condition may require that
the local machine 10 provide a MAC address for each installed network card to satisfy
the condition. In some embodiments, a condition may require that the local machine 10
indicate membership in a particular Active Directory to satisfy the condition. In another
embodiment, a condition may require that the local machine 10 execute a virus scanner
to satisfy the condition. In other embodiments, a condition may require that the local
machine 10 execute a personal firewall to satisfy the condition. In some embodiments,
a condition may require that the local machine 10 comprise a particular device type to
satisfy the condition. In other embodiments, a condition may require that the local
machine 10 establish a particular type of network connection to satisfy the condition.

If the received information satisfies a condition, the first component 420 stores an
identifier for that condition in a data set 426. In one embodiment, the received

43

WO 2007/121241 PCT/US2007/066433

information satisfies a condition if the information makes the condition true. For
example, a condition may require that a particular operating system be installed. If the
local machine 10 has that operating system, the condition is true and satisfied. In
another embodiment, the received information satisfies a condition if the information
makes the condition false. For example, a condition may address whether spyware
exists on the local machine 10. If the local machine 10 does not contain spyware, the
condition is false and satisfied.

In some embodiments, the logon agent 424 resides outside of the policy engine
406. In other embodiments, the logon agent 424 resides on the policy engine 406. In
one embodiment, the first component 420 includes a logon agent 424, which initiates
the information gathering about local machine 10. In some embodiments, the logon
agent 424 further comprises a data store. In these embodiments, the data store
includes the conditions for which the collection agent may gather information. This data
store is distinct from the condition database 422.

In some embodiments, the logon agent 424 initiates information gathering by
executing the collection agent 404. In other embodiments, the logon agent 424 initiates
information gathering by transmitting the collection agent 404 to the local machine 10
for execution on the local machine 10. In still other embodiments, the logon agent 424
initiates additional information gathering after receiving information 412. In one
embodiment, the logon agent 424 also receives the information 412. In this
embodiment, the logon agent 424 generates the data set 426 based upon the received
information 412. In some embodiments, the logon agent 424 generates the data set
426 by applying a condition from the database 422 to the information received from the
collection agent 404.

In another embodiment, the first component 420 includes a plurality of logon
agents 424. In this embodiment, at least one of the plurality of logon agents 424
resides on each network domain from which a local machine 10 may transmit a
resource request. In this embodiment, the local machine 10 transmits the resource
request to a particular logon agent 424. In some embodiments, the logon agent 424
transmits to the policy engine 406 the network domain from which the local machine 10

44

WO 2007/121241 PCT/US2007/066433

accessed the logon agent 424. In one embodiment, the network domain from which the
local machine 10 accesses a logon agent 424 is referred to as the network zone of the
local machine 10.

The condition database 422 stores the conditions that the first component 420
applies to received information. The policy database 432 stores the policies that the
second component 430 applies to the received data set 426. In some embodiments,
the condition database 422 and the policy database 432 store data in an ODBC-
compliant database. For example, the condition database 422 and the policy database
432 may be provided as an ORACLE database, manufactured by Oracle Corporation of
Redwood Shores, Calif. In other embodiments, the condition database 422 and the
policy database 432 can be a Microsoft ACCESS database or a Microsoft SQL server
database, manufactured by Microsoft Corporation of Redmond, Wash.

After the first component 420 applies the received information to each condition
in the condition database 422, the first component transmits the data set 426 to second
component 430. In one embodiment, the first component 420 transmits only the data
set 426 to the second component 430. Therefore, in this embodiment, the second
component 430 does not receive information 412, only identifiers for satisfied
conditions. The second component 430 receives the data set 426 and makes an
access control decision by applying a policy from the policy database 432 based upon
the conditions identified within data set 426.

In one embodiment, policy database 432 stores the policies applied to the
received information 412. In one embodiment, the policies stored in the policy database
432 are specified at least in part by the system administrator. In another embodiment, a
user specifies at least some of the policies stored in the policy database 432. The user-
specified policy or policies are stored as preferences. The policy database 432 can be
stored in volatile or non-volatile memory or, for example, distributed through multiple
servers.

In one embodiment, a policy allows access to a resource only if one or more
conditions are satisfied. In another embodiment, a policy allows access to a resource
but prohibits transmission of the resource to the local machine 10. Another policy might

45

WO 2007/121241 PCT/US2007/066433

make connection contingent on the local machine 10 that requests access being within
a secure network. In some embodiments, the resource is an application program and
the local machine 10 has requested execution of the application program. In one of
these embodiments, a policy may allow execution of the application program on the
local machine 10. In another of these embodiments, a policy may enable the local
machine 10 to receive a stream of files comprising the application program. In this
embodiment, the stream of files may be stored and executed in an isolation
environment. In still another of these embodiments, a policy may allow only execution
of the application program on a remote machine, such as an application server, and
require the remote machine to transmit application-output data to the local machine 10.

Referring now to FIG. 4C, a flow diagram depicts one embodiment of the steps
taken by the policy engine 406 to make an access control decision based upon
information received about a local machine 10. Upon receiving gathered information
about the local machine 10 (Step 450), the policy engine 406 generates a data set
based upon the information (Step 452). The data set 426 contains identifiers for each
condition satisfied by the received information 412. The policy engine 406 applies a
policy to each identified condition within the data set 426. That application yields an
enumeration of resources which the local machine 10 may access (Step 454). The
policy engine 406 then presents that enumeration to the local machine 10. In some
embodiments, the policy engine 406 creates a Hypertext Markup Language (HTML)
document used to present the enumeration to the local machine.

Referring to FIG. 4D, one embodiment of a network is depicted, which includes a
local machine 10, a collection agent 404, a policy engine 406, a policy database 408, a
condition database 410, a local machine 20, a session server 420, a stored application
database 422, a remote machine 30’, a first database 428, a remote machine 30”, and a
second database 432. In brief overview, when the local machine 10 transmits to the
access control server 406 a request 412 for access to an application program, the
collection agent 404 communicates with local machine 10, retrieves information about
local machine 10, and transmits local machine information 414 to the policy engine 406.
The policy engine 406 makes an access control decision, as discussed above in FIG.

46

WO 2007/121241 PCT/US2007/066433

4A and FIG. 4B. The local machine 10 receives an enumeration of available
applications associated with the local machine 10.

In some embodiments, the session server 420 establishes a connection between
the local machine 10 and a plurality of application sessions associated with the local
machine 10. In other embodiments, the policy engine 406 determines that the local
machine 10 has authorization to retrieve a plurality of application files comprising the
application and to execute the application program locally. In some embodiments the
policy engine 406 determines whether to accelerate delivery of the application files by
transmitting an acceleration program 6120 to the local machine 10. In one of these
embodiments, the remote machine 30’ stores application session data and a plurality of
application files comprising the application program. In another of these embodiments,
the local machine 10 establishes an application streaming session with a remote
machine 30’ storing the application session data and the plurality of application files
comprising the application program. In some embodiments the policy engine 406
determines whether to accelerate delivery of the streaming session by transmitting an
acceleration program 6120 to the local machine 10. In some embodiments the policy
engine 406 determines whether to accelerate delivery of data files by transmitting an
acceleration program 6120 to the local machine 10.

Referring now to FIG. 4E, a flow diagram depicts one embodiment of the steps
taken by the session server 420 to provide access for the local machine 10 to its
associated application sessions. The session server 420 receives information about the
local machine 10 from the policy engine 406 containing access control decision the
policy engine 406 made (step 480). The session server 420 generates an enumeration
of associated applications (step 482). The session server 420 may connect the local
machine 10 to an associated application (step 484). In one embodiment, the
information also includes the local machine information 414. In another embodiment,
the information includes authorization to execute the application program locally.

The session server 420 generates an enumeration of associated applications
(step 482). In some embodiments, the policy engine 406 identifies a plurality of
application sessions already associated with the local machine 10. In other

47

WO 2007/121241 PCT/US2007/066433

embodiments, the session server 420 identifies stored application sessions associated
with the local machine 10. In some of these embodiments, the session server 420
automatically identifies the stored application sessions upon receiving the information
from the policy engine 406. In one embodiment, the stored application database 422
resides on the session server 420. In another embodiment, the stored application
database 422 resides on the policy engine 406.

The stored application database 422 contains data associated with a plurality of
remote machines in the farm 38 executing application sessions or providing access to
application session data and application files comprising application programs. In some
embodiments, identifying the application sessions associated with the local machine 10
requires consulting stored data associated with one or more remote machines. In some
of these embodiments, the session store 420 consults the stored data associated with
one or more remote machines. In others of these embodiments, the policy engine 406
consults the stored data associated with one or more remote machines. In some
embodiments, a first application session runs on a remote machine 30’ and a second
application session runs on a remote machine 30”. In other embodiments, all

application sessions run on a single remote machine 30 within the farm 38.

The session server 420 includes information related to application sessions

initiated by users. The session server can be stored in volatile or non-volatile memory

or, for example, distributed through multiple servers. Table 1 shows the data included

in a portion of an illustrative session server 420:

Application Session App Session 1 App Session 2 App Session 3
User ID User 1 User 2 User 1
Client ID First Client First Client
Client Address 172.16.0.50 172.16.0.50
Status Active Disconnected Active
Applications Word Processor Data Base Spreadsheet
Process Number 1 3 2
Server Server A Server A Server B

48

WO 2007/121241 PCT/US2007/066433

Server Address 172.16.2.55 172.16.2.55 172.16.2.56

Table 1

The illustrative session server 420 in Table 1 includes data associating each
application session with the user that initiated the application session, an identification
of the client computer 10 or 20, if any, from which the user is currently connected to the
remote machine 30’, and the IP address of that client computer 10 or 20. The
illustrative session server 420 also includes the status of each application session. An
application session status can be, for example, “active” (meaning a user is connected to
the application session), or “disconnected” (meaning a user is not connected to the
application session). In an alternative embodiment, an application session status can
also be set to “executing-disconnected” (meaning the user has disconnected from the
application session, but the applications in the application session are still executing), or
“stalled-disconnected” (meaning the user is disconnected and the applications in the
application session are not executing, but their operational state immediately prior to the
disconnection has been stored). The session server 420 further stores information
indicating the applications 116 that are executing within each application session and
data indicating each application’s process on the server. In embodiments in which the
remote machine 30’ is part of the farm 38, the session server 420 is at least a part of the
dynamic store, and also includes the data in the last two rows of Table 1 that indicate on
which remote machine 30 in the farm 38 each application is/was executing, and the IP
address of that remote machine 30. In alternative embodiments, the session server 420
includes a status indicator for each application in each application session.

For example, in the example of Table 1, three application sessions exist, App
Session 1, App Session 2, and App Session 3. App Session 1 is associated with User
1, who is currently using terminal 1. Terminal one’s IP address is 152.16.2.50. The
status of App Session 1 is active, and in App Session 1, a word processing program, is
being executed. The word processing program is executing on Server A as process
number 1. Server A’'s IP address is 152.16.2.55. App Session 2 in Table 1 is an
example of a disconnected application session 118. App Session 2 is associated with

User 2, but App Session 2 is not connected to a local machine 10 or 20. App Session 2
49

WO 2007/121241 PCT/US2007/066433

includes a database program that is executing on Server A, at IP address 152.16.2.55
as process number 3. App Session 3 is an example of how a user can interact with
application sessions operating on different remote machines 30. App Session 3 is
associated with User 1, as is App Session 1. App Session 3 includes a spreadsheet
program that is executing on Server B at IP address 152.16.2.56 as process number 2,
whereas the application session included in App Session 1 is executing on Server A.

In another example, a user may access a first application program through an
application session executing on a remote machine 30’, such as Server A, while
communicating across an application streaming session with a second remote machine
307, such as Server B, to retrieve a second application program from the second remote
machine 30” for local execution. The user of the local machine 10 may have acquired
authorization to execute the second application program locally while failing to satisfy
the execution pre-requisites of the first application program.

In one embodiment, the session server 420 is configured to receive a disconnect
request to disconnect the application sessions associated with the local machine 10 and
disconnects the application sessions in response to the request. The session server
420 continues to execute an application session after disconnecting the local machine
10 from the application session. In this embodiment, the session server 420 accesses
the stored application database 422 and updates a data record associated with each
disconnected application session so that the record indicates that the application
session associated with the local machine 10 is disconnected.

After receiving authentication information associated with a local machine
connecting to the network, the session server 420 consults the stored applications
database 422 to identify any active application sessions that are associated with a user
of the local machine, but that are connected to a different local machine, such as the
local machine 10 if the authentication information is associated with local machine 20,
for example. In one embodiment, if the session server 420 identifies any such active
application sessions, the session server 420 automatically disconnects the application
session(s) from the local machine 10 and connects the application session(s) to the

current local machine 20. In some embodiments, the received authentication

50

WO 2007/121241 PCT/US2007/066433

information will restrict the application sessions to which the local machine 10 may
reconnect. In other embodiments, the received authentication information authorizes
execution of an application program on the local machine 20, where the authorization
may have been denied to local machine 10. In one of these embodiments, the session
server 420 may provide the local machine access information for retrieving the
application program for local execution.

A request is received to execute an enumerated application (step 206). In one
embodiment, a user of the local machine 10 selects an application for execution from a
received enumeration of available applications. In another embodiment, the user
selects an application for execution independent of the received enumeration. In some
embodiments, the user selects an application for execution by selecting a graphical
representation of the application presented on the local machine 10 by a client agent.
In other embodiments, the user selects an application for execution by selecting a
graphical representation of the application presented to the user on a web server or
other remote machine 30™. In some embodiments, an appliance 1250 or acceleration
program 6120 accelerates delivery of the graphical representation. In some
embodiments, an appliance 1250 caches or stores the graphical representation. In
some embodiments an appliance may cache or store any and all of the associated
applications or portions of the associated applications.

In still other embodiments, the user requests access a file. In one of these
embodiments, execution of an application is required to provide the user with access to
the file. In another of these embodiments, the application is automatically selected for
execution upon selection of the file for access. In still another of these embodiments,
prior to the request for access to the file, the application is associated with a type of file,
enabling automatic selection of the application upon identification of a type of file
associated with the requested file. In some embodiments an appliance 1250 or an
acceleration program 6120 may be used to accelerate delivery of one or more files. In
some embodiments an appliance 1250 may cache or store some or all of a file.

In one embodiment, the enumerated application comprises a plurality of
application files. In some embodiments, the plurality of application files reside on the

51

WO 2007/121241 PCT/US2007/066433

remote machine 30’. In other embodiments, the plurality of application files reside on a
separate file server or remote machine 30”. In still other embodiments, the plurality of
application files may be transmitted to a local machine 10. In yet other embodiments, a
file in the plurality of application files may be executed prior to transmission of a second
file in the plurality of application files to the local machine 10. In some embodiments an
appliance 1250 or an acceleration program 6120 may be used to accelerate delivery of
one or more application files.

In some embodiments, the remote machine 30 retrieves information about the
enumerated application from a remote machine 30’. In one of these embodiments, the
remote machine 30 receives an identification of a remote machine 30” hosting a plurality
of application files. In another of these embodiments, the remote machine 30 receives
identification of a location of a plurality of application files, the identification conforming
to a Universal Naming Convention (UNC). In still another of these embodiments, the
identification includes a network location and a socket for an application streaming
protocol.

In one embodiment, the remote machine 30 retrieves a file containing information
about the enumerated application. The file may include an identification of a location of
a server hosting the enumerated application. The file may include an identification of a
plurality of versions of the enumerated application. The file may include an enumeration
of a plurality of application files comprising the enumerated application. The file may
include an identification of a compressed file comprising a plurality of applications files
comprising the enumerated application. The file may include an identification of pre-
requisites to be satisfied by a machine executing the enumerated application. The file
may include an enumeration of data files associated with the enumerated application.
The file may include an enumeration of scripts to be executed on a machine executing
the enumerated application. The file may include an enumeration of registry data
associated with the enumerated application. The file may include an enumeration of
rules for use in an embodiment where the enumerated application executes within an

isolation environment. In one embodiment, the file may be referred to as a “manifest”

52

WO 2007/121241 PCT/US2007/066433

file. The information that the file may contain is described in further detail in connection
with FIG. 21 below.

In some embodiments, the remote machine 30 applies a policy to an identified
characteristic of the local machine 10. In one of these embodiments, the remote
machine 30 identifies a version of the enumerated application for execution responsive
to the identified characteristic. In another of these embodiments, the remote machine
30 makes a determination to execute a version of the enumerated application
compatible with a characteristic of the local machine 10. In still another of these
embodiments, the remote machine 30 makes a determination to execute a version of
the enumerated application compatible with an operating system executing on the local
machine 10. In yet another of these embodiments, the remote machine 30 makes a
determination to execute a version of the enumerated application compatible with a
revision level of an operating system on the local machine 10. In one of these
embodiments, the remote machine 30 makes a determination to execute a version of
the enumerated application compatible with a language specified by an operating
system on the local machine 10.

One of a predetermined number of methods for executing the enumerated
application is selected, responsive to a policy, the predetermined number of methods
including a method for application streaming of the enumerated application (step 208).
In one embodiment, the selection is made responsive to an application of a policy to the
received credentials associated with the local machine 10. In some embodiments, the
selection is made by a policy engine such as the policy engine 406 described above in
FIG. 4A, FIG. 4B and FIG. 4C. In other embodiments, the remote machine 30 receiving
the credentials and the request to execute the enumerated application further comprises
such a policy engine 406.

In one embodiment, the predetermined number of methods includes a method
for executing the enumerated application on a remote machine 30’. In another
embodiment, the predetermined number of methods includes a method for executing
the enumerated application on the local machine 10. In still another embodiment, the

53

WO 2007/121241 PCT/US2007/066433

predetermined number of methods includes a method for executing the enumerated
application on a second remote machine 30'.

In some embodiments, the predetermined number of methods includes a method
for providing the enumerated application to the local machine 10 across an application
streaming session. In one of these embodiments, the local machine 10 comprises a
streaming service agent capable of initiating a connection with a remote machine 30’
and receiving from the remote machine 30’ a stream of transmitted data packets.

The stream of data packets may include application files comprising the
enumerated application. In some embodiments, application files include data files
associated with an application program. In other embodiments, application files include
executable files required for execution of the application program. In still other
embodiments, the application files include metadata including information about the
files, such as location, compatibility requirements, configuration data, registry data,
identification of execution scripts rules for use in isolation environments, or authorization
requirements. In one embodiment, the stream of data packets are transmitted via a
transport layer connection such as a payload of a TCP/IP packet.

In some embodiments, the streamed application executes prior to the
transmission of each application file in a plurality of application files comprising the
streamed application. In one of these embodiments, execution of the streamed
application begins upon receipt by a local machine 10 of one application file in the
plurality of applications. In another of these embodiments, execution of the streamed
application begins upon receipt by a local machine 10 of an executable application file
in the plurality of application files. In still another of these embodiments, the local
machine 10 executes a first received application file in a plurality of application files and
the first received application file requests access to a second application file in the
plurality of application files.

In one embodiment, the streamed application executes on the local machine 10
without permanently residing on the local machine 10. In this embodiment, the
streamed application may execute on the local machine 10 and be removed from the
local machine 10 upon termination of the streamed application. In another embodiment,

54

WO 2007/121241 PCT/US2007/066433

the streamed application executes on the local machine 10 after a pre-deployed copy of
each application file is stored on the local machine 10. In still another embodiment, the
streamed application executes on the local machine 10 after a copy of each application
file is stored in an isolation environment on the local machine. In yet another
embodiment, the streamed application executes on the local machine 10 after a copy of
each application file is stored in a cache on the local machine 10.

In one embodiment, the method for streaming the application to the local
machine 10 is selected from the predetermined number of methods responsive to a
determination that the local machine 10 may receive the streamed application files. In
another embodiment, the method for streaming the application to the local machine 10
is selected from the predetermined number of methods responsive to a determination
that the local machine 10 has authority to execute the streamed application files locally.

In other embodiments, the predetermined number of methods includes a method
for providing application-output data to the local machine 10, the application-output data
generated from an execution of the enumerated application on a remote machine 30. In
one of these embodiments, the remote machine 30 is the remote machine 30 receiving
the request for execution of the enumerated application. In another of these
embodiments, the remote machine 30 is a second remote machine 30’, such as a file
server or an application server. In some embodiments, the enumerated application
resides on the remote machine 30’ executing the enumerated application. In other
embodiments, the remote machine 30’ executing the enumerated application first
receives the enumerated application from a second remote machine 30’ across an
application streaming session. In one of these embodiments, the remote machine 30’
comprises a streaming service agent capable of initiating a connection with a second
remote machine 30’ and receiving from the second remote 30’ machine a stream of
transmitted data. In another of these embodiments, the second remote machine 30’
may be identified using a load balancing technique. In still another of these
embodiments, the second remote machine 30’ may be identified based upon proximity
to the remote machine 30°’. These embodiments will be described in greater detail in
connection with FIG. 9 below.

55

WO 2007/121241 PCT/US2007/066433

In some embodiments, the remote machine 30 selects from the predetermined
number of methods for executing the enumerated application, a method for streaming
the enumerated application to the remote machine 30, executing the enumerated
application on the remote machine 30, and providing to the local machine 10
application-output data generated by the execution of the enumerated application. In
one of these embodiments, the remote machine 30 selects the method responsive to an
evaluation of the local machine 10. In another of these embodiments the determination
is made responsive to an application of a policy to the evaluation of the local machine
10. In still another of these embodiments, the determination is made responsive to an
evaluation of the received credentials. In one embodiment, the remote machine 30
receives a plurality of application files comprising the enumerated application. In
another embodiment, the remote machine 30 provides the application-output data via a
presentation level protocol, such as an ICA presentation level protocol or a Remote
Desktop Windows presentation level protocol or an X-Windows presentation level
protocol.

In some embodiments, the remote machine 30 also provides access information
associated with the enumerated application, the access information generated
responsive to the selected method. In one of these embodiments, the access
information provides an indication to the local machine 10 of the selected method for
execution of the enumerated application program. In another of these embodiments,
the access information includes an identification of a location of the enumerated
application, the identification conforming to a Universal Naming Convention (UNC). In
still another of these embodiments, the access information includes an identification of a
session management server.

In some embodiments, the access information includes a launch ticket
comprising authentication information. In one of these embodiments, the local machine
10 may use the launch ticket to authenticate the access information received from the
remote machine 30. In another of these embodiments, the local machine 10 may use
the launch ticket to authenticate itself to a second remote machine 30 hosting the
enumerated application. In still another of these embodiments, the remote machine 30

56

WO 2007/121241 PCT/US2007/066433

includes the launch ticket in the access information responsive to a request from the
local machine 10 for the launch ticket.

Referring now to FIG. 5, a block diagram depicts an embodiment in which a local
machine 10 requests execution of an application program and an application delivery
system 500 comprising a remote machine 30 selects a method of executing the
application program. In one embodiment, the remote machine 30 receives credentials
from the local machine 10. In another embodiment, the remote machine 30 receives a
request for an enumeration of available applications from the local machine 10.

In some embodiments, multiple, redundant, remote machines 30, 30’, 307, 30",
and 30™ are provided. In one of these embodiments, there may be, for example,
multiple file servers, multiple session management servers, multiple staging machines,
multiple web interfaces, or multiple access suite consoles. In another of these
embodiments, if a remote machine fails, a redundant remote machine 30 is selected to
provide the functionality of the failed machine. In other embodiments, although the
remote machines 30, 30’, 30", 30™, and 30™, and the web interface 558 and access
suite console 520 are described as separate remote machines 30 having the separate
functionalities of a management server, a session management server, a staging
machine, a file server, a web server, and an access suite console, a single remote
machine 30 may be provided having the functionality of all of these machines. In still
other embodiments, a remote machine 30 may provide the functionality and services of
one or more of the other remote machines.

Referring now to FIG. 5 in greater detail, a block diagram depicts one
embodiment of an application delivery system 500 providing access to an application
program. The application delivery system 500 may comprise one or more remote
machines 30, an appliance 1250, or any combination thereof. In addition to the
interfaces and subsystems described above in connection with FIG. 1D, the remote
machine 30 may further include a management communication service 514, an XML
service 516, and a management service 504. The management service 504 may
comprise an application management subsystem 506, a server management subsystem

508, a session management subsystem 510, and a license management subsystem

57

WO 2007/121241 PCT/US2007/066433

512. The remote machine 30 may be in communication with an access suite console
520.

In one embodiment, the management service 504 further comprises a
specialized remote procedure call subsystem, the MetaFrame Remote Procedure Call
(MFRPC) subsystem 522. In some embodiments, the MFRPC subsystem 522 routes
communications between subsystems on the remote machine 30, such as the XML
service 516, and the management service 504. In other embodiments, the MFRPC
subsystem 522 provides a remote procedure call (RPC) interface for calling
management functions, delivers RPC calls to the management service 504, and returns
the results to the subsystem making the call.

In some embodiments, the remote machine 30 is in communication with a
protocol engine, such as the protocol engine 406 described above in FIG. 4B. In one of
these embodiments, the remote machine 30 is in communication with a protocol engine
406 residing on a remote machine 30’. In other embodiments, the remote machine 30
further comprises a protocol engine 406.

The remote machine 30 may be in communication with an access suite console
520. The access suite console 520 may host management tools to an administrator of
a remote machine 30 or of a farm 38. In some embodiments, the remote machine 30
communicates with the access suite console 520 using XML. In other embodiments,
the remote machine 30 communicates with the access suite console 520 using the
Simple Object Access Protocol (SOAP).

For embodiments such as those described in FIG. 1D and in FIG. 5 in which the
remote machine 30 comprises a subset of subsystems, the management service 504
may comprise a plurality of subsystems. In one embodiment, each subsystem is either
a single-threaded or a multi-threaded subsystem. A thread is an independent stream of
execution running in a multi-tasking environment. A single-threaded subsystem is
capable of executing only one thread at a time. A multi-threaded subsystem can
support multiple concurrently executing threads, i.e., a multi-threaded subsystem can
perform multiple tasks simultaneously.

58

WO 2007/121241 PCT/US2007/066433

The application management subsystem 506 manages information associated
with a plurality of applications capable of being streamed. In one embodiment, the
application management subsystem 506 handles requests from other components,
such as requests for storing, deleting, updating, enumerating or resolving applications.
In another embodiment, the application management subsystem 506 handles requests
sent by components related to an application capable of being streamed. These events
can be classified into three types of events: application publishing, application
enumeration and application launching, each of which will be described in further detail
below. In other embodiments, the application management subsystem 506 further
comprises support for application resolution, application publication and application
publishing. In other embodiments, the application management subsystem 506, uses a
data store to store application properties and policies.

The server management subsystem 508 handles configurations specific to
application streaming in server farm configurations. In some embodiments, the server
management subsystem 508 also handles events that require retrieval of information
associated with a configuration of a farm 38. In other embodiments, the server
management subsystem 508 handles events sent by other components related to
remote machines providing access to applications across application streams and
properties of those remote machines. In one embodiment, the server management
subsystem 508 stores remote machine properties and farm properties.

In some embodiments, the remote machine 30 further comprises one or more
common application subsystems 524 providing services for one or more specialized
application subsystems. These remote machines 30 may also have one or more
common remote machine subsystem providing services for one or more specialized
remote machine subsystems. In other embodiments, no common application
subsystems 524 are provided, and each specialized application and remote machine
subsystem implements all required functionality.

In one embodiment in which the remote machine 30 comprises a common
application subsystem 524, the common application subsystem 524 manages common
properties for published applications. In some embodiments, the common application

59

WO 2007/121241 PCT/US2007/066433

subsystem 524 handles events that require retrieval of information associated with
published applications or with common properties. In other embodiments, the common
application subsystem 524 handles all events sent by other components related to
common applications and their properties.

A common application subsystem 524 can "publish" applications to the farm 38,
which makes each application available for enumeration and launching by a local
machine 10. Generally, an application is installed on each remote machine 30 on which
availability of that application is desired. In one embodiment, to publish an application,
an administrator runs an administration tool specifying information such as the remote
machines 30 hosting the application, the name of the executable file on each remote
machine, the required capabilities of a local machine for executing the application (e.g.,
audio, video, encryption, etc.), and a list of users that can use the application. This
specified information is categorized into application-specific information and common
information. Examples of application-specific information are: the path name for
accessing the application and the name of the executable file for running the
application. Common information (i.e., common application data) includes, for example,
the user-friendly name of the application (e.g., "Microsoft WORD 2000"), a unique
identification of the application, and the users of the application.

The application-specific information and common information may be sent to a
specialized application subsystem controlling the application on each remote machine
30 hosting the application. The specialized application subsystem may write the
application-specific information and the common information into a persistent store 240.

When provided, a common application subsystem 524 also provides a facility for
managing the published applications in the farm 38. Through a common application
subsystem 524, an administrator can manage the applications of the farm 38 using an
administration tool such as the access suite console 520 to configure application groups
and produce an application tree hierarchy of those application groups. Each application
group may be represented as a folder in the application tree hierarchy. Each
application folder in the application tree hierarchy can include one or more other
application folders and specific instances of remote machines. The common application

60

WO 2007/121241 PCT/US2007/066433

subsystem 524 provides functions to create, move, rename, delete, and enumerate
application folders.

In one embodiment, the common application subsystem 524 supports the
application management subsystem 506 in handling application enumeration and
application resolution requests. In some embodiments, the common application
subsystem 524 provides functionality for identifying an application for execution
responsive to a mapping between a type of data file and an application for processing
the type of data file. In other embodiments, a second application subsystem provides
the functionality for file type association.

In some embodiments, the remote machine 30 may further comprise a policy
subsystem. A policy subsystem includes a policy rule for determining whether an
application may be streamed to a local machine 10 upon a request by the local machine
10 for execution of the application. In some embodiments, the policy subsystem
identifies a server access option associated with a streamed application published in the
access suite console 520. In one of these embodiments, the policy subsystem uses the
server access option as a policy in place of the policy rule.

The session monitoring subsystem 510 maintains and updates session status of
an application streaming session associated with a local machine 10 and enforces
license requirements for application streaming sessions. In one embodiment the
session management subsystem 510 monitors sessions and logs events, such as the
launching of an application or the termination of an application streaming session. In
another embodiment, the session monitoring subsystem 510 receives communications,
such as heartbeat messages, transmitted from the local machine 10 to the remote
machine 30. In still another embodiment, the session management subsystem 510
responds to queries about sessions from management tools, such as tools within the
access suite console 520. In some embodiments, the management service 504 further
comprises a license management subsystem communicating with the session
management subsystem to provide and maintain licenses to local machines for
execution of applications.

61

WO 2007/121241 PCT/US2007/066433

In one embodiment, the management service 504 provides functionality for
application enumeration and application resolution. In some embodiments, the
management service 504 also provides functionality for application launching, session
monitoring and tracking, application publishing, and license enforcement.

Referring now to FIG. 6, a block diagram depicts one embodiment of a remote
machine 30 comprising a management service providing an application enumeration.
The management service 504 may provide application enumeration through the use of
a web interface interacting with an XML service 516. In one embodiment, XML service
516 enumerates applications for a user of a local machine 10. In another embodiment,
the XML service 516 implements the functionality of the ICA browser subsystem and the
program neighborhood subsystem described above. The XML service 516 may interact
with a management communications service 514. In one embodiment, the XML service
516 generates an application enumeration request using the management
communications service 514. The application enumeration request may include a client
type indicating a method of execution to be used when executing the enumerated
application. The application enumeration request is sent to a common application
subsystem 524. In one embodiment, the common application subsystem 524 returns
an enumeration of applications associated with the client type of the application
enumeration request. In another embodiment, the common application subsystem 524
returns an enumeration of applications available to the user of the local machine 10, the
enumeration selected responsive to an application of a policy to a credential associated
with the local machine 10. In this embodiment, a policy engine 406 may apply the
policy to credentials gathered by a collection agent 404, as described in connection with
FIG. 4B above. In still another embodiment, the enumeration of applications is returned
and an application of a policy to the local machine 10 is deferred until an execution of
an enumerated application is requested.

The management service 504 may provide application resolution service for
identifying a second remote machine 30’ hosting an application. In one embodiment,
the second remote machine 30’ is a file server or an application server. In some

embodiments, the management service 504 consults a file including identifiers for a

62

WO 2007/121241 PCT/US2007/066433

plurality of remote machines 30 hosting applications. In one embodiment, the
management service 504 provides the application resolution service responsive to a
request from a local machine 10 for execution of an application. In another
embodiment, the management service 504 identifies a second remote machine 30’
capable of implementing a different method of executing the application than a first
remote machine 30. In some embodiments, the management service 504 identifies a
first remote machine 30’ capable of streaming an application program to a local
machine 10 and a second remote machine 30’ capable of executing the application
program and providing application-output data generated responsive to the execution of
the application program to the local machine 10.

In one embodiment, a web interface transmits an application resolution request
to the XML service 516. In another embodiment, the XML service 516 receives a
application resolution request and transmits the request to the MFRPC subsystem 522.

In one embodiment, the MFRPC subsystem 522 identifies a client type included
with a received application resolution request. In another embodiment, the MFRPC
subsystem applies a policy to the client type and determines to “stream” the application
to the local machine 10. In this embodiment, the MFRPC subsystem 522 may forward
the application resolution request to an application management subsystem 506. In one
embodiment, upon receiving the application resolution request from the MFRPC
subsystem 522, the application management subsystem 506 may identify a remote
machine 30" functioning as a session management server 562 for the local machine
10. In some embodiments, the local machine transmits a heartbeat message to the
session management server 562. In another embodiment, the application
management subsystem 506 may identify a remote machine 30’ hosting a plurality of
application files comprising the application to be streamed to the local machine 10.

In some embodiments, the application management subsystem 506 use a file
enumerating a plurality of remote machines hosting the plurality of application files to
identify the remote machine 30’. In other embodiments, the application management
subsystem 506 identifies a remote machine 30’ having an IP address similar to an IP
address of the local machine 10. In still other embodiments, the application

63

WO 2007/121241 PCT/US2007/066433

management subsystem 506 identifies a remote machine 30’ having an IP address in a
range of IP addresses accessible to the local machine 10.

In still another embodiment, the MFRPC subsystem 522 applies a policy to the
client type and determines that the application may be executed on a remote machine
30, the remote machine 30’ transmitting application-output data generated by an
execution of the application to the local machine 10. In this embodiment, the MFRPC
subsystem 522 may forward the application resolution request to a common application
subsystem 524 to retrieve an identifier of a host address for a remote machine 30'. In
one embodiment, the identified remote machine 30’ may transmit the application-output
data to the local machine using a presentation level protocol such as ICA or RDP or X
Windows. In some embodiments, the remote machine 30’ receives the application from
a second remote machine 30’ across an application streaming session.

In one embodiment, upon completion of application enumeration and application
resolution, access information is transmitted to the local machine 10 that includes an
identification of a method of execution for an enumerated application and an identifier of
a remote machine 30’ hosting the enumerated application. In one embodiment where
the management service 504 determines that the enumerated application will execute
on the local machine 10, a web interface creates and transmits to the local machine 10
a file containing name-resolved information about the enumerated application. In some
embodiments, the file may be identified using a “.rad” extension. The local machine 10
may execute the enumerated application responsive to the contents of the received file.
Table 2 depicts one embodiment of information contained in the file:

UNC path Points to a Container master manifest file on XML service

the file server
Initial program Program to launch from container XML service
Command line For launching documents using FTA XML service

64

WO 2007/121241 PCT/US2007/066433

Web server For messages from RADE client to WI WI config
URL
Farm ID The farm the application belongs to — needed WI config

for heartbeat messages

LaunchTicket Application streaming client uses XML/IMA
LaunchTicket to acquire a license
authorizing execution of the program

ICA fallback Embedded ICA file for fallback, if fallback is XML
launch info to be allowed Service

Table 2

The file may also contain a launch ticket for use by the local machine in
executing the application, as shown in Table 2. In some embodiments, the launch ticket
expires after a predetermined period of time. In one embodiment, the local machine
provides the launch ticket to a remote machine hosting the enumerated application to
be executed. Use of the launch ticket to authorize access to the enumerated
application by a user of the local machine assists in preventing the user from reusing
the file or generating an unauthorized version of the file to inappropriately access to
applications. In one embodiment, the launch ticket comprises a large, randomly-
generated number.

As described above in connection with FIG. 2, a method for selecting a method
of execution of an application program begins when credentials associated with the
local machine 10 or with a user of the local machine 10 are received (step 202) and an
enumeration of a plurality of application programs available to the local machine 10 is
provided, responsive to the received credentials (step 204). A request is received to
execute an enumerated application (step 206) and one of a predetermined number of
methods for executing the enumerated application is selected, responsive to a policy,
the predetermined number of methods including a method for application streaming of

the enumerated application (step 208).
0>

WO 2007/121241 PCT/US2007/066433

Referring now to FIG. 7, a flow diagram depicts one embodiment of the steps
taken to access a plurality of files comprising an application program. A local machine
performs a pre-launch analysis of the local machine (step 210). In one embodiment, the
local machine 10 performs the pre-launch analysis prior to retrieving and executing a
plurality of application files comprising an application program. In another embodiment,
the local machine 10 performs the pre-launch analysis responsive to a received
indication that the pre-launch analysis is a requirement for authorization to access the
plurality of application files comprising an application program.

In some embodiments, the local machine 10 receives, from a remote machine
30, access information associated with the plurality of application files. In one of these
embodiments, the access information includes an identification of a location of a remote
machine 30’ hosting the plurality of application files. In another of these embodiments,
the local machine 10 receives an identification of a plurality of applications comprising
one or more versions of the application program. In still another of these embodiments,
the local machine 10 receives an identification of a plurality of application files
comprising one or more application programs. In other embodiments, the local machine
10 receives an enumeration of application programs available to the local machine 10
for retrieval and execution. In one of these embodiments, the enumeration results from
an evaluation of the local machine 10. In still other embodiments, the local machine 10
retrieves the at least one characteristic responsive to the retrieved identification of the
plurality of application files comprising an application program.

