
(12) STANDARD PATENT (11) Application No. AU 2007238099 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Systems and methods for accelerating delivery of a computing environment to remote
user

(51)

(21)

(87)

(30)

(31)

International Patent Classification(s)
H04L 29/08 (2006.01) H04L 29/06 (2006.01)

Application No: 2007238099

WIPO No: WO07/121241

(22) Date of Filing: 2007.04.11

(43)
(44)

(71)

Priority Data

Number
60/744,720

Publication Date:
Accepted Journal Date:

Applicant(s)
Citrix Systems, Inc.

(32) Date
2006.04.12

2007.10.25
2012.02.23

(33) Country
US

(72) Inventor(s)
Pedersen, Brad J.;Treder, Terry;Sinha, Rajiv;Sundarrajan, Prabakar

(74) Agent / Attorney
Pizzeys, Level 2, Woden Plaza Offices Woden Town Square Woden, Canberra, ACT,
2606

(56) Related Art
WO 2005/088476 A1 (FIRST HOP OY et al) 22 September 2005

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 October 2007 (25.10.2007) PCT (10) International Publication Number

WO 2007/121241 A3

w
o

20
07

/1
21

24
1 A

3 lll
llll
llll
llll
llll
llll
llll
llll
llll
llll
llll
^

(51) International Patent Classification:
H04L 29/08 (2006.01) H04L 29/06 (2006.01)

(21) International Application Number:
PCT/US2007/066433

(22) International Filing Date: 11 April 2007 (11.04.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/744,720 12 April 2006 (12.04.2006) US

(71) Applicant (for all designated States except US)·. CITRIX
SYSTEMS, INC. [US/US]; 851 West Cypress Creek Road,
Fort Lauderdale, EL 33309 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only)·. PEDERSEN, Brad,

J. [US/US]; C/o Citrix Systems, Inc, 851 West Cypress
Creek Road, Fort Lauderdale, FL 33309 (US). SUNDAR-
RAJAN, Prabakar [US/GB]; C/o Citrix Silicon Valley,
4988 Great America Parkway, Santa Clara, CA 95054
(US). SINHA, Rajiv [US/US]; C/o Citrix Silicon Valley,
4988 Great America Parkway, Santa Clara, CA 95054
(US). TREDER, Terry [US/US]; C/o Citrix Systems,
Inc., 851 West Cypress Creek Road, Fort Lauderdale, FL
33309 (US).

(74) Agent: MCKENNA, Christopher, J.; Choate, Hall &
Stewart, Two International Place, Boston, MA 02110 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available)·. AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN,
IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available)·. ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report
— before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments

(88) Date of publication of the international search report:
13 December 2007

For two-letter codes and other abbreviations, refer to the "Guid­
ance Notes on Codes and Abbreviations" appearing at the begin­
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEMS AND METHODS FOR ACCELERATING DELIVERY OF A COMPUTING ENVIRONMENT TO RE­
MOTE USER

(57) Abstract: The present invention is directed towards the acceleration of delivery of a computing environment to a remote user
of a client at a remote location. The computing environment may include an application and a data file used or processed by the
application. The application and data file may be stored or provided via a server remote to the client. The user can request a com­
puting environment from the server that provides for execution of the application by the user via the remote computer. For example,
the server may stream the application to the remote client. The client and server may communicate via an appliance that accelerates
communications between the client and server. For example, the appliance may accelerate the streaming of the application to the
remote user. In some cases, the application or remote user may also request a data file from the server, and the appliance accelerates
the delivery of the data file to the remote user. As such, users at remote locations obtain accelerated access via any network connected
device to applications and data files located remotely to the user.

WO 2007/121241 PCT/US2007/066433

SYSTEMS AND METHODS FOR ACCELERATING
DELIVERY OF A COMPUTING ENVIRONMENT TO A REMOTE USER

Related Applications

The present application claims the benefit of and priority to U.S. Provisional

Patent Application No. 60/744,720, entitled “Systems and Methods for Accelerating

Delivery of a Computing Environment to a Remote User ” and filed on April 12, 2006,

which is incorporated herein by reference.

Field of the Invention

The present invention is directed towards systems and methods for accelerating

the delivery of a computing environment, including an application and a data file, to a

remote user of a client at a location remote to the server.

Background of the Invention

Administering and managing enterprise environments consumes time, money

and resources. In many cases, this is because the application and data management

process is decentralized and labor-intensive. For example, a significant portion of an

administrator’s time may be spent providing more storage or performing backups for the

corporate data, or updating servers to handle growth in corporate data. Also, an

administrator may need to create and provision new servers to handle the growth in

data. Additionally, an administrator may spend time updating or provisioning a server to

provide a particular user application. Additionally, a significant portion of corporate data

may reside outside the corporate data center. For example, corporate documents, files

and data may exist on or are distributed to various computers remote to the data center.

In an effort to reduce the time, money, and resources required to administer and

manage corporate data and applications, many companies have consolidated and

centralized servers, corporate data and applications. Although consolidation and

centralization have reduced some costs and have produced some benefits, centralized

data and applications introduce additional challenges in providing access to data and

1

WO 2007/121241 PCT/US2007/066433

applications. One such challenge involves a remote user trying to access a file over a

wide area network (WAN) connection. For example, a remote user at a branch office

which typically has a network connection to the corporate data center that operates

much slower than a LAN connection may try to open over the WAN a Microsoft Office

document stored in at a corporate data center. The remote user’s access over the

network to the file may be delayed due to the latency, reliability and bandwidth with the

WAN. The delays may be larger for larger files. Furthermore, as the distance between

the remote user and the corporate data center grows, the frequency and length of

network delays in accessing files also may increase. Adding virtual private network,

security and other network layers on the WAN may further reduce bandwidth available

to the remote users and increase delays in accessing the file. The lower speed and

bandwidth of the remote office may cause unacceptable delays in accessing remote

files. To avoid the delays in remote file access, remote users may copy and use files

locally, defeating the purpose of centralized operations. Additionally, WAN connections

may be less reliable than LAN connections, resulting in packet loss and network

disconnection. WAN interruptions may occur during a file operation, such as saving or

opening a document, further causing delays experienced by the remote user.

Therefore, systems and methods are desired to improve access by remote users

to centralized applications and data files, including acceleration of the delivery of

applications and data files to remote users.

Summary of the Invention

The present invention relates to systems and methods to accelerate delivery of a

computing environment of an application and data file to a remote user. The application

and data file may be stored or provided via a server remote to the client. For example a

user, such as a remote employee, may use at a branch office a computer that does not

have the application and/or data file available locally. The user may want to edit a

corporate document with a word processing application not available on the remote

client. The user can request a computing environment from the server that provides for

execution of the desired application by the user via the remote client. For example, the

2

WO 2007/121241 PCT/US2007/066433

server may stream the application to the remote client. The remote client and server

may communicate via an appliance that accelerates communications between the

remote client and server. For example, the appliance may accelerate the streaming of

the application to the remote user. In some cases, the application or remote user may

also request a data file from the server, and the appliance accelerates the delivery of

the data file to the remote user. As such, the present invention provides users at

remote locations accelerated access via any network connected device to applications

and data files located remotely to the user.

In one aspect, the present invention is related to a method for accelerating

delivery of a computing environment of an application and a data file to a user of a client

at a remote location. The method includes receiving, by the server, a request from a

remote client to execute an application. The remote client and server communicate via

an appliance. The method also includes streaming, by the server, to the remote client

an application for execution. The client transmits a request to the server for a data file

useable by the application, and the appliance accelerates transmission of the data file to

the remote client.

In one embodiment of the present invention, the method includes accelerating by

the appliance streaming of the application to the remote client. In another embodiment,

the appliance accelerates the transmission of the data file or the streaming of the

applications by performing one of the following acceleration techniques: 1)

compression; 2) decompression; 3) Transmission Control Protocol pooling; 4)

Transmission Control Protocol multiplexing; 5) Transmission Control Protocol buffering;

and 6) caching. In another embodiment, the method includes accelerating, by an

acceleration program on the remote client, communications between the remote client

and the server. In some embodiments of the method, the appliance establishes a

virtual private network connection or Secure Socket Layer (SSL) connection with the

remote client. In other embodiments, the method includes accelerating, by the

appliance, a payload of a network packet communicated via a transport layer

connection between the remote client and the server.

3

WO 2007/121241 PCT/US2007/066433

In one embodiment of the present invention, the method includes transmitting, by

the appliance, an acceleration program to the remote client upon a request from the

remote client to establish a connection or a session with the server. In some

embodiments, the remote client automatically installs and executes an acceleration

program upon receipt from the appliance. In other embodiments, the method includes

performing, by an acceleration program on the remote client, one of the following

acceleration techniques:

1) compression; 2) decompression; 3) Transmission Control Protocol pooling; 4)

Transmission Control Protocol multiplexing; 5) Transmission Control Protocol buffering;

and 6) caching. In some embodiments, the remote client executes the acceleration

program transparently to the application or the server.

In some embodiments of the present invention, the method includes determining

by the appliance, the application is capable of being accelerated, and transmitting in

response to the determination an acceleration program to the remote client. In other

embodiments, the appliance caches the data file. In one embodiment, the appliance

intercepts the request for the data file and transmits to the remote client the cached data

file in response to the request.

In another aspect, the present invention is related to a system for accelerating

delivery to a remote user a computing environment of an application and a data file to a

client at a remote location. The system includes an appliance for accelerating

communications between one or more remote clients and one or more servers. The

system also includes a server receiving a request from a remote client to execute an

application. The remote client and the server communicate via the appliance. The

server streams to the remote client an application for execution. The client transmits a

request to the server for a data file useable by the application, and the appliance

accelerates transmission of the data file to the remote client.

In some embodiments of the present invention, the appliance accelerates

streaming of the application to the remote client. In one embodiment, the appliance

accelerates the transmission of the data file or the streaming of the application by

performing one of the following acceleration techniques: 1) compression; 2)

4

WO 2007/121241 PCT/US2007/066433

decompression; 3) Transmission Control Protocol pooling; 4) Transmission Control

Protocol multiplexing; 5) Transmission Control Protocol buffering; and 6) caching.

In another embodiment, the system includes an acceleration program on the remote

client accelerating communications between the remote client and the server. In one

embodiment, the appliance establishes a virtual private network connection or Secure

Socket Layer (SSL) connection with the remote client.

In some embodiments of the system of the present invention, the appliance

accelerates a payload of a network packet communicated via a transport layer

connection between the remote client and the server. In one embodiment, the

appliance transmits an acceleration program to the remote client upon a request from

the client to establish a connection or a session with the server. In other embodiments,

the remote client automatically installs and executes an acceleration program upon

receipt from the appliance. The acceleration program on the remote client may perform

one of the following acceleration techniques: 1) compression; 2) decompression; 3)

Transmission Control Protocol pooling; 4) Transmission Control Protocol multiplexing;

5) Transmission Control Protocol buffering; and 6) caching. In one embodiment, the

remote client executes the acceleration program transparently to the application or the

server.

In another embodiment of the system of the present invention, the appliance

determines the application is capable of being accelerated, and transmits an

acceleration program to the remote client in response to the determination. In one

embodiment, the appliance comprises a cache for caching the data file. In some

embodiments, the appliance intercepts the request for the data file and transmits to the

remote client the cached data file in response to the request.

Brief Description of the Drawings

These and other aspects of this invention will be readily apparent from the

detailed description below and the appended drawings, which are meant to illustrate

and not to limit the invention, and in which:

FIG. 1A is a block diagram depicting a network environment;

5

WO 2007/121241 PCT/US2007/066433

FIG. 1B is a block diagram depicting an embodiment of a computing environment

of a remote in a network environment;

FIG. 1C and 1D are block diagrams depicting embodiments of computers useful

in connection with embodiments described;

FIG. 1E is a block diagram depicting an environment suitable for delivering a

computing environment to a client;

FIG. 1F is a block diagram depicting one embodiment of a system for providing a

plurality of application programs available to the local machine via publishing of GUIs in

a web service directory;

FIG. 2 is a flow diagram depicting one embodiment of the steps taken to select a

method of execution of an application program;

FIG. 3A is a block diagram depicting one embodiment of a local machine initiating

execution of a Program Neighborhood application via the World Wide Web;

FIG. 3B is a flow diagram depicting one embodiment of the steps taken by a local

machine to access an application program enumerated using a web service directory;

FIG. 4A is a block diagram of an embodiment of a network environment providing

policy-based access to application programs for a local machine;

FIG. 4B is a block diagram depicting a more detailed embodiment of a policy

engine;

FIG. 4C a flow diagram depicting one embodiment of the steps taken by a policy

engine to make an access control decision based upon information received about a

local machine;

FIG. 4D is a block diagram depicting an embodiment of a computer network in

which authorized remote access to a plurality of application sessions is provided;

FIG. 4E is a flow diagram depicting one embodiment of the steps taken by a

session server to connect a local machine with its associated application sessions;

FIG. 5 is a flow diagram depicting one embodiment of the steps taken by a

session server to connect a client node with its associated application sessions;

FIG. 6 is a block diagram depicting one embodiment of a remote machine

including a management service providing an application enumeration;

6

WO 2007/121241 PCT/US2007/066433

FIG. 7 is a flow diagram depicting one embodiment of the steps taken to access

a plurality of files comprising an application program;

FIG. 8A is a block diagram depicting one embodiment of a computer running

under control of an operating system that has reduced application compatibility and

application sociability problems;

FIG. 8B is a block diagram depicting one embodiment of a multi-user computer

having reduced application compatibility and application sociability problems;

FIG. 8C is a flow diagram depicting one embodiment of the steps taken in a

method for associating a process with an isolation scope;

FIG. 9 is a flow diagram depicting one embodiment of steps taken in a method

for executing an application program;

FIG. 10 is a flow diagram depicting one embodiment of a plurality of application

files residing on a remote machine;

FIG. 11 is a flow diagram depicting one embodiment of the steps taken in a

method for responding locally to requests for file metadata associated with files stored

remotely;

FIG. 12 is a block diagram depicting one embodiment of a system for responding

locally to requests for file metadata associated with files stored remotely;

FIG. 13 is a flow diagram depicting one embodiment of the steps taken in a

method for accessing a remote file in a directory structure associated with an

application program executing locally;

FIG. 14 is a block diagram depicting one embodiment of a system for accessing

a file in a directory structure associated with an application;

FIG. 15 is a block diagram of one embodiment of a remote machine including a

license management subsystem;

FIG. 16 is a block diagram depicting one embodiment of components in a

management service on a remote machine;

FIG. 17 is a flow diagram depicting one embodiment of the steps taken to

request and maintain a license from a remote machine;

7

WO 2007/121241 PCT/US2007/066433

FIG. 18 is a block diagram depicting one embodiment of states that may be

associated with a session monitored by a management service;

FIG. 19 is a block diagram depicting an embodiment of a package including two

targets, each target comprising a plurality of application files comprising an application;

FIG. 20 is a flow diagram depicting one embodiment of the steps taken in a

policy-based method for installing an application program without rebooting an

operating system;

FIG. 21 is a flow diagram depicting one embodiment of the steps taken in a

policy-based method for installing an application program without rebooting an

operating system;

FIG. 22 is a screen shot depicting one embodiment of an enumeration of scripts

to be executed on the local machine;

FIG. 23 is a block diagram depicts an embodiment of a system including a

packaging mechanism executing an installer program into an isolation environment;

FIG. 24 is a flow chart depicting one embodiment of the steps taken in an

environment in which execution of an installer program requires rebooting an operating

system;

FIG. 25 is a block diagram depicting one embodiment of a remote machine onto

which a packaging mechanism installs an application program;

FIG. 26 is a flow diagram depicting one embodiment of the steps taken to install

an application in an application isolation environment;

FIG. 27 is a block diagram illustrating one embodiment of an architecture of an

appliance that performs integrated caching;

FIG. 28A is a flow diagram of steps taken in an embodiment of a method for

integrating device operations with packet processing and the packet processing timer;

FIG. 28B is a flow diagram of steps taken in an embodiment of a method for

practicing invalidation granularity techniques in view of FIG. 3A;

FIG. 29A is a flow diagram of steps taken in an embodiment of a method using

invalidation commands to invalidate stale objects;

8

WO 2007/121241 PCT/US2007/066433

FIG. 29B is a flow diagram of steps taken in an embodiment of a method

incorporating invalidation of groups of objects;

FIG. 29C is a flow diagram of steps taken in an embodiment of a method wherein

a client request is parsed for object determinants;

FIG. 29D is a flow diagram of steps taken in an embodiment of a method

incorporating invalidation of groups of objects using object determinants;

FIG. 30 is a flowchart of steps taken in one embodiment of a method of

connection pooling;

FIG. 31 is a flowchart of steps taken in one embodiment of a method of

translating client and server requests;

FIG. 32 illustrates one embodiment of a content length parameter;

FIG. 33 illustrates one embodiment of chunk-size fields;

FIG. 34 is a message flow diagram depicting one embodiment of connection

pooling;

FIG. 35 is a detailed flow diagram illustrating one embodiment of the steps taken

to use the content length parameter to increase efficiency of connection pooling

between clients and servers;

FIG. 36 is a flowchart depicting one embodiment of the steps taken to use the

content length parameter to increase efficiency of connection pooling between clients

and servers;

FIG. 37 is a detailed flow diagram illustrating one embodiment of the steps taken

to use chunk-size fields to increase efficiency of connection pooling between clients and

servers;

FIG. 38 is a flowchart depicting one embodiment of the steps taken to use chunk-

size fields to increase efficiency of connection pooling between clients and servers;

FIG. 39 is a flowchart of one embodiment of the steps taken to a provide

integrated caching functionality;

FIG. 40A is a block diagram of an embodiment of a client-side acceleration

program;

9

WO 2007/121241 PCT/US2007/066433

FIG. 40B is a block diagram of an embodiment of an appliance for providing a

client-side acceleration program;

FIG. 41A is a step diagram of an embodiment of a method for dynamically

providing and automatically installing and executing a client-side acceleration program;

FIG. 41B is a step diagram of an embodiment of a method for determining an

application can be accelerated;

FIG. 41C is a step diagram of another embodiment of a method of performing a

plurality of acceleration techniques by the acceleration program for intercepting at the

transport layer and using a kernel-level data structure;

FIG. 42A is a step diagram of another embodiment of a method to automatically

install and execute the acceleration program on the client via a first program;

FIG. 42B is a step diagram of an embodiment of a method for a first program and

the acceleration program to provide a virtual private network connectivity and perform

one or more acceleration techniques;

FIG. 43 is a step diagram of an embodiment of a method for redirecting a client’s

communication to a server to bypass an intermediary determined not useable to

transmit the communication to the server;

FIG. 44 is a step diagram of an embodiment of a method for performing a client-

side acceleration technique of transport control protocol buffering;

FIG. 45A is a step diagram of an embodiment of a method for performing a

client-side acceleration technique of transport control protocol connection pooling;

FIG. 45B is a diagrammatic view of a set of HTTP transactions performed by a

plurality of applications via a pool of one or more transport layer connections in one

embodiment;

FIG. 46 is a step diagram of an embodiment of a method for performing a client-

side acceleration technique of transport control protocol multiplexing;

FIG. 47 is a diagrammatic view of an embodiment of a content length identifier of

a transport layer packet;

FIG. 48 is a diagrammatic view of another embodiment of a content length

identifier of a message transmitted via multiple chunks;

10

WO 2007/121241 PCT/US2007/066433

FIG. 49A is a block diagram depicting an example embodiment of a networked

computer system for accelerating the delivery of a computing environment to a remote

client; and

FIG. 49B is a flow diagram depicting one embodiment of steps of a method for

accelerating the delivery of a computing environment to a remote client.

11

WO 2007/121241 PCT/US2007/066433

Detailed Description of the Invention

For purposes of reading the description of the various embodiments below, the

following descriptions of the sections of the specification and their respective contents

may be helpful:

- Section A describes a network environment and computing environment

which may be useful for practicing embodiments described herein;

- Section B describes embodiments of systems and methods for delivering

a computing environment to a remote user;

- Section C describes embodiments of systems and methods for

accelerating communications between a client and a server; and

- Section D describes an illustrative example embodiment of accelerating

the delivery of a computing environment to a remote user using the systems and

methods described in Section B and C.

12

WO 2007/121241 PCT/US2007/066433

A. NETWORK AND COMPUTING ENVIRONMENT

Prior to discussing the specifics of embodiments of the systems and methods, it

may be helpful to discuss the network and computing environments in which

embodiments may be deployed. Referring now to Figure 1A, a network environment 5

is depicted. In brief overview, the network environment 5 comprises one or more clients

10-10” (also generally referred to as clients 10, or local machines 10) in communication

with one or more servers 30-30” (also generally referred to as servers 30, or remote

machines 30) via one or more networks 40, 40”. In some embodiments, a client 10

communicates with a server 30 via an appliance 1250.

Although FIG. 1A shows a network 40 and a network 40’ between the clients ΙΟ­

Ι 0-10” and the servers 30-30”, the clients 10-10’ and the servers 30-30” may be on the

same network 40. The networks 40 and 40’ can be the same type of network or

different types of networks. The network 40 and/or the network 40’ can be a local-area

network (LAN), such as a company Intranet, a metropolitan area network (MAN), or a

wide area network (WAN), such as the Internet or the World Wide Web. In one

embodiment, network 40’ may be a private network and network 40 may be a public

network. In some embodiments, network 40 may be a private network and network 40’

a public network. In another embodiment, networks 40 and 40’ may both be private

networks. In some embodiments, clients 10-10” may be located at a branch office of a

corporate enterprise communicating via a WAN connection over the network 40 to the

servers 30-30” located at a corporate data center.

The network 40 and/or 40’ be any type and/or form of network and may include

any of the following: a point to point network, a broadcast network, a wide area network,

a local area network, a telecommunications network, a data communication network, a

computer network, an ATM (Asynchronous Transfer Mode) network, a SONET

(Synchronous Optical Network) network, a SDH (Synchronous Digital Hierarchy)

network, a wireless network and a wireline network. The topology of the network 40

and/or 40’ may be a bus, star, or ring network topology. The network 40 and/or 40’ and

network topology may be of any such network or network topology as known to those

ordinarily skilled in the art capable of supporting the operations described herein.

13

WO 2007/121241 PCT/US2007/066433

As shown in FIG. 1A, the appliance 1250 (also referred to herein as an interface

unit 1250) is shown between the networks 40 and 40’. In some embodiments, the

appliance 1250 may be located on network 40. For example, a branch office of a

corporate enterprise may deploy an appliance 1250 at the branch office. In other

embodiments, the appliance 1250 may be located on network 40’. For example, an

appliance 1250 may be located at a corporate data center. In yet another embodiment,

a plurality of appliances 1250 may be deployed on network 40. In some embodiments,

a plurality of appliances 1250 may be deployed on network 40’. In one embodiment, a

first appliance 1250 communicates with a second appliance 1250’. In other

embodiments, the appliance 1250 could be a part of any client 10-10’ or server 30-30”

on the same or different network 40,40’ as the client 10-10”. One or more appliances

1250 may be located at any point in the network or network communications path

between a client 10-10” and a server 30-30”.

In one embodiment, the system may include multiple, logically-grouped remote

machines 30, one or more of which is available to execute applications on behalf of a

local machine 10. In these embodiments, the logical group of remote machines may be

referred to as a server farm 38 or a farm 38 In some of these embodiments, the remote

machines 30 may be geographically dispersed. A farm 38 may be administered as a

single entity.

The remote machines 30 within each farm 38 can be heterogeneous. That is,

one or more of the remote machines 30 can operate according to one type of operating

system platform (e.g., WINDOWS NT, manufactured by Microsoft Corp, of Redmond,

Washington), while one or more of the other remote machines 30 can operate on

according to another type of operating system platform (e.g., Unix or Linux). The

remote machines 30 comprising each farm 38 do not need to be physically proximate to

each other remote machine 30 in its farm 38. Thus, the group of remote machines 30

logically grouped as a farm 38 may be interconnected using a wide-area network (WAN)

connection or medium-area network (MAN) connection. For example, a farm 38 may

include remote machines 30 physically located in different continents or different

regions of a continent, country, state, city, campus, or room. Data transmission speeds

14

WO 2007/121241 PCT/US2007/066433

between remote machines 30 in the farm 38 can be increased if the remote machines

30 are connected using a local-area network (LAN) connection or some form of direct

connection.

Remote machines 30 may be referred to as servers, file servers, application

servers, or remote machines. In some embodiments, remote machines 30 may have

the capacity to function as either application servers or as a master application server.

In one embodiment, a remote machine 30 may include an Active Directory. The local

machines 10 may also be referred to as client nodes or endpoints. In some

embodiments, the local machines 10 have the capacity to function as both client nodes

seeking access to applications and as application servers providing access to hosted

applications for other local machines 10.

In one embodiment, the local machine 10 communicates directly with one of the

remote machines 30 in a farm 38. In another embodiment, the local machine 10

executes a program neighborhood application to communicate with the remote machine

30 in a farm 38. In still another embodiment, the remote machine 30 provides the

functionality of a master node. In some embodiments, the local machine 10

communicates with the remote machine 30 in the farm 38 through a network 40. Over

the network 40, the local machine 10 can, for example, request execution of various

applications hosted by the remote machines 30, 30’, 30”, and 30’” in the farm 38 and

receive output of the results of the application execution for display. The network 40

may comprise synchronous or asynchronous connections and may be a LAN, MAN

(Medium-Area Network), or a WAN. Additionally, a network 40 may comprise a wireless

link, such as an infrared channel or satellite band. In some embodiments, only the

master node provides the functionality required to identify and provide address

information associated with a remote machine 30’ hosting a requested application.

In some embodiments, a local machine 10 communicates with a remote machine

30’”. In one of these embodiment, the remote machine 30’” provides functionality of a

web server. In another of these embodiments, the remote machine 30’” receives

requests from the local machine 10, forwards the requests to a remote machine 30 and

responds to the request by the local machine 10 with a response to the request from the

15

WO 2007/121241 PCT/US2007/066433

remote machine 30. In still another of these embodiments, the remote machine 30

acquires an enumeration of applications available to the local machine 10 and address

information associated with a remote machine 30’ hosting an application identified by

the enumeration of applications. In yet another of these embodiments, the remote

machine 30”’ presents the response to the request to the local machine 10 using a web

interface. In one embodiment, the local machine 10 communicates directly with the

remote machine 30’ to access the identified application. In another embodiment, the

local machine 10 receives application output data from the remote machine 30’”, the

application output data generated by an execution of the identified application on the

remote machine 30’.

Referring now to FIG. 1B, a network environment for delivering and/or operating

a computing environment on a client 10 is depicted. In brief overview, a server 30

includes an application delivery system 500 for delivering a computing environment or

an application and data file to one or more clients. The client 10 may include a

computing environment 15 for executing an application that uses or processes a data

file. The client 10 in communication with the server 30 via networks 40, 40’ and

appliance 1250 may request an application and data file from the server 30, or

appliance 1250 may forward a request from the client 10 to the server 30. For example,

the client 10 may not have locally the application and data file stored or accessible

locally. In response to the request, the server 30 may deliver the application and data

file to the client 10. For example, in one embodiment, the server 30 may transmit the

application as an application stream to operate in computing environment 15 on client

10.

Figures 1C and 1D are block diagrams depicting embodiments of the architecture

of a general purpose computer 135 useful as client computing devices 10 and server

computing devices 30. As shown in FIGs. 1C and 1D, each computer 135 includes a

central processing unit 102, and a main memory unit 122. Each computer 135 may also

include other optional elements, such as one or more input/output devices 130a-130-b

(generally referred to using reference numeral 130), and a cache memory 140 in

communication with the central processing unit 102.

16

WO 2007/121241 PCT/US2007/066433

The central processing unit 102 is any logic circuitry that responds to and

processes instructions fetched from the main memory unit 122. In many embodiments,

the central processing unit is provided by a microprocessor unit, such as those

manufactured by Intel Corporation of Mountain View, California; those manufactured by

Motorola Corporation of Schaumburg, Illinois; the Crusoe and Efficeon lines of

processors manufactured by Transmeta Corporation of Santa Clara, California; the lines

of processors manufactured by International Business Machines of White Plains, New

York; or the lines of processors manufactured by Advanced Micro Devices of

Sunnyvale, California.

Main memory unit 122 may be one or more memory chips capable of storing

data and allowing any storage location to be directly accessed by the microprocessor

102, such as Static random access memory (SRAM), Burst SRAM or SynchBurst

SRAM (BSRAM), Dynamic random access memory (DRAM), Fast Page Mode DRAM

(FPM DRAM), Enhanced DRAM (EDRAM), Extended Data Output RAM (EDO RAM),

Extended Data Output DRAM (EDO DRAM), Burst Extended Data Output DRAM

(BEDO DRAM), Enhanced DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC

SRAM, PC100 SDRAM, Double Data Rate SDRAM (DDR SDRAM), Enhanced SDRAM

(ESDRAM), SyncLink DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM), or

Ferroelectric RAM (FRAM). In the embodiment shown in FIG. 1C, the processor 102

communicates with main memory 122 via a system bus 120 (described in more detail

below). FIG. 1B depicts an embodiment of a computer system 135 in which the

processor communicates directly with main memory 122 via a memory port. For

example, in FIG. 1B the main memory 122 may be DRDRAM.

FIGs. 1C and 1D depict embodiments in which the main processor 102

communicates directly with cache memory 140 via a secondary bus, sometimes

referred to as a “backside” bus. In other embodiments, the main processor 102

communicates with cache memory 140 using the system bus 120. Cache memory 140

typically has a faster response time than main memory 122 and is typically provided by

SRAM, BSRAM, or EDRAM.

17

WO 2007/121241 PCT/US2007/066433

In the embodiment shown in FIG. 1C, the processor 102 communicates with

various I/O devices 130 via a local system bus 120. Various busses may be used to

connect the central processing unit 102 to the I/O devices 130, including a VESA VL

bus, an ISA bus, an EISA bus, a MicroChannel Architecture (MCA) bus, a PCI bus, a

PCI-X bus, a PCI-Express bus, or a NuBus. For embodiments in which the I/O device is

an video display, the processor 102 may use an Advanced Graphics Port (AGP) to

communicate with the display. FIG. 1D depicts an embodiment of a computer system

135 in which the main processor 102 communicates directly with I/O device 130b via

HyperTransport, Rapid I/O, or InfiniBand. FIG. 1D also depicts an embodiment in which

local busses and direct communication are mixed: the processor 102 communicates

with I/O device 130a using a local interconnect bus while communicating with I/O device

130b directly.

A wide variety of I/O devices 130 may be present in the computer system 135.

Input devices include keyboards, mice, trackpads, trackballs, microphones, and drawing

tablets. Output devices include video displays, speakers, inkjet printers, laser printers,

and dye-sublimation printers. An I/O device may also provide mass storage for the

computer system 135 such as a hard disk drive, a floppy disk drive for receiving floppy

disks such as 3.5-inch, 5.25-inch disks or ZIP disks, a CD-ROM drive, a CD-R/RW

drive, a DVD-ROM drive, tape drives of various formats, and USB storage devices such

as the USB Flash Drive line of devices manufactured by Twintech Industry, Inc. of Los

Alamitos, California.

In further embodiments, an I/O device 130 may be a bridge between the system

bus 120 and an external communication bus, such as a USB bus, an Apple Desktop

Bus, an RS-132 serial connection, a SCSI bus, a FireWire bus, a FireWire 800 bus, an

Ethernet bus, an AppleTalk bus, a Gigabit Ethernet bus, an Asynchronous Transfer

Mode bus, a HIPPI bus, a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP bus, a

FibreChannel bus, or a Serial Attached small computer system interface bus.

General-purpose computers of the sort depicted in FIG. 1C and FIG. 1D typically

operate under the control of operating systems, which control scheduling of tasks and

18

WO 2007/121241 PCT/US2007/066433

access to system resources. Typical operating systems include: MICROSOFT

WINDOWS, manufactured by Microsoft Corp, of Redmond, Washington; MacOS,

manufactured by Apple Computer of Cupertino, California; OS/2, manufactured by

International Business Machines of Armonk, New York; and Linux, a freely-available

operating system distributed by Caldera Corp, of Salt Lake City, Utah, among others.

For embodiments in which a client machine 10 or a server 30 comprise a mobile

device, the device may be a JAVA-enabled cellular telephone, such as the i55sr, i58sr,

i85s, or the i88s, all of which are manufactured by Motorola Corp, of Schaumburg,

Illinois; the 6035 or the 7135, manufactured by Kyocera of Kyoto, Japan; or the i300 or

i330, manufactured by Samsung Electronics Co., Ltd., of Seoul, Korea. In other

embodiments comprising mobile devices, a mobile device may be a personal digital

assistant (PDA) operating under control of the PalmOS operating system, such as the

Tungsten W, the VII, the Vllx, the i705, all of which are manufactured by palmOne, Inc.

of Milpitas, California. In further embodiments, the client 113 may be a personal digital

assistant (PDA) operating under control of the PocketPC operating system, such as the

iPAQ 4155, iPAQ 5555, iPAQ 1945, iPAQ 2215, and iPAQ 4255, all of which

manufactured by Hewlett-Packard Corporation of Palo Alto, California; the ViewSonic

V36, manufactured by ViewSonic of Walnut, California; or the Toshiba PocketPC e405,

manufactured by Toshiba America, Inc. of New York, New York. In still other

embodiments, the mobile device is a combination PDA/telephone device such as the

Treo 180, Treo 270, Treo 600, Treo 650, or the Treo 700w, all of which are

manufactured by palmOne, Inc. of Milpitas, California. In still further embodiments, the

mobile device is a cellular telephone that operates under control of the PocketPC

operating system, such as the MPx200, manufactured by Motorola Corp. A typical

mobile device may comprise many of the elements described above in FIG. 1C and 1D;

including the processor 102 and the main memory 104.

19

WO 2007/121241 PCT/US2007/066433

B. SYSTEMS AND METHODS FOR DELIVERING A COMPUTING ENVIRONMENT

An embodiment is directed towards systems and methods for delivering a

computing environment to a remote user at a client 10 located at a remote location from

the server 30. While the methods and systems in this section generally speak of

servers 30, the methods and systems below may utilize either servers 30, network

appliances 1250, or any combination thereof.

Referring now to FIG. 1E, one embodiment of a system in which remote

machines 30 comprise a farm 38 as depicted in FIG. 1A is shown. Each remote

machine 30 includes a network-side interface 202 and a farm-side interface 204. The

network-side interface 202 of the remote machine 30 may be in communication with one

or more local machines 10 or a network 210. The network 210 can be a WAN, LAN, or

international network such as the Internet or the World Wide Web. Local machines 10

may establish connections with the remote machines 30 using the network 210.

The farm-side interfaces 204 of the remote machines 30 are interconnected with

each over communication links 200 so that the remote machines 30 may communicate

with one another. On each remote machine 30, the farm-side interface 204

communicates with the network-side interface 202. The farm-side interfaces 204 also

communicate (designated by arrows 220) with a persistent store 230 and, in some

embodiments, with a dynamic store 240. The combination of remote machines 30, the

persistent store 230, and the dynamic store 240, when provided, are collectively

referred to as a farm 38. In some embodiments, a remote machine 30 communicates

with the persistent store 230 and other remote machines 30’ communicate with the

remote machine 30 to access information stored in the persistent store.

Persistent store 230 may be physically implemented on a disk, disk farm, a

redundant array of independent disks (RAID), writeable compact disc, or any other

device that allows data to be read and written and that maintains written data if power is

removed from the storage device. A single physical device may provide storage for a

plurality of persistent stores, i.e., a single physical device may be used to provide the

persistent store 230 for more than one farm 38. The persistent store 230 maintains

20

WO 2007/121241 PCT/US2007/066433

static data associated with each remote machine 30 in farm 38 and global data used by

all remote machines 30 within the farm 38. In one embodiment, the persistent store 230

may maintain the remote machine data in a Lightweight Directory Access Protocol

(LDAP) data model. In other embodiments, the persistent store 230 stores remote

machine data in an ODBC-compliant database. For the purposes of this description,

the term "static data" refers to data that do not change frequently, i.e., data that change

only on an hourly, daily, or weekly basis, or data that never change. Each remote

machine uses a persistent storage subsystem to read data from and write data to the

persistent store 230.

The data stored by the persistent store 230 may be replicated for reliability

purposes physically or logically. For example, physical redundancy may be provided

using a set of redundant, mirrored disks, each providing a copy of the data. In other

embodiments, the database itself may be replicated using standard database

techniques to provide multiple copies of the database. In further embodiments, both

physical and logical replication may be used concurrently.

The dynamic store 240 (i.e., the collection of all record tables) can be embodied

in various ways. In one embodiment, the dynamic store 240 is centralized; that is, all

runtime data are stored in the memory of one remote machine 30 in the farm 38. That

remote machine operates as a master network node with which all other remote

machines 30 in the farm 38 communicate when seeking access to that runtime data. In

another embodiment, each remote machine 30 in the farm 38 keeps a full copy of the

dynamic store 240. Here, each remote machine 30 communicates with every other

remote machine 30 to keep its copy of the dynamic store 240 up to date.

In another embodiment, each remote machine 30 maintains its own runtime data

and communicates with every other remote machine 30 when seeking to obtain runtime

data from them. Thus, for example, a remote machine 30 attempting to find an

application program requested by the local machine 10 may communicate directly with

every other remote machine 30 in the farm 38 to find one or more remote machines

hosting the requested application.

21

WO 2007/121241 PCT/US2007/066433

For farms 38 having a large number of remote machines 30, the network traffic

produced by these embodiments can become heavy. One embodiment alleviates

heavy network traffic by designating a subset of the remote machines 30 in a farm 38,

typically two or more, as "collector points." Generally, a collector point is a remote

machine that collects run-time data. Each collector point stores runtime data collected

from certain other remote machines 30 in the farm 38. Each remote machine 30 in the

farm 38 is capable of operating as, and consequently is capable of being designated as,

a collector point. In one embodiment, each collector point stores a copy of the entire

dynamic store 240. In another embodiment, each collector point stores a portion of the

dynamic store 240, i.e., it maintains runtime data of a particular data type. The type of

data stored by a remote machine 30 may be predetermined according to one or more

criteria. For example, remote machines 30 may store different types of data based on

their boot order. Alternatively, the type of data stored by a remote machine 30 may be

configured by an administrator using administration tool 140. In these embodiments,

the dynamic store 240 is distributed among two or more remote machines 30 in the farm

38. Anotherln another embodiment an appliance 1250 may alleviate heavy network

traffic by acceleratingaccelerate data passed between the remote machines 30, the

dynamic store 16240, and the persistent store 230. Such acceleration may be provided

by any of the techniques discussed herein.further in Section C. For example, the

appliance 1250 may be used to alleviate heavy network traffic.

Remote machines 30 not designated as collector points know the remote

machines 30 in a farm 38 that are designated as collector points. A remote machine

180 not designated as a collector point may communicate with a particular collector

point when delivering and requesting runtime data. Consequently, collector points

lighten network traffic because each remote machine 30 in the farm 38 communicates

with a single collector point remote machine 30, rather than with every other remote

machine 30, when seeking to access the runtime data.

Each remote machine 30 can operate as a collector point for more than one type

of data. For example, remote machine 30” can operate as a collector point for licensing

information and for loading information. In these embodiments, each collector point

22

WO 2007/121241 PCT/US2007/066433

may amass a different type of run-time data. For example, to illustrate this case, the

remote machine 30"' can collect licensing information, while the remote machine 30"

collects loading information.

In some embodiments, each collector point stores data that is shared between all

remote machines 30 in a farm 38. In these embodiments, each collector point of a

particular type of data exchanges the data collected by that collector point with every

other collector point for that type of data in the farm 38. Thus, upon completion of the

exchange of such data, each collector point 30" and 30 possesses the same data. Also

in these embodiments, each collector point 30 and 30" also keeps every other collector

point abreast of any updates to the runtime data.

Browsing enables a local machine 10 to view farms 38, remote machines 30, and

applications in the farms 38 and to access available information such as sessions

throughout the farm 38. Each remote machine 30 includes an ICA browsing subsystem

260 to provide the local machine 10 with browsing capability. After the local machine 10

establishes a connection with the ICA browser subsystem 260 of any of the remote

machines 30, that browser subsystem supports a variety of local machine requests.

Such local machine requests include: (1) enumerating names of remote machines in the

farm, (2) enumerating names of applications published in the farm, (3) resolving a

remote machine name and/or application name to a remote machine address that is

useful the local machine 10. The ICA browser subsystem 260 also supports requests

made by local machines 10 running a program neighborhood application that provides

the local machine 10, upon request, with a view of those applications within the farm 38

for which the user is authorized. The ICA browser subsystem 260 forwards all of the

above-mentioned local machine requests to the appropriate subsystem in the remote

machine 30.

In one embodiment, each remote machine 30 in the farm 38 that has a program

neighborhood subsystem 270 can provide the user of a local machine 10 with a view of

applications within the farm 38. The program neighborhood subsystem 270 may limit

the view to those applications for which the user of the local machine 10 has

23

WO 2007/121241 PCT/US2007/066433

authorization to access. Typically, this program neighborhood service presents the

applications to the user as a list or a group of icons.

The functionality provided by the program neighborhood subsystem 270 is

available to two types of local machines, (1) program neighborhood-enabled local

machines that can access the functionality directly from a local machine desktop, and

(2) non-program neighborhood-enabled local machines (e.g., legacy local machines)

that can access the functionality by running a program neighborhood-enabled desktop

on the remote machine.

Communication between a program neighborhood-enabled local machine and

the program neighborhood subsystem 270 may occur over a dedicated virtual channel

that is established on top of an ICA virtual channel. In other embodiments, the

communication occurs using an XML service. In one of these embodiments, the

program neighborhood-enabled local machine communicates with an XML subsystem,

such as the XML service 516 described in connection with FIG. 6 below, providing

program neighborhood functionality on a remote machine 30.

In one embodiment, the program neighborhood-enabled local machine does not

have a connection with the remote machine with a program neighborhood subsystem

270. For this embodiment, the local machine 10 sends a request to the ICA browser

subsystem 260 to establish an ICA connection to the remote machine 30 in order to

identify applications available to the local machine 10. The local machine 10 then runs

a client-side dialog that acquires the credentials of a user. The credentials are received

by the ICA browser subsystem 260 and sent to the program neighborhood subsystem

270. In one embodiment, the program neighborhood subsystem 270 sends the

credentials to a user management subsystem for authentication. The user

management subsystem may return a set of distinguished names representing the list

of accounts to which the user belongs. Upon authentication, the program neighborhood

subsystem 270 establishes the program neighborhood virtual channel. This channel

remains open until the application filtering is complete. In some embodiments, an

acceleration program 6120 as described in section C may also be transmitted to the

local machine 10 in response to a local machine 10 request.

24

WO 2007/121241 PCT/US2007/066433

The program neighborhood subsystem 270 then requests the program

neighborhood information from the common application subsystem 524 associated with

those accounts. The common application subsystem 524 obtains the program

neighborhood information from the persistent store 230. On receiving the program

neighborhood information, the program neighborhood subsystem 270 formats and

returns the program neighborhood information to the local machine over the program

neighborhood virtual channel. Then the partial ICA connection is closed.

For another example in which the program neighborhood-enabled local machine

establishes a partial ICA connection with a remote machine, consider the user of the

local machine 10 who selects a farm 38. The selection of the farm 38 sends a request

from the local machine 10 to the ICA browser subsystem 260 to establish an ICA

connection with one of the remote machines 30 in the selected farm 38. The ICA

browser subsystem 260 sends the request to the program neighborhood subsystem

270, which selects a remote machine 30 in the farm 38. Address information

associated with the remote machine 30 is identified and returned to the local machine

10 by way of the ICA browser subsystem 260. The local machine 10 can then

subsequently connect to the remote machine 30 corresponding to the received address

information.

In another embodiment, the program neighborhood-enabled local machine 10 an

ICA connection upon which the program neighborhood-virtual channel is established

and remains open for as long as the ICA connection persists. Over this program

neighborhood virtual channel, the program neighborhood subsystem 270 pushes

program neighborhood information updates to the local machine 10. This pushing of

updates to a local machine 10 may be accelerated according to any of the accelerating

techniques discussed herein. To obtain updates, the program neighborhood subsystem

270 subscribes to events from the common application subsystem 524 to allow the

program neighborhood subsystem 270 to detect changes to published applications.

Referring to FIG. 1F, a block diagram depicts another embodiment of a system

architecture for providing a plurality of application programs available to the local

machine via publishing of GUIs in a web service directory. The system includes the

25

WO 2007/121241 PCT/US2007/066433

local machine 10, and a plurality of remote machines 30. One remote machine 30

functions as a content server. A remote machine 30’ provides web server functionality.

A remote machine 30” provides functionality for providing access to application files and

acts as an application server or a file server. The local machine 10 can download

content from the content server 30, the web server 30’, and the application server 30”

over the network 155. In one embodiment, the local machine 10 can download content

(e.g., an application) from the application server 30” over the client-application server

communication channel 1150.

In one embodiment, the web browser 11 on the local machine 10 uses Secure

Socket Layer (SSL) support for communications to the content server 30 and/or the web

server 30’. SSL is a secure protocol developed by Netscape Communication

Corporation of Mountain View, California, and is now a standard promulgated by the

Internet Engineering Task Force (IETF). The web browser 11 can alternatively connect

to the content server 30 and/or the web server 30’ using other security protocols, such

as, but not limited to, Secure Hypertext Transfer Protocol (SHTTP) developed by Terisa

Systems of Los Altos, CA, HTTP over SSL (HTTPS), Private Communication

Technology (PCT) developed by Microsoft Corporation of Redmond, Washington, and

the Transport Level Security (TLS) standard promulgated by the IETF. In other

embodiments, the web browser 11 communicates with the servers 30 using a

communications protocol without encryption, such as the HyperText Transfer Protocol

(HTTP).

Additionally, the local machine 10 includes an application client 13 for

establishing and exchanging communications with the application server 30” over the

client-application server communication channel 1150. In one embodiment, the

application client 13 is a GUI application. In some embodiments, the application client

13 is an Independent Computing Architecture (ICA) client, developed by Citrix Systems,

Inc. of Fort Lauderdale, Florida, and is also referred to below as ICA client 13. Other

embodiments of the application client 13 include a Remote Display Protocol (RDP)

client, developed by Microsoft Corporation of Redmond, Washington, an X-Windows

26

WO 2007/121241 PCT/US2007/066433

client 13, a client-side player, interpreter or simulator capable of executing multimedia

applications, email, Java, or .NET code. Moreover, in one embodiment the output of an

application executing on the application server 30” can be displayed at the local

machine 10 via the ICA client 13. In some embodiments, the application client 13 is an

application client such as the application streaming client 552, described in greater

detail in connection with FIG. 5. In some embodiments, the application client 13

comprises an acceleration program in accordance with any of the embodiments

described herein6120 for accelerating communications between client 10 and server 30

The local machine 10 searches the web service directory 160 for a web service.

In one embodiment, the search is a manual search. Alternatively, the search is an

automatic search. The web service directory 160 may also provide a service based

view, such as white and yellow pages, to search for web services in the web service

directory. In another embodiment, the web service directory 160 supports a hierarchical

browsing based on a structured service name and service kind for GUI applications. In

one embodiment, the web service directory 160 executes on a remote machine

independent of the content server 30, such as a directory server. In other

embodiments, the web service directory 160 executes on multiple servers.

In some embodiments, the content server 30 enables the local machine 10 to

select web services based on additional analysis or information by providing this

information or analysis in the web service directory 160. Examples of service

information that the web service directory 160 can list includes, but is not limited to, the

name of the business offering the service, the service type, a textual description of the

service, one or more service access points (SAPs), the network type, the path to use

(e.g., TCP or HTTPS), and quality of service (QoS) information. Moreover, service

information can be client device type or user (e.g., role) specific. Thus, service

selection can be based on one or more of the above attributes.

In one embodiment, the service type denotes a programming interface that the

local machine 10 must use to access the web service. For instance, the service type

27

WO 2007/121241 PCT/US2007/066433

can state that the service is encoded by an interface description language, such as Web

Services Description Language (WSDL).

The service access point, or SAP, is a unique address for an application. The

SAPs enable the computer system to support multiple applications at the local machine

10 and each remote machine 30. For example, the application server 30” may support

an electronic mail (i.e., e-mail) application, a file transfer application, and/or a GUI

application. In one embodiment, these applications would each have a SAP that is

unique within the application server 30”. In one embodiment, the SAP is a web or

Internet address (e.g., Domain Name System (DNS) name, IP/port, or Uniform

Resource Locator (URL)). Thus, in one embodiment the SAP identifies the address of

the web server 30’ as part of the address for an application stored on the web server

30’. In some embodiments, the SAP identifies the address of a publishing server plug­

in 165 as part of the address for an application stored on the web server 30’, as

described below. In one embodiment, the SAP is an “accessPoint” from the UDDI

registry.

To prepare an item for publishing in the web service directory 160, the content

server 30 includes a web publishing tool 170. In one embodiment, the web publishing

tool 170 is a software module. Alternatively, the web publishing tool 170 is another

server that may be externally located from or internally located in the content server 30.

In one embodiment, the web server 30’ delivers web pages to the local machine

10. The web server 30’ can be any remote machine 30 capable of providing web pages

to the local machine 10. In another embodiment, the web server 30’ is an Enterprise

Information Portal (e.g., corporate Intranet or secured business-to-business extranet).

Enterprise portals are company web sites that aggregate, personalize and serve

applications, data and content to users, while offering management tools for organizing

and using information more efficiently. In some companies, portals have replaced

traditional desktop software with browser-based access to a virtual workplace. In some

embodiments , an appliance 1250 accelerates delivery of the provision of web pages is

28

WO 2007/121241 PCT/US2007/066433

accelerated using any of the acceleration techniques discussed herein.. In other

embodiments an acceleration program 6120 accelerates delivery of the web pages.

The web server 30’ also includes a publishing server plug-in 165 to enable the

publishing of graphical user interface (GUI) applications. More specifically, the

publishing server plug-in 165 translates a new web service entry URL into a GUI

application service so that the GUI can be accessed via the web service directory 160.

In one embodiment, the publishing server plug-in 165 is a Common Gateway Interface

(CGI) script, which is a program designed to accept and return data that conforms to the

CGI specification. The program can be written in any programming language, such as

C, Perl, Java, or Visual Basic. In another embodiment, the publishing server plug-in

165 is a Java Server Page (JSP). Using the publishing server plug-in 165 to facilitate

the publishing of remote GUI applications, the local machine 10 can thereby access the

web service, not through a programming interface or a web page, but through a full GUI

interface, such as with Citrix’s ICA or Microsoft’s RDP. In some embodiments, an

appliance 1250 or acceleration program 6120 accelerates the delivery of said GUI to the

client is accelerated using any of the acceleration techniques discussed herein in

Section C.

The application server 30” hosts one or more applications that are available for

the local machine 10. Examples of such applications include word processing programs

such as MICROSOFT WORD and spreadsheet programs such as MICROSOFT

EXCEL, both manufactured by Microsoft Corporation of Redmond, Washington,

financial reporting programs, customer registration programs, programs providing

technical support information, customer database applications, or application set

managers.

In one embodiment, the web publishing tool 170 stores information about an

application that the web publishing tool 170 is publishing in the web service directory

160 in a persistent mass storage 225. In one embodiment the information is a URL for

the dynamic publishing server plug-in 165. The persistent mass storage 225 may be a

magnetic disk or magneto-optical drive. In one embodiment, the persistent mass

29

WO 2007/121241 PCT/US2007/066433

storage 225 is a database server, which stores data related to the published application

in one or more local service databases. The persistent mass storage 225 may be a

component internally located in or externally located from any or all of the remote

machines 30.

In other embodiments, the content server 30 or the web server 30’ communicate

with a remote machine 30 in the farm 38 to retrieve the list of applications. In one of

these embodiments, the content server 30 or the web server 30’ communicate with the

farm 38 instead of with the persistent mass storage 225.

Referring now to FIG. 2, a flow diagram depicts one embodiment of the steps

taken to select a method of execution of an application program. In brief overview,

credentials associated with the local machine or with a user of the local machine are

received, with a request for an enumeration of applications available for execution by

the local machine (step 202). An enumeration of a plurality of application programs

available to the local machine is provided, responsive to the received credentials (step

204). A request is received to execute an enumerated application (step 206). One of a

predetermined number of methods for executing the enumerated application is selected

responsive to a policy, the predetermined number of methods including a method for

application streaming of the enumerated application (step 208).

Credentials associated with the local machine or with a user of the local machine

are received, with a request for an enumeration of applications available for execution

by the local machine (step 202). In one embodiment, the remote machine receives a

request for enumeration of available applications from the local machine 10 with the

credentials. In another embodiment, an XML service on the remote machine 30

receives the request and the credentials and transmits the request and credentials to a

management service on the remote machine 30.

In some embodiments, a remote machine 30 functioning as a web server

receives communications from the local machine 10 and forwards the communications

to a remote machine 30’. In one of these embodiments, the web server forwards the

communications to an XML service on the remote machine 30’. In another of these

embodiments, the web server resides on the local machine. In other embodiments

30

WO 2007/121241 PCT/US2007/066433

where communications from the local machine 10 are routed to a remote machine 30’

by the web server, the remote machine 30 may be selected responsive to an Internet

Protocol (IP) address of the local machine 10.

In some embodiments, a local machine 10 requests access to an application

residing on a remote machine 30. In one of these embodiments, the local machine 10

requests execution by the remote machine 30 of the application residing on the remote

machine 30. In another of these embodiments, the local machine 10 requests retrieval

of a plurality of application files that comprise the application.

In some embodiments, the user provides credentials to the remote machine 30

via a graphical user interface presented to the local machine 10 by the remote machine

30. In other embodiments, a remote machine 30’” having the functionality of a web

server provides the graphical user interface to the local machine 10. In still other

embodiments, a collection agent transmitted to the local machine 10 by the remote

machine 30 gathers the credentials from the local machine 10. In one embodiment, a

credential refers to a username and password. In another embodiment, a credential is

not limited to a username and password but includes, without limitation, a machine ID of

the local machine 10, operating system type, existence of a patch to an operating

system, MAC addresses of installed network cards, a digital watermark on the client

device, membership in an Active Directory, existence of a virus scanner, existence of a

personal firewall, an HTTP header, browser type, device type, network connection

information such as internet protocol address or range of addresses, machine ID of the

remote machine 30, date or time of access request including adjustments for varying

time zones, and authorization credentials.

In some embodiments, a credential associated with a local machine is

associated with a user of the local machine. In one of these embodiments, the

credential is information possessed by the user. In another of these embodiments, the

credential is user authentication information. In other embodiments, a credential

associated with a local machine is associated with a network. In one of these

embodiments, the credential is information associated with a network to which the local

machine may connect. In another of these embodiments, the credential is information

31

WO 2007/121241 PCT/US2007/066433

associated with a network collecting information about the local machine. In still other

embodiments, a credential associated with a local machine is a characteristic of the

local machine.

An enumeration of a plurality of application programs available to the local

machine is provided, responsive to the received credentials (step 204). In one

embodiment, a user of a local machine 10 may learn of the availability of application

programs hosted by the remote machines 30 in the network 40 without knowing where

to find such applications and without technical information necessary to link to such

applications. These available application programs comprise the "program

neighborhood" of the user. A system for determining a program neighborhood for a

local machine includes an application program (hereafter referred to as the "Program

Neighborhood" application), memory for storing components of the application program,

and a processor for executing the application program. The Program Neighborhood

(PN) application can be installed in memory of the local machine 10 and/or on a remote

machine 30 as described below.

A remote machine 30 operating according to the Program Neighborhood

application collects application-related information from each of the remote machines 30

in a farm 38. The application-related information for each hosted application can be a

variety of information including, for example, an address of the remote machine hosting

that application, the application name, the users or groups of users who are authorized

to use that application, and the minimum capabilities required of the local machine 10

before establishing a connection to run the application. For example, the application

may stream video data, and therefore a required minimum capability may be that the

local machine supports video data. Other examples are requirements that the local

machine support audio data or have the capacity to process encrypted data. The

application-related information can be stored in a database.

When a local machine 10 connects to the network 40, the user of the local

machine 10 provides user credentials. User credentials may include the username of a

user of the local machine 10, the password of the user, and the domain name for which

the user is authorized. Alternatively, the user credentials may be obtained from smart

32

WO 2007/121241 PCT/US2007/066433

cards, time-based tokens, social security numbers, user passwords, personal

identification (PIN) numbers, digital certificates based on symmetric key or elliptic curve

cryptography, biometric characteristics of the user, or any other means by which the

identification of the user of the local machine 10 can be obtained and submitted for

authentication. The remote machine 30 responding to the local machine 10 can

authenticate the user based on the user credentials. The user credentials can be stored

wherever the Program Neighborhood application is executing. For embodiments in

which the local machine 10 executes the Program Neighborhood application, the user

credentials may be stored at the local machine 10. For embodiments in which a remote

machine 30 executes the Program Neighborhood, the user credentials can be stored at

that remote machine 30.

From the user credentials and the application-related information, the remote

machine 30 can also determine which application programs hosted by remote machines

30 are available for use by the user of the local machine 10. The remote machine 30

transmits information representing the available application programs to the local

machine 10. This process eliminates the need for a user of the local machine 10 to

establish application connections. Additionally, an administrator of the remote machine

30 may control access to applications among multiple users of a local machine 10.

In some embodiments, the user authentication performed by the remote machine

30 may suffice to authorize the use of each hosted application program presented to the

local machine 10, although such applications may reside at another remote machine

30’. Accordingly, when the local machine 10 launches (i.e., initiates execution of) one of

the hosted applications, additional input of user credentials by the local machine 10 may

be unnecessary to authenticate use of that application. Thus, a single entry of the user

credentials may serve to determine the available applications and to authorize the

launching of such applications without an additional, manual log-on authentication

process by the user.

Either a local machine 10 or remote machine 30 can launch the Program

Neighborhood application. The results are displayed on the display screen 12, 22 of the

local machine 10, 20. In a graphical windows-based implementation, the results can be

33

WO 2007/121241 PCT/US2007/066433

displayed in a Program Neighborhood graphical window and each authorized application

program can be represented by a graphical icon in that window.

In one embodiment, the Program Neighborhood application filters out application

programs that the local machine 10 is unauthorized to execute and displays only

authorized (i.e., available) programs. In other embodiments, the Program

Neighborhood application can display authorized and unauthorized applications. When

unauthorized applications are not filtered from the display, a notice can be provided

indicating that such applications are unavailable. Alternatively, the Program

Neighborhood application can report all applications hosted by the remote machines 30

to the user of a local machine 10, without identifying which applications the local

machine 10 is authorized or unauthorized to execute. Authorization can be

subsequently determined when the local machine 10 attempts to run one of those

applications.

The local machine 10 may request application enumeration from a remote

machine 30. Application enumeration enables a user of the local machine 10 to view

the names of every published application. In one embodiment, the user of the local

machine 10 can view the application names regardless of whether the user has

authorization to execute the application. In another embodiment, the user views only

those application names that the user is authorized to execute.

Requests for application enumeration pass to the ICA browser subsystem 260, to

the program neighborhood subsystem 270, or to a common application subsystem 524,

depending upon the particular process being run by the local machine 10. For example,

when the local machine 10 is running program neighborhood application, the requests

for application enumeration are sent to the program neighborhood subsystem 270 on a

remote machine 30. When the local machine 10 submits the enumeration request

through a web page, the requests pass to the common access point subsystem 524.

For these embodiments, the common application subsystem 524 serves as an initial

access point for the program neighborhood subsystem 270, ICA browser subsystem

260, and common application subsystems when the local machine 10 wants to

enumerate applications. In some embodiments, when the local machine 10 submits the

34

WO 2007/121241 PCT/US2007/066433

enumeration request through a web page, an intermediate remote machine 30 hosting a

web server receives the request and forwards the request to a remote machine 30’.

Upon receiving the enumeration requests, a common application subsystem 524

queries the persistent store 230 for a list of all applications. For requests received from

the program neighborhood subsystem 270 and common access point 645 subsystems,

this list of applications is filtered according to the credentials of the user of the local

machine 10 (i.e., the user views only those applications for which the user is

authorized).

The local machine 10 can also request remote machine enumeration. Remote

machine enumeration enables a user of the local machine 10 to view a list of remote

machines in the farm 38. In one embodiment, the list of remote machines can be

filtered according to the type of remote machine, as determined by the specialized

remote machine subsystem on that remote machine.

Requests for remote machine enumeration pass to the ICA browser subsystem

260 or to the common access point subsystem 645, depending upon the particular

process being run by the local machine 120. For example, when the local machine 120

submits the remote machine enumeration request through a web page, the requests

pass to the common access point subsystem 645. For these embodiments, the

common remote machine subsystem 300 serves as an initial access point for the ICA

browser subsystem 260 and common access point 645 subsystems. Upon receiving

the remote machine enumeration requests, the common remote machine subsystem

queries the persistent store 230 for a list of all remote machines. Optionally, the list of

remote machines is filtered according to the remote machine type.

Fig. 3A is a block diagram depicting another embodiment of the process by which

a local machine 10 initiates execution of the Program Neighborhood application, in this

example via the World Wide Web. A local machine 10 executes a web browser

application 80, such as NETSCAPE NAVIGATOR, manufactured by Netscape

Communications, Inc. of Mountain View, California or MICROSOFT INTERNET

EXPLORER, manufactured by Microsoft Corporation of Redmond, Washington, or

FIREFOX, manufactured by Mozilla Foundation of Mountain View, California, or OPERA,

35

WO 2007/121241 PCT/US2007/066433

manufactured by Opera Software ASA, of Oslo, Norway, or SAFARI, manufactured by

Apple Computer, Inc., of Cupertino, California.

The local machine 10, via the web browser 80, transmits a request 82 to access

a Uniform Resource Locator (URL) address corresponding to an HTML page residing on

remote machine 30. In some embodiments the first HTML page returned 84 to the local

machine 10 by the remote machine 30 is an authentication page that seeks to identify

the local machine 10.

Still referring to Fig. 3A, once the local machine 10 is authenticated by the

remote machine 30, the remote machine 30 prepares and transmits to the local

machine 10 an HTML page 88 that includes a Program Neighborhood window 58 in

which appears graphical icons 57, 57' representing application programs to which the

local machine 10 has access. A user of local machine 10 invokes execution of an

application represented by icon 57 by clicking that icon 57.

In some embodiments, the remote machine 30 executes the Program

Neighborhood application on behalf of a user of the local machine 10. In one of these

embodiments, the remote machine 30 is an intermediate remote machine residing

between the local machine 10 and a remote machine 30’.

Referring to FIG. 3B, a flow diagram depicts one embodiment of the steps taken

to provide a plurality of application programs available to the local machine via

publishing of GUIs in a web service directory. The web publishing tool 170 receives a

web service description and access information for an application (e.g., GUI application)

for publishing (step 300). In one embodiment, the web service description includes the

service information described above (e.g., the name of the business offering the web

service, the service type, a textual description of the service, and a SAP). The access

information may include, for example, a published application name, a Transmission

Control Protocol (TCP) browsing server farm address, and a MetaFrame server IP

address. In some embodiments, the access information specifies the address to use

and a ticket to use to traverse network or security gateways or bridge devices.

The web publishing tool 170 then constructs a service-publishing request to

request the publication of the web service (i.e., GUI application) (step 305). In one

36

WO 2007/121241 PCT/US2007/066433

embodiment, the service-publishing request includes a SAP. In some embodiments,

the SAP is a URL including the web address of the web server 30’ and the publishing

server plug-in 165. Further, the web address can be a Uniform Resource Identifier

(URI), which is the generic term for the types of names and addresses that refer to

objects on the web. A URL is one kind of URI. An example of the URI is the name of

the web server 30’ (e.g., “web-server”) and the CGI script name (e.g., “dynamic-

component”) for the publishing server plug-in 165.

The web publishing tool 170 stores a SAP entry associated with the SAP in the

persistent mass storage 225 (step 310). In some embodiments, the web publishing tool

170 also associates published application information (e.g., ICA-published-app-info)

with the GUI application. In further embodiments, the web publishing tool 170 also

includes a key in the service-publishing request to identify the SAP entry that the

content server 30 stores in the persistent mass storage 225. For instance, the key can

have the value of “123456677.” An example of a SAP identifying the web server 30’,

the CGI script name of the publishing server plug-in 165, and the key described above

is “http://web-server/dynamic-component/?app=123456677.”

An example of the SAP entry associated with the SAP described above is

“key= 123456677, value=ICA-published-app-info.” The key can be any length (e.g., 56

bit key, 128 bit key). In one embodiment, the key is a cryptographic random number.

The key may also provides an access right to the key holder. Although illustrated with a

key, any means can be used to provide a form of security to the SAP entry stored in the

persistent mass storage 225.

The web publishing tool 170 provides the service-publishing request to the

content server 30 for publishing in the web service directory 160 (step 315). Moreover,

in one embodiment, the content server 30 transmits the key of the SAP to the local

machine 10 requesting the particular web service for subsequent use in locating the

SAP entry. In one embodiment, the publishing of the service-publishing request

enables users of the local machine 10 to access the service. In one embodiment, GUI

applications are published on the web service directory 160 using NFUSE developed by

Citrix Systems, Inc. of Fort Lauderdale, Florida. In some embodiments, a publisher of a

37

http://web-server/dynamic-component/?app=123456677.%25e2%2580%259d

WO 2007/121241 PCT/US2007/066433

GUI application customizes the publication of the GUI application on the web service

directory 160 using Application Launching And Embedding (ALE), also developed by

Citrix Systems, Inc. ALE enables the launching of a GUI application from or the

embedding of the application into an HTML page.

