
(12) STANDARD PATENT (11) Application No. AU 2011375748 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Projecting native application programming interfaces of an operating system into
other programming languages

(51) International Patent Classification(s)
G06F 9/44 (2006.01) G06F 9/22 (2006.0 1)
G06F 9/06 (2006.01)

(21) Application No: 2011375748 (22) Date of Filing: 2011.10.11

(87) WIPO No: W013/032506

(30) Priority Data

(31) Number (32) Date (33) Country
13/223,296 2011.08.31 US

(43) Publication Date: 2013.03.07
(44) Accepted Journal Date: 2016.11.24

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Pierson, Harold;Rector, Brent;Lovell, Martyn;Prakriya, Mahesh;Rowe, Stephen;Basu,
Tassaduq;Wlodarczyk, Robert A.;Omiya, Elliot H.;Dunietz, Jerry;Holecek,
Ales;Osterman, Lawrence W.;Zeng, Wei;Wadhwa, Neeraj;Solkar, Shakeel;Aksionkin,
Michael

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

(56) Related Art
US 5339422 A
US 2009/0199220 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2013/032506 Al
7 March 2013 (07.03.2013) W I PO I P CT

(51) International Patent Classification: LCA - International Patents, One Microsoft Way, Red
G06F 9/44 (2006.01) G06F 9/06 (2006.01) mond, Washington 98052-6399 (US). PRAKRIYA, Ma
G06F 9/22 (2006.01) hesh; c/o Microsoft Corporation, LCA - International Pat

) .a ents, One Microsoft Way, Redmond, Washington 98052
(21) International Application Number: 6399 (US). ROWE, Stephen; c/o Microsoft Corporation,

PCT/US201 1/055704 LCA - International Patents, One Microsoft Way, Red

(22) International Filing Date: mond, Washington 98052-6399 (US). BASU, Tassaduq;
11 October 2011 (11.10.2011) c/o Microsoft Corporation, LCA - International Patents,

One Microsoft Way, Redmond, Washington 98052-6399
(25) Filing Language: English (US). WLODARCZYK, Robert A.; c/o Microsoft Cor

(26) Publication Language: English poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). OMIYA, Elliot

(30) Priority Data: H.; c/o Microsoft Corporation, LCA - International Pat
13/223,296 31 August 2011 (31.08.2011) US ents, One Microsoft Way, Redmond, Washington 98052

(71) Applicant (for all designated States except US): MI- 6399 (US). DUNIETZ, Jerry; c/o Microsoft Corporation,

CROSOFT CORPORATION [US/US]; One Microsoft LCA - International Patents, One Microsoft Way, Red

Way, Redmond, Washington 98052-6399 (US). mond, Washington 98052-6399 (US). HOLECEK, Ales;
c/o Microsoft Corporation, LCA - International Patents,

(72) Inventors: PIERSON, Harold; c/o Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052-6399
LCA - International Patents, One Microsoft Way, Red- (US). OSTERMAN, Lawrence W.; c/o Microsoft Corpor
mond, Washington 98052-6399 (US). RECTOR, Brent; ation, LCA - International Patents, One Microsoft Way,
c/o Microsoft Corporation, LCA - International Patents, Redmond, Washington 98052-6399 (US). ZENG, Wei; c/o
One Microsoft Way, Redmond, Washington 98052-6399 Microsoft Corporation, LCA - International Patents, One
(US). LOVELL, Martyn; c/o Microsoft Corporation, Microsoft Way, Redmond, Washington 98052-6399 (US).

[Continued on next page]

(54) Title: PROJECTING NATIVE APPLICATION PROGRAMMING INTERFACES OF AN OPERATING SYSTEM INTO
OTHER PROGRAMMING LANGUAGES

(57) Abstract: Information about the operating system application
programming interfaces is stored in a known format in a known loca
tion. This information fully describes the APIs exposed by the operat

DEVELOPMENT COMPILER/ ing system and is stored in API metadata files. A language compiler
TooL -- R INTERPRETER or interpreter uses this API information to build a natural and familiar

representation of the native system API in the target language. The
language compiler or interpreter can read the API information at
compile time and/or runtime. The metadata is used to allow an ap

COMPUTER SY STEM plication to refer to named elements in the API. Projections are built
00 100 that use the metadata to map named elements in the API to named

elements in the target language, and to define wrappers that marshal
RUN1IIML RLUN 11-E APPLICA IIONelmnsut.enhe rpsnaio te