In some embodiments, the access information includes a launch ticket capable of
authorizing the local machine to access the plurality of application files. In one of these
embodiments, the launch ticket is provided to the local machine 10 responsive to an
evaluation of the local machine 10. In another of these embodiments, the launch ticket
is provided to the local machine 10 subsequent to a pre-launch analysis of the local
machine 10 by the local machine 10.

In other embodiments, the local machine 10 retrieves at least one characteristic
required for execution of the plurality of application files. In one of these embodiments,
the access information includes the at least one characteristic. In another of these

66

WO 2007/121241 PCT/US2007/066433

embodiments, the access information indicates a location of a file for retrieval by the
local machine 10, the file enumerating the at least one characteristic. In still another of
these embodiments, the file enumerating the at least one characteristic further
comprises an enumeration of the plurality of application files and an identification of a
remote machine 30 hosting the plurality of application files.

The local machine 10 determines the existence of the at least one characteristic
on the local machine. In one embodiment, the local machine 10 makes this
determination as part of the pre-launch analysis. In another embodiment, the local
machine 10 determines whether the local machine 10 has the at least one
characteristic.

In one embodiment, determining the existence of the at least one characteristic
on the local machine 10 includes determining whether a device driver is installed on the
local machine. In another embodiment, determining the existence of the at least one
characteristic on the local machine 10 includes determining whether an operating
system is installed on the local machine 10. In still another embodiment, determining
the existence of the at least one characteristic on the local machine 10 includes
determining whether a particular operating system is installed on the local machine 10.
In yet another embodiment, determining the existence of the at least one characteristic
on the local machine 10 includes determining whether a particular revision level of an
operating system is installed on the local machine 10.

In some embodiments, determining the existence of the at least one
characteristic on the local machine 10 includes determining whether the local machine
10 has acquired authorization to execute an enumerated application. In one of these
embodiments, a determination is made by the local machine 10 as to whether the local
machine 10 has received a license to execute the enumerated application. In another
of these embodiments, a determination is made by the local machine 10 as to whether
the local machine 10 has received a license to receive across an application streaming
session a plurality of application files comprising the enumerated application. In other
embodiments, determining the existence of the at least one characteristic on the local

67

WO 2007/121241 PCT/US2007/066433

machine 10 includes determining whether the local machine 10 has sufficient bandwidth
available to retrieve and execute an enumerated application.

In some embodiments, determining the existence of the at least one
characteristic on the local machine 10 includes execution of a script on the local
machine10. In other embodiments, determining the existence of the at least one
characteristic on the local machine 10 includes installation of software on the local
machine10. In still other embodiments, determining the existence of the at least one
characteristic on the local machine 10 includes modification of a registry on the local
machine 10. In yet other embodiments, determining the existence of the at least one
characteristic on the local machine 10 includes transmission of a collection agent 404 to
the local machine 10 for execution on the local machine 10 to gather credentials
associated with the local machine 10.

The local machine 10 requests, from a remote machine 30, authorization for
execution of the plurality of application files, the request including a launch ticket (step
212). In some embodiments, the local machine 10 makes the request responsive to a
determination that at least one characteristic exists on the local machine 10. In one of
these embodiments, the local machine 10 determines that a plurality of characteristics
exist on the local machine 10, the plurality of characteristics associated with an
enumerated application and received responsive to a request to execute the
enumerated application. In another of these embodiments, whether the local machine
10 receives an indication that authorization for execution of the enumerated application
files depends upon existence of the at least one characteristic on the local machine 10.
In one embodiment, the local machine 10 received an enumeration of application
programs, requested execution of an enumerated application, and received access
information including the at least one characteristic and a launch ticket authorizing the
execution of the enumerated application upon the determination of the existence of the
at least one characteristic on the local machine 10.

In one embodiment, the local machine 10 receives from the remote machine 30 a
license authorizing execution of the plurality of application files. In some embodiments,
the license authorizes execution for a specified time period. In one of these

68

WO 2007/121241 PCT/US2007/066433

embodiments, the license requires transmission of a heart beat message to maintain
authorization for execution of the plurality of application files.

In another embodiment, the local machine 10 receives from the remote machine
30 the license and an identifier associated with a remote machine 30 monitoring
execution of the plurality of application files. In some embodiments, the remote
machine is a session management server 562, as depicted above in FIG. 5. In one of
these embodiments, the session management server 562 includes a session
management subsystem 510 that monitors the session associated with the local

machine 10. In other embodiments, a separate remote machine 30" is the session
management server 562.

The local machine 10 receives and executes the plurality of application files (step
214). In one embodiment, the local machine 10 receives the plurality of application files
across an application streaming session. In another embodiment, the local machine 10
stores the plurality of application files in an isolation environment on the local machine
10. In still another embodiment, the local machine 10 executes one of the plurality of
application files prior to receiving a second of the plurality of application files. In some
embodiments, a remote machine transmits the plurality of application files to a plurality
of local machines, each local machine in the plurality having established a separate
application streaming session with the remote machine.

In some embodiments, the local machine 10 stores the plurality of application
files in a cache and delays execution of the application files. In one of these
embodiments, the local machine 10 receives authorization to execute the application
files during a pre-defined period of time. In another of these embodiments, the local
machine 10 receives authorization to execute the application files during the pre-defined
period of time when the local machine 10 lacks access to a network. In other
embodiments, the local machine stores the plurality of application files in a cache. In
one of these embodiments, the application streaming client 552 establishes an internal
application streaming session to retrieve the plurality of application files from the cache.
In another of these embodiments, the local machine 10 receives authorization to

69

WO 2007/121241 PCT/US2007/066433

execute the application files during a pre-defined period of time when the local machine
10 lacks access to a network.

The local machine 10 transmits at least one heartbeat message to a remote
machine (step 216). In some embodiments, the local machine 10 transmits the at least
one heartbeat message to retain authorization to execute the plurality of application files
comprising the enumerated application. In other embodiments, the local machine 10
transmits the at least one heartbeat message to retain authorization retrieve an
application file in the plurality of application files. In still other embodiments, the local
machine 10 receives a license authorizing execution of the plurality of application files
during a pre-determined period of time.

In some embodiments, the local machine 10 transmits the heartbeat message to
a second remote machine 30™. In one of these embodiments, the second remote
machine 30" may comprise a session management server 562 monitoring the retrieval
and execution of the plurality of application files. In another of these embodiments, the

second remote machine 30™ may renew a license authorizing execution of the plurality
of application files, responsive to the transmitted heartbeat message. In still another of
these embodiments, the second remote machine 30" may transmit to the local machine
10 a command, responsive to the transmitted heartbeat message.

Referring back to FIG. 5, the local machine 10 may include an application
streaming client 552, a streaming service 554 and an isolation environment 556.
The application streaming client 552 may be an executable program. In some
embodiments, the application streaming client 552 may be able to launch another
executable program. In other embodiments, the application streaming client 552 may
initiate the streaming service 554. In one of these embodiments, the application
streaming client 552 may provide the streaming service 554 with a parameter
associated with executing an application program. In another of these embodiments,
the application streaming client 552 may initiate the streaming service 554 using a
remote procedure call.

In one embodiment, the local machine 10 requests execution of an application

program and receives access information from a remote machine 30 regarding

70

WO 2007/121241 PCT/US2007/066433

execution. In another embodiment, the application streaming client 552 receives the
access information. In still another embodiment, the application streaming client 552
provides the access information to the streaming service 554. In yet another
embodiment, the access information includes an identification of a location of a file
associated with a plurality of application files comprising the application program.

In one embodiment, the streaming service 554 retrieves a file associated with a
plurality of application files. In some embodiments, the retrieved file includes an
identification of a location of the plurality of application files. In one of these
embodiments, the streaming service 554 retrieves the plurality of application files. In
another of these embodiments, the streaming service 554 executes the retrieved
plurality of application files on the local machine 10. In other embodiments, the
streaming service 554 transmits heartbeat messages to a remote machine to maintain
authorization to retrieve and execute a plurality of application files.

In some embodiments, the retrieved file includes an identification of a location of
more than one plurality of application files, each plurality of application files comprising
a different application program. In one of these embodiments, the streaming service
554 retrieves the plurality of application files comprising the application program
compatible with the local machine 10. In another of these embodiments, the streaming
service 554 receives authorization to retrieve a particular plurality of application files,
responsive to an evaluation of the local machine 10.

In some embodiments, the plurality of application files are compressed and
stored on a file server within an archive file such as a CAB, ZIP, SIT, TAR, JAR or other
archive file. In one embodiment, a plurality of application files stored in an archive file
comprise an application program. In another embodiment, multiple pluralities of
application files stored in an archive file each comprise different versions of an
application program. In still another embodiment, multiple pluralities of application files
stored in an archive file each comprise different application programs. In some
embodiments, an archive file includes metadata associated with each file in the plurality
of application files. In one of these embodiments, the streaming service 554 generates
a directory structure responsive to the included metadata. As will be described in

71

WO 2007/121241 PCT/US2007/066433

greater detail in connection with FIG. 12 below, the metadata may be used to satisfy
requests by application programs for directory enumeration.

In one embodiment, the streaming service 554 decompresses an archive file to
acquire the plurality of application files. In another embodiment, the streaming service
554 determines whether a local copy of a file within the plurality of application files
exists in a cache on the local machine 10 prior to retrieving the file from the plurality of
application files. In still another embodiment, the file system filter driver 564 determines
whether the local copy exists in the cache. In some embodiments, the streaming
service 554 modifies a registry entry prior to retrieving a file within the plurality of
application files.

In some embodiments, the streaming service 554 stores a plurality of application
files in a cache on the local machine 10. In one of these embodiments, the streaming
service 554 may provide functionality for caching a plurality of application files upon
receiving a request to cache the plurality of application files. In another of these
embodiments, the streaming service 554 may provide functionality for securing a cache
on the local machine 10. In another of these embodiments, the streaming service 554
may use an algorithm to adjust a size and a location of the cache.

In some embodiments, the streaming service 554 creates an isolation
environment 556 on the local machine 10. In one of these embodiments, the streaming
service 554 uses an isolation environment application programming interface to create
the isolation environment 556. In another of these embodiments, the streaming service
554 stores the plurality of application files in the isolation environment §56. In still
another of these embodiments, the streaming service 554 executes a file in the plurality
of application files within the isolation environment. In yet another of these
embodiments, the streaming service 554 executes the application program in the
isolation environment.

For embodiments in which authorization is received to execute an application on
the local machine 10, the execution of the application may occur within an isolation
environment 556. In some embodiments, a plurality of application files comprising the
application are stored on the local machine 10 prior to execution of the application. In

72

WO 2007/121241 PCT/US2007/066433

other embodiments, a subset of the plurality of application files are stored on the local
machine 10 prior to execution of the application. In still other embodiments, the plurality
of application files do not reside in the isolation environment 556. In yet other
embodiments, a subset of the plurality of applications files do not reside on the local
machine 10. Regardless of whether a subset of the plurality of application files or each
application file in the plurality of application files reside on the local machine 10 or in
isolation environment 556, in some embodiments, an application file in the plurality of
application files may be executed within an isolation environment 556.

The isolation environment 5§56 may consist of a core system able to provide File
System Virtualization, Registry System Virtualization, and Named Object Virtualization
to reduce application compatibility issues without requiring any change to the
application source code. The isolation environment 556 may redirect application
resource requests using hooking both in the user mode for registry and named object
virtualization, and in the kernel using a file system filter driver for file system
virtualization. The following is a description of some embodiments of an isolation
environment 556.

Referring now to FIG. 8A, one embodiment of a computer running under control
of an operating system 100 that has reduced application compatibility and application
sociability problems is shown. The operating system 100 makes available various
native resources to application programs 112, 114 via its system layer 108. The view of
resources embodied by the system layer 108 will be termed the “system scope”. In
order to avoid conflicting access to native resources 102, 104, 106, 107 by the
application programs 112, 114, an isolation environment 200 is provided. As shown in
FIG. 8A, the isolation environment 200 includes an application isolation layer 220 and a
user isolation layer 240. Conceptually, the isolation environment 200 provides, via the
application isolation layer 220, an application program 112, 114, with a unique view of
native resources, such as the file system 102, the registry 104, objects 106, and window
names 107. Each isolation layer modifies the view of native resources provided to an
application. The modified view of native resources provided by a layer will be referred
to as that layer’s “isolation scope”. As shown in FIG. 8A, the application isolation layer

73

WO 2007/121241 PCT/US2007/066433

includes two application isolation scopes 222, 224. Scope 222 represents the view of
native resources provided to application 112 and scope 224 represents the view of
native resources provided to application 114. Thus, in the embodiment shown in FIG.
8A, APP1 112 is provided with a specific view of the file system 102’, while APP2 114 is
provided with another view of the file system 102" which is specific to it. In some
embodiments, the application isolation layer 220 provides a specific view of native
resources 102, 104, 106, 107 to each individual application program executing on top of
the operating system 100. In other embodiments, application programs 112, 114 may
be grouped into sets and, in these embodiments, the application isolation layer 220
provides a specific view of native resources for each set of application programs.
Conflicting application programs may be put into separate groups to enhance the
compatibility and sociability of applications. In still further embodiments, the
applications belonging to a set may be configured by an administrator. In some
embodiments, a “passthrough” isolation scope can be defined which corresponds
exactly to the system scope. In other words, applications executing within a
passthrough isolation scope operate directly on the system scope.

In some embodiments, the application isolation scope is further divided into
layered sub-scopes. The main sub-scope contains the base application isolation scope,
and additional sub-scopes contain various modifications to this scope that may be
visible to multiple executing instances of the application. For example, a sub-scope
may contain modifications to the scope that embody a change in the patch level of the
application or the installation or removal of additional features. In some embodiments,
the set of additional sub-scopes that are made visible to an instance of the executing
application is configurable. In some embodiments, that set of visible sub-scopes is the
same for all instances of the executing application, regardless of the user on behalf of
which the application is executing. In others, the set of visible sub-scopes may vary for
different users executing the application. In still other embodiments, various sets of
sub-scopes may be defined and the user may have a choice as to which set to use. In
some embodiments, sub-scopes may be discarded when no longer needed. In some

74

WO 2007/121241 PCT/US2007/066433

embodiments, the modifications contained in a set of sub-scopes may be merged
together to form a single sub-scope.

Referring now to FIG. 8B, a multi-user computer having reduced application
compatibility and application sociability problems is depicted. The multi-user computer
includes native resources 102, 104, 106, 107 in the system layer 108, as well as the
isolation environment 200 discussed immediately above. The application isolation layer
220 functions as discussed above, providing an application or group of applications with
a modified view of native resources. The user isolation layer 240, conceptually,
provides an application program 112, 114, with a view of native resources that is further
altered based on user identity of the user on whose behalf the application is executed.
As shown in FIG. 8B, the user isolation layer 240 may be considered to comprise a
number of user isolation scopes 242’, 242", 242'", 242", 242", 242" (generally 242).
A user isolation scope 242 provides a user-specific view of application-specific views of
native resources. For example, APP1 112 executing in user session 110 on behalf of
user “a@” is provided with a file system view 102'(a) that is altered or modified by both the
user isolation scope 242’ and the application isolation scope 222.

Put another way, the user isolation layer 240 alters the view of native resources
for each individual user by “layering” a user-specific view modification provided by a
user isolation scope 242’ “on top of” an application-specific view modification provided
by an application isolation scope 222, which is in turn “layered on top of’ the system-
wide view of native resources provided by the system layer. For example, when the first
instance of APP1 112 accesses an entry in the registry database 104, the view of the
registry database specific to the first user session and the application 104’(a) is
consulted. If the requested registry key is found in the user-specific view of the registry
104'(a), that registry key is returned to APP1 112. If not, the view of the registry
database specific to the application 104’ is consulted. If the requested registry key is
found in the application-specific view of the registry 104’, that registry key is returned to
APP1 112. If not, then the registry key stored in the registry database 104 in the system
layer 108 (i.e. the native registry key) is returned to APP1 112.

75

WO 2007/121241 PCT/US2007/066433

In some embodiments, the user isolation layer 240 provides an isolation scope
for each individual user. In other embodiments, the user isolation layer 240 provides an
isolation scope for a group of users, which may be defined by roles within the
organization or may be predetermined by an administrator. In still other embodiments,
no user isolation layer 240 is provided. In these embodiments, the view of native
resources seen by an application program is that provided by the application isolation
layer 220. The isolation environment 200, although described in relation to multi-user
computers supporting concurrent execution of application programs by various users,
may also be used on single-user computers to address application compatibility and
sociability problems resulting from sequential execution of application programs on the
same computer system by different users, and those problems resulting from installation
and execution of incompatible programs by the same user.

In some embodiments, the user isolation scope is further divided into sub-
scopes. The modifications by the user isolation scope to the view presented to an
application executing in that scope is the aggregate of the modifications contained
within each sub-scope in the scope. Sub-scopes are layered on top of each other, and
in the aggregate view modifications to a resource in a higher sub-scope override
modifications to the same resource in lower layers.

In some of these embodiments, one or more of these sub-scopes may contain
modifications to the view that are specific to the user. In some of these embodiments,
one or more sub-scopes may contain modifications to the view that are specific to sets
of users, which may be defined by the system administrators or defined as a group of
users in the operating system. In some of these embodiments, one of these sub-
scopes may contain modifications to the view that are specific to the particular login
session, and hence that are discarded when the session ends. In some of these
embodiments, changes to native resources by application instances associated with the
user isolation scope always affects one of these sub-scopes, and in other embodiments
those changes may affect different sub-scopes depending on the particular resource
changed.

76

WO 2007/121241 PCT/US2007/066433

The conceptual architecture described above allows an application executing on
behalf of a user to be presented with an aggregate, or unified, virtualized view of native
resources, specific to that combination of application and user. This aggregated view
may be referred to as the “virtual scope”. The application instance executing on behalf
of a user is presented with a single view of native resources reflecting all operative
virtualized instances of the native resources. Conceptually this aggregated view
consists firstly of the set of native resources provided by the operating system in the
system scope, overlaid with the modifications embodied in the application isolation
scope applicable to the executing application, further overlaid with the modifications
embodied in the user isolation scope applicable to the application executing on behalf of
the user. The native resources in the system scope are characterized by being
common to all users and applications on the system, except where operating system
permissions deny access to specific users or applications. The modifications to the
resource view embodied in an application isolation scope are characterized as being
common to all instances of applications associated with that application isolation scope.
The modifications to the resource view embodied in the user isolation scope are
characterized as being common to all applications associated with the applicable
application isolation scope that are executing on behalf of the user associated with the
user isolation scope.

This concept can be extended to sub-scopes; the modifications to the resource
view embodied in a user sub-scope are common to all applications associated with the
applicable isolation sub-scope executing on behalf of a user, or group of users,
associated with a user isolation sub-scope. Throughout this description it should be
understood that whenever general reference is made to “scope,” it is intended to also
refer to sub-scopes, where those exist.

When an application requests enumeration of a native resource, such as a
portion of the file system or registry database, a virtualized enumeration is constructed
by first enumerating the “system-scoped” instance of the native resource, that is, the
instance found in the system layer, if any. Next, the “application-scoped” instance of the
requested resource, that is the instance found in the appropriate application isolation

77

WO 2007/121241 PCT/US2007/066433

scope, if any, is enumerated. Any enumerated resources encountered in the application
isolation scope are added to the view. If the enumerated resource already exists in the
view (because it was present in the system scope, as well), it is replaced with the
instance of the resource encountered in the application isolation scope. Similarly, the
“user-scoped” instance of the requested resource, that is the instance found in the
appropriate user isolation scope, if any, is enumerated. Again, any enumerated
resources encountered in the user isolation scope are added to the view. If the native
resource already exists in the view (because it was present in the system scope or in
the appropriate application isolation scope), it is replaced with the instance of the
resource encountered in the user isolation scope. In this manner, any enumeration of
native resources will properly reflect virtualization of the enumerated native resources.
Conceptually the same approach applies to enumerating an isolation scope that
comprises multiple sub-scopes. The individual sub-scopes are enumerated, with
resources from higher sub-scopes replacing matching instances from lower sub-scopes
in the aggregate view.

In other embodiments, enumeration may be performed from the user isolation
scope layer down to the system layer, rather than the reverse. In these embodiments,
the user isolation scope is enumerated. Then the application isolation scope is
enumerated and any resource instances appearing in the application isolation scope
that were not enumerated in the user isolation scope are added to the aggregate view
that is under construction. A similar process can be repeated for resources appearing
only in the system scope.

In still other embodiments, all isolation scopes may be simultaneously
enumerated and the respective enumerations combined.

If an application attempts to open an existing instance of a native resource with
no intent to modify that resource, the specific instance that is returned to the application
is the one that is found in the virtual scope, or equivalently the instance that would
appear in the virtualized enumeration of the parent of the requested resource. From the
point of view of the isolation environment, the application is said to be requesting to

78

WO 2007/121241 PCT/US2007/066433

open a “virtual resource”, and the particular instance of native resource used to satisfy
that request is said to be the “literal resource” corresponding to the requested resource.

If an application executing on behalf of a user attempts to open a resource and
indicates that it is doing so with the intent to modify that resource, that application
instance is normally given a private copy of that resource to modify, as resources in the
application isolation scope and system scope are common to applications executing on
behalf of other users. Typically a user-scoped copy of the resource is made, unless the
user-scoped instance already exists. The definition of the aggregate view provided by a
virtual scope means that the act of copying an application-scoped or system-scoped
resource to a user isolation scope does not change the aggregate view provided by the
virtual scope for the user and application in question, nor for any other user, nor for any
other application instance. Subsequent modifications to the copied resource by the
application instance executing on behalf of the user do not affect the aggregate view of
any other application instance that does not share the same user isolation scope. In
other words, those modifications do not change the aggregate view of native resources
for other users, or for application instances not associated with the same application
isolation scope.

Applications may be installed into a particular isolation scope (described below in
more detail). Applications that are installed into an isolation scope are always
associated with that scope. Alternatively, applications may be launched into a particular
isolation scope, or into a number of isolation scopes. In effect, an application is
launched and associated with one or more isolation scopes. The associated isolation
scope, or scopes, provide the process with a particular view of native resources.
Applications may also be launched into the system scope, that is, they may be
associated with no isolation scope. This allows for the selective execution of operating
system applications such as Internet Explorer, as well as third party applications, within
an isolation environment.

This ability to launch applications within an isolation scope regardless of where
the application is installed mitigates application compatibility and sociability issues
without requiring a separate installation of the application within the isolation scope.

79

WO 2007/121241 PCT/US2007/066433

The ability to selectively launch installed applications in different isolation scopes
provides the ability to have applications which need helper applications (such as Word,
Notepad, etc.) to have those helper applications launched with the same rule sets.

Further, the ability to launch an application within multiple isolated environments
allows for better integration between isolated applications and common applications.

Referring now to FIG. 8C, and in brief overview, a method for associating a
process with an isolation scope includes the steps of launching the process in a
suspended state (step 882). The rules associated with the desired isolation scope are
retrieved (step 884) and an identifier for the process and the retrieved rules are stored
in a memory element (step 886) and the suspended process is resumed (step 888).
Subsequent calls to access native resources made by the process are intercepted or
hooked (step 890) and the rules associated with the process identifier, if any, are used
to virtualize access to the requested resource (step 892).

Still referring to FIG. 8C, and in more detail, a process is launched in a
suspended state (step 882). In some embodiments, a custom launcher program is used
to accomplish this task. In some of these embodiments, the launcher is specifically
designed to launch a process into a selected isolation scope. In other embodiments,
the launcher accepts as input a specification of the desired isolation scope, for example,
by a command line option.

The rules associated with the desired isolation scope are retrieved (step 884). In
some embodiments, the rules are retrieved from a persistent storage element, such as
a hard disk drive or other solid state memory element. The rules may be stored as a
relational database, flat file database, tree-structured database, binary tree structure, or
other persistent data structure. In other embodiments, the rules may be stored in a data
structure specifically configured to store them.

An identifier for the process, such as a process id (PID), and the retrieved rules
are stored in a memory element (step 886). In some embodiments, a kernel mode
driver is provided that receives operating system messages concerning new process
creation. In these embodiments, the PID and the retrieved rules may be stored in the

context of the driver. In other embodiments, a file system filter driver, or mini-filter, is

80

WO 2007/121241 PCT/US2007/066433

provided that intercepts native resource requests. In these embodiments, the PID and
the retrieved rules may be stored in the filter. In other embodiments still, all interception
is performed by user-mode hooking and no PID is stored at all. The rules are loaded by
the user-mode hooking apparatus during the process initialization, and no other
component needs to know the rules that apply to the PID because rule association is
performed entirely in-process.

The suspended process is resumed (step 888) and subsequent calls to access
native resources made by the process are intercepted or hooked (step 890) and the
rules associated with the process identifier, if any, are used to virtualize access to the
requested resource (step 892). In some embodiments, a file system filter driver, or
mini-filter, or file system driver, intercepts requests to access native resources and
determines if the process identifier associated with the intercepted request has been
associated with a set of rules. If so, the rules associated with the stored process
identifier are used to virtualize the request to access native resources. If not, the
request to access native resources is passed through unmodified. In other
embodiments, a dynamically-linked library is loaded into the newly-created process and
the library loads the isolation rules. In still other embodiments, both kernel mode
techniques (hooking, filter driver, mini-filter) and user-mode techniques are used to
intercept calls to access native resources. For embodiments in which a file system filter
driver stores the rules, the library may load the rules from the file system filter driver.

Processes that are “children” of processes associated with isolation scopes are
associated with the isolation scopes of their “parent” process. In some embodiments,
this is accomplished by a kernel mode driver notifying the file system filter driver when a
child process is created. In these embodiments, the file system filter driver determines
if the process identifier of the parent process is associated with an isolation scope. If
so, file system filter driver stores an association between the process identifier for the
newly-created child process and the isolation scope of the parent process. In other
embodiments, the file system filter driver can be called directly from the system without
use of a kernel mode driver. In other embodiments, in processes that are associated
with isolation scopes, operating system functions that create new processes are hooked

81

WO 2007/121241 PCT/US2007/066433

or intercepted. When request to create a new process are received from such a
process, the association between the new child process and the isolation scope of the
parent is stored.

In some embodiments, a scope or sub-scope may be associated with an
individual thread instead of an entire process, allowing isolation to be performed on a
per-thread basis. In some embodiments, per-thread isolation may be used for Services
and COM+ servers.

In some embodiments, isolation environments are used to provide additional
functionality to the application streaming client 552. In one of these embodiments, an
application program is executed within an isolation environment. In another of these
embodiments, a retrieved plurality of application files resides within the isolation
environment. In still another of these embodiments, changes to a registry on the local
machine 10 are made within the isolation environment.

In one embodiment, the application streaming client 552 includes an isolation
environment 556. In some embodiments, the application streaming client 552 includes
a file system filter driver 564 intercepting application requests for files. In one of these
embodiments, the file system filter driver 564 intercepts an application request to open
an existing file and determines that the file does not reside in the isolation environment
556. In another of these embodiments, the file system filter driver 564 redirects the
request to the streaming service 554 responsive to a determination that the file does not
reside in the isolation environment 556. The streaming service 554 may extract the file
from the plurality of application files and store the file in the isolation environment 556.
The file system filter driver 564 may then respond to the request for the file with the
stored copy of the file. In some embodiments, the file system filter driver 564 may
redirect the request for the file to a file server 540, responsive to an indication that the
streaming service 554 has not retrieved the file or the plurality of application files and a
determination the file does not reside in the isolation environment §56. In some
embodiments, the streaming service 554 may includecomprise an acceleration program
6120 to perform some or all of the acceleration techniques discussed below to
accelerate the storage or delivery of files and applications.

82

WO 2007/121241 PCT/US2007/066433

In some embodiments, the file system filter driver 564 uses a strict isolation rule
to prevent conflicting or inconsistent data from appearing in the isolation environment
556. In one of these embodiments, the file system filter driver 564 intercepting a
request for a resource in a user isolation environment may redirect the request to an
application isolation environment. In another of these embodiments, the file system
filter driver 564 does not redirect the request to a system scope.

In one embodiment, the streaming service 554 uses IOCTL commands to
communicate with the filter driver. In another embodiment, communications to the file
server 540 are received with the Microsoft SMB streaming protocol.

In some embodiments, the packaging mechanism 530 stores in a manifest file a
list of file types published as available applications and makes this information available
to application publishing software. In one of these embodiments, the packaging
mechanism 530 receives this information from monitoring an installation of an
application program into the isolation environment on the staging machine. In another
of these embodiments, a user of the packaging mechanism 530 provides this
information to the packaging mechanism 530. In other embodiments, application
publishing software within the access suite console 520 consults the manifest file to
present to a user of the access suite console 520 the possible file types that can be
associated with the requested application being published. The user selects a file type
to associate with a particular published application. The file type is presented to the
local machine 10 at the time of application enumeration.

The local machine 10 may include a client agent 560. The client agent 560
provides functionality for associating a file type with an application program and
selecting a method of execution of the application program responsive to the
association. In one embodiment, the client agent 560 is a program neighborhood
application.

When an application program is selected for execution, the local machine 10
makes a determination as to a method of execution associated with a file type of the
application program. In one embodiment, the local machine 10 determines that the file
type is associated with a method of execution requiring an application streaming

&3

WO 2007/121241 PCT/US2007/066433

session for retrieval of the application files and execution within an isolation
environment. In this embodiment, the local machine 10 may redirect the request to the
application streaming client 552 instead of launching a local version of the application
program. In another embodiment, the client agent 560 makes the determination. In still
another embodiment, the client agent 560 redirects the request to the application
streaming client 552.

In one embodiment, the application streaming client 552 requests access
information associated with the application program from the remote machine 30. In
some embodiments, the application streaming client 552 receives an executable
program containing the access information. In one of these embodiments, the
application streaming client 552 receives an executable program capable of displaying
on the local machine 10 application-output data generated from an execution of the
application program on a remote machine. In another of these embodiments, the
application streaming client 552 receives an executable program capable of retrieving
the application program across an application streaming session and executing the
application program in an isolation environment on the local machine 10. In this
embodiment, the application streaming client 552 may execute the received executable
program. In still another of these embodiments, the remote machine 30 selects an
executable program to provide to the local machine 10 responsive to performing an
application resolution as described above.

Referring now to FIG. 9, a flow diagram depicts one embodiment of steps taken
in a method for executing an application. As described above in FIG. 7, regarding step
214, a local machine 10 receives and executes the plurality of application files. In brief
overview, the local machine 10 receives a file including access information for
accessing a plurality of application files and for executing a first client capable of
receiving an application stream (step 902). The local machine 10 retrieves an
identification of the plurality of application files, responsive to the file (step 904). The
local machine 10 retrieves at least one characteristic required for execution of the
plurality of application files, responsive to the file (step 906). The local machine 10
determines whether the local machine 10 includes the at least one characteristic (step

84

WO 2007/121241 PCT/US2007/066433

908). The local machine 10 executes a second client, the second client requesting
execution of the plurality of application files on a remote machine, responsive to a
determination that the local machine 10 lacks the at least one characteristic (step 910).

Referring to FIG. 9, and in greater detail, the local machine 10 receives a file
including access information for accessing a plurality of application files and for
executing a first client capable of receiving an application stream (step 902). In one
embodiment, the local machine 10 receives access information including an
identification of a location of a plurality of application files comprising an application
program. In another embodiment, the local machine 10 receives the file responsive to
requesting execution of the application program. In still another embodiment, the
access information includes an indication that the plurality of application files reside on a
remote machine 30’ such as an application server or a file server. In yet another
embodiment, the access information indicates that the local machine 10 may retrieve
the plurality of application files from the remote machine 30 over an application
streaming session.

The local machine 10 retrieves an identification of the plurality of application files,
responsive to the file (step 904). In one embodiment, the local machine 10 identifies a
remote machine on which the plurality of application files reside, responsive to the file
including access information. In another embodiment, the local machine 10 retrieves
from the remote machine 30 a file identifying the plurality of application files. In some
embodiments, the plurality of application files comprise an application program. In other
embodiments, the plurality of application files comprise multiple application programs.

In still other embodiments, the plurality of application files comprise multiple versions of
a single application program.

Referring ahead to FIG. 10, a flow diagram depicts one embodiment of a plurality
of application files residing on a remote machine 30’, such as file server 540. In FIG.
10, a plurality of application files, referred to as a package, includes application files
comprising three different versions of one or more application programs.

In one embodiment, each subset of application files comprising a version of one
or more application programs and stored within the package is referred to as a target.

85

WO 2007/121241 PCT/US2007/066433

Target 1, for example, includes a version of a word processing application program and
of a spreadsheet program, the version compatible with the English language version of
the Microsoft Windows 2000 operating system. Target 2 includes a version of a word
processing application program and of a spreadsheet program, the version compatible
with the English language version of the Microsoft XP operating system. Target 3 a
version of a word processing application program and of a spreadsheet program, the
version compatible with the Japanese language version of the Microsoft Windows 2000
operating system with service pack 3.

Returning now to FIG. 9, in some embodiments, the file retrieved from the
remote machine 30 hosting the plurality of application files includes a description of the
package and the targets included in the plurality of application files. In other
embodiments, the file retrieved from the remote machine 30 identifies the plurality of
application files comprising an application program requested for execution by the local
machine 10.

The local machine 10 retrieves at least one characteristic required for execution
of the plurality of application files, responsive to the file (step 906). In some
embodiments, the local machine 10 may not execute an application program unless the
local machine includes certain characteristics. In one of these embodiments, different
application programs require local machines 10 to include different characteristics from
the characteristics required by other application programs. In another of these
embodiments, the local machine 10 receives an identification of the at least one
characteristic required for execution of the plurality of application files comprising the
application program requested by the local machine 10.

The local machine determines whether the local machine 10 includes the at least
one characteristic (step 908). In one embodiment, the local machine 10 evaluates an
operating system on the local machine 10 to determine whether the local machine 10
includes the at least one characteristic. In another embodiment, the local machine 10
identifies a language used by an operating system on the local machine 10 to determine
whether the local machine 10 includes the at least one characteristic. In still another
embodiment, the local machine 10 identifies a revision level of an operating system on

86

WO 2007/121241 PCT/US2007/066433

the local machine 10 to determine whether the local machine 10 includes the at least
one characteristic. In yet another embodiment, the local machine 10 identifies an
application version of an application program residing on the local machine 10 to
determine whether the local machine 10 includes the at least one characteristic. In
some embodiments, the local machine 10 determines whether the local machine 10
includes a device driver to determine whether the local machine 10 includes the at least
one characteristic. In other embodiments, the local machine 10 determines whether the
local machine 10 includes an operating system to determine whether the local machine
10 includes the at least one characteristic. In still other embodiments, the local machine
10 determines whether the local machine 10 includes a license to execute the plurality
of application files to determine whether the local machine 10 includes the at least one
characteristic.

The local machine 10 executes a second client, the second client requesting
execution of the plurality of application files on a remote machine 30, responsive to a
determination that the local machine 10 lacks the at least one characteristic (step 910).
In one embodiment, when the local machine 10 determines that the local machine 10
lacks the at least one characteristic, the local machine 10 does not execute the first
client capable of receiving an application stream. In another embodiment, a policy
prohibits the local machine 10 from receiving the plurality of application files over an
application stream when the local machine 10 lacks the at least one characteristic. In
some embodiments, the local machine 10 determines that the local machine 10 does
include the at least one characteristic. In one of these embodiments, the local machine
10 executes the first client, the first client receiving an application stream comprising the
plurality of application files from a remote machine 30 for execution on the local
machine.

In some embodiments, the local machine 10 executes the second client
requesting execution of the plurality of application files on a remote machine upon
determining that the local machine 10 lacks the at least one characteristic. In one of
these embodiments, the second client transmits the request to a remote machine 30
hosting the plurality of application files. In another of these embodiments, the remote

87

WO 2007/121241 PCT/US2007/066433

machine 30 executes the plurality of application files comprising the application program
and generates application-output data. In still another of these embodiments, the
second client receives application-output data generated by execution of the plurality of
application files on the remote machine. In some embodiments, the second client
receives the application-output data via an Independent Computing Architecture
presentation level protocol or a Remote Desktop Windows presentation level protocol or
an X-Windows presentation level protocol. In yet another of these embodiments, the
second client displays the application-output on the local machine 10.

In some embodiments, the second client transmits the request to a remote
machine 30 that does not host the plurality of application files. In one of these
embodiments, the remote machine 30 may request the plurality of application files from
a second remote machine 30 hosting the plurality of application files. In another of
these embodiments, the remote machine 30 may receive the plurality of application files
from the second remote machine 30 across an application streaming session. In still
another of these embodiments, the remote machine 30 stores the received plurality of
application files in an isolation environment and executes the application program within
the isolation environment. In yet another of these embodiments, the remote machine
transmits the generated application-output data to the second client on the local
machine.

Referring back to FIG. 5, in one embodiment, the first client, capable of receiving
the application stream, is an application streaming client 552. The application
streaming client 552 receiving the file, retrieving an identification of a plurality of
application files and at least one characteristic required for execution of the plurality of
application files, responsive to the file, and determining whether the local machine 10
includes the at least one characteristic. In another embodiment, the second client is a
client agent 560. In some embodiments, the client agent 560 receives the file from the
application streaming client 552 responsive to a determination, by the application
streaming client 552, that the local machine 10 lacks the at least one characteristic.