The local machine 10 then queries a service name from the web service directory

160 (step 320). The content server 30 receives the query from the local machine 10

(step 325) and finds the requested service name in the web service directory 160. In

another embodiment, the user of the local machine 10 navigates the web service

directory 160 until locating a particular service name that the user of the local machine

10 was attempting to find. Although illustrated with the local machine 10, any web

service directory client (e.g., UDDI client or LDAP browser) can query or navigate the

web service directory 160 to discover published web services.

Upon location of the SAP associated with the received query, the content server

30 transmits the SAP to the local machine 10 (step 330). The local machine 10

receives the SAP (step 335) and determines the address of the publishing server plug­

in 165 from the SAP. The local machine 10 subsequently transmits a request for the

GUI application to the web server 30’ (step 340). In some embodiments, the request

from the local machine 10 is an HTTP request transmitted from the web browser 11 to

the web server 30’. In other embodiments, an application (e.g., general directory

browser or HTML Ul) executing on the local machine 10 receives the SAP from the

content server 30 and provides the SAP as an argument to the web browser 11. The

web browser 1 may then automatically transmit an HTTP request (for the GUI

application) to the web server 30’. Following along the lines of the previous examples, a

particular example of the application request to the web server 30’ is http://web-

server/dynamic-component/Vapp-l 23456677).

The web server 30’, and, more particularly, the publishing server plug-in 165,

receives the application request associated the SAP (step 345) and determines the SAP

entry associated with the request (step 350). In one embodiment, the publishing server

plug-in 165 receives the request from the local machine 10 and retrieves the published

application information associated with the request that had been stored (as part of the

38

http://web-server/dynamic-component/Vapp-l_23456677
http://web-server/dynamic-component/Vapp-l_23456677

WO 2007/121241 PCT/US2007/066433

SAP entry) in the persistent mass storage 225. In some embodiments, the publishing

server plug-in 165 uses the SAP (or part of the SAP) that the local machine 10 received

from the content server 30 as the key to access the proper service entry (e.g., the

published application information) stored in the persistent mass storage 225.

The publishing server plug-in 165 then constructs a file or document having the

published application information (e.g., HTTP address of the application server 30”)

(step 352) and transmits this document to the local machine 10 (step 355). The

publishing server plug-in 165 constructs the file so that the file has a format compatible

with the application client 13. In one embodiment, the document is a Multipurpose

Internet Mail Extensions (MIME) or a secure MIME (S/MIME) document. In another

embodiment, the document is an HTML document containing an ICA web client

embedded object HTML tag. In still another embodiment, the document is an HTML

document containing an application streaming client embedded object HTML tag.

The web browser 11 subsequently receives the document and attempts to open

the document. In one embodiment, if the application client 13 is not installed on the

local machine 10, the local machine 10 communicates with the application server 30” to

download and install the application client 13. Upon installation of the application client

13 or, alternatively, if the application client 13 has already been installed on the local

machine 10, the local machine 10 launches the application client 13 to view the

document received from the web server 30’ (step 360).

Once the application client 13 is installed and executing on the local machine 10,

the application server 30” then executes the application and displays the application on

the application client 13 (step 365). In an alternative embodiment, the application

server 30” transmits a plurality of application files comprising the application to the

application client 13 for execution on the local machine 10, as described in further detail

below in connection with FIG. 7. In another embodiment, the local machine 10 views

the document (even before launching the application client 13) and uses the information

in the document to obtain the GUI application from the application server 30”. In this

embodiment, the display of the GUI application includes the installation and execution of

the application client 30”. Moreover, the viewing of the document may be transparent to

39

WO 2007/121241 PCT/US2007/066433

the user of the local machine 10. For example, the local machine 10 may receive the

document from the web server 30’ and interpret the document before automatically

requesting the GUI application from the application server 30”.

Thus, the application client 13 provides service-based access to published

applications, desktops, desktop documents, and any other application that is supported

by the application client 13. Examples of applications that the application client 13 can

provide access to include, but are not limited to, the WINDOWS desktops, WINDOWS

documents such as MICROSOFT EXCEL, WORD, and POWERPOINT, all of which

were developed by Microsoft Corporation of Redmond, Washington, Unix desktops

such as SUN SOLARIS developed by Sun Microsystems of Palo Alto, California, and

GNU/Linux distributed by Red Hat, Inc. of Durham, North Carolina, among others.

In some embodiments, an enumeration of a plurality of application programs

available to the local machine 10 is provided (step 204) responsive to a determination

by a policy engine regarding whether and how a local machine may access an

application. The policy engine may collect information about the local machine prior to

making the determination. Referring now to FIG. 4A, one embodiment of a computer

network is depicted, which includes a local machine 10, a collection agent 404, a policy

engine 406, a policy database 408, a farm 38, and an application server 30’. In one

embodiment, the policy engine 406 is a remote machine 30. In another embodiment,

the application server 30’ is a remote machine 30’. Although only one local machine 10,

collection agent 404, policy engine 406, farm 38, and application server 30’ are depicted

in the embodiment shown in Figure 4A, it should be understood that the system may

provide multiple ones of any or each of those components.

In brief overview, when the local machine 10 transmits a request 410 to the

policy engine 406 for access to an application, the collection agent 404 communicates

with local machine 10, retrieving information about the local machine 10, and transmits

the local machine information 412 to the policy engine 406. The policy engine 406

makes an access control decision by applying a policy from the policy database 408 to

the received information 412.

40

WO 2007/121241 PCT/US2007/066433

In more detail, the local machine 10 transmits a request 410 for a resource to the

policy engine 406. In one embodiment, the policy engine 406 resides on an application

server 30’. In another embodiment, the policy engine 406 is a remote machine 30. In

still another embodiment, an application server 30’ receives the request 410 from the

local machine 10 and transmits the request 410 to the policy engine 406. In yet another

embodiment, the local machine transmits a request 410 for a resource to a remote

machine 30’”, which transmits the request 410 to the policy engine 406.

Upon receiving the request, the policy engine 406 initiates information gathering

by the collection agent 404. The collection agent 404 gathers information regarding the

local machine 10 and transmits the information 412 to the policy engine 406.

In some embodiments, the collection agent 404 gathers and transmits the

information 412 over a network connection. In some embodiments, the collection agent

404 comprises bytecode, such as an application written in the bytecode programming

language JAVA. In some embodiments, the collection agent 404 comprises at least one

script. In those embodiments, the collection agent 404 gathers information by running

at least one script on the local machine 10. In some embodiments, the collection agent

comprises an Active X control on the local machine 10. An Active X control is a

specialized Component Object Model (COM) object that implements a set of interfaces

that enable it to look and act like a control.

In one embodiment, the policy engine 406 transmits the collection agent 404 to

the local machine 10. In another embodiment, an appliance 1250 may store or cache

the collection agent. The appliance 1250 may then transmit the collection agent to a

local machine 10. In other embodiments, an appliance 1250 may intercept the

transmission of a collection agent 404. In still another embodiment, an appliance 1250

may accelerate the delivery of a collection agent. In one embodiment, the policy engine

406 requires a second execution of the collection agent 404 after the collection agent

404 has transmitted information 412 to the policy engine 406. In this embodiment, the

policy engine 406 may have insufficient information 412 to determine whether the local

machine 10 satisfies a particular condition. In other embodiments, the policy engine

41

WO 2007/121241 PCT/US2007/066433

406 requires a plurality of executions of the collection agent 404 in response to received

information 412.

In some embodiments, the policy engine 406 transmits instructions to the

collection agent 404 determining the type of information the collection agent 404

gathers. In those embodiments, a system administrator may configure the instructions

transmitted to the collection agent 404 from the policy engine 406. This provides

greater control over the type of information collected. This also expands the types of

access control decisions that the policy engine 406 can make, due to the greater control

over the type of information collected. The collection agent 404 gathers information 412

including, without limitation, machine ID of the local machine 10, operating system type,

existence of a patch to an operating system, MAC addresses of installed network cards,

a digital watermark on the client device, membership in an Active Directory, existence of

a virus scanner, existence of a personal firewall, an HTTP header, browser type, device

type, network connection information such as internet protocol address or range of

addresses, machine ID of the remote machine 30, date or time of access request

including adjustments for varying time zones, and authorization credentials. In some

embodiments, a collection agent gathers information to determine whether an

application can be accelerated on the client using an acceleration program 6120.

In some embodiments, the device type is a personal digital assistant. In other

embodiments, the device type is a cellular telephone. In other embodiments, the device

type is a laptop computer. In other embodiments, the device type is a desktop

computer. In other embodiments, the device type is an Internet kiosk.

In some embodiments, the digital watermark includes data embedding. In some

embodiments, the watermark comprises a pattern of data inserted into a file to provide

source information about the file. In other embodiments, the watermark comprises data

hashing files to provide tamper detection. In other embodiments, the watermark

provides copyright information about the file.

In some embodiments, the network connection information pertains to bandwidth

capabilities. In other embodiments, the network connection information pertains to

Internet Protocol address. In still other embodiments, the network connection

42

WO 2007/121241 PCT/US2007/066433

information consists of an Internet Protocol address. In one embodiment, the network

connection information comprises a network zone identifying the logon agent to which

the local machine provided authentication credentials.

In some embodiments, the authorization credentials include a number of types of

authentication information, including without limitation, user names, client names, client

addresses, passwords, PINs, voice samples, one-time passcodes, biometric data,

digital certificates, tickets, etc. and combinations thereof. After receiving the gathered

information 412, the policy engine 406 makes an access control decision based on the

received information 412.

Referring now to FIG. 4B, a block diagram depicts one embodiment of a policy

engine 406, including a first component 420 comprising a condition database 422 and a

logon agent 424, and including a second component 430 comprising a policy database

432. The first component 420 applies a condition from the condition database 422 to

information received about local machine 10 and determines whether the received

information satisfies the condition.

In some embodiments, a condition may require that the local machine 10 execute

a particular operating system to satisfy the condition. In some embodiments, a

condition may require that the local machine 10 execute a particular operating system

patch to satisfy the condition. In still other embodiments, a condition may require that

the local machine 10 provide a MAC address for each installed network card to satisfy

the condition. In some embodiments, a condition may require that the local machine 10

indicate membership in a particular Active Directory to satisfy the condition. In another

embodiment, a condition may require that the local machine 10 execute a virus scanner

to satisfy the condition. In other embodiments, a condition may require that the local

machine 10 execute a personal firewall to satisfy the condition. In some embodiments,

a condition may require that the local machine 10 comprise a particular device type to

satisfy the condition. In other embodiments, a condition may require that the local

machine 10 establish a particular type of network connection to satisfy the condition.

If the received information satisfies a condition, the first component 420 stores an

identifier for that condition in a data set 426. In one embodiment, the received

43

WO 2007/121241 PCT/US2007/066433

information satisfies a condition if the information makes the condition true. For

example, a condition may require that a particular operating system be installed. If the

local machine 10 has that operating system, the condition is true and satisfied. In

another embodiment, the received information satisfies a condition if the information

makes the condition false. For example, a condition may address whether spyware

exists on the local machine 10. If the local machine 10 does not contain spyware, the

condition is false and satisfied.

In some embodiments, the logon agent 424 resides outside of the policy engine

406. In other embodiments, the logon agent 424 resides on the policy engine 406. In

one embodiment, the first component 420 includes a logon agent 424, which initiates

the information gathering about local machine 10. In some embodiments, the logon

agent 424 further comprises a data store. In these embodiments, the data store

includes the conditions for which the collection agent may gather information. This data

store is distinct from the condition database 422.

In some embodiments, the logon agent 424 initiates information gathering by

executing the collection agent 404. In other embodiments, the logon agent 424 initiates

information gathering by transmitting the collection agent 404 to the local machine 10

for execution on the local machine 10. In still other embodiments, the logon agent 424

initiates additional information gathering after receiving information 412. In one

embodiment, the logon agent 424 also receives the information 412. In this

embodiment, the logon agent 424 generates the data set 426 based upon the received

information 412. In some embodiments, the logon agent 424 generates the data set

426 by applying a condition from the database 422 to the information received from the

collection agent 404.

In another embodiment, the first component 420 includes a plurality of logon

agents 424. In this embodiment, at least one of the plurality of logon agents 424

resides on each network domain from which a local machine 10 may transmit a

resource request. In this embodiment, the local machine 10 transmits the resource

request to a particular logon agent 424. In some embodiments, the logon agent 424

transmits to the policy engine 406 the network domain from which the local machine 10

44

WO 2007/121241 PCT/US2007/066433

accessed the logon agent 424. In one embodiment, the network domain from which the

local machine 10 accesses a logon agent 424 is referred to as the network zone of the

local machine 10.

The condition database 422 stores the conditions that the first component 420

applies to received information. The policy database 432 stores the policies that the

second component 430 applies to the received data set 426. In some embodiments,

the condition database 422 and the policy database 432 store data in an ODBC-

compliant database. For example, the condition database 422 and the policy database

432 may be provided as an ORACLE database, manufactured by Oracle Corporation of

Redwood Shores, Calif. In other embodiments, the condition database 422 and the

policy database 432 can be a Microsoft ACCESS database or a Microsoft SOL server

database, manufactured by Microsoft Corporation of Redmond, Wash.

After the first component 420 applies the received information to each condition

in the condition database 422, the first component transmits the data set 426 to second

component 430. In one embodiment, the first component 420 transmits only the data

set 426 to the second component 430. Therefore, in this embodiment, the second

component 430 does not receive information 412, only identifiers for satisfied

conditions. The second component 430 receives the data set 426 and makes an

access control decision by applying a policy from the policy database 432 based upon

the conditions identified within data set 426.

In one embodiment, policy database 432 stores the policies applied to the

received information 412. In one embodiment, the policies stored in the policy database

432 are specified at least in part by the system administrator. In another embodiment, a

user specifies at least some of the policies stored in the policy database 432. The user-

specified policy or policies are stored as preferences. The policy database 432 can be

stored in volatile or non-volatile memory or, for example, distributed through multiple

servers.

In one embodiment, a policy allows access to a resource only if one or more

conditions are satisfied. In another embodiment, a policy allows access to a resource

but prohibits transmission of the resource to the local machine 10. Another policy might

45

WO 2007/121241 PCT/US2007/066433

make connection contingent on the local machine 10 that requests access being within

a secure network. In some embodiments, the resource is an application program and

the local machine 10 has requested execution of the application program. In one of

these embodiments, a policy may allow execution of the application program on the

local machine 10. In another of these embodiments, a policy may enable the local

machine 10 to receive a stream of files comprising the application program. In this

embodiment, the stream of files may be stored and executed in an isolation

environment. In still another of these embodiments, a policy may allow only execution

of the application program on a remote machine, such as an application server, and

require the remote machine to transmit application-output data to the local machine 10.

Referring now to FIG. 4C, a flow diagram depicts one embodiment of the steps

taken by the policy engine 406 to make an access control decision based upon

information received about a local machine 10. Upon receiving gathered information

about the local machine 10 (Step 450), the policy engine 406 generates a data set

based upon the information (Step 452). The data set 426 contains identifiers for each

condition satisfied by the received information 412. The policy engine 406 applies a

policy to each identified condition within the data set 426. That application yields an

enumeration of resources which the local machine 10 may access (Step 454). The

policy engine 406 then presents that enumeration to the local machine 10. In some

embodiments, the policy engine 406 creates a Hypertext Markup Language (HTML)

document used to present the enumeration to the local machine.

Referring to FIG. 4D, one embodiment of a network is depicted, which includes a

local machine 10, a collection agent 404, a policy engine 406, a policy database 408, a

condition database 410, a local machine 20, a session server 420, a stored application

database 422, a remote machine 30’, a first database 428, a remote machine 30”, and a

second database 432. In brief overview, when the local machine 10 transmits to the

access control server 406 a request 412 for access to an application program, the

collection agent 404 communicates with local machine 10, retrieves information about

local machine 10, and transmits local machine information 414 to the policy engine 406.

The policy engine 406 makes an access control decision, as discussed above in FIG.

46

WO 2007/121241 PCT/US2007/066433

4A and FIG. 4B. The local machine 10 receives an enumeration of available

applications associated with the local machine 10.

In some embodiments, the session server 420 establishes a connection between

the local machine 10 and a plurality of application sessions associated with the local

machine 10. In other embodiments, the policy engine 406 determines that the local

machine 10 has authorization to retrieve a plurality of application files comprising the

application and to execute the application program locally. In some embodiments the

policy engine 406 determines whether to accelerate delivery of the application files by

transmitting an acceleration program 6120 to the local machine 10. In one of these

embodiments, the remote machine 30’ stores application session data and a plurality of

application files comprising the application program. In another of these embodiments,

the local machine 10 establishes an application streaming session with a remote

machine 30’ storing the application session data and the plurality of application files

comprising the application program. In some embodiments the policy engine 406

determines whether to accelerate delivery of the streaming session by transmitting an

acceleration program 6120 to the local machine 10. In some embodiments the policy

engine 406 determines whether to accelerate delivery of data files by transmitting an

acceleration program 6120 to the local machine 10.

Referring now to FIG. 4E, a flow diagram depicts one embodiment of the steps

taken by the session server 420 to provide access for the local machine 10 to its

associated application sessions. The session server 420 receives information about the

local machine 10 from the policy engine 406 containing access control decision the

policy engine 406 made (step 480). The session server 420 generates an enumeration

of associated applications (step 482). The session server 420 may connect the local

machine 10 to an associated application (step 484). In one embodiment, the

information also includes the local machine information 414. In another embodiment,

the information includes authorization to execute the application program locally.

The session server 420 generates an enumeration of associated applications

(step 482). In some embodiments, the policy engine 406 identifies a plurality of

application sessions already associated with the local machine 10. In other

47

WO 2007/121241 PCT/US2007/066433

embodiments, the session server 420 identifies stored application sessions associated

with the local machine 10. In some of these embodiments, the session server 420

automatically identifies the stored application sessions upon receiving the information

from the policy engine 406. In one embodiment, the stored application database 422

resides on the session server 420. In another embodiment, the stored application

database 422 resides on the policy engine 406.

The stored application database 422 contains data associated with a plurality of

remote machines in the farm 38 executing application sessions or providing access to

application session data and application files comprising application programs. In some

embodiments, identifying the application sessions associated with the local machine 10

requires consulting stored data associated with one or more remote machines. In some

of these embodiments, the session store 420 consults the stored data associated with

one or more remote machines. In others of these embodiments, the policy engine 406

consults the stored data associated with one or more remote machines. In some

embodiments, a first application session runs on a remote machine 30’ and a second

application session runs on a remote machine 30”. In other embodiments, all

application sessions run on a single remote machine 30 within the farm 38.

The session server 420 includes information related to application sessions

initiated by users. The session server can be stored in volatile or non-volatile memory

or, for example, distributed through multiple servers. Table 1 shows the data included

in a portion of an illustrative session server 420:

Application Session App Session 1 App Session 2 App Session 3

User ID User 1 User 2 User 1

Client ID First Client First Client

Client Address 172.16.0.50 172.16.0.50

Status Active Disconnected Active

Applications Word Processor Data Base Spreadsheet

Process Number 1 3 2

Server Server A Server A Server B

48

WO 2007/121241 PCT/US2007/066433

Server Address 172.16.2.55 172.16.2.55 172.16.2.56

Table 1

The illustrative session server 420 in Table 1 includes data associating each

application session with the user that initiated the application session, an identification

of the client computer 10 or 20, if any, from which the user is currently connected to the

remote machine 30’, and the IP address of that client computer 10 or 20. The

illustrative session server 420 also includes the status of each application session. An

application session status can be, for example, “active” (meaning a user is connected to

the application session), or “disconnected” (meaning a user is not connected to the

application session). In an alternative embodiment, an application session status can

also be set to “executing-disconnected” (meaning the user has disconnected from the

application session, but the applications in the application session are still executing), or

“stalled-disconnected” (meaning the user is disconnected and the applications in the

application session are not executing, but their operational state immediately prior to the

disconnection has been stored). The session server 420 further stores information

indicating the applications 116 that are executing within each application session and

data indicating each application’s process on the server. In embodiments in which the

remote machine 30’ is part of the farm 38, the session server 420 is at least a part of the

dynamic store, and also includes the data in the last two rows of Table 1 that indicate on

which remote machine 30 in the farm 38 each application is/was executing, and the IP

address of that remote machine 30. In alternative embodiments, the session server 420

includes a status indicator for each application in each application session.

For example, in the example of Table 1, three application sessions exist, App

Session 1, App Session 2, and App Session 3. App Session 1 is associated with User

1, who is currently using terminal 1. Terminal one’s IP address is 152.16.2.50. The

status of App Session 1 is active, and in App Session 1, a word processing program, is

being executed. The word processing program is executing on Server A as process

number 1. Server A’s IP address is 152.16.2.55. App Session 2 in Table 1 is an

example of a disconnected application session 118. App Session 2 is associated with

User 2, but App Session 2 is not connected to a local machine 10 or 20. App Session 2
49

WO 2007/121241 PCT/US2007/066433

includes a database program that is executing on Server A, at IP address 152.16.2.55

as process number 3. App Session 3 is an example of how a user can interact with

application sessions operating on different remote machines 30. App Session 3 is

associated with User 1, as is App Session 1. App Session 3 includes a spreadsheet

program that is executing on Server B at IP address 152.16.2.56 as process number 2,

whereas the application session included in App Session 1 is executing on Server A.

In another example, a user may access a first application program through an

application session executing on a remote machine 30’, such as Server A, while

communicating across an application streaming session with a second remote machine

30”, such as Server B, to retrieve a second application program from the second remote

machine 30” for local execution. The user of the local machine 10 may have acquired

authorization to execute the second application program locally while failing to satisfy

the execution pre-requisites of the first application program.

In one embodiment, the session server 420 is configured to receive a disconnect

request to disconnect the application sessions associated with the local machine 10 and

disconnects the application sessions in response to the request. The session server

420 continues to execute an application session after disconnecting the local machine

10 from the application session. In this embodiment, the session server 420 accesses

the stored application database 422 and updates a data record associated with each

disconnected application session so that the record indicates that the application

session associated with the local machine 10 is disconnected.

After receiving authentication information associated with a local machine

connecting to the network, the session server 420 consults the stored applications

database 422 to identify any active application sessions that are associated with a user

of the local machine, but that are connected to a different local machine, such as the

local machine 10 if the authentication information is associated with local machine 20,

for example. In one embodiment, if the session server 420 identifies any such active

application sessions, the session server 420 automatically disconnects the application

session(s) from the local machine 10 and connects the application session(s) to the

current local machine 20. In some embodiments, the received authentication

50

WO 2007/121241 PCT/US2007/066433

information will restrict the application sessions to which the local machine 10 may

reconnect. In other embodiments, the received authentication information authorizes

execution of an application program on the local machine 20, where the authorization

may have been denied to local machine 10. In one of these embodiments, the session

server 420 may provide the local machine access information for retrieving the

application program for local execution.

A request is received to execute an enumerated application (step 206). In one

embodiment, a user of the local machine 10 selects an application for execution from a

received enumeration of available applications. In another embodiment, the user

selects an application for execution independent of the received enumeration. In some

embodiments, the user selects an application for execution by selecting a graphical

representation of the application presented on the local machine 10 by a client agent.

In other embodiments, the user selects an application for execution by selecting a

graphical representation of the application presented to the user on a web server or

other remote machine 30”’. In some embodiments, an appliance 1250 or acceleration

program 6120 accelerates delivery of the graphical representation. In some

embodiments, an appliance 1250 caches or stores the graphical representation. In

some embodiments an appliance may cache or store any and all of the associated

applications or portions of the associated applications.

In still other embodiments, the user requests access a file. In one of these

embodiments, execution of an application is required to provide the user with access to

the file. In another of these embodiments, the application is automatically selected for

execution upon selection of the file for access. In still another of these embodiments,

prior to the request for access to the file, the application is associated with a type of file,

enabling automatic selection of the application upon identification of a type of file

associated with the requested file. In some embodiments an appliance 1250 or an

acceleration program 6120 may be used to accelerate delivery of one or more files. In

some embodiments an appliance 1250 may cache or store some or all of a file.

In one embodiment, the enumerated application comprises a plurality of

application files. In some embodiments, the plurality of application files reside on the

51

WO 2007/121241 PCT/US2007/066433

remote machine 30’. In other embodiments, the plurality of application files reside on a

separate file server or remote machine 30”. In still other embodiments, the plurality of

application files may be transmitted to a local machine 10. In yet other embodiments, a

file in the plurality of application files may be executed prior to transmission of a second

file in the plurality of application files to the local machine 10. In some embodiments an

appliance 1250 or an acceleration program 6120 may be used to accelerate delivery of

one or more application files.

In some embodiments, the remote machine 30 retrieves information about the

enumerated application from a remote machine 30’. In one of these embodiments, the

remote machine 30 receives an identification of a remote machine 30” hosting a plurality

of application files. In another of these embodiments, the remote machine 30 receives

identification of a location of a plurality of application files, the identification conforming

to a Universal Naming Convention (UNC). In still another of these embodiments, the

identification includes a network location and a socket for an application streaming

protocol.

In one embodiment, the remote machine 30 retrieves a file containing information

about the enumerated application. The file may include an identification of a location of

a server hosting the enumerated application. The file may include an identification of a

plurality of versions of the enumerated application. The file may include an enumeration

of a plurality of application files comprising the enumerated application. The file may

include an identification of a compressed file comprising a plurality of applications files

comprising the enumerated application. The file may include an identification of pre­

requisites to be satisfied by a machine executing the enumerated application. The file

may include an enumeration of data files associated with the enumerated application.

The file may include an enumeration of scripts to be executed on a machine executing

the enumerated application. The file may include an enumeration of registry data

associated with the enumerated application. The file may include an enumeration of

rules for use in an embodiment where the enumerated application executes within an

isolation environment. In one embodiment, the file may be referred to as a “manifest”

52

WO 2007/121241 PCT/US2007/066433

file. The information that the file may contain is described in further detail in connection

with FIG. 21 below.

In some embodiments, the remote machine 30 applies a policy to an identified

characteristic of the local machine 10. In one of these embodiments, the remote

machine 30 identifies a version of the enumerated application for execution responsive

to the identified characteristic. In another of these embodiments, the remote machine

30 makes a determination to execute a version of the enumerated application

compatible with a characteristic of the local machine 10. In still another of these

embodiments, the remote machine 30 makes a determination to execute a version of

the enumerated application compatible with an operating system executing on the local

machine 10. In yet another of these embodiments, the remote machine 30 makes a

determination to execute a version of the enumerated application compatible with a

revision level of an operating system on the local machine 10. In one of these

embodiments, the remote machine 30 makes a determination to execute a version of

the enumerated application compatible with a language specified by an operating

system on the local machine 10.

One of a predetermined number of methods for executing the enumerated

application is selected, responsive to a policy, the predetermined number of methods

including a method for application streaming of the enumerated application (step 208).

In one embodiment, the selection is made responsive to an application of a policy to the

received credentials associated with the local machine 10. In some embodiments, the

selection is made by a policy engine such as the policy engine 406 described above in

FIG. 4A, FIG. 4B and FIG. 4C. In other embodiments, the remote machine 30 receiving

the credentials and the request to execute the enumerated application further comprises

such a policy engine 406.

In one embodiment, the predetermined number of methods includes a method

for executing the enumerated application on a remote machine 30’. In another

embodiment, the predetermined number of methods includes a method for executing

the enumerated application on the local machine 10. In still another embodiment, the

53

WO 2007/121241 PCT/US2007/066433

predetermined number of methods includes a method for executing the enumerated

application on a second remote machine 30’.

In some embodiments, the predetermined number of methods includes a method

for providing the enumerated application to the local machine 10 across an application

streaming session. In one of these embodiments, the local machine 10 comprises a

streaming service agent capable of initiating a connection with a remote machine 30’

and receiving from the remote machine 30’ a stream of transmitted data packets.

The stream of data packets may include application files comprising the

enumerated application. In some embodiments, application files include data files

associated with an application program. In other embodiments, application files include

executable files required for execution of the application program. In still other

embodiments, the application files include metadata including information about the

files, such as location, compatibility requirements, configuration data, registry data,

identification of execution scripts rules for use in isolation environments, or authorization

requirements. In one embodiment, the stream of data packets are transmitted via a

transport layer connection such as a payload of a TCP/IP packet.

In some embodiments, the streamed application executes prior to the

transmission of each application file in a plurality of application files comprising the

streamed application. In one of these embodiments, execution of the streamed

application begins upon receipt by a local machine 10 of one application file in the

plurality of applications. In another of these embodiments, execution of the streamed

application begins upon receipt by a local machine 10 of an executable application file

in the plurality of application files. In still another of these embodiments, the local

machine 10 executes a first received application file in a plurality of application files and

the first received application file requests access to a second application file in the

plurality of application files.

In one embodiment, the streamed application executes on the local machine 10

without permanently residing on the local machine 10. In this embodiment, the

streamed application may execute on the local machine 10 and be removed from the

local machine 10 upon termination of the streamed application. In another embodiment,

54

WO 2007/121241 PCT/US2007/066433

the streamed application executes on the local machine 10 after a pre-deployed copy of

each application file is stored on the local machine 10. In still another embodiment, the

streamed application executes on the local machine 10 after a copy of each application

file is stored in an isolation environment on the local machine. In yet another

embodiment, the streamed application executes on the local machine 10 after a copy of

each application file is stored in a cache on the local machine 10.

In one embodiment, the method for streaming the application to the local

machine 10 is selected from the predetermined number of methods responsive to a

determination that the local machine 10 may receive the streamed application files. In

another embodiment, the method for streaming the application to the local machine 10

is selected from the predetermined number of methods responsive to a determination

that the local machine 10 has authority to execute the streamed application files locally.

In other embodiments, the predetermined number of methods includes a method

for providing application-output data to the local machine 10, the application-output data

generated from an execution of the enumerated application on a remote machine 30. In

one of these embodiments, the remote machine 30 is the remote machine 30 receiving

the request for execution of the enumerated application. In another of these

embodiments, the remote machine 30 is a second remote machine 30’, such as a file

server or an application server. In some embodiments, the enumerated application

resides on the remote machine 30’ executing the enumerated application. In other

embodiments, the remote machine 30’ executing the enumerated application first

receives the enumerated application from a second remote machine 30’ across an

application streaming session. In one of these embodiments, the remote machine 30’

comprises a streaming service agent capable of initiating a connection with a second

remote machine 30’ and receiving from the second remote 30’ machine a stream of

transmitted data. In another of these embodiments, the second remote machine 30’

may be identified using a load balancing technique. In still another of these

embodiments, the second remote machine 30’ may be identified based upon proximity

to the remote machine 30’. These embodiments will be described in greater detail in

connection with FIG. 9 below.

55

WO 2007/121241 PCT/US2007/066433

In some embodiments, the remote machine 30 selects from the predetermined

number of methods for executing the enumerated application, a method for streaming

the enumerated application to the remote machine 30, executing the enumerated

application on the remote machine 30, and providing to the local machine 10

application-output data generated by the execution of the enumerated application. In

one of these embodiments, the remote machine 30 selects the method responsive to an

evaluation of the local machine 10. In another of these embodiments the determination

is made responsive to an application of a policy to the evaluation of the local machine

10. In still another of these embodiments, the determination is made responsive to an

evaluation of the received credentials. In one embodiment, the remote machine 30

receives a plurality of application files comprising the enumerated application. In

another embodiment, the remote machine 30 provides the application-output data via a

presentation level protocol, such as an ICA presentation level protocol or a Remote

Desktop Windows presentation level protocol or an X-Windows presentation level

protocol.

In some embodiments, the remote machine 30 also provides access information

associated with the enumerated application, the access information generated

responsive to the selected method. In one of these embodiments, the access

information provides an indication to the local machine 10 of the selected method for

execution of the enumerated application program. In another of these embodiments,

the access information includes an identification of a location of the enumerated

application, the identification conforming to a Universal Naming Convention (UNC). In

still another of these embodiments, the access information includes an identification of a

session management server.

In some embodiments, the access information includes a launch ticket

comprising authentication information. In one of these embodiments, the local machine

10 may use the launch ticket to authenticate the access information received from the

remote machine 30. In another of these embodiments, the local machine 10 may use

the launch ticket to authenticate itself to a second remote machine 30 hosting the

enumerated application. In still another of these embodiments, the remote machine 30

56

WO 2007/121241 PCT/US2007/066433

includes the launch ticket in the access information responsive to a request from the

local machine 10 for the launch ticket.

Referring now to FIG. 5, a block diagram depicts an embodiment in which a local

machine 10 requests execution of an application program and an application delivery

system 500 comprising a remote machine 30 selects a method of executing the

application program. In one embodiment, the remote machine 30 receives credentials

from the local machine 10. In another embodiment, the remote machine 30 receives a

request for an enumeration of available applications from the local machine 10.

In some embodiments, multiple, redundant, remote machines 30, 30’, 30”, 30’”,

and 30”” are provided. In one of these embodiments, there may be, for example,

multiple file servers, multiple session management servers, multiple staging machines,

multiple web interfaces, or multiple access suite consoles. In another of these

embodiments, if a remote machine fails, a redundant remote machine 30 is selected to

provide the functionality of the failed machine. In other embodiments, although the

remote machines 30, 30’, 30”, 30’”, and 30””, and the web interface 558 and access

suite console 520 are described as separate remote machines 30 having the separate

functionalities of a management server, a session management server, a staging

machine, a file server, a web server, and an access suite console, a single remote

machine 30 may be provided having the functionality of all of these machines. In still

other embodiments, a remote machine 30 may provide the functionality and services of

one or more of the other remote machines.

Referring now to FIG. 5 in greater detail, a block diagram depicts one

embodiment of an application delivery system 500 providing access to an application

program. The application delivery system 500 may comprise one or more remote

machines 30, an appliance 1250, or any combination thereof. In addition to the

interfaces and subsystems described above in connection with FIG. 1D, the remote

machine 30 may further include a management communication service 514, an XML

service 516, and a management service 504. The management service 504 may

comprise an application management subsystem 506, a server management subsystem

508, a session management subsystem 510, and a license management subsystem

57

WO 2007/121241 PCT/US2007/066433

512. The remote machine 30 may be in communication with an access suite console

520.

In one embodiment, the management service 504 further comprises a

specialized remote procedure call subsystem, the MetaFrame Remote Procedure Call

(MFRPC) subsystem 522. In some embodiments, the MFRPC subsystem 522 routes

communications between subsystems on the remote machine 30, such as the XML

service 516, and the management service 504. In other embodiments, the MFRPC

subsystem 522 provides a remote procedure call (RPC) interface for calling

management functions, delivers RPC calls to the management service 504, and returns

the results to the subsystem making the call.

In some embodiments, the remote machine 30 is in communication with a

protocol engine, such as the protocol engine 406 described above in FIG. 4B. In one of

these embodiments, the remote machine 30 is in communication with a protocol engine

406 residing on a remote machine 30’. In other embodiments, the remote machine 30

further comprises a protocol engine 406.

The remote machine 30 may be in communication with an access suite console

520. The access suite console 520 may host management tools to an administrator of

a remote machine 30 or of a farm 38. In some embodiments, the remote machine 30

communicates with the access suite console 520 using XML. In other embodiments,

the remote machine 30 communicates with the access suite console 520 using the

Simple Object Access Protocol (SOAP).

For embodiments such as those described in FIG. 1D and in FIG. 5 in which the

remote machine 30 comprises a subset of subsystems, the management service 504

may comprise a plurality of subsystems. In one embodiment, each subsystem is either

a single-threaded or a multi-threaded subsystem. A thread is an independent stream of

execution running in a multi-tasking environment. A single-threaded subsystem is

capable of executing only one thread at a time. A multi-threaded subsystem can

support multiple concurrently executing threads, i.e., a multi-threaded subsystem can

perform multiple tasks simultaneously.

58

WO 2007/121241 PCT/US2007/066433

The application management subsystem 506 manages information associated

with a plurality of applications capable of being streamed. In one embodiment, the

application management subsystem 506 handles requests from other components,

such as requests for storing, deleting, updating, enumerating or resolving applications.

In another embodiment, the application management subsystem 506 handles requests

sent by components related to an application capable of being streamed. These events

can be classified into three types of events: application publishing, application

enumeration and application launching, each of which will be described in further detail

below. In other embodiments, the application management subsystem 506 further

comprises support for application resolution, application publication and application

publishing. In other embodiments, the application management subsystem 506, uses a

data store to store application properties and policies.

The server management subsystem 508 handles configurations specific to

application streaming in server farm configurations. In some embodiments, the server

management subsystem 508 also handles events that require retrieval of information

associated with a configuration of a farm 38. In other embodiments, the server

management subsystem 508 handles events sent by other components related to

remote machines providing access to applications across application streams and

properties of those remote machines. In one embodiment, the server management

subsystem 508 stores remote machine properties and farm properties.

In some embodiments, the remote machine 30 further comprises one or more

common application subsystems 524 providing services for one or more specialized

application subsystems. These remote machines 30 may also have one or more

common remote machine subsystem providing services for one or more specialized

remote machine subsystems. In other embodiments, no common application

subsystems 524 are provided, and each specialized application and remote machine

subsystem implements all required functionality.

In one embodiment in which the remote machine 30 comprises a common

application subsystem 524, the common application subsystem 524 manages common

properties for published applications. In some embodiments, the common application

59

WO 2007/121241 PCT/US2007/066433

subsystem 524 handles events that require retrieval of information associated with

published applications or with common properties. In other embodiments, the common

application subsystem 524 handles all events sent by other components related to

common applications and their properties.

A common application subsystem 524 can "publish" applications to the farm 38,

which makes each application available for enumeration and launching by a local

machine 10. Generally, an application is installed on each remote machine 30 on which

availability of that application is desired. In one embodiment, to publish an application,

an administrator runs an administration tool specifying information such as the remote

machines 30 hosting the application, the name of the executable file on each remote

machine, the required capabilities of a local machine for executing the application (e.g.,

audio, video, encryption, etc.), and a list of users that can use the application. This

specified information is categorized into application-specific information and common

information. Examples of application-specific information are: the path name for

accessing the application and the name of the executable file for running the

application. Common information (i.e., common application data) includes, for example,

the user-friendly name of the application (e.g., "Microsoft WORD 2000"), a unique

identification of the application, and the users of the application.

The application-specific information and common information may be sent to a

specialized application subsystem controlling the application on each remote machine

30 hosting the application. The specialized application subsystem may write the

application-specific information and the common information into a persistent store 240.

When provided, a common application subsystem 524 also provides a facility for

managing the published applications in the farm 38. Through a common application

subsystem 524, an administrator can manage the applications of the farm 38 using an

administration tool such as the access suite console 520 to configure application groups

and produce an application tree hierarchy of those application groups. Each application

group may be represented as a folder in the application tree hierarchy. Each

application folder in the application tree hierarchy can include one or more other

application folders and specific instances of remote machines. The common application

60

WO 2007/121241 PCT/US2007/066433

subsystem 524 provides functions to create, move, rename, delete, and enumerate

application folders.

In one embodiment, the common application subsystem 524 supports the

application management subsystem 506 in handling application enumeration and

application resolution requests. In some embodiments, the common application

subsystem 524 provides functionality for identifying an application for execution

responsive to a mapping between a type of data file and an application for processing

the type of data file. In other embodiments, a second application subsystem provides

the functionality for file type association.

In some embodiments, the remote machine 30 may further comprise a policy

subsystem. A policy subsystem includes a policy rule for determining whether an

application may be streamed to a local machine 10 upon a request by the local machine

10 for execution of the application. In some embodiments, the policy subsystem

identifies a server access option associated with a streamed application published in the

access suite console 520. In one of these embodiments, the policy subsystem uses the

server access option as a policy in place of the policy rule.

The session monitoring subsystem 510 maintains and updates session status of

an application streaming session associated with a local machine 10 and enforces

license requirements for application streaming sessions. In one embodiment the

session management subsystem 510 monitors sessions and logs events, such as the

launching of an application or the termination of an application streaming session. In

another embodiment, the session monitoring subsystem 510 receives communications,

such as heartbeat messages, transmitted from the local machine 10 to the remote

machine 30. In still another embodiment, the session management subsystem 510

responds to queries about sessions from management tools, such as tools within the

access suite console 520. In some embodiments, the management service 504 further

comprises a license management subsystem communicating with the session

management subsystem to provide and maintain licenses to local machines for

execution of applications.

61

WO 2007/121241 PCT/US2007/066433

In one embodiment, the management service 504 provides functionality for

application enumeration and application resolution. In some embodiments, the

management service 504 also provides functionality for application launching, session

monitoring and tracking, application publishing, and license enforcement.

Referring now to FIG. 6, a block diagram depicts one embodiment of a remote

machine 30 comprising a management service providing an application enumeration.

The management service 504 may provide application enumeration through the use of

a web interface interacting with an XML service 516. In one embodiment, XML service

516 enumerates applications for a user of a local machine 10. In another embodiment,

the XML service 516 implements the functionality of the ICA browser subsystem and the

program neighborhood subsystem described above. The XML service 516 may interact

with a management communications service 514. In one embodiment, the XML service

516 generates an application enumeration request using the management

communications service 514. The application enumeration request may include a client

type indicating a method of execution to be used when executing the enumerated

application. The application enumeration request is sent to a common application

subsystem 524. In one embodiment, the common application subsystem 524 returns

an enumeration of applications associated with the client type of the application

enumeration request. In another embodiment, the common application subsystem 524

returns an enumeration of applications available to the user of the local machine 10, the

enumeration selected responsive to an application of a policy to a credential associated

with the local machine 10. In this embodiment, a policy engine 406 may apply the

policy to credentials gathered by a collection agent 404, as described in connection with

FIG. 4B above. In still another embodiment, the enumeration of applications is returned

and an application of a policy to the local machine 10 is deferred until an execution of

an enumerated application is requested.

The management service 504 may provide application resolution service for

identifying a second remote machine 30’ hosting an application. In one embodiment,

the second remote machine 30’ is a file server or an application server. In some

embodiments, the management service 504 consults a file including identifiers for a

62

WO 2007/121241 PCT/US2007/066433

plurality of remote machines 30 hosting applications. In one embodiment, the

management service 504 provides the application resolution service responsive to a

request from a local machine 10 for execution of an application. In another

embodiment, the management service 504 identifies a second remote machine 30’

capable of implementing a different method of executing the application than a first

remote machine 30. In some embodiments, the management service 504 identifies a

first remote machine 30’ capable of streaming an application program to a local

machine 10 and a second remote machine 30’ capable of executing the application

program and providing application-output data generated responsive to the execution of

the application program to the local machine 10.

In one embodiment, a web interface transmits an application resolution request

to the XML service 516. In another embodiment, the XML service 516 receives a

application resolution request and transmits the request to the MFRPC subsystem 522.

In one embodiment, the MFRPC subsystem 522 identifies a client type included

with a received application resolution request. In another embodiment, the MFRPC

subsystem applies a policy to the client type and determines to “stream” the application

to the local machine 10. In this embodiment, the MFRPC subsystem 522 may forward

the application resolution request to an application management subsystem 506. In one

embodiment, upon receiving the application resolution request from the MFRPC

subsystem 522, the application management subsystem 506 may identify a remote

machine 30”” functioning as a session management server 562 for the local machine

10. In some embodiments, the local machine transmits a heartbeat message to the

session management server 562. In another embodiment, the application

management subsystem 506 may identify a remote machine 30’ hosting a plurality of

application files comprising the application to be streamed to the local machine 10.

In some embodiments, the application management subsystem 506 use a file

enumerating a plurality of remote machines hosting the plurality of application files to

identify the remote machine 30’. In other embodiments, the application management

subsystem 506 identifies a remote machine 30’ having an IP address similar to an IP

address of the local machine 10. In still other embodiments, the application

63

WO 2007/121241 PCT/US2007/066433

management subsystem 506 identifies a remote machine 30’ having an IP address in a

range of IP addresses accessible to the local machine 10.

In still another embodiment, the MFRPC subsystem 522 applies a policy to the

client type and determines that the application may be executed on a remote machine

30’, the remote machine 30’ transmitting application-output data generated by an

execution of the application to the local machine 10. In this embodiment, the MFRPC

subsystem 522 may forward the application resolution request to a common application

subsystem 524 to retrieve an identifier of a host address for a remote machine 30’. In

one embodiment, the identified remote machine 30’ may transmit the application-output

data to the local machine using a presentation level protocol such as ICA or RDP or X

Windows. In some embodiments, the remote machine 30’ receives the application from

a second remote machine 30’ across an application streaming session.

In one embodiment, upon completion of application enumeration and application

resolution, access information is transmitted to the local machine 10 that includes an

identification of a method of execution for an enumerated application and an identifier of

a remote machine 30’ hosting the enumerated application. In one embodiment where

the management service 504 determines that the enumerated application will execute

on the local machine 10, a web interface creates and transmits to the local machine 10

a file containing name-resolved information about the enumerated application. In some

embodiments, the file may be identified using a “.rad” extension. The local machine 10

may execute the enumerated application responsive to the contents of the received file.

Table 2 depicts one embodiment of information contained in the file:

Field

UNC path

Initial program

Command line

Description

Points to a Container master manifest file on

the file server

Program to launch from container

For launching documents using FTA

Source

XML service

XML service

XML service

64

WO 2007/121241 PCT/US2007/066433

Web server
URL

For messages from RADE client to Wl Wl config

Farm ID The farm the application belongs to - needed
for heartbeat messages

Wl config

LaunchTicket Application streaming client uses
LaunchTicket to acquire a license
authorizing execution of the program

XML/IMA

ICA fallback Embedded ICA file for fallback, if fallback is XML

launch info to be allowed Service

Table 2

The file may also contain a launch ticket for use by the local machine in

executing the application, as shown in Table 2. In some embodiments, the launch ticket

expires after a predetermined period of time. In one embodiment, the local machine

provides the launch ticket to a remote machine hosting the enumerated application to

be executed. Use of the launch ticket to authorize access to the enumerated

application by a user of the local machine assists in preventing the user from reusing

the file or generating an unauthorized version of the file to inappropriately access to

applications. In one embodiment, the launch ticket comprises a large, randomly-

generated number.

As described above in connection with FIG. 2, a method for selecting a method

of execution of an application program begins when credentials associated with the

local machine 10 or with a user of the local machine 10 are received (step 202) and an

enumeration of a plurality of application programs available to the local machine 10 is

provided, responsive to the received credentials (step 204). A request is received to

execute an enumerated application (step 206) and one of a predetermined number of

methods for executing the enumerated application is selected, responsive to a policy,

the predetermined number of methods including a method for application streaming of

the enumerated application (step 208).
o?

WO 2007/121241 PCT/US2007/066433

Referring now to FIG. 7, a flow diagram depicts one embodiment of the steps

taken to access a plurality of files comprising an application program. A local machine

performs a pre-launch analysis of the local machine (step 210). In one embodiment, the

local machine 10 performs the pre-launch analysis prior to retrieving and executing a

plurality of application files comprising an application program. In another embodiment,

the local machine 10 performs the pre-launch analysis responsive to a received

indication that the pre-launch analysis is a requirement for authorization to access the

plurality of application files comprising an application program.

In some embodiments, the local machine 10 receives, from a remote machine

30, access information associated with the plurality of application files. In one of these

embodiments, the access information includes an identification of a location of a remote

machine 30’ hosting the plurality of application files. In another of these embodiments,

the local machine 10 receives an identification of a plurality of applications comprising

one or more versions of the application program. In still another of these embodiments,

the local machine 10 receives an identification of a plurality of application files

comprising one or more application programs. In other embodiments, the local machine

10 receives an enumeration of application programs available to the local machine 10

for retrieval and execution. In one of these embodiments, the enumeration results from

an evaluation of the local machine 10. In still other embodiments, the local machine 10

retrieves the at least one characteristic responsive to the retrieved identification of the

plurality of application files comprising an application program.

In some embodiments, the access information includes a launch ticket capable of

authorizing the local machine to access the plurality of application files. In one of these

embodiments, the launch ticket is provided to the local machine 10 responsive to an

evaluation of the local machine 10. In another of these embodiments, the launch ticket

is provided to the local machine 10 subsequent to a pre-launch analysis of the local

machine 10 by the local machine 10.

In other embodiments, the local machine 10 retrieves at least one characteristic

required for execution of the plurality of application files. In one of these embodiments,

the access information includes the at least one characteristic. In another of these

66

WO 2007/121241 PCT/US2007/066433

embodiments, the access information indicates a location of a file for retrieval by the

local machine 10, the file enumerating the at least one characteristic. In still another of

these embodiments, the file enumerating the at least one characteristic further

comprises an enumeration of the plurality of application files and an identification of a

remote machine 30 hosting the plurality of application files.

The local machine 10 determines the existence of the at least one characteristic

on the local machine. In one embodiment, the local machine 10 makes this

determination as part of the pre-launch analysis. In another embodiment, the local

machine 10 determines whether the local machine 10 has the at least one

characteristic.

In one embodiment, determining the existence of the at least one characteristic

on the local machine 10 includes determining whether a device driver is installed on the

local machine. In another embodiment, determining the existence of the at least one

characteristic on the local machine 10 includes determining whether an operating

system is installed on the local machine 10. In still another embodiment, determining

the existence of the at least one characteristic on the local machine 10 includes

determining whether a particular operating system is installed on the local machine 10.

In yet another embodiment, determining the existence of the at least one characteristic

on the local machine 10 includes determining whether a particular revision level of an

operating system is installed on the local machine 10.

In some embodiments, determining the existence of the at least one

characteristic on the local machine 10 includes determining whether the local machine

10 has acquired authorization to execute an enumerated application. In one of these

embodiments, a determination is made by the local machine 10 as to whether the local

machine 10 has received a license to execute the enumerated application. In another

of these embodiments, a determination is made by the local machine 10 as to whether

the local machine 10 has received a license to receive across an application streaming

session a plurality of application files comprising the enumerated application. In other

embodiments, determining the existence of the at least one characteristic on the local

67

WO 2007/121241 PCT/US2007/066433

machine 10 includes determining whether the local machine 10 has sufficient bandwidth

available to retrieve and execute an enumerated application.

In some embodiments, determining the existence of the at least one

characteristic on the local machine 10 includes execution of a script on the local

machinel 0. In other embodiments, determining the existence of the at least one

characteristic on the local machine 10 includes installation of software on the local

machinel 0. In still other embodiments, determining the existence of the at least one

characteristic on the local machine 10 includes modification of a registry on the local

machine 10. In yet other embodiments, determining the existence of the at least one

characteristic on the local machine 10 includes transmission of a collection agent 404 to

the local machine 10 for execution on the local machine 10 to gather credentials

associated with the local machine 10.

The local machine 10 requests, from a remote machine 30, authorization for

execution of the plurality of application files, the request including a launch ticket (step

212). In some embodiments, the local machine 10 makes the request responsive to a

determination that at least one characteristic exists on the local machine 10. In one of

these embodiments, the local machine 10 determines that a plurality of characteristics

exist on the local machine 10, the plurality of characteristics associated with an

enumerated application and received responsive to a request to execute the

enumerated application. In another of these embodiments, whether the local machine

10 receives an indication that authorization for execution of the enumerated application

files depends upon existence of the at least one characteristic on the local machine 10.

In one embodiment, the local machine 10 received an enumeration of application

programs, requested execution of an enumerated application, and received access

information including the at least one characteristic and a launch ticket authorizing the

execution of the enumerated application upon the determination of the existence of the

at least one characteristic on the local machine 10.

In one embodiment, the local machine 10 receives from the remote machine 30 a

license authorizing execution of the plurality of application files. In some embodiments,

the license authorizes execution for a specified time period. In one of these

68

WO 2007/121241 PCT/US2007/066433

embodiments, the license requires transmission of a heart beat message to maintain

authorization for execution of the plurality of application files.

In another embodiment, the local machine 10 receives from the remote machine

30 the license and an identifier associated with a remote machine 30 monitoring

execution of the plurality of application files. In some embodiments, the remote

machine is a session management server 562, as depicted above in FIG. 5. In one of

these embodiments, the session management server 562 includes a session

management subsystem 510 that monitors the session associated with the local

machine 10. In other embodiments, a separate remote machine 30”” is the session

management server 562.

The local machine 10 receives and executes the plurality of application files (step

214). In one embodiment, the local machine 10 receives the plurality of application files

across an application streaming session. In another embodiment, the local machine 10

stores the plurality of application files in an isolation environment on the local machine

10. In still another embodiment, the local machine 10 executes one of the plurality of

application files prior to receiving a second of the plurality of application files. In some

embodiments, a remote machine transmits the plurality of application files to a plurality

of local machines, each local machine in the plurality having established a separate

application streaming session with the remote machine.

In some embodiments, the local machine 10 stores the plurality of application

files in a cache and delays execution of the application files. In one of these

embodiments, the local machine 10 receives authorization to execute the application

files during a pre-defined period of time. In another of these embodiments, the local

machine 10 receives authorization to execute the application files during the pre-defined

period of time when the local machine 10 lacks access to a network. In other

embodiments, the local machine stores the plurality of application files in a cache. In

one of these embodiments, the application streaming client 552 establishes an internal

application streaming session to retrieve the plurality of application files from the cache.

In another of these embodiments, the local machine 10 receives authorization to

69

WO 2007/121241 PCT/US2007/066433

execute the application files during a pre-defined period of time when the local machine

10 lacks access to a network.

The local machine 10 transmits at least one heartbeat message to a remote

machine (step 216). In some embodiments, the local machine 10 transmits the at least

one heartbeat message to retain authorization to execute the plurality of application files

comprising the enumerated application. In other embodiments, the local machine 10

transmits the at least one heartbeat message to retain authorization retrieve an

application file in the plurality of application files. In still other embodiments, the local

machine 10 receives a license authorizing execution of the plurality of application files

during a pre-determined period of time.

In some embodiments, the local machine 10 transmits the heartbeat message to

a second remote machine 30””. In one of these embodiments, the second remote

machine 30”” may comprise a session management server 562 monitoring the retrieval

and execution of the plurality of application files. In another of these embodiments, the

second remote machine 30”” may renew a license authorizing execution of the plurality

of application files, responsive to the transmitted heartbeat message. In still another of

these embodiments, the second remote machine 30”” may transmit to the local machine

10 a command, responsive to the transmitted heartbeat message.

Referring back to FIG. 5, the local machine 10 may include an application

streaming client 552, a streaming service 554 and an isolation environment 556.

The application streaming client 552 may be an executable program. In some

embodiments, the application streaming client 552 may be able to launch another

executable program. In other embodiments, the application streaming client 552 may

initiate the streaming service 554. In one of these embodiments, the application

streaming client 552 may provide the streaming service 554 with a parameter

associated with executing an application program. In another of these embodiments,

the application streaming client 552 may initiate the streaming service 554 using a

remote procedure call.

In one embodiment, the local machine 10 requests execution of an application

program and receives access information from a remote machine 30 regarding

70

WO 2007/121241 PCT/US2007/066433

execution. In another embodiment, the application streaming client 552 receives the

access information. In still another embodiment, the application streaming client 552

provides the access information to the streaming service 554. In yet another

embodiment, the access information includes an identification of a location of a file

associated with a plurality of application files comprising the application program.

In one embodiment, the streaming service 554 retrieves a file associated with a

plurality of application files. In some embodiments, the retrieved file includes an

identification of a location of the plurality of application files. In one of these

embodiments, the streaming service 554 retrieves the plurality of application files. In

another of these embodiments, the streaming service 554 executes the retrieved

plurality of application files on the local machine 10. In other embodiments, the

streaming service 554 transmits heartbeat messages to a remote machine to maintain

authorization to retrieve and execute a plurality of application files.

In some embodiments, the retrieved file includes an identification of a location of

more than one plurality of application files, each plurality of application files comprising

a different application program. In one of these embodiments, the streaming service

554 retrieves the plurality of application files comprising the application program

compatible with the local machine 10. In another of these embodiments, the streaming

service 554 receives authorization to retrieve a particular plurality of application files,

responsive to an evaluation of the local machine 10.

In some embodiments, the plurality of application files are compressed and

stored on a file server within an archive file such as a CAB, ZIP, SIT, TAR, JAR or other

archive file. In one embodiment, a plurality of application files stored in an archive file

comprise an application program. In another embodiment, multiple pluralities of

application files stored in an archive file each comprise different versions of an

application program. In still another embodiment, multiple pluralities of application files

stored in an archive file each comprise different application programs. In some

embodiments, an archive file includes metadata associated with each file in the plurality

of application files. In one of these embodiments, the streaming service 554 generates

a directory structure responsive to the included metadata. As will be described in

71

WO 2007/121241 PCT/US2007/066433

greater detail in connection with FIG. 12 below, the metadata may be used to satisfy

requests by application programs for directory enumeration.

In one embodiment, the streaming service 554 decompresses an archive file to

acquire the plurality of application files. In another embodiment, the streaming service

554 determines whether a local copy of a file within the plurality of application files

exists in a cache on the local machine 10 prior to retrieving the file from the plurality of

application files. In still another embodiment, the file system filter driver 564 determines

whether the local copy exists in the cache. In some embodiments, the streaming

service 554 modifies a registry entry prior to retrieving a file within the plurality of

application files.

In some embodiments, the streaming service 554 stores a plurality of application

files in a cache on the local machine 10. In one of these embodiments, the streaming

service 554 may provide functionality for caching a plurality of application files upon

receiving a request to cache the plurality of application files. In another of these

embodiments, the streaming service 554 may provide functionality for securing a cache

on the local machine 10. In another of these embodiments, the streaming service 554

may use an algorithm to adjust a size and a location of the cache.

In some embodiments, the streaming service 554 creates an isolation

environment 556 on the local machine 10. In one of these embodiments, the streaming

service 554 uses an isolation environment application programming interface to create

the isolation environment 556. In another of these embodiments, the streaming service

554 stores the plurality of application files in the isolation environment 556. In still

another of these embodiments, the streaming service 554 executes a file in the plurality

of application files within the isolation environment. In yet another of these

embodiments, the streaming service 554 executes the application program in the

isolation environment.

For embodiments in which authorization is received to execute an application on

the local machine 10, the execution of the application may occur within an isolation

environment 556. In some embodiments, a plurality of application files comprising the

application are stored on the local machine 10 prior to execution of the application. In

72

WO 2007/121241 PCT/US2007/066433

other embodiments, a subset of the plurality of application files are stored on the local

machine 10 prior to execution of the application. In still other embodiments, the plurality

of application files do not reside in the isolation environment 556. In yet other

embodiments, a subset of the plurality of applications files do not reside on the local

machine 10. Regardless of whether a subset of the plurality of application files or each

application file in the plurality of application files reside on the local machine 10 or in

isolation environment 556, in some embodiments, an application file in the plurality of

application files may be executed within an isolation environment 556.

The isolation environment 556 may consist of a core system able to provide File

System Virtualization, Registry System Virtualization, and Named Object Virtualization

to reduce application compatibility issues without requiring any change to the

application source code. The isolation environment 556 may redirect application

resource requests using hooking both in the user mode for registry and named object

virtualization, and in the kernel using a file system filter driver for file system

virtualization. The following is a description of some embodiments of an isolation

environment 556.

Referring now to FIG. 8A, one embodiment of a computer running under control

of an operating system 100 that has reduced application compatibility and application

sociability problems is shown. The operating system 100 makes available various

native resources to application programs 112, 114 via its system layer 108. The view of

resources embodied by the system layer 108 will be termed the “system scope”. In

order to avoid conflicting access to native resources 102, 104, 106, 107 by the

application programs 112, 114, an isolation environment 200 is provided. As shown in

FIG. 8A, the isolation environment 200 includes an application isolation layer 220 and a

user isolation layer 240. Conceptually, the isolation environment 200 provides, via the

application isolation layer 220, an application program 112, 114, with a unique view of

native resources, such as the file system 102, the registry 104, objects 106, and window

names 107. Each isolation layer modifies the view of native resources provided to an

application. The modified view of native resources provided by a layer will be referred

to as that layer’s “isolation scope”. As shown in FIG. 8A, the application isolation layer

73

WO 2007/121241 PCT/US2007/066433

includes two application isolation scopes 222, 224. Scope 222 represents the view of

native resources provided to application 112 and scope 224 represents the view of

native resources provided to application 114. Thus, in the embodiment shown in FIG.

8A, APP1 112 is provided with a specific view of the file system 102’, while APP2 114 is

provided with another view of the file system 102” which is specific to it. In some

embodiments, the application isolation layer 220 provides a specific view of native

resources 102, 104, 106, 107 to each individual application program executing on top of

the operating system 100. In other embodiments, application programs 112, 114 may

be grouped into sets and, in these embodiments, the application isolation layer 220

provides a specific view of native resources for each set of application programs.

Conflicting application programs may be put into separate groups to enhance the

compatibility and sociability of applications. In still further embodiments, the

applications belonging to a set may be configured by an administrator. In some

embodiments, a “passthrough” isolation scope can be defined which corresponds

exactly to the system scope. In other words, applications executing within a

passthrough isolation scope operate directly on the system scope.

In some embodiments, the application isolation scope is further divided into

layered sub-scopes. The main sub-scope contains the base application isolation scope,

and additional sub-scopes contain various modifications to this scope that may be

visible to multiple executing instances of the application. For example, a sub-scope

may contain modifications to the scope that embody a change in the patch level of the

application or the installation or removal of additional features. In some embodiments,

the set of additional sub-scopes that are made visible to an instance of the executing

application is configurable. In some embodiments, that set of visible sub-scopes is the

same for all instances of the executing application, regardless of the user on behalf of

which the application is executing. In others, the set of visible sub-scopes may vary for

different users executing the application. In still other embodiments, various sets of

sub-scopes may be defined and the user may have a choice as to which set to use. In

some embodiments, sub-scopes may be discarded when no longer needed. In some

74

WO 2007/121241 PCT/US2007/066433

embodiments, the modifications contained in a set of sub-scopes may be merged

together to form a single sub-scope.

Referring now to FIG. 8B, a multi-user computer having reduced application

compatibility and application sociability problems is depicted. The multi-user computer

includes native resources 102, 104, 106, 107 in the system layer 108, as well as the

isolation environment 200 discussed immediately above. The application isolation layer

220 functions as discussed above, providing an application or group of applications with

a modified view of native resources. The user isolation layer 240, conceptually,

provides an application program 112, 114, with a view of native resources that is further

altered based on user identity of the user on whose behalf the application is executed.

As shown in FIG. 8B, the user isolation layer 240 may be considered to comprise a

number of user isolation scopes 242’, 242”, 242’”, 242””, 242... , 242.....(generally 242).

A user isolation scope 242 provides a user-specific view of application-specific views of

native resources. For example, APP1 112 executing in user session 110 on behalf of

user “a” is provided with a file system view 1O2’(a) that is altered or modified by both the

user isolation scope 242’ and the application isolation scope 222.

Put another way, the user isolation layer 240 alters the view of native resources

for each individual user by “layering” a user-specific view modification provided by a

user isolation scope 242’ “on top of’ an application-specific view modification provided

by an application isolation scope 222, which is in turn “layered on top of’ the system­

wide view of native resources provided by the system layer. For example, when the first

instance of APP1 112 accesses an entry in the registry database 104, the view of the

registry database specific to the first user session and the application 1O4’(a) is

consulted. If the requested registry key is found in the user-specific view of the registry

104’(a), that registry key is returned to APP1 112. If not, the view of the registry

database specific to the application 104’ is consulted. If the requested registry key is

found in the application-specific view of the registry 104’, that registry key is returned to

APP1 112. If not, then the registry key stored in the registry database 104 in the system

layer 108 (i.e. the native registry key) is returned to APP1 112.

75

WO 2007/121241 PCT/US2007/066433

In some embodiments, the user isolation layer 240 provides an isolation scope

for each individual user. In other embodiments, the user isolation layer 240 provides an

isolation scope for a group of users, which may be defined by roles within the

organization or may be predetermined by an administrator. In still other embodiments,

no user isolation layer 240 is provided. In these embodiments, the view of native

resources seen by an application program is that provided by the application isolation

layer 220. The isolation environment 200, although described in relation to multi-user

computers supporting concurrent execution of application programs by various users,

may also be used on single-user computers to address application compatibility and

sociability problems resulting from sequential execution of application programs on the

same computer system by different users, and those problems resulting from installation

and execution of incompatible programs by the same user.

In some embodiments, the user isolation scope is further divided into sub­

scopes. The modifications by the user isolation scope to the view presented to an

application executing in that scope is the aggregate of the modifications contained

within each sub-scope in the scope. Sub-scopes are layered on top of each other, and

in the aggregate view modifications to a resource in a higher sub-scope override

modifications to the same resource in lower layers.

In some of these embodiments, one or more of these sub-scopes may contain

modifications to the view that are specific to the user. In some of these embodiments,

one or more sub-scopes may contain modifications to the view that are specific to sets

of users, which may be defined by the system administrators or defined as a group of

users in the operating system. In some of these embodiments, one of these sub­

scopes may contain modifications to the view that are specific to the particular login

session, and hence that are discarded when the session ends. In some of these

embodiments, changes to native resources by application instances associated with the

user isolation scope always affects one of these sub-scopes, and in other embodiments

those changes may affect different sub-scopes depending on the particular resource

changed.