APPT ICATTON N 1 data of those elements between the target representation and the nat

ive operating system representation.
102

APT I AP 2 APTN

METADATA METADATA METADATA
FILE FILE FILE

104

OPERATING SYSTEM

FIG.1

WO 2013/032506 Al 1|1ll1l1||1ll1||1l1llll1lll1l1|||111|||||||||11|11||||1||11|1|||||||||||||||||||1 I| || I|
WADHWA, Neeraj; c/o Microsoft Corporation, LCA - (84) Designated States (unless otherwise indicated, for every
International Patents, One Microsoft Way, Redmond, kind of regional protection available): ARIPO (BW, GH,
Washington 98052-6399 (US). SOLKAR, Shakeel; c/o GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Microsoft Corporation, LCA - International Patents, One UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
Microsoft Way, Redmond, Washington 98052-6399 (US). RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
AKSIONKIN, Michael; c/o Microsoft Corporation, LCA DE, DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT,
- International Patents, One Microsoft Way, Redmond, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
Washington 98052-6399 (US). SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,

(81) Designated States (unless otherwise indicated, for every GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

kind of national protection available): AE, AG, AL, AM, Declarations under Rule 4.17:
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, - as to applicant's entitlement to applyfor and be granted
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, a patent (Rule 4.17(ii))
DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, L, IN, IS, JP, KE, KG, KM, KN, KP, - as to the applicant's entitlement to claim the priority of
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, the earlier application (Rule 4.17(iii))
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, Published:
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, - with international search report (Art. 21(3))
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
ZM, ZW.

BACKGROUND

[0001] An operating system typically has several application programming interfaces that

allow applications to access functionality supported by the operating system. Such APIs

are typically specified by an operating system using a named file or object in a computer

5 programming language. For example, the C programming language uses header files that

may have a name such as "interface.h". Similarly, in C# a mechanism called "P/Invoke"

signatures is used to access operating system APIs. A person writing a computer program

that will make use of an operating system API typically includes a reference to a named

API file or object in the program, or uses another mechanism provided by the

10 programming language. That program, for example, then includes calls to functions

defined by that API, in the syntax used by that API.

[0002] APIs defined in this manner cannot be directly accessed by languages other than

the languages they are written in. To be made accessible to programs written in other

languages, APIs are "wrapped." This wrapping typically has to be done manually per API

15 and per language and requires deep understanding of both the target language and the API

and operating system. Consequently, many operating system APIs are unavailable.

[0002a] It is desired to address or ameliorate one or more disadvantages or limitations

associated with the prior art, or to at least provide a useful alternative.

SUMMARY

20 [0003] This Summary is provided to introduce a selection of concepts in a simplified form

that are further described below in the Detailed Description. This Summary is not intended

to identify key features or essential features of the claimed subject matter, nor is it

intended to be used to limit the scope of the claimed subject matter.

[0003a] In one embodiment, the present invention provides a computer-implemented

25 process comprising: receiving metadata into memory describing application programming

interfaces of an operating system; receiving an indication of a named element in a program

in a target programming language referring to an element of one of the application

programming interfaces of the operating system; and using the metadata, creating a

projection element in the program in the target programming language, the projection

30 element being a projection of the element of the application programming interface of the

operating system to the named element in the program, such that at runtime, the projection

element in the program allows the program to access the application program interface of

the operating system; wherein the projection element marshals data between an operating

system representation and an application representation according to type; wherein the

1

metadata is stored in a metadata file, wherein the metadata file describes elements of the

application programming interface in a machine readable programming language

independent format and is stored in a standard file format in a known location as part of

the operating system.

5 [0003b] In another embodiment, the present invention provides an article of manufacture

comprising: a computer storage medium; computer program instructions stored on the

computer storage medium which, when processed by a processing device, instruct the

processing device to perform a process comprising: receiving metadata into memory

describing application programming interfaces of an operating system; receiving an

10 indication of a named element in a program in a target programming language referring to

an element of one of the application programming interfaces; and using the metadata,

creating a projection element in the program in the target programming language, the

projection element being a projection of the element of the application programming

interface of the operating system to the named element in the program, such that at

15 runtime, the projection element in the program allows the program to access the

application program interface of the operating system; wherein projecting the projection

element marshals data between an operating system representation and an application

representation according to type; wherein the metadata is stored in a metadata file,

wherein the metadata file describes elements of the application programming interface in a

20 machine readable programming language independent format and is stored in a standard

file format in a known location as part of the operating system.

[0003c] In a further embodiment, the present invention provides a computing machine

comprising: one or more processors; one or more computer storage media; computer

program instructions stored on the computer storage medium which, when processed by a

25 processing device, implement a language projection between application programming

interfaces of an operating system and applications in a target programming language;

wherein the application programming interfaces of the operating system are described by

metadata stored in memory; and wherein the language projection receives an indication of

a named element in a program in a target programming language referring to an element of

30 one of the application programming interfaces of the operating system, and, using the

metadata, creates a projection element in the program in the target programming language,

the projection element being a projection of the element of the application programming

interface of the operating system to the named element in the program, such that at

runtime, the projection element in the program allows the program to access the

2

application program interface of the operating system; wherein the projection element

marshals marshaling data between an operating system representation and an application

representation according to type; wherein the metadata is stored in a metadata file,

wherein the metadata file describes elements of the application programming interface in a

5 machine readable programming language independent format and is stored in a standard

file format in a known location as part of the operating system.