In some embodiments, an application 566 executing on the local machine 10
enumerates files associated with the application 566 using the Win32 FindFirstFile() and

&8

WO 2007/121241 PCT/US2007/066433

FindNextFile() API calls. In one of these embodiments, a plurality of application files
comprise the application 566. In another of these embodiments, not all files in the
plurality of application files reside on the local machine 10. In still another of these
embodiments, the streaming service 554 retrieved the plurality of application file in an
archived files but extracted only a subset of the plurality of application files. In yet
another of these embodiments, the streaming service 554 and the file system filter
driver 564 provide functionality for satisfying the enumeration request, even when the
requested file does not reside on the local machine 10.

In one embodiment, the functionality is provided by intercepting the enumeration
requests and providing the data as if all files in the plurality of application files reside on
the local machine 10. In another embodiment, the functionality is provided by
intercepting, by the file system filter driver 564, an enumeration request transmitted as
an IOCTL command, such as IRP_MJ_DIRECTORY_CONTROL IOCTL. When the file
system filter driver 564 intercepts the call, the file system filter driver 564 redirects the
request to the streaming service 554. In one embodiment, the file system filter driver
564 determines that the requested enumeration resides in an isolation environment on
the local machine 10 prior to redirecting the request to the streaming service 554. In
another embodiment, the streaming service 554 fulfills the request using a file in the
plurality of application files, the file including an enumeration of a directory structure
associated with the plurality of application files. In still another embodiment, the
streaming service 554 provides the response to the request to the file system filter
driver 564 for satisfaction of the enumeration request.

Referring now to FIG. 11, a flow diagram depicts one embodiment of the steps
taken in a method for responding locally to requests for file metadata associated with
files stored remotely. In brief overview, (i) a directory structure representing an
application program stored by the remote machine, and (ii) metadata associated with
each file comprising the stored application program, are received from a remote
machine (step 1102). The directory structure and the metadata are stored (step 1104).
At least one request to access metadata associated with a specific file in the directory

&9

WO 2007/121241 PCT/US2007/066433

structure is received (step 1106). The at least one request is responded to using the
stored metadata (step 1108).

Referring to FIG. 11 in greater detail, a directory structure representing an
application program stored by the remote machine, and metadata associated with each
file comprising the stored application program, are received from a remote machine
(step 1102). In one embodiment, the streaming service 554 receives the directory
structure and the metadata. In another embodiment, the streaming service 554
receives the directory structure and the metadata when the streaming service 554
retrieves a plurality of application files comprising the stored application program. In still
another embodiment, the directory structure and the metadata are stored in a file in the
plurality of application files.

In one embodiment, the metadata associated with each file comprises an
alternate name for the at least one file. In another embodiment, the metadata
associated with each file includes a short name for the at least one file, the name having
a length of eight characters, a dot, and a three-character extension. In still another
embodiment, the metadata associated with each file includes a mapping between the
alternate name for the at least one file and the short name for the at least one file. In
some embodiments, a file in the plurality of application files has an alternate filename.
In one of these embodiments, when the file is retrieved by a streaming service 554 to a
local machine, the file is associated with a short name, responsive to the mapping
between the alternate name for the file and the short name for the at least one file.

The directory structure and the metadata are stored (step 1104). In one
embodiment, the directory structure and the metadata are stored in an isolation
environment 556. In another embodiment, the directory structure and the metadata are
stored in a cache memory element. In still another embodiment, the directory structure
representing an application program stored by the remote machine is used to generate
an enumeration of a directory structure representing an application program executing
on the local machine.

At least one request to access metadata associated with a specific file in the
directory structure is received (step 1106). In one embodiment, the request is a request

90

WO 2007/121241 PCT/US2007/066433

for enumeration of the file. In another embodiment, the request is a request to
determine whether a copy of the file comprising the stored application program resides
locally.

In one embodiment, the request is made by an application 566 executing in an
isolation environment on a local machine. In another embodiment, the request is made
by the application streaming client 552. In still another embodiment, the request is
made on behalf of the application 566.

In one embodiment, the request is intercepted by a file system filter driver 564.
In another embodiment, the request is forwarded to the application streaming client 552
by the file system filter driver 564. In still another embodiment, the request is forwarded
to the streaming service 554 by the file system filter driver 564.

In some embodiments, the request is hooked by a function that replaces the
operating system function or functions for enumerating a directory. In another
embodiment, a hooking dynamically-linked library is used to intercept the request. The
hooking function may execute in user mode or in kernel mode. For embodiments in
which the hooking function executes in user mode, the hooking function may be loaded
into the address space of a process when that process is created. For embodiments in
which the hooking function executes in kernel mode, the hooking function may be
associated with an operating system resource that is used in dispatching requests for
file operations. For embodiments in which a separate operating system function is
provided for each type of file operation, each function may be hooked separately.
Alternatively, a single hooking function may be provided which intercepts create or open
calls for several types of file operations.

The at least one request is responded to using the stored metadata (step 1108).
In one embodiment, the file system filter driver 564 responds to the request. In another
embodiment, the application streaming client 552 responds to the request. In still
another embodiment, the streaming service 554 responds to the request. In one
embodiment, the stored metadata is accessed to respond to the at least one request. In
another embodiment, the request is responded to with a false indication that a remote
copy of the file resides locally.

91

WO 2007/121241 PCT/US2007/066433

In one embodiment, a Windows Operating System FindFirst operation is satisfied
responsive to the received metadata. In another embodiment, a Windows Operating
System FindNext operation is satisfied responsive to the received metadata. In still
another embodiment, an operation for identifying a root node in a directory structure is
satisfied responsive to the received metadata. In some embodiments, an application
layer API such as WIN32_FIND_DATA APl is used to respond to the operation. In
other embodiments, a kernel layer APl such as FILE_BOTH_DIR_INFORMATION is
used to respond to the operation.

In one embodiment, the metadata satisfies an operation for identifying a time of
access associated with a node in a directory structure. In another embodiment, the
metadata satisfies an operation for identifying a time of modification associated with a
node in a directory structure. In still another embodiment, the metadata satisfies an
operation for identifying a modified node in a directory structure.

Referring now to FIG. 12, a block diagram depicts one embodiment of a system
for responding locally to requests for file metadata associated with files stored remotely,
including a streaming service 554, a file system filter driver 564, a directory structure
570, a plurality of application files 572, metadata 574, and a cache memory element
576. In brief overview, the directory structure 570 identifies a plurality of files associated
with at least one application program. The metadata 574 is associated with at least one
of the plurality of files, at least one of the plurality of files residing on a remote machine.
In one embodiment, the directory structure 570 includes the metadata 574. The cache
memory element 576 stores the directory structure 570. The file system filter driver 564
intercepts a request to access metadata associated with the at least one remotely
stored file, accesses the cache memory element, and responds to the at least one
request using the stored directory structure.

In some embodiments, the streaming service 554 receives the directory structure
570 and metadata 574. In one of these embodiments, the directory structure 570
represents a plurality of application files 572 associated with an application program, the
plurality of application files 572 residing on a remote machine, such as the remote
machine 30. In another of these embodiments, the metadata 574 comprises

92

WO 2007/121241 PCT/US2007/066433

information for responding to a Windows Operating System FindFirst request. In still
another of these embodiments, the metadata 574 comprises information for responding
to a Windows Operating System FindNext request. In yet another of these
embodiments, the metadata 574 comprises information for responding to a request for
identification of a root node in a directory structure. In another of these embodiments,
the metadata 574 comprises information for responding to a request for identification of
a node in a directory structure. In some embodiments, an application layer API such as
WIN32_FIND_DATA APl is used to respond to the operation. In other embodiments, a
kernel layer APl such as FILE_BOTH_DIR_INFORMATION is used to respond to the
operation.

In some embodiments, small amounts of metadata 574 about a file may be
stored directly in the literal filename, such as by suffixing the virtual name with a
metadata indicator, where a metadata indicator is a string uniquely associated with a
particular metadata state. The metadata indicator may indicate or encode one or
several bits of metadata. Requests to access the file by virtual filename check for
possible variations of the literal filename due to the presence of a metadata indicator,
and requests to retrieve the name of the file itself are hooked or intercepted in order to
respond with the literal name. In other embodiments, one or more alternate names for
the file may be formed from the virtual file name and a metadata indicator, and may be
created using hard link or soft link facilities provided by the file system. The existence
of these links may be hidden from applications by the isolation environment by
indicating that the file is not found if a request is given to access a file using the name of
a link. A particular link’s presence or absence may indicate one bit of metadata for each
metadata indicator, or there may be a link with a metadata indicator that can take on
multiple states to indicate several bits of metadata. In still other embodiments, where
the file system supports alternate file streams, an alternate file stream may be created
to embody metadata, with the size of the stream indicating several bits of metadata. In
still other embodiments, a file system may directly provide the ability to store some 3rd
party metadata for each file in the file system. In yet other embodiment, a separate sub-

93

WO 2007/121241 PCT/US2007/066433

scope may be used to record deleted files, and existence of a file (not marked as a
placeholder) in that sub-scope is taken to mean that the file is deleted.

In one embodiment, data in a user isolation environment, an application isolation
environment, and a system scope is combined to form a local enumeration of a
directory structure representing an application. In another embodiment, the streaming
service 554 accesses metadata 574 and the directory structure 570 to populate the
application isolation environment. In still another embodiment, the file system filter
driver 564 generates the local enumeration of the directory structure. In yet another
embodiment, the local enumeration of the directory structure identifies at least one file in
the plurality of application files 572, the at least one file residing on a remote machine
and not on the local machine. In some embodiments, the local enumeration of the
directory structure is stored on the cache memory element 576. In other embodiments,
the streaming service 554 generates the application isolation environment and the local
enumeration of the directory structure.

In one embodiment, the file system filter driver 564 intercepts a request
transmitted to a system scope for access to the local enumeration of the directory
structure. In another embodiment, file system filter driver 564 generates the local
enumeration after intercepting the request. In still another embodiment, the file system
filter driver 564 redirects the request for the local enumeration to the user isolation
environment. In yet another embodiment, the file system filter driver 564 redirects the
request for the local enumeration to the application isolation environment.

In some embodiments, the file system filter driver 564 intercepts a request for
access to a file identifies in the local enumeration of the directory, the file residing on a
remote machine. In one of these embodiments, the file system filter driver 564 requests
retrieval of the file by the streaming service 554, as described in greater detail in
connection with FIG. 13 below.

As applications running in an isolation environment make requests for files, a
filter driver intercepts these requests. If the request is to open a file, the filter driver will
first redirect the request to an isolation environment, to determine whether the request

may be satisfied by the isolation environment. If the call is successful, the filter driver

94

WO 2007/121241 PCT/US2007/066433

will respond to the request with the instance of the file located in the isolation
environment.

However if the requested file does not reside in the isolation environment, the
filter driver sends a request to streaming service 554 to retrieve the file from the plurality
of application files, blocks until the request is complete, and then retries the original
open. In some embodiments, the functionality of the streaming service 554 for
retrieving files from the plurality of application files upon receipt of a request from the
filter driver is referred to as “on-demand caching.”

Referring now to FIG. 13, a flow diagram depicts one embodiment of the steps
taken in a method for accessing a remote file in a directory structure associated with an
application program executing locally. In brief overview, a request by an application for
access to a file is intercepted (step 1302). The request is redirected to a first isolation
environment (step 1304). A determination is made that the requested file does not exist
in the first isolation environment (step 1306). The request is redirected to a second
isolation environment responsive to a determination that the file is identified in an
enumeration of a directory structure associated with a plurality of application files
residing on a remote machine (step 1308). The requested file is retrieved from the
remote machine, responsive to a determination that the second isolation environment
does not contain the file and that the file is identified in the enumeration (step 1310).

Referring to FIG. 13, and in greater detail, a request by an application for access
to a file is intercepted (step 1302). In one embodiment, the request is intercepted by a
file system filter driver. In another embodiment, the file system filter driver intercepts all
requests for access to files. In still another embodiment, an application streaming client
552 intercepts the request. In some embodiments, a request by an application for
access to an executable file is intercepted. In other embodiments, a request by an
application for access to a file, a portion of the application executing on a local machine
10 is intercepted.

The request is redirected to a first isolation environment (step 1304). In one
embodiment, the application executes within the first isolation environment. In one

embodiment, the application is an application program such as a word processing

95

WO 2007/121241 PCT/US2007/066433

program or spreadsheet program. In another embodiment, the application is the
application streaming client 552. In still another embodiment, the application is a
component within the application streaming client 552 attempting to launch an
application program on behalf of a user of the local machine 10. In another
embodiment, the file system filter driver redirects the request to the first isolation
environment.

A determination is made that the requested file does not exist in the first isolation
environment (step 1306). In one embodiment, the file system filter driver receives an
indication that the requested file does not exist in the first isolation environment.

The request is redirected to a second isolation environment responsive to a
determination that the file is identified in an enumeration of a directory structure
associated with a plurality of application files residing on a remote machine (step 1308).
In one embodiment, the enumeration of the directory structure is received with access
information regarding execution of the first application. In another embodiment, the
enumeration identifies a plurality of application files comprising a second application. In
this embodiment, the first application is a local copy of the second application.

The requested file is retrieved from the remote machine, responsive to a
determination that the second isolation environment does not contain the file and that
the file is identified in the enumeration (step 1310). In one embodiment, the requested
file is retrieved from a second remote machine. In another embodiment, the requested
file is retrieved from a file server. In some embodiments, the enumeration of the
directory structure identifies a plurality of application files residing on the local machine.
In other embodiments, the enumeration of the directory structure indicates that the
plurality of application files resides on the local machine. In one of these embodiments,
when the application requests access to the file in the plurality of application files which
the enumeration of the directory structure has indicated resides on the local machine,
the file is acquired from the file server upon interception of the access request. In
another of these embodiments, the file server streams the requested file to the local
machine. In still another of these embodiments, upon receiving the requested file, the

requested file is stored in the second isolation environment. In still other embodiments,

96

WO 2007/121241 PCT/US2007/066433

when the application requests access to the file in the plurality of application files which
the enumeration of the directory structure has indicated resides on the local machine, a
copy of the file is provided to the application from a local cache.

In some embodiments, the requested file is encrypted. In other embodiments,
the requested file is stored in an encrypted form. In still other embodiments, the
application requesting the file may be prevented from decrypting the requested file if the
application lacks authorization to access the requested file.

In one embodiment, a determination is made that the enumeration of the
directory structure does not identify the file. In this embodiment, the request to access
the file may be redirected to an environment outside the first isolation environment and
outside the second isolation environment.

In some embodiments, a second request to access the file is intercepted. In one
of these embodiments, the request to access the file is made by a second application.
In another of these embodiments, the second application executes in a third isolation
environment. In still another of these embodiments, the request is redirected to the
second isolation environment, responsive to a determination that the file is enumerated
in the enumeration and that the second isolation environment does contain the file. The
determination may be made that the local machine stored the file in the second isolation
environment upon receipt of the file from the file server. In yet another embodiment, the
file is stored in the third isolation environment.

Referring now to FIG. 14, a block diagram depicts one embodiment of a system
for accessing a file in a directory structure associated with an application. In brief
overview, a local machine 10 includes an application streaming client 552, a streaming
service 554, an isolation environment 556, a file system filter driver 564, and a first
application 566. The local machine 10 may interact with a file server 540, a remote
machine 30, a web interface 558, and a second application 566’.

The local machine 10 initializes the application streaming client 552 to execute
the first application 566. In one embodiment, the application streaming client 552
initializes a streaming service 554 to retrieve and execute the first application 566. In
some embodiments a plurality of application files comprise the first application 566. in

97

WO 2007/121241 PCT/US2007/066433

one of these embodiments, the streaming service 554 retrieves the plurality of
application files and stores them in the isolation environment 566. In another of these
embodiments, the streaming service 554 identifies a location of a remote machine on
which the plurality of application files resides but does not retrieve the plurality of
application files. In still another of these embodiments, the streaming service 554
retrieves a subset of the files in the plurality of application files. In yet another of these
embodiments, the streaming service 554 retrieves an archive file containing the plurality
of application files.

In one embodiment, the first application 566 comprises a local copy of a second
application 566’ residing on a remote machine 30. In another embodiment, the plurality
of application files reside on the remote machine 30 and comprise the second
application 566’ residing on a remote machine 30. In still another embodiment, to
execute the second application 566’, the local machine 10 retrieves the plurality of
application files, creating the first application 566 on the local machine, and executes
the first application 566. In some embodiments, the applications 566 and 566’ are user
applications such as word processing applications or spreadsheet applications or
presentation applications.

In some embodiments, the plurality of application files include a file identifying a
directory structure associated with the plurality of application files on the remote
machine 30. In one of these embodiments, the file includes metadata about each
application file in the plurality of application files. In another of these embodiments, the
streaming service 554 retrieves the metadata from the file to generate an enumeration
of the directory structure associated with the plurality of application files, as described in
connection with FIG. 12 above. In still another of these embodiments, the streaming
service 554 stores the enumeration of the directory structure associated with the
plurality of application files comprising the second application 566°. In some
embodiments, the streaming service 554 stores the enumeration in a second isolation
environment.

In one embodiment, the streaming service 554 retrieves an initial executable file

associated with the first application 566. In another embodiment, the streaming service

98

WO 2007/121241 PCT/US2007/066433

554 executes the first application 566 on the local machine 10 upon retrieval of the
initial executable file. In still another embodiment, the first application 566 requests
access to other files in the plurality of application files as the files are needed for
continued execution of the first application 566. In some embodiments, the first
application 566 executes in the isolation environment 556.

The file system filter driver 564 intercepts requests by the first application 566
executing within the isolation environment 556 for access to a file in the plurality of
application files. The file system filter driver 564 redirects the request to the isolation
environment 556. If the requested file resides in the isolation environment 556, access
to the requested file is provided to the first application 566.

If the requested file does not reside in the isolation environment 556, the file
system filter driver 564 redirects the request to a second isolation environment. In one
embodiment, the second isolation environment includes the enumeration of the
directory structure generated by the streaming service 554 and associated with the
plurality of application files comprising the second application 566’. In another
embodiment, a determination is made that the requested file is identified in the
enumeration of the directory structure.

In some embodiments, the streaming service 554 provides a semaphore to the
isolation environment 556. In one of these embodiments, the file system filter driver
564, using the semaphore, indicates to the streaming service 554 that access to a file in
the plurality of application files is required. In other embodiments, the file system filter
driver 564 uses a thread to indicate to the streaming service 554 that access to the file
is required.

Upon receiving the notification from the file system filter driver 564, the streaming
service 554 retrieves the requested file from the plurality of application files. In still
another of these embodiments, the streaming service 554 stores the requested file in
the second application isolation environment. In one embodiment, the request for
access to the file is satisfied with the instance of the file retrieved from the plurality of
application files and stored in the second isolation environment. In another
embodiment, the requested file is also stored in the first isolation environment.

99

WO 2007/121241 PCT/US2007/066433

In some embodiments, a determination is made that the second isolation
environment does not contain the file and that the file is identified in the enumeration. In
one of these embodiments, the file is identified in the enumeration of the directory
structure associated with the plurality of application files comprising the second
application 566’ and the file is a file in the plurality of application files. In another of
these embodiments, the streaming service 554 did not retrieve the file from the remote
machine. In still another of these embodiments, the streaming service 554 did not
retrieve a plurality of application files including the requested file. In yet another of
these embodiments, the streaming service 554 retrieved the plurality of application files
in an archived file but did not retrieve the requested file from the archive file.

In one embodiment, the streaming service 554 includes a transceiver, in
communication with the file system filter driver. In another embodiment, the transceiver
receives the redirected request from the file system filter driver. In still another
embodiment, the transceiver forwards the request for the file to a remote machine
hosting the requested file. In one embodiment, the remote machine is a file server 540.
In another embodiment, the request is forwarded to a remote machine 30 which routes
the request to a file server 540. In some embodiments, the file server 540 streams the
requested file to the transceiver on the local machine 10. In other embodiments, the
remote machine 30 streams the requested file to the transceiver on the local machine
10. In still other embodiments, upon receiving the requested file from the file server
540, the transceiver stores the received file in the second isolation environment.

In one embodiment, the file system filter driver 564 intercepts a second request
for access to the file made by a third application 566", executing on the local machine
10, in a third isolation environment. In another embodiment, the file system filter driver
564 redirects the request for access to the file to the second isolation environment. In
still another embodiment, the file system filter driver 564 determines that the streaming
service 554 stored the received file in the second isolation environment prior to the
interception of the request for access by the third application 566”.

In some embodiments, upon initialization, the streaming service 554 may

populate a cache in an isolation environment prior to execution of an application

100

WO 2007/121241 PCT/US2007/066433

program. In one of these embodiments, the streaming service 554 installs a registry file
into the isolation environment. In another of these embodiments, the streaming service
554 stores a mapping between a long name of a file and a short file name.

In one embodiment, to save space on the local machine, the size of the cache
may be limited. In some embodiments, when the cache nears its size limit, the oldest
files in the cache will automatically be purged to make room for new files. In one of
these embodiments, the age of a file is determined by a timestamp maintained by the
operating system indicating a time of ‘last access’ timestamp. In addition to the age of a
file, the file type may be taken into account — binary executable files (.EXE, .DLL, etc)
may be kept longer than similarly aged files of other types.

Upon initialization, the streaming service 5564 may enumerate files currently in a
cache, and determine the total size of the cache. After a file is added to the cache,
either by an isolation environment 556 or by the streaming service 554, the streaming
service 554 calls a function to inform the cache system of the new file, its location and
its size. The size of each newly cached file is added to the running total of the current
cache size. This new total is then compared against the cache size limit, and if the limit
has been exceeded the code fires off a thread to age the cache. There can only ever
be one instance of this thread running at any given time.

The thread generates a list of all files currently in the cache, sorts this list by last-
access timestamp, and then starts walking down the list deleting files until we have
freed enough disk space to satisfy the exit criteria for the thread. The exit criteria is
based on dropping to cache size down to a level below the limit that is determined as a
percentage of the limit (the default value is 10%). Deleting more than is needed to
prevent exceeding the limit prevents the cache from thrashing each time a new file is
added.

In some embodiments, the streaming service 554 provides the ability to copy
every file in a plurality of application files comprising an application program, in a
compressed file format, to the local machine 10. This ability may be referred to as “pre-
caching.” In one of these embodiments, when the application program is subsequently
executed, all the package requests go to the local copy rather than traversing the

101

WO 2007/121241 PCT/US2007/066433

network. These embodiments may enable a user of the local machine 10 to execute
the application program at a time when the user has no access to the network.

A remote machine 30 includes functionality for monitoring application usage by a
local machine 10. The remote machine 30 may monitor the status of each application
used by the local machine 10, for example when execution or termination of an
application. In one embodiment, the remote machine 30 requires the local machine 10
to transmit messages about the status of an application executed by the local machine
10. In another embodiment, when a local machine 10 connects to a network on which
the remote machine 30 resides, the local machine 10 transmits a message indicating
that the local machine 10 has connected to the network.

In one embodiment, the local machine 10 is said to have a session when the
local machine 10 interacts with the remote machine 30 and executes one or more
applications. In another embodiment, the remote machine 30 requires the local
machine to maintain, for the duration of a session, a license authorizing execution of
applications received from a remote machine. In still another embodiment, sessions
have unique session identifiers assigned by the remote machine.

In one embodiment, the local machine 10 transmits the messages to the remote
machine 30 with which is interacted to receive and execute the application program. In
another embodiment, the local machine 10 receives from the remote machine 30 an
identifier of a second remote machine, such as a session management server 562, the
second remote machine receiving and storing all transmitted messages associated with
the session on the local machine 10.

In some embodiments, the session management server 562 is a remote machine
30 providing license management and session monitoring services. In one of these
embodiments, the session management server 562 includes a server management
subsystem 508 providing these services.

In one embodiment, the local machine 10 transmits messages directly to the
session management server 562. In another embodiment, the local machine 10
transmits messages to a remote machine 30, the remote machine 30 forwarding the

102

WO 2007/121241 PCT/US2007/066433

messages to the session management server 562 with an identification of the local
machine 10.

A local machine 10 may transmit a heartbeat message to the remote machine
30. In one embodiment, the heartbeat message includes a request for a license. In this
embodiment, the local machine 10 may transmit the heartbeat message after receiving
access information associated with an application program which the local machine 10
requested authorization to execute. The local machine 10 may transmit the heartbeat
message prior to executing the application. In one embodiment, the local machine 10
includes with the heartbeat message a launch ticket received with the access
information. In this embodiment, the remote machine 30 may grant the local machine
552 a license upon successful verification of the launch ticket.

In another embodiment, the heartbeat message includes an indication that the
local machine has initiated execution of an application. In still another embodiment, the
heartbeat message includes an indication that the local machine has terminated
execution of an application. In yet another embodiment, the heartbeat message
includes an indication of a failure to execute an application.

In one embodiment, the heartbeat message includes a request for an
identification of a second session management server, such as a session management
server 562. In another embodiment, the heartbeat message includes an indication that
the local machine 10 has connected to a network on which the remote machine 30
resides.

In some embodiments, the heartbeat message includes a request to reset an
application streaming session. In one of these embodiments, the local machine 10
transmits this heartbeat message when an error has occurred and a connection is
terminated between a network on which the remote machine 30 resides and the local
machine 10. In another of these embodiments, the local machine 10 transmits with the
heartbeat message information associated with the session. In still another of these
embodiments, the remote machine 30 may transmit to the local machine 10 session-
related data if the session has not expired.

103

WO 2007/121241 PCT/US2007/066433

In another of these embodiments, if a remote machine 30 disconnects from a
network on which it replies, the local machine 10 may not receive a reply to a heartbeat
message transmitted to the remote machine 30. In one embodiment, the local machine
10 may re-establish a session by transmitting a message requesting a session reset to
the remote machine 30. In another embodiment, the local machine 10 may re-establish
a session by transmitting a message requesting a session reset to a second remote
machine 30. In some embodiments, when the remote machine 30 reconnects to the
network, it will create a new session for each session reset request received while the
remote machine 30 was disconnected. In one of these embodiments, the new session
will be associated with the reconnected and unlicensed state. In another of these
embodiments, no new license will be acquired for the new session. In still another of
these embodiments, when the local machine 10 executes an application, a new license
will be acquired and all sessions associated with the local machine 10 will be associated
with an active and licensed state.

In some embodiments, an application streaming client 552 on the local machine
10 generates the heartbeat message. In one of these embodiments, the application
streaming client 552 forwards the heartbeat message to a web interface 558 for
transmission to the local machine 10 for transmission to the remote machine 30. In
other embodiments, the management service 504 on the remote machine 30 receives
the heartbeat message from the local machine 10 via the web interface 558. In still
other embodiments, a remote machine 30 comprising a collector point 240 (described
above in connection with FIG. 1D) receives and stores the heartbeat messages.

In some embodiments, the application streaming client 552 requests a license
from the remote machine 30. In one of these embodiments, the license authorizes
execution of an application program on the local machine 552. In another of these
embodiments, the remote machine 30 may access a second remote machine to provide
the license. In still another of these embodiments, the remote machine 30 may provide
the license to the local machine. In yet another of these embodiments, the remote
machine 30 may provide a license acceptable for authorization purposes to a second

104

WO 2007/121241 PCT/US2007/066433

remote machine. In some embodiments, the license is revoked upon termination of
execution of an application program.

In some embodiments, a remote machine 30 in the farm 38 includes a license
management subsystem for configuring and maintaining licenses for those subsystems
that require a license to operate and for controlling the number of connections to such
subsystems. In other embodiments, the remote machine 30 incorporates functionality
of a license management subsystem within other subsystems, such as the application
management subsystem and the session management subsystem. In one
embodiment, each remote machine 30 includes a license management subsystem or
the functionality associated with a license management subsystem. The license
management subsystem manages two types of licenses (1) feature licenses, and (2)
connection licenses. In brief overview, the license management subsystem uses
feature licenses to control access to "features" of licensed software products, such as
load management, and connection licenses to control the number of user connections
allowed by those licensed software products. A feature can be some aspect or
particular functionality of the software product, or the feature can be the entire product
that will not work without a feature license.

FIG. 15 shows one embodiment of the remote machine 30 in the farm 38 in
which the remote machine 30 includes a license management subsystem 1510, a group
subsystem 1520, a persistent store system service module 1570, a dynamic store
system service module 1580, a relationship subsystem 1530, a specialized remote
machine subsystem 1540, and a common access point subsystem 524 in
communication with an event bus 1570. Those subsystems shown in FIG. 15 are for
purposes of describing the behavior of the license management subsystem 1510. The
remote machine 30 can include other types of subsystems.

The license management subsystem 1510 communicates with the group
subsystem 1520 over an event bus to form and maintain a logical grouping of licenses
(hereafter, "license groups") to facilitate license pools, assignments, and groups. A
license group includes a collection of license strings, described below, and/or other
license groups. License groups collect licenses of similar features and consequently

105

WO 2007/121241 PCT/US2007/066433

enable pooling of licenses. A pooled license is a license that is available for use by any
remote machine 30 in the farm 38. Each license group holds the collective capabilities
of the licenses in the license group and the other license subgroups (i.e. other license
groups within a license group). Information relating to license pools is, in one
embodiment, maintained in the dynamic store 240. In this embodiment, each license
management subsystem 1610 stores locally the total number of licenses and the
number of license assigned to a remote machine 30 in the farm 38. Upon granting a
pooled license, the granting license management subsystem 1510 makes an entry in
the dynamic store 240 indicating that a pooled license is "in use." Every other license
management subsystem 1510 recognizes that such pooled license is unavailable for
granting. In one particular embodiment, the dynamic store 240 store remote machine
ID/client ID pairs associated with each license group to identify pooled licenses that are
in use.

The relationship subsystem 1530 maintains associations between licenses and
remote machines 30 and between license groups and remote machines 30. The
associations define the number of licenses for each license and license group that only
the associated remote machine 30 may obtain (i.e., "local licenses"). A local license is a
license that is assigned to one remote machine in the farm 38 and is not shared by
other remote machines 38. The license management subsystem 1510 communicates
with the relationship subsystem 1530 to create, delete, query, and update such
associations. The common access point subsystem 524 provides remote procedure
calls (RPCs) for use by software products residing on the remote machine 30. These
RPC interfaces enable such software products to communicate through the common
access subsystem 524 to access licensing information.

Still referring to FIG. 15, the specialized remote machine subsystem 1540
communicates with the license management subsystem 1510 to obtain a feature license
for each capability of the specialized remote machine subsystem 1540 for which a
license is required. This occurs at initialization of specialized remote machine
subsystem 1540 and after any license event. If unable to obtain the feature license, the
specialized remote machine subsystem 1540 restricts the functionality that the

106

WO 2007/121241 PCT/US2007/066433

subsystem would provide with a license. Also, the specialized remote machine
subsystem 1540 uses the license management subsystem 1510 to obtain client
connection licenses whenever a client session is initiated with the remote machine 30.

The license management subsystem 1510 communicates with the persistent
store system service module 352 to store feature and connection licenses in a license
repository 1550 as license strings formed in accordance with a naming convention. The
license repository 1550 resides in the persistent store 230. Cyclical redundancy checks
(CRC) prevent tampering of the licenses while such licenses are stored in the license
repository 15650. The license management subsystem 1510 also stores information
related to the license strings in the license repository 1550. For example, the
information may indicate which licenses are assigned to which remote machines 30 of
the farm 38 and, in some embodiments, the activation status of each license. In one
embodiment, a connection license table 1560 stores identifiers of those local machines
that have obtained a connection license.

In one embodiment, the license management subsystem 1510 supports events
from subsystems requesting use of a licensed capability, such as a request for an
available pooled license. The event includes the UID of the subsystem requesting the
license and the UID of the remote machine 30 upon which that subsystem resides. The
event also contains the license type requested (i.e., feature or connection license) in the
form of a license group ID. The actual license group ID stored in the persistent store
230 is arbitrary, but adherence to the naming convention provides flexibility for the
future addition of new software products (i.e., subsystems) to the remote machine 30.

The event sent by a requesting subsystem seeking a license includes (1) an
indication of the license group type, the identity of the local machine and remote
machine requesting the license, and a "force acquire" flag. An indication of license
group type may include identification of a feature license, such as a load management,
or a connection type license, such as a software application product. The field
identifying the local machine and remote machine seeking the license may include the
unique identifier associated with the remote machine and the local machine. The force

acquire flag may be used, for example, to reacquire connection licenses after a license

107

WO 2007/121241 PCT/US2007/066433

change event. A license change event indicates that licensing information in the
persistent store 230 has changed; for example, a license has been deleted, added, or
assigned. Upon a license change event, each remote machine 30 attempts to reacquire
all connection licenses that it possessed before the license change event because the
particular cause of the license change event is unknown to that remote machine. This
flag, if set, indicates that a connection license must be acquired even if doing so
increases the number of connections to the remote machine 30 in excess of the
predetermined maximum number of allowable connections. No new connection
licenses are subsequently granted until the number of connection licenses in use drops
below this predetermined maximum number. In this manner, a local machine connection
will not be terminated in mid-session due to a license change event.

Referring now to FIG. 16, a block diagram depicts one embodiment of the
components involved in licensing enforcement. A remote machine 30 includes a server
management subsystem 508 and a license management subsystem 512. In some
embodiments, the server management subsystem 508 and the license management
subsystem 512 provide the functionality of the license management subsystem 1510
described above. In other embodiments, an application management subsystem 506
and a session management subsystem 510 provide the functionality of the license
management subsystem 1510 described above. In still other embodiments, other
subsystems provide the functionality of the license management subsystem 1510
described above.

In one embodiment, the server management subsystem 508 may include a
licensing component used to request issuance and revocation of licenses. In another
embodiment, the license management subsystem 512 may apply a policy to a request
for issuance or revocation of a license received from the server management
subsystem 508. In still another embodiment, the license management subsystem 512
may transmit the request to a remote machine 30 providing license enforcement
functionality. In some embodiments, the management service 504 may maintain a

connection with a second remote machine 30 providing license enforcement

108

WO 2007/121241 PCT/US2007/066433

functionality. In other embodiments, the remote machine 30 provides the license
enforcement functionality.

In some embodiments, a license expires and ceases to be valid upon a failure of
the local machine 10 to transmit a predetermined number of heartbeat messages to the
remote machine. In one of these embodiments, expiration of the license revokes
authorization for execution of an application program by the local machine 10.

In other embodiments, a session times out upon the expiration of a
predetermined period of time. In one embodiment, the management service 504
maintains session-related data after the expiration of a license until an expiration of a
session. In some embodiments, the session-related data may include information such
as session name, session id, client id, client name, session start time, server name
(UNC Path of File Server), application name (Unique name generated by local machine,
based on browser name), alias name, session state (active/licensed, active/unlicensed,
reconnected/unlicensed). In another embodiment, the local machine 10 ceases
transmission of heartbeat messages and restarts transmission of heartbeat messages
at a later point in time. In still another embodiment, the management service 504 may
reissue a license and make the maintained session-related data available to the local
machine 10 if the local machine 10 restarts transmission of heartbeat messages prior to
the expiration of the session.

Referring now to FIG. 17, a flow diagram depicts one embodiment of the steps
taken to request and maintain a license from a remote machine 30 for the duration of a
session on a local machine 10. In brief overview, an application streaming client
requests a license (step 1702). A remote machine 30 receives the request for the
license, verifies a ticket associated with the request, and generates a license (step
1704). The remote machine 30 provides the license and information associated with
the license to the local machine 10 (step 1706). The local machine 10 executes the
application as described above in connection to step 214 in FIG. 7. The local machine
transmits a heartbeat message indicating that the local machine has executed an
application (step 1708). The remote machine 30 receives the heartbeat message and
verifies identifying information transmitted with the heartbeat message (step 1708). The

109

WO 2007/121241 PCT/US2007/066433

remote machine 30 creates a session associated with the executed application and with
the local machine 10 (step 1710). A result of creating the session is transmitted to the
local machine 10 (step 1712). The local machine transmits heartbeat messages
throughout the execution of the application, as described above in connection with step
216 of FIG. 7. The local machine receives a response to a transmitted heartbeat
message (step 1714). The local machine transmits a heartbeat message indicating a
termination of an execution of the application (step 1716). The remote machine 30
receives the heartbeat message and determines whether to remove session related
data and whether to release the license associated with the local machine 10 and the
terminated application (step 1718). A result of the determination made by the remote
machine 30 is transmitted to the local machine 10 (step 1720).

Referring now to FIG. 17, and in greater detail, an application streaming client on
a local machine 10 requests a license (step 1702). In some embodiments, the local
machine 10 requests the license upon receiving access information associated with an
application program. In one of these embodiments, the local machine requests a
license from the remote machine 30 granting authorization for execution of the
application program by the local machine 10. In some embodiments, the request for the
license includes a launch ticket received from the remote machine 30 with the access
information. In other embodiments, an application streaming client 552 on the local
machine 10 transmits the request to a web interface 558 and the web interface 558
transmits the request to the remote machine 30. In still other embodiments, a session
management subsystem 510 on the remote machine receives and processes the
request for the license.

A remote machine 30 receives the request for the license, verifies a ticket
associated with the request, and generates a license (step 1704). In one embodiment,
the remote machine 30 verifies that the local machine 10 is authorized to execute the
application. In another embodiment, the remote machine 30 determines whether the
local machine 10 is already associated with an existing license. In still another
embodiment, the remote machine 30 determines that the local machine 10 is associated
with an existing license and provides the local machine 10 with an identifier for a

110

WO 2007/121241 PCT/US2007/066433

session management server 562 managing the existing license. In yet another
embodiment, the remote machine 30 generates and provides to the local machine 10 a
new license, a session identifier, and an identification of a session management server
562 managing the new license.