76

WO 2007/121241 PCT/US2007/066433

The conceptual architecture described above allows an application executing on

behalf of a user to be presented with an aggregate, or unified, virtualized view of native

resources, specific to that combination of application and user. This aggregated view

may be referred to as the “virtual scope”. The application instance executing on behalf

of a user is presented with a single view of native resources reflecting all operative

virtualized instances of the native resources. Conceptually this aggregated view

consists firstly of the set of native resources provided by the operating system in the

system scope, overlaid with the modifications embodied in the application isolation

scope applicable to the executing application, further overlaid with the modifications

embodied in the user isolation scope applicable to the application executing on behalf of

the user. The native resources in the system scope are characterized by being

common to all users and applications on the system, except where operating system

permissions deny access to specific users or applications. The modifications to the

resource view embodied in an application isolation scope are characterized as being

common to all instances of applications associated with that application isolation scope.

The modifications to the resource view embodied in the user isolation scope are

characterized as being common to all applications associated with the applicable

application isolation scope that are executing on behalf of the user associated with the

user isolation scope.

This concept can be extended to sub-scopes; the modifications to the resource

view embodied in a user sub-scope are common to all applications associated with the

applicable isolation sub-scope executing on behalf of a user, or group of users,

associated with a user isolation sub-scope. Throughout this description it should be

understood that whenever general reference is made to “scope,” it is intended to also

refer to sub-scopes, where those exist.

When an application requests enumeration of a native resource, such as a

portion of the file system or registry database, a virtualized enumeration is constructed

by first enumerating the “system-scoped” instance of the native resource, that is, the

instance found in the system layer, if any. Next, the “application-scoped” instance of the

requested resource, that is the instance found in the appropriate application isolation

77

WO 2007/121241 PCT/US2007/066433

scope, if any, is enumerated. Any enumerated resources encountered in the application

isolation scope are added to the view. If the enumerated resource already exists in the

view (because it was present in the system scope, as well), it is replaced with the

instance of the resource encountered in the application isolation scope. Similarly, the

“user-scoped” instance of the requested resource, that is the instance found in the

appropriate user isolation scope, if any, is enumerated. Again, any enumerated

resources encountered in the user isolation scope are added to the view. If the native

resource already exists in the view (because it was present in the system scope or in

the appropriate application isolation scope), it is replaced with the instance of the

resource encountered in the user isolation scope. In this manner, any enumeration of

native resources will properly reflect virtualization of the enumerated native resources.

Conceptually the same approach applies to enumerating an isolation scope that

comprises multiple sub-scopes. The individual sub-scopes are enumerated, with

resources from higher sub-scopes replacing matching instances from lower sub-scopes

in the aggregate view.

In other embodiments, enumeration may be performed from the user isolation

scope layer down to the system layer, rather than the reverse. In these embodiments,

the user isolation scope is enumerated. Then the application isolation scope is

enumerated and any resource instances appearing in the application isolation scope

that were not enumerated in the user isolation scope are added to the aggregate view

that is under construction. A similar process can be repeated for resources appearing

only in the system scope.

In still other embodiments, all isolation scopes may be simultaneously

enumerated and the respective enumerations combined.

If an application attempts to open an existing instance of a native resource with

no intent to modify that resource, the specific instance that is returned to the application

is the one that is found in the virtual scope, or equivalently the instance that would

appear in the virtualized enumeration of the parent of the requested resource. From the

point of view of the isolation environment, the application is said to be requesting to

78

WO 2007/121241 PCT/US2007/066433

open a “virtual resource”, and the particular instance of native resource used to satisfy

that request is said to be the “literal resource” corresponding to the requested resource.

If an application executing on behalf of a user attempts to open a resource and

indicates that it is doing so with the intent to modify that resource, that application

instance is normally given a private copy of that resource to modify, as resources in the

application isolation scope and system scope are common to applications executing on

behalf of other users. Typically a user-scoped copy of the resource is made, unless the

user-scoped instance already exists. The definition of the aggregate view provided by a

virtual scope means that the act of copying an application-scoped or system-scoped

resource to a user isolation scope does not change the aggregate view provided by the

virtual scope for the user and application in question, nor for any other user, nor for any

other application instance. Subsequent modifications to the copied resource by the

application instance executing on behalf of the user do not affect the aggregate view of

any other application instance that does not share the same user isolation scope. In

other words, those modifications do not change the aggregate view of native resources

for other users, or for application instances not associated with the same application

isolation scope.

Applications may be installed into a particular isolation scope (described below in

more detail). Applications that are installed into an isolation scope are always

associated with that scope. Alternatively, applications may be launched into a particular

isolation scope, or into a number of isolation scopes. In effect, an application is

launched and associated with one or more isolation scopes. The associated isolation

scope, or scopes, provide the process with a particular view of native resources.

Applications may also be launched into the system scope, that is, they may be

associated with no isolation scope. This allows for the selective execution of operating

system applications such as Internet Explorer, as well as third party applications, within

an isolation environment.

This ability to launch applications within an isolation scope regardless of where

the application is installed mitigates application compatibility and sociability issues

without requiring a separate installation of the application within the isolation scope.

79

WO 2007/121241 PCT/US2007/066433

The ability to selectively launch installed applications in different isolation scopes

provides the ability to have applications which need helper applications (such as Word,

Notepad, etc.) to have those helper applications launched with the same rule sets.

Further, the ability to launch an application within multiple isolated environments

allows for better integration between isolated applications and common applications.

Referring now to FIG. 8C, and in brief overview, a method for associating a

process with an isolation scope includes the steps of launching the process in a

suspended state (step 882). The rules associated with the desired isolation scope are

retrieved (step 884) and an identifier for the process and the retrieved rules are stored

in a memory element (step 886) and the suspended process is resumed (step 888).

Subsequent calls to access native resources made by the process are intercepted or

hooked (step 890) and the rules associated with the process identifier, if any, are used

to virtualize access to the requested resource (step 892).

Still referring to FIG. 8C, and in more detail, a process is launched in a

suspended state (step 882). In some embodiments, a custom launcher program is used

to accomplish this task. In some of these embodiments, the launcher is specifically

designed to launch a process into a selected isolation scope. In other embodiments,

the launcher accepts as input a specification of the desired isolation scope, for example,

by a command line option.

The rules associated with the desired isolation scope are retrieved (step 884). In

some embodiments, the rules are retrieved from a persistent storage element, such as

a hard disk drive or other solid state memory element. The rules may be stored as a

relational database, flat file database, tree-structured database, binary tree structure, or

other persistent data structure. In other embodiments, the rules may be stored in a data

structure specifically configured to store them.

An identifier for the process, such as a process id (PID), and the retrieved rules

are stored in a memory element (step 886). In some embodiments, a kernel mode

driver is provided that receives operating system messages concerning new process

creation. In these embodiments, the PID and the retrieved rules may be stored in the

context of the driver. In other embodiments, a file system filter driver, or mini-filter, is

80

WO 2007/121241 PCT/US2007/066433

provided that intercepts native resource requests. In these embodiments, the PID and

the retrieved rules may be stored in the filter. In other embodiments still, all interception

is performed by user-mode hooking and no PID is stored at all. The rules are loaded by

the user-mode hooking apparatus during the process initialization, and no other

component needs to know the rules that apply to the PID because rule association is

performed entirely in-process.

The suspended process is resumed (step 888) and subsequent calls to access

native resources made by the process are intercepted or hooked (step 890) and the

rules associated with the process identifier, if any, are used to virtualize access to the

requested resource (step 892). In some embodiments, a file system filter driver, or

mini-filter, or file system driver, intercepts requests to access native resources and

determines if the process identifier associated with the intercepted request has been

associated with a set of rules. If so, the rules associated with the stored process

identifier are used to virtualize the request to access native resources. If not, the

request to access native resources is passed through unmodified. In other

embodiments, a dynamically-linked library is loaded into the newly-created process and

the library loads the isolation rules. In still other embodiments, both kernel mode

techniques (hooking, filter driver, mini-filter) and user-mode techniques are used to

intercept calls to access native resources. For embodiments in which a file system filter

driver stores the rules, the library may load the rules from the file system filter driver.

Processes that are “children” of processes associated with isolation scopes are

associated with the isolation scopes of their “parent” process. In some embodiments,

this is accomplished by a kernel mode driver notifying the file system filter driver when a

child process is created. In these embodiments, the file system filter driver determines

if the process identifier of the parent process is associated with an isolation scope. If

so, file system filter driver stores an association between the process identifier for the

newly-created child process and the isolation scope of the parent process. In other

embodiments, the file system filter driver can be called directly from the system without

use of a kernel mode driver. In other embodiments, in processes that are associated

with isolation scopes, operating system functions that create new processes are hooked

81

WO 2007/121241 PCT/US2007/066433

or intercepted. When request to create a new process are received from such a

process, the association between the new child process and the isolation scope of the

parent is stored.

In some embodiments, a scope or sub-scope may be associated with an

individual thread instead of an entire process, allowing isolation to be performed on a

per-thread basis. In some embodiments, per-thread isolation may be used for Services

and COM+ servers.

In some embodiments, isolation environments are used to provide additional

functionality to the application streaming client 552. In one of these embodiments, an

application program is executed within an isolation environment. In another of these

embodiments, a retrieved plurality of application files resides within the isolation

environment. In still another of these embodiments, changes to a registry on the local

machine 10 are made within the isolation environment.

In one embodiment, the application streaming client 552 includes an isolation

environment 556. In some embodiments, the application streaming client 552 includes

a file system filter driver 564 intercepting application requests for files. In one of these

embodiments, the file system filter driver 564 intercepts an application request to open

an existing file and determines that the file does not reside in the isolation environment

556. In another of these embodiments, the file system filter driver 564 redirects the

request to the streaming service 554 responsive to a determination that the file does not

reside in the isolation environment 556. The streaming service 554 may extract the file

from the plurality of application files and store the file in the isolation environment 556.

The file system filter driver 564 may then respond to the request for the file with the

stored copy of the file. In some embodiments, the file system filter driver 564 may

redirect the request for the file to a file server 540, responsive to an indication that the

streaming service 554 has not retrieved the file or the plurality of application files and a

determination the file does not reside in the isolation environment 556. In some

embodiments, the streaming service 554 may includecomprise an acceleration program

6120 to perform some or all of the acceleration techniques discussed below to

accelerate the storage or delivery of files and applications.

82

WO 2007/121241 PCT/US2007/066433

In some embodiments, the file system filter driver 564 uses a strict isolation rule

to prevent conflicting or inconsistent data from appearing in the isolation environment

556. In one of these embodiments, the file system filter driver 564 intercepting a

request for a resource in a user isolation environment may redirect the request to an

application isolation environment. In another of these embodiments, the file system

filter driver 564 does not redirect the request to a system scope.

In one embodiment, the streaming service 554 uses IOCTL commands to

communicate with the filter driver. In another embodiment, communications to the file

server 540 are received with the Microsoft SMB streaming protocol.

In some embodiments, the packaging mechanism 530 stores in a manifest file a

list of file types published as available applications and makes this information available

to application publishing software. In one of these embodiments, the packaging

mechanism 530 receives this information from monitoring an installation of an

application program into the isolation environment on the staging machine. In another

of these embodiments, a user of the packaging mechanism 530 provides this

information to the packaging mechanism 530. In other embodiments, application

publishing software within the access suite console 520 consults the manifest file to

present to a user of the access suite console 520 the possible file types that can be

associated with the requested application being published. The user selects a file type

to associate with a particular published application. The file type is presented to the

local machine 10 at the time of application enumeration.

The local machine 10 may include a client agent 560. The client agent 560

provides functionality for associating a file type with an application program and

selecting a method of execution of the application program responsive to the

association. In one embodiment, the client agent 560 is a program neighborhood

application.

When an application program is selected for execution, the local machine 10

makes a determination as to a method of execution associated with a file type of the

application program. In one embodiment, the local machine 10 determines that the file

type is associated with a method of execution requiring an application streaming

83

WO 2007/121241 PCT/US2007/066433

session for retrieval of the application files and execution within an isolation

environment. In this embodiment, the local machine 10 may redirect the request to the

application streaming client 552 instead of launching a local version of the application

program. In another embodiment, the client agent 560 makes the determination. In still

another embodiment, the client agent 560 redirects the request to the application

streaming client 552.

In one embodiment, the application streaming client 552 requests access

information associated with the application program from the remote machine 30. In

some embodiments, the application streaming client 552 receives an executable

program containing the access information. In one of these embodiments, the

application streaming client 552 receives an executable program capable of displaying

on the local machine 10 application-output data generated from an execution of the

application program on a remote machine. In another of these embodiments, the

application streaming client 552 receives an executable program capable of retrieving

the application program across an application streaming session and executing the

application program in an isolation environment on the local machine 10. In this

embodiment, the application streaming client 552 may execute the received executable

program. In still another of these embodiments, the remote machine 30 selects an

executable program to provide to the local machine 10 responsive to performing an

application resolution as described above.

Referring now to FIG. 9, a flow diagram depicts one embodiment of steps taken

in a method for executing an application. As described above in FIG. 7, regarding step

214, a local machine 10 receives and executes the plurality of application files. In brief

overview, the local machine 10 receives a file including access information for

accessing a plurality of application files and for executing a first client capable of

receiving an application stream (step 902). The local machine 10 retrieves an

identification of the plurality of application files, responsive to the file (step 904). The

local machine 10 retrieves at least one characteristic required for execution of the

plurality of application files, responsive to the file (step 906). The local machine 10

determines whether the local machine 10 includes the at least one characteristic (step

84

WO 2007/121241 PCT/US2007/066433

908). The local machine 10 executes a second client, the second client requesting

execution of the plurality of application files on a remote machine, responsive to a

determination that the local machine 10 lacks the at least one characteristic (step 910).

Referring to FIG. 9, and in greater detail, the local machine 10 receives a file

including access information for accessing a plurality of application files and for

executing a first client capable of receiving an application stream (step 902). In one

embodiment, the local machine 10 receives access information including an

identification of a location of a plurality of application files comprising an application

program. In another embodiment, the local machine 10 receives the file responsive to

requesting execution of the application program. In still another embodiment, the

access information includes an indication that the plurality of application files reside on a

remote machine 30’ such as an application server or a file server. In yet another

embodiment, the access information indicates that the local machine 10 may retrieve

the plurality of application files from the remote machine 30 over an application

streaming session.

The local machine 10 retrieves an identification of the plurality of application files,

responsive to the file (step 904). In one embodiment, the local machine 10 identifies a

remote machine on which the plurality of application files reside, responsive to the file

including access information. In another embodiment, the local machine 10 retrieves

from the remote machine 30 a file identifying the plurality of application files. In some

embodiments, the plurality of application files comprise an application program. In other

embodiments, the plurality of application files comprise multiple application programs.

In still other embodiments, the plurality of application files comprise multiple versions of

a single application program.

Referring ahead to FIG. 10, a flow diagram depicts one embodiment of a plurality

of application files residing on a remote machine 30’, such as file server 540. In FIG.

10, a plurality of application files, referred to as a package, includes application files

comprising three different versions of one or more application programs.

In one embodiment, each subset of application files comprising a version of one

or more application programs and stored within the package is referred to as a target.

85

WO 2007/121241 PCT/US2007/066433

Target 1, for example, includes a version of a word processing application program and

of a spreadsheet program, the version compatible with the English language version of

the Microsoft Windows 2000 operating system. Target 2 includes a version of a word

processing application program and of a spreadsheet program, the version compatible

with the English language version of the Microsoft XP operating system. Target 3 a

version of a word processing application program and of a spreadsheet program, the

version compatible with the Japanese language version of the Microsoft Windows 2000

operating system with service pack 3.

Returning now to FIG. 9, in some embodiments, the file retrieved from the

remote machine 30 hosting the plurality of application files includes a description of the

package and the targets included in the plurality of application files. In other

embodiments, the file retrieved from the remote machine 30 identifies the plurality of

application files comprising an application program requested for execution by the local

machine 10.

The local machine 10 retrieves at least one characteristic required for execution

of the plurality of application files, responsive to the file (step 906). In some

embodiments, the local machine 10 may not execute an application program unless the

local machine includes certain characteristics. In one of these embodiments, different

application programs require local machines 10 to include different characteristics from

the characteristics required by other application programs. In another of these

embodiments, the local machine 10 receives an identification of the at least one

characteristic required for execution of the plurality of application files comprising the

application program requested by the local machine 10.

The local machine determines whether the local machine 10 includes the at least

one characteristic (step 908). In one embodiment, the local machine 10 evaluates an

operating system on the local machine 10 to determine whether the local machine 10

includes the at least one characteristic. In another embodiment, the local machine 10

identifies a language used by an operating system on the local machine 10 to determine

whether the local machine 10 includes the at least one characteristic. In still another

embodiment, the local machine 10 identifies a revision level of an operating system on

86

WO 2007/121241 PCT/US2007/066433

the local machine 10 to determine whether the local machine 10 includes the at least

one characteristic. In yet another embodiment, the local machine 10 identifies an

application version of an application program residing on the local machine 10 to

determine whether the local machine 10 includes the at least one characteristic. In

some embodiments, the local machine 10 determines whether the local machine 10

includes a device driver to determine whether the local machine 10 includes the at least

one characteristic. In other embodiments, the local machine 10 determines whether the

local machine 10 includes an operating system to determine whether the local machine

10 includes the at least one characteristic. In still other embodiments, the local machine

10 determines whether the local machine 10 includes a license to execute the plurality

of application files to determine whether the local machine 10 includes the at least one

characteristic.

The local machine 10 executes a second client, the second client requesting

execution of the plurality of application files on a remote machine 30, responsive to a

determination that the local machine 10 lacks the at least one characteristic (step 910).

In one embodiment, when the local machine 10 determines that the local machine 10

lacks the at least one characteristic, the local machine 10 does not execute the first

client capable of receiving an application stream. In another embodiment, a policy

prohibits the local machine 10 from receiving the plurality of application files over an

application stream when the local machine 10 lacks the at least one characteristic. In

some embodiments, the local machine 10 determines that the local machine 10 does

include the at least one characteristic. In one of these embodiments, the local machine

10 executes the first client, the first client receiving an application stream comprising the

plurality of application files from a remote machine 30 for execution on the local

machine.

In some embodiments, the local machine 10 executes the second client

requesting execution of the plurality of application files on a remote machine upon

determining that the local machine 10 lacks the at least one characteristic. In one of

these embodiments, the second client transmits the request to a remote machine 30

hosting the plurality of application files. In another of these embodiments, the remote

87

WO 2007/121241 PCT/US2007/066433

machine 30 executes the plurality of application files comprising the application program

and generates application-output data. In still another of these embodiments, the

second client receives application-output data generated by execution of the plurality of

application files on the remote machine. In some embodiments, the second client

receives the application-output data via an Independent Computing Architecture

presentation level protocol or a Remote Desktop Windows presentation level protocol or

an X-Windows presentation level protocol. In yet another of these embodiments, the

second client displays the application-output on the local machine 10.

In some embodiments, the second client transmits the request to a remote

machine 30 that does not host the plurality of application files. In one of these

embodiments, the remote machine 30 may request the plurality of application files from

a second remote machine 30 hosting the plurality of application files. In another of

these embodiments, the remote machine 30 may receive the plurality of application files

from the second remote machine 30 across an application streaming session. In still

another of these embodiments, the remote machine 30 stores the received plurality of

application files in an isolation environment and executes the application program within

the isolation environment. In yet another of these embodiments, the remote machine

transmits the generated application-output data to the second client on the local

machine.

Referring back to FIG. 5, in one embodiment, the first client, capable of receiving

the application stream, is an application streaming client 552. The application

streaming client 552 receiving the file, retrieving an identification of a plurality of

application files and at least one characteristic required for execution of the plurality of

application files, responsive to the file, and determining whether the local machine 10

includes the at least one characteristic. In another embodiment, the second client is a

client agent 560. In some embodiments, the client agent 560 receives the file from the

application streaming client 552 responsive to a determination, by the application

streaming client 552, that the local machine 10 lacks the at least one characteristic.

In some embodiments, an application 566 executing on the local machine 10

enumerates files associated with the application 566 using the Win32 FindFirstFileQ and

88

WO 2007/121241 PCT/US2007/066433

FindNextFileQ API calls. In one of these embodiments, a plurality of application files

comprise the application 566. In another of these embodiments, not all files in the

plurality of application files reside on the local machine 10. In still another of these

embodiments, the streaming service 554 retrieved the plurality of application file in an

archived files but extracted only a subset of the plurality of application files. In yet

another of these embodiments, the streaming service 554 and the file system filter

driver 564 provide functionality for satisfying the enumeration request, even when the

requested file does not reside on the local machine 10.

In one embodiment, the functionality is provided by intercepting the enumeration

requests and providing the data as if all files in the plurality of application files reside on

the local machine 10. In another embodiment, the functionality is provided by

intercepting, by the file system filter driver 564, an enumeration request transmitted as

an IOCTL command, such as IRP_MJ_DIRECTORY_CONTROL IOCTL. When the file

system filter driver 564 intercepts the call, the file system filter driver 564 redirects the

request to the streaming service 554. In one embodiment, the file system filter driver

564 determines that the requested enumeration resides in an isolation environment on

the local machine 10 prior to redirecting the request to the streaming service 554. In

another embodiment, the streaming service 554 fulfills the request using a file in the

plurality of application files, the file including an enumeration of a directory structure

associated with the plurality of application files. In still another embodiment, the

streaming service 554 provides the response to the request to the file system filter

driver 564 for satisfaction of the enumeration request.

Referring now to FIG. 11, a flow diagram depicts one embodiment of the steps

taken in a method for responding locally to requests for file metadata associated with

files stored remotely. In brief overview, (i) a directory structure representing an

application program stored by the remote machine, and (ii) metadata associated with

each file comprising the stored application program, are received from a remote

machine (step 1102). The directory structure and the metadata are stored (step 1104).

At least one request to access metadata associated with a specific file in the directory

89

WO 2007/121241 PCT/US2007/066433

structure is received (step 1106). The at least one request is responded to using the

stored metadata (step 1108).

Referring to FIG. 11 in greater detail, a directory structure representing an

application program stored by the remote machine, and metadata associated with each

file comprising the stored application program, are received from a remote machine

(step 1102). In one embodiment, the streaming service 554 receives the directory

structure and the metadata. In another embodiment, the streaming service 554

receives the directory structure and the metadata when the streaming service 554

retrieves a plurality of application files comprising the stored application program. In still

another embodiment, the directory structure and the metadata are stored in a file in the

plurality of application files.

In one embodiment, the metadata associated with each file comprises an

alternate name for the at least one file. In another embodiment, the metadata

associated with each file includes a short name for the at least one file, the name having

a length of eight characters, a dot, and a three-character extension. In still another

embodiment, the metadata associated with each file includes a mapping between the

alternate name for the at least one file and the short name for the at least one file. In

some embodiments, a file in the plurality of application files has an alternate filename.

In one of these embodiments, when the file is retrieved by a streaming service 554 to a

local machine, the file is associated with a short name, responsive to the mapping

between the alternate name for the file and the short name for the at least one file.

The directory structure and the metadata are stored (step 1104). In one

embodiment, the directory structure and the metadata are stored in an isolation

environment 556. In another embodiment, the directory structure and the metadata are

stored in a cache memory element. In still another embodiment, the directory structure

representing an application program stored by the remote machine is used to generate

an enumeration of a directory structure representing an application program executing

on the local machine.

At least one request to access metadata associated with a specific file in the

directory structure is received (step 1106). In one embodiment, the request is a request

90

WO 2007/121241 PCT/US2007/066433

for enumeration of the file. In another embodiment, the request is a request to

determine whether a copy of the file comprising the stored application program resides

locally.

In one embodiment, the request is made by an application 566 executing in an

isolation environment on a local machine. In another embodiment, the request is made

by the application streaming client 552. In still another embodiment, the request is

made on behalf of the application 566.

In one embodiment, the request is intercepted by a file system filter driver 564.

In another embodiment, the request is forwarded to the application streaming client 552

by the file system filter driver 564. In still another embodiment, the request is forwarded

to the streaming service 554 by the file system filter driver 564.

In some embodiments, the request is hooked by a function that replaces the

operating system function or functions for enumerating a directory. In another

embodiment, a hooking dynamically-linked library is used to intercept the request. The

hooking function may execute in user mode or in kernel mode. For embodiments in

which the hooking function executes in user mode, the hooking function may be loaded

into the address space of a process when that process is created. For embodiments in

which the hooking function executes in kernel mode, the hooking function may be

associated with an operating system resource that is used in dispatching requests for

file operations. For embodiments in which a separate operating system function is

provided for each type of file operation, each function may be hooked separately.

Alternatively, a single hooking function may be provided which intercepts create or open

calls for several types of file operations.

The at least one request is responded to using the stored metadata (step 1108).

In one embodiment, the file system filter driver 564 responds to the request. In another

embodiment, the application streaming client 552 responds to the request. In still

another embodiment, the streaming service 554 responds to the request. In one

embodiment, the stored metadata is accessed to respond to the at least one request. In

another embodiment, the request is responded to with a false indication that a remote

copy of the file resides locally.

91

WO 2007/121241 PCT/US2007/066433

In one embodiment, a Windows Operating System FindFirst operation is satisfied

responsive to the received metadata. In another embodiment, a Windows Operating

System FindNext operation is satisfied responsive to the received metadata. In still

another embodiment, an operation for identifying a root node in a directory structure is

satisfied responsive to the received metadata. In some embodiments, an application

layer API such as WIN32_FIND_DATA API is used to respond to the operation. In

other embodiments, a kernel layer API such as FILE_BOTH_DIR_INFORMATION is

used to respond to the operation.

In one embodiment, the metadata satisfies an operation for identifying a time of

access associated with a node in a directory structure. In another embodiment, the

metadata satisfies an operation for identifying a time of modification associated with a

node in a directory structure. In still another embodiment, the metadata satisfies an

operation for identifying a modified node in a directory structure.

Referring now to FIG. 12, a block diagram depicts one embodiment of a system

for responding locally to requests for file metadata associated with files stored remotely,

including a streaming service 554, a file system filter driver 564, a directory structure

570, a plurality of application files 572, metadata 574, and a cache memory element

576. In brief overview, the directory structure 570 identifies a plurality of files associated

with at least one application program. The metadata 574 is associated with at least one

of the plurality of files, at least one of the plurality of files residing on a remote machine.

In one embodiment, the directory structure 570 includes the metadata 574. The cache

memory element 576 stores the directory structure 570. The file system filter driver 564

intercepts a request to access metadata associated with the at least one remotely

stored file, accesses the cache memory element, and responds to the at least one

request using the stored directory structure.

In some embodiments, the streaming service 554 receives the directory structure

570 and metadata 574. In one of these embodiments, the directory structure 570

represents a plurality of application files 572 associated with an application program, the

plurality of application files 572 residing on a remote machine, such as the remote

machine 30. In another of these embodiments, the metadata 574 comprises

92

WO 2007/121241 PCT/US2007/066433

information for responding to a Windows Operating System FindFirst request. In still

another of these embodiments, the metadata 574 comprises information for responding

to a Windows Operating System FindNext request. In yet another of these

embodiments, the metadata 574 comprises information for responding to a request for

identification of a root node in a directory structure. In another of these embodiments,

the metadata 574 comprises information for responding to a request for identification of

a node in a directory structure. In some embodiments, an application layer API such as

WIN32_FIND_DATA API is used to respond to the operation. In other embodiments, a

kernel layer API such as FILE_BOTH_DIR_INFORMATION is used to respond to the

operation.

In some embodiments, small amounts of metadata 574 about a file may be

stored directly in the literal filename, such as by suffixing the virtual name with a

metadata indicator, where a metadata indicator is a string uniquely associated with a

particular metadata state. The metadata indicator may indicate or encode one or

several bits of metadata. Requests to access the file by virtual filename check for

possible variations of the literal filename due to the presence of a metadata indicator,

and requests to retrieve the name of the file itself are hooked or intercepted in order to

respond with the literal name. In other embodiments, one or more alternate names for

the file may be formed from the virtual file name and a metadata indicator, and may be

created using hard link or soft link facilities provided by the file system. The existence

of these links may be hidden from applications by the isolation environment by

indicating that the file is not found if a request is given to access a file using the name of

a link. A particular link’s presence or absence may indicate one bit of metadata for each

metadata indicator, or there may be a link with a metadata indicator that can take on

multiple states to indicate several bits of metadata. In still other embodiments, where

the file system supports alternate file streams, an alternate file stream may be created

to embody metadata, with the size of the stream indicating several bits of metadata. In

still other embodiments, a file system may directly provide the ability to store some 3rd

party metadata for each file in the file system. In yet other embodiment, a separate sub­

93

WO 2007/121241 PCT/US2007/066433

scope may be used to record deleted files, and existence of a file (not marked as a

placeholder) in that sub-scope is taken to mean that the file is deleted.

In one embodiment, data in a user isolation environment, an application isolation

environment, and a system scope is combined to form a local enumeration of a

directory structure representing an application. In another embodiment, the streaming

service 554 accesses metadata 574 and the directory structure 570 to populate the

application isolation environment. In still another embodiment, the file system filter

driver 564 generates the local enumeration of the directory structure. In yet another

embodiment, the local enumeration of the directory structure identifies at least one file in

the plurality of application files 572, the at least one file residing on a remote machine

and not on the local machine. In some embodiments, the local enumeration of the

directory structure is stored on the cache memory element 576. In other embodiments,

the streaming service 554 generates the application isolation environment and the local

enumeration of the directory structure.

In one embodiment, the file system filter driver 564 intercepts a request

transmitted to a system scope for access to the local enumeration of the directory

structure. In another embodiment, file system filter driver 564 generates the local

enumeration after intercepting the request. In still another embodiment, the file system

filter driver 564 redirects the request for the local enumeration to the user isolation

environment. In yet another embodiment, the file system filter driver 564 redirects the

request for the local enumeration to the application isolation environment.

In some embodiments, the file system filter driver 564 intercepts a request for

access to a file identifies in the local enumeration of the directory, the file residing on a

remote machine. In one of these embodiments, the file system filter driver 564 requests

retrieval of the file by the streaming service 554, as described in greater detail in

connection with FIG. 13 below.

As applications running in an isolation environment make requests for files, a

filter driver intercepts these requests. If the request is to open a file, the filter driver will

first redirect the request to an isolation environment, to determine whether the request

may be satisfied by the isolation environment. If the call is successful, the filter driver

94

WO 2007/121241 PCT/US2007/066433

will respond to the request with the instance of the file located in the isolation

environment.

However if the requested file does not reside in the isolation environment, the

filter driver sends a request to streaming service 554 to retrieve the file from the plurality

of application files, blocks until the request is complete, and then retries the original

open. In some embodiments, the functionality of the streaming service 554 for

retrieving files from the plurality of application files upon receipt of a request from the

filter driver is referred to as “on-demand caching.”

Referring now to FIG. 13, a flow diagram depicts one embodiment of the steps

taken in a method for accessing a remote file in a directory structure associated with an

application program executing locally. In brief overview, a request by an application for

access to a file is intercepted (step 1302). The request is redirected to a first isolation

environment (step 1304). A determination is made that the requested file does not exist

in the first isolation environment (step 1306). The request is redirected to a second

isolation environment responsive to a determination that the file is identified in an

enumeration of a directory structure associated with a plurality of application files

residing on a remote machine (step 1308). The requested file is retrieved from the

remote machine, responsive to a determination that the second isolation environment

does not contain the file and that the file is identified in the enumeration (step 1310).

Referring to FIG. 13, and in greater detail, a request by an application for access

to a file is intercepted (step 1302). In one embodiment, the request is intercepted by a

file system filter driver. In another embodiment, the file system filter driver intercepts all

requests for access to files. In still another embodiment, an application streaming client

552 intercepts the request. In some embodiments, a request by an application for

access to an executable file is intercepted. In other embodiments, a request by an

application for access to a file, a portion of the application executing on a local machine

10 is intercepted.

The request is redirected to a first isolation environment (step 1304). In one

embodiment, the application executes within the first isolation environment. In one

embodiment, the application is an application program such as a word processing

95

WO 2007/121241 PCT/US2007/066433

program or spreadsheet program. In another embodiment, the application is the

application streaming client 552. In still another embodiment, the application is a

component within the application streaming client 552 attempting to launch an

application program on behalf of a user of the local machine 10. In another

embodiment, the file system filter driver redirects the request to the first isolation

environment.

A determination is made that the requested file does not exist in the first isolation

environment (step 1306). In one embodiment, the file system filter driver receives an

indication that the requested file does not exist in the first isolation environment.

The request is redirected to a second isolation environment responsive to a

determination that the file is identified in an enumeration of a directory structure

associated with a plurality of application files residing on a remote machine (step 1308).

In one embodiment, the enumeration of the directory structure is received with access

information regarding execution of the first application. In another embodiment, the

enumeration identifies a plurality of application files comprising a second application. In

this embodiment, the first application is a local copy of the second application.

The requested file is retrieved from the remote machine, responsive to a

determination that the second isolation environment does not contain the file and that

the file is identified in the enumeration (step 1310). In one embodiment, the requested

file is retrieved from a second remote machine. In another embodiment, the requested

file is retrieved from a file server. In some embodiments, the enumeration of the

directory structure identifies a plurality of application files residing on the local machine.

In other embodiments, the enumeration of the directory structure indicates that the

plurality of application files resides on the local machine. In one of these embodiments,

when the application requests access to the file in the plurality of application files which

the enumeration of the directory structure has indicated resides on the local machine,

the file is acquired from the file server upon interception of the access request. In

another of these embodiments, the file server streams the requested file to the local

machine. In still another of these embodiments, upon receiving the requested file, the

requested file is stored in the second isolation environment. In still other embodiments,

96

WO 2007/121241 PCT/US2007/066433

when the application requests access to the file in the plurality of application files which

the enumeration of the directory structure has indicated resides on the local machine, a

copy of the file is provided to the application from a local cache.

In some embodiments, the requested file is encrypted. In other embodiments,

the requested file is stored in an encrypted form. In still other embodiments, the

application requesting the file may be prevented from decrypting the requested file if the

application lacks authorization to access the requested file.

In one embodiment, a determination is made that the enumeration of the

directory structure does not identify the file. In this embodiment, the request to access

the file may be redirected to an environment outside the first isolation environment and

outside the second isolation environment.

In some embodiments, a second request to access the file is intercepted. In one

of these embodiments, the request to access the file is made by a second application.

In another of these embodiments, the second application executes in a third isolation

environment. In still another of these embodiments, the request is redirected to the

second isolation environment, responsive to a determination that the file is enumerated

in the enumeration and that the second isolation environment does contain the file. The

determination may be made that the local machine stored the file in the second isolation

environment upon receipt of the file from the file server. In yet another embodiment, the

file is stored in the third isolation environment.

Referring now to FIG. 14, a block diagram depicts one embodiment of a system

for accessing a file in a directory structure associated with an application. In brief

overview, a local machine 10 includes an application streaming client 552, a streaming

service 554, an isolation environment 556, a file system filter driver 564, and a first

application 566. The local machine 10 may interact with a file server 540, a remote

machine 30, a web interface 558, and a second application 566’.

The local machine 10 initializes the application streaming client 552 to execute

the first application 566. In one embodiment, the application streaming client 552

initializes a streaming service 554 to retrieve and execute the first application 566. In

some embodiments a plurality of application files comprise the first application 566. in

97

WO 2007/121241 PCT/US2007/066433

one of these embodiments, the streaming service 554 retrieves the plurality of

application files and stores them in the isolation environment 566. In another of these

embodiments, the streaming service 554 identifies a location of a remote machine on

which the plurality of application files resides but does not retrieve the plurality of

application files. In still another of these embodiments, the streaming service 554

retrieves a subset of the files in the plurality of application files. In yet another of these

embodiments, the streaming service 554 retrieves an archive file containing the plurality

of application files.

In one embodiment, the first application 566 comprises a local copy of a second

application 566’ residing on a remote machine 30. In another embodiment, the plurality

of application files reside on the remote machine 30 and comprise the second

application 566’ residing on a remote machine 30. In still another embodiment, to

execute the second application 566’, the local machine 10 retrieves the plurality of

application files, creating the first application 566 on the local machine, and executes

the first application 566. In some embodiments, the applications 566 and 566’ are user

applications such as word processing applications or spreadsheet applications or

presentation applications.

In some embodiments, the plurality of application files include a file identifying a

directory structure associated with the plurality of application files on the remote

machine 30. In one of these embodiments, the file includes metadata about each

application file in the plurality of application files. In another of these embodiments, the

streaming service 554 retrieves the metadata from the file to generate an enumeration

of the directory structure associated with the plurality of application files, as described in

connection with FIG. 12 above. In still another of these embodiments, the streaming

service 554 stores the enumeration of the directory structure associated with the

plurality of application files comprising the second application 566’. In some

embodiments, the streaming service 554 stores the enumeration in a second isolation

environment.

In one embodiment, the streaming service 554 retrieves an initial executable file

associated with the first application 566. In another embodiment, the streaming service

98

WO 2007/121241 PCT/US2007/066433

554 executes the first application 566 on the local machine 10 upon retrieval of the

initial executable file. In still another embodiment, the first application 566 requests

access to other files in the plurality of application files as the files are needed for

continued execution of the first application 566. In some embodiments, the first

application 566 executes in the isolation environment 556.

The file system filter driver 564 intercepts requests by the first application 566

executing within the isolation environment 556 for access to a file in the plurality of

application files. The file system filter driver 564 redirects the request to the isolation

environment 556. If the requested file resides in the isolation environment 556, access

to the requested file is provided to the first application 566.

If the requested file does not reside in the isolation environment 556, the file

system filter driver 564 redirects the request to a second isolation environment. In one

embodiment, the second isolation environment includes the enumeration of the

directory structure generated by the streaming service 554 and associated with the

plurality of application files comprising the second application 566’. In another

embodiment, a determination is made that the requested file is identified in the

enumeration of the directory structure.

In some embodiments, the streaming service 554 provides a semaphore to the

isolation environment 556. In one of these embodiments, the file system filter driver

564, using the semaphore, indicates to the streaming service 554 that access to a file in

the plurality of application files is required. In other embodiments, the file system filter

driver 564 uses a thread to indicate to the streaming service 554 that access to the file

is required.

Upon receiving the notification from the file system filter driver 564, the streaming

service 554 retrieves the requested file from the plurality of application files. In still

another of these embodiments, the streaming service 554 stores the requested file in

the second application isolation environment. In one embodiment, the request for

access to the file is satisfied with the instance of the file retrieved from the plurality of

application files and stored in the second isolation environment. In another

embodiment, the requested file is also stored in the first isolation environment.

99

WO 2007/121241 PCT/US2007/066433

In some embodiments, a determination is made that the second isolation

environment does not contain the file and that the file is identified in the enumeration. In

one of these embodiments, the file is identified in the enumeration of the directory

structure associated with the plurality of application files comprising the second

application 566’ and the file is a file in the plurality of application files. In another of

these embodiments, the streaming service 554 did not retrieve the file from the remote

machine. In still another of these embodiments, the streaming service 554 did not

retrieve a plurality of application files including the requested file. In yet another of

these embodiments, the streaming service 554 retrieved the plurality of application files

in an archived file but did not retrieve the requested file from the archive file.

In one embodiment, the streaming service 554 includes a transceiver, in

communication with the file system filter driver. In another embodiment, the transceiver

receives the redirected request from the file system filter driver. In still another

embodiment, the transceiver forwards the request for the file to a remote machine

hosting the requested file. In one embodiment, the remote machine is a file server 540.

In another embodiment, the request is forwarded to a remote machine 30 which routes

the request to a file server 540. In some embodiments, the file server 540 streams the

requested file to the transceiver on the local machine 10. In other embodiments, the

remote machine 30 streams the requested file to the transceiver on the local machine

10. In still other embodiments, upon receiving the requested file from the file server

540, the transceiver stores the received file in the second isolation environment.

In one embodiment, the file system filter driver 564 intercepts a second request

for access to the file made by a third application 566”, executing on the local machine

10, in a third isolation environment. In another embodiment, the file system filter driver

564 redirects the request for access to the file to the second isolation environment. In

still another embodiment, the file system filter driver 564 determines that the streaming

service 554 stored the received file in the second isolation environment prior to the

interception of the request for access by the third application 566”.

In some embodiments, upon initialization, the streaming service 554 may

populate a cache in an isolation environment prior to execution of an application

100

WO 2007/121241 PCT/US2007/066433

program. In one of these embodiments, the streaming service 554 installs a registry file

into the isolation environment. In another of these embodiments, the streaming service

554 stores a mapping between a long name of a file and a short file name.

In one embodiment, to save space on the local machine, the size of the cache

may be limited. In some embodiments, when the cache nears its size limit, the oldest

files in the cache will automatically be purged to make room for new files. In one of

these embodiments, the age of a file is determined by a timestamp maintained by the

operating system indicating a time of ‘last access’ timestamp. In addition to the age of a

file, the file type may be taken into account - binary executable files (.EXE, .DLL, etc)

may be kept longer than similarly aged files of other types.

Upon initialization, the streaming service 554 may enumerate files currently in a

cache, and determine the total size of the cache. After a file is added to the cache,

either by an isolation environment 556 or by the streaming service 554, the streaming

service 554 calls a function to inform the cache system of the new file, its location and

its size. The size of each newly cached file is added to the running total of the current

cache size. This new total is then compared against the cache size limit, and if the limit

has been exceeded the code fires off a thread to age the cache. There can only ever

be one instance of this thread running at any given time.

The thread generates a list of all files currently in the cache, sorts this list by last-

access timestamp, and then starts walking down the list deleting files until we have

freed enough disk space to satisfy the exit criteria for the thread. The exit criteria is

based on dropping to cache size down to a level below the limit that is determined as a

percentage of the limit (the default value is 10%). Deleting more than is needed to

prevent exceeding the limit prevents the cache from thrashing each time a new file is

added.

In some embodiments, the streaming service 554 provides the ability to copy

every file in a plurality of application files comprising an application program, in a

compressed file format, to the local machine 10. This ability may be referred to as “pre­

caching.” In one of these embodiments, when the application program is subsequently

executed, all the package requests go to the local copy rather than traversing the

101

WO 2007/121241 PCT/US2007/066433

network. These embodiments may enable a user of the local machine 10 to execute

the application program at a time when the user has no access to the network.

A remote machine 30 includes functionality for monitoring application usage by a

local machine 10. The remote machine 30 may monitor the status of each application

used by the local machine 10, for example when execution or termination of an

application. In one embodiment, the remote machine 30 requires the local machine 10

to transmit messages about the status of an application executed by the local machine

10. In another embodiment, when a local machine 10 connects to a network on which

the remote machine 30 resides, the local machine 10 transmits a message indicating

that the local machine 10 has connected to the network.

In one embodiment, the local machine 10 is said to have a session when the

local machine 10 interacts with the remote machine 30 and executes one or more

applications. In another embodiment, the remote machine 30 requires the local

machine to maintain, for the duration of a session, a license authorizing execution of

applications received from a remote machine. In still another embodiment, sessions

have unique session identifiers assigned by the remote machine.

In one embodiment, the local machine 10 transmits the messages to the remote

machine 30 with which is interacted to receive and execute the application program. In

another embodiment, the local machine 10 receives from the remote machine 30 an

identifier of a second remote machine, such as a session management server 562, the

second remote machine receiving and storing all transmitted messages associated with

the session on the local machine 10.

In some embodiments, the session management server 562 is a remote machine

30 providing license management and session monitoring services. In one of these

embodiments, the session management server 562 includes a server management

subsystem 508 providing these services.

In one embodiment, the local machine 10 transmits messages directly to the

session management server 562. In another embodiment, the local machine 10

transmits messages to a remote machine 30, the remote machine 30 forwarding the

102

WO 2007/121241 PCT/US2007/066433

messages to the session management server 562 with an identification of the local

machine 10.

A local machine 10 may transmit a heartbeat message to the remote machine

30. In one embodiment, the heartbeat message includes a request for a license. In this

embodiment, the local machine 10 may transmit the heartbeat message after receiving

access information associated with an application program which the local machine 10

requested authorization to execute. The local machine 10 may transmit the heartbeat

message prior to executing the application. In one embodiment, the local machine 10

includes with the heartbeat message a launch ticket received with the access

information. In this embodiment, the remote machine 30 may grant the local machine

552 a license upon successful verification of the launch ticket.

In another embodiment, the heartbeat message includes an indication that the

local machine has initiated execution of an application. In still another embodiment, the

heartbeat message includes an indication that the local machine has terminated

execution of an application. In yet another embodiment, the heartbeat message

includes an indication of a failure to execute an application.

In one embodiment, the heartbeat message includes a request for an

identification of a second session management server, such as a session management

server 562. In another embodiment, the heartbeat message includes an indication that

the local machine 10 has connected to a network on which the remote machine 30

resides.

In some embodiments, the heartbeat message includes a request to reset an

application streaming session. In one of these embodiments, the local machine 10

transmits this heartbeat message when an error has occurred and a connection is

terminated between a network on which the remote machine 30 resides and the local

machine 10. In another of these embodiments, the local machine 10 transmits with the

heartbeat message information associated with the session. In still another of these

embodiments, the remote machine 30 may transmit to the local machine 10 session-

related data if the session has not expired.

103

WO 2007/121241 PCT/US2007/066433

In another of these embodiments, if a remote machine 30 disconnects from a

network on which it replies, the local machine 10 may not receive a reply to a heartbeat

message transmitted to the remote machine 30. In one embodiment, the local machine

10 may re-establish a session by transmitting a message requesting a session reset to

the remote machine 30. In another embodiment, the local machine 10 may re-establish

a session by transmitting a message requesting a session reset to a second remote

machine 30. In some embodiments, when the remote machine 30 reconnects to the

network, it will create a new session for each session reset request received while the

remote machine 30 was disconnected. In one of these embodiments, the new session

will be associated with the reconnected and unlicensed state. In another of these

embodiments, no new license will be acquired for the new session. In still another of

these embodiments, when the local machine 10 executes an application, a new license

will be acquired and all sessions associated with the local machine 10 will be associated

with an active and licensed state.

In some embodiments, an application streaming client 552 on the local machine

10 generates the heartbeat message. In one of these embodiments, the application

streaming client 552 forwards the heartbeat message to a web interface 558 for

transmission to the local machine 10 for transmission to the remote machine 30. In

other embodiments, the management service 504 on the remote machine 30 receives

the heartbeat message from the local machine 10 via the web interface 558. In still

other embodiments, a remote machine 30 comprising a collector point 240 (described

above in connection with FIG. 1D) receives and stores the heartbeat messages.

In some embodiments, the application streaming client 552 requests a license

from the remote machine 30. In one of these embodiments, the license authorizes

execution of an application program on the local machine 552. In another of these

embodiments, the remote machine 30 may access a second remote machine to provide

the license. In still another of these embodiments, the remote machine 30 may provide

the license to the local machine. In yet another of these embodiments, the remote

machine 30 may provide a license acceptable for authorization purposes to a second

104

WO 2007/121241 PCT/US2007/066433

remote machine. In some embodiments, the license is revoked upon termination of

execution of an application program.

In some embodiments, a remote machine 30 in the farm 38 includes a license

management subsystem for configuring and maintaining licenses for those subsystems

that require a license to operate and for controlling the number of connections to such

subsystems. In other embodiments, the remote machine 30 incorporates functionality

of a license management subsystem within other subsystems, such as the application

management subsystem and the session management subsystem. In one

embodiment, each remote machine 30 includes a license management subsystem or

the functionality associated with a license management subsystem. The license

management subsystem manages two types of licenses (1) feature licenses, and (2)

connection licenses. In brief overview, the license management subsystem uses

feature licenses to control access to "features" of licensed software products, such as

load management, and connection licenses to control the number of user connections

allowed by those licensed software products. A feature can be some aspect or

particular functionality of the software product, or the feature can be the entire product

that will not work without a feature license.

FIG. 15 shows one embodiment of the remote machine 30 in the farm 38 in

which the remote machine 30 includes a license management subsystem 1510, a group

subsystem 1520, a persistent store system service module 1570, a dynamic store

system service module 1580, a relationship subsystem 1530, a specialized remote

machine subsystem 1540, and a common access point subsystem 524 in

communication with an event bus 1570. Those subsystems shown in FIG. 15 are for

purposes of describing the behavior of the license management subsystem 1510. The

remote machine 30 can include other types of subsystems.

The license management subsystem 1510 communicates with the group

subsystem 1520 over an event bus to form and maintain a logical grouping of licenses

(hereafter, "license groups") to facilitate license pools, assignments, and groups. A

license group includes a collection of license strings, described below, and/or other

license groups. License groups collect licenses of similar features and consequently

105

WO 2007/121241 PCT/US2007/066433

enable pooling of licenses. A pooled license is a license that is available for use by any

remote machine 30 in the farm 38. Each license group holds the collective capabilities

of the licenses in the license group and the other license subgroups (i.e. other license

groups within a license group). Information relating to license pools is, in one

embodiment, maintained in the dynamic store 240. In this embodiment, each license

management subsystem 1610 stores locally the total number of licenses and the

number of license assigned to a remote machine 30 in the farm 38. Upon granting a

pooled license, the granting license management subsystem 1510 makes an entry in

the dynamic store 240 indicating that a pooled license is "in use." Every other license

management subsystem 1510 recognizes that such pooled license is unavailable for

granting. In one particular embodiment, the dynamic store 240 store remote machine

ID/client ID pairs associated with each license group to identify pooled licenses that are

in use.

The relationship subsystem 1530 maintains associations between licenses and

remote machines 30 and between license groups and remote machines 30. The

associations define the number of licenses for each license and license group that only

the associated remote machine 30 may obtain (i.e., "local licenses"). A local license is a

license that is assigned to one remote machine in the farm 38 and is not shared by

other remote machines 38. The license management subsystem 1510 communicates

with the relationship subsystem 1530 to create, delete, query, and update such

associations. The common access point subsystem 524 provides remote procedure

calls (RPCs) for use by software products residing on the remote machine 30. These

RPC interfaces enable such software products to communicate through the common

access subsystem 524 to access licensing information.

Still referring to FIG. 15, the specialized remote machine subsystem 1540

communicates with the license management subsystem 1510 to obtain a feature license

for each capability of the specialized remote machine subsystem 1540 for which a

license is required. This occurs at initialization of specialized remote machine

subsystem 1540 and after any license event. If unable to obtain the feature license, the

specialized remote machine subsystem 1540 restricts the functionality that the

106

WO 2007/121241 PCT/US2007/066433

subsystem would provide with a license. Also, the specialized remote machine

subsystem 1540 uses the license management subsystem 1510 to obtain client

connection licenses whenever a client session is initiated with the remote machine 30.

The license management subsystem 1510 communicates with the persistent

store system service module 352 to store feature and connection licenses in a license

repository 1550 as license strings formed in accordance with a naming convention. The

license repository 1550 resides in the persistent store 230. Cyclical redundancy checks

(CRC) prevent tampering of the licenses while such licenses are stored in the license

repository 1550. The license management subsystem 1510 also stores information

related to the license strings in the license repository 1550. For example, the

information may indicate which licenses are assigned to which remote machines 30 of

the farm 38 and, in some embodiments, the activation status of each license. In one

embodiment, a connection license table 1560 stores identifiers of those local machines

that have obtained a connection license.

In one embodiment, the license management subsystem 1510 supports events

from subsystems requesting use of a licensed capability, such as a request for an

available pooled license. The event includes the UID of the subsystem requesting the

license and the UID of the remote machine 30 upon which that subsystem resides. The

event also contains the license type requested (i.e., feature or connection license) in the

form of a license group ID. The actual license group ID stored in the persistent store

230 is arbitrary, but adherence to the naming convention provides flexibility for the

future addition of new software products (i.e., subsystems) to the remote machine 30.

The event sent by a requesting subsystem seeking a license includes (1) an

indication of the license group type, the identity of the local machine and remote

machine requesting the license, and a "force acquire" flag. An indication of license

group type may include identification of a feature license, such as a load management,

or a connection type license, such as a software application product. The field

identifying the local machine and remote machine seeking the license may include the

unique identifier associated with the remote machine and the local machine. The force

acquire flag may be used, for example, to reacquire connection licenses after a license

107

WO 2007/121241 PCT/US2007/066433

change event. A license change event indicates that licensing information in the

persistent store 230 has changed; for example, a license has been deleted, added, or

assigned. Upon a license change event, each remote machine 30 attempts to reacquire

all connection licenses that it possessed before the license change event because the

particular cause of the license change event is unknown to that remote machine. This

flag, if set, indicates that a connection license must be acquired even if doing so

increases the number of connections to the remote machine 30 in excess of the

predetermined maximum number of allowable connections. No new connection

licenses are subsequently granted until the number of connection licenses in use drops

below this predetermined maximum number. In this manner, a local machine connection

will not be terminated in mid-session due to a license change event.

Referring now to FIG. 16, a block diagram depicts one embodiment of the

components involved in licensing enforcement. A remote machine 30 includes a server

management subsystem 508 and a license management subsystem 512. In some

embodiments, the server management subsystem 508 and the license management

subsystem 512 provide the functionality of the license management subsystem 1510

described above. In other embodiments, an application management subsystem 506

and a session management subsystem 510 provide the functionality of the license

management subsystem 1510 described above. In still other embodiments, other

subsystems provide the functionality of the license management subsystem 1510

described above.

In one embodiment, the server management subsystem 508 may include a

licensing component used to request issuance and revocation of licenses. In another

embodiment, the license management subsystem 512 may apply a policy to a request

for issuance or revocation of a license received from the server management

subsystem 508. In still another embodiment, the license management subsystem 512

may transmit the request to a remote machine 30 providing license enforcement

functionality. In some embodiments, the management service 504 may maintain a

connection with a second remote machine 30 providing license enforcement

108

WO 2007/121241 PCT/US2007/066433

functionality. In other embodiments, the remote machine 30 provides the license

enforcement functionality.

In some embodiments, a license expires and ceases to be valid upon a failure of

the local machine 10 to transmit a predetermined number of heartbeat messages to the

remote machine. In one of these embodiments, expiration of the license revokes

authorization for execution of an application program by the local machine 10.

In other embodiments, a session times out upon the expiration of a

predetermined period of time. In one embodiment, the management service 504

maintains session-related data after the expiration of a license until an expiration of a

session. In some embodiments, the session-related data may include information such

as session name, session id, client id, client name, session start time, server name

(UNC Path of File Server), application name (Unique name generated by local machine,

based on browser name), alias name, session state (active/licensed, active/unlicensed,

reconnected/unlicensed). In another embodiment, the local machine 10 ceases

transmission of heartbeat messages and restarts transmission of heartbeat messages

at a later point in time. In still another embodiment, the management service 504 may

reissue a license and make the maintained session-related data available to the local

machine 10 if the local machine 10 restarts transmission of heartbeat messages prior to

the expiration of the session.

Referring now to FIG. 17, a flow diagram depicts one embodiment of the steps

taken to request and maintain a license from a remote machine 30 for the duration of a

session on a local machine 10. In brief overview, an application streaming client

requests a license (step 1702). A remote machine 30 receives the request for the

license, verifies a ticket associated with the request, and generates a license (step

1704). The remote machine 30 provides the license and information associated with

the license to the local machine 10 (step 1706). The local machine 10 executes the

application as described above in connection to step 214 in FIG. 7. The local machine

transmits a heartbeat message indicating that the local machine has executed an

application (step 1708). The remote machine 30 receives the heartbeat message and

verifies identifying information transmitted with the heartbeat message (step 1708). The

109

WO 2007/121241 PCT/US2007/066433

remote machine 30 creates a session associated with the executed application and with

the local machine 10 (step 1710). A result of creating the session is transmitted to the

local machine 10 (step 1712). The local machine transmits heartbeat messages

throughout the execution of the application, as described above in connection with step

216 of FIG. 7. The local machine receives a response to a transmitted heartbeat

message (step 1714). The local machine transmits a heartbeat message indicating a

termination of an execution of the application (step 1716). The remote machine 30

receives the heartbeat message and determines whether to remove session related

data and whether to release the license associated with the local machine 10 and the

terminated application (step 1718). A result of the determination made by the remote

machine 30 is transmitted to the local machine 10 (step 1720).

Referring now to FIG. 17, and in greater detail, an application streaming client on

a local machine 10 requests a license (step 1702). In some embodiments, the local

machine 10 requests the license upon receiving access information associated with an

application program. In one of these embodiments, the local machine requests a

license from the remote machine 30 granting authorization for execution of the

application program by the local machine 10. In some embodiments, the request for the

license includes a launch ticket received from the remote machine 30 with the access

information. In other embodiments, an application streaming client 552 on the local

machine 10 transmits the request to a web interface 558 and the web interface 558

transmits the request to the remote machine 30. In still other embodiments, a session

management subsystem 510 on the remote machine receives and processes the

request for the license.

A remote machine 30 receives the request for the license, verifies a ticket

associated with the request, and generates a license (step 1704). In one embodiment,

the remote machine 30 verifies that the local machine 10 is authorized to execute the

application. In another embodiment, the remote machine 30 determines whether the

local machine 10 is already associated with an existing license. In still another

embodiment, the remote machine 30 determines that the local machine 10 is associated

with an existing license and provides the local machine 10 with an identifier for a

110

WO 2007/121241 PCT/US2007/066433

session management server 562 managing the existing license. In yet another

embodiment, the remote machine 30 generates and provides to the local machine 10 a

new license, a session identifier, and an identification of a session management server

562 managing the new license.

In some embodiments, the remote machine 30 uses a license management

subsystem 1510 to respond to a license request in an embodiment in which. The

license management subsystem 1510 receives a license request. The request can be

for a feature license or for a connection license. The license management subsystem

1510 determines if the license has already been granted, i.e., the feature has already

been started or a connection for a local machine already exists. If the license is already

granted, the license management subsystem 1510 sends a "grant" event to the license

requestor. If the license has not been previously granted, the license management

subsystem 1510 determines if a local license, i.e., a license that has been permanently

assigned to the remote machine 30, is available. In some embodiments, the license

management subsystem 1510 performs this determination by checking local memory. If

a local license is available, i.e., the remote machine 30 has more licenses permanently

assigned than currently granted, the license management subsystem 1510 sends a

"grant" event to the license requestor.

The remote machine 30 provides the license and information associated with the

license to the local machine 10 (step 1706). In one embodiment, upon receiving the

license, the session identifier, and the identification of the session management server

562 from the remote machine 30, the local machine 10 executes the application. The

local machine 10 may execute the application as described above in connection to step

214 in FIG. 7. The local machine transmits a heartbeat message indicating that the

local machine has executed an application (step 1708). In one embodiment, the local

machine transmits the heartbeat message to the remote machine 30 for transmission of

the heartbeat message to a session management server 562. In another embodiment,

the local machine 10 transmits a heartbeat message directly to a session management

server 562, responsive to an identifier of the session management server 562 received

from the remote machine 30.

Ill

WO 2007/121241 PCT/US2007/066433

The remote machine 30 receives the heartbeat message and verifies identifying

information transmitted with the heartbeat message (step 1708). In one embodiment, a

remote machine 30’ is the session management server 562. In another embodiment,

the session management server 562 verifies a server identifier provided with the

heartbeat message by the local machine 10. In still another embodiment, the server

identifier is the identifier provided to the local machine 10 by a remote machine 30.

The remote machine 30 creates a session associated with the executed

application and with the local machine 10 (step 1710). In one embodiment, the session

management server 562 creates a new session associated with the executing

application upon receiving the heartbeat message. In another embodiment, a third

remote machine 30 creates the new session. In some embodiments, the session

management server 562 stores session-related information upon the creation of the

new session.

A result of creating the session is transmitted to the local machine 10 (step

1712). In some embodiments, the result confirms the creation of the session. In other

embodiments, the result identifies the application or applications associated with the

session. The local machine transmits heartbeat messages throughout the execution of

the application, as described above in connection with step 216 of FIG. 7. In one

embodiment, the local machine 10 continues to transmit heartbeat messages at regular

intervals to the session management server 562 at periodic intervals throughout the

execution of the application program. The local machine receives a response to a

transmitted heartbeat message (step 1714). In one embodiment, the local machine 10

receives a confirmation of receipt of the heartbeat messages from the session

management server 562. In another embodiment, the local machine 10 receives a

command for execution from the session management server 562, responsive to the

receipt of a heartbeat message by the session management server 562.

The local machine transmits a heartbeat message indicating a termination of an

execution of the application (step 1716). The remote machine 30 receives the

heartbeat message and determines whether to remove session related data and

whether to release the license associated with the local machine 10 and the terminated

112

WO 2007/121241 PCT/US2007/066433

application (step 1718). A result of the determination made by the remote machine 30

is transmitted to the local machine 10 (step 1720).

Referring now to FIG. 18, a block diagram depicts one embodiment of states that

may be associated with a session monitored by a management service 504. In one

embodiment, a session maintenance subsystem 510 on the management service 504

monitors a session of a local machine 10 and assigns a state to the session. In another

embodiment, the session maintenance subsystem 510 maintains a list of license-related

data, which may include an identifier associated with the local machine, an identifier

associated with the session, a session state, and a timestamp indicating the last time

the remote machine 30 received a message from the local machine 10. In some

embodiments, the session maintenance subsystem 510 includes a session monitoring

thread. In one of these embodiments, the session monitoring thread awakens at a

periodic license timeout interval to scan the list of license-related data and update the

session status of a session.

A first state that a session may be in is an active and licensed state. In one

embodiment, when in this state, the local machine 10 has maintained a valid license

authorizing execution of an application. In another embodiment, a session

management server 562 maintains session-related data. In some embodiments, the

session management server 562 stores the session-related data on a second remote

machine. In one embodiment, when a local machine 10 initially executes an

application, the session for the local machine is in the active and licensed state.

A second state that a session may be in is an active and unlicensed state. In

one embodiment, a session is in this state when the local machine 10 fails to transmit

heartbeat messages and a license to the local machine 10 has expired. In another

embodiment, if a session is in this state then, while the license has expired, insufficient

time has elapsed for the session to expire, and the session is considered active. In

some embodiments, while a session is in this state, a remote machine 30 or a session

management server 562 may store session-related data on behalf of the local machine

10. In other embodiments, if a local machine 10 transmits a heartbeat message prior to

the expiration of the session, session-related data is transmitted to the local machine 10

113

WO 2007/121241 PCT/US2007/066433

with a new license and the session returns to the active and licensed state. In one

embodiment, a remote machine 30 uses session identifiers and identifiers associated

with the local machine to verify that the session has not expired and to provide the local

machine with the appropriate session-related data.

A third state that a session may be in is a disconnected and non-existent state.

When a session expires, session-related data is deleted.

A fourth state that a session may be in is a reconnected and unlicensed state. In

one embodiment, when a session on a local machine 10 expires, session-related data is

deleted. In another embodiment, when the local machine 10 transmits a new heartbeat

message, a new session identifier and local machine identifier are generated for the

local machine 10. In some embodiments, the local machine 10 re-authenticates to the

remote machine 30, receives a new license, and enters the active and licensed state.

Table 3 summarizes the states that may be associated with a session.

Session Status Description

Active\Licensed Normal mode of operation

Active\Unlicensed Duration of missing heartbeats >

License Timeout

AND

Duration of missing heartbeats <

Session Timeout

Reconnected\Unlicensed Duration of missing heartbeats >

Session Timeout

OR CPS/RADE hosting the session is

down and back online

114

WO 2007/121241 PCT/US2007/066433

Table 3

In some embodiments, a packaging mechanism enables creation of a plurality of

application files associated with an application program. In one of these embodiments,

the packaging mechanism enables identification of a plurality of application files. In

another of these embodiments, the packaging mechanism enables grouping of

individual application files into the plurality of application files. In still another of these

embodiments, the packaging mechanism enables hosting of the plurality of application

files on a remote machine, such as a file server or application server.

In one embodiment, the packaging mechanism executes on a remote machine

described as a “staging machine.” In another embodiment, the packaging mechanism

executes on a “clean machine.” A clean machine may be a remote machine having

only an operating system installed on it, without additional software, drivers, registry

entries, or other files. In still another embodiment, the packaging machine executes on

a remote machine, the remote machine resembling a local machine on which an

application program may execute. In some embodiments, the remote machine on

which the packaging mechanism executes includes an isolation environment providing a

clean machine environment into which an application may be installed, even where the

remote machine is not itself a clean machine.

In one embodiment, the plurality of application files is referred to as a “package.”

In another embodiment, the package may be an archive file storing the plurality of

application files. In still another embodiment, the package may be an archive file storing

the plurality of application files and a file including metadata associated with at least one

file in the plurality of application files. In some embodiments, a package includes a

plurality of application files comprising an application program. In other embodiments, a

package includes a plurality of application files comprising a suite of application

programs. In yet other embodiments, a package includes a plurality of application files

comprising an application program and a prerequisite required for execution of the

application program.

In one embodiment, the packaging mechanism initiates execution of an

installation program in an isolation environment. In another embodiment, the packaging
115

WO 2007/121241 PCT/US2007/066433

mechanism monitors a change to the isolation environment generated by the installation

program. In still another embodiment, the packaging mechanism monitors a creation by

the installation program of a file in the isolation environment. In yet another

embodiment, the packaging mechanism monitors a modification by the installation

program of a file in the isolation environment. In some embodiments, the plurality of

application files includes a file created or modified by the installation program. In other

embodiments, the packaging mechanism implements a file system filter driver 564 to

monitor the isolation environment.

In some embodiments, a packaging mechanism may generate multiple pluralities

of application files, each comprising a different version of an application program

configured for execution in a different target environment. In one of these

embodiments, a plurality of application files is configured to execute on a local machine

having a particular operating system, revision level, language configurations and master

drive (e.g., one plurality of application files may be configured to execute on a local

machine having the Windows XP Professional operating system with revision level SP2

and above, using English and having a master Drive C:\). In another of these

embodiments, more than one plurality of application files may be combined in a single

archive file. In still another of these embodiments, each plurality of application files may

be referred to as a “target.” In yet another of these embodiments, an archive file

containing one or more pluralities of application files may be referred to as a “package.”

Referring now to FIG. 19, a block diagram depicts a package including two

targets, each target comprising a plurality of application files comprising an application.

In FIG. 19, the application program ‘Foo’ is packaged in two targets. The difference

between the two targets is ‘Target Language’. Specifically, target 1 supports ‘English’

and target 2 supports ‘German’. In one embodiment, an enumeration of available

application programs may list the application program ‘Foo.’ In another embodiment,

the appropriate plurality of files is transmitted to a local machine requesting access to

the application program. In still another embodiment, a determination is made to

transmit a particular target to a local machine, responsive to an evaluation of the local

machine. In yet another embodiment, a file associated with the package identifies at

116

WO 2007/121241 PCT/US2007/066433

least one characteristic associated with a target in the package and required for

execution on a local machine.

In some embodiments, the packaging mechanism 530 prepares an application

program for streaming by executing an installation program associated with the

application program. In one of these embodiments, the packaging mechanism

generates an isolation environment on the remote machine 30 on which the packaging

mechanism executes. In another of these embodiments, the packaging mechanism

executes the application program in the isolation environment. In still another of these

embodiment, the packaging mechanism identifies a plurality of application files

generated or modified by the installation program. In yet another of these embodiment,

the packaging mechanism creates an archive file including the plurality of application

files. In one of these embodiments, the packaging mechanism creates a .CAB file

including the plurality of application files. In another of these embodiments, the

packaging mechanism creates a directory and stores the plurality of application files in

the directory. In some embodiments, the packaging mechanism stores the plurality of

application files on a file server or other remote machine 30. In other embodiments, the

packaging mechanism stores the plurality of application files on multiple remote

machines.

Referring now to FIG. 20, a flow diagram depicts one embodiment of the steps

taken in a policy-based method for effectively installing an application program without

rebooting an operating system. In brief overview, a packaging mechanism executes an

installer program within an isolation environment, the installer program installing at least

one application file associated with a second application into the isolation environment

(step 2002). A call by the installer program to at least one application programming

interface (API) is intercepted, the call requiring performance of an action after a reboot

of an operating system (step 2004). The action of the at least one intercepted call is

executed without reboot of the operating system (step 2006). An identification of a file

type of the at least one application file is received (step 2008). At least one execution

method is associated with the at least one installed application file, responsive to the

identified file type (step 2010). The at least one installed application file is stored on at

117

WO 2007/121241 PCT/US2007/066433

least one server (step 2012). An enumeration is generated of the second application,

the at least one installed application file, a location of the at least one server, and the at

least one execution method (step 2014).

Referring now to FIG. 20, and in greater detail, a packaging mechanism

executes an installer program within an isolation environment, the installer program

installing at least one application file associated with a second application into the

isolation environment (step 2002). In one embodiment, executing the installer program

within the isolation environment enables the packaging mechanism to isolate changes

made by the installer program to a file or registry on the local machine. In another

embodiment, the packaging mechanism intercepts a change requested by the installer

program and redirects the change to the isolation environment to prevent the change

from occurring on the local machine. In still another embodiments, the packaging

mechanism executes a second installer program within the isolation environment, the

second application installing at least one application file associated with a third

application into the isolation environment.

In some embodiments, the packaging mechanism executes the installer program

within the isolation environment, the installer program executing at least one executable

application associated with an application inside the isolation environment. In one

embodiment in which the installer executes an application, execution of the application

enables installation of a second application.

In another of these embodiments, installation of an application requires execution

of the at least one executable application, in addition to the execution of the installer

program. In still another of these embodiments, installation of an application requires

execution of an Internet browser application, in addition to the execution of the installer

program. In some embodiments, an installer program is executed to install a program

and execution of the installer program includes execution of a second program required

to install the program. In one of these embodiments, the program is a plug-in. In

another of these embodiments, the program is an Active X component. In still another

of these embodiments, the program is a Flash component. In yet another of these

embodiments, the program is a customized toolbar, such as a Yahoo! or Google

118

WO 2007/121241 PCT/US2007/066433

toolbar. In other embodiments, the program is a component installed into the second

program and not executable independent of the second program.

A call by the installer program to at least one application programming interface

(API) is intercepted, the call requiring performance of an action after a reboot of an

operating system (step 2004). The action of the at least one intercepted call is

executed without reboot of the operating system (step 2006). In some embodiments,

execution of the action comprises executing an action of a registry entry modified during

installation. Further details regarding the execution of the at least one intercepted call

without reboot of the operating system are provided in connection with FIG. 25 below.

An identification of a file type of the at least one application file is received (step

2008). At least one execution method is associated with the at least one installed

application file, responsive to the identified file type (step 2010). In one embodiment,

the at least one execution method enables streaming of the at least one application file

to a client. In another embodiment, the at least one execution method enables

execution of the at least one installed application file on a client. In still another

embodiment, the at least one execution method enables execution of the at least one

installed application file on a server. In yet another embodiment, the at least one

execution method enables streaming of the at least one application file to a server.

The at least one installed application file is stored on at least one server (step

2012). In some embodiments, the installed application program is executed within the

isolation environment prior to storing the at least one installed application file on at least

one server. In one of these embodiments, an additional application file is generated

responsive to the execution of the installed application program. In another of these

embodiments, a data file is generated. In still another of these embodiments, the

installed application program requires information to complete installation, the

information being required after an initial installation process. In yet another of these

embodiments, information such as software product identifiers, license identifiers, or

other credentials is required.

In some embodiments, an identifier is provided identifying a location of the at

least one installed application file on the at least one server. In one of these

119

WO 2007/121241 PCT/US2007/066433

embodiments, the identifier conforms to a Universal Naming Convention (UNC). In

other embodiments, the at least one installed application file is placed in an archive file,

such as a .CAB file. In one of these embodiments, a plurality of application files are

stored in an archive file and the archive file is stored on the at least one server. In still

another of these embodiments, the at least one installed application file is stored on

multiple servers. In still other embodiments, the at least one application file is placed in

a directory storing application files.

An enumeration is generated of the second application, the at least one installed

application file, a location of the at least one server, and the at least one execution

method (step 2014). In some embodiments, the enumeration is stored in a file. In other

embodiments, the enumeration is stored in a manifest file. In still other embodiments,

the enumeration is stored in an XML file.

In one embodiment, an enumeration is generated of multiple applications, a

plurality of installed application files associated with each of the multiple application, and

a location of at least one server storing the plurality of installed application files. In

another embodiment, a enumeration is generated including an association between the

second application and a plurality of installed application files. In still another

embodiment, an enumeration is generated including an association between the second

application and a compressed file containing the at least one installed application file

Referring now to FIG. 21, a flow diagram depicts one embodiment of the steps

taken in a policy-based method for installing an application program without rebooting

an operating system. In brief overview, a packaging mechanism executes an installer

program within an isolation environment, the installer program installing at least one

application file associated with a second application into the isolation environment (step

2102). A call by the installer program to at least one application programming interface

(API) is intercepted, the call requiring performance of an action after a reboot of an

operating system (step 2104). The action of the at least one intercepted call is

executed without reboot of the operating system (step 2106). An identification of a

characteristic of the at least one application file is received (step 2108). At least one

execution pre-requisite is associated with the at least one installed application file,

120

WO 2007/121241 PCT/US2007/066433

responsive to the identified characteristic (step 2110). The at least one installed

application file is stored on at least one server (step 2112). An enumeration is

generated of the second application, the at least one installed application file, a location

of the at least one server, and the at least one execution pre-requisite (step 2114).

Referring now to FIG. 21, and in greater detail, a packaging mechanism

executes an installer program within an isolation environment, the installer program

installing at least one application file associated with a second application into the

isolation environment (step 2102). In one embodiment, executing the installer program

within the isolation environment enables the packaging mechanism to isolate changes

made by the installer program to a file or registry on the local machine. In another

embodiment, the packaging mechanism intercepts a change requested by the installer

program and redirects the change to the isolation environment to prevent the change

from occurring on the local machine. In still another embodiments, the packaging

mechanism executes a second installer program within the isolation environment, the

second application installing at least one application file associated with a third

application into the isolation environment.

In some embodiments, the packaging mechanism executes the installer program

within the isolation environment, the installer program executing at least one executable

application associated with an application inside the isolation environment. In one

embodiment in which the installer executes an application, execution of the application

enables installation of a second application. In another of these embodiments,

installation of an application requires execution of the at least one executable

application, in addition to the execution of the installer program. In still another of these

embodiments, installation of an application requires execution of an Internet browser

application, in addition to the execution of the installer program.

Referring ahead to FIG. 23, a block diagram depicts one embodiment of a

system including a packaging mechanism 530 executing an installer program 2350 into

an isolation environment 532 and a file system filter driver 534 in communication with

the packaging mechanism 530 and the isolation environment 532.

121

WO 2007/121241 PCT/US2007/066433

In one embodiment, the packaging mechanism 530 generates a package (as

described above in connection with FIG. 21) by installing an application program into an

isolation environment 532. In another embodiment, the packaging mechanism 530

installs the application program into the isolation environment 532 by executing the

installer program 2350. In some embodiments, the packaging mechanism 530 includes

a graphical user interface. In one of these embodiments, the graphical user interface

enables a user of the packaging mechanism 530 to customize the generation of a

package by the packaging mechanism 530. In another of these embodiments the

packaging mechanism 530 is in communication with a graphical user interface on the

access control suite 520, enabling a user of the access control suite 520 to customize

the generation of a package by the packaging mechanism 530.

In some embodiments, the file system filter driver 532 enables the installation of

the application program in an isolation environment 532. In one of these embodiments,

the file system filter driver 532 intercepts a request by the installer program 2350. In

another of these embodiments, the file system filter driver 532 redirects the request by

the installer program 2350 to the isolation environment 532. In still another of these

embodiments, the file system filter driver 532 stores a record of the request made by the

installer program 2350. In yet another of these embodiments, the file system filter driver

532 stores a copy of a file created or modified by the installer program 2350. In some

embodiments, the stored records generated by the file system filter driver 532 are

stored together as a plurality of application files comprising an application program. In

other embodiments, the plurality of application files is stored on a file server 540.

Referring back to FIG. 21, a call by the installer program to at least one

application programming interface (API) is intercepted, the call requiring performance of

an action after a reboot of an operating system (step 2104). The action of the at least

one intercepted call is executed without reboot of the operating system (step 2106). In

some embodiments, execution of the action comprises installation of a driver configured

to be started upon the boot of the computer system. In other embodiments, execution

of the action comprises executing an action of a registry entry modified during

installation.

122

WO 2007/121241 PCT/US2007/066433

An identification of a characteristic of the at least one application file is received

(step 2108). In some embodiments, an identification of an operating system type is

received. In other embodiments, an identification of a language used by operating

system is received. In still other embodiments, an identification of a version of the

second application is received.

At least one execution pre-requisite is associated with the at least one installed

application file, responsive to the identified characteristic (step 2110). In one

embodiment, the at least one execution pre-requisite is associated with the at least one

installed application file responsive to an application of a policy to the characteristic. In

another embodiment, a script is associated with the at least one installed application

file, the script comprising an executable program determining the existence of the at

least one execution pre-requisite on a client. Referring ahead to FIG. 22, a screen shot

depicts one embodiment of an enumeration of scripts to be executed on the local

machine. A type of script 2202 indicates when the script should be executed, for

example, either before the execution of the application, or after termination of execution

of the application. An isolation indicator 24 indicates whether the script should be

executed in an isolation environment on the local machine 10. As shown in FIG. 22, in

some embodiments, the script was associated with the application program at the time

the plurality of application files were packaged together and stored on the remote

machine 30’ hosting the plurality of application files.

In some embodiments, the at least one execution pre-requisite requires

installation of a version of an operating system on a system executing the at least one

installed application file. In other embodiments, the at least one execution pre-requisite

requires installation of a version of the second application on a system executing the at

least one installed application file. In still other embodiments, an instruction is

associated with the at least one installed application file, the instruction indicating a

second installed application file for use by a client failing to satisfy the at least one

execution pre-requisite. In yet other embodiments, an instruction is associated with the

at least one installed application file, the instruction indicating a second execution

method for execution of the at least one installed application file on a client failing to

123

WO 2007/121241 PCT/US2007/066433

satisfy the at least one execution pre-requisite. In one of these embodiments, an

execution method is associated with the at least one installed application file, the

execution method authorizing streaming of a plurality of application files comprising the

second application to a local machine for execution on the local machine. In another of

these embodiments, an evaluation of a local machine identifies at least one

characteristic associated with the at least one installed application file not included on

the local machine. In still another of these embodiments, authorization for execution of

the plurality of application files is revoked. In yet another of these embodiments, a

second execution method is provided for executing the plurality of application files, the

second execution method enabling execution of the plurality of application files on a

remote machine and transmission of application output data from the remote machine to

the local machine.

The at least one installed application file is stored on at least one server (step

2112). In some embodiments, the installed application program is executed within the

isolation environment prior to storing the at least one installed application file on at least

one server. In one of these embodiments, an additional application file is generated

responsive to the execution of the installed application program. In another of these

embodiments, a data file is generated. In still another of these embodiments, the

installed application program requires information to complete installation, the

information being required after an initial installation process. In yet another of these

embodiments, information such as software product identifiers, license identifiers, or

other credentials is required.

In some embodiments, an identifier is provided identifying a location of the at

least one installed application file on the at least one server. In one of these

embodiments, the identifier conforms to a Universal Naming Convention (UNC). In

other embodiments, the at least one installed application file is placed in an archive file,

such as a .CAB file. In one of these embodiments, a plurality of application files are

stored in an archive file and the archive file is stored on the at least one server. In still

another of these embodiments, the at least one installed application file is stored on

124

WO 2007/121241 PCT/US2007/066433

multiple servers. In still other embodiments, the at least one installed application file is

placed in a directory storing application files.

An enumeration is generated of the second application, the at least one installed

application file, a location of the at least one server, and the at least one execution pre­

requisite (step 2114). In some embodiments, the enumeration is stored in a file. In

other embodiments, the enumeration is stored in a manifest file. In still other

embodiments, the enumeration is stored in an XML file.

In one embodiment, an enumeration is generated of multiple applications, a

plurality of installed application files associated with each of the multiple application, and

a location of at least one server storing the plurality of installed application files. In

another embodiment, a enumeration is generated including an association between the

second application and a plurality of installed application files. In still another

embodiment, an enumeration is generated including an association between the second

application and a compressed file containing the at least one installed application file

Referring back to step 2106, where an action of the at least one intercepted call

is executed without reboot of the operating system, in some embodiments, a virtualized

installation and execution environment is provided that removes the requirement of

rebooting the system before executing an installed application.

Referring now to FIG. 24, a flow chart depicts an embodiment in which execution

of an installer program requires rebooting of an operating system on a local machine on

which the installer program executes. A conventional application installer copies files

onto a remote machine where the application is being installed (step 2402). In some

embodiments, copying the files may cause a reboot of the remote machine. The

application installer attempts to copy at least one of the files to locked files (step 2404).

In one embodiment, a locked file may only be written to when an operating system is

executed (or “rebooted”). The MOVEFILEDELAYUNTILREBOOT option is set in

the MoveFileEx()Win32 API (step 2406), and the application installer calls system

shutdown/reboot function (step 2408). Following a reboot, the originally locked files are

then installed upon reboot (step 2410).

125

WO 2007/121241 PCT/US2007/066433

Referring now to FIG. 25, a block diagram depicts one embodiment of a remote

machine 30 onto which a packaging mechanism installs an application program. The

remote machine 30 includes system resources 2502, system APIs 2504 and an

application installer 2506 used to install an application. The remote machine 30 also

includes a function-hooking mechanism 2508, a post-install processor module 2510 and

an application isolation environment 2512. In some embodiments, installing an

application program into an isolation environment 2512 enables installation without

reboot of the remote machine 30. In one of these embodiments, a change made to a

system resource 2502 virtualized in an isolation environment 2512 does not change a

corresponding system resource 2502 on the remote machine 30. Since the system

resource on the remote machine 30 is not changed, rebooting the machine to protect

the system resource from inappropriate changes is not required.

Referring now to FIG. 25, and in greater detail, the system resources 2502 may

include registry entries, system DLLs, and other locked files that the operating system

prevents from being written to while the remote machine 30 is executing. The system

APIs 2504 include APIs used to reboot the system that are called by the application

installer 2506 and hooked by the function-hooking mechanism 2508 to prevent the

rebooting of the remote machine 30.

The application isolation environment 2512 provides an environment with a view

of operating system resources to an application installer 2506. In one embodiment, the

application isolation environment 2512 is an isolation environment 556. In some

embodiments, the application isolation environment 2512 provides virtualization of

operating system resources such as the file system, registry and named objects. In one

embodiment, the application installer 2506 executes within the application isolation

environment 2512. In another embodiment, the application installer 2506 installs the

application program into the application isolation environment 2512. In still another

embodiment, the application installer 2506 executes outside the application isolation

environment 2512 and installs the application program inside the application isolation

environment 2512.

126

WO 2007/121241 PCT/US2007/066433

In some embodiments, the application isolation environment 2512 circumvents the

requirement for rebooting the remote machine 30 when the application installer 2506

installs an application into the application isolation environment 2512. In one

embodiment, the application isolation environment 2512 intercepts a request to copy an

application file to a locked file. In another embodiment, the application isolation

environment 2512 redirects the request to copy the application file to an unlocked file. In

still another embodiment, the application isolation environment 2512 redirects the

request to copy the application file to a virtualized file. In yet another embodiment,

redirecting the request to copy the application file enables installation of application files

without requiring a reboot of the remote machine 30. As an example, if an application

installer 2506 attempts to write to a locked file, such as c:\windows\system32\mfc40.dll,

the application isolation environment 2512 intercepts the request and redirect the file to

another, unlocked, location. This ability to avoid locked files means the file can be installed

without having to make use of the MoveFileExQ API and

MOVE_FILE_DELAY_UNTIL_REBOOT flag. This ability in removes the need for a

reboot of the remote machine 30.

In one embodiment, the function-hooking mechanism 2508 is a file system filter

driver 564. In another embodiment, a file system filter driver 564 includes the function­

hooking mechanism 2508. In still another embodiment, the function-hooking mechanism

2508 intercepts requests from the application installer 2506 to restart the remote machine

30. In some embodiments, the application isolation environment 2512 provides for

copying of application files to unlocked files. However, the application isolation

environment 2512 does not address a request by the application installer 2506 for reboot

of the remote machine 30. The function-hooking mechanism 2508 intercepts the request

for reboot and responds to the application installer 2506.

The application isolation environment 2512 enables copying of application files to

unlocked files. However, in some embodiments, other actions are required for installation

of an application, and these actions may occur upon the reboot. Preventing the reboot

does not prevent the need to complete these actions in the installation process. The

127

WO 2007/121241 PCT/US2007/066433

function-hooking mechanism 2508 may provide functionality for carrying out an action

associated with an installation of an application

For example, during the installation of an application, registry entries such as

HKLM\SYSTEM\CurrentControlSet\Control\Session_Manager\Pending-

FileRenameOperations may be written. Other applications may install services or drivers

which need to be started upon boot of a machine. The Post Install Processor Module 2510

identifies application files that have been modified during installation, and carries out the

actions associated with the application files.

Referring now to FIG. 26, a flow diagram depicts one embodiment of the steps

followed to install an application in an application isolation environment 2512. The

application isolation environment 2512 provides a virtualized view of the server

operating system to the application installer (step 2602). The APIs on the server

relating to system reboots and shutdowns are hooked (step 2604) to prevent the

application installer 2506 from causing a reboot. The application installer 2506 requests

file-copying operations to locked files, the request being intercepted and redirected to

non-conflicting locations (step 2606). When the application installer 2506 attempts to

reboot by calling a system API, the request is intercepted and the reboot is prevented

(step 2608). The post-install processor module 2510 performs actions that ordinarily

occur after reboot (step 2610) and the application may then be executed in the

application isolation environment 2512 without reboot of a remote machine 30 (step

2612).

In some embodiments, following installation of the application program into the

application isolation environment 2512, a packaging mechanism identifies a plurality of

application files created or modified during installation of an application program. In one

of these embodiments, the plurality of application files are stored on a remote machine.

In another of these embodiments, a local machine retrieving the plurality of application

files may execute the application program.

In some embodiments, the packaging mechanism 530 executes on a remote

machine including an isolation environment 532 and a file system filter driver 534 and

installs an application program into the isolation environment 532. In one of these

128

WO 2007/121241 PCT/US2007/066433

embodiments, the remote machine is referred to as a “clean machine” or a “staging

machine.” In another of these embodiments, the isolation environment 532 includes an

application isolation scope providing a modifiable, virtualized instance of a native

resource provided by an operating system on the clean machine. In still another of

these embodiments, the isolation environment 532 includes a system isolation scope

providing a read-only view of the native resource. In yet another of these embodiments,

the read-only view of the native resource comprises a snapshot of a file system and

registry residing on the clean machine.

In one embodiment, a redirector intercepts a request for a change to the native

resource. In some embodiments, the redirector is a file system filter driver 534. In

another embodiment, an installer program executed by the packaging mechanism 530

makes the request for the change. In still another embodiment, the change to the native

resource is required to install an application program on to the clean machine. In yet

another embodiment, the redirector redirects the request to the isolation environment

532.

In some embodiments, redirecting requests to change native resources to the

isolation environment 532 results in isolation of changes associated with installation of

an application program. In other embodiments, the requests to change native

resources are recorded and stored in a storage element. In one of these embodiments,

all changes associated with installation of an application program reside in the storage

element. In another of these embodiments, a local machine 552 retrieving the contents

of the storage element and implementing the changes to native resources residing in an

isolation environment 556 on the local machine 552 result in installation of the

application program on the local machine 552.

In some embodiments, a pre-launch analysis of the local machine 10 may be

required. In one of these embodiments, the local machine 10 verifies that at least one

characteristic is included in the local machine 10. In another of these embodiments, the

at least one characteristic is added to the local machine 10 after the pre-launch analysis

determines that the local machine 10 lacks the at least one characteristic. In still

another of these embodiments, the at least one characteristic is included in a remote

129

WO 2007/121241 PCT/US2007/066433

machine hosting an application program and failure of the local machine to include the

at least one characteristic will prevent execution of the application program. In yet

another embodiment, the application program requires existence of the at least one

characteristic on the local machine for execution.

In some embodiments, the packaging mechanism enables identification of at

least one characteristic for use in a pre-launch analysis on the local machine. In other

embodiments, the packaging mechanism enables association of at least one

characteristic with an application program available for execution on the local machine.

In still other embodiments, the packaging mechanism enables association of an

executable script with an application program, the local machine executing the

executable script to complete the pre-launch analysis. In yet other embodiments, the at

least one characteristic is required to exist on the local machine after the execution of

the application program.

The packaging mechanism may provided functionality for signing a plurality of

application files. In one embodiment, signing the plurality of application files enables a

local machine to verify integrity of the plurality of application files. In another

embodiment, signing the plurality of application files prevents a local machine from

executing a corrupted application program. In some embodiments, a cryptographic

checksum, such as an MD4 hash, an MD5 hash, or a SHA-1 hash, of a file in the

plurality of application files is computed.

In other embodiments, a cryptographic checksum of every file in the plurality of

application files is computed. In one of these embodiments, the cryptographic

checksum is stored in a second file. In another of these embodiments, the second file is

associated with the plurality of application files. In some embodiments, the second file

is added to the plurality of application files. In other embodiments, the second file is

signed using a certificate, such as an X.509 certificate. In still other embodiments, a

local machine retrieving the plurality of application files verifies the signature using a

public portion of the certificate. In yet other embodiments, the local machine receives

the public portion of the certificate and an identification of a certificate trust list for

130

WO 2007/121241 PCT/US2007/066433

verification of the signature. In one of these embodiments, local machine receives a

registry key containing the identification of a certificate trust list.

In one embodiment, the packaging mechanism provides functionality for

customizing an isolation environment. In another embodiment, the packaging

mechanism provides functionality for generating a file storing a definition of an isolation

environment. In still another embodiment, the packaging mechanism includes the file

with the plurality of application files comprising an application program. In yet another

embodiment, a local machine receives the file with access information from a remote

machine.

In some embodiments, a plurality of application files are stored in an archive file.

In one of these embodiments, the archive file is in a CAB file format. In another of these

embodiments, the archive file format does not provide support for specification by an

application program of a short file names of a file. In still another of these

embodiments, an operating system, such as WINDOWS 2000 may not provide support

for specification by an application program of a short file names of a file. In other

embodiments, an operating system, such as WINDOWS XP, provides support for

specification by an application program of a short file name of a file. In one of these

embodiments, a request to execute the file must include the correct short file name of

the file.

In one embodiment, a mapping may be generated to associate a long file name

of a file in the plurality of application files with a short name of the file. In another

embodiment, the mapping is stored in a file in the plurality of application files. In still

another embodiment, a file has a short file name only if the long file name of the file is

longer than twelve characters. In some embodiments, the short file name is a virtual file

name associated with the file. In one of these embodiments, the file is transmitted to a

local machine 10 for execution where it is stored with a long file name. In another of

these embodiments, an application file on the local machine 10 requests execution of

the file using the short file name. In still another of these embodiments, the mapping

enables execution of the file although the request for execution of the file did not use the

name of the file on the local machine (the long file name).

131

WO 2007/121241 PCT/US2007/066433

In some embodiments, the packager mechanism 530 generates the mapping. In

one of these embodiments, the packager mechanism 530 selects a short file name for a

file having a long file name. In another of these embodiments, an operating system on

the remote machine 30’ on which the packager mechanism 530 is executing selects a

short file name for a file having a long file name. In still another of these embodiments,

a unique short file name is selected that does not conflict with a second short file name

on the remote machine 30’. In yet another of these embodiments, the installer program

executed by the packager mechanism 530 generates a file including a mapping

between a long file name with a short file name. In other embodiments, the mapping is

transmitted to a local machine 10 retrieving the file. In one of these embodiments, the

local machine 10 refers to the file when executing the file.

The following illustrative examples show how the methods and systems

discussed above can be used for selecting, streaming to a local machine, and executing

on the local machine a plurality of files comprising an application program. These

examples are meant to illustrate and not to limit.

Example 1

In one embodiment, a user of a local machine 10 requests access to an

application program, such as a word processing program, a web browsing application,

or a spreadsheet program, identified in an enumeration of application programs. In one

example of this embodiment, the local machine 10 executes a program neighborhood

application that receives from a remote machine 30 an enumeration of applications

available to the local machine 10. In another example of this embodiment, the local

machine 10 communicates with a web server, such as remote machine 30’”, to receive

the enumeration of applications. The user of the local machine 10 may request access

to an enumerated application program by selecting a graphical depiction representing

the enumerated application program. The user of the local machine 10 may request

access to an application program not previously installed on the local machine 10.

The local machine 10 transmits the request to access the application program to

a remote machine 30. The local machine 10 receives an identification of a remote

machine 30” providing access to a plurality of application files comprising the application

132

WO 2007/121241 PCT/US2007/066433

program. The local machine 10 identifies at least one characteristic required for

execution of the application program. In one example of this embodiment, the local

machine 10 receives the at least one characteristic with the identification of the remote

machine 30” transmitted to the local machine 10 by the remote machine 30. In another

example of this embodiment, the local machine 10 retrieves the at least one

characteristic from the remote machine 30” after receiving the identification of the

remote machine 30”. The local machine 10 may be required to comprise the at least

one characteristic prior to receiving authorization to retrieve the plurality of application

files. Alternatively, the local machine 10 may be required to comprise the at least one

characteristic prior to executing the plurality of application files. In one example of this

embodiment, the local machine 10 may be required to comprise the at least one

characteristic throughout the execution of the plurality of application files.

Upon verification by the local machine 10 that the local machine 10 includes the

at least one characteristic, the local machine 10 retrieves a least one application file in

the plurality of application files and executes the retrieved application file to execute the

application program.

Example 2

A remote machine 30 receives a request to access an application program from

a local machine 10. The remote machine 30 authenticates the local machine 10. In

one example of this embodiment, the remote machine 30 requests credentials, such as

a user name and password, from the local machine 10. In another example of this

embodiment, the remote machine 30 transmits a collection agent 404 to the local

machine 10. The collection agent 404 gathers information about the local machine 10

and transmits the information to the remote machine 30 for use in authenticating the

local machine 10. In still another example of this embodiment, the remote machine 30

provides information about the local machine 10 to a policy engine 406 for

authentication of the local machine 10. The remote machine 30 may comprise the

policy engine 406. Alternatively, the remote machine 30 may be in communication with

a remote machine 30’ comprising the policy engine 406.

133

WO 2007/121241 PCT/US2007/066433

The remote machine 30 selects a method of execution of the application

program. The remote machine 30 may make the selection responsive to the

authentication of the local machine 10. In one example of this embodiment, the remote

machine 30 applies a policy to information gathered about the local machine 10. In

another example of this embodiment, the remote machine 30 makes the selection

responsive to a policy applied to the application program. In still another example of

this embodiment, the remote machine 30 makes the selection responsive to a policy

applied to a file type associated with the application program. The remote machine 30

may consult a file to make the selection of the method of execution of the application

program.

The remote machine 30 may select a method of execution of the application

program enabling the local machine 10 to receive application-output data generated by

execution of the application program on a remote machine 30’. The remote machine 30

may select a method of execution of the application program enabling the local machine

10 to execute the application program locally after retrieving a plurality of application

files comprising the application program.

In one embodiment, the remote machine 30 selects a method of execution of the

application program enabling the local machine 10 to execute the application program

locally while retrieving a plurality of application files comprising the application program

across an application streaming session. In one example of this embodiment, the local

machine 10 establishes an application streaming session with a remote machine

hosting a plurality of application files, the local machine 10 initiates retrieval of the

plurality of application files across the application streaming session, and the local

machine 10 executes a retrieved first application file in the plurality of application files

while retrieving a second application file in the plurality of application files. In another

example of this embodiment, the local machine 10 executes a first application file in the

plurality of application files and retrieves a second application file in the plurality of

applications upon receiving a request from the first application file for access to the

second application file.

134

WO 2007/121241 PCT/US2007/066433

For embodiments in which the selected method of execution enables the local

machine 10 to retrieve at least one application file in a plurality of application files

comprising an application program, the remote machine 30 identifies a remote machine

30” hosting the application program available for access by the local machine 10. The

remote machine 30” hosts a plurality of application files comprising the application

program. The remote machine 30” may host multiple pluralities of application files

comprising various application programs. In one example of this embodiment, the

remote machine 30” hosts a plurality of application files for each of several different

versions of an application program.

The remote machine 30” hosts a file associating a plurality of application files

comprising a particular application program with a description of the application

program. The file may also identify one or more execution pre-requisites to be identified

on a machine prior to the transmission of the plurality of application files to the machine.

The file may further include an identification of a location on a network of the remote

machine 30”. In one example of this embodiment, the remote machine 30 consults the

file to identify the location on the network of the remote machine 30”.

The remote machine 30 selects a remote machine 30”. The remote machine 30

may select a remote machine 30” having a location on a network accessible to the local

machine 10. The remote machine 30 may select a remote machine 30” hosting a

version of the application program compatible with the local machine 10. The remote

machine 30 transmits an identification of the selected method of execution of the

application program and an identification of the remote machine 30” to the local

machine 10 in response to receiving the request for access to the application program.

The remote machine 30 may also transmit the file to the local machine 10.

Example 3

In one embodiment, the local machine 10 receives an identification of a selected

method of execution of an application program and an identification of a remote

machine 30” providing access to a plurality of application files comprising the application

program. The local machine 10 verifies authorization of access to the application

program. In one example of this embodiment, the local machine 10 performs a pre­

135

WO 2007/121241 PCT/US2007/066433

launch analysis of itself. The local machine 10 identifies at least one characteristic and

verifies the existence of the at least one characteristic on the local machine 10. The at

least one characteristic may be a pre-requisite to maintaining authorization to access

and execute the application program. Verifying the existence of the at least one

characteristic on the local machine 10 may ensure compatibility between characteristics

of the local machine 10 and the system requirements of the application program, and

may additionally ensure compliance with security policies or licensing agreements.

Upon successful completion of a pre-launch analysis, the local machine 10

establishes an application streaming session with the remote machine 30” providing

access to the plurality of application files. The application streaming session may be

any connection over which the local machine 10 may request and receive a file in the

plurality of application files. Establishment of the application streaming session may

enable the local machine 10 to execute a first application file in the plurality of

application files prior to retrieval of all files in the plurality of application files. The local

machine 10 may initiate execution of the application program while continuing retrieval

of additional application files in the plurality of application files. Alternatively, the local

machine 10 may retrieve the plurality of application files in an archive file and execute a

first extracted application file while extracting a second application file from the archive

file.

Example 4

In one embodiment, an application streaming client 552 on a local machine 10

retrieves a plurality of application files from a remote machine 30. The application

streaming client includes a streaming service 554, an isolation environment 556, and a

file system filter driver 564. The streaming service 554 establishes an application

streaming session with the remote machine 30 for requesting and retrieving the plurality

of application files. The streaming service 554 executes the application files within the

isolation environment 556. The file system filter driver 564 enables execution of

application files within the isolation environment 556 by intercepting requests from the

execution application files and redirecting the requests to the isolation environment 556.

136

WO 2007/121241 PCT/US2007/066433

In one example of this embodiment, the streaming service 554 retrieves an

archive file including the plurality of application files comprising an application program.

The streaming service 554 extracts from the archive file a first application file from the

plurality of application files. The first application file may be an executable file. The

streaming service 554 may execute the first application file within the isolation

environment 556. Execution of the first application file may initiate execution of the

application program.

In another embodiment, a first application file executing within the isolation

environment 556 requests from the local machine 10 an enumeration of the plurality of

application files. The file system filter driver 564 intercepts the request for the

enumeration and redirects the request to the streaming service 554. In embodiments

where the streaming service 554 retrieved the plurality of application files, the streaming

service 554 may generate an enumeration of the plurality of application files. In

embodiments where the streaming service 554 retrieved an archive file including the

plurality of application files, the streaming service 554 may generate the enumeration of

the plurality of application files responsive to an enumeration included in the retrieved

archive file. In other embodiments, the streaming service 554 retrieves only the

enumeration of the plurality of application files while at least one application file in the

plurality of application files resides on a remote machine 30 and has not yet been

retrieved to the local machine 10 by the streaming service 554. In these embodiments,

the streaming service 554 may generate an enumeration of the plurality of application

files responsive to the retrieved enumeration. In one example of these embodiments,

the streaming service 554 indicates to the first application file that the plurality of

application files resides on the local machine 10, although only the enumeration resides

on the local machine 10.

Example 5

In one embodiment, a first application file executing within the isolation

environment 556 requests from the local machine 10 access to a file identified by the

enumeration of the plurality of application files. If the requested file resides in a user

137

WO 2007/121241 PCT/US2007/066433

scope within the isolation environment 556 accessible to the first application file, the first

application file accesses the requested file.

If the requested file does not reside in the user scope or in the isolation

environment 556, the file system filter driver 564 intercepts the request and redirects the

request to the streaming service 554. If the requested file is a file within the archive file

containing the plurality of application files, the streaming service 554 extracts the

requested file and stores the requested file on the local machine 10. The streaming

service 554 may store the file within the isolation environment 556. The request for the

file is satisfied when the file is stored in the isolation environment 556.

If the requested file does not reside in the isolation environment 556 or in the

archive file including the plurality of application files, the streaming service 554 requests

the file from the remote machine 30. The streaming service 554 may receive the file

from the remote machine 30 across an application streaming session. The streaming

service 554 stores the received file in the isolation environment 556. The request for

the file is satisfied when the file is stored in the isolation environment 556.

In one example of this embodiment, a second application file executes in a

second user scope in the isolation environment 556. The second application file

requests access to the file originally requested by the first application file. If a copy of

the requested file does not reside in the second user scope, the copy of the requested

file stored in the isolation environment 556 is used to satisfy the request for the

application file.

Example 6

In one embodiment, a local machine 10 receives from a remote machine 30 an

identification of a selected method of execution of an application program and an

identification of a remote machine 30’ providing access to a plurality of application files

comprising the application program. The local machine 10 successfully completes a

pre-launch analysis of the local machine 10. The local machine 10 receives a license

from the remote machine 30 authorizing execution of the application program. In one

example of this embodiment, the license requires the local machine 10 to transmit

heartbeat messages to a session management server 562 to maintain authorization to

138

WO 2007/121241 PCT/US2007/066433

execute the application program. Heartbeat messages may include messages

indicating initiation of execution of an application program, termination of execution of

an application program, and messages sent on a periodic basis throughout the

execution of the application program. Heartbeat messages may also include messages

about the status of the local machine 10, such as when the local machine 10 connects

to a network or when the local machine 10 terminates a connection to a network. In

another example of this embodiment, the license specifies a pre-determined period of

time during which the local machine 10 has authorization to execute the application

program.

The local machine 10 establishes an application streaming session with the

remote machine 30’ and retrieves at least one of the application files in the plurality of

application files. During execution of the at least one application file, in embodiments

where the received license requires transmission of heartbeat messages, the local

machine 10 sends heartbeat messages to the session management server 562 to

maintain authorization to execute the at least one application file.

Example 7

In one embodiment, the local machine 10 receives an identification of a selected

method of execution of an application program and an identification of a remote

machine 30’ providing access to a plurality of application files comprising the application

program. The local machine 10 successfully completes a pre-launch analysis of the

local machine 10. The local machine 10 receives a license specifying a pre-determined

period of time during which the local machine 10 has authorization to execute the

application program.

The local machine 10 establishes an application streaming session with the

remote machine 30’ and retrieves at least one of the application files in the plurality of

application files. In one example of this embodiment, the local machine 10 retrieves a

subset of the plurality of application files, the subset comprising each file necessary to

execute the application program when the local machine 10 is not connected to a

network. The local machine 10 stores the subset in a cache on the local machine 10.

139

WO 2007/121241 PCT/US2007/066433

At a point in time within the pre-determined period of time, the local machine 10

is disconnected from a network and receives from a user of the local machine 10 a

request for access to the application program. In one example of this embodiment, the

local machine 10 is a device such as a laptop and the user of the local machine 10 is in

an environment prohibiting connections to networks, such as an airplane. Upon

receiving the request from the user, the local machine 10 may retrieve from the cache

an application file from the plurality of application files and execute the application

program.

Example 8

In another embodiment, the local machine 10 receives an identification of a

selected method of execution of an application program and an identification of a

remote machine 30’ providing access to a plurality of application files comprising the

application program. The local machine 10 may receive an identification of a first client

agent residing on the local machine 10 to execute to retrieve the plurality of application

files, such as an application streaming client.

In one example of this embodiment, the local machine 10 fails to successfully

complete a pre-launch analysis of itself. The local machine 10 may lack a characteristic

required for compatibility with a requirement of the application program, such as a

particular device driver or operating system. The local machine 10 may lack a

characteristic required for compliance with a security policy, for example, membership in

a particular Active Directory or authorization for access to a private network. The local

machine 10 may be a type of machine incompatible with a requirement of the

application program, such as a personal digital assistant attempting to access a

computationally intensive application program, or a public machine at a kiosk attempting

to execute a secure application hosted by a remote machine on a private network.

The local machine 10 makes a determination not to retrieve the plurality of

application files across the application streaming session, responsive to the

determination that the local machine 10 lacks the at least one characteristic required for

access to the application program. The local machine 10 executes a second client

agent residing on the local machine 10 instead of executing the identified first client

140

WO 2007/121241 PCT/US2007/066433

agent. In one example of this embodiment, the local machine 10 receives an

identification of the second client agent to execute in the event of failure to successfully

complete the pre-launch analysis. The local machine 10 requests execution of the

application program on a remote machine 30”. The second client agent receives

application-output data generated by the execution of the application program on the

remote machine 30”. The second client agent displays the application-output data on

the local machine 10.

Example 9

In one embodiment, an administrator of a network provides access to an

application program for users of local machines 10. The administrator executes an

application on a remote machine 30’ to generate a plurality of application files

comprising the application program. The application may include a graphical user

interface. The administrator may use the graphical user interface to identify the

application program and an installer program associated with the application program,

define policies to be applied in authorizing access to the application program, and

specify characteristics about the type of access provided, including requirements to be

satisfied by a local machine 10 attempting to access or execute the application

program. The administrator may identify an installer program installing an entire

application program, or a portion of an application program, such as an upgrade or

patch.

In one example of this embodiment, a remote machine 30 includes a packaging

mechanism 530. The packaging mechanism 530 executes the installer program within

an isolation environment 532 on the remote machine 30. Execution of the installer

program results in installation, into the isolation environment 532, of at least one

application file associated with the application program. The remote machine 30 may

include a file system filter driver 534, which ensures the installation of the application file

into the isolation environment 532 by intercepting a request by the installer program to

install the application file on the local machine 10, and redirecting the request to the

isolation environment 532. The packaging mechanism 530 may use the file system

141

WO 2007/121241 PCT/US2007/066433

filter driver 534 to maintain a record of each application file installed into the isolation

environment 532.

The installer program may install a plurality of application files into the isolation

environment 532. The packaging mechanism 530 generates a file including an

enumeration of application files in the plurality of application files. The file may include

information associated with the plurality of application files, such as the type of

application program the plurality of application files comprise, the version of the

application program, execution pre-requisites associated with the application program,

and policy requirements, such as a method of execution required for a particular

application program. The packaging mechanism 530 stores on a remote machine 30’

the plurality of application files and the file.

In one embodiment, the administrator of the network identifies an application

program comprising an updated version of an existing application program or

application file in a plurality of application files comprising an application program.

142

WO 2007/121241 PCT/US2007/066433

C. SYSTEMS AND METHODS FOR ACCELERATING CLIENT-SERVER

COMMUNICATIONS

An embodiment of the present invention is directed towards systems and

methods for accelerating client-server communications. These systems and methods

may be used alone or in concert, and may be used in conjunction with any of the

systems and methods for delivering a computing environment discussed above. In

particular, four general categories of acceleration techniques will be discussed.

1. Caching of Dynamically Generated Objects: In some embodiments, client-

server communications are accelerated by an appliance 1250 performing caching of

dynamically generated objects in a data communication network.

2. Connection Pooling: In some embodiments, client-server communications are

accelerated by an appliance 1250 performing connection pooling techniques.

3. Integrated Caching: In another embodiment, client-server communications

are accelerated by an appliance 1250 performing caching integrated with a plurality of

acceleration techniques.

4. Client-side Acceleration: In yet another embodiment, client-server

communications are accelerated by a program executing on a client 10 performing one

or more acceleration techniques.

1. Caching of Dynamically Generated Objects

As will be described in more detail herein, in one embodiment, an appliance 1250

may integrate caching functionality at the kernel level of the operating system with one

or more other processing tasks, including but not limited to decryption, decompression,

or authentication and/or authorization. Such an example architecture is described

herein in accordance with FIG. 27, but other architectures may be used in practicing the

operations described herein.

FIG. 27 illustrates an example architecture 3200 of an appliance 1250. As noted

above, architecture 3200 is provided by way of illustration only and is not intended to be

143

WO 2007/121241 PCT/US2007/066433

limiting. As shown in FIG. 2, example architecture 3200 consists of a hardware layer

3206 and a software layer divided into a user space 3202 and a kernel space 3204.

Hardware layer 3206 provides the hardware elements upon which programs and

services within kernel space 3204 and user space 3202 are executed. Hardware layer

3206 also provides the structures and elements which allow programs and services

within kernel space 3204 and user space 3202 to communicate data both internally and

externally with respect to appliance 1250. As shown in FIG. 27, the hardware layer

3206 includes a processing unit 3262 for executing software programs and services, a

memory 3264 for storing software and data, network ports 3266 for transmitting and

receiving data over a network, and an encryption processor 3260 for performing

functions related to Secure Sockets Layer processing of data transmitted and received

over the network. In some embodiments, the central processing unit 3262 may perform

the functions of the encryption processor 3260 in a single processor. Additionally, the

hardware layer 3206 may comprise multiple processors for each of the processing unit

3262 and the encryption processor 3260. Although the hardware layer 3206 of

appliance 1250 is generally illustrated with an encryption processor 3260, processor

3260 may be a processor for performing functions related to any encryption protocol,

such as the Secure Socket Layer (SSL) or Transport Layer Security (TLS) protocol. In

some embodiments, the processor 3260 may be a general purpose processor (GPP),

and in further embodiments, may be have executable instructions for performing

processing of any security related protocol.

Although the hardware layer 3206 of appliance 1250 is illustrated with certain

elements in FIG. 27, the hardware portions or components of appliance 1250 may

comprise any type and form of elements, hardware or software, of a computing device,

such as the computing device 135 illustrated and discussed in conjunction with FIGs.

1C and 1D herein. In some embodiments, the appliance 1250 may comprise a server,

gateway, router, switch, bridge or other type of computing or network device, and have

any hardware and/or software elements associated therewith.

The operating system of appliance 1250 allocates, manages, or otherwise

segregates the available system memory into kernel space 3204 and user space 3204.

144

WO 2007/121241 PCT/US2007/066433

In example software architecture 3200, the operating system may be any type and/or

form of Unix operating system. As such, the appliance 1250 can be running any

operating system such as any of the versions of the Microsoft® Windows operating

systems, the different releases of the Unix and Linux operating systems, any version of

the Mac OS® for Macintosh computers, any embedded operating system, any network

operating system, any real-time operating system, any open source operating system,

any proprietary operating system, any operating systems for mobile computing devices

or network devices, or any other operating system capable of running on the appliance

1250 and performing the operations described herein.

The kernel space 3204 is reserved for running the kernel 3230, including any

device drivers, kernel extensions or other kernel related software. As known to those

skilled in the art, the kernel 3230 is the core of the operating system, and provides

access, control, and management of resources and hardware-related elements of the

application 1250. In accordance with an embodiment, the kernel space 3204 also

includes a number of network services or processes working in conjunction with a cache

manager 3232. sometimes also referred to as the integrated cache, the benefits of

which are described in detail further herein. Additionally, the embodiment of the kernel

3230 will depend on the embodiment of the operating system installed, configured, or

otherwise used by the device 1250.

In one embodiment, the device 1250 comprises one network stack 3267, such as

a TCP/IP based stack, for communicating with the client 10 and/or the server 30. In one

embodiment, the network stack 3267 is used to communicate with a first network, such

as network 40, and a second network 40. In some embodiments, the device 1250

terminates a first transport layer connection, such as a TCP connection of a client 10,

and establishes a second transport layer connection to a server 30 for use by the client

10, e.g., the second transport layer connection is terminated at the appliance 1250 and

the server 30. The first and second transport layer connections may be established via

a single network stack 3267. In other embodiments, the device 1250 may comprise

multiple network stacks, for example 3267 and 3267’, and the first transport layer

connection may be established or terminated at one network stack 3267, and the

145

WO 2007/121241 PCT/US2007/066433

second transport layer connection on the second network stack 3267’. For example,

one network stack may be for receiving and transmitting network packet on a first

network, and another network stack for receiving and transmitting network packets on a

second network. In one embodiment, the network stack 3267 comprises a buffer 3243

for queuing one or more network packets for transmission by the appliance 1250.

As shown in FIG. 27, the kernel space 3204 includes the cache manager 3232, a

high-speed layer 2-7 integrated packet engine 3240, an encryption engine 3234, a

policy engine 3236 and multi-protocol compression logic 3238. Running these

components or processes 3232, 3240, 3234, 3236 and 3238 in kernel space 3204 or

kernel mode instead of the user space 3202 improves the performance of each of these

components, alone and in combination. Kernel operation means that these components

or processes 3232, 3240, 3234, 3236 and 3238 run in the core address space of the

operating system of the device 1250. For example, running the encryption engine 3234

in kernel mode improves encryption performance by moving encryption and decryption

operations to the kernel, thereby reducing the number of transitions between the

memory space or a kernel thread in kernel mode and the memory space or a thread in

user mode. For example, data obtained in kernel mode may not need to be passed or

copied to a process or thread running in user mode, such as from a kernel level data

structure to a user level data structure. In another aspect, the number of context

switches between kernel mode and user mode are also reduced. Additionally,

synchronization of and communications between any of the components or processes

3232, 3240, 3235, 3236 and 3238 can be performed more efficiently in the kernel space

3204.

In some embodiments, any portion of the components 3232, 3240, 3234, 3236

and 3238 may run or operate in the kernel space 3204, while other portions of these

components 3232, 3240, 3234, 3236 and 3238 may run or operate in user space 3202.

In one embodiment, a kernel-level data structure is used to provide access to any

portion of one or more network packets, for example, a network packet comprising a

request from a client 10 or a response from a server 30. In some embodiments, the

kernel-level data structure may be obtained by the packet engine 3240 via a transport

146

WO 2007/121241 PCT/US2007/066433

layer driver interface or filter to the network stack 3267. The kernel-level data structure

may comprise any interface and/or data accessible via the kernel space 3204 related to

the network stack 3267, network traffic or packets received or transmitted by the

network stack 3267. In other embodiments, the kernel-level data structure may be used

by any of the components or processes 3232, 3240, 3234, 3236 and 3238 to perform

the desired operation of the component or process. In one embodiment, a component

3232, 3240, 3234, 3236 and 3238 is running in kernel mode 3204 when using the

kernel-level data structure, while in another embodiment, the component 3232, 3240,

3234, 3236 and 3238 is running in user mode when using the kernel-level data

structure. In some embodiments, the kernel-level data structure may be copied or

passed to a second kernel-level data structure, or any desired user-level data structure.

The cache manager 3232 may comprise software, hardware or any combination

of software and hardware to provide cache access, control and management of any

type and form of content, such as objects or dynamically generated objects served by

the originating servers 30. The data, objects or content processed and stored by the

cache manager 3232 may comprise data in any format, such as a markup language, or

communicated via any protocol. In some embodiments, the cache manager 3232

duplicates original data stored elsewhere or data previously computed, generated or

transmitted, in which the original data may require longer access time to fetch, compute

or otherwise obtain relative to reading a cache memory element. Once the data is

stored in the cache memory element, future use can be made by accessing the cached

copy rather than refetching or recomputing the original data, thereby reducing the

access time. In some embodiments, the cache memory element nat comprise a data

object in memory 3264 of device 1250. In other embodiments, the cache memory

element may comprise memory having a faster access time than memory 3264. In

another embodiment, the cache memory element may comrpise any type and form of

storage element of the device 1250, such as a portion of a hard disk. In some

embodiments, the processing unit 3262 may provide cache memory for use by the

cache manager 3232. In yet further embodiments, the cache manager 3232 may use

147

WO 2007/121241 PCT/US2007/066433

any portion and combination of memory, storage, or the processing unit for caching

data, objects, and other content.

Furthermore, the cache manager 3232 includes any logic, functions, rules, or

operations to perform any embodiments of the techniques described herein. For

example, the cache manager 3232 includes logic or functionality to invalidate objects

based on the expiration of an invalidation time period or upon receipt of an invalidation

command from a client 10 or server 30. In some embodiments, the cache manager

3232 may operate as a program, service, process or task executing in the kernel space

3204, and in other embodiments, in the user space 3202. In one embodiment, a first

portion of the cache manager 3232 executes in the user space 3202 while a second

portion executes in the kernel space 3204. In some embodiments, the cache manager

3232 can comprise any type of general purpose processor (GPP), or any other type of

integrated circuit, such as a Field Programmable Gate Array (FPGA), Programmable

Logic Device (PLD), or Application Specific Integrated Circuit (ASIC).

The policy engine 3236 may include, for example, an intelligent statistical engine

or other programmable application(s). In one embodiment, the policy engine 3236

provides a configuration mechanism to allow a user to identifying, specify, define or

configure a caching policy. Policy engine 3236, in some embodiments, also has access

to memory to support data structures such as lookup tables or hash tables to enable

user-selected caching policy decisions. In other embodiments, the policy engine 3236

may comprise any logic, rules, functions or operations to determine and provide access,

control and management of objects, data or content being cached by the appliance

1250 in addition to access, control and management of security, network traffic, network

access, compression or any other function or operation performed by the appliance

1250. In some embodiments, the policy engine 3236 may be integrated with

functionality of the policy engine 406. In one embodiment, the policy engine 3236 may

determine caching policy decisions based on information provided by a collection agent

404. In some embodiments, the policy engine 3236 may determine caching policy

decisions based on a type of application execution. In one embodiment, the policy

engine may determine caching policy decisions based on whether an application is

148

WO 2007/121241 PCT/US2007/066433

being streamed to a client 10. Further examples of specific caching policies are further

described herein.

The encryption engine 3234 comprises any logic, business rules, functions or

operations for handling the processing of any security related protocol, such as SSL or

TLS, or any function related thereto. For example, the encryption engine 3234 encrypts

and decrypts network packets, or any portion thereof, communicated via the appliance

1250. The encryption engine 3234 may also setup or establish SSL or TLS connections

on behalf of the client 10, server 30, or appliance 1250. As such, the encryption engine

3234 provides offloading and acceleration of SSL processing. In one embodiment, the

encryption engine 3234 uses a tunneling protocol to provide a virtual private network

between a client 10 and a server 30. In some embodiments, the encryption engine

3234 is in communication with the Encryption processor 3260. In other embodiments,

the encryption engine 3234 comprises executable instructions running on the

Encryption processor 3260.

The multi-protocol compression engine 3238 comprises any logic, business

rules, function or operations for compressing one or more protocols of a network packet,

such as any of the protocols used by the network stack 3267 of the device 1250. In one

embodiment, multi-protocol compression engine 3238 compresses bi-directionally

between clients 10 and servers 30 any TCP/IP based protocol, including Messaging

Application Programming Interface (MAPI) (email), File Transfer Protocol (FTP),

HyperText Transfer Protocol (HTTP), Common Internet File System (CIFS) protocol (file

transfer), Independent Computing Architecture (ICA) protocol, Remote Desktop Protocol

(RDP), Wireless Application Protocol (WAP), Mobile IP protocol, and Voice Over IP

(VoIP) protocol. In other embodiments, multi-protocol compression engine 3238

provides compression of Hypertext Markup Language (HTML) based protocols and in

some embodiments, provides compression of any markup languages, such as the

Extensible Markup Language (XML). In one embodiment, the multi-protocol

compression engine 3238 provides compression of any high-performance protocol,

such as any protocol designed for appliance 1250 to appliance 1250 communications.

In another embodiment, the multi-protocol compression engine 3238 compresses any

149

WO 2007/121241 PCT/US2007/066433

payload of or any communication using a modified transport control protocol, such as

Transaction TCP (T/TCP), TCP with selection acknowledgements (TCP-SACK), TCP

with large windows (TCP-LW), a congestion prediction protocol such as the TCP-Vegas

protocol, and a TCP spoofing protocol.

As such, the multi-protocol compression engine 3238 accelerates performance

for users accessing applications via desktop clients, e.g., Microsoft Outlook and non­

Web thin clients, such as any client launched by popular enterprise applications like

Oracle, SAP and Siebel, and even mobile clients, such as the Pocket PC. In some

embodiments, the multi-protocol compression engine 3238 by executing in the kernel

mode 3204 and integrating with packet processing engine 3240 accessing the network

stack 3267 is able to compress any of the protocols carried by the TCP/IP protocol,

such as any application layer protocol.

High speed layer 2-7 integrated packet engine 3240, also generally referred to as

a packet processing engine or packet engine, is responsible for managing the kernel-

level processing of packets received and transmitted by appliance 1250 via network

ports 3266. The high speed layer 2-7 integrated packet engine 3240 may comprise a

buffer for queuing one or more network packets during processing, such as for receipt

of a network packet or transmission of a network packer. Additionally, the high speed

layer 2-7 integrated packet engine 3240 is in communication with one or more network

stacks 3267 to send and receive network packets via network ports 3266. The high

speed layer 2-7 integrated packet engine 3240 works in conjunction with encryption

engine 3234, cache manager 3232, policy engine 3236 and multi-protocol compression

logic 3238. In particular, encryption engine 3234 is configured to perform SSL

processing of packets, policy engine 3236 is configured to perform functions related to

traffic management such as request-level content switching and request-level cache

redirection, and multi-protocol compression logic 3238 is configured to perform

functions related to compression and decompression of data.

The high speed layer 2-7 integrated packet engine 240 includes a packet

processing timer 3242. In one embodiment, the packet processing timer 3242 provides

one or more time intervals to trigger the processing of incoming, i.e., received, or

150

WO 2007/121241 PCT/US2007/066433

outgoing, i.e., transmitted, network packets. In some embodiments, the high speed

layer 2-7 integrated packet engine 3240 processes network packets responsive to the

timer 3242. The packet processing timer 3242 provides any type and form of signal to

the packet engine 3240 to notify, trigger, or communicate a time related event, interval

or occurrence. In many embodiments, the packet processing timer 3242 operates in the

order of milliseconds, such as for example 100ms, 50ms or 25ms. For example, in

some embodiments, the packet processing timer 3242 provides time intervals or

otherwise causes a network packet to be processed by the high speed layer 2-7

integrated packet engine 3240 at a 10 ms time interval, while in other embodiments, at

a 5 ms time interval, and still yet in further embodiments, as short as a 3, 2, or 1 ms

time interval. The high speed layer 2-7 integrated packet engine 3240 may be

interfaced, integrated or in communication with the encryption engine 3234, cache

manager 3232, policy engine 3236 and multi-protocol compression engine 3238 during

operation. As such, any of the logic, functions, or operations of the encryption engine

3234, cache manager 3232, policy engine 3236 and multi-protocol compression logic

3238 may be performed responsive to the packet processing timer 3242 and/or the

packet engine 3240. Therefore, any of the logic, functions, or operations of the

encryption engine 3234, cache manager 3232, policy engine 3236 and multi-protocol

compression logic 3238 may be performed at the granularity of time intervals provided

via the packet processing timer 3242, for example, at a time interval of less than or

equal to 10ms. For example, in one embodiment, the cache manager 3232 may

perform invalidation of any cached objects responsive to the high speed layer 2-7

integrated packet engine 3240 and/or the packet processing timer 3242. In another

embodiment, the expiry or invalidation time of a cached object can be set to the same

order of granularity as the time interval of the packet processing timer 3242, such as at

every 10 ms

In contrast to kernel space 3204, user space 3202 is the memory area or portion

of the operating system used by user mode applications or programs otherwise running

in user mode. A user mode application may not access kernel space 3204 directly and

uses service calls in order to access kernel services. As shown in FIG. 27, user space

151

WO 2007/121241 PCT/US2007/066433

3202 of appliance 1250 includes a graphical user interface (GUI) 3210, a command line

interface (CLI) 3212, shell services 3214, health monitoring program 3216, and daemon

services 3218. GUI 210 and CLI 3212 provide a means by which a system

administrator or other user can interact with and control the operation of appliance

1250, such as via the operating system of the appliance 1250 and either is user space

3202 or kernel space 3204. The GUI 3210 may be any type and form of graphical user

interface and may be presented via text, graphical or otherwise, by any type of program

or application, such as a browser. The CLI 3212 may be any type and form of

command line or text-based interface, such as a command line provided by the

operating system. For example, the CLI 3212 may comprise a shell, which is a tool to

enable users to interact with the operating system. In some embodiments, the CLI 3212

may be provided via a bash, csh, tcsh, or ksh type shell. The shell services 3214

comprises the programs, services, tasks, processes or executable instructions to

support interaction with the appliance 1250 or operating system by a user via the GUI

3210 and/or CLI 3212.

Health monitoring program 3216 is used to monitor, check, report and ensure

that network systems are functioning properly and that users are receiving requested

content over a network. Health monitoring program 3216 comprises one or more

programs, services, tasks, processes or executable instructions to provide logic, rules,

functions or operations for monitoring any activity of the appliance 1250. In some

embodiments, the health monitoring program 3216 intercepts and inspects any network

traffic passed via the appliance 1250. In other embodiments, the health monitoring

program 3216 interfaces by any suitable means and/or mechanisms with one or more of

the following: the encryption engine 3234, cache manager 3232, policy engine 3236,

multi-protocol compression logic 3238, packet engine 3240, daemon services 3218, and

shell services 3214. As such, the health monitoring program 3216 may call any

application programming interface (API) to determine a state, status, or health of any

portion of the appliance 1250. For example, the health monitoring program 3216 may

ping or send a status inquiry on a periodic basis to check if a program, process, service

or task is active and currently running. In another example, the health monitoring

152

WO 2007/121241 PCT/US2007/066433

program 3216 may check any status, error or history logs provided by any program,

process, service or task to determine any condition, status or error with any portion of

the appliance 1250.

Daemon services 3218 are programs that run continuously or in the background

and handle periodic service requests received by appliance 1250. In some

embodiments, a daemon service may forward the requests to other programs or

processes, such as another daemon service 3218 as appropriate. As known to those

skilled in the art, a daemon service 3218 may run unattended to perform continuous or

periodic system wide functions, such as network control, or to perform any desired task

In some embodiments, one or more daemon services 3218 run in the user space 3202

while in other embodiments, one or more daemon services 3218 run in the kernel

space.

Dynamic content, such as one or more dynamically generated objects, may be

generated by servers, referred to as application or originating servers 30 and/or back­

end databases that process object requests from one or more clients 10, local or

remote, as depicted in FIG. 1 A. As those applications or databases process data,

including data related to inputs received from clients, the response objects served by

these databases and applications may change. Prior objects generated by those

applications or databases in an originating server will no longer be fresh and therefore

should no longer be stored by a cache. For example, given the same set of inputs a

dynamically generated object of a first instance may be different than a dynamically

generated object of a second instance. In another example, the same object may be

dynamically generated with a different set of inputs such that a first instance of the

object is generated differently from a second instance of the object.

In order to achieve improved network performance, the appliance 1250 is

designed and configured to addresses the problems that arise in caching dynamically

generated content through a variety of methods, as described in detail below. In some

embodiments described herein, the appliance 1250 incorporates a set of one or more

techniques for making the invalidation of dynamically generated content stored in the

cache more efficient and effective. Furthermore, the appliance may incorporate

153

WO 2007/121241 PCT/US2007/066433

techniques for performing control and caching for flash crowds. Cache memories

typically store every response to a request for an object as long as such response is not

marked as non-cacheable. As described herein, efficient caching of dynamically

generated contents requires techniques that enable the timely invalidation of objects in

the cache memory that have undergone a change at the originating server. Timely

invalidation allows the cache to avoid serving stale content-a task of particular concern

with dynamically generated content, especially where changes to the content occur

irregularly. Set forth below are a number of techniques to ensure timely invalidation of

dynamically generated content.

a. Integrated Functionality

In one aspect, caching of dynamically generated objects is related to techniques

of integrating functions, logic, or operations of the cache manager 3232, policy engine

3236, encryption engine 3234, and/or the multi-protocol compression engine 3238 with

packet processing operations of the high-speed layer 2-7 integrated packet engine 3240

responsive to the packet processing timer 3242. For example, the operations of the

cache manager 3232 can be performed within the time intervals of the packet

processing timer 3242 used for packet processing operations, such as on a receipt or

transmit of a network packet. In one embodiment, by integrating with the packet

processing operations and/or using the packet processing timer, the cache manager

3232 can cache objects with expiry times down to very small intervals of time, as will be

described in further detail below. In other embodiments, the cache manager 3232

responsive to the packet processing timer 3242 can also receive an invalidation

command to invalidate an object within a very short time period of caching the object.

The method 3300 depicted in FIG. 28A illustrates one embodiment of a

technique for requesting the cache manager 3232, policy engine 3236, encryption

engine 3234, and/or the multi-protocol compression engine 3238 to perform an

operation during processing or in association with the time intervals for processing a

network packet by the high-speed layer 2-7 integrated packet engine or packet

processing engine 3240. In brief overview, at step 3310 of method 3300, the device

1250 receives a network packet or is requested to transmit a network packet. At step
154

WO 2007/121241 PCT/US2007/066433

3315, the device 31250 requests the packet processing engine 3240 to process the

network packet responsive to the packet processing timer 3242. As part of, or

associated with, packet processing operations, at step 3320, the packet processing

engine 240 requests the cache manager 3232, policy engine 3236, encryption engine

234, and/or the multi-protocol compression engine 3238 to perform an operation on a

cached object. At step 3325, the cache manager 3232, policy engine 3236, encryption

engine 234, and/or the multi-protocol compression engine 3238 performs the requested

operation, which may include any one or combination of the techniques described

herein. In one embodiment, the cache manager 3232 determines invalidation of a

cached object, and marks the cached object invalid. In some embodiments, the cache

manager 3232 flushes the invalid object in response to a request by the packet

processing engine 3240. As the cache manager 3232 is performing these operations

responsive to the packet processing timer 3242, invalidation of objects can occur within

time periods in the order of milliseconds and with objects having an expiry in the order

of the time intervals provided by the packet processing timer 3242, such as 10 ms.