In some embodiments, the remote machine 30 uses a license management
subsystem 1510 to respond to a license request in an embodiment in which. The
license management subsystem 1510 receives a license request. The request can be
for a feature license or for a connection license. The license management subsystem
1510 determines if the license has already been granted, i.e., the feature has already
been started or a connection for a local machine already exists. If the license is already
granted, the license management subsystem 1510 sends a "grant" event to the license
requestor. If the license has not been previously granted, the license management
subsystem 1510 determines if a local license, i.e., a license that has been permanently
assigned to the remote machine 30, is available. In some embodiments, the license
management subsystem 1510 performs this determination by checking local memory. If
a local license is available, i.e., the remote machine 30 has more licenses permanently
assigned than currently granted, the license management subsystem 1510 sends a
"grant" event to the license requestor .

The remote machine 30 provides the license and information associated with the
license to the local machine 10 (step 1706). In one embodiment, upon receiving the
license, the session identifier, and the identification of the session management server
562 from the remote machine 30, the local machine 10 executes the application. The
local machine 10 may execute the application as described above in connection to step
214 in FIG. 7. The local machine transmits a heartbeat message indicating that the
local machine has executed an application (step 1708). In one embodiment, the local
machine transmits the heartbeat message to the remote machine 30 for transmission of
the heartbeat message to a session management server 562. In another embodiment,
the local machine 10 transmits a heartbeat message directly to a session management
server 562, responsive to an identifier of the session management server 562 received
from the remote machine 30.

111

WO 2007/121241 PCT/US2007/066433

The remote machine 30 receives the heartbeat message and verifies identifying
information transmitted with the heartbeat message (step 1708). In one embodiment, a
remote machine 30’ is the session management server 562. In another embodiment,
the session management server 562 verifies a server identifier provided with the
heartbeat message by the local machine 10. In still another embodiment, the server
identifier is the identifier provided to the local machine 10 by a remote machine 30.

The remote machine 30 creates a session associated with the executed
application and with the local machine 10 (step 1710). In one embodiment, the session
management server 562 creates a new session associated with the executing
application upon receiving the heartbeat message. In another embodiment, a third
remote machine 30 creates the new session. In some embodiments, the session
management server 562 stores session-related information upon the creation of the
new session.

A result of creating the session is transmitted to the local machine 10 (step
1712). In some embodiments, the result confirms the creation of the session. In other
embodiments, the result identifies the application or applications associated with the
session. The local machine transmits heartbeat messages throughout the execution of
the application, as described above in connection with step 216 of FIG. 7. In one
embodiment, the local machine 10 continues to transmit heartbeat messages at regular
intervals to the session management server 562 at periodic intervals throughout the
execution of the application program. The local machine receives a response to a
transmitted heartbeat message (step 1714). In one embodiment, the local machine 10
receives a confirmation of receipt of the heartbeat messages from the session
management server 562. In another embodiment, the local machine 10 receives a
command for execution from the session management server 562, responsive to the
receipt of a heartbeat message by the session management server 562.

The local machine transmits a heartbeat message indicating a termination of an
execution of the application (step 1716). The remote machine 30 receives the
heartbeat message and determines whether to remove session related data and
whether to release the license associated with the local machine 10 and the terminated

112

WO 2007/121241 PCT/US2007/066433

application (step 1718). A result of the determination made by the remote machine 30
is transmitted to the local machine 10 (step 1720).

Referring now to FIG. 18, a block diagram depicts one embodiment of states that
may be associated with a session monitored by a management service 504. In one
embodiment, a session maintenance subsystem 510 on the management service 504
monitors a session of a local machine 10 and assigns a state to the session. In another
embodiment, the session maintenance subsystem 510 maintains a list of license-related
data, which may include an identifier associated with the local machine, an identifier
associated with the session, a session state, and a timestamp indicating the last time
the remote machine 30 received a message from the local machine 10. In some
embodiments, the session maintenance subsystem 510 includes a session monitoring
thread. In one of these embodiments, the session monitoring thread awakens at a
periodic license timeout interval to scan the list of license-related data and update the
session status of a session.

A first state that a session may be in is an active and licensed state. In one
embodiment, when in this state, the local machine 10 has maintained a valid license
authorizing execution of an application. In another embodiment, a session
management server 562 maintains session-related data. In some embodiments, the
session management server 562 stores the session-related data on a second remote
machine. In one embodiment, when a local machine 10 initially executes an
application, the session for the local machine is in the active and licensed state.

A second state that a session may be in is an active and unlicensed state. In
one embodiment, a session is in this state when the local machine 10 fails to transmit
heartbeat messages and a license to the local machine 10 has expired. In another
embodiment, if a session is in this state then, while the license has expired, insufficient
time has elapsed for the session to expire, and the session is considered active. In
some embodiments, while a session is in this state, a remote machine 30 or a session
management server 562 may store session-related data on behalf of the local machine
10. In other embodiments, if a local machine 10 transmits a heartbeat message prior to
the expiration of the session, session-related data is transmitted to the local machine 10

113

WO 2007/121241 PCT/US2007/066433

with a new license and the session returns to the active and licensed state. In one
embodiment, a remote machine 30 uses session identifiers and identifiers associated
with the local machine to verify that the session has not expired and to provide the local
machine with the appropriate session-related data.

A third state that a session may be in is a disconnected and non-existent state.
When a session expires, session-related data is deleted.

A fourth state that a session may be in is a reconnected and unlicensed state. In
one embodiment, when a session on a local machine 10 expires, session-related data is
deleted. In another embodiment, when the local machine 10 transmits a new heartbeat
message, a new session identifier and local machine identifier are generated for the
local machine 10. In some embodiments, the local machine 10 re-authenticates to the
remote machine 30, receives a new license, and enters the active and licensed state.

Table 3 summarizes the states that may be associated with a session.

Session Status Description
ActivelLicensed Normal mode of operation
Active\Unlicensed Duration of missing heartbeats >

License Timeout
AND

Duration of missing heartbeats <

Session Timeout

Reconnected\Unlicensed Duration of missing heartbeats >

Session Timeout

OR CPS/RADE hosting the session is

down and back online

114

WO 2007/121241 PCT/US2007/066433

Table 3

In some embodiments, a packaging mechanism enables creation of a plurality of
application files associated with an application program. In one of these embodiments,
the packaging mechanism enables identification of a plurality of application files. In
another of these embodiments, the packaging mechanism enables grouping of
individual application files into the plurality of application files. In still another of these
embodiments, the packaging mechanism enables hosting of the plurality of application
files on a remote machine, such as a file server or application server.

In one embodiment, the packaging mechanism executes on a remote machine
described as a “staging machine.” In another embodiment, the packaging mechanism
executes on a “clean machine.” A clean machine may be a remote machine having
only an operating system installed on it, without additional software, drivers, registry
entries, or other files. In still another embodiment, the packaging machine executes on
a remote machine, the remote machine resembling a local machine on which an
application program may execute. In some embodiments, the remote machine on
which the packaging mechanism executes includes an isolation environment providing a
clean machine environment into which an application may be installed, even where the
remote machine is not itself a clean machine.

In one embodiment, the plurality of application files is referred to as a “package.”
In another embodiment, the package may be an archive file storing the plurality of
application files. In still another embodiment, the package may be an archive file storing
the plurality of application files and a file including metadata associated with at least one
file in the plurality of application files. In some embodiments, a package includes a
plurality of application files comprising an application program. In other embodiments, a
package includes a plurality of application files comprising a suite of application
programs. In yet other embodiments, a package includes a plurality of application files
comprising an application program and a prerequisite required for execution of the
application program.

In one embodiment, the packaging mechanism initiates execution of an

installation program in an isolation environment. In another embodiment, the packaging
115

WO 2007/121241 PCT/US2007/066433

mechanism monitors a change to the isolation environment generated by the installation
program. In still another embodiment, the packaging mechanism monitors a creation by
the installation program of a file in the isolation environment. In yet another
embodiment, the packaging mechanism monitors a modification by the installation
program of a file in the isolation environment. In some embodiments, the plurality of
application files includes a file created or modified by the installation program. In other
embodiments, the packaging mechanism implements a file system filter driver 564 to
monitor the isolation environment.

In some embodiments, a packaging mechanism may generate multiple pluralities
of application files, each comprising a different version of an application program
configured for execution in a different target environment. In one of these
embodiments, a plurality of application files is configured to execute on a local machine
having a particular operating system, revision level, language configurations and master
drive (e.g., one plurality of application files may be configured to execute on a local
machine having the Windows XP Professional operating system with revision level SP2
and above, using English and having a master Drive C:\). In another of these
embodiments, more than one plurality of application files may be combined in a single
archive file. In still another of these embodiments, each plurality of application files may
be referred to as a “target.” In yet another of these embodiments, an archive file
containing one or more pluralities of application files may be referred to as a “package.”

Referring now to FIG. 19, a block diagram depicts a package including two
targets, each target comprising a plurality of application files comprising an application.
In FIG. 19, the application program ‘Foo’ is packaged in two targets. The difference
between the two targets is ‘Target Language’. Specifically, target 1 supports ‘English’
and target 2 supports ‘German’. In one embodiment, an enumeration of available
application programs may list the application program ‘Foo.” In another embodiment,
the appropriate plurality of files is transmitted to a local machine requesting access to
the application program. In still another embodiment, a determination is made to
transmit a particular target to a local machine, responsive to an evaluation of the local
machine. In yet another embodiment, a file associated with the package identifies at

116

WO 2007/121241 PCT/US2007/066433

least one characteristic associated with a target in the package and required for
execution on a local machine.

In some embodiments, the packaging mechanism 530 prepares an application
program for streaming by executing an installation program associated with the
application program. In one of these embodiments, the packaging mechanism
generates an isolation environment on the remote machine 30 on which the packaging
mechanism executes. In another of these embodiments, the packaging mechanism
executes the application program in the isolation environment. In still another of these
embodiment, the packaging mechanism identifies a plurality of application files
generated or modified by the installation program. In yet another of these embodiment,
the packaging mechanism creates an archive file including the plurality of application
files. In one of these embodiments, the packaging mechanism creates a .CAB file
including the plurality of application files. In another of these embodiments, the
packaging mechanism creates a directory and stores the plurality of application files in
the directory. In some embodiments, the packaging mechanism stores the plurality of
application files on a file server or other remote machine 30. In other embodiments, the
packaging mechanism stores the plurality of application files on multiple remote
machines.

Referring now to FIG. 20, a flow diagram depicts one embodiment of the steps
taken in a policy-based method for effectively installing an application program without
rebooting an operating system. In brief overview, a packaging mechanism executes an
installer program within an isolation environment, the installer program installing at least
one application file associated with a second application into the isolation environment
(step 2002). A call by the installer program to at least one application programming
interface (API) is intercepted, the call requiring performance of an action after a reboot
of an operating system (step 2004). The action of the at least one intercepted call is
executed without reboot of the operating system (step 2006). An identification of a file
type of the at least one application file is received (step 2008). At least one execution
method is associated with the at least one installed application file, responsive to the
identified file type (step 2010). The at least one installed application file is stored on at

117

WO 2007/121241 PCT/US2007/066433

least one server (step 2012). An enumeration is generated of the second application,
the at least one installed application file, a location of the at least one server, and the at
least one execution method (step 2014).

Referring now to FIG. 20, and in greater detail, a packaging mechanism
executes an installer program within an isolation environment, the installer program
installing at least one application file associated with a second application into the
isolation environment (step 2002). In one embodiment, executing the installer program
within the isolation environment enables the packaging mechanism to isolate changes
made by the installer program to a file or registry on the local machine. In another
embodiment, the packaging mechanism intercepts a change requested by the installer
program and redirects the change to the isolation environment to prevent the change
from occurring on the local machine. In still another embodiments, the packaging
mechanism executes a second installer program within the isolation environment, the
second application installing at least one application file associated with a third
application into the isolation environment.

In some embodiments, the packaging mechanism executes the installer program
within the isolation environment, the installer program executing at least one executable
application associated with an application inside the isolation environment. In one
embodiment in which the installer executes an application, execution of the application
enables installation of a second application.

In another of these embodiments, installation of an application requires execution
of the at least one executable application, in addition to the execution of the installer
program. In still another of these embodiments, installation of an application requires
execution of an Internet browser application, in addition to the execution of the installer
program. In some embodiments, an installer program is executed to install a program
and execution of the installer program includes execution of a second program required
to install the program. In one of these embodiments, the program is a plug-in. In
another of these embodiments, the program is an Active X component. In still another
of these embodiments, the program is a Flash component. In yet another of these
embodiments, the program is a customized toolbar, such as a Yahoo! or Google

118

WO 2007/121241 PCT/US2007/066433

toolbar. In other embodiments, the program is a component installed into the second
program and not executable independent of the second program.

A call by the installer program to at least one application programming interface
(API) is intercepted, the call requiring performance of an action after a reboot of an
operating system (step 2004). The action of the at least one intercepted call is
executed without reboot of the operating system (step 2006). In some embodiments,
execution of the action comprises executing an action of a registry entry modified during
installation. Further details regarding the execution of the at least one intercepted call
without reboot of the operating system are provided in connection with FIG. 25 below.

An identification of a file type of the at least one application file is received (step
2008). At least one execution method is associated with the at least one installed
application file, responsive to the identified file type (step 2010). In one embodiment,
the at least one execution method enables streaming of the at least one application file
to a client. In another embodiment, the at least one execution method enables
execution of the at least one installed application file on a client. In still another
embodiment, the at least one execution method enables execution of the at least one
installed application file on a server. In yet another embodiment, the at least one
execution method enables streaming of the at least one application file to a server.

The at least one installed application file is stored on at least one server (step
2012). In some embodiments, the installed application program is executed within the
isolation environment prior to storing the at least one installed application file on at least
one server. In one of these embodiments, an additional application file is generated
responsive to the execution of the installed application program. In another of these
embodiments, a data file is generated. In still another of these embodiments, the
installed application program requires information to complete installation, the
information being required after an initial installation process. In yet another of these
embodiments, information such as software product identifiers, license identifiers, or
other credentials is required.

In some embodiments, an identifier is provided identifying a location of the at
least one installed application file on the at least one server. In one of these

119

WO 2007/121241 PCT/US2007/066433

embodiments, the identifier conforms to a Universal Naming Convention (UNC). In
other embodiments, the at least one installed application file is placed in an archive file,
such as a .CAB file. In one of these embodiments, a plurality of application files are
stored in an archive file and the archive file is stored on the at least one server. In still
another of these embodiments, the at least one installed application file is stored on
multiple servers. In still other embodiments, the at least one application file is placed in
a directory storing application files.

An enumeration is generated of the second application, the at least one installed
application file, a location of the at least one server, and the at least one execution
method (step 2014). In some embodiments, the enumeration is stored in a file. In other
embodiments, the enumeration is stored in a manifest file. In still other embodiments,
the enumeration is stored in an XML file.

In one embodiment, an enumeration is generated of multiple applications, a
plurality of installed application files associated with each of the multiple application, and
a location of at least one server storing the plurality of installed application files. In
another embodiment, a enumeration is generated including an association between the
second application and a plurality of installed application files. In still another
embodiment, an enumeration is generated including an association between the second
application and a compressed file containing the at least one installed application file

Referring now to FIG. 21, a flow diagram depicts one embodiment of the steps
taken in a policy-based method for installing an application program without rebooting
an operating system. In brief overview, a packaging mechanism executes an installer
program within an isolation environment, the installer program installing at least one
application file associated with a second application into the isolation environment (step
2102). A call by the installer program to at least one application programming interface
(API) is intercepted, the call requiring performance of an action after a reboot of an
operating system (step 2104). The action of the at least one intercepted call is
executed without reboot of the operating system (step 2106). An identification of a
characteristic of the at least one application file is received (step 2108). At least one
execution pre-requisite is associated with the at least one installed application file,

120

WO 2007/121241 PCT/US2007/066433

responsive to the identified characteristic (step 2110). The at least one installed
application file is stored on at least one server (step 2112). An enumeration is
generated of the second application, the at least one installed application file, a location
of the at least one server, and the at least one execution pre-requisite (step 2114).

Referring now to FIG. 21, and in greater detail, a packaging mechanism
executes an installer program within an isolation environment, the installer program
installing at least one application file associated with a second application into the
isolation environment (step 2102). In one embodiment, executing the installer program
within the isolation environment enables the packaging mechanism to isolate changes
made by the installer program to a file or registry on the local machine. In another
embodiment, the packaging mechanism intercepts a change requested by the installer
program and redirects the change to the isolation environment to prevent the change
from occurring on the local machine. In still another embodiments, the packaging
mechanism executes a second installer program within the isolation environment, the
second application installing at least one application file associated with a third
application into the isolation environment.

In some embodiments, the packaging mechanism executes the installer program
within the isolation environment, the installer program executing at least one executable
application associated with an application inside the isolation environment. In one
embodiment in which the installer executes an application, execution of the application
enables installation of a second application. In another of these embodiments,
installation of an application requires execution of the at least one executable
application, in addition to the execution of the installer program. In still another of these
embodiments, installation of an application requires execution of an Internet browser
application, in addition to the execution of the installer program.

Referring ahead to FIG. 23, a block diagram depicts one embodiment of a
system including a packaging mechanism 530 executing an installer program 2350 into
an isolation environment 532 and a file system filter driver 534 in communication with

the packaging mechanism 530 and the isolation environment 532.

121

WO 2007/121241 PCT/US2007/066433

In one embodiment, the packaging mechanism 530 generates a package (as
described above in connection with FIG. 21) by installing an application program into an
isolation environment 532. In another embodiment, the packaging mechanism 530
installs the application program into the isolation environment 532 by executing the
installer program 2350. In some embodiments, the packaging mechanism 530 includes
a graphical user interface. In one of these embodiments, the graphical user interface
enables a user of the packaging mechanism 530 to customize the generation of a
package by the packaging mechanism 530. In another of these embodiments the
packaging mechanism 530 is in communication with a graphical user interface on the
access control suite 520, enabling a user of the access control suite 520 to customize
the generation of a package by the packaging mechanism 530.

In some embodiments, the file system filter driver 532 enables the installation of
the application program in an isolation environment 532. In one of these embodiments,
the file system filter driver 532 intercepts a request by the installer program 2350. In
another of these embodiments, the file system filter driver 532 redirects the request by
the installer program 2350 to the isolation environment 532. In still another of these
embodiments, the file system filter driver 532 stores a record of the request made by the
installer program 2350. In yet another of these embodiments, the file system filter driver
532 stores a copy of a file created or modified by the installer program 2350. In some
embodiments, the stored records generated by the file system filter driver 532 are
stored together as a plurality of application files comprising an application program. In
other embodiments, the plurality of application files is stored on a file server 540.

Referring back to FIG. 21, a call by the installer program to at least one
application programming interface (API) is intercepted, the call requiring performance of
an action after a reboot of an operating system (step 2104). The action of the at least
one intercepted call is executed without reboot of the operating system (step 2106). In
some embodiments, execution of the action comprises installation of a driver configured
to be started upon the boot of the computer system. In other embodiments, execution
of the action comprises executing an action of a registry entry modified during

installation.

122

WO 2007/121241 PCT/US2007/066433

An identification of a characteristic of the at least one application file is received
(step 2108). In some embodiments, an identification of an operating system type is
received. In other embodiments, an identification of a language used by operating
system is received. In still other embodiments, an identification of a version of the
second application is received.

At least one execution pre-requisite is associated with the at least one installed
application file, responsive to the identified characteristic (step 2110). In one
embodiment, the at least one execution pre-requisite is associated with the at least one
installed application file responsive to an application of a policy to the characteristic. In
another embodiment, a script is associated with the at least one installed application
file, the script comprising an executable program determining the existence of the at
least one execution pre-requisite on a client. Referring ahead to FIG. 22, a screen shot
depicts one embodiment of an enumeration of scripts to be executed on the local
machine. A type of script 2202 indicates when the script should be executed, for
example, either before the execution of the application, or after termination of execution
of the application. An isolation indicator 24 indicates whether the script should be
executed in an isolation environment on the local machine 10. As shown in FIG. 22, in
some embodiments, the script was associated with the application program at the time
the plurality of application files were packaged together and stored on the remote
machine 30’ hosting the plurality of application files.

In some embodiments, the at least one execution pre-requisite requires
installation of a version of an operating system on a system executing the at least one
installed application file. In other embodiments, the at least one execution pre-requisite
requires installation of a version of the second application on a system executing the at
least one installed application file. In still other embodiments, an instruction is
associated with the at least one installed application file, the instruction indicating a
second installed application file for use by a client failing to satisfy the at least one
execution pre-requisite. In yet other embodiments, an instruction is associated with the
at least one installed application file, the instruction indicating a second execution
method for execution of the at least one installed application file on a client failing to

123

WO 2007/121241 PCT/US2007/066433

satisfy the at least one execution pre-requisite. In one of these embodiments, an
execution method is associated with the at least one installed application file, the
execution method authorizing streaming of a plurality of application files comprising the
second application to a local machine for execution on the local machine. In another of
these embodiments, an evaluation of a local machine identifies at least one
characteristic associated with the at least one installed application file not included on
the local machine. In still another of these embodiments, authorization for execution of
the plurality of application files is revoked. In yet another of these embodiments, a
second execution method is provided for executing the plurality of application files, the
second execution method enabling execution of the plurality of application files on a
remote machine and transmission of application output data from the remote machine to
the local machine.

The at least one installed application file is stored on at least one server (step
2112). In some embodiments, the installed application program is executed within the
isolation environment prior to storing the at least one installed application file on at least
one server. In one of these embodiments, an additional application file is generated
responsive to the execution of the installed application program. In another of these
embodiments, a data file is generated. In still another of these embodiments, the
installed application program requires information to complete installation, the
information being required after an initial installation process. In yet another of these
embodiments, information such as software product identifiers, license identifiers, or
other credentials is required.

In some embodiments, an identifier is provided identifying a location of the at
least one installed application file on the at least one server. In one of these
embodiments, the identifier conforms to a Universal Naming Convention (UNC). In
other embodiments, the at least one installed application file is placed in an archive file,
such as a .CAB file. In one of these embodiments, a plurality of application files are
stored in an archive file and the archive file is stored on the at least one server. In still
another of these embodiments, the at least one installed application file is stored on

124

WO 2007/121241 PCT/US2007/066433

multiple servers. In still other embodiments, the at least one installed application file is
placed in a directory storing application files.

An enumeration is generated of the second application, the at least one installed
application file, a location of the at least one server, and the at least one execution pre-
requisite (step 2114). In some embodiments, the enumeration is stored in a file. In
other embodiments, the enumeration is stored in a manifest file. In still other
embodiments, the enumeration is stored in an XML file.

In one embodiment, an enumeration is generated of multiple applications, a
plurality of installed application files associated with each of the multiple application, and
a location of at least one server storing the plurality of installed application files. In
another embodiment, a enumeration is generated including an association between the
second application and a plurality of installed application files. In still another
embodiment, an enumeration is generated including an association between the second
application and a compressed file containing the at least one installed application file

Referring back to step 2106, where an action of the at least one intercepted call
is executed without reboot of the operating system, in some embodiments, a virtualized
installation and execution environment is provided that removes the requirement of
rebooting the system before executing an installed application.

Referring now to FIG. 24, a flow chart depicts an embodiment in which execution
of an installer program requires rebooting of an operating system on a local machine on
which the installer program executes. A conventional application installer copies files
onto a remote machine where the application is being installed (step 2402). In some
embodiments, copying the files may cause a reboot of the remote machine. The
application installer attempts to copy at least one of the files to locked files (step 2404).
In one embodiment, a locked file may only be written to when an operating system is
executed (or “rebooted”). The MOVE_FILE_DELAY_UNTIL_REBOOT option is set in
the MoveFileEx()Win32 API (step 2406), and the application installer calls system
shutdown/reboot function (step 2408). Following a reboot, the originally locked files are
then installed upon reboot (step 2410).

125

WO 2007/121241 PCT/US2007/066433

Referring now to FIG. 25, a block diagram depicts one embodiment of a remote
machine 30 onto which a packaging mechanism installs an application program. The
remote machine 30 includes system resources 2502, system APIs 2504 and an
application installer 2506 used to install an application. The remote machine 30 also
includes a function-hooking mechanism 2508, a post-install processor module 2510 and
an application isolation environment 2512. In some embodiments, installing an
application program into an isolation environment 2512 enables installation without
reboot of the remote machine 30. In one of these embodiments, a change made to a
system resource 2502 virtualized in an isolation environment 2512 does not change a
corresponding system resource 2502 on the remote machine 30. Since the system
resource on the remote machine 30 is not changed, rebooting the machine to protect
the system resource from inappropriate changes is not required.

Referring now to FIG. 25, and in greater detail, the system resources 2502 may
include registry entries, system DLLs, and other locked files that the operating system
prevents from being written to while the remote machine 30 is executing. The system
APIs 2504 include APIs used to reboot the system that are called by the application
installer 2506 and hooked by the function-hooking mechanism 2508 to prevent the
rebooting of the remote machine 30.

The application isolation environment 2512 provides an environment with a view
of operating system resources to an application installer 2506. In one embodiment, the
application isolation environment 2512 is an isolation environment 556. In some
embodiments, the application isolation environment 2512 provides virtualization of
operating system resources such as the file system, registry and named objects. In one
embodiment, the application installer 2506 executes within the application isolation
environment 2512. In another embodiment, the application installer 2506 installs the
application program into the application isolation environment 2512. In still another
embodiment, the application installer 2506 executes outside the application isolation
environment 2512 and installs the application program inside the application isolation

environment 2512.

126

WO 2007/121241 PCT/US2007/066433

In some embodiments, the application isolation environment 2512 circumvents the
requirement for rebooting the remote machine 30 when the application installer 2506
installs an application into the application isolation environment 2512. In one
embodiment, the application isolation environment 2512 intercepts a request to copy an
application file to a locked file. In another embodiment, the application isolation
environment 2512 redirects the request to copy the application file to an unlocked file. In
still another embodiment, the application isolation environment 2512 redirects the
request to copy the application file to a virtualized file. In yet another embodiment,
redirecting the request to copy the application file enables installation of application files
without requiring a reboot of the remote machine 30. As an example, if an application
installer 2506 attempts to write to a locked file, such as c:\windows\system32\mfc40.dll,
the application isolation environment 2512 intercepts the request and redirect the file to
another, unlocked, location. This ability to avoid locked files means the file can be installed
without having to make use of the MoveFileEx() APl and
MOVE_FILE_DELAY_UNTIL_REBOOT flag. This ability in removes the need for a
reboot of the remote machine 30.

In one embodiment, the function-hooking mechanism 2508 is a file system filter
driver 564. In another embodiment, a file system filter driver 564 includes the function-
hooking mechanism 2508. In still another embodiment, the function-hooking mechanism
2508 intercepts requests from the application installer 2506 to restart the remote machine
30. In some embodiments, the application isolation environment 2512 provides for
copying of application files to unlocked files. However, the application isolation
environment 2512 does not address a request by the application installer 2506 for reboot
of the remote machine 30. The function-hooking mechanism 2508 intercepts the request
for reboot and responds to the application installer 2506.

The application isolation environment 2512 enables copying of application files to
unlocked files. However, in some embodiments, other actions are required for installation
of an application, and these actions may occur upon the reboot. Preventing the reboot
does not prevent the need to complete these actions in the installation process. The

127

WO 2007/121241 PCT/US2007/066433

function-hooking mechanism 2508 may provide functionality for carrying out an action
associated with an installation of an application

For example, during the installation of an application, registry entries such as
HKLM\SYSTEM\CurrentControlSet\Control\Session_Manager\Pending-
FileRenameOperations may be written. Other applications may install services or drivers
which need to be started upon boot of a machine. The Post Install Processor Module 2510
identifies application files that have been modified during installation, and carries out the
actions associated with the application files.

Referring now to FIG. 26, a flow diagram depicts one embodiment of the steps
followed to install an application in an application isolation environment 2512. The
application isolation environment 2512 provides a virtualized view of the server
operating system to the application installer (step 2602). The APIs on the server
relating to system reboots and shutdowns are hooked (step 2604) to prevent the
application installer 2506 from causing a reboot. The application installer 2506 requests
file-copying operations to locked files, the request being intercepted and redirected to
non-conflicting locations (step 2606). When the application installer 2506 attempts to
reboot by calling a system API, the request is intercepted and the reboot is prevented
(step 2608). The post-install processor module 2510 performs actions that ordinarily
occur after reboot (step 2610) and the application may then be executed in the
application isolation environment 2512 without reboot of a remote machine 30 (step
2612).

In some embodiments, following installation of the application program into the
application isolation environment 2512, a packaging mechanism identifies a plurality of
application files created or modified during installation of an application program. In one
of these embodiments, the plurality of application files are stored on a remote machine.
In another of these embodiments, a local machine retrieving the plurality of application
files may execute the application program.

In some embodiments, the packaging mechanism 530 executes on a remote
machine including an isolation environment 532 and a file system filter driver 534 and
installs an application program into the isolation environment 532. In one of these

128

WO 2007/121241 PCT/US2007/066433

embodiments, the remote machine is referred to as a “clean machine” or a “staging
machine.” In another of these embodiments, the isolation environment 532 includes an
application isolation scope providing a modifiable, virtualized instance of a native
resource provided by an operating system on the clean machine. In still another of
these embodiments, the isolation environment 532 includes a system isolation scope
providing a read-only view of the native resource. In yet another of these embodiments,
the read-only view of the native resource comprises a snapshot of a file system and
registry residing on the clean machine.

In one embodiment, a redirector intercepts a request for a change to the native
resource. In some embodiments, the redirector is a file system filter driver 534. In
another embodiment, an installer program executed by the packaging mechanism 530
makes the request for the change. In still another embodiment, the change to the native
resource is required to install an application program on to the clean machine. In yet
another embodiment, the redirector redirects the request to the isolation environment
532.

In some embodiments, redirecting requests to change native resources to the
isolation environment 532 results in isolation of changes associated with installation of
an application program. In other embodiments, the requests to change native
resources are recorded and stored in a storage element. In one of these embodiments,
all changes associated with installation of an application program reside in the storage
element. In another of these embodiments, a local machine 552 retrieving the contents
of the storage element and implementing the changes to native resources residing in an
isolation environment 556 on the local machine 552 result in installation of the
application program on the local machine 552.

In some embodiments, a pre-launch analysis of the local machine 10 may be
required. In one of these embodiments, the local machine 10 verifies that at least one
characteristic is included in the local machine 10. In another of these embodiments, the
at least one characteristic is added to the local machine 10 after the pre-launch analysis
determines that the local machine 10 lacks the at least one characteristic. In still
another of these embodiments, the at least one characteristic is included in a remote

129

WO 2007/121241 PCT/US2007/066433

machine hosting an application program and failure of the local machine to include the
at least one characteristic will prevent execution of the application program. In yet
another embodiment, the application program requires existence of the at least one
characteristic on the local machine for execution.

In some embodiments, the packaging mechanism enables identification of at
least one characteristic for use in a pre-launch analysis on the local machine. In other
embodiments, the packaging mechanism enables association of at least one
characteristic with an application program available for execution on the local machine.
In still other embodiments, the packaging mechanism enables association of an
executable script with an application program, the local machine executing the
executable script to complete the pre-launch analysis. In yet other embodiments, the at
least one characteristic is required to exist on the local machine after the execution of
the application program.

The packaging mechanism may provided functionality for signing a plurality of
application files. In one embodiment, signing the plurality of application files enables a
local machine to verify integrity of the plurality of application files. In another
embodiment, signing the plurality of application files prevents a local machine from
executing a corrupted application program. In some embodiments, a cryptographic
checksum, such as an MD4 hash, an MD5 hash, or a SHA-1 hash, of a file in the
plurality of application files is computed.

In other embodiments, a cryptographic checksum of every file in the plurality of
application files is computed. In one of these embodiments, the cryptographic
checksum is stored in a second file. In another of these embodiments, the second file is
associated with the plurality of application files. In some embodiments, the second file
is added to the plurality of application files. In other embodiments, the second file is
signed using a certificate, such as an X.509 certificate. In still other embodiments, a
local machine retrieving the plurality of application files verifies the signature using a
public portion of the certificate. In yet other embodiments, the local machine receives
the public portion of the certificate and an identification of a certificate trust list for

130

WO 2007/121241 PCT/US2007/066433

verification of the signature. In one of these embodiments, local machine receives a
registry key containing the identification of a certificate trust list.

In one embodiment, the packaging mechanism provides functionality for
customizing an isolation environment. In another embodiment, the packaging
mechanism provides functionality for generating a file storing a definition of an isolation
environment. In still another embodiment, the packaging mechanism includes the file
with the plurality of application files comprising an application program. In yet another
embodiment, a local machine receives the file with access information from a remote
machine.

In some embodiments, a plurality of application files are stored in an archive file.
In one of these embodiments, the archive file is in a CAB file format. In another of these
embodiments, the archive file format does not provide support for specification by an
application program of a short file names of a file. In still another of these
embodiments, an operating system, such as WINDOWS 2000 may not provide support
for specification by an application program of a short file names of a file. In other
embodiments, an operating system, such as WINDOWS XP, provides support for
specification by an application program of a short file name of a file. In one of these
embodiments, a request to execute the file must include the correct short file name of
the file.

In one embodiment, a mapping may be generated to associate a long file name
of a file in the plurality of application files with a short name of the file. In another
embodiment, the mapping is stored in a file in the plurality of application files. In still
another embodiment, a file has a short file name only if the long file name of the file is
longer than twelve characters. In some embodiments, the short file name is a virtual file
name associated with the file. In one of these embodiments, the file is transmitted to a
local machine 10 for execution where it is stored with a long file name. In another of
these embodiments, an application file on the local machine 10 requests execution of
the file using the short file name. In still another of these embodiments, the mapping
enables execution of the file although the request for execution of the file did not use the
name of the file on the local machine (the long file name).

131

WO 2007/121241 PCT/US2007/066433

In some embodiments, the packager mechanism 530 generates the mapping. In
one of these embodiments, the packager mechanism 530 selects a short file name for a
file having a long file name. In another of these embodiments, an operating system on
the remote machine 30’ on which the packager mechanism 530 is executing selects a
short file name for a file having a long file name. In still another of these embodiments,
a unique short file name is selected that does not conflict with a second short file name
on the remote machine 30’. In yet another of these embodiments, the installer program
executed by the packager mechanism 530 generates a file including a mapping
between a long file name with a short file name. In other embodiments, the mapping is
transmitted to a local machine 10 retrieving the file. In one of these embodiments, the
local machine 10 refers to the file when executing the file.

The following illustrative examples show how the methods and systems
discussed above can be used for selecting, streaming to a local machine, and executing
on the local machine a plurality of files comprising an application program. These
examples are meant to illustrate and not to limit.

EXAMPLE 1

In one embodiment, a user of a local machine 10 requests access to an
application program, such as a word processing program, a web browsing application,
or a spreadsheet program, identified in an enumeration of application programs. In one
example of this embodiment, the local machine 10 executes a program neighborhood
application that receives from a remote machine 30 an enumeration of applications
available to the local machine 10. In another example of this embodiment, the local

machine 10 communicates with a web server, such as remote machine 30", to receive
the enumeration of applications. The user of the local machine 10 may request access
to an enumerated application program by selecting a graphical depiction representing
the enumerated application program. The user of the local machine 10 may request
access to an application program not previously installed on the local machine 10.

The local machine 10 transmits the request to access the application program to
a remote machine 30. The local machine 10 receives an identification of a remote

machine 30" providing access to a plurality of application files comprising the application

132

WO 2007/121241 PCT/US2007/066433

program. The local machine 10 identifies at least one characteristic required for
execution of the application program. In one example of this embodiment, the local
machine 10 receives the at least one characteristic with the identification of the remote
machine 30” transmitted to the local machine 10 by the remote machine 30. In another
example of this embodiment, the local machine 10 retrieves the at least one
characteristic from the remote machine 30" after receiving the identification of the
remote machine 30”. The local machine 10 may be required to comprise the at least
one characteristic prior to receiving authorization to retrieve the plurality of application
files. Alternatively, the local machine 10 may be required to comprise the at least one
characteristic prior to executing the plurality of application files. In one example of this
embodiment, the local machine 10 may be required to comprise the at least one
characteristic throughout the execution of the plurality of application files.

Upon verification by the local machine 10 that the local machine 10 includes the
at least one characteristic, the local machine 10 retrieves a least one application file in
the plurality of application files and executes the retrieved application file to execute the
application program.

EXAMPLE 2

A remote machine 30 receives a request to access an application program from
a local machine 10. The remote machine 30 authenticates the local machine 10. In
one example of this embodiment, the remote machine 30 requests credentials, such as
a user name and password, from the local machine 10. In another example of this
embodiment, the remote machine 30 transmits a collection agent 404 to the local
machine 10. The collection agent 404 gathers information about the local machine 10
and transmits the information to the remote machine 30 for use in authenticating the
local machine 10. In still another example of this embodiment, the remote machine 30
provides information about the local machine 10 to a policy engine 406 for
authentication of the local machine 10. The remote machine 30 may comprise the
policy engine 406. Alternatively, the remote machine 30 may be in communication with
a remote machine 30’ comprising the policy engine 406.

133

WO 2007/121241 PCT/US2007/066433

The remote machine 30 selects a method of execution of the application
program. The remote machine 30 may make the selection responsive to the
authentication of the local machine 10. In one example of this embodiment, the remote
machine 30 applies a policy to information gathered about the local machine 10. In
another example of this embodiment, the remote machine 30 makes the selection
responsive to a policy applied to the application program. In still another example of
this embodiment, the remote machine 30 makes the selection responsive to a policy
applied to a file type associated with the application program. The remote machine 30
may consult a file to make the selection of the method of execution of the application
program.

The remote machine 30 may select a method of execution of the application
program enabling the local machine 10 to receive application-output data generated by
execution of the application program on a remote machine 30’. The remote machine 30
may select a method of execution of the application program enabling the local machine
10 to execute the application program locally after retrieving a plurality of application
files comprising the application program.

In one embodiment, the remote machine 30 selects a method of execution of the
application program enabling the local machine 10 to execute the application program
locally while retrieving a plurality of application files comprising the application program
across an application streaming session. In one example of this embodiment, the local
machine 10 establishes an application streaming session with a remote machine
hosting a plurality of application files, the local machine 10 initiates retrieval of the
plurality of application files across the application streaming session, and the local
machine 10 executes a retrieved first application file in the plurality of application files
while retrieving a second application file in the plurality of application files. In another
example of this embodiment, the local machine 10 executes a first application file in the
plurality of application files and retrieves a second application file in the plurality of
applications upon receiving a request from the first application file for access to the
second application file.

134

WO 2007/121241 PCT/US2007/066433

For embodiments in which the selected method of execution enables the local
machine 10 to retrieve at least one application file in a plurality of application files
comprising an application program, the remote machine 30 identifies a remote machine
30” hosting the application program available for access by the local machine 10. The
remote machine 30” hosts a plurality of application files comprising the application
program. The remote machine 30” may host multiple pluralities of application files
comprising various application programs. In one example of this embodiment, the
remote machine 30” hosts a plurality of application files for each of several different
versions of an application program.

The remote machine 30” hosts a file associating a plurality of application files
comprising a particular application program with a description of the application
program. The file may also identify one or more execution pre-requisites to be identified
on a machine prior to the transmission of the plurality of application files to the machine.
The file may further include an identification of a location on a network of the remote
machine 30”. In one example of this embodiment, the remote machine 30 consults the
file to identify the location on the network of the remote machine 30"

The remote machine 30 selects a remote machine 30”. The remote machine 30
may select a remote machine 30” having a location on a network accessible to the local
machine 10. The remote machine 30 may select a remote machine 30” hosting a
version of the application program compatible with the local machine 10. The remote
machine 30 transmits an identification of the selected method of execution of the
application program and an identification of the remote machine 30" to the local
machine 10 in response to receiving the request for access to the application program.
The remote machine 30 may also transmit the file to the local machine 10.

ExAMPLE 3

In one embodiment, the local machine 10 receives an identification of a selected
method of execution of an application program and an identification of a remote
machine 30” providing access to a plurality of application files comprising the application
program. The local machine 10 verifies authorization of access to the application
program. In one example of this embodiment, the local machine 10 performs a pre-

135

WO 2007/121241 PCT/US2007/066433

launch analysis of itself. The local machine 10 identifies at least one characteristic and
verifies the existence of the at least one characteristic on the local machine 10. The at
least one characteristic may be a pre-requisite to maintaining authorization to access
and execute the application program. Verifying the existence of the at least one
characteristic on the local machine 10 may ensure compatibility between characteristics
of the local machine 10 and the system requirements of the application program, and
may additionally ensure compliance with security policies or licensing agreements.
Upon successful completion of a pre-launch analysis, the local machine 10
establishes an application streaming session with the remote machine 30” providing
access to the plurality of application files. The application streaming session may be
any connection over which the local machine 10 may request and receive a file in the
plurality of application files. Establishment of the application streaming session may
enable the local machine 10 to execute a first application file in the plurality of
application files prior to retrieval of all files in the plurality of application files. The local
machine 10 may initiate execution of the application program while continuing retrieval
of additional application files in the plurality of application files. Alternatively, the local
machine 10 may retrieve the plurality of application files in an archive file and execute a
first extracted application file while extracting a second application file from the archive

file.

EXAMPLE 4

In one embodiment, an application streaming client 5§52 on a local machine 10
retrieves a plurality of application files from a remote machine 30. The application
streaming client includes a streaming service 554, an isolation environment 556, and a
file system filter driver 564. The streaming service 554 establishes an application
streaming session with the remote machine 30 for requesting and retrieving the plurality
of application files. The streaming service 554 executes the application files within the
isolation environment 556. The file system filter driver 564 enables execution of
application files within the isolation environment 556 by intercepting requests from the
execution application files and redirecting the requests to the isolation environment 556.

136

WO 2007/121241 PCT/US2007/066433

In one example of this embodiment, the streaming service 554 retrieves an
archive file including the plurality of application files comprising an application program.
The streaming service 554 extracts from the archive file a first application file from the
plurality of application files. The first application file may be an executable file. The
streaming service 554 may execute the first application file within the isolation
environment §56. Execution of the first application file may initiate execution of the
application program.

In another embodiment, a first application file executing within the isolation
environment 556 requests from the local machine 10 an enumeration of the plurality of
application files. The file system filter driver 564 intercepts the request for the
enumeration and redirects the request to the streaming service 554. In embodiments
where the streaming service 554 retrieved the plurality of application files, the streaming
service 554 may generate an enumeration of the plurality of application files. In
embodiments where the streaming service 554 retrieved an archive file including the
plurality of application files, the streaming service 554 may generate the enumeration of
the plurality of application files responsive to an enumeration included in the retrieved
archive file. In other embodiments, the streaming service 554 retrieves only the
enumeration of the plurality of application files while at least one application file in the
plurality of application files resides on a remote machine 30 and has not yet been
retrieved to the local machine 10 by the streaming service 554. In these embodiments,
the streaming service 554 may generate an enumeration of the plurality of application
files responsive to the retrieved enumeration. In one example of these embodiments,
the streaming service 554 indicates to the first application file that the plurality of
application files resides on the local machine 10, although only the enumeration resides
on the local machine 10.

EXAMPLE 5

In one embodiment, a first application file executing within the isolation
environment 556 requests from the local machine 10 access to a file identified by the
enumeration of the plurality of application files. If the requested file resides in a user

137

WO 2007/121241 PCT/US2007/066433

scope within the isolation environment 556 accessible to the first application file, the first
application file accesses the requested file.

If the requested file does not reside in the user scope or in the isolation
environment 556, the file system filter driver 564 intercepts the request and redirects the
request to the streaming service 554. If the requested file is a file within the archive file
containing the plurality of application files, the streaming service 554 extracts the
requested file and stores the requested file on the local machine 10. The streaming
service 554 may store the file within the isolation environment §56. The request for the
file is satisfied when the file is stored in the isolation environment 556.

If the requested file does not reside in the isolation environment 556 or in the
archive file including the plurality of application files, the streaming service 554 requests
the file from the remote machine 30. The streaming service 554 may receive the file
from the remote machine 30 across an application streaming session. The streaming
service 554 stores the received file in the isolation environment 556. The request for
the file is satisfied when the file is stored in the isolation environment 556.

In one example of this embodiment, a second application file executes in a
second user scope in the isolation environment 556. The second application file
requests access to the file originally requested by the first application file. If a copy of
the requested file does not reside in the second user scope, the copy of the requested
file stored in the isolation environment 556 is used to satisfy the request for the
application file.

EXAMPLE 6

In one embodiment, a local machine 10 receives from a remote machine 30 an
identification of a selected method of execution of an application program and an
identification of a remote machine 30’ providing access to a plurality of application files
comprising the application program. The local machine 10 successfully completes a
pre-launch analysis of the local machine 10. The local machine 10 receives a license
from the remote machine 30 authorizing execution of the application program. In one
example of this embodiment, the license requires the local machine 10 to transmit

heartbeat messages to a session management server 562 to maintain authorization to

138

WO 2007/121241 PCT/US2007/066433

execute the application program. Heartbeat messages may include messages
indicating initiation of execution of an application program, termination of execution of
an application program, and messages sent on a periodic basis throughout the
execution of the application program. Heartbeat messages may also include messages
about the status of the local machine 10, such as when the local machine 10 connects
to a network or when the local machine 10 terminates a connection to a network. In
another example of this embodiment, the license specifies a pre-determined period of
time during which the local machine 10 has authorization to execute the application
program.

The local machine 10 establishes an application streaming session with the
remote machine 30’ and retrieves at least one of the application files in the plurality of
application files. During execution of the at least one application file, in embodiments
where the received license requires transmission of heartbeat messages, the local
machine 10 sends heartbeat messages to the session management server 562 to
maintain authorization to execute the at least one application file.

EXAMPLE 7

In one embodiment, the local machine 10 receives an identification of a selected
method of execution of an application program and an identification of a remote
machine 30’ providing access to a plurality of application files comprising the application
program. The local machine 10 successfully completes a pre-launch analysis of the
local machine 10. The local machine 10 receives a license specifying a pre-determined
period of time during which the local machine 10 has authorization to execute the
application program.

The local machine 10 establishes an application streaming session with the
remote machine 30’ and retrieves at least one of the application files in the plurality of
application files. In one example of this embodiment, the local machine 10 retrieves a
subset of the plurality of application files, the subset comprising each file necessary to
execute the application program when the local machine 10 is not connected to a
network. The local machine 10 stores the subset in a cache on the local machine 10.

139

WO 2007/121241 PCT/US2007/066433

At a point in time within the pre-determined period of time, the local machine 10
is disconnected from a network and receives from a user of the local machine 10 a
request for access to the application program. In one example of this embodiment, the
local machine 10 is a device such as a laptop and the user of the local machine 10 is in
an environment prohibiting connections to networks, such as an airplane. Upon
receiving the request from the user, the local machine 10 may retrieve from the cache
an application file from the plurality of application files and execute the application
program.

EXAMPLE 8

In another embodiment, the local machine 10 receives an identification of a
selected method of execution of an application program and an identification of a
remote machine 30’ providing access to a plurality of application files comprising the
application program. The local machine 10 may receive an identification of a first client
agent residing on the local machine 10 to execute to retrieve the plurality of application
files, such as an application streaming client.

In one example of this embodiment, the local machine 10 fails to successfully
complete a pre-launch analysis of itself. The local machine 10 may lack a characteristic
required for compatibility with a requirement of the application program, such as a
particular device driver or operating system. The local machine 10 may lack a
characteristic required for compliance with a security policy, for example, membership in
a particular Active Directory or authorization for access to a private network. The local
machine 10 may be a type of machine incompatible with a requirement of the
application program, such as a personal digital assistant attempting to access a
computationally intensive application program, or a public machine at a kiosk attempting
to execute a secure application hosted by a remote machine on a private network.

The local machine 10 makes a determination not to retrieve the plurality of
application files across the application streaming session, responsive to the
determination that the local machine 10 lacks the at least one characteristic required for
access to the application program. The local machine 10 executes a second client
agent residing on the local machine 10 instead of executing the identified first client

140

WO 2007/121241 PCT/US2007/066433

agent. In one example of this embodiment, the local machine 10 receives an
identification of the second client agent to execute in the event of failure to successfully
complete the pre-launch analysis. The local machine 10 requests execution of the
application program on a remote machine 30”. The second client agent receives
application-output data generated by the execution of the application program on the
remote machine 30”. The second client agent displays the application-output data on
the local machine 10.

ExAMPLE 9

In one embodiment, an administrator of a network provides access to an
application program for users of local machines 10. The administrator executes an
application on a remote machine 30’ to generate a plurality of application files
comprising the application program. The application may include a graphical user
interface. The administrator may use the graphical user interface to identify the
application program and an installer program associated with the application program,
define policies to be applied in authorizing access to the application program, and
specify characteristics about the type of access provided, including requirements to be
satisfied by a local machine 10 attempting to access or execute the application
program. The administrator may identify an installer program installing an entire
application program, or a portion of an application program, such as an upgrade or
patch.

In one example of this embodiment, a remote machine 30 includes a packaging
mechanism 530. The packaging mechanism 530 executes the installer program within
an isolation environment 532 on the remote machine 30. Execution of the installer
program results in installation, into the isolation environment 532, of at least one
application file associated with the application program. The remote machine 30 may
include a file system filter driver 534, which ensures the installation of the application file
into the isolation environment 532 by intercepting a request by the installer program to
install the application file on the local machine 10, and redirecting the request to the
isolation environment 532. The packaging mechanism 530 may use the file system

141

WO 2007/121241 PCT/US2007/066433

filter driver 534 to maintain a record of each application file installed into the isolation
environment 532.

The installer program may install a plurality of application files into the isolation
environment 532. The packaging mechanism 530 generates a file including an
enumeration of application files in the plurality of application files. The file may include
information associated with the plurality of application files, such as the type of
application program the plurality of application files comprise, the version of the
application program, execution pre-requisites associated with the application program,
and policy requirements, such as a method of execution required for a particular
application program. The packaging mechanism 530 stores on a remote machine 30’
the plurality of application files and the file.

In one embodiment, the administrator of the network identifies an application
program comprising an updated version of an existing application program or

application file in a plurality of application files comprising an application program.

142

WO 2007/121241 PCT/US2007/066433

C. SYSTEMS AND METHODS FOR ACCELERATING CLIENT-SERVER
COMMUNICATIONS

An embodiment of the present invention is directed towards systems and
methods for accelerating client-server communications. These systems and methods
may be used alone or in concert, and may be used in conjunction with any of the
systems and methods for delivering a computing environment discussed above. In
particular, four general categories of acceleration techniques will be discussed.

1. Caching of Dynamically Generated Objects: In some embodiments, client-

server communications are accelerated by an appliance 1250 performing caching of
dynamically generated objects in a data communication network.

2. Connection Pooling: In some embodiments, client-server communications are
accelerated by an appliance 1250 performing connection pooling techniques.

3. Integrated Caching: In another embodiment, client-server communications

are accelerated by an appliance 1250 performing caching integrated with a plurality of
acceleration techniques.

4. Client-side Acceleration: In yet another embodiment, client-server

communications are accelerated by a program executing on a client 10 performing one

or more acceleration techniques.

1. Caching of Dynamically Generated Objects

As will be described in more detail herein, in one embodiment, an appliance 1250
may integrate caching functionality at the kernel level of the operating system with one
or more other processing tasks, including but not limited to decryption, decompression,
or authentication and/or authorization. Such an example architecture is described
herein in accordance with FIG. 27, but other architectures may be used in practicing the
operations described herein.

FIG. 27 illustrates an example architecture 3200 of an appliance 1250. As noted
above, architecture 3200 is provided by way of illustration only and is not intended to be

143

WO 2007/121241 PCT/US2007/066433

limiting. As shown in FIG. 2, example architecture 3200 consists of a hardware layer
3206 and a software layer divided into a user space 3202 and a kernel space 3204.

Hardware layer 3206 provides the hardware elements upon which programs and
services within kernel space 3204 and user space 3202 are executed. Hardware layer
3206 also provides the structures and elements which allow programs and services
within kernel space 3204 and user space 3202 to communicate data both internally and
externally with respect to appliance 1250. As shown in FIG. 27, the hardware layer
3206 includes a processing unit 3262 for executing software programs and services, a
memory 3264 for storing software and data, network ports 3266 for transmitting and
receiving data over a network, and an encryption processor 3260 for performing
functions related to Secure Sockets Layer processing of data transmitted and received
over the network. In some embodiments, the central processing unit 3262 may perform
the functions of the encryption processor 3260 in a single processor. Additionally, the
hardware layer 3206 may comprise multiple processors for each of the processing unit
3262 and the encryption processor 3260. Although the hardware layer 3206 of
appliance 1250 is generally illustrated with an encryption processor 3260, processor
3260 may be a processor for performing functions related to any encryption protocol,
such as the Secure Socket Layer (SSL) or Transport Layer Security (TLS) protocol. In
some embodiments, the processor 3260 may be a general purpose processor (GPP),
and in further embodiments, may be have executable instructions for performing
processing of any security related protocol.

Although the hardware layer 3206 of appliance 1250 is illustrated with certain
elements in FIG. 27, the hardware portions or components of appliance 1250 may
comprise any type and form of elements, hardware or software, of a computing device,
such as the computing device 135 illustrated and discussed in conjunction with FIGs.
1C and 1D herein. In some embodiments, the appliance 1250 may comprise a server,
gateway, router, switch, bridge or other type of computing or network device, and have
any hardware and/or software elements associated therewith.

The operating system of appliance 1250 allocates, manages, or otherwise
segregates the available system memory into kernel space 3204 and user space 3204.

144

WO 2007/121241 PCT/US2007/066433

In example software architecture 3200, the operating system may be any type and/or
form of Unix operating system. As such, the appliance 1250 can be running any
operating system such as any of the versions of the Microsoft® Windows operating
systems, the different releases of the Unix and Linux operating systems, any version of
the Mac OS® for Macintosh computers, any embedded operating system, any network
operating system, any real-time operating system, any open source operating system,
any proprietary operating system, any operating systems for mobile computing devices
or network devices, or any other operating system capable of running on the appliance
1250 and performing the operations described herein.

The kernel space 3204 is reserved for running the kernel 3230, including any
device drivers, kernel extensions or other kernel related software. As known to those
skilled in the art, the kernel 3230 is the core of the operating system, and provides
access, control, and management of resources and hardware-related elements of the
application 1250. In accordance with an embodiment, the kernel space 3204 also
includes a number of network services or processes working in conjunction with a cache
manager 3232. sometimes also referred to as the integrated cache, the benefits of
which are described in detail further herein. Additionally, the embodiment of the kernel
3230 will depend on the embodiment of the operating system installed, configured, or
otherwise used by the device 1250.

In one embodiment, the device 1250 comprises one network stack 3267, such as
a TCP/IP based stack, for communicating with the client 10 and/or the server 30. In one
embodiment, the network stack 3267 is used to communicate with a first network, such
as network 40, and a second network 40. In some embodiments, the device 1250
terminates a first transport layer connection, such as a TCP connection of a client 10,
and establishes a second transport layer connection to a server 30 for use by the client
10, e.g., the second transport layer connection is terminated at the appliance 1250 and
the server 30. The first and second transport layer connections may be established via
a single network stack 3267. In other embodiments, the device 1250 may comprise
multiple network stacks, for example 3267 and 3267, and the first transport layer
connection may be established or terminated at one network stack 3267, and the

145

WO 2007/121241 PCT/US2007/066433

second transport layer connection on the second network stack 3267°. For example,
one network stack may be for receiving and transmitting network packet on a first
network, and another network stack for receiving and transmitting network packets on a
second network. In one embodiment, the network stack 3267 comprises a buffer 3243
for queuing one or more network packets for transmission by the appliance 1250.

As shown in FIG. 27, the kernel space 3204 includes the cache manager 3232, a
high-speed layer 2-7 integrated packet engine 3240, an encryption engine 3234, a
policy engine 3236 and multi-protocol compression logic 3238. Running these
components or processes 3232, 3240, 3234, 3236 and 3238 in kernel space 3204 or
kernel mode instead of the user space 3202 improves the performance of each of these
components, alone and in combination. Kernel operation means that these components
or processes 3232, 3240, 3234, 3236 and 3238 run in the core address space of the
operating system of the device 1250. For example, running the encryption engine 3234
in kernel mode improves encryption performance by moving encryption and decryption
operations to the kernel, thereby reducing the number of transitions between the
memory space or a kernel thread in kernel mode and the memory space or a thread in
user mode. For example, data obtained in kernel mode may not need to be passed or
copied to a process or thread running in user mode, such as from a kernel level data
structure to a user level data structure. In another aspect, the number of context
switches between kernel mode and user mode are also reduced. Additionally,
synchronization of and communications between any of the components or processes
3232, 3240, 3235, 3236 and 3238 can be performed more efficiently in the kernel space
3204.

In some embodiments, any portion of the components 3232, 3240, 3234, 3236
and 3238 may run or operate in the kernel space 3204, while other portions of these
components 3232, 3240, 3234, 3236 and 3238 may run or operate in user space 3202.
In one embodiment, a kernel-level data structure is used to provide access to any
portion of one or more network packets, for example, a network packet comprising a
request from a client 10 or a response from a server 30. In some embodiments, the

kernel-level data structure may be obtained by the packet engine 3240 via a transport

146

WO 2007/121241 PCT/US2007/066433

layer driver interface or filter to the network stack 3267. The kernel-level data structure
may comprise any interface and/or data accessible via the kernel space 3204 related to
the network stack 3267, network traffic or packets received or transmitted by the
network stack 3267. In other embodiments, the kernel-level data structure may be used
by any of the components or processes 3232, 3240, 3234, 3236 and 3238 to perform
the desired operation of the component or process. In one embodiment, a component
3232, 3240, 3234, 3236 and 3238 is running in kernel mode 3204 when using the
kernel-level data structure, while in another embodiment, the component 3232, 3240,
3234, 3236 and 3238 is running in user mode when using the kernel-level data
structure. In some embodiments, the kernel-level data structure may be copied or
passed to a second kernel-level data structure, or any desired user-level data structure.
The cache manager 3232 may comprise software, hardware or any combination
of software and hardware to provide cache access, control and management of any
type and form of content, such as objects or dynamically generated objects served by
the originating servers 30. The data, objects or content processed and stored by the
cache manager 3232 may comprise data in any format, such as a markup language, or
communicated via any protocol. In some embodiments, the cache manager 3232
duplicates original data stored elsewhere or data previously computed, generated or
transmitted, in which the original data may require longer access time to fetch, compute
or otherwise obtain relative to reading a cache memory element. Once the data is
stored in the cache memory element, future use can be made by accessing the cached
copy rather than refetching or recomputing the original data, thereby reducing the
access time. In some embodiments, the cache memory element nat comprise a data
object in memory 3264 of device 1250. In other embodiments, the cache memory
element may comprise memory having a faster access time than memory 3264. In
another embodiment, the cache memory element may comrpise any type and form of
storage element of the device 1250, such as a portion of a hard disk. In some
embodiments, the processing unit 3262 may provide cache memory for use by the
cache manager 3232. In yet further embodiments, the cache manager 3232 may use

147

WO 2007/121241 PCT/US2007/066433

any portion and combination of memory, storage, or the processing unit for caching
data, objects, and other content.

Furthermore, the cache manager 3232 includes any logic, functions, rules, or
operations to perform any embodiments of the techniques described herein. For
example, the cache manager 3232 includes logic or functionality to invalidate objects
based on the expiration of an invalidation time period or upon receipt of an invalidation
command from a client 10 or server 30. In some embodiments, the cache manager
3232 may operate as a program, service, process or task executing in the kernel space
3204, and in other embodiments, in the user space 3202. In one embodiment, a first
portion of the cache manager 3232 executes in the user space 3202 while a second
portion executes in the kernel space 3204. In some embodiments, the cache manager
3232 can comprise any type of general purpose processor (GPP), or any other type of
integrated circuit, such as a Field Programmable Gate Array (FPGA), Programmable
Logic Device (PLD), or Application Specific Integrated Circuit (ASIC).

The policy engine 3236 may include, for example, an intelligent statistical engine
or other programmable application(s). In one embodiment, the policy engine 3236
provides a configuration mechanism to allow a user to identifying, specify, define or
configure a caching policy. Policy engine 3236, in some embodiments, also has access
to memory to support data structures such as lookup tables or hash tables to enable
user-selected caching policy decisions. In other embodiments, the policy engine 3236
may comprise any logic, rules, functions or operations to determine and provide access,
control and management of objects, data or content being cached by the appliance
1250 in addition to access, control and management of security, network traffic, network
access, compression or any other function or operation performed by the appliance
1250. In some embodiments, the policy engine 3236 may be integrated with
functionality of the policy engine 406. In one embodiment, the policy engine 3236 may
determine caching policy decisions based on information provided by a collection agent
404. In some embodiments, the policy engine 3236 may determine caching policy
decisions based on a type of application execution. In one embodiment, the policy
engine may determine caching policy decisions based on whether an application is

148

WO 2007/121241 PCT/US2007/066433

being streamed to a client 10. Further examples of specific caching policies are further
described herein.

The encryption engine 3234 comprises any logic, business rules, functions or
operations for handling the processing of any security related protocol, such as SSL or
TLS, or any function related thereto. For example, the encryption engine 3234 encrypts
and decrypts network packets, or any portion thereof, communicated via the appliance
1250. The encryption engine 3234 may also setup or establish SSL or TLS connections
on behalf of the client 10, server 30, or appliance 1250. As such, the encryption engine
3234 provides offloading and acceleration of SSL processing. In one embodiment, the
encryption engine 3234 uses a tunneling protocol to provide a virtual private network
between a client 10 and a server 30. In some embodiments, the encryption engine
3234 is in communication with the Encryption processor 3260. In other embodiments,
the encryption engine 3234 comprises executable instructions running on the
Encryption processor 3260.

The multi-protocol compression engine 3238 comprises any logic, business
rules, function or operations for compressing one or more protocols of a network packet,
such as any of the protocols used by the network stack 3267 of the device 1250. In one
embodiment, multi-protocol compression engine 3238 compresses bi-directionally
between clients 10 and servers 30 any TCP/IP based protocol, including Messaging
Application Programming Interface (MAPI) (email), File Transfer Protocol (FTP),
HyperText Transfer Protocol (HTTP), Common Internet File System (CIFS) protocol (file
transfer), Independent Computing Architecture (ICA) protocol, Remote Desktop Protocol
(RDP), Wireless Application Protocol (WAP), Mobile IP protocol, and Voice Over IP
(VolP) protocol. In other embodiments, multi-protocol compression engine 3238
provides compression of Hypertext Markup Language (HTML) based protocols and in
some embodiments, provides compression of any markup languages, such as the
Extensible Markup Language (XML). In one embodiment, the multi-protocol
compression engine 3238 provides compression of any high-performance protocol,
such as any protocol designed for appliance 1250 to appliance 1250 communications.
In another embodiment, the multi-protocol compression engine 3238 compresses any

149

WO 2007/121241 PCT/US2007/066433

payload of or any communication using a modified transport control protocol, such as
Transaction TCP (T/TCP), TCP with selection acknowledgements (TCP-SACK), TCP
with large windows (TCP-LW), a congestion prediction protocol such as the TCP-Vegas
protocol, and a TCP spoofing protocol.

As such, the multi-protocol compression engine 3238 accelerates performance
for users accessing applications via desktop clients, e.g., Microsoft Outlook and non-
Web thin clients, such as any client launched by popular enterprise applications like
Oracle, SAP and Siebel, and even mobile clients, such as the Pocket PC. In some
embodiments, the multi-protocol compression engine 3238 by executing in the kernel
mode 3204 and integrating with packet processing engine 3240 accessing the network
stack 3267 is able to compress any of the protocols carried by the TCP/IP protocol,
such as any application layer protocol.

High speed layer 2-7 integrated packet engine 3240, also generally referred to as
a packet processing engine or packet engine, is responsible for managing the kernel-
level processing of packets received and transmitted by appliance 1250 via network
ports 3266. The high speed layer 2-7 integrated packet engine 3240 may comprise a
buffer for queuing one or more network packets during processing, such as for receipt
of a network packet or transmission of a network packer. Additionally, the high speed
layer 2-7 integrated packet engine 3240 is in communication with one or more network
stacks 3267 to send and receive network packets via network ports 3266. The high
speed layer 2-7 integrated packet engine 3240 works in conjunction with encryption
engine 3234, cache manager 3232, policy engine 3236 and multi-protocol compression
logic 3238. In particular, encryption engine 3234 is configured to perform SSL
processing of packets, policy engine 3236 is configured to perform functions related to
traffic management such as request-level content switching and request-level cache
redirection, and multi-protocol compression logic 3238 is configured to perform
functions related to compression and decompression of data.

The high speed layer 2-7 integrated packet engine 240 includes a packet
processing timer 3242. In one embodiment, the packet processing timer 3242 provides

one or more time intervals to trigger the processing of incoming, i.e., received, or

150

WO 2007/121241 PCT/US2007/066433

outgoing, i.e., transmitted, network packets. In some embodiments, the high speed
layer 2-7 integrated packet engine 3240 processes network packets responsive to the
timer 3242. The packet processing timer 3242 provides any type and form of signal to
the packet engine 3240 to notify, trigger, or communicate a time related event, interval
or occurrence. In many embodiments, the packet processing timer 3242 operates in the
order of milliseconds, such as for example 100ms, 50ms or 25ms. For example, in
some embodiments, the packet processing timer 3242 provides time intervals or
otherwise causes a network packet to be processed by the high speed layer 2-7
integrated packet engine 3240 at a 10 ms time interval, while in other embodiments, at
a 5 ms time interval, and still yet in further embodiments, as short as a 3, 2, or 1 ms
time interval. The high speed layer 2-7 integrated packet engine 3240 may be
interfaced, integrated or in communication with the encryption engine 3234, cache
manager 3232, policy engine 3236 and multi-protocol compression engine 3238 during
operation. As such, any of the logic, functions, or operations of the encryption engine
3234, cache manager 3232, policy engine 3236 and multi-protocol compression logic
3238 may be performed responsive to the packet processing timer 3242 and/or the
packet engine 3240. Therefore, any of the logic, functions, or operations of the
encryption engine 3234, cache manager 3232, policy engine 3236 and multi-protocol
compression logic 3238 may be performed at the granularity of time intervals provided
via the packet processing timer 3242, for example, at a time interval of less than or
equal to 10ms. For example, in one embodiment, the cache manager 3232 may
perform invalidation of any cached objects responsive to the high speed layer 2-7
integrated packet engine 3240 and/or the packet processing timer 3242. In another
embodiment, the expiry or invalidation time of a cached object can be set to the same
order of granularity as the time interval of the packet processing timer 3242, such as at
every 10 ms

In contrast to kernel space 3204, user space 3202 is the memory area or portion
of the operating system used by user mode applications or programs otherwise running
in user mode. A user mode application may not access kernel space 3204 directly and

uses service calls in order to access kernel services. As shown in FIG. 27, user space

151

WO 2007/121241 PCT/US2007/066433

3202 of appliance 1250 includes a graphical user interface (GUI) 3210, a command line
interface (CLI) 3212, shell services 3214, health monitoring program 3216, and daemon
services 3218. GUI 210 and CLI 3212 provide a means by which a system
administrator or other user can interact with and control the operation of appliance
1250, such as via the operating system of the appliance 1250 and either is user space
3202 or kernel space 3204. The GUI 3210 may be any type and form of graphical user
interface and may be presented via text, graphical or otherwise, by any type of program
or application, such as a browser. The CLI 3212 may be any type and form of
command line or text-based interface, such as a command line provided by the
operating system. For example, the CLI 3212 may comprise a shell, which is a tool to
enable users to interact with the operating system. In some embodiments, the CLI 3212
may be provided via a bash, csh, tcsh, or ksh type shell. The shell services 3214
comprises the programs, services, tasks, processes or executable instructions to
support interaction with the appliance 1250 or operating system by a user via the GUI
3210 and/or CLI 3212.

Health monitoring program 3216 is used to monitor, check, report and ensure
that network systems are functioning properly and that users are receiving requested
content over a network. Health monitoring program 3216 comprises one or more
programs, services, tasks, processes or executable instructions to provide logic, rules,
functions or operations for monitoring any activity of the appliance 1250. In some
embodiments, the health monitoring program 3216 intercepts and inspects any network
traffic passed via the appliance 1250. In other embodiments, the health monitoring
program 3216 interfaces by any suitable means and/or mechanisms with one or more of
the following: the encryption engine 3234, cache manager 3232, policy engine 3236,
multi-protocol compression logic 3238, packet engine 3240, daemon services 3218, and
shell services 3214. As such, the health monitoring program 3216 may call any
application programming interface (API) to determine a state, status, or health of any
portion of the appliance 1250. For example, the health monitoring program 3216 may
ping or send a status inquiry on a periodic basis to check if a program, process, service

or task is active and currently running. In another example, the health monitoring

152

WO 2007/121241 PCT/US2007/066433

program 3216 may check any status, error or history logs provided by any program,
process, service or task to determine any condition, status or error with any portion of
the appliance 1250.

Daemon services 3218 are programs that run continuously or in the background
and handle periodic service requests received by appliance 1250. In some
embodiments, a daemon service may forward the requests to other programs or
processes, such as another daemon service 3218 as appropriate. As known to those
skilled in the art, a daemon service 3218 may run unattended to perform continuous or
periodic system wide functions, such as network control, or to perform any desired task.
In some embodiments, one or more daemon services 3218 run in the user space 3202,
while in other embodiments, one or more daemon services 3218 run in the kernel
space.

Dynamic content, such as one or more dynamically generated objects, may be
generated by servers, referred to as application or originating servers 30 and/or back-
end databases that process object requests from one or more clients 10, local or
remote, as depicted in FIG. 1A. As those applications or databases process data,
including data related to inputs received from clients, the response objects served by
these databases and applications may change. Prior objects generated by those
applications or databases in an originating server will no longer be fresh and therefore
should no longer be stored by a cache. For example, given the same set of inputs a
dynamically generated object of a first instance may be different than a dynamically
generated object of a second instance. In another example, the same object may be
dynamically generated with a different set of inputs such that a first instance of the
object is generated differently from a second instance of the object.

In order to achieve improved network performance, the appliance 1250 is
designed and configured to addresses the problems that arise in caching dynamically
generated content through a variety of methods, as described in detail below. In some
embodiments described herein, the appliance 1250 incorporates a set of one or more
techniques for making the invalidation of dynamically generated content stored in the
cache more efficient and effective. Furthermore, the appliance may incorporate

153

WO 2007/121241 PCT/US2007/066433

techniques for performing control and caching for flash crowds. Cache memories
typically store every response to a request for an object as long as such response is not
marked as non-cacheable. As described herein, efficient caching of dynamically
generated contents requires techniques that enable the timely invalidation of objects in
the cache memory that have undergone a change at the originating server. Timely
invalidation allows the cache to avoid serving stale content--a task of particular concern
with dynamically generated content, especially where changes to the content occur
irregularly. Set forth below are a number of techniques to ensure timely invalidation of
dynamically generated content.

a. Integrated Functionality

In one aspect, caching of dynamically generated objects is related to techniques
of integrating functions, logic, or operations of the cache manager 3232, policy engine
3236, encryption engine 3234, and/or the multi-protocol compression engine 3238 with
packet processing operations of the high-speed layer 2-7 integrated packet engine 3240
responsive to the packet processing timer 3242. For example, the operations of the
cache manager 3232 can be performed within the time intervals of the packet
processing timer 3242 used for packet processing operations, such as on a receipt or
transmit of a network packet. In one embodiment, by integrating with the packet
processing operations and/or using the packet processing timer, the cache manager
3232 can cache objects with expiry times down to very small intervals of time, as will be
described in further detail below. In other embodiments, the cache manager 3232
responsive to the packet processing timer 3242 can also receive an invalidation
command to invalidate an object within a very short time period of caching the object.

The method 3300 depicted in FIG. 28A illustrates one embodiment of a
technique for requesting the cache manager 3232, policy engine 3236, encryption
engine 3234, and/or the multi-protocol compression engine 3238 to perform an
operation during processing or in association with the time intervals for processing a
network packet by the high-speed layer 2-7 integrated packet engine or packet
processing engine 3240. In brief overview, at step 3310 of method 3300, the device

1250 receives a network packet or is requested to transmit a network packet. At step
154

WO 2007/121241 PCT/US2007/066433

3315, the device 31250 requests the packet processing engine 3240 to process the
network packet responsive to the packet processing timer 3242. As part of, or
associated with, packet processing operations, at step 3320, the packet processing
engine 240 requests the cache manager 3232, policy engine 3236, encryption engine
234, and/or the multi-protocol compression engine 3238 to perform an operation on a
cached object. At step 3325, the cache manager 3232, policy engine 3236, encryption
engine 234, and/or the multi-protocol compression engine 3238 performs the requested
operation, which may include any one or combination of the techniques described
herein. In one embodiment, the cache manager 3232 determines invalidation of a
cached object, and marks the cached object invalid. In some embodiments, the cache
manager 3232 flushes the invalid object in response to a request by the packet
processing engine 3240. As the cache manager 3232 is performing these operations
responsive to the packet processing timer 3242, invalidation of objects can occur within
time periods in the order of milliseconds and with objects having an expiry in the order
of the time intervals provided by the packet processing timer 3242, such as 10 ms.

In further detail of method 3300, at step 3310, the appliance 1250 receives one
or more network packets, and/or transmits one or more network packets. In some
embodiments, the appliance 1250 requests to transmit one or more network packets
over the network 40 or network 40’. In another embodiment, the appliance 1250
receives a network packet on one port 3266 and transmits a network packet on the
same port 3266 or a different port 3266’. In some embodiments, the packet engine
3240 of the appliance 1250 transmits or requests to transmit one or more network
packets. In one embodiment, the appliance 1250 receives or transmits a packet on a
first network 40, while in another embodiment, the appliance 1250 receives or transmits
a packet on a second network 40’. In other embodiments, the appliance 1250 receives
and transmits packets on the same network 40. In some embodiments, the appliance
1250 receives and/or transmits networks packets to one or more clients 10. In other
embodiments, the appliance 1250 receives and/or transmits networks packets to one or
more servers 30.

155

WO 2007/121241 PCT/US2007/066433

At step 3315, the device 1250 may request or trigger packet processing
operations of the packet processing engine 3240 upon receipt of a network packet at
the network port 3266 of the device 1250 or upon request to transmit a network packet
from the device 1250, or upon any combination of receipt and/or transmit of one or more
network packets. In some embodiments, the packet processing operations of the
packet processing engine 3240 are triggered via a signal provided by a packet
processing timer 3242. In one embodiment, the packet processing timer 3242 may
provide interrupt-driven or event-driven timer functionality related to the receipt and/or
transmission of one or more network packets. In some embodiments, the packet
processing timer 3242 is driven by a rate of receipt and/or transmit of network packets
via the device 1250, or by the rate by which each packet or a batch of packets are
processed. As such, the packet processing timer 3242 may be triggered and reset after
each set of one or more packet processing operations. In another embodiment, the
packet processing timer 3242 provides time intervals, either equal or variable time
intervals, to trigger, wake-up, or signal the packet processing engine 3240 to perform a
function or operation, such as handling a received packet or transmitting a submitted
packet. As discussed above in connection with the device 1250 of FIG. 27, the packet
processing timer 3242 may operate in the order of milliseconds, such as causing time
intervals or triggering of packet processing operations at intervals of 10ms or less. The
granular timer functionality of the packet processing timer may be provided in various
ways and used in operations of the packet processing operations of the packet
processing engine 3240.