In further detail of method 3300, at step 3310, the appliance 1250 receives one

or more network packets, and/or transmits one or more network packets. In some

embodiments, the appliance 1250 requests to transmit one or more network packets

over the network 40 or network 40’. In another embodiment, the appliance 1250

receives a network packet on one port 3266 and transmits a network packet on the

same port 3266 or a different port 3266’. In some embodiments, the packet engine

3240 of the appliance 1250 transmits or requests to transmit one or more network

packets. In one embodiment, the appliance 1250 receives or transmits a packet on a

first network 40, while in another embodiment, the appliance 1250 receives or transmits

a packet on a second network 40’. In other embodiments, the appliance 1250 receives

and transmits packets on the same network 40. In some embodiments, the appliance

1250 receives and/or transmits networks packets to one or more clients 10. In other

embodiments, the appliance 1250 receives and/or transmits networks packets to one or

more servers 30.

155

WO 2007/121241 PCT/US2007/066433

At step 3315, the device 1250 may request or trigger packet processing

operations of the packet processing engine 3240 upon receipt of a network packet at

the network port 3266 of the device 1250 or upon request to transmit a network packet

from the device 1250, or upon any combination of receipt and/or transmit of one or more

network packets. In some embodiments, the packet processing operations of the

packet processing engine 3240 are triggered via a signal provided by a packet

processing timer 3242. In one embodiment, the packet processing timer 3242 may

provide interrupt-driven or event-driven timer functionality related to the receipt and/or

transmission of one or more network packets. In some embodiments, the packet

processing timer 3242 is driven by a rate of receipt and/or transmit of network packets

via the device 1250, or by the rate by which each packet or a batch of packets are

processed. As such, the packet processing timer 3242 may be triggered and reset after

each set of one or more packet processing operations. In another embodiment, the

packet processing timer 3242 provides time intervals, either equal or variable time

intervals, to trigger, wake-up, or signal the packet processing engine 3240 to perform a

function or operation, such as handling a received packet or transmitting a submitted

packet. As discussed above in connection with the device 1250 of FIG. 27, the packet

processing timer 3242 may operate in the order of milliseconds, such as causing time

intervals or triggering of packet processing operations at intervals of 10ms or less. The

granular timer functionality of the packet processing timer may be provided in various

ways and used in operations of the packet processing operations of the packet

processing engine 3240.

At step 3320 of method 3300, the packet processing engine 3240 requests one

or more of the cache manager 3232, policy engine 3236, encryption engine 3234,

and/or the multi-protocol compression engine 3238 to perform an operation. In one

embodiment, the packet processing engine 3240 or packet processing timer 3242

generates a signal or signals to one or more of the cache manager 3232, policy engine

3236, encryption engine 3234, and/or the multi-protocol compression engine 3238. The

packet processing engine 3240 may request or signal the operation at any point before,

during, or after a packet processing operation of a network packet, or one or more

156

WO 2007/121241 PCT/US2007/066433

packets. In one embodiment, the packet processing engine 240 makes the request

upon trigger of the packet processing timer 3242 or expiration of a time interval provided

by the packet processing timer 3242, and before performing a packet processing

operation on a network packet. In another embodiment, during the course of performing

one or more packet processing operations, the packet processing engine 3240 makes

the request. For example, during execution of an operation, such as within a function

call, the packet processing engine 240 may make an application programming interface

(API) call to one of the cache manager 3232, policy engine 3236, encryption engine

3234, and/or the multi-protocol compression engine 238. In other embodiments, the

packet processing engine 3240 makes the request upon completion of a network packet

processing operation.

At step 3325, the requested operation is performed by one or more of the cache

manager 3232, policy engine 3236, encryption engine 3234, and/or the multi-protocol

compression engine 3238. In some embodiments, any functionality or operation

provided via the kernel 3204 may be requested to be executed, such as via a kernel

application programming interface (API). As such, any of the functions of the device

1250 may be performed in conjunction with the timing or timing intervals of packet

processing via the packet processing timer 3232. In some embodiments, the requested

operation is performed synchronously and in conjunction with the packet processing

operations of the packet processing engine 3240. For example, the packet processing

operations wait and continue upon a completion of, or response from, the requested

operation. In other embodiments, the requested operation is performed asynchronously

with the packet processing operations. For example, the packet processing engine

3240 sends a request to perform the operation but does not block or wait to receive a

response from the operation. As will be discussed in further detail in conjunction with

method 3350 depicted in FIG. 28B, the packet processing engine 3240 may request the

cache manager 3232 to perform any cache management function, such as checking for

expiry or invalidation of objects, marking objects as invalid, or flushing invalid or expired

objects.

157

WO 2007/121241 PCT/US2007/066433

In some embodiments, the packet processing engine 3240 at step 3320 sends

multiple requests, such as a first request to the cache manager 232 and a second

request to the encryption engine 3234. In other embodiments, the packet processing

engine 3240, at step 3320, sends a single request comprising multiple requests to be

distributed by the device 1250, such as via the kernel 3230 to the intended component

of the device 1250. In one embodiment, the requests are communicated subsequent to

each other. In another embodiment, requests may be dependent on the status, result,

success, or completion of a previous request. For example a first request to the policy

engine 3236 may be used to determine a policy for processing a network packet from

another device or a user associated with the network packet. Based on a policy of the

policy engine 3236, a second request to the cache may be made or not made

depending on a result of the first request. With the cache manager 3232, policy engine

3236, encryption engine 3234, and/or the multi-protocol compression engine 3238

integrated in the kernel space 204 of the device 1250 with the packet processing engine

3240, there are various operations of the device 1250 as described herein that may be

triggered by and integrated with packet processing operations.

b. Invalidation Granularity

In another aspect, caching of dynamically generated objects is related to and

incorporates the ability to configure the expiration time of objects stored by the cache to

fine granular time intervals, such as the granularity of time intervals provided by the

packet processing timer. This characteristic is referred to as "invalidation granularity."

As such, in one embodiment, objects with expiry times down to very small intervals of

time can be cached. In other embodiments, the cache manager responsive to a packet

processing timer can also receive an invalidation command to invalidate an object within

a very short time period of caching the object. By providing this fine granularity in expiry

time, the cache can cache and serve objects that frequently change, sometimes even

many times within a second. One technique is to leverage the packet processing timer

used by the device in one embodiment that is able operate at time increments on the

order of milliseconds to permit invalidation or expiry granularity down to 10 ms or less.

158

WO 2007/121241 PCT/US2007/066433

Traditional caches, by contrast, typically do not set expiry or invalidation granularity of

less than one second.

Referring now to FIG. 28B, an embodiment of a method 3350 is depicted for

invalidating or expiring a cached object responsive to the packet processing timer 3242

and/or packet processing engine 3240. As such, in some embodiments, cached objects

can be invalidated or expired in the order of milliseconds, such as 10ms or less. In

overview, at step 3355 of method 3350, the cache manager 3232 receives a signal or

request to perform an operation via the packet processing engine 3240 in response to

the packet processing timer 3242. At step 3360, the cache manager 3232 determines if

a cached object, such as a dynamically generated object, is invalid or expired. At step

3365, if the object is invalid, the cache manager 3232 marks the object as invalid, and

at step 3370, flushes the invalid object from the cache manager 3232.

In further detail of step 3355, in some embodiments, the cache manager 3232

may be signaled or requested to perform a cache related operation at any point of time

during network packet processing. In one embodiment, at step 3355, the cache

manager 3232 receives an operation request prior to the processing of a network

packet received or to be transmitted by the device 1250. In another embodiment, the

cache manager 3232 receives an operation request upon the completion of processing

of a network packet. For example, the packet processing engine 3240 completes

processing of a network packet, and before either waiting for the next time interval of

the timer 3242 or before processing the next packet, requests the cache to perform an

operation. In other embodiments, during an operation of packet processing, the packet

processing engine 3240 communicates an operation request to the cache manager

3232. In another embodiment, the cache manager 3232 receives a signal, such as from

the packet processing engine 3240 or packet processing timer 3242 to trigger the cache

manager 3232 to perform an operation. In some embodiments, the signal indicates to

invalidate a cached object or to expire an expiry of a cached object.

In some embodiments, the cache manager 3232 may receive a request to

perform a cache operation from an entity external to the cache manager 3232, such as

a request to invalidate an object communicated by a server 30, and processed by the

159

WO 2007/121241 PCT/US2007/066433

packet processing engine 3240. In one embodiment, the cache manager 3232 may

receive an invalidation request within 10 ms or less of caching the object, while in

another embodiment, as short as 5ms, 2ms or 1 ms. In other embodiments, the cache

manager 3232 may perform a cache operation responsive to the operations or

functionality of the cache manager 3232, such as the expiration of a timer to cause an

object to be invalidated or during the processing of any cache command. In other

embodiments, the cache manager 3232 uses the packet processing timer 3242 of the

device 1250 to trigger cache operations. For example, the timer 2342 may trigger or

signal the cache to check for invalidation or expiry of a cached object at any time

interval capable of being set by the timer 3242. In one embodiment, the timer 3242 may

be set to trigger or signal the cache within 10ms or less of being set, or in another

embodiment, as short as 5ms, 2ms, or 1 ms of being set. In some embodiments, the

originating server 30 may set the expiry time of the object. In other embodiments, the

appliance 1250 or client 10 may set the expiry time of the object.

At step 3360, the cache manager 3232 determines the invalidation or expiry of

an object stored in cache. In some embodiments, an object in cache is invalidated

based on the expiration of a timer. In one embodiment, the cache manager 3232 may

issue an invalidation command on an object based on the expiration of a timer. In

another embodiment, the object stored in cache is automatically invalidated by the

cache manager 3232 responsive to the expiration of a timer, such as a timer set with

the packet processing timer 3242. In some embodiments, responsive to the packet

processing timer 3242, the cache manager 3232 checks for the expiration of any timers

for cached objects. In one embodiment, the cache manager 3232 determines an object

timer has expired, while in another embodiment, the cache manager 3232 determines

the object timer has not expired. In a further embodiment, the cache manager 3232

responsive to a second trigger or second timer interval of the packer processing timer

3242 will check a second time if a previously checked object timer has expired.

In some embodiments, the cache manager 3232 parses, interprets, accesses,

reads or otherwise processes an invalidation command or request to identify the object

to invalidate in the cache. In one embodiment, an entity external to the cache manager

160

WO 2007/121241 PCT/US2007/066433

3232 issues an invalidation command to the cache manager 3232 to invalidate the

object. In another embodiment, the external entity may issue the invalidation command

responsive to a packet processing timer 3242. If the object is valid and/or has not been

invalidated, the cache manager 3232 invalidates the object responsive to the request.

In some embodiments, the invalidation request processed by the cache manager 3232

is responsive to the packet processing operations of the packet processing engine 3240

processing the request, which in turn may also be responsive to the packet processing

timer 3242.

At step 3365, the cache manager 3232 marks the object as invalid. The cache

manager 3232 may mark each object as invalid in any suitable or desired manner. In

one embodiment, an object is marked as invalid by setting a flag, attribute, or property

of the stored object. For example, a flag may be set to any value identifying to the

cache manager 3232 the object is invalid. In another embodiment, an object may be

marked as invalid by moving the object to an area or portion of the cache for storing

invalid objects. In other embodiments, the cache manager 3232 may identify or track

the invalid and/or valid state of a stored object by a database or a linked list or any type

and form of data structure. In some embodiments, the cache manager 3232 uses one

or more objects to identify or track the validity or invalidity of one or more objects stored

in cache. In another embodiment, the object is marked as invalid by changing,

modifying or altering the stored object, for example deleting or removing a portion of the

object so that is may not be used, or by changing or mangling the name of the object.

At step 3370, the cache manager 3232, in some embodiments, flushes from the

cache those objects marked as invalid. In another embodiment, the cache manager

3232 flushes the invalid object from cache upon request for the object, such as by a

client 10. In some embodiments, the cache manager 3232 overwrites the invalid object

with an updated copy or version of the object received after invalidation or expiration of

the object. In another embodiment, the cache manager 3232 reuses the cache memory

occupied by the invalid object by storing another to the same portion of cache memory.

In yet another embodiment, the cache manager 3232 does not flush the object marked

as invalid but keeps the object stored in memory or storage of the cache.,

161

WO 2007/121241 PCT/US2007/066433

Although method 3350 describes invalidation and flushing of cached objects

responsive to a packet processing timer and/or in conjunction with packet processing

operations to provide invalidation granularity, any operation of the cache and any

techniques of cache management as well as any other operation of the device 1250

described herein may be executed at fine granular time intervals provided by the packet

processing timer. In some embodiments, the invalidation or expiration of cached objects

can occur as short as a 100ms time interval, while in another embodiment, as short as a

50ms time interval. In some embodiments, the invalidation or expiration of cached

objects can occur as short as 25 ms time interval, and in other embodiments, as short

as a 10 ms time interval. While in other embodiments, the invalidation or expiration of

cached objects can occur as short as a 5 ms time interval, and still yet in further

embodiments, as short as a 3, 2, or 1 ms time interval.

By incorporating the capacity to invalidate objects after the elapse of very small

increments of time as described in methods 3300 and 3350 in conjunction with FIGs.

28A and 28B above, improved caching of dynamically generated content is enabled.

Some dynamic content is in fact amenable to being stored and served from a cache for

very short periods of time. To successfully cache such content, however, an approach

in accordance with one embodiment provides caching objects for very short periods of

time before the object is invalidated and flushed from the cache memory. For example,

certain dynamically generated objects may be cacheable for as long as 1 second but

anything longer is frequently unacceptable for content that is constantly changing. In an

embodiment, the approach included invalidating or expiring cached content after small

fractions of a second. As an example, if an application takes 100 milliseconds to

generate a dynamic response, then the cache can store and serve that response for a

duration of less than or equal to the period of 100 milliseconds, without compromising

the freshness of the data. There will not be a new object generated during that 100

millisecond period because it is shorter than the time it takes to generate a new object.

The appliance 1250 can thus be set up to serve the prior object during that duration.

The ability of the appliance 1250 to invalidate down to very small increments of time is

162

WO 2007/121241 PCT/US2007/066433

frequently very useful for application environments where the database transaction

isolation level is set to allow Repeatable Reads or Serialized Reads.

c. Invalidation Commands

Traditional caching technology invalidates stored content based on a pre-defined

expiry time for the content, which is typically configured either by the administrator or is

received from the server that served the object. Described below is another technique

for invalidating content in order to more efficiently cache dynamically generated content.

A technique includes the ability to receive at the appliance 1250 an invalidation

command that identifies one or more of the previously stored objects in the cache as

invalid in real time. For example, the invalidation command may be communicated via

a network packet transmitted to the client or an application programming interface (API)

call made by a server to the appliance. This differs from the traditional approach by

which the server simply sets a cache expiry time that it includes in the object header at

the time the object is served.

A technique is more specifically illustrated in FIGs. 29A and 29B. FIG. 29A is a

flow chart illustrating a method for maintaining a cache, such as a computer memory

cache. In brief overview and according to step 3410, dynamically generated objects

previously served from an originating server 30 are stored in the cache. For example,

the dynamically generated object may not be identified as cacheable or otherwise

include any cache or cache control information. At step 3420, an invalidation command

is received at the cache or cache manager 3232. The invalidation command identifies

one or more previously served objects as invalid. As step 3430, in response to the

invalidation command, the cache or cache manager 3232 marks the identified object as

invalid.

In further detail at step 3410, the cache manager 3232 stores in a cache memory

element a dynamically generated object received, obtained or communicate from any

source. In some embodiments, the dynamically generated object may be generated

and served from a server 30. In other embodiments, the dynamically generated object

may be generated and communicated by a client 10. In some embodiments, another

portion, component or process of the appliance 1250 generates the object and stores
163

WO 2007/121241 PCT/US2007/066433

the object in the cache. In further embodiments, the dynamically generated object may

be generated by another appliance 1250 or another computing device on the network

and transmitted or communicated to the appliance 1250. In some embodiments, the

dynamically generated object is not identified as cacheable or identified as non­

cacheable. In other embodiments, the dynamically generated object is identified as

cacheable or is under cache control.

At step 3420, the cache manager 3232 receives an invalidation command

identifying an object to invalidate, such a dynamically generated object stored in the

cache. In one embodiment, the invalidation command may comprise any type of

directive or instruction indicating to the cache that an object in invalid or otherwise may

be stale. In some embodiments, the invalidation command identifies the object and

may also identify the time at which the object is invalid as well as what portions of the

object may be invalid. In one embodiment, the cache manager 3232 provides an

application programming interface (API) that may be called remotely by an originating

server 30. In some embodiments, the cache manager 3232 may provide any type and

form of protocol for receiving commands and replying to commands via one or more

network packets. In one embodiment, the cache manager 3232 or device 1250

provides an Extensible Markup Language (XML) API interface for receiving and

processing invalidation commands. For example, the cache manager 3232 may

provide a web service interface. In some embodiments, the cache manager 3232

replies to the invalidation command by sending an acknowledgement, status or other

response to the originating server 30. In other embodiments, the cache manager 3232

does not reply to the invalidation command. In one embodiment, an object is marked as

invalid if an application running in an originating server 30 performed an action that

made the stored object stale, such as by generated a new or updated version of the

object. This could occur, for example, when news editors make changes to a fast

developing news story and therefore want to be assured the most recent version of the

story is being served to clients.

Invalidation commands may be issued from an originating server by the

application that generated the object, by another server 30 or another appliance 1250.

164

WO 2007/121241 PCT/US2007/066433

In one embodiment, the originating server 30 issues or communicates an invalidation

command to the cache 3232 automatically in response to a change to the dynamically

generated object on the originating server 30. The invalidation command can also be

generated by an administrative control outside or external to the server 30 and the

appliance 1250. For example, the administrative control may be any type and form of

program or application running on the network and in communication with the appliance

1250, such as administrator console. Furthermore, a client 10 could issue or

communicate an invalidation command to the appliance 1250 or cache manager 3232.

For example if the client were to take action that the client 10 recognizes would cause a

change to the requested objects at the originating server, the client may communicate

the invalidation command. Any object stored in the cache can be invalidated by the

transmission to the cache of a user command executed locally at the cache or invoked

remotely using the XML API infrastructure.

According to step 3430, an object stored in cache, e.g., a previously served

dynamically generated object, that has been identified as invalid is marked as such in

response to the invalidation command. An invalid object will not be provided to a

requesting client from the cache, but instead would be served directly from the

originating server. The cache manager 3232 may mark each object as invalid in any

suitable or desired manner. In one embodiment, an object is marked as invalid by

setting a flag, attribute, or property of the stored object. For example, a flag may be set

to any value identifying to the cache manager 3232 the object is invalid. In another

embodiment, an object may be marked as invalid by moving the object to an area or

portion of the cache for storing invalid objects. In other embodiments, the cache

manager 3232 may identify or track the invalid and/or valid state of a stored object by a

database or a linked list or any type and form of data structure. In some embodiments,

the cache manager 3232 uses one or more objects to identify or track the validity or

invalidity of one or more objects stored in cache. In another embodiment, the object is

marked as invalid by changing, modifying or altering the stored object, for example

deleting or removing a portion of the object so that is may not be used, or by changing

or mangling the name of the object.

165

WO 2007/121241 PCT/US2007/066433

In some embodiments, the appliance 1250 subsequently flushes from the cache

those objects marked as invalid. In another embodiment, the appliance 1250 flushes

the invalid object from cache upon request for the object, such as by a client 10. In

some embodiments, the appliance 1250 overwrites the invalid object with an updated

copy or version of the object. In another embodiment, the appliance 1250 reuses the

cache memory occupied by the invalid object by storing another dynamically generated

object to the same portion of cache memory.

With the command invalidation API of the cache manager 3232, any computing

device or user in communication with the appliance 1250 may request to invalidate an

object, such as a dynamically generated object, stored in the cache. As such, the

invalidation of objects stored in cache can be controlled real-time instead of using pre­

determined configuration expiry or invalidation time periods. Thus, using these

techniques the longevity of the cached objects can be controlled from external

application processing nodes such as databases or originating application servers. For

example, the appliance 1250 can be configured to work with a database such that a

change to the database automatically triggers an invalidation command from the

database (or application) to the appliance 1250 to flush a particular object or objects.

d. Invalidation of Groups Using Invalidation Command

In a further embodiment, the appliance 1250 identifies and invalidates at the

same time a group of objects stored by the cache. Objects stored in a traditional cache

memory are each treated individually and separately by the cache in determining

whether the object is stale. As each object reaches its specified expiry time (generally

as set by the server and stored by the cache in a table) that item is flushed from cache

memory. This traditional approach is inefficient and ultimately insufficient, however, to

successfully handle the challenges that arise in attempting to cache dynamically

generated content.

FIG. 29B illustrates another embodiment of a method for maintaining a cache,

such as a computer memory cache, wherein the appliance 1250 has the ability to

create, store, and invalidate groups of related objects that have been previously served

from an originating server 30. In brief overview, at step 3410, an object, such as a
166

WO 2007/121241 PCT/US2007/066433

dynamically generated object served from an originating server 30 is stored in the

cache. At step 3412, the cache manager 3232 forms a group of previously served

objects stored in the cache. In one embodiment, the group may be associated with or

identified by one or more object determinants as will be described in further detail

below. At step 3414, the cache manager 3232 maintains a record of the group of

objects. At step 3422, the cache manager 3232 receives an invalidation command to

invalidate the group of objects. At step 3432, the cache manager 3232 marks the group

of objects as invalid in response to the invalidation command.

Step 3410 is the same as in FIG. 29A, wherein an object is stored in the cache of

the appliance 1250, such as dynamically generated objects previously served from an

originating server 30. In some embodiments, one or more of the objects may not be

identified as cacheable, or otherwise may not have any cache or cache control

information. For example, the server 30 may assume the dynamically generated

objects will not be cached.

According to step 3412, the appliance 1250 forms a group out of a set of the

objects previously served from the originating server 30 and stored in the cache. Any

suitable or desired set of objects may be associated with each other to form a group.

For example, any dynamically generated objects generated for, or associated with,

serving a web page may form a group. In some embodiments, an object may be

associated with multiple groups. In other embodiments, one group of objects may form

a subset of another groups of objects. In some embodiments, the formed group of

objects have objects served from the same server 30, while in other embodiments, the

formed group of objects have objects served from different servers 30. In further

embodiments, the formed group of objects may comprise objects from a client 10,

objects from a server 30, or objects generated by or served from both clients 10 and

servers 30. In one embodiment, one object in the group is static while another object in

the group is dynamically generated. In some cases, one object in the group is not

identified as cacheable while another object in the group is identified as cacheable. In

other cases, the objects in the group may be logically related in accordance with

167

WO 2007/121241 PCT/US2007/066433

functionality or application provided by a server 30. In another case, the objects in the

group may be related as associated with the same client 10 or the same user.

In step 3414, a record of the group of objects is maintained. Various techniques

for recording and maintaining a record of a group of objects, or otherwise associating

objects, may be used in practicing some embodiments of the operations described

herein. In one embodiment, the record may be maintained directly in, for example, a

look-up table. In another embodiments, the records could be represented in a hash-

table format. In some embodiments, the cache manager 3232 maintains the

association of objects in a database, or a data structure or object in memory. In further

embodiments, a flag, property or attribute of each object in the group is assigned or set

to a value identifying the group, such as a value equal to, identifying, or referencing the

name or identifier of the group, such as a group’s object determinant that will be

described in more detail below. In some embodiments, a group of objects is arranged,

placed or located in a portion of cache memory identified as holding the group

In step 3422, an invalidation command is received at the appliance 1250 or

cache manager 3232. According to the embodiment described in FIG. 29B, the

invalidation command identifies that one or more objects are invalid, or otherwise are

stale. In some embodiments, the invalidation command references, identifies or

specifies a name or identifier of the group of objects. In one embodiment, the

invalidation command comprises a single invalidation request to invalidate all the

objects in the group. In another embodiment, the invalidation command identifies one

object in the group to invalidate. In other embodiments, the invalidation command

comprises a plurality of invalidation request to invalidate a plurality of objects in the

group

According to step 3432, the group of previously served objects is marked as

invalid if the invalidation command references, identifies, or specifies an object of the

group as invalid, each object in the group as invalid, or the group as invalid. In some

embodiments, if the invalidation command identifies an object in the group as invalid,

the cache manager 3232 marks the object as invalid. In other embodiments, if the

invalidation command identifies an object in the group as invalid, the cache manager

168

WO 2007/121241 PCT/US2007/066433

3232 marks the group of objects as invalid or each object in the group as invalid. In yet

further embodiments, the cache manager 3232 may only invalidate the group of objects

when a plurality of objects are identified as invalid via one or more invalidation

commands. In another embodiment, the invalidation command may specify a name or

identifier of the group, and the cache manager 3232 marks the group as invalid, or each

object in the group as invalid.

In one embodiment, the appliance 1250 or cache manager 3232 flushes from the

cache memory a group of objects that has been marked as invalid. In some

embodiments, the objects in the group may be flushed from cache memory only when

each object in the group is marked as invalid. In other embodiments, if one object of the

group has been marked as invalid then the entire group is flushed. In another

embodiment, the group of objects, or any object in the group, marked as invalid may be

flushed upon receipt of a request for the group of objects, or any object in group, by a

client 10. In other embodiments, the group of objects, or any object in the group,

marked as invalid may be flushed upon receipt of a response from a server 30 provide

one or more new objects in the group.

An example of the above described embodiments follows. Customer resource

management ("CRM") applications are used by many businesses to track and evaluate

all aspects of resource management. Often, CRM applications are implemented and

accessed over private and public networks including the Internet. These applications,

which provide access to large amounts of data that is frequently being accessed, thus

benefit from caching the data generated by such applications. For example, sales

reports are frequently generated and served to remotely connected users. These sales

reports are built by the relevant application through compiling data from sales

information that is posted to such application servers and/or their underlying databases.

As many users request the same document (i.e., a certain sales report), without

caching, the application server must re-generate the object for each request. If,

however, such objects can be stored in the cache, then application and database

processing is conserved, including potentially valuable bandwidth, as the cache is

placed closer to the requesting clients.

169

WO 2007/121241 PCT/US2007/066433

The challenge for caching such objects arises because each time a new sale is

posted to the application running at the originating server (or to its underlying database),

the information in the sales report needs to be updated. As a result, all sales reports

that may have been stored in any caches supporting these application servers must be

invalidated and the content flushed out of cache memory. The traditional approach to

caching, however, has no way of accurately determining when the change to the

underlying database or application is going to occur and therefore cannot reasonably

evaluate the freshness of dynamic content. Every time a change occurs in database or

application or originating server, the cache has to be able to identify that the change has

been made, and which group of objects should be invalidated as a consequence of

such change. Generation of invalidation commands that contain object determinants

linked to groups of previously served objects, as described above, can meet this need.

Multiple groups of related objects may be formed at a single hierarchical level.

Alternatively, sub-groups of objects may be formed to create multiple hierarchical levels.

In an embodiment, the groups or sub-groups of objects may be pre-designated by a

user. In another embodiment, a user may establish rules by which the appliance 1250

automatically forms groups of related objects, and associates object determinants

therewith.

e. Identification of Object Determinants in a Client Request or Response

An embodiment also addresses the need to be able to identify all objects affected

by a state change at the originating application server 30 (and/or underlying database)

by generating groupings of objects and implementing parameterized invalidation. In this

embodiment, any object or pre-defined group of objects can be invalidated by an

intercepted HTTP request, for example from a client, that the cache parses in order to

identify an object determinant. The term "object determinant" refers to any information,

data, data structure, parameter, value, data pattern, request, reply, or command that

references, identifies or specifies one object or a set of objects, uniquely or otherwise.

In some embodiments, an object determination is a pattern of bytes or characters in a

communication that may be associated with an object or used to uniquely identify that

the communication is associated with, or referencing, the object. In one embodiment,
170

WO 2007/121241 PCT/US2007/066433

an object determinant indicates whether change has occurred or will occur, in the

originating server, to a group of previously served objects stored in the cache manager

3232 with which the object determinant is associated. In some embodiments, the

objects in a group of objects are related in that they are associated with at least one

object determinant. Specific, non-limiting examples of object determinants and further

illustrations of their use are described more fully below.

In some embodiments of the present embodiment, object determinants are

certain pre-defined parameters or data structures included or embedded in a client

request or response. In other embodiments, the client 10, server 30 or appliance 1250

embeds in a communication one or more object determinants, such as pre-defined

strings or sets of characters representing the object determinant. The object

determinants indicate whether such request will have the effect of causing a change in

the state of objects stored in the originating server 30 or databases linked thereto. In

one embodiment, the existence of the object determinant in a request indicates a

change has or will occur to an object. In another embodiment, the syntax, structure,

parameter, or value of the object determinant indicates a change has or will occur to an

object. In an embodiment, the cache receives an object request from a client 10. The

request may include certain parameters or values (object determinants) that the cache

recognizes will change the state of the originating server or application server which will

as a consequence, make stale certain related objects stored by the cache manager

3232 that had been previously generated by such originating server or application

server 30. Depending on the invalidation policy set by the user, the parameters (object

determinants) may require invalidation of one or more previously served objects or

group of objects, by the originating server, that have been stored by the cache. The

cache is configured to identify the relevant objects that will be effected by this state

change (i.e., those objects or groups of objects linked to the object determinant), and

invalidate these objects via the method marking each of the objects as invalid and/or

flushing such objects from the cache memory.

The above described technique is illustrated in FIG. 29C. As with other

embodiments described herein, step 3410 comprises storing, in the cache, objects,

171

WO 2007/121241 PCT/US2007/066433

such as dynamically generated objects previously served from an originating server.

The objects could be generated by an application running on the originating server 30,

or could be drawn, for example, from a database accessed by the originating server 30.

In some embodiments, the dynamically generated objects are identified as not

cacheable or otherwise not identified as cacheable.

According to step 3421, the cache intercepts or otherwise receives a

communication between the client and the server, such as a request from a client or a

response from a server. In some embodiments, the request is for a specified object, the

object having been previously served and stored in the cache. In another embodiment,

the communication includes a response from a server having a requested object. In one

embodiment, such receipt or interception occurs according to established caching

protocol and communications standards. Although the cache manager 3232 or

appliance 1250 may be generally described as receiving a request, response or

communication, in receiving such request, response or communication, the cache 3232

or appliance 1250 may intercept or obtain by any suitable means and/or mechanisms

the request, response or communication even though not communicated directly or

explicitly to the cache.

In step 3423, an object determinant is identified in the intercepted

communication. The cache manager 3232 may extract, interpret, parse, access, read,

or otherwise process the intercepted communication to determine or identify one or

more objects determinants in the communications. Any parameter, value, syntax, data,

structure or set of one or more characters of the communication may be used to identify

an object determinant. In one embodiment, the cache manager 3232 may identify the

name or identifier of an object in a request from the client 10 to the server 30, in which

the client requests the object. In another embodiment, the cache manager 3232 may

identify the name or identifier of a first object in the request of the client 10 or response

from the server 30 that indicates a change has occurred or will occur to a second object

stored in the cache. In other embodiments, the cache manager 3232 determines if any

patterns of characters in the request match any object determinants associated with an

object or group of objects in the cache. In some embodiments, an object determinant

172

WO 2007/121241 PCT/US2007/066433

may be determined for an object not currently stored in cache. In other embodiments,

an object determinant may be determined for an object currently marked as invalid. In

other embodiments, an object determinant for a requested object is determined to be

associated with an object determinant of a cached object. In yet another embodiment,

upon the first reference, request, or response for an object in a communication, the

cache manager 3232 establishes the identified object determinant as the object

determinant for the object.

By receiving and parsing the communication, such as a client request or server

response, to identify an object determinant, the cache manager 3232 or appliance 1250

may effectively determine whether to mark as invalid a cached object that has been

associated with the identified object determinant. Thus, according to step 3425, a

determination is made as to whether the object determinant indicates a change to the

cached object. In some embodiments, the identified object determinant may be part of

a communication that does not alter, modify or generate an object. In other

embodiments, the identified object determinant is a part of a communication that

indicates a change has occurred or will occur to the object associated with the object

determinant. For example, the communication may be a get request for a dynamically

generated object or a submit request that will change the data used for one or more

dynamically generated objects. In some embodiments, the existence of the object

determinant in the communication indicates a change has or will occur on one or more

objects. In another embodiment, the type or name of a command, directive or

instruction in the communication along with the object determinant indicates a change

has or will occur on one or more objects. In yet a further embodiment, the existence,

value or setting of a parameter or variable of a command, directive or instruction

indicates a change has or will occur on one or more objects associated with an object

determinant.

In other embodiments, the cache manager 3232 performs a hash function,

algorithm, or operation on the intercepted communication or object determinant to

determine if a change has occurred in the object. In some embodiments, the hash

value is compared with a previous stored hash value for the object and if different then

173

WO 2007/121241 PCT/US2007/066433

the cache manager 3232 recognizes the object has changed. In yet another

embodiment, a hash value for the object may be included in the communication or

object determinant. In one embodiment, the communication indicates the object has

changed by the value or setting of a parameter, such as with a Boolean flag. In other

embodiments, an entity tag control and validation mechanism as will be described in

more detail below may be used to identify the object and determine if the object has

changed.

If a change is indicated, then at step 3431, then the object associated with or

identified by the object determinant is marked as invalid. In some embodiments, an

object requested by the intercepted communication is marked as invalid in accordance

with step 3431, and retrieved from the originating server 30 in accordance with step

3440. Otherwise, in other embodiments, the requested object is retrieved from the

cache in accordance with step 3450. In one embodiment, any object marked as invalid

will be flushed from the cache.

f. Invalidation of Groups of Objects Based on Object Determinants

The above embodiment describes the case of invalidating a previously served

object in the cache manager 3232 based on identification of an object determinant in

the client request. This general concept may also be used, in another embodiment, to

identify and invalidate a group of objects with which one or more object determinants

have been associated. This embodiment is illustrated in FIG. 29D.

The method described in FIG. 29D begins in the same fashion as the method of

FIG. 29C. Step 3410 comprises storing, in the cache, objects, such as dynamically

generated objects previously served from an originating server. In some embodiments,

one or more of the objects are not identified as cacheable. According to step 3412 and

similar to FIG. 29B, previously served objects are formed into groups. In one

embodiment and in accordance with the object determinant technique, a group of

objects is associated with or identified by at least one object determinant. As described

more fully below, in some embodiments, the association of groups with object

determinants depends on the nature and details of the users caching policy, such as a

policy defined, controlled or used by the policy engine 3236. In other embodiment, the
174

WO 2007/121241 PCT/US2007/066433

one or more object determinant of the group comprises the one or more object

determinants of the objects in the group. In another embodiment, the object

determinant of the group comprises a combination of object determinants of objects in

the group.

According to step 3414, a record is maintained of the group, along with its

associated object determinants, if applicable. This step is similar to step 3414,

illustrated in FIG. 29B. In one embodiment, the record and/or any object determinants

of the group is maintained in a look-up table. In other embodiments, the record and/or

any object determinants of the group may be maintained in a hash-table format. The

hash-table may be designed to efficiently store non-contiguous keys that may have wide

gaps in their alphabetic and numeric sequences. In another embodiment, an indexing

system can be built on top of a hash-table. In some embodiments, the cache manager

232 maintains the association of objects as a group with one or more object

determinants in a database, or a data structure or object in memory. In further

embodiments, a flag, property or attribute of each object in the group is assigned or set

to a value identifying the group, such as a value equal to, identifying, or referencing the

name or identifier of the group, or a group’s object determinant. In some embodiments,

a group of objects is arranged, placed or located in a portion of cache memory identified

as holding the group. In another embodiment, the one or more object determinants are

stored in association with the group of objects.

Steps 3421 and 3423 are similar to steps 3421 and 3423 as illustrated in FIG.

29C. According to step 3421, the cache manager 3232 or appliance 1250 intercepts or

otherwise receives a communication between the client 10 and server 30, such as a

request from a client for an object previously served and stored in the cache. In one

embodiment, the cache manager 3232 intercepts a request from the client 10 to the

server 30. In some embodiments, the request is for an object stored in cache. In other

embodiments, the request is an instruction, command or directive to the server 30 that

will cause a change to an object stored in cache, such as to cause an object to be

dynamically generated. In another embodiment, the cache manager 3232 intercepts a

175

WO 2007/121241 PCT/US2007/066433

response from a server 30 to the client 10 comprising or identifying an object stored in

cache.

In step 3423, an object determinant is identified in the intercepted

communication. As noted above, the object determinant indicates whether a change

has occurred or will occur in the requested object, at the originating server 30.

However, in the embodiment of FIG. 29D, the object determinant may be associated

with a group of objects. This enables efficient invalidation of all objects stored in the

cache that may be affected by a particular object determinant. In some embodiments,

an object determinant of an object in the group is identified. In other embodiments, an

object determinant, for example, a group object determinant, for the group of objects is

identified. In another embodiment, a combination of object determinants of one or more

objects in the group are identified.

Thus, according to step 3427, a determination is made as to whether the object

determinant indicates a change in the group of previously served objects. In some

embodiments, the existence of the object determinant of the group in the intercepted

communication indicates a change has occurred or will occur to one or more, or all of

the objects in the group. In other embodiments, the name and type of a command,

directive or instruction in the intercepted communication indicates such changes. In yet

another embodiment, the existence, value or setting of any parameters or variables in

the communication may also indicate such changes.

If at step 3427, the object determinant indicates a change in the group, then the

group of previously served objects is marked as invalid in the cache in accordance with

step 3435. In some embodiments, one or more, or all of the objects of the group are

requested and retrieved from the originating server 30 in accordance with step 3440. If

at step 3427, the object determinant does not indicate a change in the group, then in

some embodiments, any objects requested as part of intercepted communication and

previously served and stored in the cache is retrieved from the cache manager 3232 in

accordance with step 3450. In an embodiment, any object or group of objects marked

as invalid may be flushed by the cache manager 3232 from the cache.

176

WO 2007/121241 PCT/US2007/066433

g. Designation of Groups

The cache administrator may specifically designate which objects get included

into a particular group. Whenever an object is stored in the cache, the administrator

may make that object a member of one of the configured or implicit groups depending

on the configuration. The configured groups can be based on configurations that an

administrator has previously established or alternatively based on application behavior

and other data related to object invalidation. An object may also be part of an implicit

group if its configured group is dynamic. Objects in the implicit group are grouped by

the value of the significant invalidation parameters.

By permitting very flexible grouping of objects, a cache can achieve a level of

flexibility and coordination in invalidation that is necessary to effectively cache

dynamically generated content. The cache can invalidate a very specific group of

objects simultaneously, thereby making the cache more responsive to the frequent need

to invalidate dynamically generated content. At the time the cache assigns an object to

a group, the group determines a number of things relative to that object, including the

invalidation parameters and the hit determinants, in order to associate one or more

object determinants therewith.

In the customer resource management ("CRM") example, the cache

administrator may pre-designate each of the groupings. For example, the administrator

configures the cache to group each of the sales departments by name. Thus the

administrator can designate an auto department, a motorcycle department, etc., and

each time an object determinant is recognized in a request coming to the cache, the

cache can then invalidate all objects stored in a designated group linked to an

appropriate department via the object determinant.

h. Ruled-Based Grouping

Alternatively, the cache administrator may establish rules that allow the cache

appliance to determine on the run which objects to include in a particular group or

groups. Such rules-based groupings may rely on the designation of groups by virtue of

established rules that link the object to significant object determinants that the cache

177

WO 2007/121241 PCT/US2007/066433

utilizes to create the relevant groups. An example of this approach may involve

configuring the cache with rules that the cache uses to recognize what objects to put in

each group.

Again turning to the CRM example, a rule may state that each subdivision of the

Sales Department that is set up on the application should be recognized by the cache

as its own grouping. In this way the groupings can be created without the cache

administrator having to specifically identify each grouping but allows the cache to

determine based on the relevant rules. This technique creates a more flexible and often

less work intensive way to designate groupings. The cache administrator could

configure a rule that states that every subdivision department of Sales (i.e., sales\auto,

sales\motorcycle etc.) should generated a new grouping by the cache. As a request

from the Auto Sales Department is processed and returned by the application via the

cache, the cache can recognize each subgrouping of sales and automatically create a

grouping for it, based on the pre-configured rule.

The rule may be implemented by the cache each time it sees a new request for

an object of the type report/sales/auto or report/sales/motorcycle, etc. This process can

then be repeated when a Motorcycle Sales Department request showing that it is a sub­

grouping of the Sales Department, then the Bicycle Sales Department and so forth, as

the cache recognizes these subgroups and establishes an object grouping for each of

them. When a known invalidation request comes to the cache linked to one of these

groupings, or if a relevant object determinant is identified in a client request (for

example a post of a sales report to the Motorcycle Sales Department sales/motorcycle

found in the parsing the request), the cache knows to invalidate all the cached objects in

the Motorcycle Sales Department Grouping.

In this way, when a cache recognizes that a change has occurred or will occur to

data served by the application (either because the cache recognizes that contents of a

request received by the cache will trigger a change at the application or because of the

occurrence of some outside change), the above technique enables the cache to quickly

and simply identify which objects require invalidation through the process of grouping.

In this way, the cache is able to invalidate large numbers of dynamically generated

178

WO 2007/121241 PCT/US2007/066433

objects that are no longer fresh because of changes in the application or database

state.

The ability of the cache to successfully store and serve out of its cache memory

dynamically generated content can also be enhanced with an intelligent statistical

engine that examines the pattern of request and response traffic in order to determine,

over a period of time, the set of objects that would provide the most caching benefit.

The engine can either be integrated into the cache appliance itself, or run in a separate

computer as a heuristic to select some subset of objects for further investigation to

determine suitability for dynamic caching.

i. Further Use of Object Determinants

As described above, object determinants may be any data structure that

indicates whether a change has occurred or will occur, in the originating server, to the

group of previously served objects stored in the cache with which the object determinant

is associated. Object determinants could be set up on the basis of predefined string

values embedded in the request. For example, when a request comes in with a certain

USERID, the USERID can be linked to a group of objects in the cache memory that

should be invalidated each time a post or other request comes from that certain

USERID. Potential candidates for object determinants could also include using service

identifiers of the server that originally served the object. The service identifier contains

service IP address, TCP port and service identifier present in the HTTP request.

Another potential object determinant present in the request the request uniform

resource locator ("URL"). In the case of caching of static objects, the request URL is

typically sufficient to uniquely identify the object. For requests for dynamically

generated content, however, the information present in the URL may not be sufficient to

identify the cached object. The cache must therefore inspect other information in the

request to find object determinants including in HTTP headers, cookie header or in

other custom HTTP headers. The cache can additionally look for a subset of relevant

parameter information in a variety of other places in the client request, including, without

limitation: in the URL query string, in the POST body, in a cookie header, or in any other

request or response headers.
179

WO 2007/121241 PCT/US2007/066433

The problem in parsing a URL for object determinants is that the URL and other

headers may contain a lot of information in addition to what is relevant for the cache’s

decision. The cache must therefore be able to parse through quite a lot of information

to be able to identify the appropriate object determinants. In addition, the data in the

header is often arbitrarily ordered, meaning there are no standardized ways that such

data is placed into the HTTP header and therefore a simple comparison is often

insufficient to locate the relevant object determinants in such string.

If there is no pre-configured policy to match a particular object determinant to a

relevant object or group of objects stored in cache memory, the cache may still, in

another embodiment, make such a determination. For example, the cache may

examine and parse various aspects of the request to discover whether any other object

determinants may be found in such request and used to link such request to particular

objects stored in the cache memory that should be invalidated. Alternatively, one could

also enable the cache to examine a request for certain object determinants that the

cache determines, based on certain pre-defined heuristics, may meaningfully linked to

particular objects or group of objects. For example, when the request comes into the

cache for an update of a calendar associated with a particular USERID, an embodiment

could be set up to recognize that all cached objects with USERID equal to the USERID

of the request updating the calendar, and that contains the user’s calendar for any one

particular day, will need to be invalidated.

The cache may also assume that the object determinants are present as a group

of name=value or similar pairs in a non-specified order in the URL Stem, in the queries

present in the URL, in the POST body or in a Cookie header. In an embodiment, it is

assumed that the query is formatted as a list of name=value pairs. The user can

therefore configure which parameter names are significant. Every cached object is

keyed using first its access URL. The URL may look like

/site/application/special/file.ext?p 1 =v1 &p2=v2&p3=v3. The

/site/application/special/file.ext part is the URL stem. The p1=v1&p2=v2&p3=v3 part is

the URL query and contains parameter-value pairs. These parameter-value pairs may

also be present in the POST body or in the Cookie headers.

180

WO 2007/121241 PCT/US2007/066433

In an embodiment, the user or administrator establishes that p1 and p2 shall be

the invalidation parameters or object determinants. The cache will thereafter

automatically group objects that have matching p1 and p2 values. One way of

implementing this grouping is to map p1 and p2 to primary keys in database tables, i.e.,

to uniquely identifiable objects in the table that the cache will know how to reference in

order to determine validation status. To update something in those database tables, in

order to reflect the fact that data stored in the cache is no longer valid, the cache will

specify new values for p1 and p2 and when the cache recognizes such new values the

next time it goes to serve such content, it will know to invalidate the linked objects

stored in its memory. The cache, when it encounters such a request, on seeing the

update request knows that it has to invalidate the group with matching p1 and p2 values

- because the cache understands that data in the origin will change, thereby affecting

all objects that are related to those p1 and p2 object determinants.

To address the more complex case where the administrator has not pre­

configured specific parameters embedded in the request as object determinants, the

cache can deploy user-configured policies to extract the relevant object determinants

from the request to assist in identifying when to invalidate groupings of objects. The

determinant string is then used to locate the group of objects stored in the cache and

invalidate such objects. These object determinants can be used to configure the cache

to generate lists of significant parameter values. If an incoming write-request has

matching values for the significant parameters then the objects tied to those parameter

names should be invalidated. Alternatively, a user could specify the policy framework

action that can extract the object determinant string from the request. The object

determinant string is extracted from the write-request and all objects with matching

determinant strings are invalidated. In this alternative approach, a request arrives at the

cache, the cache makes a determination whether the request string matches an

invalidation policy. The invalidation policy specifies objects in which content group

should be invalidated.

Alternatively, the cache could use any other user information that may be present

in the client request. As noted above, the authentication and authorization integration

181

WO 2007/121241 PCT/US2007/066433

allows the cache access to the user information. The USERID or the GROUPID could

be one of the determinants in the event the relevant grouping of cached objects are

linked to a user or a group of users. Although user information is often an important

object determinant, the user information often may not be present in the HTTP request.

In a further embodiment, the dynamic caching aspects can be combined with a system

and method for integrating the cache with a variety of other networking elements

including the ability to perform certain kinds of authentication, access control and audit

(AAA) infrastructure. Thus, the level of security accorded to data that is generated by

the applications is applied to data that is instead served from a cache. This technique

allows the applications to cache sensitive, access controlled information that could not

otherwise be cached.

This approach allows the cache to identify users that do not include identifiable

user information in the HTTP request but that may be identifiable via the AAA approach

described in the Integrated Caching patent. Such an approach enables the cache to

identify the relevant user to a particular request through examining the authorization

state information that can be shared from the AAA processing. In a further

embodiment, the integration enables the application of security policies to information

stored in the cache to prevent unauthorized users from accessing information stored at

the cache.

This approach also address the challenge posed by the fact that a significant

portion of dynamically generated data requires that the client requesting such data be

authorized and authenticated before the cache can respond to the relevant request from

the client. The cache must have the ability to authorize requests made by authenticated

users so that applications can cache access-controlled objects and by integrating such

dynamic caching technology with authentication and authorization information, this

security can be achieved. The USERID or the GROUPID will be one of the object

determinants if the objects are personalized to a user or a group of users. Thus, the

level of security accorded to data that is generated by the applications is applied to

cached information as well. This technique allows the applications to cache sensitive,

access controlled information that could not otherwise be cached.

182

WO 2007/121241 PCT/US2007/066433

Finally, other information like time of day, state of the database at the origin, etc.,

may be parsed from the request and used as object determinants to determine whether

objects stored in the cache are still valid. The cache may take care of this situation by

configuring appropriate expiration behavior in groupings of objects that are configured to

be sensitive to such external variables.

To further address the challenge presented by the fact that requests for dynamic

content must be parsed and interpreted by the cache, the cache in accordance with an

embodiment can limit which parameters are deemed to be relevant object determinants

for the cache. In this way, the success rate for serving objects from the cache rather

than forwarding such requests to the applicable application server can be enhanced.

By way of example, a request query from a client may contain both a city and a state

parameter. However, the cache may be configured to comply with the requirements of

the application for which the cache is storing content to recognize that the response can

be served to requests coming from clients that the query shows come from all clients in

a given state without regard to the city value. For this purpose, the city parameter is not

relevant and the cache could recognize this fact. An alternate embodiment involves

configuring the cache so that a response can be served from the cache if just the city

parameter makes a match regardless of what is specified for the state parameter.

In summary, the cache implements generalized parameterized object matching.

In this approach, the cache is configured to recognize the subset of information in the

request that will be useful as object determinants, and that are linked to a particular

object so that when such object determinants are recognized, the cache can utilize the

presence (or conversely the absence of such determinants) in evaluating whether the

object or group of objects remains fresh and capable of being served from the cache.

The cache maintains a table that it consults each time a request comes in to check

against the configured parameters to determine if the requested data remains fresh, and

which also allows the cache to match the relevant data to the proper object stored in the

cache memory.

183

WO 2007/121241 PCT/US2007/066433

j. Incarnation Numbers

In yet another embodiment, the cache can utilize incarnation numbers to

invalidate a group of objects. Where a cache needs to change the state of each of a

group of objects at one time because of a change in the state at the origin, incarnation

numbers provides a simple technique for effecting this invalidation. Whereas identifying

each object and changing the state individually is an inefficient approach to assuring

freshness of data stored in a cache, use of incarnation numbers enables a much more

simple and effective approach to invalidating groups of objects. The present

embodiment describes how each object points to a data structure that represents the

group and therefore the server need only send a command that changes the state in the

data structure for the group. When a subsequent request for a cached object arrives

from a client, the cache must first figure out whether the state has changed. To do so it

looks up the data structure to reference whether the state has changed for the group.

In order to implement the data structure effectively, the cache must be able to

determine whether to look up for a state change. Therefore, the cache must be able to

determine whether it has already looked at the state change in the group or not. This is

where the incarnation numbers are helpful. The cache associates dynamically

generated objects into content groups. Each of these content groups may be

represented through a hash table look-up process with a particular index value or

“incarnation number” contained in a data structure. Thereafter, whenever the cache

receives a client request that the cache recognizes as causing a state change, the client

parses the client request for the relevant parameters, performs the hash look-up based

on the recognized object determinants, and increments the index or incarnation number

in the data structure. Each time an object stored within a designated grouping is

requested by a client, the cache performs the hash algorithm on the object, and

compares it to the original stored value in the data structure for such content group. If

the stored value is the same as the number calculated by the cache for such object,

then the cache knows the content remains fresh and can be served to the requestor. In

the event the cache detects a discrepancy between the current incarnation number

calculated for such object in and the number stored for such content group in the data
184

WO 2007/121241 PCT/US2007/066433

structure, the cache knows that the stored object is no longer fresh. The cache then

invalidates the stored object and sends the request along to the application server.

When the response comes back the cache appliance will store the new response in the

cache memory and link such response again to the new data structure. Thereafter,

each time the cache receives a request for an object in that grouping, the cache can

make the comparison and assuming no further changes have been made to the data

structure, the cache can serve the newly stored object.

By utilizing invalidation of a group of objects in this fashion, the cache is able to

invalidate very quickly - and the time taken is constant regardless of the number of

objects invalidated. Through this faster and more efficient process of invalidation, the

techniques enable the cache to more effectively handle dynamically generated objects.

The approach allows cache appliances that sit in front of applications to more

aggressively store and serve dynamically generated objects without serving invalid or

stale content because of rapid changes in such data. The embodiment enables the

cache to serve data that frequently or unpredictably changes thereby improving the

performance of the cache. The cache is also able to invalidate objects and group of

objects stored in the cache memory using user commands and also by examining and

grouping various kinds of web traffic.

2. Connection Pooling

In one embodiment, a network appliance 1250 (also referred to herein as

interface unit 1250) relieves servers 30 of much of the processing load caused by

repeatedly opening and closing connections to clients by opening one or more

connections with each server and maintaining these connections to allow repeated data

accesses by clients via the Internet. This technique is referred to herein as “connection

pooling”.

For completeness, the operation of connection pooling is briefly described next

with reference to FIG. 30. The process begins in FIG. 30 when a client 10 requests

access to one of the servers in the server farm tended by interface unit 1250. A

connection is opened between interface unit 1250 and the requesting client, and

interface unit 1250 receives the client request to access the server, as shown in step

185

WO 2007/121241 PCT/US2007/066433

4302. Interface unit 1250 determines the identity of the requested server as shown in

step 4304. In one embodiment, this is accomplished by examining the destination

network address specified by the client request. In another embodiment, this is

accomplished by examining the network address and path name specified by the client

request.

After determining the identity of the server 30 to which the client request should

be directed, interface unit 1250 determines whether a free connection (that is, one that

is not in use) to the server is already open, as shown in step 4306. If so, processing

resumes at step 4310. If not, interface unit 1250 opens a connection to the server, as

shown in step 4308. Interface unit 1250 then translates the client request and passes it

to the server, as shown in step 4310, and as more fully described with respect to FIG.

31, below. After server processing, interface unit receives a response from the server,

as shown in step 4312. The server response is translated and passed to the requesting

client, as shown in step 4314 and described further below. Finally, interface unit 1250

closes the connection with the client as shown in step 4316. However, the connection

between interface unit 1250 and server is not disconnected. By maintaining open

connections with the servers and by opening and closing connections with the client as

needed, interface unit 1250 frees the servers 30 of nearly all of the connection loading

problems associated with serving clients over the Internet.

As will be discussed further below, some embodiments are related to step 4316,

where interface unit 1250 closes the connection with the client 10. There are a number

of scenarios that result in interface unit 1250 closing the connection with the client. For

example, the client may initiate a FIN (finish) command or a RST (reset) command. In

both of these scenarios, interface unit 1250 waits until it receives one of these

commands before it loses the connection between itself and the client. Inefficiencies

with connection pooling occur when the client is not using or finished with the

connection but does not relay this information to interface unit 1250 for a period of time.

Because interface unit 1250 is waiting for a command from the client in order to reuse

the connection for another client, the connection is tied up unnecessarily.

186

WO 2007/121241 PCT/US2007/066433

As will be explained in more detail below, Hyper-Text Transfer Protocol (HTTP)

1.1 (by default) and HTTP 1.0 (with the Connection: Keep-Alive Technique) enable the

client and/or interface unit 1250 to keep the connection open with the server even after

receiving a server response to a request. The client and/or interface unit 1250 may

then issue other requests via the same connection, either immediately or after

considerable time (or “think time”). A client is in “think time” when the human operator

of the client is deciding the next link on the browser to click, and so forth. This can

result in connections being maintained by the server even though the server is not

processing any requests via the connections. Here, server administrators may be

forced to guard against too many simultaneous connections on the server by setting a

Keep-Alive timeout after which the connection which has been idle or in “think time” is

closed. One embodiment allows the connection to the server to be used by client 10’

while the client 10 is “thinking”. Of course, if client 10’ makes a request when client 10

is using the server connection, then client 10’ must use a different connection to the

server. However, the efficiency of the connection pooling of one embodiment is realized

when a very small number of connections is exceeded and moves into the general

case. The general case being when ‘n’ client connections may be statistically

multiplexed onto ‘m’ server connections, where ‘n’ is greater than ‘m’.

FIG. 31 is a flowchart depicting the operation of one embodiment of translating

client and server requests, as shown in steps 4310 and 4314 (FIG. 30). In an

embodiment, the message traffic is in the form of TCP/IP packets, a protocol suite that

is well-known in the art. The TCP/IP protocol suite supports many applications, such as

Telnet, File Transfer Protocol (FTP), e-mail, and HTTP. The embodiment is described

in terms of the HTTP protocol. However, the concepts apply equally well to other

TCP/IP applications, as will be apparent to one skilled in the art after reading this

specification.

Each TCP packet includes a TCP header and an IP header. The IP header

includes a 32-bit source IP address and a 32-bit destination IP address. The TCP

header includes a 16-bit source port number and a 16-bit destination port number The

source IP address and port number, collectively referred to as the source network

187

WO 2007/121241 PCT/US2007/066433

address, uniquely identify the source interface of the packet. Likewise, the destination

IP address and port number, collectively referred to as the destination network address,

uniquely identify the destination interface for the packet. The source and destination

network addresses of the packet uniquely identify a connection. The TCP header also

includes a 32-bit sequence number and a 32-bit acknowledgment number.

The TCP portion of the packet is referred to as a TCP segment. A TCP segment

includes a TCP header and body. The body part of the TCP segment includes a HTTP

header and the message. There are two mechanisms for determining the length of the

message, including one based on chunked transfer encoding and another based on

content-length. A content-length header file is found in the HTTP header. If a content-

length header field is present, its value in bytes represents the length of the message-

body. Alternatively, if a chunked transfer encoding header is present in the HTTP

header, and indicates that the “chunked” transfer coding has been applied, then the

length of the message is defined by the chunked encoding. The chunked encoding

modifies the body of a message in order to transfer the message as a series of chunks,

each with its own indicator contained in the chunk-size field.

As will be discussed in detail below, one embodiment utilizes the content-length

parameter and/or the chunked transfer encoding header to increase the efficiency of

connection pooling between servers and clients by avoiding the situation where the

client is in “think time”. Without this embodiment, interface unit 1250 either waits for a

command from the client before it reuses the connection for another client or the

connection times out when the connection has been idle for too long.

The 32-bit sequence number, mentioned above, identifies the byte in the string of

data from the sending TCP to the receiving TCP that the first byte of data in the TCP

segment represents. Since every byte that is exchanged is numbered, the

acknowledgment number contains the next sequence number that the sender of the

acknowledgment expects to receive. This is therefore the sequence number plus one of

the last successfully received bytes of data. The checksum covers the TCP segment,

i.e., the TCP header and the response data (or body). This is a mandatory field that

must be calculated and stored by the sender, and then verified by the receiver.

188

WO 2007/121241 PCT/US2007/066433

In order to successfully route an inbound packet from a client to the intended

server, or to route an outbound packet from a server to a client, interface unit 1250

employs a process known as “network address translation”. Network address

translation is well-known in the art, and is specified by request for comments (RFC)

1631, which can be found at the URL http://www.safety.net/RFC1631 .txt.

However, in order to seamlessly splice the client and server connections, a novel

translation technique was described in detail in the commonly-owned, U.S. Patent

Application No. 09/188,709, filed November 10, 1998, entitled, “Internet Client-Server

Multiplexer,” referred to herein as “connection multiplexing”. According to this

technique, a packet is translated by modifying its sequence number and

acknowledgment number at the TCP protocol level. A significant advantage of this

technique is that no application layer interaction is required.

Referring to FIG. 31, the network address of the packet is translated, as shown in

step 4402. In the case of an in-bound packet (that is, a packet received from a client),

the source network address of the packet is changed to that of an output port of

interface unit 1250, and the destination network address is changed to that of the

intended server. In the case of an outbound packet (that is, one received from a

server), the source network address is changed from that of the server to that of an

output port of interface unit 1250, and the destination address is changed from that of

interface unit 1250 to that of the requesting client. The sequence numbers and

acknowledgment numbers of the packet are also translated, as shown in steps 404 and

406 and described in detail below. Finally, the packet checksum is recalculated to

account for these translations, as shown in step 4408.

As mentioned above, an embodiment is related specifically to an apparatus,

method and computer program product for efficiently pooling network client-server

connections though the content-length parameter and/or the chunked transfer encoding

header to increase the efficiency of connection pooling between servers and clients.

The increase in efficiency is the result of avoiding occupying the connection while the

client is in “think time”. In one embodiment, the content length parameters is used to

determine the length of the message. In another embodiment, chunked transfer

189

http://www.safety.net/RFC1631_.txt

WO 2007/121241 PCT/US2007/066433

encoding is used to determine the length of the message. The two embodiments will be

described next with reference to FIGS. 32 and 33, respectively.

FIG. 32 illustrates the TCP portion of a TCP packet called the TCP segment

4500. The TCP segment 4500 includes a TCP header 4502 and a body 4504. The

body 4504 contains, among other information, a HTTP header and the message. A

content length parameter 4506 is found in the HTTP header. How an embodiment

utilizes the content length parameter 4506 to provide more efficient connection pooling

is described below with reference to FIGS. 35 and 36.

FIG, 33 illustrates the TCP portion of a TCP packet called the TCP segment

4600. As stated above, if a chunked transfer encoding header is present in the HTTP

header, and indicates that the “chunked” transfer encoding has been applied, then the

length of the message is defined by the chunked encoding. The chunked encoding

modifies the body of a message in order to transfer the message as a series of chunks,

each with its own indicator contained in the chunk-size field. The TCP segment 4600

includes a TCP header (not shown) and a body. The body contains, among other

information, a HTTP header 4602A-4602C and the message. HTTP header 4602A-

4602C is comprised of seven chunk-size fields 4606A-4606G; and six chunk message

data 4604A-4604F,

The chunk-size fields 4606A-4606G are linked together, as illustrated in FIG. 33.

The chunk-size field 4606A indicates the length of the message in the chunk message

data 4604A, chunk-size field 4606C indicates the length of the message in the chunk

message data 4604C, and so forth. The last chunk-size field 4606G always contains

the length value zero indicating that there is no more message data to follow. This is an

indication that all of the message has been sent to the client. How an embodiment

utilizes the chunk-size fields 4606A-4606G to provide more efficient connection pooling

is described below with reference to FIGs. 37 and 38. It is important to note that TCP

segment 4600 in FIG 33 is for illustration purposes only.

Prior to describing the detail of how an embodiment utilizes the content length

parameter to increase the efficiency of connection pooling, connection pooling as it is

described in U.S. Patent Application No. 09/188,709, filed November 10, 1998, entitled,

190

WO 2007/121241 PCT/US2007/066433

“Internet Client-Server Multiplexer,” will first be discussed for completeness. FIG. 34 is

a message flow diagram illustrating connection pooling. FIG. 34 shows interface unit

1250 connecting two clients, C1 and C2, to a server S. The two clients C1 and C2, may

comprise any of the clients 10 discussed herein, and the server S may comprise any of

the servers 30 discussed herein. First, interface unit 1250 opens a connection with

client C1 using network address 1 provided by client C1 as shown by flow 4702. Flow

line 4702 is shown as a two-way flow because the TCP/IP protocol employs a multi­

stage handshake to open connections.

Once the connection is opened, interface unit 1250 receives a GET request from

client C1 specifying a path name of/sales/forecast.html, as shown by flow line 704.

Because no free connection is open between interface unit 1250 and server S, interface

unit 1250 opens a connection with server S. Interface unit 1250 maps this request to

network address 2, which specifies server S, as shown by flow line 4706. Interface unit

1250 also passes the GET request to that server, as shown by flow line 4708. Server S

responds with the requested web page, as shown by flow line 4710. Interface unit 1250

forwards the web page to client C1, as shown by flow line 4712. Finally, the connection

between client C1 and interface unit 1250 is closed, as shown by flow line 4714.

According to the TCP/IP protocol, closing a network connection can involve a multi­

stage process. Therefore, flow line 4714 is shown as bidirectional. It is important to

note that interface unit 1250 does not close the connection with server S, but rather

keeps it open to accommodate further data flows.

Next, a connection is opened between interface unit 1250 and client C2 using

network address 1 provided by client C2, as shown by flow line 4716, Next, interface

unit 1250 receives a GET request from client C2 specifying the Web page

/sales/forecast.html, as shown by flow line 4718. Because a free connection is already

open between interface unit 1250 and server S, it is unnecessary for interface unit 1250

to burden server S with the processing load of opening a further connection. Interface

unit 1250 merely uses a free open connection. Interface unit 1250 maps the GET

request to server S, transfers it, and forwards it to server S, as shown by flow line 4720.

Interface unit 1250 receives the response from server S, as shown by flow line 4722,

191

WO 2007/121241 PCT/US2007/066433

and forwards it to client C2 as shown by flow line 4724. Finally, interface unit 1250

closes the connection with client C2, as shown in flow line 4726. Once again, interface

unit 1250 does not close the connection with server S. Instead, interface unit 1250

keeps the connection open to accommodate further data flows..