At step 3320 of method 3300, the packet processing engine 3240 requests one
or more of the cache manager 3232, policy engine 3236, encryption engine 3234,
and/or the multi-protocol compression engine 3238 to perform an operation. In one
embodiment, the packet processing engine 3240 or packet processing timer 3242
generates a signal or signals to one or more of the cache manager 3232, policy engine
3236, encryption engine 3234, and/or the multi-protocol compression engine 3238. The
packet processing engine 3240 may request or signal the operation at any point before,
during, or after a packet processing operation of a network packet, or one or more

156

WO 2007/121241 PCT/US2007/066433

packets. In one embodiment, the packet processing engine 240 makes the request
upon trigger of the packet processing timer 3242 or expiration of a time interval provided
by the packet processing timer 3242, and before performing a packet processing
operation on a network packet. In another embodiment, during the course of performing
one or more packet processing operations, the packet processing engine 3240 makes
the request. For example, during execution of an operation, such as within a function
call, the packet processing engine 240 may make an application programming interface
(API) call to one of the cache manager 3232, policy engine 3236, encryption engine
3234, and/or the multi-protocol compression engine 238. In other embodiments, the
packet processing engine 3240 makes the request upon completion of a network packet
processing operation.

At step 3325, the requested operation is performed by one or more of the cache
manager 3232, policy engine 3236, encryption engine 3234, and/or the multi-protocol
compression engine 3238. In some embodiments, any functionality or operation
provided via the kernel 3204 may be requested to be executed, such as via a kernel
application programming interface (API). As such, any of the functions of the device
1250 may be performed in conjunction with the timing or timing intervals of packet
processing via the packet processing timer 3232. In some embodiments, the requested
operation is performed synchronously and in conjunction with the packet processing
operations of the packet processing engine 3240. For example, the packet processing
operations wait and continue upon a completion of, or response from, the requested
operation. In other embodiments, the requested operation is performed asynchronously
with the packet processing operations. For example, the packet processing engine
3240 sends a request to perform the operation but does not block or wait to receive a
response from the operation. As will be discussed in further detail in conjunction with
method 3350 depicted in FIG. 28B, the packet processing engine 3240 may request the
cache manager 3232 to perform any cache management function, such as checking for
expiry or invalidation of objects, marking objects as invalid, or flushing invalid or expired
objects.

157

WO 2007/121241 PCT/US2007/066433

In some embodiments, the packet processing engine 3240 at step 3320 sends
multiple requests, such as a first request to the cache manager 232 and a second
request to the encryption engine 3234. In other embodiments, the packet processing
engine 3240, at step 3320, sends a single request comprising multiple requests to be
distributed by the device 1250, such as via the kernel 3230 to the intended component
of the device 1250. In one embodiment, the requests are communicated subsequent to
each other. In another embodiment, requests may be dependent on the status, result,
success, or completion of a previous request. For example a first request to the policy
engine 3236 may be used to determine a policy for processing a network packet from
another device or a user associated with the network packet. Based on a policy of the
policy engine 3236, a second request to the cache may be made or not made
depending on a result of the first request. With the cache manager 3232, policy engine
3236, encryption engine 3234, and/or the multi-protocol compression engine 3238
integrated in the kernel space 204 of the device 1250 with the packet processing engine
3240, there are various operations of the device 1250 as described herein that may be
triggered by and integrated with packet processing operations.

b. Invalidation Granularity

In another aspect, caching of dynamically generated objects is related to and
incorporates the ability to configure the expiration time of objects stored by the cache to
fine granular time intervals, such as the granularity of time intervals provided by the
packet processing timer. This characteristic is referred to as "invalidation granularity."
As such, in one embodiment, objects with expiry times down to very small intervals of
time can be cached. In other embodiments, the cache manager responsive to a packet
processing timer can also receive an invalidation command to invalidate an object within
a very short time period of caching the object. By providing this fine granularity in expiry
time, the cache can cache and serve objects that frequently change, sometimes even
many times within a second. One technique is to leverage the packet processing timer
used by the device in one embodiment that is able operate at time increments on the
order of milliseconds to permit invalidation or expiry granularity down to 10 ms or less.

158

WO 2007/121241 PCT/US2007/066433

Traditional caches, by contrast, typically do not set expiry or invalidation granularity of
less than one second.

Referring now to FIG. 28B, an embodiment of a method 3350 is depicted for
invalidating or expiring a cached object responsive to the packet processing timer 3242
and/or packet processing engine 3240. As such, in some embodiments, cached objects
can be invalidated or expired in the order of milliseconds, such as 10ms or less. In
overview, at step 3355 of method 3350, the cache manager 3232 receives a signal or
request to perform an operation via the packet processing engine 3240 in response to
the packet processing timer 3242. At step 3360, the cache manager 3232 determines if
a cached object, such as a dynamically generated object, is invalid or expired. At step
3365, if the object is invalid, the cache manager 3232 marks the object as invalid, and
at step 3370, flushes the invalid object from the cache manager 3232.

In further detail of step 3355, in some embodiments, the cache manager 3232
may be signaled or requested to perform a cache related operation at any point of time
during network packet processing. In one embodiment, at step 3355, the cache
manager 3232 receives an operation request prior to the processing of a network
packet received or to be transmitted by the device 1250. In another embodiment, the
cache manager 3232 receives an operation request upon the completion of processing
of a network packet. For example, the packet processing engine 3240 completes
processing of a network packet, and before either waiting for the next time interval of
the timer 3242 or before processing the next packet, requests the cache to perform an
operation. In other embodiments, during an operation of packet processing, the packet
processing engine 3240 communicates an operation request to the cache manager
3232. In another embodiment, the cache manager 3232 receives a signal, such as from
the packet processing engine 3240 or packet processing timer 3242 to trigger the cache
manager 3232 to perform an operation. In some embodiments, the signal indicates to
invalidate a cached object or to expire an expiry of a cached object.

In some embodiments, the cache manager 3232 may receive a request to
perform a cache operation from an entity external to the cache manager 3232, such as
a request to invalidate an object communicated by a server 30, and processed by the

159

WO 2007/121241 PCT/US2007/066433

packet processing engine 3240. In one embodiment, the cache manager 3232 may
receive an invalidation request within 10 ms or less of caching the object, while in
another embodiment, as short as 5ms, 2ms or 1ms. In other embodiments, the cache
manager 3232 may perform a cache operation responsive to the operations or
functionality of the cache manager 3232, such as the expiration of a timer to cause an
object to be invalidated or during the processing of any cache command. In other
embodiments, the cache manager 3232 uses the packet processing timer 3242 of the
device 1250 to trigger cache operations. For example, the timer 2342 may trigger or
signal the cache to check for invalidation or expiry of a cached object at any time
interval capable of being set by the timer 3242. In one embodiment, the timer 3242 may
be set to trigger or signal the cache within 10ms or less of being set, or in another
embodiment, as short as 5ms, 2ms, or 1ms of being set. In some embodiments, the
originating server 30 may set the expiry time of the object. In other embodiments, the
appliance 1250 or client 10 may set the expiry time of the object.

At step 3360, the cache manager 3232 determines the invalidation or expiry of
an object stored in cache. In some embodiments, an object in cache is invalidated
based on the expiration of a timer. In one embodiment, the cache manager 3232 may
issue an invalidation command on an object based on the expiration of a timer. In
another embodiment, the object stored in cache is automatically invalidated by the
cache manager 3232 responsive to the expiration of a timer, such as a timer set with
the packet processing timer 3242. In some embodiments, responsive to the packet
processing timer 3242, the cache manager 3232 checks for the expiration of any timers
for cached objects. In one embodiment, the cache manager 3232 determines an object
timer has expired, while in another embodiment, the cache manager 3232 determines
the object timer has not expired. In a further embodiment, the cache manager 3232
responsive to a second trigger or second timer interval of the packer processing timer
3242 will check a second time if a previously checked object timer has expired.

In some embodiments, the cache manager 3232 parses, interprets, accesses,
reads or otherwise processes an invalidation command or request to identify the object
to invalidate in the cache. In one embodiment, an entity external to the cache manager

160

WO 2007/121241 PCT/US2007/066433

3232 issues an invalidation command to the cache manager 3232 to invalidate the
object. In another embodiment, the external entity may issue the invalidation command
responsive to a packet processing timer 3242. If the object is valid and/or has not been
invalidated, the cache manager 3232 invalidates the object responsive to the request.

In some embodiments, the invalidation request processed by the cache manager 3232
is responsive to the packet processing operations of the packet processing engine 3240
processing the request, which in turn may also be responsive to the packet processing
timer 3242.

At step 3365, the cache manager 3232 marks the object as invalid. The cache
manager 3232 may mark each object as invalid in any suitable or desired manner. In
one embodiment, an object is marked as invalid by setting a flag, attribute, or property
of the stored object. For example, a flag may be set to any value identifying to the
cache manager 3232 the object is invalid. In another embodiment, an object may be
marked as invalid by moving the object to an area or portion of the cache for storing
invalid objects. In other embodiments, the cache manager 3232 may identify or track
the invalid and/or valid state of a stored object by a database or a linked list or any type
and form of data structure. In some embodiments, the cache manager 3232 uses one
or more objects to identify or track the validity or invalidity of one or more objects stored
in cache. In another embodiment, the object is marked as invalid by changing,
modifying or altering the stored object, for example deleting or removing a portion of the
object so that is may not be used, or by changing or mangling the name of the object.

At step 3370, the cache manager 3232, in some embodiments, flushes from the
cache those objects marked as invalid. In another embodiment, the cache manager
3232 flushes the invalid object from cache upon request for the object, such as by a
client 10. In some embodiments, the cache manager 3232 overwrites the invalid object
with an updated copy or version of the object received after invalidation or expiration of
the object. In another embodiment, the cache manager 3232 reuses the cache memory
occupied by the invalid object by storing another to the same portion of cache memory.
In yet another embodiment, the cache manager 3232 does not flush the object marked
as invalid but keeps the object stored in memory or storage of the cache.,

161

WO 2007/121241 PCT/US2007/066433

Although method 3350 describes invalidation and flushing of cached objects
responsive to a packet processing timer and/or in conjunction with packet processing
operations to provide invalidation granularity, any operation of the cache and any
techniques of cache management as well as any other operation of the device 1250
described herein may be executed at fine granular time intervals provided by the packet
processing timer. In some embodiments, the invalidation or expiration of cached objects
can occur as short as a 100ms time interval, while in another embodiment, as short as a
50ms time interval. In some embodiments, the invalidation or expiration of cached
objects can occur as short as 25 ms time interval, and in other embodiments, as short
as a 10 ms time interval. While in other embodiments, the invalidation or expiration of
cached objects can occur as short as a 5 ms time interval, and still yet in further
embodiments, as short as a 3, 2, or 1 ms time interval.

By incorporating the capacity to invalidate objects after the elapse of very small
increments of time as described in methods 3300 and 3350 in conjunction with FIGs.
28A and 28B above, improved caching of dynamically generated content is enabled.
Some dynamic content is in fact amenable to being stored and served from a cache for
very short periods of time. To successfully cache such content, however, an approach
in accordance with one embodiment provides caching objects for very short periods of
time before the object is invalidated and flushed from the cache memory. For example,
certain dynamically generated objects may be cacheable for as long as 1 second but
anything longer is frequently unacceptable for content that is constantly changing. In an
embodiment, the approach included invalidating or expiring cached content after small
fractions of a second. As an example, if an application takes 100 milliseconds to
generate a dynamic response, then the cache can store and serve that response for a
duration of less than or equal to the period of 100 milliseconds, without compromising
the freshness of the data. There will not be a new object generated during that 100
millisecond period because it is shorter than the time it takes to generate a new object.
The appliance 1250 can thus be set up to serve the prior object during that duration.
The ability of the appliance 1250 to invalidate down to very small increments of time is

162

WO 2007/121241 PCT/US2007/066433

frequently very useful for application environments where the database transaction
isolation level is set to allow Repeatable Reads or Serialized Reads.
C. Invalidation Commands

Traditional caching technology invalidates stored content based on a pre-defined
expiry time for the content, which is typically configured either by the administrator or is
received from the server that served the object. Described below is another technique
for invalidating content in order to more efficiently cache dynamically generated content.
A technique includes the ability to receive at the appliance 1250 an invalidation
command that identifies one or more of the previously stored objects in the cache as
invalid in real time. For example, the invalidation command may be communicated via
a network packet transmitted to the client or an application programming interface (API)
call made by a server to the appliance. This differs from the traditional approach by
which the server simply sets a cache expiry time that it includes in the object header at
the time the object is served.

A technique is more specifically illustrated in FIGs. 29A and 29B. FIG. 29A is a
flow chart illustrating a method for maintaining a cache, such as a computer memory
cache. In brief overview and according to step 3410, dynamically generated objects
previously served from an originating server 30 are stored in the cache. For example,
the dynamically generated object may not be identified as cacheable or otherwise
include any cache or cache control information. At step 3420, an invalidation command
is received at the cache or cache manager 3232. The invalidation command identifies
one or more previously served objects as invalid. As step 3430, in response to the
invalidation command, the cache or cache manager 3232 marks the identified object as
invalid.

In further detail at step 3410, the cache manager 3232 stores in a cache memory
element a dynamically generated object received, obtained or communicate from any
source. In some embodiments, the dynamically generated object may be generated
and served from a server 30. In other embodiments, the dynamically generated object
may be generated and communicated by a client 10. In some embodiments, another

portion, component or process of the appliance 1250 generates the object and stores
163

WO 2007/121241 PCT/US2007/066433

the object in the cache. In further embodiments, the dynamically generated object may
be generated by another appliance 1250 or another computing device on the network
and transmitted or communicated to the appliance 1250. In some embodiments, the
dynamically generated object is not identified as cacheable or identified as non-
cacheable. In other embodiments, the dynamically generated object is identified as
cacheable or is under cache control.

At step 3420, the cache manager 3232 receives an invalidation command
identifying an object to invalidate, such a dynamically generated object stored in the
cache. In one embodiment, the invalidation command may comprise any type of
directive or instruction indicating to the cache that an object in invalid or otherwise may
be stale. In some embodiments, the invalidation command identifies the object and
may also identify the time at which the object is invalid as well as what portions of the
object may be invalid. In one embodiment, the cache manager 3232 provides an
application programming interface (API) that may be called remotely by an originating
server 30. In some embodiments, the cache manager 3232 may provide any type and
form of protocol for receiving commands and replying to commands via one or more
network packets. In one embodiment, the cache manager 3232 or device 1250
provides an Extensible Markup Language (XML) API interface for receiving and
processing invalidation commands. For example, the cache manager 3232 may
provide a web service interface. In some embodiments, the cache manager 3232
replies to the invalidation command by sending an acknowledgement, status or other
response to the originating server 30. In other embodiments, the cache manager 3232
does not reply to the invalidation command. In one embodiment, an object is marked as
invalid if an application running in an originating server 30 performed an action that
made the stored object stale, such as by generated a new or updated version of the
object. This could occur, for example, when news editors make changes to a fast
developing news story and therefore want to be assured the most recent version of the
story is being served to clients.

Invalidation commands may be issued from an originating server by the

application that generated the object, by another server 30 or another appliance 1250.

164

WO 2007/121241 PCT/US2007/066433

In one embodiment, the originating server 30 issues or communicates an invalidation
command to the cache 3232 automatically in response to a change to the dynamically
generated object on the originating server 30. The invalidation command can also be
generated by an administrative control outside or external to the server 30 and the
appliance 1250. For example, the administrative control may be any type and form of
program or application running on the network and in communication with the appliance
1250, such as administrator console. Furthermore, a client 10 could issue or
communicate an invalidation command to the appliance 1250 or cache manager 3232.
For example if the client were to take action that the client 10 recognizes would cause a
change to the requested objects at the originating server, the client may communicate
the invalidation command. Any object stored in the cache can be invalidated by the
transmission to the cache of a user command executed locally at the cache or invoked
remotely using the XML API infrastructure.

According to step 3430, an object stored in cache, e.g., a previously served
dynamically generated object, that has been identified as invalid is marked as such in
response to the invalidation command. An invalid object will not be provided to a
requesting client from the cache, but instead would be served directly from the
originating server. The cache manager 3232 may mark each object as invalid in any
suitable or desired manner. In one embodiment, an object is marked as invalid by
setting a flag, attribute, or property of the stored object. For example, a flag may be set
to any value identifying to the cache manager 3232 the object is invalid. In another
embodiment, an object may be marked as invalid by moving the object to an area or
portion of the cache for storing invalid objects. In other embodiments, the cache
manager 3232 may identify or track the invalid and/or valid state of a stored object by a
database or a linked list or any type and form of data structure. In some embodiments,
the cache manager 3232 uses one or more objects to identify or track the validity or
invalidity of one or more objects stored in cache. In another embodiment, the object is
marked as invalid by changing, modifying or altering the stored object, for example
deleting or removing a portion of the object so that is may not be used, or by changing
or mangling the name of the object.

165

WO 2007/121241 PCT/US2007/066433

In some embodiments, the appliance 1250 subsequently flushes from the cache
those objects marked as invalid. In another embodiment, the appliance 1250 flushes
the invalid object from cache upon request for the object, such as by a client 10. In
some embodiments, the appliance 1250 overwrites the invalid object with an updated
copy or version of the object. In another embodiment, the appliance 1250 reuses the
cache memory occupied by the invalid object by storing another dynamically generated
object to the same portion of cache memory.

With the command invalidation API of the cache manager 3232, any computing
device or user in communication with the appliance 1250 may request to invalidate an
object, such as a dynamically generated object, stored in the cache. As such, the
invalidation of objects stored in cache can be controlled real-time instead of using pre-
determined configuration expiry or invalidation time periods. Thus, using these
techniques the longevity of the cached objects can be controlled from external
application processing nodes such as databases or originating application servers. For
example, the appliance 1250 can be configured to work with a database such that a
change to the database automatically triggers an invalidation command from the
database (or application) to the appliance 1250 to flush a particular object or objects.

d. Invalidation of Groups Using Invalidation Command

In a further embodiment, the appliance 1250 identifies and invalidates at the
same time a group of objects stored by the cache. Objects stored in a traditional cache
memory are each treated individually and separately by the cache in determining
whether the object is stale. As each object reaches its specified expiry time (generally
as set by the server and stored by the cache in a table) that item is flushed from cache
memory. This traditional approach is inefficient and ultimately insufficient, however, to
successfully handle the challenges that arise in attempting to cache dynamically
generated content.

FIG. 29B illustrates another embodiment of a method for maintaining a cache,
such as a computer memory cache, wherein the appliance 1250 has the ability to
create, store, and invalidate groups of related objects that have been previously served

from an originating server 30. In brief overview, at step 3410, an object, such as a
166

WO 2007/121241 PCT/US2007/066433

dynamically generated object served from an originating server 30 is stored in the
cache. Atstep 3412, the cache manager 3232 forms a group of previously served
objects stored in the cache. In one embodiment, the group may be associated with or
identified by one or more object determinants as will be described in further detail
below. At step 3414, the cache manager 3232 maintains a record of the group of
objects. At step 3422, the cache manager 3232 receives an invalidation command to
invalidate the group of objects. At step 3432, the cache manager 3232 marks the group
of objects as invalid in response to the invalidation command.

Step 3410 is the same as in FIG. 29A, wherein an object is stored in the cache of
the appliance 1250, such as dynamically generated objects previously served from an
originating server 30. In some embodiments, one or more of the objects may not be
identified as cacheable, or otherwise may not have any cache or cache control
information. For example, the server 30 may assume the dynamically generated
objects will not be cached.

According to step 3412, the appliance 1250 forms a group out of a set of the
objects previously served from the originating server 30 and stored in the cache. Any
suitable or desired set of objects may be associated with each other to form a group.
For example, any dynamically generated objects generated for, or associated with,
serving a web page may form a group. In some embodiments, an object may be
associated with multiple groups. In other embodiments, one group of objects may form
a subset of another groups of objects. In some embodiments, the formed group of
objects have objects served from the same server 30, while in other embodiments, the
formed group of objects have objects served from different servers 30. In further
embodiments, the formed group of objects may comprise objects from a client 10,
objects from a server 30, or objects generated by or served from both clients 10 and
servers 30. In one embodiment, one object in the group is static while another object in
the group is dynamically generated. In some cases, one object in the group is not
identified as cacheable while another object in the group is identified as cacheable. In
other cases, the objects in the group may be logically related in accordance with

167

WO 2007/121241 PCT/US2007/066433

functionality or application provided by a server 30. In another case, the objects in the
group may be related as associated with the same client 10 or the same user.

In step 3414, a record of the group of objects is maintained. Various techniques
for recording and maintaining a record of a group of objects, or otherwise associating
objects, may be used in practicing some embodiments of the operations described
herein. In one embodiment, the record may be maintained directly in, for example, a
look-up table. In another embodiments, the records could be represented in a hash-
table format. In some embodiments, the cache manager 3232 maintains the
association of objects in a database, or a data structure or object in memory. In further
embodiments, a flag, property or attribute of each object in the group is assigned or set
to a value identifying the group, such as a value equal to, identifying, or referencing the
name or identifier of the group, such as a group’s object determinant that will be
described in more detail below. In some embodiments, a group of objects is arranged,
placed or located in a portion of cache memory identified as holding the group

In step 3422, an invalidation command is received at the appliance 1250 or
cache manager 3232. According to the embodiment described in FIG. 29B, the
invalidation command identifies that one or more objects are invalid, or otherwise are
stale. In some embodiments, the invalidation command references, identifies or
specifies a name or identifier of the group of objects. In one embodiment, the
invalidation command comprises a single invalidation request to invalidate all the
objects in the group. In another embodiment, the invalidation command identifies one
object in the group to invalidate. In other embodiments, the invalidation command
comprises a plurality of invalidation request to invalidate a plurality of objects in the
group

According to step 3432, the group of previously served objects is marked as
invalid if the invalidation command references, identifies, or specifies an object of the
group as invalid, each object in the group as invalid, or the group as invalid. In some
embodiments, if the invalidation command identifies an object in the group as invalid,
the cache manager 3232 marks the object as invalid. In other embodiments, if the
invalidation command identifies an object in the group as invalid, the cache manager

168

WO 2007/121241 PCT/US2007/066433

3232 marks the group of objects as invalid or each object in the group as invalid. In yet
further embodiments, the cache manager 3232 may only invalidate the group of objects
when a plurality of objects are identified as invalid via one or more invalidation
commands. In another embodiment, the invalidation command may specify a name or
identifier of the group, and the cache manager 3232 marks the group as invalid, or each
object in the group as invalid.

In one embodiment, the appliance 1250 or cache manager 3232 flushes from the
cache memory a group of objects that has been marked as invalid. In some
embodiments, the objects in the group may be flushed from cache memory only when
each object in the group is marked as invalid. In other embodiments, if one object of the
group has been marked as invalid then the entire group is flushed. In another
embodiment, the group of objects, or any object in the group, marked as invalid may be
flushed upon receipt of a request for the group of objects, or any object in group, by a
client 10. In other embodiments, the group of objects, or any object in the group,
marked as invalid may be flushed upon receipt of a response from a server 30 provide
one or more new objects in the group.

An example of the above described embodiments follows. Customer resource
management ("CRM") applications are used by many businesses to track and evaluate
all aspects of resource management. Often, CRM applications are implemented and
accessed over private and public networks including the Internet. These applications,
which provide access to large amounts of data that is frequently being accessed, thus
benefit from caching the data generated by such applications. For example, sales
reports are frequently generated and served to remotely connected users. These sales
reports are built by the relevant application through compiling data from sales
information that is posted to such application servers and/or their underlying databases.
As many users request the same document (i.e., a certain sales report), without
caching, the application server must re-generate the object for each request. If,
however, such objects can be stored in the cache, then application and database
processing is conserved, including potentially valuable bandwidth, as the cache is
placed closer to the requesting clients.

169

WO 2007/121241 PCT/US2007/066433

The challenge for caching such objects arises because each time a new sale is
posted to the application running at the originating server (or to its underlying database),
the information in the sales report needs to be updated. As a result, all sales reports
that may have been stored in any caches supporting these application servers must be
invalidated and the content flushed out of cache memory. The traditional approach to
caching, however, has no way of accurately determining when the change to the
underlying database or application is going to occur and therefore cannot reasonably
evaluate the freshness of dynamic content. Every time a change occurs in database or
application or originating server, the cache has to be able to identify that the change has
been made, and which group of objects should be invalidated as a consequence of
such change. Generation of invalidation commands that contain object determinants
linked to groups of previously served objects, as described above, can meet this need.

Multiple groups of related objects may be formed at a single hierarchical level.
Alternatively, sub-groups of objects may be formed to create multiple hierarchical levels.
In an embodiment, the groups or sub-groups of objects may be pre-designated by a
user. In another embodiment, a user may establish rules by which the appliance 1250
automatically forms groups of related objects, and associates object determinants
therewith.

e. Identification of Object Determinants in a Client Request or Response

An embodiment also addresses the need to be able to identify all objects affected
by a state change at the originating application server 30 (and/or underlying database)
by generating groupings of objects and implementing parameterized invalidation. In this
embodiment, any object or pre-defined group of objects can be invalidated by an
intercepted HTTP request, for example from a client, that the cache parses in order to
identify an object determinant. The term "object determinant” refers to any information,
data, data structure, parameter, value, data pattern, request, reply, or command that
references, identifies or specifies one object or a set of objects, uniquely or otherwise.

In some embodiments, an object determination is a pattern of bytes or characters in a
communication that may be associated with an object or used to uniquely identify that

the communication is associated with, or referencing, the object. In one embodiment,
170

WO 2007/121241 PCT/US2007/066433

an object determinant indicates whether change has occurred or will occur, in the
originating server, to a group of previously served objects stored in the cache manager
3232 with which the object determinant is associated. In some embodiments, the
objects in a group of objects are related in that they are associated with at least one
object determinant. Specific, non-limiting examples of object determinants and further
illustrations of their use are described more fully below.

In some embodiments of the present embodiment, object determinants are
certain pre-defined parameters or data structures included or embedded in a client
request or response. In other embodiments, the client 10, server 30 or appliance 1250
embeds in a communication one or more object determinants, such as pre-defined
strings or sets of characters representing the object determinant. The object
determinants indicate whether such request will have the effect of causing a change in
the state of objects stored in the originating server 30 or databases linked thereto. In
one embodiment, the existence of the object determinant in a request indicates a
change has or will occur to an object. In another embodiment, the syntax, structure,
parameter, or value of the object determinant indicates a change has or will occur to an
object. In an embodiment, the cache receives an object request from a client 10. The
request may include certain parameters or values (object determinants) that the cache
recognizes will change the state of the originating server or application server which will,
as a consequence, make stale certain related objects stored by the cache manager
3232 that had been previously generated by such originating server or application
server 30. Depending on the invalidation policy set by the user, the parameters (object
determinants) may require invalidation of one or more previously served objects or
group of objects, by the originating server, that have been stored by the cache. The
cache is configured to identify the relevant objects that will be effected by this state
change (i.e., those objects or groups of objects linked to the object determinant), and
invalidate these objects via the method marking each of the objects as invalid and/or
flushing such objects from the cache memory.

The above described technique is illustrated in FIG. 29C. As with other
embodiments described herein, step 3410 comprises storing, in the cache, objects,

171

WO 2007/121241 PCT/US2007/066433

such as dynamically generated objects previously served from an originating server.
The objects could be generated by an application running on the originating server 30,
or could be drawn, for example, from a database accessed by the originating server 30.
In some embodiments, the dynamically generated objects are identified as not
cacheable or otherwise not identified as cacheable.

According to step 3421, the cache intercepts or otherwise receives a
communication between the client and the server, such as a request from a client or a
response from a server. In some embodiments, the request is for a specified object, the
object having been previously served and stored in the cache. In another embodiment,
the communication includes a response from a server having a requested object. In one
embodiment, such receipt or interception occurs according to established caching
protocol and communications standards. Although the cache manager 3232 or
appliance 1250 may be generally described as receiving a request, response or
communication, in receiving such request, response or communication, the cache 3232
or appliance 1250 may intercept or obtain by any suitable means and/or mechanisms
the request, response or communication even though not communicated directly or
explicitly to the cache.

In step 3423, an object determinant is identified in the intercepted
communication. The cache manager 3232 may extract, interpret, parse, access, read,
or otherwise process the intercepted communication to determine or identify one or
more objects determinants in the communications. Any parameter, value, syntax, data,
structure or set of one or more characters of the communication may be used to identify
an object determinant. In one embodiment, the cache manager 3232 may identify the
name or identifier of an object in a request from the client 10 to the server 30, in which
the client requests the object. In another embodiment, the cache manager 3232 may
identify the name or identifier of a first object in the request of the client 10 or response
from the server 30 that indicates a change has occurred or will occur to a second object
stored in the cache. In other embodiments, the cache manager 3232 determines if any
patterns of characters in the request match any object determinants associated with an
object or group of objects in the cache. In some embodiments, an object determinant

172

WO 2007/121241 PCT/US2007/066433

may be determined for an object not currently stored in cache. In other embodiments,
an object determinant may be determined for an object currently marked as invalid. In
other embodiments, an object determinant for a requested object is determined to be
associated with an object determinant of a cached object. In yet another embodiment,
upon the first reference, request, or response for an object in a communication, the
cache manager 3232 establishes the identified object determinant as the object
determinant for the object.

By receiving and parsing the communication, such as a client request or server
response, to identify an object determinant, the cache manager 3232 or appliance 1250
may effectively determine whether to mark as invalid a cached object that has been
associated with the identified object determinant. Thus, according to step 3425, a
determination is made as to whether the object determinant indicates a change to the
cached object. In some embodiments, the identified object determinant may be part of
a communication that does not alter, modify or generate an object. In other
embodiments, the identified object determinant is a part of a communication that
indicates a change has occurred or will occur to the object associated with the object
determinant. For example, the communication may be a get request for a dynamically
generated object or a submit request that will change the data used for one or more
dynamically generated objects. In some embodiments, the existence of the object
determinant in the communication indicates a change has or will occur on one or more
objects. In another embodiment, the type or name of a command, directive or
instruction in the communication along with the object determinant indicates a change
has or will occur on one or more objects. In yet a further embodiment, the existence,
value or setting of a parameter or variable of a command, directive or instruction
indicates a change has or will occur on one or more objects associated with an object
determinant.

In other embodiments, the cache manager 3232 performs a hash function,
algorithm, or operation on the intercepted communication or object determinant to
determine if a change has occurred in the object. In some embodiments, the hash
value is compared with a previous stored hash value for the object and if different then

173

WO 2007/121241 PCT/US2007/066433

the cache manager 3232 recognizes the object has changed. In yet another
embodiment, a hash value for the object may be included in the communication or
object determinant. In one embodiment, the communication indicates the object has
changed by the value or setting of a parameter, such as with a Boolean flag. In other
embodiments, an entity tag control and validation mechanism as will be described in
more detail below may be used to identify the object and determine if the object has
changed.

If a change is indicated, then at step 3431, then the object associated with or
identified by the object determinant is marked as invalid. In some embodiments, an
object requested by the intercepted communication is marked as invalid in accordance
with step 3431, and retrieved from the originating server 30 in accordance with step
3440. Otherwise, in other embodiments, the requested object is retrieved from the
cache in accordance with step 3450. In one embodiment, any object marked as invalid
will be flushed from the cache.

f. Invalidation of Groups of Objects Based on Object Determinants

The above embodiment describes the case of invalidating a previously served
object in the cache manager 3232 based on identification of an object determinant in
the client request. This general concept may also be used, in another embodiment, to
identify and invalidate a group of objects with which one or more object determinants
have been associated. This embodiment is illustrated in FIG. 29D.

The method described in FIG. 29D begins in the same fashion as the method of
FIG. 29C. Step 3410 comprises storing, in the cache, objects, such as dynamically
generated objects previously served from an originating server. In some embodiments,
one or more of the objects are not identified as cacheable. According to step 3412 and
similar to FIG. 29B, previously served objects are formed into groups. In one
embodiment and in accordance with the object determinant technique, a group of
objects is associated with or identified by at least one object determinant. As described
more fully below, in some embodiments, the association of groups with object
determinants depends on the nature and details of the users caching policy, such as a

policy defined, controlled or used by the policy engine 3236. In other embodiment, the
174

WO 2007/121241 PCT/US2007/066433

one or more object determinant of the group comprises the one or more object
determinants of the objects in the group. In another embodiment, the object
determinant of the group comprises a combination of object determinants of objects in
the group.

According to step 3414, a record is maintained of the group, along with its
associated object determinants, if applicable. This step is similar to step 3414,
illustrated in FIG. 29B. In one embodiment, the record and/or any object determinants
of the group is maintained in a look-up table. In other embodiments, the record and/or
any object determinants of the group may be maintained in a hash-table format. The
hash-table may be designed to efficiently store non-contiguous keys that may have wide
gaps in their alphabetic and numeric sequences. In another embodiment, an indexing
system can be built on top of a hash-table. In some embodiments, the cache manager
232 maintains the association of objects as a group with one or more object
determinants in a database, or a data structure or object in memory. In further
embodiments, a flag, property or attribute of each object in the group is assigned or set
to a value identifying the group, such as a value equal to, identifying, or referencing the
name or identifier of the group, or a group’s object determinant. In some embodiments,
a group of objects is arranged, placed or located in a portion of cache memory identified
as holding the group. In another embodiment, the one or more object determinants are
stored in association with the group of objects.

Steps 3421 and 3423 are similar to steps 3421 and 3423 as illustrated in FIG.
29C. According to step 3421, the cache manager 3232 or appliance 1250 intercepts or
otherwise receives a communication between the client 10 and server 30, such as a
request from a client for an object previously served and stored in the cache. In one
embodiment, the cache manager 3232 intercepts a request from the client 10 to the
server 30. In some embodiments, the request is for an object stored in cache. In other
embodiments, the request is an instruction, command or directive to the server 30 that
will cause a change to an object stored in cache, such as to cause an object to be
dynamically generated. In another embodiment, the cache manager 3232 intercepts a

175

WO 2007/121241 PCT/US2007/066433

response from a server 30 to the client 10 comprising or identifying an object stored in
cache.

In step 3423, an object determinant is identified in the intercepted
communication. As noted above, the object determinant indicates whether a change
has occurred or will occur in the requested object, at the originating server 30.
However, in the embodiment of FIG. 29D, the object determinant may be associated
with a group of objects. This enables efficient invalidation of all objects stored in the
cache that may be affected by a particular object determinant. In some embodiments,
an object determinant of an object in the group is identified. In other embodiments, an
object determinant, for example, a group object determinant, for the group of objects is
identified. In another embodiment, a combination of object determinants of one or more
objects in the group are identified.

Thus, according to step 3427, a determination is made as to whether the object
determinant indicates a change in the group of previously served objects. In some
embodiments, the existence of the object determinant of the group in the intercepted
communication indicates a change has occurred or will occur to one or more, or all of
the objects in the group. In other embodiments, the name and type of a command,
directive or instruction in the intercepted communication indicates such changes. In yet
another embodiment, the existence, value or setting of any parameters or variables in
the communication may also indicate such changes.

If at step 3427, the object determinant indicates a change in the group, then the
group of previously served objects is marked as invalid in the cache in accordance with
step 3435. In some embodiments, one or more, or all of the objects of the group are
requested and retrieved from the originating server 30 in accordance with step 3440. If
at step 3427, the object determinant does not indicate a change in the group, then in
some embodiments, any objects requested as part of intercepted communication and
previously served and stored in the cache is retrieved from the cache manager 3232 in
accordance with step 3450. In an embodiment, any object or group of objects marked
as invalid may be flushed by the cache manager 3232 from the cache.

176

WO 2007/121241 PCT/US2007/066433

g. Designation of Groups

The cache administrator may specifically designate which objects get included
into a particular group. Whenever an object is stored in the cache, the administrator
may make that object a member of one of the configured or implicit groups depending
on the configuration. The configured groups can be based on configurations that an
administrator has previously established or alternatively based on application behavior
and other data related to object invalidation. An object may also be part of an implicit
group if its configured group is dynamic. Objects in the implicit group are grouped by
the value of the significant invalidation parameters.

By permitting very flexible grouping of objects, a cache can achieve a level of
flexibility and coordination in invalidation that is necessary to effectively cache
dynamically generated content. The cache can invalidate a very specific group of
objects simultaneously, thereby making the cache more responsive to the frequent need
to invalidate dynamically generated content. At the time the cache assigns an object to
a group, the group determines a number of things relative to that object, including the
invalidation parameters and the hit determinants, in order to associate one or more
object determinants therewith.

In the customer resource management ("CRM") example, the cache
administrator may pre-designate each of the groupings. For example, the administrator
configures the cache to group each of the sales departments by name. Thus the
administrator can designate an auto department, a motorcycle department, etc., and
each time an object determinant is recognized in a request coming to the cache, the
cache can then invalidate all objects stored in a designated group linked to an
appropriate department via the object determinant.

h. Ruled-Based Grouping

Alternatively, the cache administrator may establish rules that allow the cache
appliance to determine on the run which objects to include in a particular group or
groups. Such rules-based groupings may rely on the designation of groups by virtue of
established rules that link the object to significant object determinants that the cache

177

WO 2007/121241 PCT/US2007/066433

utilizes to create the relevant groups. An example of this approach may involve
configuring the cache with rules that the cache uses to recognize what objects to put in
each group.

Again turning to the CRM example, a rule may state that each subdivision of the
Sales Department that is set up on the application should be recognized by the cache
as its own grouping. In this way the groupings can be created without the cache
administrator having to specifically identify each grouping but allows the cache to
determine based on the relevant rules. This technique creates a more flexible and often
less work intensive way to designate groupings. The cache administrator could
configure a rule that states that every subdivision department of Sales (i.e., sales\auto,
sales\motorcycle etc.) should generated a new grouping by the cache. As a request
from the Auto Sales Department is processed and returned by the application via the
cache, the cache can recognize each subgrouping of sales and automatically create a
grouping for it, based on the pre-configured rule.

The rule may be implemented by the cache each time it sees a new request for
an object of the type report/sales/auto or report/sales/motorcycle, etc. This process can
then be repeated when a Motorcycle Sales Department request showing that it is a sub-
grouping of the Sales Department, then the Bicycle Sales Department and so forth, as
the cache recognizes these subgroups and establishes an object grouping for each of
them. When a known invalidation request comes to the cache linked to one of these
groupings, or if a relevant object determinant is identified in a client request (for
example a post of a sales report to the Motorcycle Sales Department sales/motorcycle
found in the parsing the request), the cache knows to invalidate all the cached objects in
the Motorcycle Sales Department Grouping.

In this way, when a cache recognizes that a change has occurred or will occur to
data served by the application (either because the cache recognizes that contents of a
request received by the cache will trigger a change at the application or because of the
occurrence of some outside change), the above technique enables the cache to quickly
and simply identify which objects require invalidation through the process of grouping.
In this way, the cache is able to invalidate large numbers of dynamically generated

178

WO 2007/121241 PCT/US2007/066433

objects that are no longer fresh because of changes in the application or database
state.

The ability of the cache to successfully store and serve out of its cache memory
dynamically generated content can also be enhanced with an intelligent statistical
engine that examines the pattern of request and response traffic in order to determine,
over a period of time, the set of objects that would provide the most caching benefit.
The engine can either be integrated into the cache appliance itself, or run in a separate
computer as a heuristic to select some subset of objects for further investigation to
determine suitability for dynamic caching.

i. Further Use of Object Determinants

As described above, object determinants may be any data structure that
indicates whether a change has occurred or will occur, in the originating server, to the
group of previously served objects stored in the cache with which the object determinant
is associated. Object determinants could be set up on the basis of predefined string
values embedded in the request. For example, when a request comes in with a certain
USERID, the USERID can be linked to a group of objects in the cache memory that
should be invalidated each time a post or other request comes from that certain
USERID. Potential candidates for object determinants could also include using service
identifiers of the server that originally served the object. The service identifier contains
service IP address, TCP port and service identifier present in the HTTP request.

Another potential object determinant present in the request the request uniform
resource locator ("URL"). In the case of caching of static objects, the request URL is
typically sufficient to uniquely identify the object. For requests for dynamically
generated content, however, the information present in the URL may not be sufficient to
identify the cached object. The cache must therefore inspect other information in the
request to find object determinants including in HTTP headers, cookie header or in
other custom HTTP headers. The cache can additionally look for a subset of relevant
parameter information in a variety of other places in the client request, including, without
limitation: in the URL query string, in the POST body, in a cookie header, or in any other

request or response headers.
179

WO 2007/121241 PCT/US2007/066433

The problem in parsing a URL for object determinants is that the URL and other
headers may contain a lot of information in addition to what is relevant for the cache’s
decision. The cache must therefore be able to parse through quite a lot of information
to be able to identify the appropriate object determinants. In addition, the data in the
header is often arbitrarily ordered, meaning there are no standardized ways that such
data is placed into the HTTP header and therefore a simple comparison is often
insufficient to locate the relevant object determinants in such string.

If there is no pre-configured policy to match a particular object determinant to a
relevant object or group of objects stored in cache memory, the cache may still, in
another embodiment, make such a determination. For example, the cache may
examine and parse various aspects of the request to discover whether any other object
determinants may be found in such request and used to link such request to particular
objects stored in the cache memory that should be invalidated. Alternatively, one could
also enable the cache to examine a request for certain object determinants that the
cache determines, based on certain pre-defined heuristics, may meaningfully linked to
particular objects or group of objects. For example, when the request comes into the
cache for an update of a calendar associated with a particular USERID, an embodiment
could be set up to recognize that all cached objects with USERID equal to the USERID
of the request updating the calendar, and that contains the user’s calendar for any one
particular day, will need to be invalidated.

The cache may also assume that the object determinants are present as a group
of name=value or similar pairs in a non-specified order in the URL Stem, in the queries
present in the URL, in the POST body or in a Cookie header. In an embodiment, it is
assumed that the query is formatted as a list of name=value pairs. The user can
therefore configure which parameter names are significant. Every cached object is
keyed using first its access URL. The URL may look like
/site/application/special/file.ext?p1=v1&p2=v2&p3=v3. The
[site/application/special/file.ext part is the URL stem. The p1=v1&p2=v2&p3=v3 part is
the URL query and contains parameter-value pairs. These parameter-value pairs may
also be present in the POST body or in the Cookie headers.

180

WO 2007/121241 PCT/US2007/066433

In an embodiment, the user or administrator establishes that p1 and p2 shall be
the invalidation parameters or object determinants. The cache will thereafter
automatically group objects that have matching p1 and p2 values. One way of
implementing this grouping is to map p1 and p2 to primary keys in database tables, i.e.,
to uniquely identifiable objects in the table that the cache will know how to reference in
order to determine validation status. To update something in those database tables, in
order to reflect the fact that data stored in the cache is no longer valid, the cache will
specify new values for p1 and p2 and when the cache recognizes such new values the
next time it goes to serve such content, it will know to invalidate the linked objects
stored in its memory. The cache, when it encounters such a request, on seeing the
update request knows that it has to invalidate the group with matching p1 and p2 values
— because the cache understands that data in the origin will change, thereby affecting
all objects that are related to those p1 and p2 object determinants.

To address the more complex case where the administrator has not pre-
configured specific parameters embedded in the request as object determinants, the
cache can deploy user-configured policies to extract the relevant object determinants
from the request to assist in identifying when to invalidate groupings of objects. The
determinant string is then used to locate the group of objects stored in the cache and
invalidate such objects. These object determinants can be used to configure the cache
to generate lists of significant parameter values. If an incoming write-request has
matching values for the significant parameters then the objects tied to those parameter
names should be invalidated. Alternatively, a user could specify the policy framework
action that can extract the object determinant string from the request. The object
determinant string is extracted from the write-request and all objects with matching
determinant strings are invalidated. In this alternative approach, a request arrives at the
cache, the cache makes a determination whether the request string matches an
invalidation policy. The invalidation policy specifies objects in which content group
should be invalidated.

Alternatively, the cache could use any other user information that may be present
in the client request. As noted above, the authentication and authorization integration

181

WO 2007/121241 PCT/US2007/066433

allows the cache access to the user information. The USERID or the GROUPID could
be one of the determinants in the event the relevant grouping of cached objects are
linked to a user or a group of users. Although user information is often an important
object determinant, the user information often may not be present in the HTTP request.
In a further embodiment, the dynamic caching aspects can be combined with a system
and method for integrating the cache with a variety of other networking elements
including the ability to perform certain kinds of authentication, access control and audit
(AAA) infrastructure. Thus, the level of security accorded to data that is generated by
the applications is applied to data that is instead served from a cache. This technique
allows the applications to cache sensitive, access controlled information that could not
otherwise be cached.

This approach allows the cache to identify users that do not include identifiable
user information in the HTTP request but that may be identifiable via the AAA approach
described in the Integrated Caching patent. Such an approach enables the cache to
identify the relevant user to a particular request through examining the authorization
state information that can be shared from the AAA processing. In a further
embodiment, the integration enables the application of security policies to information
stored in the cache to prevent unauthorized users from accessing information stored at
the cache.

This approach also address the challenge posed by the fact that a significant
portion of dynamically generated data requires that the client requesting such data be
authorized and authenticated before the cache can respond to the relevant request from
the client. The cache must have the ability to authorize requests made by authenticated
users so that applications can cache access-controlled objects and by integrating such
dynamic caching technology with authentication and authorization information, this
security can be achieved. The USERID or the GROUPID will be one of the object
determinants if the objects are personalized to a user or a group of users. Thus, the
level of security accorded to data that is generated by the applications is applied to
cached information as well. This technique allows the applications to cache sensitive,
access controlled information that could not otherwise be cached.

182

WO 2007/121241 PCT/US2007/066433

Finally, other information like time of day, state of the database at the origin, etc.,
may be parsed from the request and used as object determinants to determine whether
objects stored in the cache are still valid. The cache may take care of this situation by
configuring appropriate expiration behavior in groupings of objects that are configured to
be sensitive to such external variables.

To further address the challenge presented by the fact that requests for dynamic
content must be parsed and interpreted by the cache, the cache in accordance with an
embodiment can limit which parameters are deemed to be relevant object determinants
for the cache. In this way, the success rate for serving objects from the cache rather
than forwarding such requests to the applicable application server can be enhanced.

By way of example, a request query from a client may contain both a city and a state
parameter. However, the cache may be configured to comply with the requirements of
the application for which the cache is storing content to recognize that the response can
be served to requests coming from clients that the query shows come from all clients in
a given state without regard to the city value. For this purpose, the city parameter is not
relevant and the cache could recognize this fact. An alternate embodiment involves
configuring the cache so that a response can be served from the cache if just the city
parameter makes a match regardless of what is specified for the state parameter.

In summary, the cache implements generalized parameterized object matching.
In this approach, the cache is configured to recognize the subset of information in the
request that will be useful as object determinants, and that are linked to a particular
object so that when such object determinants are recognized, the cache can utilize the
presence (or conversely the absence of such determinants) in evaluating whether the
object or group of objects remains fresh and capable of being served from the cache.
The cache maintains a table that it consults each time a request comes in to check
against the configured parameters to determine if the requested data remains fresh, and
which also allows the cache to match the relevant data to the proper object stored in the

cache memory.

183

WO 2007/121241 PCT/US2007/066433

J- Incarnation Numbers

In yet another embodiment, the cache can utilize incarnation numbers to
invalidate a group of objects. Where a cache needs to change the state of each of a
group of objects at one time because of a change in the state at the origin, incarnation
numbers provides a simple technique for effecting this invalidation. Whereas identifying
each object and changing the state individually is an inefficient approach to assuring
freshness of data stored in a cache, use of incarnation numbers enables a much more
simple and effective approach to invalidating groups of objects. The present
embodiment describes how each object points to a data structure that represents the
group and therefore the server need only send a command that changes the state in the
data structure for the group. When a subsequent request for a cached object arrives
from a client, the cache must first figure out whether the state has changed. To do so it
looks up the data structure to reference whether the state has changed for the group.

In order to implement the data structure effectively, the cache must be able to
determine whether to look up for a state change. Therefore, the cache must be able to
determine whether it has already looked at the state change in the group or not. This is
where the incarnation numbers are helpful. The cache associates dynamically
generated objects into content groups. Each of these content groups may be
represented through a hash table look-up process with a particular index value or
“incarnation number” contained in a data structure. Thereafter, whenever the cache
receives a client request that the cache recognizes as causing a state change, the client
parses the client request for the relevant parameters, performs the hash look-up based
on the recognized object determinants, and increments the index or incarnation number
in the data structure. Each time an object stored within a designated grouping is
requested by a client, the cache performs the hash algorithm on the object, and
compares it to the original stored value in the data structure for such content group. If
the stored value is the same as the number calculated by the cache for such object,
then the cache knows the content remains fresh and can be served to the requestor. In
the event the cache detects a discrepancy between the current incarnation number

calculated for such object in and the number stored for such content group in the data
184

WO 2007/121241 PCT/US2007/066433

structure, the cache knows that the stored object is no longer fresh. The cache then
invalidates the stored object and sends the request along to the application server.
When the response comes back the cache appliance will store the new response in the
cache memory and link such response again to the new data structure. Thereafter,
each time the cache receives a request for an object in that grouping, the cache can
make the comparison and assuming no further changes have been made to the data
structure, the cache can serve the newly stored object.

By utilizing invalidation of a group of objects in this fashion, the cache is able to
invalidate very quickly — and the time taken is constant regardless of the number of
objects invalidated. Through this faster and more efficient process of invalidation, the
techniques enable the cache to more effectively handle dynamically generated objects.
The approach allows cache appliances that sit in front of applications to more
aggressively store and serve dynamically generated objects without serving invalid or
stale content because of rapid changes in such data. The embodiment enables the
cache to serve data that frequently or unpredictably changes thereby improving the
performance of the cache. The cache is also able to invalidate objects and group of
objects stored in the cache memory using user commands and also by examining and
grouping various kinds of web traffic.

2. Connection Pooling

In one embodiment, a network appliance 1250 (also referred to herein as
interface unit 1250) relieves servers 30 of much of the processing load caused by
repeatedly opening and closing connections to clients by opening one or more
connections with each server and maintaining these connections to allow repeated data
accesses by clients via the Internet. This technique is referred to herein as “connection
pooling”.

For completeness, the operation of connection pooling is briefly described next
with reference to FIG. 30. The process begins in FIG. 30 when a client 10 requests
access to one of the servers in the server farm tended by interface unit 1250. A
connection is opened between interface unit 1250 and the requesting client, and
interface unit 1250 receives the client request to access the server, as shown in step

185

WO 2007/121241 PCT/US2007/066433

4302. Interface unit 1250 determines the identity of the requested server as shown in
step 4304. In one embodiment, this is accomplished by examining the destination
network address specified by the client request. In another embodiment, this is
accomplished by examining the network address and path name specified by the client
request.

After determining the identity of the server 30 to which the client request should
be directed, interface unit 1250 determines whether a free connection (that is, one that
is not in use) to the server is already open, as shown in step 4306. If so, processing
resumes at step 4310. If not, interface unit 1250 opens a connection to the server, as
shown in step 4308. Interface unit 1250 then translates the client request and passes it
to the server, as shown in step 4310, and as more fully described with respect to FIG.
31, below. After server processing, interface unit receives a response from the server,
as shown in step 4312. The server response is translated and passed to the requesting
client, as shown in step 4314 and described further below. Finally, interface unit 1250
closes the connection with the client as shown in step 4316. However, the connection
between interface unit 1250 and server is not disconnected. By maintaining open
connections with the servers and by opening and closing connections with the client as
needed, interface unit 1250 frees the servers 30 of nearly all of the connection loading
problems associated with serving clients over the Internet.

As will be discussed further below, some embodiments are related to step 4316,
where interface unit 1250 closes the connection with the client 10. There are a number
of scenarios that result in interface unit 1250 closing the connection with the client. For
example, the client may initiate a FIN (finish) command or a RST (reset) command. In
both of these scenarios, interface unit 1250 waits until it receives one of these
commands before it loses the connection between itself and the client. Inefficiencies
with connection pooling occur when the client is not using or finished with the
connection but does not relay this information to interface unit 1250 for a period of time.
Because interface unit 1250 is waiting for a command from the client in order to reuse

the connection for another client, the connection is tied up unnecessarily.

186

WO 2007/121241 PCT/US2007/066433

As will be explained in more detail below, Hyper-Text Transfer Protocol (HTTP)
1.1 (by default) and HTTP 1.0 (with the Connection: Keep-Alive Technique) enable the
client and/or interface unit 1250 to keep the connection open with the server even after
receiving a server response to a request. The client and/or interface unit 1250 may
then issue other requests via the same connection, either immediately or after
considerable time (or “think time”). A client is in “think time” when the human operator
of the client is deciding the next link on the browser to click, and so forth. This can
result in connections being maintained by the server even though the server is not
processing any requests via the connections. Here, server administrators may be
forced to guard against too many simultaneous connections on the server by setting a
Keep-Alive timeout after which the connection which has been idle or in “think time” is
closed. One embodiment allows the connection to the server to be used by client 10’
while the client 10 is “thinking”. Of course, if client 10’ makes a request when client 10
is using the server connection, then client 10’ must use a different connection to the
server. However, the efficiency of the connection pooling of one embodiment is realized
when a very small number of connections is exceeded and moves into the general
case. The general case being when ‘n’ client connections may be statistically
multiplexed onto ‘m’ server connections, where ‘n’ is greater than ‘m’.

FIG. 31 is a flowchart depicting the operation of one embodiment of translating
client and server requests, as shown in steps 4310 and 4314 (FIG. 30). In an
embodiment, the message traffic is in the form of TCP/IP packets, a protocol suite that
is well-known in the art. The TCP/IP protocol suite supports many applications, such as
Telnet, File Transfer Protocol (FTP), e-mail, and HTTP. The embodiment is described
in terms of the HTTP protocol. However, the concepts apply equally well to other
TCP/IP applications, as will be apparent to one skilled in the art after reading this
specification.

Each TCP packet includes a TCP header and an IP header. The IP header
includes a 32-bit source IP address and a 32-bit destination IP address. The TCP
header includes a 16-bit source port number and a 16-bit destination port number The
source IP address and port number, collectively referred to as the source network

187

WO 2007/121241 PCT/US2007/066433

address, uniquely identify the source interface of the packet. Likewise, the destination
IP address and port number, collectively referred to as the destination network address,
uniquely identify the destination interface for the packet. The source and destination
network addresses of the packet uniquely identify a connection. The TCP header also
includes a 32-bit sequence number and a 32-bit acknowledgment number.

The TCP portion of the packet is referred to as a TCP segment. A TCP segment
includes a TCP header and body. The body part of the TCP segment includes a HTTP
header and the message. There are two mechanisms for determining the length of the
message, including one based on chunked transfer encoding and another based on
content-length. A content-length header file is found in the HTTP header. If a content-
length header field is present, its value in bytes represents the length of the message-
body. Alternatively, if a chunked transfer encoding header is present in the HTTP
header, and indicates that the “chunked” transfer coding has been applied, then the
length of the message is defined by the chunked encoding. The chunked encoding
modifies the body of a message in order to transfer the message as a series of chunks,
each with its own indicator contained in the chunk-size field.

As will be discussed in detail below, one embodiment utilizes the content-length
parameter and/or the chunked transfer encoding header to increase the efficiency of
connection pooling between servers and clients by avoiding the situation where the
client is in “think time”. Without this embodiment, interface unit 1250 either waits for a
command from the client before it reuses the connection for another client or the
connection times out when the connection has been idle for too long.

The 32-bit sequence number, mentioned above, identifies the byte in the string of
data from the sending TCP to the receiving TCP that the first byte of data in the TCP
segment represents. Since every byte that is exchanged is numbered, the
acknowledgment number contains the next sequence number that the sender of the
acknowledgment expects to receive. This is therefore the sequence number plus one of
the last successfully received bytes of data. The checksum covers the TCP segment,
i.e., the TCP header and the response data (or body). This is a mandatory field that
must be calculated and stored by the sender, and then verified by the receiver.

188

WO 2007/121241 PCT/US2007/066433

In order to successfully route an inbound packet from a client to the intended
server, or to route an outbound packet from a server to a client, interface unit 1250
employs a process known as “network address translation”. Network address
translation is well-known in the art, and is specified by request for comments (RFC)
1631, which can be found at the URL http://www.safety.net/RFC1631.txt.

However, in order to seamlessly splice the client and server connections, a novel

translation technique was described in detail in the commonly-owned, U.S. Patent
Application No. 09/188,709, filed November 10, 1998, entitled, “Internet Client-Server
Multiplexer,” referred to herein as “connection multiplexing”. According to this
technique, a packet is translated by modifying its sequence number and
acknowledgment number at the TCP protocol level. A significant advantage of this
technique is that no application layer interaction is required.

Referring to FIG. 31, the network address of the packet is translated, as shown in
step 4402. In the case of an in-bound packet (that is, a packet received from a client),
the source network address of the packet is changed to that of an output port of
interface unit 1250, and the destination network address is changed to that of the
intended server. In the case of an outbound packet (that is, one received from a
server), the source network address is changed from that of the server to that of an
output port of interface unit 1250, and the destination address is changed from that of
interface unit 1250 to that of the requesting client. The sequence numbers and
acknowledgment numbers of the packet are also translated, as shown in steps 404 and
406 and described in detail below. Finally, the packet checksum is recalculated to
account for these translations, as shown in step 4408.

As mentioned above, an embodiment is related specifically to an apparatus,
method and computer program product for efficiently pooling network client-server
connections though the content-length parameter and/or the chunked transfer encoding
header to increase the efficiency of connection pooling between servers and clients.
The increase in efficiency is the result of avoiding occupying the connection while the
client is in “think time”. In one embodiment, the content length parameters is used to
determine the length of the message. In another embodiment, chunked transfer

189

http://www.safety.net/RFC1631_.txt

WO 2007/121241 PCT/US2007/066433

encoding is used to determine the length of the message. The two embodiments will be
described next with reference to FIGS. 32 and 33, respectively.

FIG. 32 illustrates the TCP portion of a TCP packet called the TCP segment
4500. The TCP segment 4500 includes a TCP header 4502 and a body 4504. The
body 4504 contains, among other information, a HTTP header and the message. A
content length parameter 4506 is found in the HTTP header. How an embodiment
utilizes the content length parameter 4506 to provide more efficient connection pooling
is described below with reference to FIGS. 35 and 36.

FIG, 33 illustrates the TCP portion of a TCP packet called the TCP segment
4600. As stated above, if a chunked transfer encoding header is present in the HTTP
header, and indicates that the “chunked” transfer encoding has been applied, then the
length of the message is defined by the chunked encoding. The chunked encoding
modifies the body of a message in order to transfer the message as a series of chunks,
each with its own indicator contained in the chunk-size field. The TCP segment 4600
includes a TCP header (not shown) and a body. The body contains, among other
information, a HTTP header 4602A-4602C and the message. HTTP header 4602A-
4602C is comprised of seven chunk-size fields 4606A-4606G; and six chunk message
data 4604A-4604F,

The chunk-size fields 4606A-4606G are linked together, as illustrated in FIG. 33.
The chunk-size field 4606A indicates the length of the message in the chunk message
data 4604A, chunk-size field 4606C indicates the length of the message in the chunk
message data 4604C, and so forth. The last chunk-size field 4606G always contains
the length value zero indicating that there is no more message data to follow. This is an
indication that all of the message has been sent to the client. How an embodiment
utilizes the chunk-size fields 4606A-4606G to provide more efficient connection pooling
is described below with reference to FIGs. 37 and 38. It is important to note that TCP
segment 4600 in FIG 33 is for illustration purposes only.

Prior to describing the detail of how an embodiment utilizes the content length
parameter to increase the efficiency of connection pooling, connection pooling as it is
described in U.S. Patent Application No. 09/188,709, filed November 10, 1998, entitled,

190

WO 2007/121241 PCT/US2007/066433

“Internet Client-Server Multiplexer,” will first be discussed for completeness. FIG. 34 is
a message flow diagram illustrating connection pooling. FIG. 34 shows interface unit
1250 connecting two clients, C1 and C2, to a server S. The two clients C1 and C2, may
comprise any of the clients 10 discussed herein, and the server S may comprise any of
the servers 30 discussed herein. First, interface unit 1250 opens a connection with
client C1 using network address 1 provided by client C1 as shown by flow 4702. Flow
line 4702 is shown as a two-way flow because the TCP/IP protocol employs a multi-
stage handshake to open connections.

Once the connection is opened, interface unit 1250 receives a GET request from
client C1 specifying a path name of/sales/forecast.html, as shown by flow line 704.
Because no free connection is open between interface unit 1250 and server S, interface
unit 1250 opens a connection with server S. Interface unit 1250 maps this request to
network address 2, which specifies server S, as shown by flow line 4706. Interface unit
1250 also passes the GET request to that server, as shown by flow line 4708. Server S
responds with the requested web page, as shown by flow line 4710. Interface unit 1250
forwards the web page to client C1, as shown by flow line 4712. Finally, the connection
between client C1 and interface unit 1250 is closed, as shown by flow line 4714.
According to the TCP/IP protocol, closing a network connection can involve a multi-
stage process. Therefore, flow line 4714 is shown as bidirectional. It is important to
note that interface unit 1250 does not close the connection with server S, but rather
keeps it open to accommodate further data flows.

Next, a connection is opened between interface unit 1250 and client C2 using
network address 1 provided by client C2, as shown by flow line 4716, Next, interface
unit 1250 receives a GET request from client C2 specifying the Web page
/sales/forecast.html, as shown by flow line 4718. Because a free connection is already
open between interface unit 1250 and server S, it is unnecessary for interface unit 1250
to burden server S with the processing load of opening a further connection. Interface
unit 1250 merely uses a free open connection. Interface unit 1250 maps the GET
request to server S, transfers it, and forwards it to server S, as shown by flow line 4720.
Interface unit 1250 receives the response from server S, as shown by flow line 4722,

191

WO 2007/121241 PCT/US2007/066433

and forwards it to client C2 as shown by flow line 4724. Finally, interface unit 1250
closes the connection with client C2, as shown in flow line 4726. Once again, interface
unit 1250 does not close the connection with server S. Instead, interface unit 1250
keeps the connection open to accommodate further data flows..

As discussed above, there are a number of scenarios that result in interface unit
1250 closing the connection with client C2, as shown in flow line 4724. For example,
the client may initiate a FIN (finish) command, which occurs once the client has
retrieved all requested data (or message). The client may also initiate a RST (reset)
command. In addition to closing the connection between interface unit 1250 and the
client, the RST command results in a number of housekeeping operations being
performed to keep the server side connection in good order. In particular, the TCP
protocol guarantees that the RST command will have the right SEQ (sequence) number
so that the server will accept the TCP segment; however, the RST command is not
guaranteed to have the right ACK (acknowledge) number. To take care of this scenario,
interface unit 1250 keeps track of the bytes of data sent by the server and the bytes
acknowledged by the client. If the client has not yet acknowledged all the data by the
server, interface unit 1250 calculates the unacknowledged bytes, and sends an ACK to
the server. Furthermore, the server side PCB may be placed on a timeout queue to
allow any pending server data transfers to drain.

Furthermore, although not shown in FIG. 34, the server can also close a
connection between itself and interface unit 1250. The server would send a FIN
command to interface unit 1250. In this case, both the connection between the server
and interface unit 1250 and the connection between interface unit 1250 and client will
be closed.

Another aspect is to maximize offload of connection processing from the server
by minimizing the occasions on which the server closes the connection. There are
three cases:

(1) The protocol version HTTP/1.1 is used. In this case, no explicit Keep-
Alive header is required. By default, the server keeps the connection open; it is up to
the client to close the connection. An embodiment offloads the server by reusing the

192

WO 2007/121241 PCT/US2007/066433

server side connection. Because it is up to the client to close the connection,
inefficiencies with connection pooling occur when the client is finished with the
connection but does not relay this information to interface unit 1250 for a period of time.
Because interface unit 1250 is waiting for a command from the client in order to reuse
the connection for another client, the connection is tied up unnecessarily.

(2) The protocol version HTTP/1.0 is used and the “Connection: Keep-Alive”
header is provided by the client. In this case, the server keeps the connection open; it
is up to the client to close the connection. An embodiment offloads the server by
reusing the server side connection. As with protocol version HTTP/1.1, inefficiencies
with connection pooling occur when the client is finished with the connection but does
not relay this information to interface unit 1250 for a period of time.

(3) The protocol version HTTP/1.0 is used and the “Connection: Keep-Alive”
header is not provided by the client. In this case, the server will normally close the
connection after fully satisfying one GET request.. If the server closes the connection
after each request this denies that interface unit 1250 the opportunity to reuse the
server side connection. As it turns out much of the Internet still uses HTTP/1.0 without
“Connection: Keep Alive”. A novel technique for allowing the reuse of server side
connections in this specific, important case was described in detail in the commonly-
owned, US. Patent Application No. 09/188,709, filed November 10, 1998, entitled,
“Internet Client-Server Multiplexer”. Interface unit 1250 inspects the GET packet to
detect this situation. When this case is detected, interface unit 1250 inserts
“Connection: Keep-Alive” into the GET packet. Since this is done invisibly to the client,
interface unit 1250 must keep track of the number of “Bytes Added” on the server side
connection. The “Bytes Added” does not affect the Sequence numbers in the GET
packet since the sequence number is that of the first byte. However, interface unit 1250
must add “Bytes Added” to the sequence number of subsequent packets from the client
to the server. Conversely, the server will acknowledge the additional bytes, but
interface unit 1250 must subtract them before sending the acknowledgment to the client
- which does not know that these bytes were added.

193

WO 2007/121241 PCT/US2007/066433

As mentioned above, connection multiplexing is achieved by manipulating
sequence and acknowledgment numbers. Sequence and acknowledgment numbers of
segments received by interface unit 1250 are modified and mapped to values expected
by the recipient. To the client, data appears to be coming from the server and vice
versa. For example if “Inflow” denotes a segment received by interface unit 1250 and
“Outflow” denotes the corresponding outbound segment, the sequence and

acknowledge numbers are changed in the following manner:

Outflow sequence number = Inflow sequence number - Inflow starting

sequence number + Outflow starting sequence number

Outflow acknowledge number = Inflow acknowledge number - Inflow

starting acknowledge number + Outflow starting acknowledge number

To address the addition of the “Connection: Keep Alive” header for HTTP/1.0 packets,
interface unit 1250 keeps track of “Bytes Added” on the appropriate half of the
connection — in this case the server side. The sequence number and acknowledgment

number formulas are changed as follows:

Outflow sequence number = Inflow sequence number - Inflow starting
sequence number + Outflow starting sequence number + Outflow Bytes
Added

Outflow acknowledge number = Inflow acknowledge number - Inflow
starting acknowledge number + Outflow starting acknowledge number -
Inflow Bytes Added

Specific examples of translations accomplished using these equations while
incorporating the content length parameter technique of an embodiment to provide more
efficient connection pooling is described below with reference to FIGs. 35 and 36

194

WO 2007/121241 PCT/US2007/066433

(relating to content length parameter) and FIGs. 37 and 38 (relating to chunk-size
fields).

FIG. 35 is a detailed flow diagram illustrating the translations of acknowledgment
and sequence numbers performed by an embodiment while incorporating the content
length parameter technique. The label for each flow in FIG. 35 is of the form T:S,A(L),
where T represents a TCP segment type, S is the sequence number, A is the
acknowledgment number, and L is the content length parameter. The content length
parameter describes the number of bytes of data in the message,

Flows 4802A-4802C present one method of opening the connection between
client C1 and interface unit 1250. Each flow represents a TCP segment. In TCP
segment 4802A, the SYN flag in the TCP header is set, indicating a new connection
request from client C1. Client C1 has established a starting sequence number of 2000
and an acknowledgment number of 2000. Interface unit 1250 responds with a SYN
ACK segment specifying a starting sequence number of 4000, and incrementing the
acknowledgment number to 2001, as shown by flow 4802B. Each entity (e.g., client,
server, interface unit) within the network sets its own unique sequence number and/or
acknowledgment number, as is well known in the art. Client C1 responds with an ACK
segment specifying a sequence number of 2001 and incrementing the acknowledgment
number to 4001, as shown by flow 4802C. Client C1 then sends a GET segment
specifying a length of 49 bytes, as shown by flow 4804.

Assume that interface unit 1250 determines that no free open connections exist
with server S and therefore sends a SYN segment to server S, specifying a starting
sequence number of 1950, as shown in flow 806A. Server S responds with a SYN ACK
segment specifying a starting sequence number of 6000 and incrementing the
acknowledgment number to 1951, as shown in 4806B. Interface unit 1250 responds
with an ACK segment, as shown by flow 8060. Interface unit 1250 then forwards the
GET segment from client C1 to server S, after modifying the sequence and
acknowledgment numbers according to the translation equations described above, as
shown by flow line 4808.

195

WO 2007/121241 PCT/US2007/066433

Server S responds with the requested data specifying a sequence number of
6001, an acknowledgment number of 2000, and a content length parameter of 999, as
shown by flow 4810. Interface unit 1250 receives the RESP segment, translates the
sequence and acknowledgment numbers, and forwards the RESP segment to client C1,
as shown by flow line 4812A.

At this point, interface unit 1250 receives a request by client C2 to open a
connection. As above, flows 4816A-4816C present one method of opening the
connection between client C2 and interface unit 1250. Again, each flow represents a
TCP segment. In TCP segment 4816A, the SYN flag in the TCP header is set,
indicating a new connection request from client C2. Client C2 has established a starting
sequence number of 999 and an acknowledgment number of 999. Interface unit 1250
responds with a SYN ACK segment specifying a starting sequence number of 4999,
and incrementing the acknowledgment number to 1000, as shown by flow 4816B.

Client C2 responds with an ACK segment specifying a sequence number of 1000 and
incrementing the acknowledgment number to 5000, as shown by flow 4816C. Client C2
then sends a GET segment specifying a length of 50 bytes, as shown by flow 4818.

Assume at this point that interface unit 1250 has no available connections to
server S. The goal is to reuse the same connection to server S that was previous used
for client C1 if client C1 is finished with the connection or is in “think time”. Instead of
waiting for client C1 to initiate a FIN (finish) command or a RST (reset) command to free
up the connection, interface unit 1250 uses the content length parameter to confirm that
all of the requested data has been received by client Cl. Here, at flow 4812B, interface
unit 1250 receives confirmation from client C1 that client C1 has in fact received all of
the requested data. This indicates to interface unit 1250 that, even though client C1
may be pausing for some reason before it sends a FIN or RST command, client C1 is
finished with the connection. Interface unit 1250 modifies the acknowledgment and
sequence numbers and forwards the RESP ACK segment to server S, as shown by flow
812C.

Using the same connection as used with client C1, interface unit 1250 then
forwards the GET segment from client C2 to server S, after modifying the sequence and

196

WO 2007/121241 PCT/US2007/066433

acknowledgment numbers according to the translation equations described above, as
shown by flow line 4820. Server S responds with the requested data specifying a
sequence number of 7000, an acknowledgment number of 2050, and a content length
parameter of 500, as shown by flow 822.

Interface unit 1250 receives the RESP segment, translates the sequence and
acknowledgment numbers, and forwards the RESP segment to client C2, as shown by
flow line 4824A. Here, at flow 4824B, interface unit 1250 gets confirmation from client
C2 that client C2 has in fact received all of the requested data. Interface unit 1250
modifies the acknowledgment and sequence numbers and forwards the RESP ACK
segment to server S, as shown by flow 4824C.

The connection between client C2 and interface unit 1250 is then closed or
delinked once interface unit 1250 receives a FIN or RST command from client C2, as
shown by flows 4826A-4826D. Likewise, the connection between client C1 and
interface unit 1250 is then closed or delinked once it receives a FIN or RST command
from client C1 , as shown by flows 4814A-4814D. It is important to note, however, that
interface unit 1250 maintains the connection with server S It is also important to note
that the sequence of events as they were described with reference to FIG. 36 is for
illustration purposes only.

FIG. 36 is a flowchart depicting the operation of the use of the content length
parameter to increase the efficiency of the pooling of connections between clients and
servers according to an embodiment. Interface unit 1250 maintains connections with a
plurality of servers, and routes client requests to these servers based on the path name
specified in the client request. First, interface unit 1250 opens connections with the
servers, as shown in step 4902. Next, in response to a client C1 request, interface unit
1250 opens a connection to client C1 and receives a request from client C1 to retrieve
data using a path name, as shown in step 4904.

Interface unit 1250 then selects the server hosting the content specified by the
path name, as shown in step 4906. In alternative embodiments, interface unit 1250
consults other predefined policies to select the appropriate server, such as the load of
the servers and the state of the servers. Interface unit 1250 manages and maintains a

197

WO 2007/121241 PCT/US2007/066433

database of servers and server farms that it tends. Among other things, information in
this database includes currently active policies and rules that allow interface unit 1250
to direct incoming packets to the correct server. Depending on network conditions and
services desired, these policies and rules can change very quickly.

Interface unit 1250 then translates the request and passes the translated request
to the selected server, as shown in step 4908. Interface unit 1250 receives the
response from server S, as shown in step 4910. Interface unit 1250 then translates the
response and passes the translated response on to client C1, as shown in step 4912.

Assume for illustration purposes that at this point interface unit 1250 receives a
request from client C2 to retrieve data. Interface unit 1250, in response to the client C2
request, opens a connection to client C2 and receives a request from client C2 to
retrieve data using a path name, as shown in step 4914. Interface unit 1250 then
selects the server hosting the content specified by the path name, as shown in step
4916.

In step 4918, interface unit 1250 determines whether client C2 has selected the
same server as client C1. If the outcome to step 4918 is negative, then interface unit
1250 proceeds in a fashion necessary to satisfy client C2's request (which is not
important to this embodiment). At this point the flowchart in FIG. 36 ends. Alternatively,
if the outcome to step 4918 is positive, then interface unit 1250 determines whether
there are any open connections to the selected server, as shown in step 920.

If the outcome to step 4920 is positive, then interface unit 1250 proceeds in a
fashion necessary to satisfy client C2's request (which is not important to this
embodiment). At this point the flowchart in FIG. 9 ends. Alternatively, if the outcome to
step 4920 is negative, then interface unit 1250 utilizes the content length parameter to
confirm that client C1 received all of the data that client C1 requested, as shown in step
4922. It is important to note that interface unit 1250 does not wait for client C1 to send
a FIN or RST command in order to determine that client C1 is finished with the
connection or is in “think time”. This allows for more efficient connection pooling due to

the fact that interface unit 1250 can utilize each connection quicker than if interface unit

198

WO 2007/121241 PCT/US2007/066433

1250 waited for the client to close the connection prior to reusing the connection for
another client.