As discussed above, there are a number of scenarios that result in interface unit

1250 closing the connection with client C2, as shown in flow line 4724. For example,

the client may initiate a FIN (finish) command, which occurs once the client has

retrieved all requested data (or message). The client may also initiate a RST (reset)

command. In addition to closing the connection between interface unit 1250 and the

client, the RST command results in a number of housekeeping operations being

performed to keep the server side connection in good order. In particular, the TCP

protocol guarantees that the RST command will have the right SEQ (sequence) number

so that the server will accept the TCP segment; however, the RST command is not

guaranteed to have the right ACK (acknowledge) number. To take care of this scenario

interface unit 1250 keeps track of the bytes of data sent by the server and the bytes

acknowledged by the client. If the client has not yet acknowledged all the data by the

server, interface unit 1250 calculates the unacknowledged bytes, and sends an ACK to

the server. Furthermore, the server side PCB may be placed on a timeout queue to

allow any pending server data transfers to drain.

Furthermore, although not shown in FIG. 34, the server can also close a

connection between itself and interface unit 1250. The server would send a FIN

command to interface unit 1250. In this case, both the connection between the server

and interface unit 1250 and the connection between interface unit 1250 and client will

be closed.

Another aspect is to maximize offload of connection processing from the server

by minimizing the occasions on which the server closes the connection. There are

three cases:

(1) The protocol version HTTP/1.1 is used. In this case, no explicit Keep­

Alive header is required. By default, the server keeps the connection open; it is up to

the client to close the connection. An embodiment offloads the server by reusing the

192

WO 2007/121241 PCT/US2007/066433

server side connection. Because it is up to the client to close the connection,

inefficiencies with connection pooling occur when the client is finished with the

connection but does not relay this information to interface unit 1250 for a period of time.

Because interface unit 1250 is waiting for a command from the client in order to reuse

the connection for another client, the connection is tied up unnecessarily.

(2) The protocol version HTTP/1.0 is used and the “Connection: Keep-Alive”

header is provided by the client. In this case, the server keeps the connection open; it

is up to the client to close the connection. An embodiment offloads the server by

reusing the server side connection. As with protocol version HTTP/1.1, inefficiencies

with connection pooling occur when the client is finished with the connection but does

not relay this information to interface unit 1250 for a period of time.

(3) The protocol version HTTP/1.0 is used and the “Connection: Keep-Alive”

header is not provided by the client. In this case, the server will normally close the

connection after fully satisfying one GET request.. If the server closes the connection

after each request this denies that interface unit 1250 the opportunity to reuse the

server side connection. As it turns out much of the Internet still uses HTTP/1.0 without

“Connection: Keep Alive”. A novel technique for allowing the reuse of server side

connections in this specific, important case was described in detail in the commonly-

owned, US. Patent Application No. 09/188,709, filed November 10, 1998, entitled,

“Internet Client-Server Multiplexer”. Interface unit 1250 inspects the GET packet to

detect this situation. When this case is detected, interface unit 1250 inserts

“Connection: Keep-Alive” into the GET packet. Since this is done invisibly to the client,

interface unit 1250 must keep track of the number of “Bytes Added” on the server side

connection. The “Bytes Added” does not affect the Sequence numbers in the GET

packet since the sequence number is that of the first byte. However, interface unit 1250

must add “Bytes Added” to the sequence number of subsequent packets from the client

to the server. Conversely, the server will acknowledge the additional bytes, but

interface unit 1250 must subtract them before sending the acknowledgment to the client

- which does not know that these bytes were added.

193

WO 2007/121241 PCT/US2007/066433

As mentioned above, connection multiplexing is achieved by manipulating

sequence and acknowledgment numbers. Sequence and acknowledgment numbers of

segments received by interface unit 1250 are modified and mapped to values expected

by the recipient. To the client, data appears to be coming from the server and vice

versa. For example if “Inflow” denotes a segment received by interface unit 1250 and

“Outflow” denotes the corresponding outbound segment, the sequence and

acknowledge numbers are changed in the following manner:

Outflow sequence number = Inflow sequence number - Inflow starting

sequence number + Outflow starting sequence number

Outflow acknowledge number = Inflow acknowledge number - Inflow

starting acknowledge number + Outflow starting acknowledge number

To address the addition of the “Connection: Keep Alive” header for HTTP/1.0 packets,

interface unit 1250 keeps track of “Bytes Added” on the appropriate half of the

connection - in this case the server side. The sequence number and acknowledgment

number formulas are changed as follows:

Outflow sequence number = Inflow sequence number - Inflow starting

sequence number + Outflow starting sequence number + Outflow Bytes

Added

Outflow acknowledge number = Inflow acknowledge number - Inflow

starting acknowledge number + Outflow starting acknowledge number -

Inflow Bytes Added

Specific examples of translations accomplished using these equations while

incorporating the content length parameter technique of an embodiment to provide more

efficient connection pooling is described below with reference to FIGs. 35 and 36

194

WO 2007/121241 PCT/US2007/066433

(relating to content length parameter) and FIGs. 37 and 38 (relating to chunk-size

fields).

FIG. 35 is a detailed flow diagram illustrating the translations of acknowledgment

and sequence numbers performed by an embodiment while incorporating the content

length parameter technique. The label for each flow in FIG. 35 is of the form T:S,A(L),

where T represents a TCP segment type, S is the sequence number, A is the

acknowledgment number, and L is the content length parameter. The content length

parameter describes the number of bytes of data in the message,

Flows 4802A-4802C present one method of opening the connection between

client C1 and interface unit 1250. Each flow represents a TCP segment. In TCP

segment 4802A, the SYN flag in the TCP header is set, indicating a new connection

request from client C1. Client C1 has established a starting sequence number of 2000

and an acknowledgment number of 2000. Interface unit 1250 responds with a SYN

ACK segment specifying a starting sequence number of 4000, and incrementing the

acknowledgment number to 2001, as shown by flow 4802B. Each entity (e.g., client,

server, interface unit) within the network sets its own unique sequence number and/or

acknowledgment number, as is well known in the art. Client C1 responds with an ACK

segment specifying a sequence number of 2001 and incrementing the acknowledgment

number to 4001, as shown by flow 4802C. Client C1 then sends a GET segment

specifying a length of 49 bytes, as shown by flow 4804.

Assume that interface unit 1250 determines that no free open connections exist

with server S and therefore sends a SYN segment to server S, specifying a starting

sequence number of 1950, as shown in flow 806A. Server S responds with a SYN ACK

segment specifying a starting sequence number of 6000 and incrementing the

acknowledgment number to 1951, as shown in 4806B. Interface unit 1250 responds

with an ACK segment, as shown by flow 8060. Interface unit 1250 then forwards the

GET segment from client C1 to server S, after modifying the sequence and

acknowledgment numbers according to the translation equations described above, as

shown by flow line 4808.

195

WO 2007/121241 PCT/US2007/066433

Server S responds with the requested data specifying a sequence number of

6001, an acknowledgment number of 2000, and a content length parameter of 999, as

shown by flow 4810. Interface unit 1250 receives the RESP segment, translates the

sequence and acknowledgment numbers, and forwards the RESP segment to client C1,

as shown by flow line 4812A.

At this point, interface unit 1250 receives a request by client C2 to open a

connection. As above, flows 4816A-4816C present one method of opening the

connection between client C2 and interface unit 1250. Again, each flow represents a

TCP segment. In TCP segment 4816A, the SYN flag in the TCP header is set,

indicating a new connection request from client C2. Client C2 has established a starting

sequence number of 999 and an acknowledgment number of 999. Interface unit 1250

responds with a SYN ACK segment specifying a starting sequence number of 4999,

and incrementing the acknowledgment number to 1000, as shown by flow 4816B.

Client C2 responds with an ACK segment specifying a sequence number of 1000 and

incrementing the acknowledgment number to 5000, as shown by flow 4816C. Client C2

then sends a GET segment specifying a length of 50 bytes, as shown by flow 4818.

Assume at this point that interface unit 1250 has no available connections to

server S. The goal is to reuse the same connection to server S that was previous used

for client C1 if client C1 is finished with the connection or is in “think time”. Instead of

waiting for client C1 to initiate a FIN (finish) command or a RST (reset) command to free

up the connection, interface unit 1250 uses the content length parameter to confirm that

all of the requested data has been received by client Cl. Here, at flow 4812B, interface

unit 1250 receives confirmation from client C1 that client C1 has in fact received all of

the requested data. This indicates to interface unit 1250 that, even though client C1

may be pausing for some reason before it sends a FIN or RST command, client C1 is

finished with the connection. Interface unit 1250 modifies the acknowledgment and

sequence numbers and forwards the RESP ACK segment to server S, as shown by flow

812C.

Using the same connection as used with client C1, interface unit 1250 then

forwards the GET segment from client C2 to server S, after modifying the sequence and

196

WO 2007/121241 PCT/US2007/066433

acknowledgment numbers according to the translation equations described above, as

shown by flow line 4820. Server S responds with the requested data specifying a

sequence number of 7000, an acknowledgment number of 2050, and a content length

parameter of 500, as shown by flow 822.

Interface unit 1250 receives the RESP segment, translates the sequence and

acknowledgment numbers, and forwards the RESP segment to client C2, as shown by

flow line 4824A. Here, at flow 4824B, interface unit 1250 gets confirmation from client

C2 that client C2 has in fact received all of the requested data. Interface unit 1250

modifies the acknowledgment and sequence numbers and forwards the RESP ACK

segment to server S, as shown by flow 4824C.

The connection between client C2 and interface unit 1250 is then closed or

delinked once interface unit 1250 receives a FIN or RST command from client C2, as

shown by flows 4826A-4826D. Likewise, the connection between client C1 and

interface unit 1250 is then closed or delinked once it receives a FIN or RST command

from client C1 , as shown by flows 4814A-4814D. It is important to note, however, that

interface unit 1250 maintains the connection with server S It is also important to note

that the sequence of events as they were described with reference to FIG. 36 is for

illustration purposes only.

FIG. 36 is a flowchart depicting the operation of the use of the content length

parameter to increase the efficiency of the pooling of connections between clients and

servers according to an embodiment. Interface unit 1250 maintains connections with a

plurality of servers, and routes client requests to these servers based on the path name

specified in the client request. First, interface unit 1250 opens connections with the

servers, as shown in step 4902. Next, in response to a client C1 request, interface unit

1250 opens a connection to client C1 and receives a request from client C1 to retrieve

data using a path name, as shown in step 4904.

Interface unit 1250 then selects the server hosting the content specified by the

path name, as shown in step 4906. In alternative embodiments, interface unit 1250

consults other predefined policies to select the appropriate server, such as the load of

the servers and the state of the servers. Interface unit 1250 manages and maintains a

197

WO 2007/121241 PCT/US2007/066433

database of servers and server farms that it tends. Among other things, information in

this database includes currently active policies and rules that allow interface unit 1250

to direct incoming packets to the correct server. Depending on network conditions and

services desired, these policies and rules can change very quickly.

Interface unit 1250 then translates the request and passes the translated request

to the selected server, as shown in step 4908. Interface unit 1250 receives the

response from server S, as shown in step 4910. Interface unit 1250 then translates the

response and passes the translated response on to client C1, as shown in step 4912.

Assume for illustration purposes that at this point interface unit 1250 receives a

request from client C2 to retrieve data. Interface unit 1250, in response to the client C2

request, opens a connection to client C2 and receives a request from client C2 to

retrieve data using a path name, as shown in step 4914. Interface unit 1250 then

selects the server hosting the content specified by the path name, as shown in step

4916.

In step 4918, interface unit 1250 determines whether client C2 has selected the

same server as client C1. If the outcome to step 4918 is negative, then interface unit

1250 proceeds in a fashion necessary to satisfy client C2’s request (which is not

important to this embodiment). At this point the flowchart in FIG. 36 ends. Alternatively

if the outcome to step 4918 is positive, then interface unit 1250 determines whether

there are any open connections to the selected server, as shown in step 920.

If the outcome to step 4920 is positive, then interface unit 1250 proceeds in a

fashion necessary to satisfy client C2’s request (which is not important to this

embodiment). At this point the flowchart in FIG. 9 ends. Alternatively, if the outcome to

step 4920 is negative, then interface unit 1250 utilizes the content length parameter to

confirm that client C1 received all of the data that client C1 requested, as shown in step

4922. It is important to note that interface unit 1250 does not wait for client C1 to send

a FIN or RST command in order to determine that client C1 is finished with the

connection or is in “think time”. This allows for more efficient connection pooling due to

the fact that interface unit 1250 can utilize each connection quicker than if interface unit

198

WO 2007/121241 PCT/US2007/066433

1250 waited for the client to close the connection prior to reusing the connection for

another client.

In step 4924, interface unit 1250 then translates the request and passes the

translated request to the selected server using the same connection as client C1 used,

as shown in step 4924. Interface unit 1250 receives the response from server S, as

shown in step 4926. Interface unit 1250 then translates the response and passes the

translated response on to client C2, as shown in step 4928. Interface unit 1250 utilizes

the content length parameter to confirm that client C2 received all of the data that client

C2 requested, as shown in step 4930.

Next, interface unit 1250 closes or delinks the connection with client C2 in step

4932. Finally, interface unit 1250 closes or delinks the connection with client C1 in step

4934, and the flowchart in FIG. 36 ends. As stated above with reference to FIG. 35, the

sequence of events as they were described with reference to FIG. 36 is for illustration

purposes only.

FIG. 37 is a detailed flow diagram illustrating the translations of acknowledgment

and sequence numbers performed by an embodiment while incorporating the chunk-

size fields technique. The label for each flow in FIG. 37 is of the form T:S,A(L), where T

represents a TCP segment type, S is the sequence number, A is the acknowledgment

number, and L is a chunk-size field. The total values of the chunk-size fields describes

the number of bytes of data in the TCP segment.

For simplicity, we assume that connections to both client C1 and client C2 have

already been established. Client C1 then sends a GET segment specifying a length of

49 bytes, as shown by flow 4002. Interface unit 1250 determines that no free open

connections exist with server S and therefore opens a connection with server S (not

shown in FIG. 37). Interface unit 1250 then forwards the GET segment from client C1

to server S, after modifying the sequence and acknowledgment numbers according to

the translation equations described above, as shown by flow line 4004.

For illustration purposes, assume that the data in the response segment has a

total content data length of 999. Further assume that the data will be transmitted in two

300 data chunks and one 399 data chunk. Note that this is for illustration purposes only

199

WO 2007/121241 PCT/US2007/066433

and is not intended to limit. Therefore, the server S first responds with a chunk of the

requested data (or message) specifying a sequence number of 6001, an

acknowledgment number of 2000, and a chunk-size field of 300, as shown by flow

4008A. Interface unit 1250 receives the RESP segment, translates the sequence and

acknowledgment numbers, and forwards the RESP segment to client C1, as shown by

flow line 4006A. Client C1 acknowledges receipt of the data to interface unit 1250, as

shown by flow line 4006B. Interface unit 1250 in return passes this acknowledgment on

to server S, as shown by flow line 4008B.

Server S next responds with the second chunk of the requested data specifying a

sequence number of 6301, an acknowledgment number of 2001, and a chunk-size field

of 300, as shown by flow 4012A. Interface unit 1250 receives the RESP segment,

translates the sequence and acknowledgment numbers, and forwards the RESP

segment to client C1, as shown by flow line 4010A. Client C1 acknowledges receipt of

the data to interface unit 1250, as shown by flow line 4010B. Interface unit 1250 in

return passes this acknowledgment on to server S, as shown by flow line 4012B.

Server S next responds with the third chunk of the requested data specifying a

sequence number of 6601, an acknowledgment number of 2002, and a chunk-size field

of 399, as shown by flow 4016A. Interface unit 1250 receives the RESP segment,

translates the sequence and acknowledgment numbers, and forwards the RESP

segment to client C1, as shown by flow line 4014A. Client C1 acknowledges receipt of

the data to interface unit 1250, as shown by flow line 4014B. Interface unit 1250 in

return passes this acknowledgment on to server S, as shown by flow line 4016B.

Finally, server S responds with the final chunk of the zero data (indicated by a

chunk-size field that equals zero) specifying a sequence number of 7000, an

acknowledgment number of 2003, and a chunk-size field of 0, as shown by flow 4020.

Interface unit 1250 receives the RESP segment, translates the sequence and

acknowledgment numbers, and forwards the RESP segment to client C1, as shown by

flow line 4018. This indicates to interface unit 1250 and client C1 that all of the

requested data has been transmitted.

200

WO 2007/121241 PCT/US2007/066433

At this point, client C2 then sends a GET segment specifying a length of 50

bytes, as shown by flow 4022. Assume at this point that interface unit 1250 has no

available connections to server S. The goal is to reuse the same connection to server S

that was previous used for client C1 if client C1 is finished with the connection or is in

“think time”. Instead of waiting for client C1 to initiate a FIN (finish) command or a RST

(reset) command to free up the connection, the interface unit uses the chunk-size field

that equaled zero to confirm that all of the requested data has been received by client

C1. This indicates to interface unit 1250 that, even though client C1 may be pausing for

some reason before it sends a FIN or RST command, client C1 is finished with the

connection. Interface unit 1250 modifies the acknowledgment and sequence numbers

and forwards the GET segment to server S, as shown by flow 4024.

For illustration purposes, assume that the data in the response segment has a

total content data length of 500. Further assume that the data will be transmitted in one

300 data chunk and one 200 data chunk. Note that this is for illustration purposes only

and is not intended to limit. Therefore, the server S first responds with a chunk of the

requested data specifying a sequence number of 7000, an acknowledgment number of

2050, and a chunk-size field of 300, as shown by flow 1028A. Interface unit 1250

receives the RESP segment, translates the sequence and acknowledgment numbers,

and forwards the RESP segment to client C2, as shown by flow line 1026A. Client C2

acknowledges receipt of the data to interface unit 1250, as shown by flow line 4026B.

Interface unit 1250 in return passes this acknowledgment on to server S, as shown by

flow line 4028B.

Server S next responds with the second chunk of the requested data specifying a

sequence number of 7300, an acknowledgment number of 2051, and a chunk-size field

of 200, as shown by flow 4032A. Interface unit 1250 receives the RESP segment,

translates the sequence and acknowledgment numbers, and forwards the RESP

segment to client C2, as shown by flow line 4030A. Client C2 acknowledges receipt of

the data to interface unit 1250, as shown by flow line 4030B. Interface unit 1250 in

return passes this information on to server S, as shown by flow line 4032B.

201

WO 2007/121241 PCT/US2007/066433

Finally, server S responds with the final chunk of the zero data (indicated by a

chunk-size field that equals zero) specifying a sequence number of 7500, an

acknowledgment number of 2052, and a chunk-size field of 0, as shown by flow 4036.

Interface unit 1250 receives the RESP segment, translates the sequence and

acknowledgment numbers, and forwards the RESP segment to client C2, as shown by

flow line 4034. This indicates to interface unit 1250 and client C2 that all of the

requested data has been transmitted.

The connection between client C2 and interface unit 1250 is then closed or

delinked once interface unit 1250 receives a FIN or RST command from client C2, as

shown by flow 4038. Likewise, the connection between client C1 and interface unit

1250 is then closed or delinked once it receives a FIN or RST command from client C 1,

as shown by flow 4040. It is important to note, however, that interface unit 1250

maintains the connection with server S. It is also important to note that the sequence of

events as they were described with reference to FIG. 37 is for illustration purposes only

and does not limit.

FIG. 38 is a flowchart depicting the operation of the use of the chunk-size fields

to increase the efficiency of the pooling of connections between clients and servers

according to an embodiment. Interface unit 1250 maintains connections with a plurality

of servers, and routes client requests to these servers based on the path name

specified in the client request. First, interface unit 1250 opens connections with the

servers, as shown in step 4102. Next, in response to a client C1 request, interface unit

1250 opens a connection to client C1 and receives a request from client C1 to retrieve

data using a path name, as shown in step 4104.

Interface unit 1250 then selects the server hosting the content specified by the

path name, as shown in step 4106. Interface unit 1250 then translates the request and

passes the translated request to the selected server, as shown in step 4108. Interface

unit 1250 receives the response from server S as shown in step 4110. Interface unit

1250 then translates the response and passes the translated response on to client C1

until chunk-size field is equal to zero, as shown in step 4112.

202

WO 2007/121241 PCT/US2007/066433

Assume for illustration purposes that at this point interface unit 1250 receives a

request from client C2 to open a connection. Interface unit 1250, in response to a client

C2 request, opens a connection to client C2 and receives a request from client C2 to

retrieve data using a path name, as shown in step 4114. Interface unit 1250 then

selects the server hosting the content specified by the path name, as shown in step

4116.

In step 4118, interface unit 1250 determines whether client C2 has selected the

same server as client C1. If the outcome to step 4118 is negative, then interface unit

1250 proceeds in a fashion necessary to satisfy client C2’s request. At this point the

flowchart in FIG. 38 ends. Alternatively, if the outcome to step 4118 is positive, then

interface unit 1250 determines whether there are any open connections to the selected

server, as shown in step 4120.

If the outcome to step 1120 is positive, then interface unit 1250 proceeds in a

fashion necessary to satisfy client C2’s request. At this point the flowchart in FIG. 38

ends. Alternatively, if the outcome to step 4120 is negative, then interface unit 1250

utilizes the fact that chunk-size field equaled zero in step 4112 to confirm that client C1

received all of the message data that client C1 requested. It is important to note that

interface unit 1250 does not wait for client C1 to send a FIN or RST command in order

to determine that client C1 is finished with the connection or is in “think time”.

In step 4122, interface unit 1250 then translates the request and passes the

translated request to the selected server using the same connection as client C1 used.

Interface unit 1250 receives the response from server S, as shown in step 4124.

Interface unit 1250 then translates the response and passes the translated response on

to client C2 until chunk-size field equals zero, as shown in step 4126. Interface unit

1250 utilizes the chunk-size field to confirm that client C2 received all of the message

data that client C2 requested.

Next, interface unit 1250 closes or delinks the connection with client C2 in step

4128. Finally, interface unit 1250 closes or delinks the connection with client C1 in step

4130, and the flowchart in FIG. 38 ends. As stated above with reference to FIG. 37, the

203

WO 2007/121241 PCT/US2007/066433

sequence of events as they were described with reference to FIG. 38 is for illustration

purposes only and does not limit.

The previous embodiments are described specifically when implemented within

an interface unit, such as interface unit 1250, that is connected to servers in a farm for

the purpose of offloading connection processing overhead from the servers. However,

they can also be applied within other kinds of devices that are in the network connection

path between the client and the servers. As network traffic flows through such devices,

they all have the opportunity to offload connection processing. Some examples of such

devices are:

- Load Balancers which distribute client network connections between a set of

servers in a server farm (local or geographically distributed).

- Bandwidth managers which monitor network traffic and meter packet flow.

- Firewalls monitor packets and allow only the authorized packets to flow through.

- Routers and switches also lie in the path of the network traffic. The industry

trend may be to integrate additional functionality (such as load balancing, bandwidth

management and firewall functionality) within these devices.

Embodiments can also be applied within computer systems which are the end

points of network connections. In this case, add-on cards can be used to offload the

main processing elements within the computer system.

3. Integrated Caching

FIG. 39 illustrates a flowchart 5300 of a sequence of events that may occur in an

appliance that provides integrated caching functionality in accordance with an

embodiment. However, the embodiment is not limited to the description provided by

the flowchart 5300. Rather, it will be apparent to persons skilled in the relevant art(s)

from the teachings provided herein that other functional flours are within the scope

and spirit of the embodiment. These other functional flows could involve different

processing, different sequencing and other variations on the integration of caching.

204

WO 2007/121241 PCT/US2007/066433

The method of flowchart 5300 can be implemented in one or more device(s)

that are communicatively coupled to a data communication network. For example, the

method of flowchart 5300 can be implemented in an appliance such as appliance 1250

described above in reference to FIG. 1A, having a software architecture 3200 as

described above in reference to FIG. 27. The method of flowchart 5300 will be

described with continued reference to this exemplary embodiment.

As shown in FIG. 39, the method of flowchart 5300 begins at step 5302, in

which appliance 1250 receives an encrypted packet from one of clients 10. In an

embodiment, appliance 1250 is configured to act as a proxy SSL endpoint for servers

30, decrypting encrypted packets received from clients 10, and then sending there on

for further processing as necessary and ultimately on to an appropriate resource

based on address information within the encrypted packets. The appropriate resource

may be, for example, any of servers 30 or the cache managed by appliance 1250. At

step 5304, appliance 1250 performs decryption processing on the packet.

At step 5306, appliance 1250, which is configured in accordance with an

embodiment to carry out AAA policies for access control, authenticates and/or

authorizes the client from which the encrypted packet was received.

At step 5308, appliance 1250, which is configured in accordance with an

embodiment to perform certain types of packet processing, carries out packet

processing on the decrypted packets to reduce the connection overhead processing

requirements generated by the applicable network protocols.

At step 5310, appliance 1250, which is configured in accordance with an

embodiment to compress and decompress content, decompresses a request

associated with the packet. In an embodiment, the request comprises a web object

request.

At step 5312, appliance 1250 is then able to activate the cache functionality,

which receives a clear and/or authorized and/or decompressed and/or packet-

processed request for an object. Because of the prior processing described in

reference to steps 5302, 5304, 306, 5308 and 5310, the cache management logic can

make a decision as to whether the object has been cached or is cacheable based on a

205

WO 2007/121241 PCT/US2007/066433

clear/authorized/decompressed/packet processed request and is therefore able to

process a much wider array of requests then traditional caches and to carry out the

caching more efficiently than under traditional approaches. Furthermore, because the

cache management logic is working in the kernel space along with the other

processes, it relates to the relevant object as a data structure with equal status in

relation to such data structure as each of the other applications and therefore the

integration is earned out in an extremely efficient manner,

As shown at step 5314, if the object is not already in the cache memory,

appliance 1250 sends a request on to one or more servers 30. Before the request is

sent, however, several additional processing steps may occur.

For example, at step 5316, appliance 1250 optionally performs connection

processing to ensure efficient transit of the request to the server(s) and at step 5318,

appliance 1250 optionally makes a load balancing decision to ensure that the request

is sent to the most appropriate server(s). Also, in an embodiment, the request is

encrypted before it is sent to the server(s) via a back-end encryption process, thereby

providing end-to-end network security. At step 5320, the request is transmitted to the

server(s),

At step 5322, appliance 1250 receives a response back from one of the servers

30. If back-end encryption is supported as discussed above, appliance 1250 decrypts

the response from the server.

At step 5324, appliance 1250 compresses an object associated with the

response from the server. In an embodiment, the object comprises a web object.

At step 5326, the cache management logic in appliance 1250 stores the object

in the cache in compressed form. The cache management logic is able to store

compressed objects in this fashion due to the processing abilities - Once the object is

stored in the cache, future client requests for the object can be served from the cache

without performance of steps 5316, 5318, 5320, 5322, 5324 and 5326 as described

above. This is indicated by the line directly connecting decision step 5314 to step 5328

in flowchart 5300.

206

WO 2007/121241 PCT/US2007/066433

At stop 5328, after the object has been received from a server or retrieved from

the cache, appliance 1250 performs packet processing on the connection to more

efficiently service the original client request. At step 5330, the response object is then

re-encrypted and delivered back to the client.

Each of the processing steps described above occurs at the kemel/OS level of

appliance 1250. By implementing the cache in the middle of, and integrated with, other

processing steps in the kernel/OS space, an embodiment is able to bring out additional

functionality and improve performance of the cache.

Such integration permits a cache implementation in accordance with an

embodiment to perform additional functions that are traditionally beyond the functional

abilities of a cache. For example, an embodiment permits the cache to work with

encrypted and/or compressed objects.

Another example of additional functionality that may be achieved by an

embodiment involves the caching of end-to-end encrypted HTTPS traffic. Typically,

caches only store unencrypted HTTP responses from servers. Certain caches may in

some cases support SSL encrypted HTTPS delivery from the cache to the clients but,

in any case, traditional caches are not able to cache responses that have been

encrypted by the server and so are unable to support end-to-end (i.e. server to client)

encryption. Typically, when a response is encrypted by the server in the form of

HTTPS, the cache is not able to decrypt such a response and is therefore unable to

store the response in its cache memory. For this reason, traditional caches fail to

provide any benefit in the face of end-to-end encrypted traffic in an embodiment, the

integrated caching appliance serves as a two-way termination point for the SSL

encrypted HTTPS traffic.

For example, in a embodiment, the integrated caching appliance acts as a

termination point both to encrypted traffic between the server and the appliance, and

between the appliance and the clients. In this manner, the appliance is able to decrypt

and cache SSL-encrypted responses received from servers and when serving such

responses to a client, re-encrypt such response and securely deliver it to the

207

WO 2007/121241 PCT/US2007/066433

requesting client, thereby enabling end-to-end encryption and thus increasing the

applicability of caching to a wider variety of web traffic.

In an embodiment, the appliance can also serve as an endpoint in an SSL virtual

private network (SSL VPN). In particular, the appliance can act as a proxy SSL

endpoint for any resource in a private data communication network, decrypting

encrypted packets received from a client and then sending there on to the appropriate

destination server resource based on address information within the encrypted

packets. A data communication session established between client and a gateway

may be encrypted with the gateway serving as an encryption endpoint as described in

the preceding paragraphs of the present application. As described, the client may use

Secure Sockets Layer (SSL), IPSec, or some other encryption method to establish the

encrypted data communication session by which an interception mechanism on the

client directs traffic to the gateway while making the client browser think it is

communicating directly with the destination servers or destination networks, In such

an embodiment, the encrypted data communication session can be terminated at the

gateway, which also includes an integrated cache as described herein. In this way

caching functionality can be integrated into the SSL VPN functionality.

The gateway can also perform any applicable AAA. policies to the request and

consequently, the gateway will serve cached objects only to appropriately

authenticated clients, as well as permitting requests only for users authorized to

access a particular cached object. This is possible because the cache is integrated in

such a way that the access control policies of the gateway are enforced before the

cache sees any particular request. Thus, cached objects get the benefit of access

control without the cache itself needing to perform the authentication and

authorization. Through the integration of the cache with such other functions, the

cache itself becomes more efficient and more effective at handling the variety of data

that passes across today's networks. An embodiment also is able to improve the

efficiency of the overall network performance by introducing the benefits of cache

functionality to a broader array of web traffic.

208

WO 2007/121241 PCT/US2007/066433

Some other unique results of the mode of integration described above in

accordance with an embodiment are as follows. One result is the ability to cache pre­

compressed data and serve it to compression-aware clients. Another result is the

ability to cache access controlled data. Yet another result is the ability to work with

external caches to provide scalability of the cache. Because the cache is integrated

with redirection and traffic management capabilities at the gateway, external caches

can be deployed to provide a second-tier of caching thereby extending the capacity

(and the benefits) of caching significantly. Through an embodiment, this capacity is

created without the cache module itself having to explicitly perform cache

redirection policies.

In terms of performance, by integrating the cache as described above, the

processors of the cache are freed from performing the variety of connection processing

tasks that caches, acting as a nodes on a network, are traditionally required to perform,

and are thus able to perform its caching functions at their highest performance levels.

Indeed, by enabling the caching of compressed data, the cache is able to function even

more efficiently and allow users to realize even higher performance.

As previously noted in this application, the efficiency arises as a result of the way

the cache is integrated with the other network services and technologies including load

balancing technology, encryption, AAA, compression and other types of acceleration and

packet processing. As a result, processing duplications and other' inefficiencies

introduced by traditional modes of integration are avoided. These inefficiencies, caused

by unnecessary copying and context switching, arise because each object received by the

device must be copied to a message and then into a processor memory prior to

processing by the relevant application. The request must then be copied back to the

object or packet level for processing by the cache introducing additional memory copies.

In contrast, an embodiment carries out the integration at the OS or kernel level, thereby

enabling the cache to operate on the object as a data structure where the cache has equal

status as the other applications and/or processes in relating to and processing such data

structure and where the need for such additional memory copies is obviated as all

209

WO 2007/121241 PCT/US2007/066433

processes are working with the same data structure. The result is a more efficient

integration.

a. Caching with Proactive Validation in a Data Communication Network

Because web objects can change over time, each potentially cacheable object is

said to have a useful life, or "freshness", The concept of freshness refers to the fact that

the application server that originally generated the content also determines the period of

time that such object can be served by a cache that may store such object- Caches must

be able to determine whether or not the copy of an object stored in its memory is still

"fresh," or whether the cache needs to retrieve a new copy of the object from the origin

server. An embodiment implements a novel approach to assuring object freshness. Many

conventional cache implementations try to keep the cached content fresh by fetching the

content from the origin on a pre-determined schedule. The fetching of content from the

origin occurs at times established by the cache administrator typically based on one or both

of the following approaches: either at (i) regular specified intervals or (ii) when the content is

about to expire.

There are two problems typically associated with the above commonly-employed

approaches. First, unnecessary processing loads are imposed upon the origin server

because that server is required to provide content to the cache requesting the refreshment

(whether such refresh occurs at specified intervals or as the content is about to expire)

without regard to whether such content will ultimately be served to clients, Second the

cache incurs additional processor load based on the extra processing overhead generated

because the cache needs to keep track of the elements that must be refreshed and the

time at which they have to be refreshed.

A cache in accordance with an embodiment solves the above problems using a

novel pre-fetching approach. The prefetching of th e content is not performed in

accordance with a predefined schedule or Just prior to expiration of the content. Instead,

an embodiment performs pre-fetching only when both of the following conditions have

210

WO 2007/121241 PCT/US2007/066433

been met: (1) a client has made a request for, the specified content and (2) that content is

'about to expire'.

This approach addresses both problems described above. Pro-active revalidation is

more likely to generate a request for refreshing of content from the origin server only where

such content is being actively accessed. This minimizes the amount of 'unnecessary' load

on the origin server- As discussed above, where the cache requests refreshment of

objects that are not ultimately served to clients (or only rarely get served depending on the

sensitivity of the cache), the cache is inefficiently utilizing both its own resources as well

as the resources of the origin server. An embodiment avoids the inefficient use of

the cache and server resources by requesting only that content that is being

actively accessed. The approach also, for the same reason, reduces the

bandwidth used for pre-fetching and therefore makes more efficient use of network

resources than traditional approaches.

Furthermore, an embodiment uses the expiry information included in the

cached object itself to determines whether to request refreshment of the object

from the origin server. Such expiry information is typically included in the headers

of the relevant object. This embodiment thus avoids the inefficiencies of staring any

additional information for fetching unlike many traditional approaches which require

the cache to keep a table tracking the schedule for refreshment. Using a 'demand-

based' pre-fetching technique also enhances benefits that are inherent to pre­

fetching. This technique reduces the number of cache misses for frequently

accessed objects since such objects are very likely to undergo pro-active

revalidation, just before they expire. This technique can also prevent the surge of

traffic to an origin server that can occur when a large response that is in great

demand expires. In the traditional approach, all of the requests for such content

miss the cache and get sent to the origin server because the cache content has

expired. By contrast, in an embodiment, the content of the cache memory will

generally be refreshed just prior to expiration and therefore the situation where

cache misses occur while the cache is refreshing are much less likely to arise.

211

WO 2007/121241 PCT/US2007/066433

In an embodiment, the aggressiveness of pre-fetching can be controlled through

adjusting the length of the duration before the expiry where the content is determined to be

about to expire and also the number of client requests required to trigger refreshment by

the cache of the relevant object.

b. Optimizing Processing of Large Non-Cacheable Responses Using ’’Negative

Cells"

In accordance with an embodiment, the cache recognizes and does not store

objects that are above a specified size in order to improve the object hit ratio. Caches

typically have limited memory space devoted to storing cached objects and therefore

certain responses that exceed allocated memory space are ultimately rejected as non­

cacheable and not stored by the cache. With traditional caches, the cache attempts to

store the large response in its cache memory and only aborts storing the response

once the cache recognizes that the response size exceeds a predefined maximum

size. Traditional caches will repeatedly attempt to cache the large response each time

a request for such response is received by the cache from the server In each case,

the cache will need to determine that the object is non-cacheable as exceeding the

memory space, Thus, this is a manifestly inefficient approach.

In accordance with an embodiment, the cache employs an optimization to avoid

expending effort in storing such responses. Whenever the cache detects a response

that becomes non-cacheable due to response size, it stores a notation regarding the

corresponding request in a data structure termed a "negative cell." The notation

indicates that the request is non-cacheable, In the fixture, when a client requests the

same object, the request is matched to the notation regarded the first request stored in

the data structure. Eased on the match, the cache will not try to cache the response

and instead the request will completely bypass the cache.

There is no user configuration required for specifying the duration for which a

negative cell should remain in the cache, In fact, the users are not even aware that

this particular mechanism is being employed. In an embodiment, the cache uses the

212

WO 2007/121241 PCT/US2007/066433

regular expiry information that it would have employed to cache the big response, to

cache the "negative information" about that response.

4. Client-Side Acceleration

In one embodiment, a client-side acceleration program may perform one or more

acceleration techniques to accelerate, enhance or otherwise improve a client’s

communications with and/or access to a server, such as accessing an application

provided by a server. Referring now to FIG. 40A, a client 6205 having an acceleration

program 6120 is depicted. In brief overview, the client 6205 operates on computing

device 6100 having an operating system with a kernel mode 6202 and a user mode

6202, and a network stack 6210 with one or more layers 6210a-6210b. The client 6205

may comprise any and all of the clients 10 previously discussed. Although only one

client 6205 is shown, any number of clients 10 may comprise the client 6205. The client

6205 may have installed and/or execute one or more applications 6220a-6220n. In

some embodiments, one or more applications 6220a-6220n may communicate via the

network stack 6210 to a network. One of the applications 6220N may also include a

first program 6222, for example, a program which may be used in some embodiments

to install and/or execute the acceleration program 6120.

The network stack 6210 of the client 6205 may comprise any type and form of

software, or hardware, or any combinations thereof, for providing connectivity to and

communications with a network. In one embodiment, the network stack 6210 comprises

a software implementation for a network protocol suite. The network stack 6210 may

comprise one or more network layers, such as any networks layers of the Open

Systems Interconnection (OSI) communications model as those skilled in the art

recognize and appreciate. As such, the network stack 6210 may comprise any type and

form of protocols for any of the following layers of the OSI model: 1) physical link layer,

2) data link layer, 3) network layer, 4) transport layer, 5) session layer, 6) presentation

layer, and 7) application layer. In one embodiment, the network stack 310 may

comprise a transport control protocol (TCP) over the network layer protocol of the

internet protocol (IP), generally referred to as TCP/IP. In some embodiments, the

213

WO 2007/121241 PCT/US2007/066433

TCP/IP protocol may be carried over the Ethernet protocol, which may comprise any of

the family of IEEE wide-area-network (WAN) or local-area-network (LAN) protocols,

such as those protocols covered by the IEEE 802.3. In some embodiments, the

network stack 6210 comprises any type and form of a wireless protocol, such as IEEE

802.11 and/or mobile internet protocol.

In view of a TCP/IP based network, any TCP/IP based protocol may be used,

including Messaging Application Programming Interface (MAPI) (email), File Transfer

Protocol (FTP), HyperText Transfer Protocol (HTTP), Common Internet File System

(CIFS) protocol (file transfer), Independent Computing Architecture (ICA) protocol,

Remote Desktop Protocol (RDP), Wireless Application Protocol (WAP), Mobile IP

protocol, and Voice Over IP (VoIP) protocol. In another embodiment, the network stack

210 comprises any type and form of transport control protocol, such as a modified

transport control protocol, for example a Transaction TCP (T/TCP), TCP with selection

acknowledgements (TCP-SACK), TCP with large windows (TCP-LW), a congestion

prediction protocol such as the TCP-Vegas protocol, and a TCP spoofing protocol. In

other embodiments, any type and form of user datagram protocol (UDP), such as UDP

over IP, may be used by the network stack 6210, such as for voice communications or

real-time data communications.

Furthermore, the network stack 6210 may include one or more network drivers

supporting the one or more layers, such as a TCP driver or a network layer driver. The

network drivers may be included as part of the operating system of the computing

device 100 or as part of any network interface cards or other network access

components of the computing device 6100. In some embodiments, any of the network

drivers of the network stack 6210 may be customized, modified or adapted to provide a

custom or modified portion of the network stack 6210 in support of any of the

techniques described herein. In other embodiments, the acceleration program 6120 is

designed and constructed to operate with or work in conjunction with the network stack

6210 installed or otherwise provided by the operating system of the client 205.

The network stack 6210 comprises any type and form of interfaces for receiving,

obtaining, providing or otherwise accessing any information and data related to network

214

WO 2007/121241 PCT/US2007/066433

communications of the client 6205. In one embodiment, an interface to the network

stack 6210 comprises an application programming interface (API). The interface may

also comprise any function call, hooking or filtering mechanism, event or call back

mechanism, or any type of interfacing technique. The network stack 6210 via the

interface may receive or provide any type and form of data structure, such as an object,

related to functionality or operation of the network stack 6210. For example, the data

structure may comprise information and data related to a network packet or one or more

network packets. In some embodiments, the data structure comprises a portion of the

network packet processed at a protocol layer of the network stack 6210, such as a

network packet of the transport layer. In some embodiments, the data structure 6225

comprises a kernel-level data structure, while in other embodiments, the data structure

6225 comprises a user-mode data structure. A kernel-level data structure may

comprise a data structure obtained or related to a portion of the network stack 6210

operating in kernel-mode 6202, or a network driver or other software running in kernel­

mode 6202, or any data structure obtained or received by a service, process, task,

thread or other executable instructions running or operating in kernel-mode of the

operating system.

Additionally, some portions of the network stack 6210 may execute or operate in

kernel-mode 6202, for example, the data link or network layer, while other portions

execute or operate in user-mode 6203, such as an application layer of the network

stack 6210. For example, a first portion 6210a of the network stack may provide user­

mode access to the network stack 6210 to an application 6220a-6220n while a second

portion 6210a of the network stack 6210 provides access to a network. In some

embodiments, a first portion 6210a of the network stack may comprise one or more

upper layers of the network stack 6210, such as any of layers 5-7. In other

embodiments, a second portion 6210b of the network stack 6210 comprises one or

more lower layers, such as any of layers 1 -4. Each of the first portion 6210a and

second portion 6210b of the network stack 6210 may comprise any portion of the

network stack 6210, at any one or more network layers, in user-mode 6203, kernel­

mode, 6202, or combinations thereof, or at any portion of a network layer or interface

215

WO 2007/121241 PCT/US2007/066433

point to a network layer or any portion of or interface point to the user-mode 6203 and

kernel-mode 6203.

The acceleration program 6120 of the present may comprise software, hardware,

or any combination of software and hardware. In some embodiments, the acceleration

program 6120 comprises any type and form of executable instructions constructed and

designed to execute or provide the functionality and operations as described herein. In

some embodiments, the acceleration program 6120 comprises any type and form of

application, program, service, process, task or thread. In one embodiment, the

acceleration program 6120 comprises a driver, such as a network driver constructed

and designed to interface and work with the network stack 6210. The logic, functions,

and/or operations of the executable instructions of the acceleration program 6120 may

perform one or more of the following acceleration techniques: 1) multi-protocol

compression 6238, 2) transport control protocol pooling 6224, 3) transport control

protocol multiplexing 6226, 4) transport control protocol buffering 6228, and 5) caching

via a cache manager 6232, which will be described in further detail below. Additionally,

the acceleration program 6120 may perform encryption 6234 and/or decryption of any

communications received and/or transmitted by the client 6205. In some embodiments,

the acceleration program 6120 also performs tunneling between the client 6205 and

another computing device 6100, such as a server 30. In other embodiments, the

acceleration program 6120 provides a virtual private network connection to a server 30.

In some embodiments, the acceleration program 6120 operates at one or more

layers of the network stack 6210, such as at the transport layer. In one embodiment,

the acceleration program 6120 comprises a filter driver, hooking mechanism, or any

form and type of suitable network driver interface that interfaces to the transport layer of

the network stack, such as via the transport driver interface (TDI). In some

embodiments, the acceleration program 6120 interfaces to a first protocol layer, such as

the transport layer and another protocol layer, such as any layer above the transport

protocol layer, for example, an application protocol layer. In one embodiment, the

acceleration program 6120 may comprise a driver complying with the Network Driver

Interface Specification (NDIS), or a NDIS driver. In another embodiment, the

216

WO 2007/121241 PCT/US2007/066433

acceleration program 6120 may comprise a min-filter or a mini-port driver. In one

embodiment, the acceleration program 6120, or portion thereof, operates in kernel­

mode 6202. In another embodiment, the acceleration program 6120, or portion thereof,

operates in user-mode 6203. In some embodiments, a portion of the acceleration

program 6120 operates in kernel-mode 6202 while another portion of the acceleration

program 6120 operates in user-mode 6203. In other embodiments, the acceleration

program 6120 operates in user-mode 6203 but interfaces to a kernel-mode driver,

process, service, task or portion of the operating system, such as to obtain a kernel-

level data structure 6225. In further embodiments, the acceleration program 6120 is a

user-mode application or program, such as application 6220a-6220n.

The acceleration program 6120 may operate at or interface with a protocol layer

in a manner transparent to any other protocol layer of the network stack 6210. For

example, in one embodiment, the acceleration program 6120 operates or interfaces with

the transport layer of the network stack 6210 transparently to any protocol layer below

the transport layer, such as the network layer, and any protocol layer above the

transport layer, such as the session, presentation or application layer protocols. This

allows the other protocol layers of the network stack 6210 to operate as desired and

without modification for using the acceleration program 6120. As such, the acceleration

program 6120 can interface with the transport layer to accelerate any communications

provided via any protocol carried by the transport layer, such as any application layer

protocol over TCP/IP.

Furthermore, the acceleration program 6120 may operate at or interface with the

network stack 6210 in a manner transparent to any application 6220a-6220n, a user of

the client 6205, and any other computing device, such as a server, in communications

with the client 6205. The acceleration program 6120 may be installed and/or executed

on the client 6205 in a manner such as the acceleration program 6120 may accelerate

any communications of an application 6220a-6220n without modification of the

application 6220a-6220n. In some embodiments, the user of the client 6205 or a

computing device in communications with the client 6205 are not aware of the

existence, execution or operation of the acceleration program 6120. As such, in some

217

WO 2007/121241 PCT/US2007/066433

embodiments, the acceleration program 6120 is installed, executed, and/or operated

transparently to an application 6220a-6220n, user of the client 6205, another computing

device, such as a server, or any of the protocol layers above and/or below the protocol

layer interfaced to by the acceleration program 6120.

In some embodiments, the acceleration program 6120 performs one or more of

the acceleration techniques 6224, 6226, 6228, 6232 in an integrated manner or fashion.

In one embodiment, the acceleration program 6128 comprises any type and form of

mechanism to intercept, hook, filter, or receive communications at the transport protocol

layer of the network stack 6210. By intercepting a network packet of the client 6205 at

the transport layer and interfacing to the network stack 6210 at the transport layer via a

data structure, such as a kernel-level data structure 6225, the acceleration program 120

can perform transport layer related acceleration techniques on the network packet, such

as transport control protocol (TCP) buffering, TCP pooling and TCP multiplexing.

Additionally, the acceleration program 6120 can perform compression 6225 on any of

the protocols, or multiple-protocols, carried as payload of network packet of the

transport layer protocol

In one embodiment, the acceleration program 6120 uses a kernel-level data

structure 6225 providing access to any portion of one or more network packets, for

example, a network packet comprising a request from a client 6205 or a response from

a server. In one embodiment, the kernel-level data structure may be used by the

acceleration program 6120 to perform the desired acceleration technique. In one

embodiment, the acceleration program 6120 is running in kernel mode 6202 when using

the kernel-level data structure 6225, while in another embodiment, the acceleration

program 6120 is running in user-mode 6203 when using the kernel-level data structure

6225. In some embodiments, the kernel-level data structure may be copied or passed

to a second kernel-level data structure, or any desired user-level data structure.

Although the acceleration program 6120 is generally depicted in FIG. 40A as having a

first portion operating in user-mode 6203 and a second portion operating in kernel-mode

6202, in some embodiments, any portion of the acceleration program 6120 may run in

user-mode 6203 or kernel-mode 6202. In some embodiments, the acceleration

218

WO 2007/121241 PCT/US2007/066433

program 6120 may operate only in user-mode 6203, while in other embodiments, the

acceleration program 6120 may operate only in kernel-mode 6202.

Furthermore, by intercepting at the transport layer of the network stack 6210 or

obtaining access to the network packet via a kernel-level data structure 6225, the

acceleration program 6120 can perform or apply the plurality of acceleration techniques

at a single interface point or at a single point of execution or time of executing any

executable instructions of the acceleration program 6120. For example, in one

embodiment, in a function or set of instructions of the acceleration program 6120, a

plurality of the acceleration techniques may be executed, such as by calling a set of

executable instructions constructed and designed to perform the acceleration technique.

In some embodiments, the acceleration program 6120 at one interface point, place of

execution, or in a set of instructions call one or more application programming interfaces

(APIs) to any program, service, process, task, thread, or executable instructions

designed and constructed to provide 1) multi-protocol compression 6238, 2) transport

control protocol pooling 6224, 3) transport control protocol multiplexing 6226, 4)

transport control protocol buffering 6228, and 5) caching via a cache manager 6232 and

in some embodiments, encryption 6234.

By executing the plurality of acceleration techniques at one place or location in

executable instructions of the acceleration program 6120 or at one protocol layer of the

network stack 6210, such as the transport layer, the integration of these acceleration

techniques is performed more efficiently and effectively. In one aspect, the number of

context switches between processes may be reduced as well as reducing the number of

data structures used or copies of data structures in memory needed or otherwise used.

Additionally, synchronization of and communications between any of the acceleration

techniques can be performed more efficiently, such as in a tightly-coupled manner, in a

set of executable instructions of the acceleration program 6120. As such, any logic,

rules, functionality or operations regarding the order of acceleration techniques, which

techniques to perform, and data and information to be shared or passed between

techniques can be performed more efficiently. The acceleration program 6120 can

intercept a TCP packet at the transport layer, obtain the payload of the TCP packet via

219

WO 2007/121241 PCT/US2007/066433

a kernel-level data structure 6225, and then perform desired acceleration techniques in

a desired order. For example, the network packet may be first compressed and then

cached. In another example, the compressed cached data may be communicated via a

buffered, pooled, and/or multiplexed TCP connection to a server.

In some embodiments and still referring to FIG. 40A, a first program 6222 may be

used to install and/or execute the acceleration program 6120, automatically, silently,

transparently, or otherwise. In one embodiment, the first program 6222 comprises a

plugin component, such an ActiveX control or Java control or script that is loaded into

and executed by an application 6220a-6220n. For example, the first program

comprises an ActiveX control loaded and run by a web browser application 6220, such

as in the memory space or context of the application 6220. In another embodiment, the

first program 6222 comprises a set of executable instructions loaded into and run by the

application 6220a-6220n, such as a browser. In one embodiment, the first program

6222 comprises a designed and constructed program to install the acceleration program

6120. In some embodiments, the first program 6222 obtains, downloads, or receives

the acceleration program 6120 via the network from another computing device. In

another embodiment, the first program 6222 is an installer program or a plug and play

manager for installing programs, such as network drivers, on the operating system of

the client 6205.

In other embodiments, the first program 6222 may comprise any and all of the

functionality described herein in Section B. In one embodiment, the first program 6222

may comprise a collection agent 404. In another embodiment, the first program may

comprise a program for installing a collection agent. In another embodiment the first

program 6222 may also comprise a computing environment 15. In one embodiment the

first program 6222 may comprise means for installing a computer environment such as

an execution environment or virtual execution environment. In one embodiment the first

program 6222 may comprise an application streaming client 442 as previously

discussed. In another embodiment the first program 6222 may comprise an application

to be executed on a client 10.

220

WO 2007/121241 PCT/US2007/066433

In other embodiments, the first program 6222 may comprise a portion of the

functionality, operations and logic of the acceleration program 6120 to facilitate or

perform any of the functionality, operations and logic of the acceleration program 6120

described herein, such as any of the acceleration techniques. In some embodiments,

the first program 6222 is used to establish a connection, such as a transport layer

connection, or a communication session with an appliance or a server, such as a

Secure Socket Layer (SSL) communication session. In one embodiment, the first

program 6222 is used to establish or facilitate the establishment of a virtual private

network connection and communication session.

The cache manager 6232 of the acceleration program 6120 or the client 6205 as

depicted in FIG. 40A may comprise software, hardware or any combination of software

and hardware to provide cache access, control and management of any type and form

of content, such as objects or dynamically generated objects served by the servers 30.

The data, objects or content processed and stored by the cache manager 6232 may

comprise data in any format, such as a markup language, or communicated via any

protocol. In some embodiments, the cache manager 6232 duplicates original data

stored elsewhere or data previously computed, generated or transmitted, in which the

original data may require longer access time to fetch, compute or otherwise obtain

relative to reading a cache memory element. Once the data is stored in the cache

memory element, future use can be made by accessing the cached copy rather than

refetching or recomputing the original data, thereby reducing the access time. In some

embodiments, the cache memory element may comprise a data object in memory of

the client 6205. In other embodiments, the cache memory element may comprise

memory having a faster access time than memory otherwise used by the client 6205. In

another embodiment, the cache memory element may comprise any type and form of

storage element of the client 6205, such as a portion of a hard disk. In yet another

embodiment, the cache manager 6232 may use any portion and combination of

memory, storage, or the processing unit for caching data, objects, and other content.

Furthermore, the cache manager 6232 may include any logic, functions, rules, or

operations to perform any embodiments of the techniques described herein. For

221

WO 2007/121241 PCT/US2007/066433

example, the cache manager 6232 includes logic or functionality to invalidate objects

based on the expiration of an invalidation time period or upon receipt of an invalidation

command from a client 6205a-6205n or server 30. In some embodiments, the cache

manager 6232 may operate as a program, service, process or task executing in the

kernel space 6202, and in other embodiments, in the user space 6203. In one

embodiment, a first portion of the cache manager 6232 executes in the user space 6203

while a second portion executes in the kernel space 6202. In some embodiments, the

cache manager 6232 can comprise any type of general purpose processor (GPP), or

any other type of integrated circuit, such as a Field Programmable Gate Array (FPGA),

Programmable Logic Device (PLD), or Application Specific Integrated Circuit (ASIC).

The encryption engine 6234 of the acceleration program 6120 or the client 6205

comprises any logic, business rules, functions or operations for handling the processing

of any security related protocol, such as SSL or TLS, or any function related thereto.

For example, the encryption engine 6234 encrypts and decrypts network packets, or

any portion thereof, communicated by the client 6205. The encryption engine 6234 may

also setup or establish SSL or TLS connections on behalf of the client 6205. As such,

the encryption engine 6234 provides offloading and acceleration of SSL processing. In

one embodiment, the encryption engine 6234 uses a tunneling protocol to provide a

virtual private network between a client 6205 and another computing device, such as a

server

Still referring to FIG. 40A, the multi-protocol compression engine 6238 of the

acceleration program 6120 or the client 6205 comprises any logic, business rules,

function or operations for compressing one or more protocols of a network packet, such

as any of the protocols used by the network stack 6210 of the client 6205. For example,

multi-protocol compression 6238 may include compression and decompression utilities

comprising GZip compression and decompression, differential compression and

UnCompression, or any other proprietary or publicly-available utility for compressing

and decompressing data to be transmitted over a network. In one embodiment, multi­

protocol compression engine 6238 compresses bi-directionally between the client 6205

and another computing device, such as a servers, any TCP/IP based protocol, including

222

WO 2007/121241 PCT/US2007/066433

Messaging Application Programming Interface (MAPI) (email), File Transfer Protocol

(FTP), HyperText Transfer Protocol (HTTP), Common Internet File System (CIFS)

protocol (file transfer), Independent Computing Architecture (ICA) protocol, Remote

Desktop Protocol (RDP), Wireless Application Protocol (WAP), Mobile IP protocol, and

Voice Over IP (VoIP) protocol. In other embodiments, multi-protocol compression

engine 238 provides compression of Hypertext Markup Language (HTML) based

protocols and in some embodiments, provides compression of any markup languages,

such as the Extensible Markup Language (XML). As such, the multi-protocol

compression engine 6238 accelerates performance for users accessing applications via

desktop clients, e.g., Microsoft Outlook and non-Web thin clients, such as any client

launched by enterprise applications like Oracle, SAP and Siebel, and even mobile

clients, such as the Pocket PC.

The acceleration program 6120 also performs transport protocol layer

acceleration techniques of buffering, pooling and multiplexing as will be described in

further detail below. As such, the acceleration program 6120 comprises any type and

form of executable instructions having logic, rules, functions and operations to perform

any of these techniques as described herein. The acceleration program 120 intercepts,

controls, and manages at the transport layer of the network stack 210 any transport

layer application programming interface (API) calls made by an applications 6220a-

6220n via the network stack 6210. The acceleration program 6120 responds to any

requests of the client 6205 in a transparent manner such that the client 6205 receives a

response as expected from the transport protocol layer of the network stack 6210. For

example, in one embodiment, the acceleration program 6120 intercepts in the network

stack 6210 of the client 6205 a request to establish a transport layer connection with

another computing device, such as a server, and may use a pool of one or more

transport layer connections established by the acceleration program 6120 to respond to

the request. In another embodiment, the acceleration program 6120 multiplexes a

request from a first application 6220a via an established transport layer connection used

by a second application 6220b.

223

WO 2007/121241 PCT/US2007/066433

In some embodiments, the acceleration program 6120 comprises a mechanism

for buffering or holding communications of the client 6205 at the client 6205 before

transmitting on a network. For example, the rate of consumption by the client 6205 of

received communications from a network, such as from a server, may be less than the

rate of production of communications transmitted by the client 6205 on the network. As

such, the client 6205 may be sending more requests to a server 30 at a rate greater

than by which the client 6205 can consume and process responses from such requests.

The acceleration program 6120 can intercept a communication, and determine if a rate

of consumption and/or rate of production of the client 6205 is below a predetermined

threshold, such as a threshold configured by a user, the client 6205 or another

computing device. If the determined rate is below the desired threshold, the

acceleration program 6120 stores the intercepted communication to a memory element

of the client until the performance of the client 6205 increases the rate of consumption

and/or production to a rate equal to or higher than the predetermined or desired

threshold. At that point, the acceleration program 6120 communicates the client’s

communications on the network. As such, a client-side mechanism is provided to

throttle communications of the client 6205 based on performance of consumption and/or

production of communications by the client 6205.

The application 6220a-6220n depicted in FIG. 40A can be any type and/or form

of application such as any type and/or form of web browser, web-based client, client-

server application, a thin-client computing client, an ActiveX control, or a Java applet, or

any other type and/or form of executable instructions capable of executing on client

6205 or communicating via a network 6204. The application 6220a-6220n can use any

type of protocol and it can be, for example, an HTTP client, an FTP client, an Oscar

client, or a Telnet client. In some embodiments, the application 6220a-6220n uses a

remote display or presentation level protocol. In one embodiment, the application

6220a-6220n is an ICA client, developed by Citrix Systems, Inc. of Fort Lauderdale,

Florida. In other embodiments, the application 6220a-6220n includes a Remote

Desktop (RDP) client, developed by Microsoft Corporation of Redmond, Washington. In

other embodiments, the application 6220a-6220n comprises any type of software

224

WO 2007/121241 PCT/US2007/066433

related to VoIP communications, such as a soft IP telephone. In further embodiments,

the application 6220a-6220n comprises any application related to real-time data

communications, such as applications for streaming video and/or audio.

FIG. 40B illustrates an example architecture of an appliance 1250 similar to the

appliance architecture depicted in FIG. 27. In brief overview, the appliance 1250

comprises a hardware layer 6206 and a software layer divided into a user space 6203

and a kernel space 6202. Hardware layer 6206 provides the hardware elements upon

which programs and services within kernel space 6202 and user space 6203 are

executed. Hardware layer 6206 also provides the structures and elements which allow

programs and services within kernel space 6202 and user space 6203 to communicate

data both internally and externally with respect to appliance 1250. The software layer

comprises programs, services, processes, tasks, threads and other executable

instructions to provide the logic, functions, and operations of the appliance 1250.

The appliance 1250 comprises an application acceleration determination

mechanism 6275 and a client-side acceleration program 6120. The application

acceleration determination mechanism 6275 comprises software, hardware, or any

combination of hardware and software. In some embodiments, the application

acceleration determination mechanism 6275 comprises any type and form of executable

instructions, such as a program, services, process, task or thread having logic, function,

rules, or operations for determining whether an application 6220a-6220n executing on a

client 6205 and/or server 30 can be accelerated or whether access or communications

between a client 6205 and a server 30 can be accelerated. In one embodiment, a

database is used by the application acceleration determination mechanism 6275 to

determine whether an application 6220a-6220n can be accelerated. For example, the

database may associate an application 6220a-6220n with one or more acceleration

techniques capable of accelerating the application 6220a-6220n, and may be further

based on user, type, form, location, processing capability and other characteristics of

the client 6205 and/or server 30. In some embodiments, the application acceleration

determination mechanism 6275 uses a look-up table, file, data structure or object in

memory comprising information identifying if an application 6220a-6220n by name, type

225

WO 2007/121241 PCT/US2007/066433

or category can be accelerated by an acceleration technique. In other embodiments,

the appliance 1250 and/or application acceleration determination mechanism 6275

includes a configuration mechanism, such as a user interface, graphical, command line

or otherwise, to receive user input to identify, specify or configure whether an

application 6220a-6220n or access to a server 30 can be accelerated.

In some embodiments, the application acceleration determination mechanism

6275 requests from the server 30 information identifying whether an application 6220a-

6220n may be accelerated and in further embodiments, by what acceleration

technique(s) and for what type and form of clients 6205. In yet another embodiment,

the application acceleration determination mechanism 6275 comprises a database of

historical information regarding the performance of an application 6220a-6220n

between a client 6205 and a server 30, with and without one or more client-side

acceleration techniques, to provide a database of comparative and heuristic information

about where the application 6220a-6220n is accelerated, or capable of being

accelerated, using any client-side acceleration techniques. For example, the appliance

1250 may capture network related performance information related to the performance

of the application 6220a-6220n from the client 6205. As such, the determination of

whether an application 6220a-6220n is capable of being accelerated may be adapted

to, based on or influenced by changing operational and performance characteristics of

the network 6204.

In one aspect, an application 6220a-6220n may either not be capable of being

accelerated or may be capable of being accelerated but the acceleration would not be

effective, or would otherwise be minimal. In one embodiment, the type and form of

application 6220a-6220n may not use a protocol or may not communicate in a manner

suitable for use with an acceleration technique. In another embodiment, the protocol or

manner in which the application 6220a-6220n communicates may allow for performing

an acceleration technique but based on any of the operational or performance

characteristics of the client 6205, appliance 1250 or server 30, the acceleration

technique would not be effective or otherwise would provide minimal acceleration. As

such, the application acceleration determination mechanism 6275 may determine the

226

WO 2007/121241 PCT/US2007/066433

application 6220a-6220n is not desired to be accelerated based on whether the

application 6220a-6220n is able to be accelerated or whether the acceleration would

meet a desired pre-determined threshold of performance improvement.

In another aspect, the appliance 6250 stores a client-side acceleration program

6120 in a storage or memory element of the appliance 1250, such as storage or

memory provided by the hardware layer 6206 of the appliance. In one embodiment, the

appliance 1250 dynamically determines via the application acceleration determination

mechanism 6275 an application 6220a-6220n to be used or being used by the client

6205 can be accelerated by the acceleration program 6120 executing on the client 6205

and transmits or otherwise communicates the acceleration program 6120 from storage

or memory of the appliance 1250 to the client 6205. In another embodiment, the

appliance 1250 determines communications between the client 6205 and a server 30

can be accelerated by the acceleration program 6120 executing on the client 6205 and

communicates the acceleration program 6120 to the client 6205. In some

embodiments, the appliance 1250 receives, downloads or obtains the acceleration

program 6120 from another computing device 6100, such as a server 30.

In some embodiments, the acceleration program 6120 receives, downloads or

obtains policy information from the policy engine 3236 of the appliance 1250. In other

embodiments, the acceleration program 6120 executes and operates a policy engine,

either independently of or in conjunction with the policy engine 3236 of the appliance

1250. In other embodiments, the packet engine 3240, or portion thereof, may be

operated on the client 6205, such as part of the acceleration program 6120. As such,

the acceleration program 6120 may operate on the client 6205 in accordance with the

packet processing timer 3242 as described above. In one embodiment, the

acceleration program 6120 may perform integrated acceleration techniques in one point

in execution and responsive to the granular time intervals provided by the pack

processing timer 3242.

In some embodiments, the health monitoring program 3216 may check and

determine the status, error or history of any client-side acceleration program 6120 on

any client 6205 in communication with the appliance 1250 or to which the appliance

227

WO 2007/121241 PCT/US2007/066433

1250 transmitted the acceleration program 6120. In some embodiments, the health

monitoring program 3216, or a portion thereof, executes on the client 6205.

Referring now to FIG. 41 A, an embodiment of a method 6300 for dynamically

providing by the appliance 1250 an acceleration program 6120, and automatically

installing and executing the acceleration program 6120 by the client 6205 is depicted.

In brief overview, at step 6310, the appliance 1250 intercepts a request from a client

6205 to establish a communication session with the server. At step 6315, the appliance

1250 transmits the acceleration program 6120 to the client 6205 for the client 6205 to

automatically install and execute. At step 6320, upon receipt of the acceleration

program 6120, the client 6205 automatically executes or performs a silent installation of

the acceleration program 6120. At step 6325, upon completion of installation of the

acceleration program 6120, the client 6205 automatically executes the acceleration

program 6120 in the network stack 6210 to intercept communications between the client

6205 and the server 30. At step 6330, the acceleration program 6120 performs any of

the plurality of acceleration techniques and may encrypt and/or decrypt

communications.

In further detail, at step 6310, the appliance 1250 may intercept or otherwise

receive by any suitable means and mechanisms a request from the client 6205 to

establish a communication session with the server 30. In one embodiment, the packet

engine 6240 of the appliance 1250 intercepts communications from the client 6205. In

other embodiments, the appliance 1250 establishes a first transport layer connection

with the client 6205, for example, with the acceleration program 6120, and a second

transport layer connection with the server 6205 on behalf of the client 6205. As such,

the appliance 1250 may receive, intercept or otherwise obtain any of the client’s

communications transmitted to the server 30. In some embodiments, the appliance

1250 intercepts a request for the client 6205 to establish a transport layer connection

with the server 30. In other embodiments, the appliance 1250 intercepts a request to

establish a communication session via any protocol layer above the transport layer

connection, such as an application layer protocol of HTTP. This embodiment of the

228

WO 2007/121241 PCT/US2007/066433

method may be practiced with a request to establish a communication session at any

protocol layer of the network stack 6210 of the client 6205.

At step 6315, the appliance 1250 transmits the acceleration program 6120 to the

client 6205. The appliance 1250 may transmit the acceleration program 6120 at any

point before, during, or after establishing the communication session requested by the

client 6205. In one embodiment, the appliance 1250 transmits the acceleration program

6120 to the client 6205 in response to intercepting the client request. In another

embodiment, the appliance 1250 forwards the request to the server 30 and transmits

the acceleration program 6120 to the client 6205. In some embodiments, the appliance

1250 establishes the communication session with the server 30, and upon

establishment of the communication session, the appliance 1250 transmits the

acceleration program 6120. In yet another embodiment, the appliance 1250 performs

authentication and/or authorization of the client 6205, or the user of the client 6205, and

if the authenticated user or client 6205 is so authorized, the appliance 1250 transmits

the acceleration program 6120 to the client 6205. In one embodiment, the appliance

1250 forwards the client’s request to the server 30 for authentication and/or

authorization, and if the server 30 authenticates and/or authorizes the client’s request,

the appliance 1250 transmits the acceleration program 6120 to the client 6205.

In some embodiments, the appliance 1250 transmits the acceleration program

6120 from storage or memory of the appliance 1250. In other embodiments, the

appliance 1250 requests the acceleration program 6120 from the server 30 and

forwards the received acceleration program 1620 to the client 6205. In another

embodiment, the server 30 transmits the acceleration program 6120 to the client 6205.

In one embodiment, the appliance 1250 transmits a Uniform Resource Locator (URL) to

the client 6205 for the client 6205 to obtain, download or receive the acceleration

program. In some embodiments, the URL identifies a location of the acceleration

program 6120 in storage or memory of the appliance 1250, while in other embodiments,

the URL identifies the acceleration program 6120 on a server 30, such as a web server

providing the acceleration program 6120 for download. In one embodiment, the

acceleration program 6120 is stored on the client 6205, and the appliance 1250

229

WO 2007/121241 PCT/US2007/066433

transmits a key, such as an encryption or license key, to the client 6205 for the client

6205 to install and make use of the acceleration program 6120 stored on the client

6205. In some embodiments, the appliance 1250 transmits to the client 6205 any files,

configuration, data or other information to be used to install and execute the

acceleration program 6120 on the client 6205.

In one embodiment, the acceleration program 6120 is designed and constructed

to be automatically installed and executed by the client 6205. The acceleration program

6120 may include any files, entries, configuration, data, or instructions to cause the

acceleration program 6120 to be registered or recognized by the operating system of

the client 6205 in accordance with the type and form of operating system. In one

embodiment, another computing device, such as a server or an appliance, transmits the

acceleration program to the client 6205 and the client 6205 automatically installs and

executes the acceleration program 6120. In one embodiment, the acceleration program

6120 is designed and constructed to be a plug-and-play (PnP) device to be added to a

running computing device 6100. In some embodiments, the acceleration program 6120

is a self-installed executable, such as an executable including an installer program and

the acceleration program 6120. In other embodiments, the acceleration program 6120

may include a plurality of files, for example an installation package or installation

download, such as files necessary to register and install the acceleration program 6120

in the operating system of the client 6205. For example, the acceleration program 6120

may comprise an .inf file and a .sys file. An .inf file provides Windows Setup in

Microsoft Windows family of operating systems with the information required to set up a

device, such as a list of valid logical configurations for the device and the names of

driver files associated with the device. In some embodiments, the .inf file may comprise

an autorun .inf file, which is a configuration file that tells or informs the operating system

which executable to start, and any configuration information related to starting the

executable. In one embodiment, the .sys file is the driver file comprising the

acceleration program 6120, or a portion thereof.

At step 6320, the client 6205 automatically installs the acceleration program

6120. The acceleration program 6120 may be installed in any suitable manner in

230

WO 2007/121241 PCT/US2007/066433

accordance with the operating system of the client 6205. In one embodiment, the client

6205 installs the acceleration program 6120 upon receipt of the acceleration program

6120. In some embodiments, the client 6205 automatically performs or executes a

silent installation of the acceleration program 6120. In one embodiment, the silent

installation is performed transparently to a user or application of the client 6205. In

other embodiments, the silent installation of the acceleration program 6120 does not

require a reboot or restart of the client 6205. In another embodiment, the silent

installation does not require interaction by the user to start and/or complete the

installation. In other embodiments, the silent installation of the acceleration program

120 occurs while the client 6205 is running and transparently to a network layer, session

layer, and/or application layer of the network stack 6210. In some embodiments, the

acceleration program 6120 is a self-installed executable that is executed by the client

6205. In other embodiments, the client 6205 uses a plug and play manager to install

the acceleration program 6120. In one embodiment, the client 6205 comprises an

installation manager which receives and installs the acceleration program 6120. In

another embodiment, the acceleration program 6120 transmitted by the appliance 1250

also includes an installation program that installs the acceleration program 6120.

In another embodiment, the acceleration program 6120 is automatically installed

via a silent installation. In one embodiment, a silent installation comprises an

installation unattended by a user. In another embodiment, a silent installation

comprises an installation not requiring or having interaction by the user to start and/or

complete the installation. In some embodiments, the installation is silent in that the

installation process does not display information regarding a status or progress of the

installation. In one embodiment, the installation is silent in that it is transparent to the

user. In other embodiments, the installation is silent because the installation of the

acceleration program 6120 does not require a reboot or restart of the client 6205. In

another embodiment, the installation is silent in that the installation occurs seamlessly

during operation of the client 6205 without interruption or disruption to the client’s

operation. As such, the acceleration program 6120 can be installed in a manner that is

231

WO 2007/121241 PCT/US2007/066433

transparent to the user or an application of the client 6205 by not requiring a reboot and

not displaying any information to the user related to the installation.

In order to prevent or avoid a reboot or restart of the client 6205, in some

embodiments, the client 6205, such as the operating system of the client 6205, has a

plug and play manager to install and configure drivers, such as a network driver in one

embodiment of the acceleration program 6120, for Plug and Play devices while the

operating system is running. In one embodiment, the plug and play manager is not

instructed to reboot or restart the client 6205 based on the configuration of the

installation package of the acceleration program 6120. In another embodiment, the .inf

file does not comprise an instruction to reboot or restart the computer. In one

embodiment, the acceleration program 6120 can be implemented as a side-by-side

component instead of replacing shared, in-use, dynamic-link libraries (DLLs). In other

specific embodiments, for a network driver of the acceleration program 6120, the

acceleration program 6120 uses the INetCfgPnpReconfigCallback network driver API,

so that a user will not be required to reboot the operating system to cause configuration

changes to take effect in the driver. Additionally, the acceleration program 6120 may

have a notify object that calls the SendPnpReconfig API within its implementation of the

ApplyPnpChanges method of the INetCfgComponentControl to send configuration

information to the driver of the network component that owns the object. The

SendPnpReconfig API provides the notify object with a mechanism to send data to the

driver and in some embodiments, is used to avoid requiring a user to reboot the

operating system before configuration changes take effect.

At step 6325, upon completion of installation of the acceleration program 6120

automatically, silently, transparently, or otherwise, the acceleration program 120 is

automatically executed on the client 6205. In some embodiments, the installation

program that installs the acceleration program 6120 starts or executes the acceleration

program 6120. In some embodiments, the installer program for the acceleration

program 6120 makes a system call to load or execute the acceleration program 120 in

memory of the client 6205. In one embodiment, the installation of the acceleration

program 6120 comprises an instruction, command or directive to start the acceleration

232

WO 2007/121241 PCT/US2007/066433

program 6120. In one embodiment, the acceleration program 6120 includes an

automatic run configuration, such as an autorun.inf file, that notifies the client 6205 to

automatically run the acceleration program 6120. In other embodiments, a plug and

play manager or the operating system of the client 6205 automatically executes the

acceleration program 6120 upon installation. In one embodiment, the acceleration

program 6120 comprises a service, process, thread or task that is started by the client

6205. In some embodiments, the acceleration program 6120 is a service of the

operating system that is configured to automatically start. In one embodiment, the

acceleration program 6120 comprises a network driver loaded in the memory of the

network stack of the operating system of the client

In another embodiment, the acceleration program 6120 comprises a network

driver that is loaded into memory of the client 6205. In some embodiments, the

acceleration program 6120 is loaded into memory allocated to the network stack 6210.

In some cases, the acceleration program 6120 is loaded and executed in a memory

area or space that allows the acceleration program 6120 to access a protocol layer of

the network stack, such as the transport layer. In other cases, the acceleration program

is loaded and executed in a memory that allows the acceleration program 6120 to

access a kernel-level data structure 6225. In other embodiments, the acceleration

program 6120 is loaded into memory of an application 6220a-6220n. In another

embodiment, the acceleration program 6120 executes independently in its own memory

space or context. In one embodiment, the acceleration program 6120 runs in the

memory space or context of an application 6220a-6220n. In some embodiments, the

acceleration program 6120 is loaded into user-mode memory or memory allocated to

the user-mode 6203, while in other embodiments, the acceleration program 6120 is

loaded into kernel-mode memory or memory allocated to the kernel-mode 6202

In some embodiments, the acceleration program 6120 is loaded into memory

and/or executed on the client 6205 transparently to a user of the client, an application of

the client 6205, the appliance 1250 or the server 30. In other embodiments, the

acceleration program 6120 executes to interface with the transport layer of the network

stack 6210, and executes transparently to any protocol layer above the transport layer,

233

WO 2007/121241 PCT/US2007/066433

such as a session or application layer, and any protocol layer below the transport layer,

such as the network layer. In one embodiment, the acceleration program 6120

executes transparently to any transport layer connection of the client 6205, or the

transport layer itself.

At step 6330, the loaded, started or otherwise executing acceleration program

6120 performs any of the plurality of acceleration techniques of the acceleration

program 6120, such as any techniques provided by 1) multi-protocol compression 6238,

2) transport control protocol pooling 6224, 3) transport control protocol multiplexing

6226, 4) transport control protocol buffering 6228, and 5) caching via a cache manager

6232. The acceleration program 6120 may also perform any encryption and/or

decryption of communications between the client 6205 and the server 30. In one

embodiment, the acceleration program 6120 performs multi-protocol compression. In

another embodiment, the acceleration program 6120 performs transport control protocol

pooling, and in a further embodiment, the acceleration program 6120 performs

multiplexing via the pooled transport layer connection. In one embodiment, the

acceleration program 6120 performs transport control protocol buffering. In some

embodiments, the acceleration program 6120 performs caching. In other embodiments,

the acceleration program 6120 performs caching and compression. In one

embodiment, the acceleration program 6120 performs caching with transport layer

pooling and multiplexing. In another embodiment, the acceleration program 6120

performs multi-protocol compression with transport layer pooling and multiplexing. In

another embodiment, the acceleration program 6120 performs caching and/or

compression with TCP buffering, and in a further embodiment, with TCP pooling and

multiplexing.

As such, the client-side acceleration program 6120 is dynamically provided by

the appliance 1250 and automatically installed and executed on the client 6205 in a

silent manner or transparent to the user or application of the client 6205 to perform one

or more client-side acceleration techniques to communications between the client 6205

and a server 30. The acceleration program 6120 may perform these acceleration

234

WO 2007/121241 PCT/US2007/066433

techniques transparently to any protocol layer of the network stack and transparently to

a user of the client, application of the client, appliance, or server.

In another aspect, the appliance 1250 may determine if an application requested

to be accessed by the client 6205 can be accelerated, and provide the acceleration

program 6120 to the client 6205 if the application can be accelerated. Referring now to

FIG. 41B, another embodiment of a method is depicted. The method may be practiced

upon requests to establish a connection or communication session as well as requests

to access an application on a server. In brief overview of method 6350, at step 6355,

the appliance 1250 intercepts a request from a client 6205 requesting access to an

application 6220a-6220n on a server 30. At step 6260, the appliance 1250 determines

if the application 6220 is capable of being accelerated. At step 6365, if the application

6220 cannot be accelerated, then the application forwards the request to the server at

step 6267. At step 6365, if the application 6220 can be accelerated, then the appliance

1250 determines if the acceleration program 6120 is installed on the client 6205 or has

been previously transmitted to the client 6205. If the acceleration program 6120 has not

yet been provided to the client 6205, then the method 6350 continues at step 6315 of

the method 6300 described above to transmit, install and execute the acceleration

program. If the acceleration program 6120 has been installed and is executing on the

client 6205, then the appliance 1250, at step 6375, sends a message to the acceleration

program 6120 on the client 6205 to accelerate the application 6220. At step 6330 of

method 6350, the acceleration program 6120 performs a plurality of acceleration

techniques on the communications for the application 6220, and may encrypt and/or

decrypt such communications.

In further detail, at step 6355, the appliance 1250 may intercept by any suitable

means and mechanisms a request from the client 6205 to access an application

provided by the server 30. In one embodiment, the packet engine 6240 of the appliance

1250 intercepts communications from the client 6205. In other embodiments, the

appliance 1250 establishes a first transport layer connection with the client 6205, for

example, with the acceleration program 6120, and a second transport layer connection

with the server 6205 on behalf of the client 6205. As such, the appliance 1250 may

235

WO 2007/121241 PCT/US2007/066433

receive, intercept or otherwise obtain any of the client’s communications transmitted to

the server 30. In some embodiments, the appliance 1250 intercepts a request for the

client 6205 to access an application 6220 via an established transport layer connection

with the server 30. In other embodiments, the appliance 6205 intercepts a request to

establish a communication session via any protocol layer above the transport layer

connection, such as an application layer protocol of HTTP. In one embodiment, the

appliance 6205 intercepts a request from the client 205 to display and provide an

application 6220 from the server 30 via a remote display protocol, such as ICA or RDP.

At step 6360, the appliance 1250 determines whether the application 6220

requested by the client 6205 can be accelerated. In some embodiments, the appliance

1250 identifies, extracts or otherwise processes an application identifier from the

intercepted client request that identifies the application by name, type or category. In

one embodiment, the application acceleration determination mechanism 6275 is used

by the appliance 1250 to determine if or whether the application 6220 can be

accelerated. In some embodiments, the application acceleration determination

mechanism 6275 performs a query or lookup in a database, lookup table, or other

structured source of data in memory or storage, such as a data structure or object, to

determine if the application 6220 can be accelerated. In another embodiment, the

appliance 1250 sends a communication such as request to a server 30 to determine

whether the application 6220 can be accelerated.

In other embodiments, the appliance 1250 has a performance log or history to

determine if the application 6220 has been accelerated before and whether the

acceleration had improvement on the performance and operation of the application

6220. As such, the appliance 1250 may determine that an application 6220 can be

accelerated if such acceleration meets a predetermined threshold of improvement to

performance or operations of the application 6220. In yet another embodiment, the

appliance 1250 provides heuristic rules based on the current operation and

performance of the network 6204, client 6205 or server 30. In one embodiment, the

application 6220 may be determined to be capable of being accelerated if the client

6205 has certain performance and operational characteristics or capabilities, for

236

WO 2007/121241 PCT/US2007/066433

example, a certain speed processor or a minimum amount of memory. In some

embodiments, the application 6220 may be determined to be capable of being

accelerated based on a configured policy or rule, such as in the policy manager of the

appliance 1250. For example, an application 6220 to be communicated between a

remote user with a certain type of client 6205 accessing a certain type of application

220 and/or server 30 may be accelerated. In other embodiments, the application 6220

may be determined to be capable of acceleration based on an authentication and

authorization of the user or the client 6205. In yet another embodiment, the application

6220 may be determined to not be desired to be accelerated. For example, the

application 6220 is of a type that is infrequently used.

At step 6365, if the application 6220 is determined not to be capable of being

accelerated or otherwise it is desired not to apply acceleration techniques to the

application 6220 on the client 6205, the appliance 1250 forwards the intercepted client

request to the server 30 at step 6368 and does not transmit or provide the acceleration

program 6120 to the client 6205. In one embodiment, the appliance 1250 may perform

or provide appliance-based acceleration of the appliance 6220. In other embodiments,

the appliance 1250 does not perform acceleration of the application 6220 on the

appliance 1250. In yet another embodiment, the appliance 1250 may perform some

acceleration techniques and not others for the application 6220 if the appliance 1250

determines the application 6220 is not capable of or otherwise desired to be

accelerated.

At step 6365, if the application 6220 is determined to be capable of being

accelerated or otherwise it is desired to apply acceleration techniques to the application

on the client 6205, the appliance 1250 determines if the acceleration program 6120 has

been provided to the client 6205. In one embodiment, the appliance 1250 determines if

the acceleration program 6120 has been installed on the client 6205 or is executing on

the client 6205. In some embodiments, the appliance 1250 sends a communication to

the acceleration program 6120 on a client 6205 to determine if the acceleration program

6120 is running on the client 6205. In other embodiments, the appliance 1250 checks a

log file or history file to determine if the acceleration program 6120 has been transmitted

237

WO 2007/121241 PCT/US2007/066433

to the client 6205. In another embodiment, the appliance 1250 checks with a health

monitoring program 6216 of the appliance 1250 or the client 6205 to determine if the

acceleration program 6120 is executing on the client 6205.

If the appliance 1250 determines the acceleration program 6120 has not been

transmitted, installed and/or executed on the client 6205, the appliance 1250 will

provide the acceleration program 6120 in accordance with the steps of method 6300

described in conjunction with FIG. 41 A. For example, the appliance 1250 transmits the

acceleration program 6120 to the client 6205, which the client 205 upon receipt

automatically installs and executes. In one embodiment, upon performance of the

suitable steps of the embodiment of method 6300, the appliance 1250 may

communicate at step 6275 a message to the acceleration program to apply one or more

of the accelerations techniques to the application 6220. In other embodiments, if the

acceleration program 6120 is already installed and executing, then at step 6375 the

appliance 1250 communicates a message to the acceleration program 6120 to apply

one or more of the accelerations techniques to the application 6220.

In some embodiments, the acceleration program 6120 performs any of the

acceleration techniques available by the acceleration program 6120 to the identified

application 6120. In other embodiments, the appliance 1250 indicates to the

acceleration program 6120 which of the acceleration techniques to perform for the

application 6220. In one embodiment, the acceleration program 6120 may apply the

desired acceleration techniques for the application 6120 on a per session basis. That

is, the message from the appliance 1250 to the acceleration program 6120 only informs

the acceleration program 6120 to perform acceleration techniques for this instance or

session of the application 6220. In other embodiments, once the acceleration program

6120 receives a message from the appliance 1250 to apply acceleration techniques for

the identified application 6220, the acceleration program 6120 applies the acceleration

techniques for any instances or sessions of the application 6220, or until the client 6205

is rebooted or restarted, or the appliance 6205 is rebooted or restarted.

In one embodiment, the message from the appliance 1250 at step 6375 is not

application specific. For example, the message informs the acceleration program 6120

238

WO 2007/121241 PCT/US2007/066433

to execute one or more of the acceleration techniques for any application of the client

6205. In some embodiments, the message sent to the client 6205 informs the

acceleration program 6120 to stop using any one or more of the acceleration techniques

for the application 6220, or for all applications 6220a-6220n. In another embodiment,

the appliance 1250 communicates a message to the acceleration program 6120 to

ignore certain applications 6220. In yet another embodiment, the appliance 1250

communicates a message to the acceleration program 6120 to provide configuration

data or information to the acceleration program 6120, such as an update to an

acceleration technique or application of a new acceleration technique.

At step 6330, the acceleration program 6120 performs any of the plurality of

acceleration techniques of the acceleration program 6120 for the application 6220, such

as any techniques provided by 1) multi-protocol compression 6238, 2) transport control

protocol pooling 6224, 3) transport control protocol multiplexing 6226, 4) transport

control protocol buffering 6228, and 5) caching via a cache manager 6232. The

acceleration program 6120 may also perform any encryption and/or decryption of

communications of the application 6220 between the client 6205 and the server 30. In

one embodiment, the acceleration program 6120 performs multi-protocol compression

of application related data. In another embodiment, the acceleration program 6120

performs transport control protocol pooling, and in a further embodiment, the

acceleration program 6120 performs multiplexing via the pooled transport layer

connection. In one embodiment, the acceleration program 6120 performs transport

control protocol buffering. In some embodiments, the acceleration program 6120

performs caching. In other embodiments, the acceleration program 6120 performs

caching and compression. In one embodiment, the acceleration program 6120

performs caching with transport layer pooling, and in a further embodiment also with

multiplexing. In another embodiment, the acceleration program 6120 performs multi­

protocol compression with TCP buffering, and in a further embodiment, with transport

layer pooling and, in yet a further embodiment, also with multiplexing. In another

embodiment, the acceleration program 6120 performs caching with compression, and in

239

WO 2007/121241 PCT/US2007/066433

a further embodiment, with TCP pooling, and in yet a further embodiment, with

multiplexing.

As such, an appliance 1250 dynamically determines whether to the accelerate an

application or whether the application can be accelerated, and communicates to the

client-side acceleration program 6120 to perform on the client 6205 any one or more of

the acceleration techniques for the application 6220. Furthermore, in some

embodiments, a plurality of acceleration programs 6120 may be dynamically delivered

to the client 6205 by the appliance and automatically installed and executed by the

client 6205. For example, an acceleration program may be provided in accordance with

the techniques and methods for each connection to a server 6205, or each

communication session with an application 6220. As such, the client 6205 may

automatically install and execute a plurality of acceleration programs 6120 to handle

and perform acceleration for each server 630 or each application 6220a-6220n.

Referring now to FIG. 41C, an embodiment of a method 6380 for performing a

plurality of acceleration techniques in an integrated manner is depicted. In brief

overview, at step 6280, the acceleration program 6120 intercepts at the transport layer

a network packet of a communication between the client 6205 and server 30 via a

transport layer connection. At step 6390, the acceleration program 6120 accesses at

the transport layer the network packet via a kernel-level data structure, for example, a

data structure provided via an API to the network stack 6210 of the client 6205. At step

6395, the acceleration program 6120 performs a plurality of the acceleration techniques

in an integrated manner using the kernel-level data structure at an interface point or

point of execution in the acceleration program 6120.

In further detail, at step 6385, the acceleration program 6120 intercepts by any

suitable means and mechanism a network packet of a communication between the

client 6205 and the server 30 via a transport layer connection. In one embodiment, the

acceleration program 6120 intercepts a network packet of, or related to, a request by

the client, or a response thereto, to establish a transport layer connection between the

client 6205 and the server 30. In another embodiment, the acceleration program 6120

intercepts a network packet of, or related to, a request, or a response thereto, to access

240

WO 2007/121241 PCT/US2007/066433

or use an application 6220 via the transport layer connection between the client 6205

and the server 30. In one embodiment, the acceleration program 6120 intercepts the

network packet at the transport protocol layer via a transport driver interface or

otherwise a network driver interfaced at a transport protocol layer of the network stack

6210. In another embodiment, the acceleration program 6120 intercepts the network

packet at the transport protocol layer, or any other protocol layer of the network stack

6210 via a Network Driver Interface Specification (NDIS) driver, or a mini-port driver, or

a mini-filter driver. In some embodiments, the acceleration program 120 intercepts the

network packet at the transport layer via a hooking or filtering mechanism.

At step 6390, the acceleration program 6120 accesses, or otherwise obtains

information and data of the network packet intercepted at the transport layer via a

kernel-level data structure 6225. By using the kernel-level data structure 6225, the

acceleration program 6120 can obtain information and data on the payload(s) or the one

or more protocols carried or transported by the network packet at the transport layer. In

some embodiments, using a kernel-level data structure to represent the network packet

at the layers of the network stack at and/or above the transport layer enables the

acceleration program 6120 to perform or operate the plurality of acceleration techniques

at the transport layer and for protocol layers carried by the transport layer network

packet. In one embodiment, using a single kernel-level data structure 6225 prevents or

avoids copying and memory allocation along with context switching from using multiple

data structures at various protocol layers of the network stack 6210. In one

embodiment, the acceleration program 6120 copies the kernel-level data structure 6225

to a second data structure, which may comprise another kernel-level data structure or a

user-level data structure.

At step 6395, the acceleration program 6120 performs, executes or operates the

plurality of acceleration techniques at single interface point or location in the program

6210 or in a set of executable instructions or one point of execution of the program

6210. The acceleration program 6120 performs any of the plurality of acceleration

techniques of the acceleration program 6120, such as any techniques provided by 1)

multi-protocol compression 6238, 2) transport control protocol pooling 6224, 3) transport

241

WO 2007/121241 PCT/US2007/066433

control protocol multiplexing 6226, 4) transport control protocol buffering 6228, and 5)

caching via a cache manager 6232. The acceleration program 6120 may also perform

any encryption and/or decryption of communications of the application 6220 between

the client 6205 and the server 30 at the same point in execution of the acceleration

techniques of the acceleration program 6120.

In one embodiment, the acceleration program 6120 performs in a set of

executable instructions, such as function call or one place or location, any desired

plurality of the acceleration techniques subsequent to each other. For example, the

acceleration program 6120 obtains the intercepted network packet via a kernel-level

data structure and then executes instructions representing the logic, function, rules or

operation of the acceleration techniques subsequent to each other. As such,

information and data of the network packet can be extracted or obtained once via the

kernel-level data structure 6225 and used as input, parameters, arguments and

conditions for any of instructions of the acceleration program 6120 representing the

acceleration techniques. Although the network packet carries higher level protocol data

and information, the acceleration program 6120 in some embodiments, processes the

network packet and the higher level protocol data and information at one point and at

one time during execution. Additionally, the acceleration program 6120 may perform

each of a plurality of acceleration techniques in any desired order in an integrated

manner, such as compression data stored to the cache manager 6232, or

compressing/uncompressing data retrieved from the cache.

In one embodiment, the acceleration program 6120 performs multi-protocol

compression and caching subsequently to each other. In another embodiment, the

acceleration program 6120 performs subsequent to each other operations related

transport control protocol pooling and multiplexing via the pooled transport layer

connection. In one embodiment, the acceleration program 6120 performs transport

control protocol buffering subsequently to compression and caching, or to TCP pooling

and/or multiplexing. In some embodiments, the acceleration program 6120 performs

caching. In one embodiment, the acceleration program 6120 performs caching

subsequently with transport layer pooling and multiplexing. In another embodiment, the

242

WO 2007/121241 PCT/US2007/066433

acceleration program 6120 performs multi-protocol compression subsequently with

transport layer pooling and multiplexing. In another embodiment, the acceleration

program 6120 performs caching and/or compression subsequently with TCP buffering,

and in a further embodiment, subsequently with TCP pooling and multiplexing.

Although the acceleration program is generally described as subsequently

performing the acceleration techniques, subsequent execution may also include other

logic, functions, and operations not related to acceleration but integrated and executed

in between each acceleration technique. The acceleration program still obtains

operational and performance efficiency with such integration as the executable

instructions for the acceleration techniques and any other operations or function are

executed at a single interface point or point of execution in the acceleration program.

Furthermore, the acceleration techniques for protocol layers carried or above the

transport protocol layer are processed at one time and/or at one location at the transport

layer. As such, acceleration techniques for these higher level protocols do not need to

be applied again as the network packet traverses and gets processed in these higher

levels of the network stack 6210, or at a later point in the network stack 6210.

In other aspects, a first program 6222 and the acceleration program 6120 (or

also referred to as the second program in this embodiment) can be used. In one

embodiment, the first program 6222 along with the second program 6120 can be used

to facilitate and establish a virtual private network connection with a server 30, such as

via appliance 1250, over which the client-side acceleration techniques may be applied.

In another embodiment, the first program 6222 is used to install and execute the second

program, or the acceleration program 6120.

Referring now to FIG. 42A, an embodiment of a method 6400 for practicing this

aspect is depicted. In brief overview, at step 6402, the client 6205 logs in and

establishes a communication session with the appliance 6205, At step 6404, the

appliance 1250 sends the first program 6222 to the client 6205. At step 6406, the client

6205 installs and executes the first program 6222, which in turns installs and executes

the acceleration program 6120, i.e., the second program. At step 6407, the client 6205

communicates with and accesses resources on a private network via an established

243

WO 2007/121241 PCT/US2007/066433

encrypted data communication session. At step 6410, the client 6205 logs out from the

appliance 1250 and terminates the communication session with the appliance 1250.

At step 6402 of method 6400, the client 6205 performs a log in procedure and

establishes an encrypted data communication session with appliance 1250 via network

6204. In one embodiment, the encrypted data communication session is used as a

tunnel to bridge traffic from client 6205 to any of servers 30 which reside behind

appliance 1250 in private data communication network. In an embodiment, client 6205

uses a web browser, such as Microsoft Internet Explorer® or Netscape Navigator®, to

log in and establish a data communication session with appliance 1250 using Secure

Sockets Layer (SSL) or other encryption methods, such as IPSec, and Transport Layer

Security (TLS). In another embodiment, a protocol such as Hypertext Transfer Protocol

over Secure Sockets Layer (HTTPS) may be used to initiate the encrypted data

communication session.

At step 6404, in response to log in and establishment of the encrypted data

communication session, appliance 1250 sends a first program to client 6205 over

network 6204. The first program is designed and constructed, or otherwise configured,

to act as a tunnel endpoint for communication over the encrypted data communication

session. In one embodiment, the first program comprises a plug-in application that is

automatically installed and executed by the browser of the client 6204. For example,

the first program may comprise an ActiveX control that is provided as a plug-in to be

executed by a Microsoft Internet Explorer® Web browser. In another embodiment, the

first program may comprise a Java applet that is provided as a plug-in to be executed

by a Netscape Navigator® Web browser or another control or programming component

that works across network environments.

At step 406, client 6205 installs and executes the first program 6222, wherein

executing the first program comprises installing a second program on client 6205. In

one embodiment, the first program 6222 may be automatically installed and executed,

such as using any of the techniques discussed in conjunction with method 6300 and

FIG. 41 A. In some embodiments, the first program 6222 obtains, downloads or

receives the second program, or the acceleration program 6120, from the appliance

244

WO 2007/121241 PCT/US2007/066433

1250. In another embodiment, the first program 6222 comprises a installer or install

manager for the second program, such as the acceleration program 6120 to

automatically install and execute the second program, such as by way of a silent

installation or an installation transparent to a user of the client 6205, application 6220 of

the client 6205, the appliance 1250 or the server 30.

In one embodiment, the second program is configured, in part, to intercept

communications from applications 6220 running on client 6205 that are destined for

resources on network 6204 and to provide the intercepted communications to the first

program 6222 for sending to appliance 1250 via the encrypted data communication

session. The second program may also be configured to provide intranet network name

resolution service and optionally split network traffic. By splitting the traffic, an

embodiment is able to determine what traffic is channeled to an SSL tunnel or

encryption tunnel of the first program 6222 and what traffic is permitted or allows to

continue along for processing by the transport layer of the network stack 6210 under

normal, routine, or typical operations of the client 6205. In an embodiment, the second

program comprises a dynamic interceptor (for instance, a filter device driver) that is

inserted as a “hook” into an operating system of client 6205. For example, the second

program may comprise a filter device driver that is attached to the transport layer stack

of the client operating system, such as the transport layer stack of a Microsoft

Windows® operating system.

At step 6408, once the first and second programs have been installed,

applications running on client 6205 may communicate with and access resources, such

as applications and data, on private data communication network 6204 via the

established encrypted data communication session. The manner in which this

communication occurs will be discussed in more detail below with respect to FIG 42B.

Note that, in an one embodiment, the functions of the first program and second program

as described above are performed by a single control or programming component that

is automatically installed and executed by client 6205, such as the acceleration program

6120. In addition to providing a virtual private network connection and communications,

the first program 6222 and/or second program, such as the acceleration program 6120,

245

WO 2007/121241 PCT/US2007/066433

may perform any of the acceleration techniques described herein on communications of

the client via the virtual private network connection, e.g.. the encrypted tunnel or bridge

to appliance 1250.

At step 6410, client 6205 performs a log out procedure to disconnect from

network 6204, which terminates the encrypted data communication session with

appliance 1250. In one embodiment, at time of logging out, the first program 6222

automatically cleans up the modifications made to the operating system of the client

6205 to return the operating system to a state prior to the installation of the first program

6222 and/or second program. In one embodiment, the first program 6222 and/or

second program also includes an uninstaller or uninstall instructions to remove the first

and second programs from the operating system of the client 6205 or from further

operation on the client 6205 in a non-intrusive manner to the continued operations of

the client 6205. In yet another embodiment, the first program 6222 and/or the

acceleration program 6120 removes any files, such an temporary files or cookies, used

by applications of the client 6205 during any communication connections or sessions

provided.

FIG. 42B depicts an embodiment of another method 6450 by which a client 6205

communicates with and accesses resources on a private data communication network

6204. For example, the method 6450 represents a method by which step 6408 of

method 6400 may be carried out. In brief overview, at step 6452, the client 6205 makes

a new connection or resolves a domain name, such as a TCP/IP domain name

resolution, via the first program and/or second program. At step 6454, the second

program is executed. At step 6456, the second program intercepts communications

from the client 6205 destined to the private network and re-routes or sends the

communications to the first program 6222. At step 6458, the first program 6222

terminates or proxies the connection, separates the payload and encapsulates the

payload for delivery via the established encrypted communication session. At step

6460, the first program 6222 sends intercepted communications over public network to

appliance 1250 in private network via pre-established encrypted communication

session. At step 6462, the appliance 1250 decrypts communications received from the

246

WO 2007/121241 PCT/US2007/066433

first program and forwards the decrypted communications to the appropriate destination

resource, such as a server 30. At step 6464, the destination resource processed the

decrypted communications, and at step 6464 the destination resource sends responsive

communication, if any, to the appliance 1250. At step 6468, the appliance 1250

encrypts responsive communications and sends the encrypted communications over

public network to first program 6222 of client 6205 via pre-established encrypted

communication session. At step 6470, the first program 6222 decrypts responsive

communications and forwards decrypted communications on to the appropriate client

application via the second program.

At step 6452, an application 6220 of a client 6205 makes a new connection or

resolves a domain name via the transport protocol layer of the network stack 6210 of

the client 6205. In one embodiment, the application 6220 may request to establish a

transport layer connection between the client 6205 and a server 30, or between the

client 6205 and the appliance 1250. In another embodiment, the application 220 or the

client 6205 may request access to an application 6220 provided by the server 30. For

example, the server 30 may provide for server-based computing or thin-client computing

by transmitting a remote display protocol of ICA or RDP representing output of an

application 6220 executing on the server 30. In another embodiment, the client 6205

may request access to resources of a server 30, such as files or directories, or email

services. In some embodiments, the client 6205 may be on a public network 40 and the

server 30 on a private network 40’. In other embodiments, the client 6205 and server

30 may be on different private networks.

At step 6454, the second program executes one or more functions automatically

or otherwise before any transport layer functions are initiated. In some embodiments,

the second program is or otherwise comprises the acceleration program 6120. In one

embodiment, the second program intercepts or otherwise receives the client request of

step 6452. In some embodiments, the application 6220 of the client 6205 makes API

calls to the network stack 6210 which are intercepted by the second program. Prior to

any API calls being processed by the transport layer of the network stack 6210, the

second program is hooked into or otherwise interfaced to the network stack 6210 to

247

WO 2007/121241 PCT/US2007/066433

execute logic, rules, functions or operations prior to the communication being

transmitted or processed for transmission via a transport layer connection.

At step 6456, the second program intercepts communications from the client 205,

such as by any application 6220a-6220n on client 6205 that are destined for resources

on a network 40’ and re-routes them to the first program 6222, which in an embodiment

comprises an ActiveX control plug-in, a Java applet or other control or programming

component that works across network environments. The second program may access,

read or otherwise obtain destination information from the network packet or packets

providing the intercepted communications to determine the communication is destined

for a network, such as a private network 40’ behind appliance 1250. For example, the

second program may extract or interpret the destination IP address and/or port from the

network packet. Upon determination an intercepted communication is destined for

network 40’, the second program communicates the intercepted communication to the

first program 6222 via any suitable interface means and mechanism, such as via any

inter-process communication interface or an API call. In one embodiment, the

intercepted communication is sent to the first program 6222 as is, or in other

embodiments, the intercepted communication is pre-processed by the second program

prior to sending to the first program 6222. For example, the second program may

remove the payload from the intercepted communication and forward the payload to the

first program 6222.

At step 6458, each intercepted communication is terminated or proxied by the

first program 6222, and the first program 6222 prepares the intercepted communication

for transmission via the established encrypted data communication session. In one

embodiment, the first program 6222 separates out the payload and encapsulates the

payload for delivery via the established encrypted data communication session. In

another embodiment, the first program 6222 encapsulates the intercepted

communicated as received from the second program. In some embodiment, the

payload is a TCP payload and is encapsulated into a new TCP connection between the

client 6205 and the server 30, such as via appliance 1250.

248

WO 2007/121241 PCT/US2007/066433

At step 6460, the first program 6222 sends the intercepted communications over

network 6204 to appliance 1250 via the pre-established encrypted data communication

session. In some embodiments, the first program 6222 encrypts the intercepted

communications and sends the encrypted intercepted communications to appliance

1250. In one embodiment, encryption is carried out in accordance with SSL protocols.

In another embodiment, encryption is TLS based. Any type and form of encryption

and/or decryption may be used by either first program 6222 or the acceleration program

6120.

At step 6462, appliance 1250 acts as a proxy terminating the connection sent by

the first program 6222. The appliance 1250 decrypts the communications received from

the first program 6222, and forwards the decrypted communications onto the

appropriate destination resource on network 40’ via a second connection that the

appliance 1250 has established with the destination resource on network 40’. In one

embodiment, decryption is carried out in accordance with SSL protocols or other

applicable encryption and decryption protocols. In some embodiments, the appliance

1250 performs one or more acceleration techniques on the communication forwarded to

the destination resource, such as one or more of the following: techniques provided by

1) multi-protocol compression 6238’, 2) transport control protocol pooling 6224’, 3)

transport control protocol multiplexing 6226’, 4) transport control protocol buffering

6228’, and 5) caching via a cache manager 6232’.

At step 6464, the destination resource processes the decrypted

communications. In one embodiment, the decrypted communications is a request to

establish a connection or communication session. In another embodiment, the

decrypted communications is a request to start or access an application 6220 on behalf

of the client 6205. In other embodiments, the decrypted communications is a request

for a web page, such as a HTTP request to receive a web page from a web server 30.

At step 6466, if the decrypted communications include a request for which there

is a response, then the destination resource sends out responsive communications to

appliance 1250. In some embodiments, the response includes an acknowledgement of

establishing a connection or communication session as requested by the client 6205. In

249

WO 2007/121241 PCT/US2007/066433

other embodiments, the response includes an error message. In one embodiment, the

response includes an authentication request or a challenge-response mechanism. In

some embodiments, the response includes an acceleration program 6120 to be used by

the client 6205. In another embodiment, the response includes HTML, such as a web

page to be displayed by the client 6205. In other embodiments, the response includes

an object, such as a dynamically generated object.

At step 6468, appliance 1250 sends the responsive communications over

network 40 to the first program 6220 on client 6205 via the pre-established encrypted

data communication session. In one embodiment, the appliance 1250 encrypts the

responsive communications and sends the encrypted responsive communications to the

first program 6222. In some embodiments, encryption is carried out in accordance with

SSL protocols or other applicable encryption and decryption protocols. Furthermore,

the appliance 1250 may perform any of the acceleration techniques on communications

to the client 6205, such as multi-protocol compression 6238’, caching 6232’ or TCP

buffering 6228’.

At step 6470, the first program 6222 decrypts the responsive communications

and forwards the communication to the appropriate application 6222 via the second

program. The first program 6222 may use any suitable interface means and

mechanism to communicate to the second program, such as via any type and form of

inter-process communication mechanism or an API call. The second program provides

the responsive communication via the network stack 6210 of the client 6205 to the

application 6220. As such, the application 6220 transparently receives the responsive

communication without any changes or modification to the application 6220.

In accordance with another embodiment, client 6205 performs additional

processing of the intercepted communications before sending the communications over

the network 40 at step 6458. Because an embodiment provides a VPN solution that

acts as a proxy terminating connections at the client before encrypting such data, the

additional processing can be performed more effectively. Such processing can include

Domain Name Service (DNS) name resolution of the intercepted communications in

order to enable client applications to use whatever IP addresses they choose as well as

250

WO 2007/121241 PCT/US2007/066433

dynamically change those addresses at run time. Such additional processing permits

embodiments to be effectively integrated with other technologies such as global service

load balancing to achieve greater availability and greater efficiency among distributed

gateways or servers. The additional connection processing can also enable the

keeping of detailed logs and statistics regarding the intercepted communications.

In another embodiment, an appliance 1250 terminates communications received

from the first program on client 6205 and further processes one or more requests

included therein rather than forwarding the communications to a destination on network

40’ as shown at step 6462. This further processing can include back-end encryption

wherein communications are re-encrypted by appliance 1250 before delivery to the

appropriate destination on network 40’, thereby providing end-to-end network security.

The destination will thereafter decrypt the traffic and respond appropriately. Further,

such processing can permit appliance 1250 to serve responses out of a cache rather

than requiring additional work by a destination server, perform local network load

balancing, global service load balancing and/or compression on the communications to

enhance the efficiency and responsiveness of network 40.

In accordance with the above-described methods, a VPN based on an encrypted

data communication session is established between client 205 and network 40. For

example, in an embodiment, a secure VPN is established via HTTPS. Thereafter, all

communications from client 6205 to network 40 are routed via the first program to

appliance 1250, and vice-versa, through this encrypted data communication session. It

should be noted that although the encrypted data communication session may be

established using HTTPS, the communications that are passed through the encrypted

data communication session need not be HTTPS packet data or even HTTP packet

data. For example, the communications may also comprise Transmission Control

Protocol/User Datagram Protocol (TCP/UDP) or Internet Control Message Protocol

(ICMP) packet data, although these examples are not intended to be limiting.

Furthermore, although the method described in reference to FIG. 42B describes a

request-response type communication between an application on client 6205 and a

resource on network 40, encrypted communications need not be request-response

251

WO 2007/121241 PCT/US2007/066433

based. Rather, the communications can be of any type. Thus, any client application

that can establish a connection or communication session, such as a UDP session, can

send and receive encrypted communications

In another aspect, the acceleration program 6120 may dynamically bypass from

the client any intermediary device to connect or communicate with a server 30. For

example, a client 6205 may connection with a server via one or more intermediaries,

such as the appliance 1250. For one reason or another, an intermediary may no longer

be available for use by the client 6205 to communicate with the server 30, for example,

the appliance 1250 may be down for maintenance or may be in the process of rebooting

or restarting. The acceleration program 6120 determines the intermediary is not

available and automatically establishes a different connection or communication session

path with the server 30. This may occur transparently to the user or application of the

client 6205 such that the connection and/or communication session does not appear to

have changed or otherwise has been disrupted.

Referring now to FIG. 43, an embodiment of a method 6500 for automatically

bypassing an intermediary is depicted. In brief overview, at step 6505, the acceleration

program 6120 establishes a transport layer connection between the client 6205 and

server 30 via an intermediary, such as appliance 1250. At step 6510, the acceleration

program 6120 determines the intermediary is not useable for communicating by the

client 6205 to the server 30 via the established transport layer connection. At step

6515, the acceleration program 6120 intercepts on the client 6205 a communication

from the client 6205 to the serve 30. At step 6520, the acceleration program 6120

establishes a second transport layer connection between the client 6205 and the server

30, and as a result, bypasses the intermediary determines as not useable for the client’s

communications to the server 30. At step 6525, the acceleration program 6120

transmits the intercepted communication of the client 6205 to the server 30 via the

second transport layer connection.

In further detail, at step 6505, the acceleration program 120 establishes a

transport layer connection between the client 6205 and the server 30 via an

intermediary. In one embodiment, the intermediary comprises an appliance 6205. In

252

WO 2007/121241 PCT/US2007/066433

other embodiments, the intermediary comprises one of the following: a cache, a server,

a gateway, a firewall, a bridge, a router, a switch, a hub, a proxy, or any software

application or program acting as or providing the functionality and operations of any of

these types and forms of intermediaries. In one embodiment, the intermediary may

operate on the server 30. In some embodiments, the transport layer connection is

established via a plurality of intermediaries of the same type and form or of a different

types and forms. In another embodiment, the transport layer connection comprises of

the connection of a pool of transport layer connection either established as the client

6205 or at the appliance 1250.

At step 6510, the acceleration program 120 determines the intermediary is not

available or otherwise is not useable for communicating by the client 6205 to the server

30 via the established transport layer connection. The acceleration program 6120 may

determine the status or availability of the intermediary by any suitable means and/or

mechanism. In one embodiment, the acceleration program 6120 determines the

intermediary is not available by receiving an error message or failure reply associated

with a transmission to the intermediary. For example, the acceleration program 6120

may receive a failed transport layer communication response when transmitting a

communication from the client 6205 via the established transport layer connection. In

another embodiment, the acceleration program 6120 may transmit a ping command to

the intermediary on a predetermined frequency to monitor the status and availability of

the intermediary. If the acceleration program 6120 does not receive a reply from the

intermediary or in some embodiments, receives a delayed reply or a reply with a longer

than desired latency, the acceleration program 6120 may determine the intermediary is

not available or useable by the client 6205. In other embodiments, a server 30,

appliance 1250 or the intermediary may send a message to the client 6205 or

acceleration program 6120 providing information identifying the intermediary is not

available or otherwise is not useable by the client 6205. In some embodiments, the

established transport layer connection is disrupted or interrupted, or in other

embodiments, is closed.

253

WO 2007/121241 PCT/US2007/066433

At step 6515, the acceleration program 6120 intercepts a communication from

the client 6205 to the server 30 destined to travel via the intermediary through the

established transport layer connection. The acceleration program 6120 may intercept

the communication at any point and at any protocol layer in the network stack 6210. In

one embodiment, the acceleration program 6120 intercepts the communication at the

transport protocol layer prior to transmission on the established transport layer

connection. For example, in some embodiments, the acceleration program 6120

comprises a network driver having a transport driver interface or otherwise interfaced to

the transport protocol layer. Other embodiments may include a first program 6222 and

the acceleration program 6120 as a second program as discussed in conjunction with

FIGs. 42A-42B, in which either the first program 6222 or the acceleration program 6120

intercepts the communication.

At step 6520, the acceleration program 6120 establishes a second transport

layer connection to the server 6205 for the client 6205 in order to bypass the

intermediary determined to be unavailable or not useable by the client at step 6510. In

one embodiment, the acceleration program 6120 establishes a second transport layer

connection directly to the server 30, for example, when the client 6205 and server are

on the same network 6205 or on different networks routable between the client 6205

and the server 30. In another embodiment, the acceleration program 6120 establishes

the second transport layer connection with a second intermediary, such as a second

appliance 1250’. In some embodiments, the acceleration program 6120 requests the

appliance 1250 to establish another transport layer connection with the server 1250. In

one embodiment, the appliance 1250 uses a second transport layer connection of a

pool of transport layer connections to the server 30. In another embodiment, the

acceleration program 6120 request the server 30 to establish the second transport layer

connection. In some embodiments, the acceleration program 6120 uses a second

transport layer connection from a pool of transport layer connections established by the

acceleration program 6120 with the server 30.

In one embodiment, the acceleration program 120 establishes the second

transport layer connection at step 6520 transparently to a user or application 6220 of

254

WO 2007/121241 PCT/US2007/066433

the client 6205, or in some embodiments, transparently to any protocol layer above or

below the transport layer. In some aspects, the second transport layer connection is

established automatically for the client 6205 upon determination at step 6510 that the

intermediary is not available or should not be used by the client 6205. In other

embodiments, the second transport layer connection is established automatically upon

failure of transmission of the intercepted communication to the server 30, e.g., the first

attempt to transmit the communication. In some embodiments, the second transport

layer connection is established automatically upon failure of one or more retried

transmissions of the communication, or upon exhausting a predetermined number of

retries. In another embodiment, the second transport layer connection is established

upon determination the intermediary is delaying the rate of transmit or receipt of network

packets, causing latency or otherwise affecting the use of the transport layer connection

in an undesired manner. In one embodiment, the acceleration program 6120 performs

load-balancing and establishes a second transport layer connection bypassing the

intermediary to offload any processing or operations of the intermediary to the client

6205 and/or second intermediary.

At step 6525, the acceleration program 6120 transmits the intercepted

communication of the client 6205 to the server 30 via the second transport layer

connection. In one embodiment, the acceleration program 6120 transmits the

intercepted communication directly to the server 30. In other embodiments, the

acceleration program 6120 transmits the intercepted communication via a second

intermediary, such as a second appliance 1250. By using the second transport layer

connection, the acceleration program 6120 bypasses the intermediary and continues

the operations of an application 6220 of the client 6205 with the server 30. In one

embodiment, an application 6220 of the client 6205 continues with operations and

communications with the server 6220 as if the application 6220 was continuing to use

the previously or first established transport layer connection. As such, the acceleration

program 6120 prevents, avoids or circumvents any communication interruption,

disruption, latencies, delays or other operational or performance issues that may occur

if the intermediary was not bypassed by the acceleration program 6120. In another

255

WO 2007/121241 PCT/US2007/066433

aspect, this technique automatically provides the client 6205 continuous access to a

server 30 or remotely-accessed application even if there is an issue with or disruption in

access from an intermediate device.

Moreover, the redirection and bypassing techniques described above can be

used to perform load-balancing and traffic management on the client 6205 to access

one or more servers 30 providing applications 6220a-6220n, or other content and

functionality to the client 6205. For example, in one embodiment, an intermediary or

appliance used by the client to access a server may be overloading with increasing

transport layer connections, and decreasing rate of responses, performance or other

operations. Upon determination of decreasing performance of the intermediary or

appliance, the acceleration program 6120 can redirect the client to another intermediary

or appliance, or server to bypass any performance bottlenecks in the client’s end-to-end

connectivity to the server.

In other aspects, client-side acceleration techniques may be related to or

performed at the transport protocol layer of the network stack of the client. The

acceleration program 6120 may comprises executable instructions to perform any one

or more of 1) transport control protocol (TCP) buffering 6228, 2) TCP connection

pooling 6224, and 3) TCP multiplexing 6226. In some embodiments, as the acceleration

program 6120 transparently processes communications intercepted at the transport

protocol layer of the client’s network stack, the acceleration program 6120 can control

and manage the TCP connections of the client, and the use and transmission over the

connections by applications 6220a-6220n of the client 6205. FIG. 44 depicts an

embodiment of method 6600 of practicing the TCP buffering techniques, while FIGs.

45A-45B depicts an embodiment of the TCP connection pooling technique and FIGs.

46, 47, and 48 the TCP multiplexing technique.

In brief overview of an embodiment of method 6600 depicted in FIG. 44, at step

6605, the acceleration program 6120 intercepts a communication from the client 6205 to

the server 30, such as a request to access the server 30 by the client 205. At step 610,

the acceleration program 6120 determines whether a difference between a rate of

consumption of received server responses and a rate of production of requests

256

WO 2007/121241 PCT/US2007/066433

transmitted by the client falls below a predetermined threshold. If at step 6615, the

difference in product and consumption rates does not fall below the predetermined

threshold, the acceleration program 6120 forwards the communication to the server 260

at step 6617. If at step 6615, the difference in rates is below the predetermined

threshold, then at step 6620, the acceleration program 6120 stores the communication

in memory of the client 6205. At step 6625, the acceleration program 6120 determines

if the difference in rates has changed to above the predetermined threshold, and if so

forwards the stored communication to the server 30. Otherwise, the acceleration

program 6120 maintains the communication in memory of the client 6205 until a point in

time the difference in rates change at step 6625 to above the predetermined threshold.

For example, if the client 6205 is transmitting requests to the server 30 at a greater rate

than by which the client 6205 can consume the generated responses, the acceleration

program 6120 holds further transmission until a future point in time at which the

difference in the rates haves changed.

In further detail, at step 6605, the acceleration program intercepts a

communication from the client 6205 to the server 30. The acceleration program 6120

may intercept the communication at any point and at any protocol layer in the network

stack 6210. In one embodiment, the acceleration program 6120 intercepts the

communication at the transport protocol layer prior to transmission on the established

transport layer connection. For example, in some embodiments, the acceleration

program 6120 comprises a network driver having a transport driver interface or

otherwise interfaced to the transport protocol layer. Other embodiments, may include a

first program 6222 and the acceleration program 6120 as a second program as

discussed in conjunction with FIGs. 42A-42B, in which either the first program 6222 or

the acceleration program 6120 intercepts the communication. In one embodiment, the

communication comprises a request by the client 6205 to use or otherwise access a

resource of the server 30, such as an application 6220.

At step 6610, the acceleration program 6120 determines whether a difference

between a rate of consumption and a rate of production of the client 6205 falls below a

predetermined threshold. In one embodiment, the acceleration program 6120 counts

257

WO 2007/121241 PCT/US2007/066433

and tracks the number of requests transmitted by the client 6205 to the server 30, and

in another embodiment, the acceleration program 6120 counts and tracks number of

responses received by the client 6205 from the server 30. In some embodiments, the

client 6205 tracks responses transmitted and requests received on a per application

6220 basis. The responses and requests may be tracked at any protocol layer of the

network stack 6210. In one embodiment, the number of requests transmitted by the

client 6205 or application 6220 is counted and tracked from the point of submission to

the transport layer or to a transport layer connection between the client 6205 and server

30. Likewise, in another embodiment, the number of responses received by the client

6205 or application 6220 from the server 30 is counted and tracked from the point of

receipt at to the transport layer or from the transport layer connection between the client

6205 and server 30, and/or at the point the response is provided to a protocol layer,

such as an application layer, above the transport layer of the network stack 6210.

In some embodiments, the acceleration program 6120 accesses, inspects or

otherwise obtains information and data about the send and receive TCP buffers of the

transport layer connection established by the acceleration program 6120 between the

client 6205 and server 30. For example, the acceleration program 6120 may determine

the default and maximum size of any TCP/IP buffer and the currently used portions of

the buffer to determine a difference in rates between sending and receiving of network

packets from the client 6205 to the server 30. In other embodiments, the acceleration

program 6120 uses any type and form of congestion algorithm to determine if there is

congestion causes by a difference in consumption and product of network packets from

the client 6205 to the server 30. In another embodiment, the acceleration program

6120 interfaces with or obtains information or data from a congestion algorithm uses by

the transport layer connection, such as by a network driver or TCP service provider.

For example, in one embodiment, the acceleration program 6120 determines

information and data regarding the congestion window used by the connection.

The predetermined threshold can be configured, specified, defined or identified

by any suitable means and mechanism of the acceleration program 6120. In one

embodiment, the threshold may be specified as a percentage, relative, absolute or

258

WO 2007/121241 PCT/US2007/066433

otherwise, between the production rate and consumption rate of the client 6205 and/or

application 6220. The rates for consumption and/or product may be identified by a

number of consumed receipts and produced transmissions respectively, over any time

period at any granularity. In some embodiments, the threshold may be specified as a

quantity difference between the rate of production and consumption of the client 6205

and/or application 6220, and in some embodiments, a quantity difference over a time

period. For example, the threshold may be specified as the point in time the client 6205

has produced 6100 requests more than the client 6205 has consumed. In another

example, the threshold may be specified as the point in time when the client 6205 is

producing 610 requests per time period to the server 30 more than the requests

consumed by the client 6205 during the same time period.

At step 6615, if the difference in product and consumption rate of the client 6205

and/or application 6220 is not below the predetermined threshold, the acceleration

program 6120 forwards the communication to the server 6260 at step 6617. In some

embodiments, the acceleration program performs any of the acceleration techniques for

the communication. For example, the communication may be forwarded to the server

via a pooled multiplexed transport layer connection, and additionally, may be

compressed. In other embodiments, the client 6205 may forward the communication to

an appliance 1250 providing a connection for the client 6205 to the server 30.

At step 6615, if the difference in product and consumption rate of the client 6205

and/or application 6220 is below the predetermined threshold, the acceleration program

6120, at step 6620, stores the communication in memory of the client 6205. In some

embodiments, the memory may be memory of the kernel-mode 6202 of the client 6205,

while, in other embodiments, the memory may be in user-mode 6203 of the client 6205.

In one embodiment, the acceleration program 6120 may store the communication in

cache via the cache manager 6232. In other embodiments, the acceleration program

6120 may use an object, data structure or other data element accessible by the

acceleration program 6120 to buffer, hold or otherwise store the intercepted

communication. In one embodiment, the intercepted communication may be stored in a

compressed manner in memory. In another embodiment, the acceleration program

259

WO 2007/121241 PCT/US2007/066433

6120 sends the intercepted communication to a first program 6222 to store or hold in

memory for transmission at a later point in time.

At step 6625, the acceleration program 6120 determines when to transmit the

stored communication to the server 30. In one embodiment, the acceleration program

6120 performs steps 6610 and 6615 to determine if the difference in production and

consumption rates of the client 6205 are above the threshold upon which the

acceleration program 6120 forwards the stored communication to the server 30 at step

6617. In some embodiments, the acceleration program 6120 compares the difference

in production and consumption rates on a regular or predetermined frequency or on a

polling or event basis, and when the difference rises above the predetermined

threshold, the acceleration program 6120 forwards the communication to the server 30.

In other embodiments, the acceleration program 6120 sets or configures a timer to

determine how long to store the intercepted communication. Upon expiration of the

timer the acceleration program 6120 transmits the stored communication to the server

30. In another embodiment, the acceleration program 6120 checks the number of

server responses consumed by the client 6205 since storing the intercepted

communication. If the number of consumed responses is greater than a predetermined

number, the acceleration program 6120 releases the intercepted communication from

the memory buffer or storage and submits the communication for transmission to the

server 30.

If at step 6625, the acceleration program 6120 determines the rates of production

or consumption have not changed in a suitable manner, the acceleration program 6120

holds or maintains the intercepted communication in memory until a suitable point of

time is reached. In one embodiment, the acceleration program 6120 forwards the

communication to the server at step 6617 even if the production and/or consumption

rates do not change. For example, after a period of time waiting for the production

and/or consumption rate to change and the rates do not change, the acceleration

program 6120 forward the communication to the server 30.

Although the TCP buffering technique is generally discussed in relation to an

intercepted communication or request, the embodiments of the method 6600 may be

260

WO 2007/121241 PCT/US2007/066433

practiced subsequently, nearly simultaneously or concurrently for multiple intercepted

communications of the client 6205 to the server 30. Additionally, in another

embodiment, the method 6600 may be practiced on the client regarding

communications from the client to multiple servers 30. For example, a first instance of

method 6600 may be practiced between the client 6205 and a first server 30’, and a

second instance of method 6600 may be practiced between the client 6205 and a

second server 30”. Furthermore, in some embodiments, the method 6600 may be

practiced for a first application 6200a and also for a second application 6200b, using the

respective production and consumption rates of each application. In other

embodiments, the method 6600 may be practiced for a first application 6200a but not a

second application 6200n.

According to another aspect, the client-side acceleration program 6120 reduces

the processing load of servers 30 and/or appliance 1250 caused by repeatedly opening

and closing connections of the client clients by opening one or more connections with

each server and maintaining these connections to allow repeated data accesses by

applications of the client 6205 to the server 30. This technique is generally referred to

herein as "connection pooling." Referring now to FIG. 45A, in brief overview of method

6700, at step 6702, the acceleration program 6120 intercepts an application’s request to

access a server, and at step 6704, determines the identity of the server associated with

the request. At step 6706, the acceleration program 6120 determines if the acceleration

program 6120 has an established transport layer connection to the server 30 free for

use by the application 6220. If there is not a transport layer connection to the server 30

free for use by the application 6220, the acceleration program 6220 establishes, at step

6708, a transport layer connection to the server 30 for use by the client 6205. At step

6706, if there is a transport layer connection available for use by the application 6220, at

step 6710, the acceleration program 6120 translates the application’s request for

transmission or communication via the available transport layer connection.

In further overview, at step 6712, the acceleration program 6120 receives the

response to the request from the server 30, and at step 6714 translates the response

into a response to the application 6220. At step 6716, the acceleration program 6120

261

WO 2007/121241 PCT/US2007/066433

may maintain or keep the transport layer connection open for use by any of the

applications 6220a-6220n of the client 6205. By maintaining on the client 6205 open

transport layer connections with the servers 30 and by opening and closing connections

with the applications as needed, the acceleration program 6120 frees the servers of

TCP connection loading problems associated with serving the client 6205 over the

network 40, such as the Internet. At step 6718, the acceleration program 6120 at some

point closes the transport layer connection if the connection is determined no longer

used by one or more application 6220 of the client 6205 to access the server 30.

In further detail, at step 6702, the acceleration program 6120 intercepts a request

by any application 6220a-6220n of the client 6205 to access a server 30. In some

embodiments, the request is intercepted at the transport protocol layer before

establishing or transmitting the request via a transport layer connection. In other

embodiments, the request is intercepted at any protocol layer above the transport layer

or a transport layer connection. In one embodiment, the request of the application 6220

is a request to open or establish a transport layer connection with the server 30. In

some embodiments, in response to the request, the acceleration program 6120

establishes a first transport layer connection of a pool of transport layer connections for

use by applications 6220a-6220n of the client 6205. In another embodiment, the

application request is a request to access the server via an established transport layer

connection of the client 6205.

At step 6704, the acceleration program 6120 determines the identity of the server

30 from the request by any suitable means and mechanism. In some embodiments, the

domain name or internet protocol address of the server 30 is identified or otherwise

referenced by the contents of the request, for example a text string of the request may

identify the domain name of a server 30. In one embodiment, the identity of the server

30 is determined by the header information of a TCP packet, such as the destination

internet protocol address and port number. In another embodiment, the server 30 is

associated with the application 6220, and the acceleration program 6120 looks up or

queries the association in a database or other structured information storage.

262

WO 2007/121241 PCT/US2007/066433

At step 6706, the acceleration program 6120 determines if there is a transport

layer connection available for use or is otherwise free to use by the application 6220. In

one embodiment, the acceleration program 6120 may have not yet established a

transport layer connection with the server 30, and as such, there is not a transport layer

connection available for the application 6220 to use. In another embodiment, the

acceleration program 6120 may have a previously established transport layer

connection with the server 30 but determines that another application 6220 is currently

actively using the connection. As will be discussed in further detail below, the

acceleration program 6120 determines if an established transport layer connection is

available for use by another application or can be shared by applications 6220s-6220n

based on the length of a message being received from the server 30 for the application

6220, such as a response to a request, and/or if the communications between the

server 30 and application 6220 are currently idle.

At step 6708, if the acceleration program 6120 determines a transport layer

connection is not available for use by the application 6220, the acceleration program

6120 establishes a transport layer connection with the server 30. In some

embodiments, the transport layer connection established at step 6708 is the first

transport layer connection with the server 30, and in other embodiments, the transport

layer connection is a second transport layer connection of a plurality of transport layer

connections to the server 30. In yet another embodiment, the acceleration program

6120 waits for an already established transport layer connection to become available or

free to communicate the application’s request to the server 30. For example, the

acceleration program 6120 may determine a first application 6220a may be shortly

completing a transaction with the server 30 via an established connection.

At step 6710, the acceleration program 6120 translates the application’s request

to be transmitted via the transport layer connection to the server 6106. In some

embodiments, the acceleration program 6120 uses one port number for the transport

layer connection communication for all applications 6220a-6220n of the client 6205

sharing the connection. In some cases, the acceleration program 6120 tracks the

requests and outstanding responses for the requests on an application by application

263

WO 2007/121241 PCT/US2007/066433

basis. As such, the acceleration program 6120 recognizes which application 6220 is

transmitting and receiving network packets via the transport layer connection to the

server 30 at any given point in time. In one embodiment, only one application 6220 at a

time is sending and receiving on the transport layer connection and thus the

acceleration program 6220 understands which application 6220 is using the connection.

In some embodiments, the acceleration program 6120 associates a process id of the

application 6220 with the request. In other embodiments, the acceleration program

6120 provides and associates a port number with the application 6220, and modifies the

port number in the TCP network packet to be transmitted to application’s assigned port

number. In another embodiment, the port number is provided by the application 6220

and the acceleration program 6120 changes or otherwise provides the port number

accordingly in the TCP network packet.