In step 4924, interface unit 1250 then translates the request and passes the
translated request to the selected server using the same connection as client C1 used,
as shown in step 4924. Interface unit 1250 receives the response from server S, as
shown in step 4926. Interface unit 1250 then translates the response and passes the
translated response on to client C2, as shown in step 4928. Interface unit 1250 utilizes
the content length parameter to confirm that client C2 received all of the data that client
C2 requested, as shown in step 4930.

Next, interface unit 1250 closes or delinks the connection with client C2 in step
4932. Finally, interface unit 1250 closes or delinks the connection with client C1 in step
4934, and the flowchart in FIG. 36 ends. As stated above with reference to FIG. 35, the
sequence of events as they were described with reference to FIG. 36 is for illustration
purposes only.

FIG. 37 is a detailed flow diagram illustrating the translations of acknowledgment
and sequence numbers performed by an embodiment while incorporating the chunk-
size fields technique. The label for each flow in FIG. 37 is of the form T:S,A(L), where T
represents a TCP segment type, S is the sequence number, A is the acknowledgment
number, and L is a chunk-size field. The total values of the chunk-size fields describes
the number of bytes of data in the TCP segment.

For simplicity, we assume that connections to both client C1 and client C2 have
already been established. Client C1 then sends a GET segment specifying a length of
49 bytes, as shown by flow 4002. Interface unit 1250 determines that no free open
connections exist with server S and therefore opens a connection with server S (not
shown in FIG. 37). Interface unit 1250 then forwards the GET segment from client C1
to server S, after modifying the sequence and acknowledgment numbers according to
the translation equations described above, as shown by flow line 4004.

For illustration purposes, assume that the data in the response segment has a
total content data length of 999. Further assume that the data will be transmitted in two
300 data chunks and one 399 data chunk. Note that this is for illustration purposes only

199

WO 2007/121241 PCT/US2007/066433

and is not intended to limit. Therefore, the server S first responds with a chunk of the
requested data (or message) specifying a sequence number of 6001, an
acknowledgment number of 2000, and a chunk-size field of 300, as shown by flow
4008A. Interface unit 1250 receives the RESP segment, translates the sequence and
acknowledgment numbers, and forwards the RESP segment to client C1, as shown by
flow line 4006A. Client C1 acknowledges receipt of the data to interface unit 1250, as
shown by flow line 4006B. Interface unit 1250 in return passes this acknowledgment on
to server S, as shown by flow line 4008B.

Server S next responds with the second chunk of the requested data specifying a
sequence number of 6301, an acknowledgment number of 2001, and a chunk-size field
of 300, as shown by flow 4012A. Interface unit 1250 receives the RESP segment,
translates the sequence and acknowledgment numbers, and forwards the RESP
segment to client C1, as shown by flow line 4010A. Client C1 acknowledges receipt of
the data to interface unit 1250, as shown by flow line 4010B. Interface unit 1250 in
return passes this acknowledgment on to server S, as shown by flow line 4012B.

Server S next responds with the third chunk of the requested data specifying a
sequence number of 6601, an acknowledgment number of 2002, and a chunk-size field
of 399, as shown by flow 4016A. Interface unit 1250 receives the RESP segment,
translates the sequence and acknowledgment numbers, and forwards the RESP
segment to client C1, as shown by flow line 4014A. Client C1 acknowledges receipt of
the data to interface unit 1250, as shown by flow line 4014B. Interface unit 1250 in
return passes this acknowledgment on to server S, as shown by flow line 4016B.

Finally, server S responds with the final chunk of the zero data (indicated by a
chunk-size field that equals zero) specifying a sequence number of 7000, an
acknowledgment number of 2003, and a chunk-size field of 0, as shown by flow 4020.
Interface unit 1250 receives the RESP segment, translates the sequence and
acknowledgment numbers, and forwards the RESP segment to client C1, as shown by
flow line 4018. This indicates to interface unit 1250 and client C1 that all of the
requested data has been transmitted.

200

WO 2007/121241 PCT/US2007/066433

At this point, client C2 then sends a GET segment specifying a length of 50
bytes, as shown by flow 4022. Assume at this point that interface unit 1250 has no
available connections to server S. The goal is to reuse the same connection to server S
that was previous used for client C1 if client C1 is finished with the connection or is in
“think time”. Instead of waiting for client C1 to initiate a FIN (finish) command or a RST
(reset) command to free up the connection, the interface unit uses the chunk-size field
that equaled zero to confirm that all of the requested data has been received by client
C1. This indicates to interface unit 1250 that, even though client C1 may be pausing for
some reason before it sends a FIN or RST command, client C1 is finished with the
connection. Interface unit 1250 modifies the acknowledgment and sequence numbers
and forwards the GET segment to server S, as shown by flow 4024.

For illustration purposes, assume that the data in the response segment has a
total content data length of 500. Further assume that the data will be transmitted in one
300 data chunk and one 200 data chunk. Note that this is for illustration purposes only
and is not intended to limit. Therefore, the server S first responds with a chunk of the
requested data specifying a sequence number of 7000, an acknowledgment number of
2050, and a chunk-size field of 300, as shown by flow 1028A. Interface unit 1250
receives the RESP segment, translates the sequence and acknowledgment numbers,
and forwards the RESP segment to client C2, as shown by flow line 1026A. Client C2
acknowledges receipt of the data to interface unit 1250, as shown by flow line 4026B.
Interface unit 1250 in return passes this acknowledgment on to server S, as shown by
flow line 4028B.

Server S next responds with the second chunk of the requested data specifying a
sequence number of 7300, an acknowledgment number of 2051, and a chunk-size field
of 200, as shown by flow 4032A. Interface unit 1250 receives the RESP segment,
translates the sequence and acknowledgment numbers, and forwards the RESP
segment to client C2, as shown by flow line 4030A. Client C2 acknowledges receipt of
the data to interface unit 1250, as shown by flow line 4030B. Interface unit 1250 in
return passes this information on to server S, as shown by flow line 4032B.

201

WO 2007/121241 PCT/US2007/066433

Finally, server S responds with the final chunk of the zero data (indicated by a
chunk-size field that equals zero) specifying a sequence number of 7500, an
acknowledgment number of 2052, and a chunk-size field of 0, as shown by flow 4036.
Interface unit 1250 receives the RESP segment, translates the sequence and
acknowledgment numbers, and forwards the RESP segment to client C2, as shown by
flow line 4034. This indicates to interface unit 1250 and client C2 that all of the
requested data has been transmitted.

The connection between client C2 and interface unit 1250 is then closed or
delinked once interface unit 1250 receives a FIN or RST command from client C2, as
shown by flow 4038. Likewise, the connection between client C1 and interface unit
1250 is then closed or delinked once it receives a FIN or RST command from client C 1,
as shown by flow 4040. It is important to note, however, that interface unit 1250
maintains the connection with server S. It is also important to note that the sequence of
events as they were described with reference to FIG. 37 is for illustration purposes only
and does not limit.

FIG. 38 is a flowchart depicting the operation of the use of the chunk-size fields
to increase the efficiency of the pooling of connections between clients and servers
according to an embodiment. Interface unit 1250 maintains connections with a plurality
of servers, and routes client requests to these servers based on the path name
specified in the client request. First, interface unit 1250 opens connections with the
servers, as shown in step 4102. Next, in response to a client C1 request, interface unit
1250 opens a connection to client C1 and receives a request from client C1 to retrieve
data using a path name, as shown in step 4104.

Interface unit 1250 then selects the server hosting the content specified by the
path name, as shown in step 4106. Interface unit 1250 then translates the request and
passes the translated request to the selected server, as shown in step 4108. Interface
unit 1250 receives the response from server S as shown in step 4110. Interface unit
1250 then translates the response and passes the translated response on to client C1
until chunk-size field is equal to zero, as shown in step 4112.

202

WO 2007/121241 PCT/US2007/066433

Assume for illustration purposes that at this point interface unit 1250 receives a
request from client C2 to open a connection. Interface unit 1250, in response to a client
C2 request, opens a connection to client C2 and receives a request from client C2 to
retrieve data using a path name, as shown in step 4114. Interface unit 1250 then
selects the server hosting the content specified by the path name, as shown in step
4116.

In step 4118, interface unit 1250 determines whether client C2 has selected the
same server as client C1. If the outcome to step 4118 is negative, then interface unit
1250 proceeds in a fashion necessary to satisfy client C2's request. At this point the
flowchart in FIG. 38 ends. Alternatively, if the outcome to step 4118 is positive, then
interface unit 1250 determines whether there are any open connections to the selected
server, as shown in step 4120.

If the outcome to step 1120 is positive, then interface unit 1250 proceeds in a
fashion necessary to satisfy client C2’s request. At this point the flowchart in FIG. 38
ends. Alternatively, if the outcome to step 4120 is negative, then interface unit 1250
utilizes the fact that chunk-size field equaled zero in step 4112 to confirm that client C1
received all of the message data that client C1 requested. It is important to note that
interface unit 1250 does not wait for client C1 to send a FIN or RST command in order
to determine that client C1 is finished with the connection or is in “think time”.

In step 4122, interface unit 1250 then translates the request and passes the
translated request to the selected server using the same connection as client C1 used.
Interface unit 1250 receives the response from server S, as shown in step 4124.
Interface unit 1250 then translates the response and passes the translated response on
to client C2 until chunk-size field equals zero, as shown in step 4126. Interface unit
1250 utilizes the chunk-size field to confirm that client C2 received all of the message
data that client C2 requested.

Next, interface unit 1250 closes or delinks the connection with client C2 in step
4128. Finally, interface unit 1250 closes or delinks the connection with client C1 in step
4130, and the flowchart in FIG. 38 ends. As stated above with reference to FIG. 37, the

203

WO 2007/121241 PCT/US2007/066433

sequence of events as they were described with reference to FIG. 38 is for illustration
purposes only and does not limit.

The previous embodiments are described specifically when implemented within
an interface unit, such as interface unit 1250, that is connected to servers in a farm for
the purpose of offloading connection processing overhead from the servers. However,
they can also be applied within other kinds of devices that are in the network connection
path between the client and the servers. As network traffic flows through such devices,
they all have the opportunity to offload connection processing. Some examples of such
devices are:

- Load Balancers which distribute client network connections between a set of
servers in a server farm (local or geographically distributed).

- Bandwidth managers which monitor network traffic and meter packet flow.

- Firewalls monitor packets and allow only the authorized packets to flow through.

- Routers and switches also lie in the path of the network traffic. The industry
trend may be to integrate additional functionality (such as load balancing, bandwidth

management and firewall functionality) within these devices.
Embodiments can also be applied within computer systems which are the end
points of network connections. In this case, add-on cards can be used to offload the

main processing elements within the computer system.

3. Integrated Caching

FIG. 39 illustrates a flowchart 5300 of a sequence of events that may occur in an
appliance that provides integrated caching functionality in accordance with an
embodiment. However, the embodiment is not limited to the description provided by
the flowchart 5300. Rather, it will be apparent to persons skilled in the relevant art(s)
from the teachings provided herein that other functional flours are within the scope
and spirit of the embodiment. These other functional flows could involve different
processing, different sequencing and other variations on the integration of caching.

204

WO 2007/121241 PCT/US2007/066433

The method of flowchart 5300 can be implemented in one or more device(s)
that are communicatively coupled to a data communication network. For example, the
method of flowchart 5300 can be implemented in an appliance such as appliance 1250
described above in reference to FIG. 1A, having a software architecture 3200 as
described above in reference to FIG. 27. The method of flowchart 5300 will be
described with continued reference to this exemplary embodiment.

As shown in FIG. 39, the method of flowchart 5300 begins at step 5302, in
which appliance 1250 receives an encrypted packet from one of clients 10. In an
embodiment, appliance 1250 is configured to act as a proxy SSL endpoint for servers
30, decrypting encrypted packets received from clients 10, and then sending there on
for further processing as necessary and ultimately on to an appropriate resource
based on address information within the encrypted packets. The appropriate resource
may be, for example, any of servers 30 or the cache managed by appliance 1250. At
step 5304, appliance 1250 performs decryption processing on the packet.

At step 5306, appliance 1250, which is configured in accordance with an
embodiment to carry out AAA policies for access control, authenticates and/or
authorizes the client from which the encrypted packet was received.

At step 5308, appliance 1250, which is configured in accordance with an
embodiment to perform certain types of packet processing, carries out packet
processing on the decrypted packets to reduce the connection overhead processing
requirements generated by the applicable network protocols.

At step 5310, appliance 1250, which is configured in accordance with an
embodiment to compress and decompress content, decompresses a request
associated with the packet. In an embodiment, the request comprises a web object
request.

At step 5312, appliance 1250 is then able to activate the cache functionality,
which receives a clear and/or authorized and/or decompressed and/or packet-
processed request for an object. Because of the prior processing described in
reference to steps 5302, 5304, 306, 5308 and 5310, the cache management logic can
make a decision as to whether the object has been cached or is cacheable based on a

205

WO 2007/121241 PCT/US2007/066433

clear/authorized/decompressed/packet processed request and is therefore able to
process a much wider array of requests then traditional caches and to carry out the
caching more efficiently than under traditional approaches. Furthermore, because the
cache management logic is working in the kernel space along with the other
processes, it relates to the relevant object as a data structure with equal status in
relation to such data structure as each of the other applications and therefore the
integration is earned out in an extremely efficient manner,

As shown at step 5314, if the object is not already in the cache memory,
appliance 1250 sends a request on to one or more servers 30. Before the request is
sent, however, several additional processing steps may occur.

For example, at step 5316, appliance 1250 optionally performs connection
processing to ensure efficient transit of the request to the server(s) and at step 5318,
appliance 1250 optionally makes a load balancing decision to ensure that the request
is sent to the most appropriate server(s). Also, in an embodiment, the request is
encrypted before it is sent to the server(s) via a back-end encryption process, thereby
providing end-to-end network security. At step 5320, the request is transmitted to the
server(s),

At step 5322, appliance 1250 receives a response back from one of the servers
30. If back-end encryption is supported as discussed above, appliance 1250 decrypts
the response from the server.

At step 5324, appliance 1250 compresses an object associated with the
response from the server. In an embodiment, the object comprises a web object.

At step 5326, the cache management logic in appliance 1250 stores the object
in the cache in compressed form. The cache management logic is able to store
compressed objects in this fashion due to the processing abilities - Once the object is
stored in the cache, future client requests for the object can be served from the cache
without performance of steps 5316, 5318, 5320, 5322, 5324 and 5326 as described
above. This is indicated by the line directly connecting decision step 5314 to step 5328
in flowchart 5300.

206

WO 2007/121241 PCT/US2007/066433

At stop 5328, after the object has been received from a server or retrieved from
the cache, appliance 1250 performs packet processing on the connection to more
efficiently service the original client request. At step 5330, the response object is then
re-encrypted and delivered back to the client.

Each of the processing steps described above occurs at the kemel/OS level of
appliance 1250. By implementing the cache in the middle of, and integrated with, other
processing steps in the kernel/OS space, an embodiment is able to bring out additional
functionality and improve performance of the cache.

Such integration permits a cache implementation in accordance with an
embodiment to perform additional functions that are traditionally beyond the functional
abilities of a cache. For example, an embodiment permits the cache to work with
encrypted and/or compressed objects.

Another example of additional functionality that may be achieved by an
embodiment involves the caching of end-to-end encrypted HTTPS traffic. Typically,
caches only store unencrypted HTTP responses from servers. Certain caches may in
some cases support SSL encrypted HTTPS delivery from the cache to the clients but,
in any case, traditional caches are not able to cache responses that have been
encrypted by the server and so are unable to support end-to-end (i.e. server to client)
encryption. Typically, when a response is encrypted by the server in the form of
HTTPS, the cache is not able to decrypt such a response and is therefore unable to
store the response in its cache memory. For this reason, traditional caches fail to
provide any benefit in the face of end-to-end encrypted traffic in an embodiment, the
integrated caching appliance serves as a two-way termination point for the SSL
encrypted HTTPS traffic.

For example, in a embodiment, the integrated caching appliance acts as a
termination point both to encrypted traffic between the server and the appliance, and
between the appliance and the clients. In this manner, the appliance is able to decrypt
and cache SSL-encrypted responses received from servers and when serving such
responses to a client, re-encrypt such response and securely deliver it to the

207

WO 2007/121241 PCT/US2007/066433

requesting client, thereby enabling end-to-end encryption and thus increasing the
applicability of caching to a wider variety of web traffic.

In an embodiment, the appliance can also serve as an endpoint in an SSL virtual
private network (SSL VPN). In particular, the appliance can act as a proxy SSL
endpoint for any resource in a private data communication network, decrypting
encrypted packets received from a client and then sending there on to the appropriate
destination server resource based on address information within the encrypted
packets. A data communication session established between client and a gateway
may be encrypted with the gateway serving as an encryption endpoint as described in
the preceding paragraphs of the present application. As described, the client may use
Secure Sockets Layer (SSL), IPSec, or some other encryption method to establish the
encrypted data communication session by which an interception mechanism on the
client directs traffic to the gateway while making the client browser think it is
communicating directly with the destination servers or destination networks, In such
an embodiment, the encrypted data communication session can be terminated at the
gateway, which also includes an integrated cache as described herein. In this way
caching functionality can be integrated into the SSL VPN functionality.

The gateway can also perform any applicable AAA. policies to the request and
consequently, the gateway will serve cached objects only to appropriately
authenticated clients, as well as permitting requests only for users authorized to
access a particular cached object. This is possible because the cache is integrated in
such a way that the access control policies of the gateway are enforced before the
cache sees any particular request. Thus, cached objects get the benefit of access
control without the cache itself needing to perform the authentication and
authorization. Through the integration of the cache with such other functions, the
cache itself becomes more efficient and more effective at handling the variety of data
that passes across today's networks. An embodiment also is able to improve the
efficiency of the overall network performance by introducing the benefits of cache
functionality to a broader array of web traffic.

208

WO 2007/121241 PCT/US2007/066433

Some other unique results of the mode of integration described above in
accordance with an embodiment are as follows. One result is the ability to cache pre-
compressed data and serve it to compression-aware clients. Another result is the
ability to cache access controlled data. Yet another result is the ability to work with
external caches to provide scalability of the cache. Because the cache is integrated
with redirection and traffic management capabilities at the gateway, external caches
can be deployed to provide a second-tier of caching thereby extending the capacity
(and the benefits) of caching significantly. Through an embodiment, this capacity is
created without the cache module itself having to explicitly perform cache
redirection policies.

In terms of performance, by integrating the cache as described above, the
processors of the cache are freed from performing the variety of connection processing
tasks that caches, acting as a nodes on a network, are traditionally required to perform,
and are thus able to perform its caching functions at their highest performance levels.
Indeed, by enabling the caching of compressed data, the cache is able to function even
more efficiently and allow users to realize even higher performance.

As previously noted in this application, the efficiency arises as a result of the way
the cache is integrated with the other network services and technologies including load
balancing technology, encryption, AAA, compression and other types of acceleration and
packet processing. As a result, processing duplications and other' inefficiencies
introduced by traditional modes of integration are avoided. These inefficiencies, caused
by unnecessary copying and context switching, arise because each object received by the
device must be copied to a message and then into a processor memory prior to
processing by the relevant application. The request must then be copied back to the
object or packet level for processing by the cache introducing additional memory copies.
In contrast, an embodiment carries out the integration at the OS or kernel level, thereby
enabling the cache to operate on the object as a data structure where the cache has equal
status as the other applications and/or processes in relating to and processing such data
structure and where the need for such additional memory copies is obviated as all

209

WO 2007/121241 PCT/US2007/066433

processes are working with the same data structure. The result is a more efficient

integration.

a. Caching with Proactive Validation in a Data Communication Network

Because web objects can change over time, each potentially cacheable object is
said to have a useful life, or "freshness", The concept of freshness refers to the fact that
the application server that originally generated the content also determines the period of'
time that such object can be served by a cache that may store such object- Caches must
be able to determine whether or not the copy of an object stored in its memory is still
"fresh," or whether the cache needs to retrieve a new copy of the object from the origin
server. An embodiment implements a novel approach to assuring object freshness. Many
conventional cache implementations try to keep the cached content fresh by fetching the
content from the origin on a pre-determined schedule. The fetching of content from the
origin occurs at times established by the cache administrator typically based on one or both
of the following approaches: either at (i) regular specified intervals or (ii) when the content is
about to expire.

There are two problems typically associated with the above commonly-employed
approaches. First, unnecessary processing loads are imposed upon the origin server
because that server is required to provide content to the cache requesting the refreshment
(whether such refresh occurs at specified intervals or as the content is about to expire)
without regard to whether such content will ultimately be served to clients, Second the
cache incurs additional processor load based on the extra processing overhead generated
because the cache needs to keep track of the elements that must be refreshed and the
time at which they have to be refreshed.

A cache in accordance with an embodiment solves the above problems using a
novel pre-fetching approach. The prefetching of th e content is not performed in
accordance with a predefined schedule or Just prior to expiration of the content. Instead,
an embodiment performs pre-fetching only when both of the following conditions have

210

WO 2007/121241 PCT/US2007/066433

been met: (1) a client has made a request for, the specified content and (2) that content is
‘about to expire'.

This approach addresses both problems described above. Pro-active revalidation is
more likely to generate a request for refreshing of content from the origin server only where
such content is being actively accessed. This minimizes the amount of “unnecessary' load
on the origin server- As discussed above, where the cache requests refreshment of
objects that are not ultimately served to clients (or only rarely get served depending on the
sensitivity of the cache), the cache is inefficiently utilizing both its own resources as well
as the resources of the origin server. An embodiment avoids the inefficient use of
the cache and server resources by requesting only that content that is being
actively accessed. The approach also, for the same reason, reduces the
bandwidth used for pre-fetching and therefore makes more efficient use of network
resources than traditional approaches.

Furthermore, an embodiment uses the expiry information included in the
cached object itself to determines whether to request refreshment of the object
from the origin server. Such expiry information is typically included in the headers
of the relevant object. This embodiment thus avoids the inefficiencies of staring any
additional information for fetching unlike many traditional approaches which require
the cache to keep a table tracking the schedule for refreshment. Using a ‘demand-
based' pre-fetching technique also enhances benefits that are inherent to pre-
fetching. This technique reduces the number of cache misses for frequently
accessed objects since such objects are very likely to undergo pro-active
revalidation, just before they expire. This technique can also prevent the surge of
traffic to an origin server that can occur when a large response that is in great
demand expires. In the traditional approach, all of the requests for such content
miss the cache and get sent to the origin server because the cache content has
expired. By contrast, in an embodiment, the content of the cache memory will
generally be refreshed just prior to expiration and therefore the situation where
cache misses occur while the cache is refreshing are much less likely to arise.

211

WO 2007/121241 PCT/US2007/066433

In an embodiment, the aggressiveness of pre-fetching can be controlled through
adjusting the length of the duration before the expiry where the content is determined to be
about to expire and also the number of client requests required to trigger refreshment by
the cache of the relevant object.

b. Optimizing Processing of Large Non-Cacheable Responses Using "Negative

Cells"

In accordance with an embodiment, the cache recognizes and does not store
objects that are above a specified size in order to improve the object hit ratio. Caches
typically have limited memory space devoted to storing cached objects and therefore
certain responses that exceed allocated memory space are ultimately rejected as non-
cacheable and not stored by the cache. With traditional caches, the cache attempts to
store the large response in its cache memory and only aborts storing the response
once the cache recognizes that the response size exceeds a predefined maximum
size. Traditional caches will repeatedly attempt to cache the large response each time
a request for such response is received by the cache from the server In each case,
the cache will need to determine that the object is non-cacheable as exceeding the
memory space, Thus, this is a manifestly inefficient approach.

In accordance with an embodiment, the cache employs an optimization to avoid
expending effort in storing such responses. Whenever the cache detects a response
that becomes non-cacheable due to response size, it stores a notation regarding the
corresponding request in a data structure termed a "negative cell." The notation
indicates that the request is non-cacheable, In the fixture, when a client requests the
same object, the request is matched to the notation regarded the first request stored in
the data structure. Eased on the match, the cache will not try to cache the response
and instead the request will completely bypass the cache.

There is no user configuration required for specifying the duration for which a
negative cell should remain in the cache, In fact, the users are not even aware that

this particular mechanism is being employed. In an embodiment, the cache uses the

212

WO 2007/121241 PCT/US2007/066433

regular expiry information that it would have employed to cache the big response, to
cache the "negative information" about that response.

4. Client-Side Acceleration

In one embodiment, a client-side acceleration program may perform one or more
acceleration techniques to accelerate, enhance or otherwise improve a client's
communications with and/or access to a server, such as accessing an application
provided by a server. Referring now to FIG. 40A, a client 6205 having an acceleration
program 6120 is depicted. In brief overview, the client 6205 operates on computing
device 6100 having an operating system with a kernel mode 6202 and a user mode
6202, and a network stack 6210 with one or more layers 6210a-6210b. The client 6205
may comprise any and all of the clients 10 previously discussed. Although only one
client 6205 is shown, any number of clients 10 may comprise the client 6205. The client
6205 may have installed and/or execute one or more applications 6220a-6220n. In
some embodiments, one or more applications 6220a-6220n may communicate via the
network stack 6210 to a network. One of the applications 6220N may also include a
first program 6222, for example, a program which may be used in some embodiments
to install and/or execute the acceleration program 6120.

The network stack 6210 of the client 6205 may comprise any type and form of
software, or hardware, or any combinations thereof, for providing connectivity to and
communications with a network. In one embodiment, the network stack 6210 comprises
a software implementation for a network protocol suite. The network stack 6210 may
comprise one or more network layers, such as any networks layers of the Open
Systems Interconnection (OSI) communications model as those skilled in the art
recognize and appreciate. As such, the network stack 6210 may comprise any type and
form of protocols for any of the following layers of the OSI model: 1) physical link layer,
2) data link layer, 3) network layer, 4) transport layer, 5) session layer, 6) presentation
layer, and 7) application layer. In one embodiment, the network stack 310 may
comprise a transport control protocol (TCP) over the network layer protocol of the
internet protocol (IP), generally referred to as TCP/IP. In some embodiments, the

213

WO 2007/121241 PCT/US2007/066433

TCP/IP protocol may be carried over the Ethernet protocol, which may comprise any of
the family of IEEE wide-area-network (WAN) or local-area-network (LAN) protocols,
such as those protocols covered by the IEEE 802.3. In some embodiments, the
network stack 6210 comprises any type and form of a wireless protocol, such as IEEE
802.11 and/or mobile internet protocol.

In view of a TCP/IP based network, any TCP/IP based protocol may be used,
including Messaging Application Programming Interface (MAPI) (email), File Transfer
Protocol (FTP), HyperText Transfer Protocol (HTTP), Common Internet File System
(CIFS) protocol (file transfer), Independent Computing Architecture (ICA) protocol,
Remote Desktop Protocol (RDP), Wireless Application Protocol (WAP), Mobile IP
protocol, and Voice Over IP (VoIP) protocol. In another embodiment, the network stack
210 comprises any type and form of transport control protocol, such as a modified
transport control protocol, for example a Transaction TCP (T/TCP), TCP with selection
acknowledgements (TCP-SACK), TCP with large windows (TCP-LW), a congestion
prediction protocol such as the TCP-Vegas protocol, and a TCP spoofing protocol. In
other embodiments, any type and form of user datagram protocol (UDP), such as UDP
over IP, may be used by the network stack 6210, such as for voice communications or
real-time data communications.

Furthermore, the network stack 6210 may include one or more network drivers
supporting the one or more layers, such as a TCP driver or a network layer driver. The
network drivers may be included as part of the operating system of the computing
device 100 or as part of any network interface cards or other network access
components of the computing device 6100. In some embodiments, any of the network
drivers of the network stack 6210 may be customized, modified or adapted to provide a
custom or modified portion of the network stack 6210 in support of any of the
techniques described herein. In other embodiments, the acceleration program 6120 is
designed and constructed to operate with or work in conjunction with the network stack
6210 installed or otherwise provided by the operating system of the client 205.

The network stack 6210 comprises any type and form of interfaces for receiving,
obtaining, providing or otherwise accessing any information and data related to network

214

WO 2007/121241 PCT/US2007/066433

communications of the client 6205. In one embodiment, an interface to the network
stack 6210 comprises an application programming interface (API). The interface may
also comprise any function call, hooking or filtering mechanism, event or call back
mechanism, or any type of interfacing technique. The network stack 6210 via the
interface may receive or provide any type and form of data structure, such as an object,
related to functionality or operation of the network stack 6210. For example, the data
structure may comprise information and data related to a network packet or one or more
network packets. In some embodiments, the data structure comprises a portion of the
network packet processed at a protocol layer of the network stack 6210, such as a
network packet of the transport layer. In some embodiments, the data structure 6225
comprises a kernel-level data structure, while in other embodiments, the data structure
6225 comprises a user-mode data structure. A kernel-level data structure may
comprise a data structure obtained or related to a portion of the network stack 6210
operating in kernel-mode 6202, or a network driver or other software running in kernel-
mode 6202, or any data structure obtained or received by a service, process, task,
thread or other executable instructions running or operating in kernel-mode of the
operating system.

Additionally, some portions of the network stack 6210 may execute or operate in
kernel-mode 6202, for example, the data link or network layer, while other portions
execute or operate in user-mode 6203, such as an application layer of the network
stack 6210. For example, a first portion 6210a of the network stack may provide user-
mode access to the network stack 6210 to an application 6220a-6220n while a second
portion 6210a of the network stack 6210 provides access to a network. In some
embodiments, a first portion 6210a of the network stack may comprise one or more
upper layers of the network stack 6210, such as any of layers 5-7. In other
embodiments, a second portion 6210b of the network stack 6210 comprises one or
more lower layers, such as any of layers 1-4. Each of the first portion 6210a and
second portion 6210b of the network stack 6210 may comprise any portion of the
network stack 6210, at any one or more network layers, in user-mode 6203, kernel-
mode, 6202, or combinations thereof, or at any portion of a network layer or interface

215

WO 2007/121241 PCT/US2007/066433

point to a network layer or any portion of or interface point to the user-mode 6203 and
kernel-mode 6203.

The acceleration program 6120 of the present may comprise software, hardware,
or any combination of software and hardware. In some embodiments, the acceleration
program 6120 comprises any type and form of executable instructions constructed and
designed to execute or provide the functionality and operations as described herein. In
some embodiments, the acceleration program 6120 comprises any type and form of
application, program, service, process, task or thread. In one embodiment, the
acceleration program 6120 comprises a driver, such as a network driver constructed
and designed to interface and work with the network stack 6210. The logic, functions,
and/or operations of the executable instructions of the acceleration program 6120 may
perform one or more of the following acceleration techniques: 1) multi-protocol
compression 6238, 2) transport control protocol pooling 6224, 3) transport control
protocol multiplexing 6226, 4) transport control protocol buffering 6228, and 5) caching
via a cache manager 6232, which will be described in further detail below. Additionally,
the acceleration program 6120 may perform encryption 6234 and/or decryption of any
communications received and/or transmitted by the client 6205. In some embodiments,
the acceleration program 6120 also performs tunneling between the client 6205 and
another computing device 6100, such as a server 30. In other embodiments, the
acceleration program 6120 provides a virtual private network connection to a server 30.

In some embodiments, the acceleration program 6120 operates at one or more
layers of the network stack 6210, such as at the transport layer. In one embodiment,
the acceleration program 6120 comprises a filter driver, hooking mechanism, or any
form and type of suitable network driver interface that interfaces to the transport layer of
the network stack, such as via the transport driver interface (TDI). In some
embodiments, the acceleration program 6120 interfaces to a first protocol layer, such as
the transport layer and another protocol layer, such as any layer above the transport
protocol layer, for example, an application protocol layer. In one embodiment, the
acceleration program 6120 may comprise a driver complying with the Network Driver
Interface Specification (NDIS), or a NDIS driver. In another embodiment, the

216

WO 2007/121241 PCT/US2007/066433

acceleration program 6120 may comprise a min-filter or a mini-port driver. In one
embodiment, the acceleration program 6120, or portion thereof, operates in kernel-
mode 6202. In another embodiment, the acceleration program 6120, or portion thereof,
operates in user-mode 6203. In some embodiments, a portion of the acceleration
program 6120 operates in kernel-mode 6202 while another portion of the acceleration
program 6120 operates in user-mode 6203. In other embodiments, the acceleration
program 6120 operates in user-mode 6203 but interfaces to a kernel-mode driver,
process, service, task or portion of the operating system, such as to obtain a kernel-
level data structure 6225. In further embodiments, the acceleration program 6120 is a
user-mode application or program, such as application 6220a-6220n.

The acceleration program 6120 may operate at or interface with a protocol layer
in @ manner transparent to any other protocol layer of the network stack 6210. For
example, in one embodiment, the acceleration program 6120 operates or interfaces with
the transport layer of the network stack 6210 transparently to any protocol layer below
the transport layer, such as the network layer, and any protocol layer above the
transport layer, such as the session, presentation or application layer protocols. This
allows the other protocol layers of the network stack 6210 to operate as desired and
without modification for using the acceleration program 6120. As such, the acceleration
program 6120 can interface with the transport layer to accelerate any communications
provided via any protocol carried by the transport layer, such as any application layer
protocol over TCP/IP.

Furthermore, the acceleration program 6120 may operate at or interface with the
network stack 6210 in a manner transparent to any application 6220a-6220n, a user of
the client 6205, and any other computing device, such as a server, in communications
with the client 6205. The acceleration program 6120 may be installed and/or executed
on the client 6205 in a manner such as the acceleration program 6120 may accelerate
any communications of an application 6220a-6220n without modification of the
application 6220a-6220n. In some embodiments, the user of the client 6205 or a
computing device in communications with the client 6205 are not aware of the
existence, execution or operation of the acceleration program 6120. As such, in some

217

WO 2007/121241 PCT/US2007/066433

embodiments, the acceleration program 6120 is installed, executed, and/or operated
transparently to an application 6220a-6220n, user of the client 6205, another computing
device, such as a server, or any of the protocol layers above and/or below the protocol
layer interfaced to by the acceleration program 6120.

In some embodiments, the acceleration program 6120 performs one or more of
the acceleration techniques 6224, 6226, 6228, 6232 in an integrated manner or fashion.
In one embodiment, the acceleration program 6128 comprises any type and form of
mechanism to intercept, hook, filter, or receive communications at the transport protocol
layer of the network stack 6210. By intercepting a network packet of the client 6205 at
the transport layer and interfacing to the network stack 6210 at the transport layer via a
data structure, such as a kernel-level data structure 6225, the acceleration program 120
can perform transport layer related acceleration techniques on the network packet, such
as transport control protocol (TCP) buffering, TCP pooling and TCP multiplexing.
Additionally, the acceleration program 6120 can perform compression 6225 on any of
the protocols, or multiple-protocols, carried as payload of network packet of the
transport layer protocol

In one embodiment, the acceleration program 6120 uses a kernel-level data
structure 6225 providing access to any portion of one or more network packets, for
example, a network packet comprising a request from a client 6205 or a response from
a server. In one embodiment, the kernel-level data structure may be used by the
acceleration program 6120 to perform the desired acceleration technique. In one
embodiment, the acceleration program 6120 is running in kernel mode 6202 when using
the kernel-level data structure 6225, while in another embodiment, the acceleration
program 6120 is running in user-mode 6203 when using the kernel-level data structure
6225. In some embodiments, the kernel-level data structure may be copied or passed
to a second kernel-level data structure, or any desired user-level data structure.
Although the acceleration program 6120 is generally depicted in FIG. 40A as having a
first portion operating in user-mode 6203 and a second portion operating in kernel-mode
6202, in some embodiments, any portion of the acceleration program 6120 may run in
user-mode 6203 or kernel-mode 6202. In some embodiments, the acceleration

218

WO 2007/121241 PCT/US2007/066433

program 6120 may operate only in user-mode 6203, while in other embodiments, the
acceleration program 6120 may operate only in kernel-mode 6202.

Furthermore, by intercepting at the transport layer of the network stack 6210 or
obtaining access to the network packet via a kernel-level data structure 6225, the
acceleration program 6120 can perform or apply the plurality of acceleration techniques
at a single interface point or at a single point of execution or time of executing any
executable instructions of the acceleration program 6120. For example, in one
embodiment, in a function or set of instructions of the acceleration program 6120, a
plurality of the acceleration techniques may be executed, such as by calling a set of
executable instructions constructed and designed to perform the acceleration technique.
In some embodiments, the acceleration program 6120 at one interface point, place of
execution, or in a set of instructions call one or more application programming interfaces
(APIs) to any program, service, process, task, thread, or executable instructions
designed and constructed to provide 1) multi-protocol compression 6238, 2) transport
control protocol pooling 6224, 3) transport control protocol multiplexing 6226, 4)
transport control protocol buffering 6228, and 5) caching via a cache manager 6232 and
in some embodiments, encryption 6234.

By executing the plurality of acceleration techniques at one place or location in
executable instructions of the acceleration program 6120 or at one protocol layer of the
network stack 6210, such as the transport layer, the integration of these acceleration
techniques is performed more efficiently and effectively. In one aspect, the number of
context switches between processes may be reduced as well as reducing the number of
data structures used or copies of data structures in memory needed or otherwise used.
Additionally, synchronization of and communications between any of the acceleration
techniques can be performed more efficiently, such as in a tightly-coupled manner, in a
set of executable instructions of the acceleration program 6120. As such, any logic,
rules, functionality or operations regarding the order of acceleration techniques, which
techniques to perform, and data and information to be shared or passed between
techniques can be performed more efficiently. The<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>