At step 6712, the acceleration program 6120 receives a response to the

application’s request from the server 30. In one embodiment, the server 30 does not

respond to the request. In another embodiment, the server 30 responds with an error or

failure message. In some embodiments, the server 30 responds with multiple

responses. In other embodiments, the server 30 responds with a response comprising

multiple network packets or multiple TCP segments. In another embodiment, the server

30 responds with one or more network packets identifying the source port number

associated with or assigned to the application 6220. In one embodiment, the server 30

responds with one or more network packets identifying a source port number of the

transport layer connection and used for multiple applications of the client 6205.

At step 6714, the acceleration program 6120 translates or otherwise processes

the response from the server 30 in a manner responsive to the application 6220. In one

embodiment, the acceleration program 6120 replaces the source port number of the

received network packet or packets with the port number of the application 6220. In

another embodiment, the acceleration program 6120 determines via a tracking

mechanism the application 6220 currently using the transport layer connection and

passes the response to the application 6220 via the network stack 6210. In one

embodiment, the response is not altered and passed for processing via the protocol

264

WO 2007/121241 PCT/US2007/066433

layers of the network stack 6210 above the transport layer of the connection. In some

embodiments, the acceleration program 6120 waits for multiple portions, such as TCP

segments, of the response to be received before processing and forwarding the

response to the application 6220. In one embodiment, the acceleration program 6120

passes the response to a first program 6222, which interfaces with and provides the

response to the application 6220.

At step 6716, the acceleration program 6120 maintains or keeps the transport

layer connection open in a pool of one or more transport layer connections from the

client 6205 to the server 30. In one embodiment, the acceleration program 6120 or a

transport layer driver of the network stack 6210 includes a keep-alive mechanism that

periodically probes the other end of a connection when the connection is otherwise idle,

for example where when there is no data to send. The keep-alive mechanism may

send this message in order to receive a response to confirm the connection is still active

although the connection may be idle. The keep-alive message and corresponding

response, may include any type and form of format, command, directive or

communication. As such, in some embodiments, the acceleration program 6120

transmits or causes to transmit via a transport layer driver a keep-alive message to the

transport layer connection. In some embodiments, the acceleration program 6120 sets

a frequency for the keep-alive messages, and in other embodiments, changes the

frequency of the keep-alive messages based on the behavior or activity of the

applications 6220a-6220n using the connection.

In some embodiments, the acceleration program 6120 intercepts any RST and/or

FIN commands, i.e., TCP/IP commands to reset and/or terminate the TCP connection,

received over the transport layer connection. In one embodiment, the acceleration

program 6120 ignores, takes no action on, or otherwise drops, deletes or flushes the

intercepted RST and/or FIN command. In another embodiment, the acceleration

program 6120 intercepts and receives a RST and/or FIN commands but sends a

message to the other end of the connection to keep or maintain the connection open. In

other embodiments, the acceleration program 6120 establishes a new transport layer

265

WO 2007/121241 PCT/US2007/066433

connection in response to a closing of an established transport layer connection due to

processing of a RST and/or FIN command.

In other embodiments, the acceleration program 6120 inserts an instruction,

command or directive in an intercepted communication of the client 6205 to direct the

server 30 to keep the connection open or to otherwise not close the connection unless

the client 6205 sends a command to do so. For example, in one embodiment, the

acceleration program 6120 intercepts a communication of a GET request of the HTTP

protocol, such as protocol version 1.0, and inserts a keep-alive header, e.g.,

“Connection: Keep-Alive”, into the communication to the server 30. In other

embodiments, a GET request or other HTTP command may include the keep-alive

header. In these embodiments, the acceleration program 6120 may intercept the

communication and check for the keep-alive header and then forward the

communication to the server 30. In some embodiments, version 1.1 or greater of HTTP

is used by which the keep-alive mechanism is implicit such that the server 30 keeps the

connection open until the client 6205 requests to the close the connection. In other

embodiments, the acceleration program 6120 keeps the transport layer connection

open to the server 30 until the client 6205 is rebooted or restarted, the network 40

becomes unavailable or the client 6205 is disconnected from the network 40, or the

server 30 is rebooted or restarted.

At step 6718, the acceleration program 6120 may close any one or more of the

transport layer connections between a client 6205 and a server 30 at any desired point

in time. In some embodiments, the acceleration program 6120 closes a transport layer

connection upon the termination of the one or more applications 6220a-6220n on the

client 6205 using the connection. In other embodiments, the acceleration program 6120

closes a transport layer connection upon expiration of a time out period for any

application 6220a-6220n to use the connection. For example, the acceleration program

6120 may configure, set or provide a timer to expire upon a predetermined time period

and if the connection is or remains idle during the time period, the acceleration program

6120 closes the connection. In some embodiments, the server 30 may be rebooted,

restarted, or the connection disrupted or interrupted and the acceleration program 6120

266

WO 2007/121241 PCT/US2007/066433

closes the connection. In some embodiments, the acceleration program 6120 transmits

or causes to be transmitted a RST and/or FIN command to close connection upon

completion of sending requests to and receiving all the data of responses from the

server 30. In other embodiments, the transport layer connection or pool of transport

layer connections are closed upon restart or reboot of the client 6205, disconnection to

the network 40 or unavailability of the network 40, or restart or reboot of the server 30.

In some embodiments, a first transport layer connection to the server 30 is kept

open while a second transport layer connection to the server is closed as the

acceleration program 6120 determines only the first transport layer connection is

needed for sharing a connection to the server 30 by one or more applications 6220a-

6220n of the client 6205. In other embodiments, the acceleration program 6120

maintains a pool of one transport layer connection to any server 30 and establishes a

second or a plurality of connections to a given server 30 based on increased requests,

communications or transport layer connection usage of the applications 6220a-6220n

on the client 6205

Although an embodiment of method 6700 is generally discussed in relation to a

pool of one or more transport layer connections from the client 6205 to a server 30, the

acceleration program 6120 may establish subsequently, nearly simultaneously, or

concurrently a pool of transport layer connections between the client and each of a

plurality of servers 30. As such, a first application 6220a and a second application

6220b may be using a first pool of one or more transport layer connections to server

30a, and a third application 6220c and a fourth application 6220d using a second pool

of one or more transport layer connection to server 30b. Furthermore, each of the steps

of an embodiment of the method 6700 can be performed in different instances and at

different frequencies. In some embodiments, multiples instances of the acceleration

program 6120 may be used to handle each pool of one or more transport layer

connections to each server 30.

Now referring to FIG. 45B, a flow diagram is depicted of an acceleration program

6120 providing a transport layer connection for use by two applications 6220a and

6220b of a client 6205, to a server 30 in one embodiment, or to an appliance 1250, in

267

WO 2007/121241 PCT/US2007/066433

another embodiment. The acceleration program 6120 on client 6205 opens a first

transport layer connection between client 6205 and the server 30, or appliance 1250,

using network address 1 provided by application 6220 as depicted by step 6752. Step

6752 is shown as a two-way step because the TCP/IP protocol employs a multi-stage

handshake to open connections.

Once the transport layer connection is established, the acceleration program

6120 intercepts a GET request from application 6220a specifying a path name of

/sales/forecast.html, as shown by step 6754. Because no free transport layer

connection is open between acceleration program 6120 and server 30, or appliance

6205, acceleration program 6120 opens a transport layer connection. In one

embodiment, acceleration program 6120 maps the request of the application 6220a to a

second network address of network address 2 which specifies server 30, as shown by

step 6756. For example, the acceleration program 120 performs network address

translation to modify the destination IP address and/or destination port to a server 30’

requested by the application 6220a or to another server 30” that can also handle or

respond to the request. In another embodiment, the acceleration program 6120 sends

the request to the server 30, or appliance 1250, as received or as generated by the

application 6220s.

Acceleration program 6120 also passes the GET request to that server 30, or

appliance 1250, as shown by step 6758. In one embodiment, the appliance 1250

forwards the request to the server 30, and in a further embodiment, the appliance 1250

forwards the request via a pooled or pooled and multiplexed transport layer connections

between the appliance 1250 and the server 30. In some embodiments, the server 30

responds with the requested web page, as shown by step 6760. Acceleration program

6120 forwards the web page to application 6220a, as shown by step 6762. In one

embodiment, the transport layer connection between the acceleration program 6120

and the server 30, or appliance 1250, is closed, as shown by step 6764. In other

embodiments, the acceleration program 6120 intercepts the close request, and ignores

the request leaving the transport layer connection open. According to the TCP/IP

protocol, closing a network connection can involve a multi-stage process. Therefore, the

268

WO 2007/121241 PCT/US2007/066433

flow line of step 6764 is shown as bidirectional. In other embodiments and in

accordance with the techniques of the pooling aspect, the transport layer connection

established for and used by the first application 6220 is kept open or otherwise

maintained to accommodate further data steps from the same application 6220a or a

different application, such as the second application 6220b.

At step 6766, the acceleration program 6120 intercepts a request from the

second application 6220a to the server 30, or appliance 1250. If there is a free

transport layer connection open and/or useable by the second application 6220b, such

as the transport layer connection established at step 6756 for the first application

6220a, the acceleration program 6120 uses this previously established transport layer

connection. As such, a second transport layer connection does not need to be opened

at step 6766. Otherwise, the acceleration program 6120 establishes a second transport

layer connection to the server 30, or appliance 1250. At step 6768, the acceleration

program intercepts a request from the second application 6220b, for example

requesting the Web page /sales/forecast.html, and transmits the request to the server

30, or appliance 1250, at step 6770. Because a free connection is already open

between the acceleration program 6120 and server 6120, it is unnecessary for the

acceleration program 6120 to burden the server 6120 with the processing load of

opening a further connection. At step 6772, the acceleration program 6120 intercepts

or receives a response from the server 30, such as via appliance 1250 from the

transport layer connection, and forwards the response to second application 6220b. At

step 6776, the acceleration program 120 intercepts a close request from the second

application 6220b, and in some embodiments, closes the connection, while in other

embodiments, ignores the request, and keeps the connection to accommodate further

data requests from the first application 6220a, the second application 6220b, or yet

another application 6220c-6220n of the client 6205.

There are a number of scenarios that result in the acceleration program 6120

closing the connection with server 30, or application 1250, at step 6776. For example,

the client 6205 or acceleration program 6120 may initiate a FIN (finish) command upon

determination that the client 6205 has retrieved all the requested data for applications

269

WO 2007/121241 PCT/US2007/066433

6220a and 6220b, or upon termination, shutting down or exiting applications 6220a and

6220b. In some embodiments, the client 6205 or acceleration program 6120 may also

initiate a RST (reset) command under similar conditions. In addition to closing the

connection between the acceleration program 6120 and the server 30, or the appliance

1250, the RST command results in a number of housekeeping operations being

performed to keep the server side connection in good order. In particular, the TCP

protocol guarantees that the RST command will have the right SEQ (sequence) number

so that the server will accept the segment. However, the RST command is not

guaranteed to have the right ACK (acknowledge) number. To take care of this scenario,

the acceleration program 6120 keeps track of the bytes of data sent by the server 30, or

appliance 1250, and the bytes acknowledged by the client 6205. If the client 6205 has

not yet acknowledged all the data by the server 30, the acceleration program 6120

calculates the unacknowledged bytes, and sends an ACK to the server 6205.

Furthermore, although not shown in FIG. 45B, the server 30, or appliance 1250,

can also close a connection between itself and the client 6205. The server 30, or

appliance 1250, would send a FIN command to the client 6205. In response, in some

embodiments, the acceleration program 6120 closes the connection, and a further

embodiment, re-establishes another connection with the server 30, or appliance 1250.

Moreover, although an embodiment of method 6700 of FIG. 45A and the

example flow diagram of FIG. 45B are generally discussed as pooling one or more

transport layer connections for use by a plurality of applications, the pooling technique

can be applied to a single application 6220 that requests or initiates a plurality of

transport layer connections and requests via these connections. For example, in an

embodiment of HTTP protocol, a transport layer connection may be established for

each HTTP request from an application. Using the techniques, a pool of one or more

transport layer connections can be used by the application 220 without opening and

closing transport layer connections for each request.

In another aspect, techniques for multiplexing application requests via the same

or shared transport layer connection may be used, such as a transport layer connection

established via the pooling techniques described in conjunction with FIGs. 45A-45B. In

270

WO 2007/121241 PCT/US2007/066433

some embodiments, the availability of an established transport layer connection is

determined and requests may be multiplexed from a plurality of applications via the

connection by checking whether the content of a response from the server 30 to an

application’s requests has been completely received. As will be discussed in further

detail below, in one embodiment, the content-length parameter of a response is used,

and in another embodiment, a chunked transfer encoding header of a response is used

to check if all the data of a response has been received. In one aspect, whether all the

data from a response has been received is checked to determine if a pooled connection

is currently free for use by an application, and/or whether to establish another transport

layer connection to the pool of connections to the server, such at steps 6706 and 6708

of method 6700 depicted in FIG. 45. In another embodiment, the technique of checking

the content length for a response is used as a technique for multiplexing requests from

a plurality of applications via the same transport layer connection.

Referring now to FIG. 46, an embodiment of a method 6800 for multiplexing

requests via a single transport layer connection from the client 6205 to the server 30 is

depicted. In brief overview, at step 6805, the acceleration program 6120 establishes a

transport layer connection between the client 6205 and server 30. At step 6810, the

acceleration program 6120 intercepts a first request of a first application 6220a to the

server 30. At step 6815, the acceleration program 6120 determines whether the

transport layer connection is currently being used by another application or is otherwise

idle. At step 6817, if the transport layer connection is available to use by the application

6220a then at step 6820, the acceleration program 6120 transmits the request to the

server. Otherwise, at step 6817, if the transport layer connection is not available to use

by the application 6220a, then the acceleration program 6120 at step 6819 either waits

for a time period and returns to step 6815, or establishes a second transport layer

connection for use by the application 6220. At step 6825, the acceleration program

6120 receives a response to the application’s request from the server. At step 6830,

the acceleration program 6120 intercepts a second request, by a second application

6220b, and proceeds at step 6815 to determine if the transport layer connection is

available for use by the second application 6220b. In some embodiments, the

271

WO 2007/121241 PCT/US2007/066433

acceleration program 6120 intercepts the request of the second application 6220b at

step 6830 prior to receiving the response of the first request at step 6825, or prior to

receiving all of the data of the response. As discussed further herein, in some

embodiments, the acceleration program 6120 uses content length checking technique

to determine when the transport layer connection is idle or an application has received

all the data to a response to a request.

In further detail, at step 6805, the acceleration program 6120 establishes a

transport layer connection between the client 6205 and server 30. In some

embodiments, the acceleration program 6120 establishes the transport layer connection

with or via the appliance 1250, or an intermediary. In one embodiment, the acceleration

program 6120 establishes the transport layer connection as a pool of transport layer

connection to the server 30. As such, in some embodiments, the transport layer

connection may comprise a second or a third transport layer connection to the server

30. In other embodiments, the acceleration program 6120 may establish the transport

layer connection via a first program 6222 as previously discussed herein. In some

embodiments, the acceleration program 6120 established the transport layer connection

in response to a request by a first application 6220a of the client 6205.

At step 6810, the acceleration program 6120 intercepts a first request by a first

application 6220a to access the server 30. In some embodiments, the request is

intercepted at the transport protocol layer before establishing or transmitting the request

via the transport layer connection. In other embodiments, the request is intercepted at

any protocol layer above the transport layer or above the transport layer connection. In

some embodiments, the request is intercepted by a first program 6222. In one

embodiment, the request of the application 6220a is a request to open or establish a

transport layer connection with the server 30. In another embodiment, the application

request is a request to access the server via the established transport layer connection

or via the appliance 1250.

At step 6815, the acceleration program 120 determines whether the transport

layer connection is idle or available for use by the first application 6220a, or to

communicate the first request of the first application 6220a. In some embodiments, the

272

WO 2007/121241 PCT/US2007/066433

acceleration program 6120 determines from a pool of one or more transport layer

connections, which transport layer connection in the pool is idle or free to use by the

first application 6220a. In one embodiment, the acceleration program 6120 determines

the transport layer connection is idle because the acceleration program 6120

established the transport layer connection in response to the request, or immediately

prior to the request. In some embodiments, the acceleration program 6120 may have

not received any requests from any application 6220 and recognizes this request as the

first request to be intercepted and processed by the acceleration program 6120. In

another embodiment, the acceleration program 6120 tracks the number of outstanding

responses for any requests transmitted on the transport layer connection, and if there

are no outstanding responses, the acceleration program 6120 recognizes the transport

layer connection is available for use by the first application 6220a. In yet another

embodiment, the acceleration program 6120 recognizes the transport layer connection

is currently idle. For example, the acceleration program 6120 may be initiating keep­

alive requests to the server to keep the connection open. In some embodiments, the

transport layer connection is idle as the last transaction has been completed but the

server 30 and/or client 6205 has not yet transmitted a RST and/or FIN command.

In some embodiments, the acceleration program 6120 may check the content

length of a response to determine if the response from the server 30 to the first request

of the first application 6202a is complete or otherwise, the acceleration program 6120

has received all the data to the response. As mentioned above, these techniques in

some embodiments are also used to determine to establish another connection for the

pooling technique. In regards to this technique, FIGs. 47 and 48 will be used to describe

checking the content-length parameter of a response in one embodiment, or in another

embodiment, a chunked transfer encoding header of a response to determine whether

all the data of a response has been received. FIG. 47 depicts a TCP portion of a TCP

packet referred to as a TCP segment 6900. The TCP segment 6900 includes a TCP

header 6902, and a body 6904. The body 6904 comprises among other data and

information, a HTTP header and message in an embodiment wherein the TCP packet

carries an application layer protocol of HTTP. In some embodiments, a content length

273

WO 2007/121241 PCT/US2007/066433

parameter 6906 is located, found or referenced by or in the HTTP header. In one

embodiment, the acceleration program 120 uses the content length parameter 6906 to

determine if all the data for a response is received.

FIG. 48 depicts another embodiment of a TCP segment of a TCP packet. In

some embodiments of using the HTTP protocol over the transport layer connection, a

chunked transfer encoding header may be present and indicating that chunked transfer

encoding has been applied to the TCP segment or packet. As such, in this

embodiment, the length of the message is defined by the chunked encoding. The

chunked encoding modifies the body of the message in order to transfer the message

as a series of chunks, each chunk with its own length indicator in a chunk-size field.

The TCP segment 7600 includes a TCP header (now shown) and a body. The body

comprises, among other information, a HTTP header 7602A—7602C and the message.

The HTTP header 7602A-7602C comprises seven chunk-size fields 7606A-7601C, and

six chunk message data 7604A-7604F.

The chunk-size field 7606A-7606G are linked together, or otherwise referenced

or associated, as illustrated in FIG. 48. The chunk-size field 7606A indicates the length

of the message in the chunk message data 7604A, the chunk-size field 7606C indicates

the length of the message in the chunk message data 7604C, and so forth. The last

chunk-size field 7606G comprises the length value zero indicating that there are no

more chunks or any more of the message to follow. In another embodiment, the

acceleration program 6120 determines via the chunk-size fields whether the client 6205

has received all the data to a response.

Although FIGs. 47 and 48 generally describes a technique for checking whether

all the data for a response to a request has been received, these techniques are

applicable to a server 30 or appliance 1250 sending an asynchronous message or

communication to the client 6205. Furthermore, although these techniques are generally

described in conjunction with FIGs. 47 and 48 for an HTTP protocol, these techniques

can be used for any protocol at any protocol layer that provided an indication of the

length of data to be transmitted or received by the client 6205. As such, in some

embodiment, the acceleration program 6120 accesses, extracts, inspects, analyzes or

274

WO 2007/121241 PCT/US2007/066433

otherwise processes any portion of the network packet, including at any protocol layer,

to determine if all the data has yet been received in association with a request,

response or communication between the client and the server or appliance. In yet

another embodiment, the acceleration program 6120 tracks the numbers of bytes

transmitted, received and acknowledged between the client 6205 and server 30 to

determine if any bytes are outstanding between the client 6205 and server 30 for an

application 6220.

By using the content length techniques described above, the acceleration

program 6120 can reuse the same transport layer connection to the server 30

previously used or in the process of use by any other application 6220a-6220n of the

client 6205. At step 6817, the acceleration program 6120 determines if the transport

layer connection is available to transmit the first request, and if so at step 6820 transits

the request to the server 30. Otherwise, at step 6819, the acceleration program 6120

may wait until all the data is received for an outstanding request of an application. For

example, the acceleration program 6120 may set a timer, for example, to a short time

period, and proceed to step 6815. In some embodiments, the acceleration program

6120 checks if the all the data has been received responsive to a packet processing

timer of the network stack 6210 of the client 6205. In another embodiments, at step

6819, the acceleration program 6120 establishes another transport layer connection to

transmit the first request of the first application 6220a.

At step 6820, the acceleration program 6120 may track which application 6220

currently has an outstanding request or response on the connection, or is currently

using the connection. For example, only one application 6220 at a time may transmit a

request and receive a response on the connection. As such, the acceleration program

6120 understands which application 6220 is using the connection. In some

embodiments, the acceleration program 6120 uses one port number for the transport

layer connection communication for all applications 6220a-6220n of the client 6205

sharing the connection. In some cases, the acceleration program 6120 tracks the

requests and outstanding responses for the requests on an application by application

basis. In some embodiments, the acceleration program 6120 associates a process id of

275

WO 2007/121241 PCT/US2007/066433

the application 6220 with the request. In yet another embodiment, the acceleration

program 6120 transmits the request of the first application 6220a with a request of the

second application 6220b in the same network packet or packets, TCP segment or

segments. In other embodiments, the acceleration program 6120 transmits a plurality of

requests of applications 6220a-6220n via the same transport layer connection as part of

a series of TCP segments of one or more TCP segment windows.

In other embodiments, the acceleration program 6120 uses a port numbering

mechanism and/or scheme to track and recognize which response or message received

is for which application 6220a-6220n. In other embodiments, the acceleration program

6120 provides and associates a port number with the application 6220, and modifies the

port number in the TCP network packet to be transmitted to the application’s assigned

port number. In another embodiment, the port number is provided by the application

6220 and the acceleration program 6120 changes or otherwise provides the port

number accordingly in the TCP network packet. As such, in some embodiments, the

acceleration program 6120 may interweave requests from a plurality of applications

6220a-6220n of the client 6205 such that applications 6220a-6220n may use the

transport layer connection at the same time.

At step 6825, the acceleration program 6120 receives a response to the first

request of the first application 6220a from the server 30, such as via appliance 6205,

and provides the response to the first application 6220a. In some embodiments, the

acceleration program 6120 provides the response to the first application 6220a via the

network stack 6210, such as allowing or initiating the processing of the response by the

protocol layers above the transport layer of the connection. In another embodiment, the

first program 6222 provides the response to the first application 6220a. In other

embodiments, the acceleration program 6120 may provide the response to the first

application 6220a via an inter-process communication mechanism or an interface, such

as an API. In some embodiments, the acceleration program 6120 only receives a

portion of the response, such as a first chunk in a multi-chunk message as described in

FIG. 48.

276

WO 2007/121241 PCT/US2007/066433

At step 6830, the acceleration program 6120 intercepts a request of a second

application 6220b to access the server 30. In some embodiments, the acceleration

program 6120 intercepts the request of the second application 6220b prior to step 6825.

In other embodiments, the acceleration program 6120 intercepts the request of the

second application 6220b during receipt of the response at step 6825. In another

embodiment, the acceleration program 6120 intercepts the request of the second

application 6220b prior to the client 6205 or acceleration program 6120 receiving all the

data for a response of the first request of the first application 6220a. Upon interception

of the request of the second application 6220b, the acceleration program 6120

proceeds to step 6815 in an embodiment to determine whether to multiplex the second

request via the transport layer connection or whether to establish another transport

layer connection, such as another connection in a pool of connections. In other

embodiments, the acceleration program 6120 transmits the request of the second

application 6220b via the same connection as the first application 6220a while the first

application 6220a has an outstanding response or has not received all the data from the

response of the first request. In another embodiment, the acceleration program 6120

transmits the request of the second application 6220b after the first application 6220a

has received the response and prior to any generated RST and/or FIN commands are

generated in connection with the first application 6220a.

Although the acceleration program 6120 has generally been discussed in relation

to the client-side implementation and execution of acceleration techniques, the

acceleration program 6120 interfaces and works in conjunction with the appliance 1250,

which also implements and executes appliance-side acceleration techniques. In one

embodiment, the client-side acceleration program 6120 and the appliance 1250 may

work in conjunction with each other to perform a plurality of the acceleration techniques

on communications between the clients 6205 and the servers 30. In some

embodiments, the client-side acceleration program 120 and the appliance 1250 both

provide TCP pooling and multiplexing, such as to provide a cascading or end-to-end

pooling and multiplexing mechanism between clients 6205 and servers 30. For

example, the acceleration program 6120 may provide a first pooled transport layer

277

WO 2007/121241 PCT/US2007/066433

connection to the appliance 1250, which in turns provides a second pooled transport

layer connection to the server 30. In another example, the acceleration program 6120

may multiplex an application request via a first pooled transport layer connection on the

client 6205, which in turns is multiplexed by the appliance 1250 via the second pooled

transport layer connection to the server 30. In some embodiments, the acceleration

program 120 provides a throttling mechanism for transmitting requests from the client

6205 while the appliance 1250 provides a throttling mechanism for transmitting

responses from the servers 30 to the clients 6205. In another embodiment, the

acceleration program 6120 performs client-side caching for the client 6205 while the

appliance 1250 provides caching of objects, such as dynamically generated objects, for

the client 6205 along with other clients 6205.

In some embodiments, in addition to or in conjunction with performing

acceleration techniques on the client 6205 and/or appliance, the acceleration program

6120 and the appliance may provide a virtual private network connection and

communications between the client 6205 and a network 40 access via the appliance

1250. In another embodiment, the acceleration program 6120 may compress data

communicated from an application 6220, and the appliance 1250 may decompress the

compressed data upon receipt thereof. Conversely, appliance 1250 may compress

data communicated from an application 6220 on the server 30 on a private data

communication network 40’ and the acceleration program 6120 may decompress the

compress data upon receipt thereof. Also, the acceleration program 6120 and

appliance 1250 may act as endpoints in an encrypted data communication or tunneling

session, in which the acceleration program 6120 encrypts data communicated from an

application 6220, and appliance 1250 decrypts the encrypted data upon receipt thereof.

In a similar manner, appliance 1250 encrypts data communicated from an application

6220 on private data communication network and the acceleration program 6120 may

decrypt the data upon receipt thereof.

278

WO 2007/121241 PCT/US2007/066433

D. EXAMPLE OF ACCELERATING DELIVERY OF A COMPUTING ENVIRONMENT

In view of the structure, functions, and operations described above in Sections B

and C, in some embodiments, the delivery of a computing environment to a client may

be accelerated. For example, the embodiments described herein may be used to

deliver a streaming application and data file processable by the application from a

central corporate data center to a remote user location, such as a branch office of the

company. The appliance and acceleration program provide end-to-end acceleration

techniques for accelerating any transport layer payload, such as streamed applications

and data files, from a server to a remote client. The application delivery management

system provides application delivery techniques to deliver a computing environment to a

desktop of a remote user based on a plurality of execution methods and based on any

authentication and authorization policies applied via a policy engine. With these

techniques, a remote user may obtain a computing environment and access to server

stored applications and data files from any network connected device.

Referring now to FIG. 49A, an embodiment for practicing the systems and

methods of acceleration and application delivery described above is depicted. In brief

overview, a client 10 is in communication with a server 30 via network 40, 40’ and

appliance 1250. For example, the client 10 may reside in a remote office of a company,

e.g., a branch office, and the server 30 may reside at a corporate data center. The

client 10 comprises a client agent 560, and a computing environment 15. The

computing environment 15 may execute or operate an application that accesses,

processes or uses a data file. The computing environment 15, application and/or data

file may be delivered via the appliance 1250 and/or the server 30. In some

embodiments, the client 10 also includes an acceleration program 4120, a collection

agent 404, and a streaming client 562. The server 30 includes an application delivery

system 500, and in some embodiments, a policy engine 406.

In one embodiment, the application delivery system 500 may reside or execute

on a server 30. In another embodiment, the application delivery system 500 may reside

279

WO 2007/121241 PCT/US2007/066433

or execute on a plurality of servers 30-30”. In some embodiments, the application

delivery system 500 may execute in a server farm. In one embodiment, the server 30

executing the application delivery system 500 may also store or provide the application

and data file. In another embodiment, a first set of one or more servers 30 may execute

the application delivery system 500, and a different server 30’ may store or provide the

application and data file. In some embodiments, each of the application delivery system

500, the application, and data file may reside or be located on different servers. In one

embodiment, the application delivery system 500 also includes the policy engine 406.

In another embodiment, the policy engine 406 executes separately from the application

delivery system 500. In some embodiments, the policy engine 406 is on the same

server 30 as the application delivery system 500. In other embodiments, the policy

engine 406 executes on the appliance 1250. In yet another embodiment, any portion of

the application delivery system 500 and/or policy engine 406 may reside, execute or be

stored on or distributed to the appliance 1250, or a plurality of appliances.

In some embodiments, the client agent 560 includes any of the streaming client

562, collection agent 404, and/or acceleration program 6120 as previously described

above. In one embodiment, the client agent 560, streaming client 562, collection agent

404, and/or acceleration program 6120 form or are incorporated into a single program

or set of executable instructions providing the functionality, logic and operations of each.

In other embodiments, each of the streaming client 562, collection agent 404, and

acceleration program 6120 execute separately from the client agent 560. In one

embodiment, the client 10 executes the client agent 560. In another embodiment, the

client 10 executes the client 10 executes the streaming client 562. In some

embodiments, the client 10 executes the collection agent 404. In one embodiment, the

client 10 executes the acceleration program 6120. In some embodiments, the client 10

executes the client agent 560 with one or more of the streaming client 562, collection

agent 404, or acceleration program 6120. In other embodiments, the client 10 executes

the streaming client 562 and acceleration program 6120. In one embodiment, the client

10 executes the acceleration program 6120 and the collection agent 404.

280

WO 2007/121241 PCT/US2007/066433

In some embodiments, the client 10 obtains the client agent 560, streaming client

562, and/or collection agent 404, from the server 30. In other embodiments, the client

10 obtains the client agent 560, streaming client 562, and/or collection agent 404 from

the appliance 1250. In one embodiment, any of the client agent 560, streaming client

562, and/or collection agent 404 may be stored on the appliance 1250. For example, in

some embodiments, the client agent 560, streaming client 562, and/or collection agent

404 may be cached in the appliance 1250. In other embodiments, upon determination

by the appliance 1250 an application can be accelerated, the appliance 1250 may

transmit the client agent 560, streaming client 562, acceleration program 6120 and/or

collection agent 404 to the client 10. In some embodiments, the client 10 may

automatically install and execute any of the client agent 560, streaming client 562,

acceleration program 6120 and/or collection agent 404. In yet another embodiment,

any of the client agent 560, streaming client 562, acceleration program 6120 and/or

collection agent 404 may execute transparently to a user or application of the client, or

to any portion of the network stack of the client.

In some embodiments, the appliance 1250 establishes a VPN or SSL VPN

connection for the client 10 to the server 30 or network 40’. In other embodiments, the

appliance 1250 acts as a proxy, access server or load-balancer to provide access to the

one or more servers 30. In one embodiment, the appliance 1250 and/or acceleration

program 6120 accelerates the delivery of the streaming client 562, collection agent 404,

and/or client agent 560 to the client 10. In one embodiment, the appliance 1250

accelerates the delivery of the acceleration program 6120 to the client 10. In other

embodiments, the appliance 1250 and/or acceleration program 6120 accelerates the

delivery of the computing environment 15, application, and/or data file, to the client 10

In one embodiment, the client 10 has a computing environment 15 and the appliance

1250 and/or acceleration program 6120 accelerates the delivery of the application

and/or data file. In one embodiment, the appliance 1250 and/or acceleration program

6120 accelerates the delivery of the application. In another embodiment, the appliance

1250 and/or acceleration program 6120 accelerates the delivery of the data file. In yet

another embodiment, the appliance 1250 and/or acceleration program 6120 accelerates

281

WO 2007/121241 PCT/US2007/066433

the delivery of a computing environment 15, such as an execution environment or

virtualized execution environment previously described herein.

In one embodiment, the appliance 1250 uses information collected from the

collection agent 404 to determine if a computing environment 15, application, and/or

data file may be accelerated. In some embodiments, the policy engine of the

application 1250 comprises the policy engine 406. In other embodiments, the appliance

1250 communicates or interfaces with the policy engine 406 to determine authentication

and/or authorization of a remote user or a remote client 10 to access the computing

environment 15, application, and/or data file from a server 30. In another embodiment,

the appliance 1250 communicates or interfaces with the policy engine 406 to determine

authentication and/or authorization of a remote user or a remote client 10 to have the

application delivery system 500 deliver one or more of the computing environment 15,

application, and/or data file. In yet another embodiment, the appliance 1250 establishes

a VPN or SSL VPN connection based on the policy engine’s 404 authentication and/or

authorization of a remote user or a remote client 10 In one embodiment, the appliance

1250 controls the flow of network traffic and communication sessions based on policies

of the policy engine 406. For example, the appliance 1250 may control the access to a

computing environment 15, application or data file based on the policy engine 406.

Referring now to FIG. 49B, an embodiment of a method for accelerating delivery

of a computing environment to a remote user of a client at a remote location is depicted.

In brief overview of method 8000, at step 8005, the server 30 receives a request to

execute an application on the client 10. At step 8010, the server 30 streams to the

client 10 an application for execution. At step 8015, the appliance 1250 and/or client-

side acceleration program 6120 accelerates the transmission or delivery of the

application to the client 10. At step 8020, the client 10 or application requests a data file

from the server 30 for use by the application. At step 8025, the server 30 and/or

appliance 1250 transmits the data file to the client 10. At step 8030, the appliance 1250

and/or client-side acceleration program 6120 accelerates the transmission or delivery of

the data file to the client 10

282

WO 2007/121241 PCT/US2007/066433

In further detail, at step 8005, a server 30 receives a request to execute an

application on a client 10. In some embodiments, the user of the client 10 makes the

request. In other embodiments, an application, operating system or computing

environment 15 transmits the request. In another embodiment, the appliance 1250

intercepts the request from the client 10 and forwards the request to the server 30. In

one embodiment, the appliance 1250 forwards the request to the server 30 based on

authentication and/or authorization of the user or client 10. In another embodiment, the

appliance 1250 forwards the request to the server 30 based on information provided by

the collection agent 404. In one embodiment, the request includes a request to execute

the application by one method of a plurality of execution methods. For example, the

user of the client 10 may request to execute the application as an application streamed

from the server, as a locally installed and executed application, or as a server-based

application executing on the server 30 and displaying remotely to the client 10. In some

embodiments, the request is based on a file-type association. For example, a user may

select a file associated with an application that is used to read or access the file.

At step 8010, in response to the request of step 8005, the server 30 transmits the

application for execution to the client 10. In some embodiments, the server 30 streams

the application to the client 10. For example, by streaming the application in some

embodiments, the application operates on the client 10 without installation. In other

embodiments, the server 30 transmits to the client 10 an application for local installation

and execution. For example, using the automatic installation and execution techniques

described in conjunction with the acceleration program 6120 in Section C, the client 10

may automatically install and execute the application upon receipt. In another

embodiment, the server 30 executes the application on a server on behalf of the client,

and transmits display out to the client 10 via a remote display or presentation layer

protocol. In yet another embodiment, the appliance 1250 streams the application to the

client 10 or transmits the application to the client 10 for installation and/or execution. In

some embodiments, the appliance 1250 and/or server 30 transmit the computing

environment 15 comprising the application. In other embodiments, the appliance 1250

and/or server 30 transmit the computing environment 15 in response to a request.

283

WO 2007/121241 PCT/US2007/066433

At step 8015, the appliance 1250 and/or acceleration program 6120 accelerates

the delivery of the application for execution to the client 10. In one embodiment, the

appliance 1250 performs or applies one or more of the plurality of acceleration

techniques described in Section C above. In another embodiment, the acceleration

program 6120 performs or applies one or more of the plurality of client-side acceleration

techniques also described in Section C above. In some embodiments, the acceleration

program 1250 and appliance 6120 work together or in conjunction with each other to

perform a plurality of acceleration techniques both on the client 10 and on the appliance

1250. For example, the acceleration program 6120 may perform a first set of one or

more acceleration techniques while the appliance 1250 performs a second set of one or

more acceleration techniques. In one embodiment, the acceleration program 1250 and

appliance 6120 perform the same acceleration techniques. In another embodiment, the

acceleration program 1250 and appliance 6120 perform different acceleration

techniques.

In one embodiment, the appliance 1250 and/or acceleration program 6120

accelerates any payload communicated via a transport layer connection between the

client 10 and server 30. In some embodiments, the server 30 streams the application

as one or more data files via a transport layer connection, such as a payload of a

TCP/IP packet. In other embodiments, the server 30 streams the application via an

application layer protocol or streaming protocol over a transport layer connection. In

another embodiment, the server 30 transmits display output via an ICA or RDP protocol

via the transport layer connection. In any of these embodiments, the appliance 1250

and/or acceleration program 6120 accelerates the delivery of the application via

payloads of transport layer packets.

At step 8020, the client 10 transmits a request for a data file for use by the

application or the computing environment 15. In some embodiments, the request for

the data file is transmitted with the request to execute an application in step 8005. In

one embodiment, the request to execute an application includes the request for the data

file. In other embodiments, the application or the computing environment requests the

data file in the course of performing any functionality, operations, or logic of the

284

WO 2007/121241 PCT/US2007/066433

application or computing environment. For example, the application or computing

environment 15 may request any macros, scripts, configuration data, profile, templates

or rules from a server 30. In some embodiments, the application requests the data file

as a background process or task of the application. In one embodiment, the user of the

application or computing environment 15 requests the data file to read, access or

otherwise process the file with the application or computing environment. For example,

the user may open a file for edit via an application, such as opening a document for edit

via a word processing application. In some embodiments, the user drags and drops a

file into an application of the computing environment to request the data file. In other

embodiments, the user may request the data file via a file and directory interface, e.g.,

file explorer in Windows operating system, to a storage of a networked or remote

storage system, such as a network driver of a central server.

At step 8025, the server 30 or appliance 1250 transmits the requested data file

to the client 10. In some embodiments, the server 30 or appliance 1250 transmits the

data file to the client 10 in response to the request of step 8020. In other embodiments,

the server 30 or appliance 1250 transmits the data file to the client 10 without a request

from the client 10. For example, the server 30 may “push” an update to a data file to the

client 10. In one embodiment, the server 30 transmits the requested data file to the

client 10. In another embodiment, the appliance 1250 transmits the requested data file

to the client 10. For example, in one embodiment, the appliance 1250 intercepts a

request for the data file, checks the cache of the appliance 1250 for the data file, and

transmits the cached data file to the client 10. In yet another embodiment, the

acceleration program 6120 intercepts the data file request at the client 10 and provides

the data file to the client 10 via a cache of the acceleration program 6120. In some

embodiments, the appliance 1250 or server 30 transmits the data file via a streaming

protocol, or a stream. In other embodiments, the appliance 1250 or server 30 transmits

the data file via any type and form of caching protocol.

At step 8030, the appliance 1250 and/or acceleration program 6120 accelerates

the delivery or transmission of the data file to the client 10. In some embodiments, the

data file may be transmitted via any type and form of protocol, such as an application

285

WO 2007/121241 PCT/US2007/066433

layer protocol over a transport layer protocol. In one embodiment, the appliance 1250

accelerates the transmission of the data file. In another embodiment, the acceleration

program 6120 accelerates the transmission of the data file. In some embodiments, the

appliance 1250 in conjunction with the acceleration program 1250 accelerates the

transmission of the data file. As discussed herein, the appliance 1250 and/or

acceleration program 6120 may perform one or more of a plurality of acceleration

techniques on the client 10 and appliance 30 to accelerate the transmission of the data

file. In some embodiments, the appliance 1250 and/or acceleration program 6120 may

cache one or more data files on the client 10 or appliance 1250 for use by the

application or computing environment 15.

Representative Examples

As an example embodiment, a user may be located at a branch office working on

a local machine 10. The user may desire to use a word processing application such as

MICROSOFT Word to edit a company document, both residing on remote machines 30

located in a central office. The user may then navigate a web browser to a corporate

web site hosted by remote machine 30. Once the user is authenticated by the remote

machine 30, the remote machine 30 may prepare and transmit to the local machine 10

an HTML page that includes a Program Neighborhood window as described herein in

FIGs. 3A and 3B in which appears graphical icons representing application programs to

which the local machine 10 has access. The user of local machine 10 may invoke

execution of an application by clicking an icon. A policy engine as described in FIGs.

4A-4D may then determine whether and how the local machine 10 may access the word

processing application. The application may then be locally installed and executed

using the techniques described in FIGS 20-21. The user may then use the application

to select a document on the remote machine 30 for editing. An appliance 1250 may

then accelerate delivery of the file to the local machine 10 using any techniques

described herein, such as TCP multiplexing.

As another example, a second user may be located at a branch office working on

a local machine 10. The user may wish to access, through the user’s corporate

account, an email containing an attached file. The email application and the email data

286

WO 2007/121241 PCT/US2007/066433

files may reside in a central office. Upon a user request to access the email application,

a policy engine as described in FIGs. 4A-4D may determine to stream the email

application to the user using the streaming techniques described herein. A policy

engine may also determine to install an acceleration program as described herein on

the local machine 10. The application streaming may be accelerated using techniques

described herein, such as dynamic caching. Upon local installation, the user may then

select the email and accompanying attachment to view. An appliance 1250 may

accelerate the delivery of the file by using an acceleration technique such as TCP

pooling as described herein. The appliance may also cache some or all of the data files

delivered to the remote machine so as to accelerate later requests. The caching may

be done either on the appliance 1250 or on the local machine 10 in conjunction with the

acceleration program.

As a third example, a user located at a branch office may wish to access a

spreadsheet program such as MICROSOFT Excel to update a spreadsheet. The user

may use a local machine 10 to establish an SSL connection to a remote machine 30 at

a central office, and select the spreadsheet application from a program neighborhood as

described in FIGs. 3A and 3B. A collection agent as described in FIG. 4D may then

collect information about the local machine to determine whether the spreadsheet

application may be streamed to the local machine 10. The spreadsheet application may

then be streamed to the local machine 10 via the SSL connection. The SSL connection

may be accelerated by an appliance 1250 providing SSL or TCP connection pooling

and multiplexing as described herein. The application streaming may be also

accelerated by an appliance 1250 providing any of the dynamic caching techniques

described herein. The user may then select a file from within the spreadsheet

application for editing. The local machine 10 may transmit a request for the file to the

remote machine. An appliance 1250 may then use the compression techniques

described herein to accelerate delivery of the file to the user.

Although generally described above as an application delivery system and

appliance accelerating delivery of a computing environment to a client, the application

delivery system and appliance may accelerate the delivery of a plurality of computing

287

WO 2007/121241 PCT/US2007/066433

environments, applications and/or data files to a client. For example, the application

delivery system and appliance may accelerate delivery to the client of a first computing

environment associated with one type of operating system and a second computing

environment associated with a second type of operating system. Additionally, the

application delivery system and appliance may accelerate the delivery of a computing

environment, application, and/or data file to a plurality of clients. Furthermore, although

generally described above as an application delivery system and appliance accelerating

delivery of a computing environment to a remote user or remote client, the application

delivery system and appliance may accelerate delivery of a computing environment,

application, and/or data file to any client, local, remote or otherwise, such as a client on

a LAN of the server.

Moreover, although generally described above as an appliance between the

client and the application delivery system, a plurality of appliances may be used

between one or more clients and one or more servers. In some embodiments, a first

appliance resides on the network of the client, and a second appliance resided on the

network of the server. In one embodiment, the first appliance and second appliance

communicate with each other in performing the operations described herein. For

example, the first appliance and second appliance may communicate via any internode,

high-performance, or appliance to appliance communication protocol. Additionally, a

plurality of application delivery systems may be used in conjunction with one appliance

or a plurality of appliances. The application delivery system and appliance may be

deployed in a wide variety of network environments and infrastructure architectures.

Embodiments may be provided as one or more computer-readable programs

embodied on or in one or more articles of manufacture. The article of manufacture may

be a floppy disk, a hard disk, a compact disc, a digital versatile disc, a flash memory

card, a PROM, a RAM, a ROM, or a magnetic tape. In general, the computer-readable

programs may be implemented in any programming language. Some examples of

languages that can be used include C, C++, C#, or JAVA. The software programs may

be stored on or in one or more articles of manufacture as object code.

288

20
07

23
80

99

21
 O

ct
 2

00
8

Throughout this specification and the claims which follow, unless the

context requires otherwise, the word "comprise", and variations such as

"comprises" and "comprising", will be understood to imply the inclusion of a stated

integer or step or group of integers or steps but not the exclusion of any other

integer or step or group of integers or steps.

The reference to any prior art in this specification is not, and should not be

taken as, an acknowledgement or any form of suggestion that the prior art forms

part of the common general knowledge in Australia.

288a

20
07

23
80

99

06
 F

eb
 2

01
2

The Claims Defining the Invention are as Follows:

1. A method for accelerating delivery of a computing environment to a remote
client, the method comprising:

5 intercepting, by an appliance deployed as an intermediary between a server
and a remote client, a plurality of files comprising an application program streamed
by the server responsive to a first request from the remote client to execute an
application;

determining, by the appliance, whether the appliance may accelerate
10 transmission of the intercepted plurality of files comprising the application program

streamed by the server responsive to the first request;

determining, by the appliance and responsive to determining the appliance
may accelerate transmission of the application program, whether the remote client is
configured with an acceleration program; and

15 accelerating, by the appliance and responsive to determining the appliance
may accelerate transmission of the application program and that the remote client is
configured with the acceleration program, transmission of the application program by
applying one or more transport layer transmission acceleration techniques to the
intercepted plurality of files comprising the application program streamed by the

20 server responsive to the first request.

2. The method of claim 1, wherein the one or more transport layer transmission
acceleration techniques comprise:

Transmission Control Protocol multiplexing;

25 Transmission Control Protocol pooling; and

Transmission Control Protocol buffering.

3. The method of claim 1, further comprising: transmitting, by the appliance and
responsive to a determination that the remote client is not configured with the

30 acceleration program, the acceleration program to the remote client.

4. The method of claim 3, further comprising automatically installing and
executing, by the remote client, the acceleration program upon receipt from the
appliance.

35
5. The method of claim 4, further comprising:

transmitting, by the appliance to the remote client, a license authorizing
execution of the application program by the remote client for a predetermined time;

289

20
07

23
80

99

06
 F

eb
 2

01
2 receiving, by the appliance, a heartbeat message from the remote client

indicating that the application program is being executed; and

transmitting, by the appliance and responsive to receiving the heartbeat
message, a renewed license authorizing execution of the application program by the

5 remote client for a predetermined time.

6. The method of claim 1, further comprising:

caching, by the appliance, the plurality of files comprising the application
program; and

10 intercepting, by the appliance, a second request from the remote client for one
or more of the plurality of files comprising the application program and transmitting
the cached one or more of the plurality of files to the remote client in response to the
second request.

15 7. The method of claim 1, wherein accelerating transmission of the application
program further comprises:

accelerating transmission of the application program from the server to the
appliance by applying a first one or more transport layer transmission acceleration
techniques to the plurality of files streamed by the server and accelerating

20 transmission of the application program from the appliance to the remote client by
applying a second one or more transport layer transmission acceleration techniques
to the plurality of files transmitted to the remote client.

8. The method of claim 1, further comprising receiving, by the appliance from the
25 server, the plurality of files comprising the application program via a pooled transport

layer connection between the server and the appliance used by a plurality of clients
communicating with the server via the appliance.

9. The method of claim 8, further comprising:

30 receiving, by the appliance via the pooled transport layer connection, one or
more data packets comprising a multiplexed communication session between the
plurality of clients and the server; and

de-multiplexing, by the appliance, the multiplexed communication sessions
into one or more communications sessions between the server and each of the

35 plurality of clients.

10. The method of claim 1, wherein determining whether the appliance may
accelerate transmission of the application program further comprises:

290

20
07

23
80

99

06
 F

eb
 2

01
2

determining whether the appliance may accelerate transmission of the
application program, responsive to a log of past performance of the transport layer
transmission acceleration techniques applied to one or more previous transmissions
of the plurality of files comprising the application program.

5
11. A system for accelerating delivery of a computing environment to a remote
client, the system comprising:

an appliance deployed as an intermediary device between one or more clients
and one or more servers, intercepting a plurality of files comprising an application

10 program streamed by a server responsive to a first request from a remote client to
execute an application, determining whether the appliance may accelerate
transmission of the intercepted plurality of files comprising the application program
streamed by the server responsive to the first request, and determining, responsive
to determining the appliance may accelerate transmission of the application

15 program, whether the remote client is configured with an acceleration program; and

a packet engine of the appliance, responsive to determining the appliance
may accelerate transmission of the application program and that the remote client is
configured with the acceleration program, accelerating transmission of the
application program by applying one or more transport layer transmission

20 acceleration techniques to the intercepted plurality of files comprising the application
program streamed by the server responsive to the first request.

12. The system of claim 11, wherein the one or more transport layer transmission
acceleration techniques comprise:

25 Transmission Control Protocol multiplexing;

Transmission Control Protocol pooling; and

Transmission Control Protocol buffering.

13. The system of claim 11, wherein the appliance further comprises:

30 a memory element storing a client-side acceleration program; and the
appliance:

transmits, responsive to a determination that the remote client is not
configured with the acceleration program, the acceleration program to the remote
client.

35
14. The system of claim 13, wherein the remote client further installs the
acceleration program, and executes the acceleration program.

291

20
07

23
80

99

06
 F

eb
 2

01
2 15. The system of claim 14, wherein the acceleration program is configured to

provide a cache for storing the plurality of files comprising the application program in
a cache;and

the acceleration program receives authorization to execute the plurality of files
5 comprising the application program in the cache during a pre-defined period of time,

and redirects, responsive to non-expiration of the pre-defined period of time,
requests for the plurality of files comprising the application program to the stored
plurality of application files in the cache.

10 16. The system of claim 11, wherein the appliance further comprises a memory
element storing the plurality of files comprising the application program; and

the packet engine intercepts a second request from the remote client for one
or more of the plurality of files comprising the application program and transmits the
stored one or more of the plurality of files to the remote client in response to the

15 request.

17. The system of claim 11, wherein the packet engine further accelerates
transmission of the application program from the server to the appliance by applying
a first one or more transport layer transmission acceleration techniques to the

20 plurality of files streamed by the server and accelerates transmission of the
application program from the appliance to the remote client by applying a second
one or more transport layer transmission acceleration techniques to the plurality of
files transmitted to the remote client.

25 18. The system of claim 11, wherein the appliance further receives, from the
server, the plurality of files comprising the application program via a pooled transport
layer connection between the server and the appliance used by a plurality of clients
communicating with the server via the appliance.

30 19. The system of claim 18, wherein the appliance further receives, via the pooled
transport layer connection, one or more data packets comprising a multiplexed
communication session between the plurality of clients and the server; and the
packet engine de-multiplexes the multiplexed communication sessions into one or
more communications sessions between the server and each of the plurality of

35 clients.

20. The system of claim 11, wherein the appliance determines whether the
appliance may accelerate transmission of the application program responsive to a
log of past performance of the transport layer transmission acceleration techniques

40 applied to one or more previous transmissions of the plurality of files comprising the
application program.

292

20
07

23
80

99

06
 F

eb
 2

01
2 21. A method for accelerating delivery of a computing environment to a remote

client substantially as herein described.

22. A system for accelerating delivery of a computing environment to a remote
5 client substantially as herein described.

293

WO 2007/121241 PCT/US2007/066433
1/

71

FI
G

. 1
A

WO 2007/121241 PCT/US2007/066433
2Ϊ

Τ\

c
ο'■+-*toο
§L
<

c glo Si
Ή >> i-φ εΟ Φ φ
£Χ = ο>
D. Φ >,
< Ο CO

C Ο) φ
-5- Ε

ο3
Ο.
Ε '5
ο c
Ο LU

6-4-» φTOΟ Ιϊ=
ο. 15
Ο. TO
< α

«!

CO
φ
£
0)

<0

FI
G

. 1
Β

Ο
4-1
φ
5

WO 2007/121241 PCT/US2007/066433

3/71

Fig. 1C

WO 2007/121241 PCT/US2007/066433

4/71

Fig. ID

WO 2007/121241 PCT/US2007/066433

5/71

5Ϊ&,

.***”—"—”--- Μ 1*4*λ£« '
30” aoo-^ Wff&t zgf

f'-fttwirffc-vric
frfafta. Mtw«tk4U« «nAufutt;

2»ΐ

30

FIG. 1E

WO 2007/121241 PCT/US2007/066433

6/71

FIG. 1F

WO 2007/121241 PCT/US2007/066433

7/71

A

Remote Machine

Local Machine WebSeiver XML Service Management Service

Request for App
Enumeration (202)

1

App Enumeration

App Execution
Request (206)

Request for App
Enumeration (202)

App Enumeration

App Execution
Request (206)

Request for App
Enumeration (202)

. App Enumeration
~—-(204)—”

App Execution
Reoueri (206)

App Enumeration (204)

Access Information Access Information Access Information

Selection of Execution
Method (20S)

FIG. 2

WO 2007/121241 PCT/US2007/066433

8/71

FIG. 3A

WO 2007/121241 PCT/US2007/066433

9/71

Web Publishing
Tool 170

Web Service
Directory 160

Local Machine 10 Web Server 30'

FIG. 3B

WO 2007/121241 PCT/US2007/066433

10/71

FIG. 4A

WO 2007/121241 PCT/US2007/066433

11/71

Policy Engine 406

FIG. 4B

WO 2007/121241 PCT/US2007/066433

12/71

FIG. 4C

WO 2007/121241 PCT/US2007/066433

13/71

FIG. 4D

WO 2007/121241 PCT/US2007/066433

14/71

Policy Engine 406 Transm it s Access
Control Decision to Session Server 420

480,

x Ί ■: Z* 482
Session Server 420 Generates
Enumeration of Associated Application

i
Session Server 420 Connects Local
Machine 10 to Associated Application

484.

FIG 4E

WO 2007/121241 PCT/US2007/066433

15/71

Application
Delivery System

500
Remote Machine ;3D a

:/ Management Service 504 ■ /

Applet :
Subsystem
:-. 50δ

SenterMfll·
Subsystems
// 506//./1

SessEch Mgi.
Subsystem
•L /'510··: :

License J^L·.
Subsystem

Remote
' Machine30“ Packaging Mechanism 530

File System (Isolation
Filter Driver 534 i Environment :532 :

FIG. 5

WO 2007/121241 PCT/US2007/066433

16/71

FIG. 6

WO 2007/121241 PCT/US2007/066433

17/71

Remote Machine

T Acquire License

FIG. 7

WO 2007/121241 PCT/US2007/066433

18/71

FIG. 8A

WO 2007/121241 PCT/US2007/066433

19/71

FIG. 8B

WO 2007/121241 PCT/US2007/066433

20/71

FIG. 8C

WO 2007/121241 PCT/US2007/066433

21/71

FIG. 9

WO 2007/121241 PCT/US2007/066433

22/71

Files
Registry data
OS, Service
Pack,
Language.

Word Word Word

Excel Excel Excel

FIG. 10

WO 2007/121241 PCT/US2007/066433

23/71

FIG. 11

WO 2007/121241 PCT/US2007/066433

24/71

FIG. 12

WO 2007/121241 PCT/US2007/066433

25/71

FIG. 13

WO 2007/121241 PCT/US2007/066433

26/71

FIG. 14

WO 2007/121241 PCT/US2007/066433

27/71

FIG. 15

WO 2007/121241 PCT/US2007/066433

28/71

FIG. 16

WO 2007/121241 PCT/US2007/066433

29/71

κ.
Remote Machine 30

FIG. 17

WO 2007/121241 PCT/US2007/066433

30/71

First RADEapp launch

Session timeout or RADE Service stops

FIG. 18

WO 2007/121241 PCT/US2007/066433

31/71

PACKAGE

Application:
Target OS:

Target 1
Foo
W2K PRO (All Service Packs)
WXP PRO (All Service Packs)

Target Language;
Master Drive:

W2K3 (All Sen-ice Packs)
English
C:\

Application:
Target 1

Foo
W?K PRO Mil Si’rvirp ParkO,Χ kjf (J ,
WXP PRO (All Service Packs)
W2K3(A11 Service Packs)

Target Language; German
Master Drive: C:\

FIG. 19

WO 2007/121241 PCT/US2007/066433

32/71

FIG. 20

WO 2007/121241 PCT/US2007/066433

33/71

FIG. 21

WO 2007/121241 PCT/US2007/066433

34/71

VwfWfcftXS

3 tte Pit-Uw'-S; t< tat-i&trSniiBS

Ancestors

Pff lamWh & tea f/β Snips

β·

Fac~yp5S

Pse-launch toaiyss

2202

Fre-ta'-irchi) ̂jXiSt^ic^pb'WWiiS^jid tor to fw ^«ssiWsii chat ttaehines, They tan;be ussdfor ffi range of iaste
mdiidsng ir»d ifysPS r^isafessajd s&Sag or denting iSsss,.

pns4»?p«h. swls ew w Srst«|xtaik3R foswget feitfthcfcnd cfewi .ordpnto-pxb ssripfe-ww rwgfedbs *r
siaqpA is «foju&?,Sk«;i& && fensffliHO} M Ar ^hwiWde'iW ew^ibejs&tiifexi «Aiiwwft,

& Ραξί BASe^fe;;
hSlil i Order ’ ·’■ ’.-I 8»ή§?'<·.:" λΗ?:··. 7 . ·· ;·.:'. .'·.' · ?·.·;

3 Yes «wort Ofto5'2003

jtte-taorsd? 1 MS: fflaeroM WlSiiOM «SPfJ

a jpostiasit. 1 Yes WrtOffraa® Wia/iSM «!|PH

“j jiRosfccset' /2 Ho RferwoM l&jaJWSMlHPM

S£3

13'KL’l•S&’l
sS

FIG. 22

WO 2007/121241 PCT/US2007/066433

35/71

FIG. 23

WO 2007/121241 PCT/US2007/066433

36/71

FIG. 24

WO 2007/121241 PCT/US2007/066433

37/71

System
Resources

2502

Function-hooking
Mechanism

2508 Application

System API
2504

Post-install

Isolation
Environment

2512
Application Processor

Installer 2506 Module, 2510

FIG. 25

WO 2007/121241 PCT/US2007/066433

38/71

FIG. 26

WO 2007/121241 PCT/US2007/066433

39
/7

1

FI
G

. 2
7

WO 2007/121241 PCT/US2007/066433

40/71

3300

Step 3310

Step 3315

Step 3320

Step 3325

FIG. 28A

WO 2007/121241 PCT/US2007/066433

41/71

3350

Step 3355

Step 3360

Step 3365

Step 3370

FIG. 28B

WO 2007/121241 PCT/US2007/066433

<σ>
CM

<2II

WO 2007/121241 PCT/US2007/066433

o C4 'Φ (M tMV* V" CN CO"Φ«*> co co CO co
Q. a. £X Q. £X
Φ φ Φ Φ φ+■»

<0 to to to GO

FI
G

. 2
9B

WO 2007/121241 PCT/US2007/066433

44/71

FIG. 29C

WO 2007/121241 PCT/US2007/066433

45/71

Step 3427

FIG. 29D

WO 2007/121241 PCT/US2007/066433

46/71

FIG. 30

WO 2007/121241 PCT/US2007/066433

47/71

FIG. 31

WO 2007/121241 PCT/US2007/066433

48
/7

1

FI
G

. 3
2

οοm

WO 2007/121241 PCT/US2007/066433

49
/7

1

FI
G

. 3
3

WO 2007/121241 PCT/US2007/066433

FI
G

. 3
4

WO 2007/121241 PCT/US2007/066433

C
lie

nt

C
lie

nt

in
te

rfa
ce

 U
ni

t
Se

rv
er

10
CO

£2
LL

WO 2007/121241 PCT/US2007/066433

52/71

FIG. 36

WO 2007/121241 PCT/US2007/066433

£ co
GJ

CO

<*>m

o
to
CM

G

o

ω
o

<r CD < m < CD < 0Q < CD
'Sf oo co CM CM CD CD O Mf co CO CM CM co
o o o CM CM CM CM CO CO co
o o o O O O o o O o o O O o
XT Xf * ’if ’Τ’ ’’fr ^f "if ’M’

1 1 CFH u U u

Λ A A A A K A

o
o
tO

UJ
O

A A

CM
o
l·"*
x
UJ

o

o
h-

o
I—
Q
LU

o
o
UJ
coo
d

t T
< < U U <

CM < CD < CD ttf*· CO
cm to co o o CO COo CM CM co co o o
’T o o o o ’M’

Μ- Μ" Μ" -Μ-

m......(/ m

< CD
co co
O O
o o

s

o

CO
o

< CD
’M* sj-

O
Tt
O
M·

l·»
CO

o
LL

WO 2007/121241 PCT/US2007/066433

54/71

WO 2007/121241 PCT/US2007/066433

55/71

WO 2007/121241 PCT/US2007/066433

56/71

Client 6205

user mode 6203

App 1
6220A

App 2
6220B

1st Program
6222

Add N 6220N
I

6210a

Acceleration Program 6120

-protocol Compression 6238

Network
Stack
6210

TCP Pooling 6224

TCP Multiplexing 6226

KefMmdde'620Z'

kernel-level
data structure

6225
TCP Buffering 6228

Cache Manager 6232

Encryption 6234

6210b

<----------

Fig. 40A
100

WO 2007/121241 PCT/US2007/066433

57
/7

1

-ΟΙΟ
CM

WO 2007/121241 PCT/US2007/066433

58/71

Step 6310

Step 6315

upon receipt of the acceleration
program, automatically performing

a silent installation
of the acceleration program

Step 6320

Step 6325

Step 6330

/v
6300

Fig. 41A

WO 2007/121241 PCT/US2007/066433

59/71

Step 6355

Step 6360

6350

Fig. 4IB

WO 2007/121241 PCT/US2007/066433

60/71

Step 6385

Step 6390

performing a plurality of acceleration
techniques in an integrated manner
manner using the kernel-level data

structure at an interface or execution
point of the acceleration

program

Step 6395

6380

Fig. 41C

WO 2007/121241 PCT/US2007/066433

61/71

Step 6402

Step 6406

Step 6408

Step 6404

Client logs out and terminates encrypted
data communication session with appliance

Step 6410

/v
6400

Fig. 42A

WO 2007/121241 PCT/US2007/066433

62/71

Step
6452

Step
6454

Step
6456

First program terminates (or proxies) connection, separates
payload and encapsulates payload for delivery via the established

encrypted data communication session

1
First program sends intercepted communications over public data

communication network to appliance in private data
communication network via pre-established encrypted data

communication session______
I

Appliance decrypts communications received from the first
program and passes decrypted communications on to the

appropriate destination resource

Step
6458

Step
6460

Step
6462

Destination resource processes the decrypted communications
I

Destination resource sends responsive communications (if any)
to appliance

Appliance encrypts responsive communications and sends them
over public data communication network to first program in client

via pre-established encrypted data communication session

Step
6464

Step
6466

Step
6468

First program decrypts responsive communications and passes
decrypted communications on to the appropriate client application

via the second program

Step
6470

6450 Fig. 42B

WO 2007/121241 PCT/US2007/066433

63/71

6500

Step 6505

Step 6510

Step 6515

Step 6520

Step 6525

Fig. 43

WO 2007/121241 PCT/US2007/066433

64/71

Λ'
6600 J-i'icr 4·4·1 %·

WO 2007/121241 PCT/US2007/066433

65/71

Fig. 45A
/V

6700

Step 6702

Step 6704

Step 6706

Step 6708

Step 6710

Step 6712

Step 6714

Step 6716

Step 6718

WO 2007/121241 PCT/US2007/066433

66/71

Application 1
6220A

Application2
6220B

Acceleration
Program 6120

Appliance 1250
or Server 30

6752

6754

6762

6764

6766

6768

6774

6776

open network address 1

GET/sales/forecasthtml

RESP/sales/forecast.html

close network address 1

open network address 1 w

G ET/saies/forecast. htm I

RESP/sales/forecast. html

close network address 1^

open network address 1

GET/sales/forecast. html

RESP/sales/forecast.html

GET/sales/forecast. html

RESP/sales/forecast. html

Fig. 45B

6756

6758

6760

6770

6772

WO 2007/121241 PCT/US2007/066433

67/71

6800 Γ,· //Λrig. 40

WO 2007/121241 PCT/US2007/066433

rig
. 4

7
0069

WO 2007/121241 PCT/US2007/066433

σ>
CO

οοcor-

Ο

ll'φοcoS-.

lli’ίocor-

O
CMO
COr-

Q

O
CO
b-

O
o
CO
r-

co
CMo
CD
F--

0*1xfro
<0

§
CO
1--

<
CMocor-

Fi
g.

 48

WO 2007/121241 PCT/US2007/066433

WO 2007/121241 PCT/US2007/066433

8000

71/71

Step 8005

Step 8010

Step 8015

Step 8020

Step 8025

Step 8030

FIG. 49B