DESCRIPTION OF THE DRAWINGS

[0003d] Preferred embodiments of the present invention are hereinafter described, by way

of example only, with reference to the accompanying drawings, in which:

10 [0004] FIG. 1 is a block diagram of a system that includes projection of an API into other

programming languages.

[0005] FIG. 2 is a flow chart illustrating an example operation of a development tool.

[0006] FIG. 3 is a flow chart illustrating an example operation of a compiler or interpreter.

[0007] FIG. 4 is a block diagram of an example computing device in which such a system

15 can be implemented.

DETAILED DESRIPTION

[0008] In at least one embodiment, when an operating system is built, information about

the APIs is generated and stored in a known format in a known location within the

operating system. This information fully describes all the APIs exposed by the operating

20 system. This includes, but is not limited to, information about named elements of the API,

of a variety of types, such as basic types, enumerated types, structures, delegates,

interfaces, classes, methods, properties and events. This information is stored in API

metadata files.

[0009] A language compiler or interpreter uses this API information to build a natural and

25 familiar representation of the native system API in the target language. This representation

varies from language to language (as what is natural and familiar varies from language to

language). The language compiler or interpreter can read the API information at compile

time and/or runtime, whatever is most appropriate for the language in question. For

example, a statically compiled language like C++ would consume the metadata purely at

30 compile time while dynamic language like Python or JavaScript would consume the

metadata purely at runtime. An environment like .NET or Java would likely consume the

metadata both at compile and runtime. The metadata is used to allow an application to

refer to named elements in the API. Projections are built that use the metadata to map

named elements in the API to named elements in the target language, and to define

3

wrappers that marshal data of those elements between the target representation and the

native operating system representation.

[0010] Accordingly, in one aspect, metadata describing application programming

interfaces of an operating system is stored in memory. Given an indication of a named

5 element in a program in a programming language, referring to an element of one of the

application programming interfaces, the named element is projected into the programming

language using the metadata. Projection can occur during compilation or interpretation of

the program. Projection can include creating code that creates one or more elements in the

programming language, and marshaling data for the created elements according to type.

10 Interfaces, including their methods, properties and events, can be so projected. Projection

also can include propagating exceptions from the operating system to the application.

[0011] Such projection of the operating system APIs into other languages can be

embodied in a computer-implemented process, an article of manufacture include one or

more computer storage media, or a computing machine.

15 [0012] In the following description, reference is made to the accompanying drawings

which form a part hereof, and in which are shown, by way of illustration, specific example

implementations of this technique. It is understood that other embodiments may be

utilized and structural changes may be made without departing from the scope of the

disclosure.

20 [0013] The following section provides an example operating environment in which such

projection of native system API's into other languages can be implemented.

[0014] Referring to Fig. 1, a running application 100 accesses native system APIs 102 of

an operating system 104 during runtime. In order for such application to have such

functionality, a program 106 is written typically using a development tool 112, such as an

25 editor. Such programs are either compiled or interpreted by a compiler or interpreter 108

of the language to provide the runtime application 100. The development tool 112, and

compiler or interpreter 108, access metadata 110 that fully describes the APIs 102 of the

operating system. The development tool 112 assists a developer in writing programs, but

informing the developer of available native system API's, via the metadata, and allowing

30 those APIs to be accessed using the developer's programming language. The compiler or

interpreter embodies a projection of the native system APIs into the developer's

programming language using the metadata. In particular, named elements in the API are

mapped to named elements in the target language, and values in those elements are

marshaled between formats used by the target language and the operating system.

3A

[0015] Building such a system begins with building an operating system with API's

described with metadata. The metadata represents each named element of an API

description in a programming language independent form. This metadata provides a

complete description of the interface. The combined system metadata can be stored in a

5 series of metadata files in the ECMA-335 CLI format, but the specific format is

immaterial to the invention.

[0016] Given this context, an example implementation of such a system will be described

in more detail in connection with Figs. 2-4.

[0017] In Fig. 2, an example of operation of a development tool will now be described. A

10 developer commonly uses a form of development tool, such as an editor, when writing a

computer program. This editor can do a variety of tasks, such as verifying syntax and

proposing completions to strings entered by the developer. In this environment, the

metadata describing the operating system application programming interfaces can be used

in a variety of ways. In particular, it can be used to allow the developer to discover

15 available APIs. The development tool receives 200 a string input, such as a keyword that

might be used in an API as an identifier (such as "Mouse") or a name space (such as the

name of the operating system). The metadata can be searched 202 to identify elements

3B

WO 2013/032506 PCT/US2011/055704

having the received input as part of an identifier or name space. Identifiers for the set of

matching elements can be collected and returned 204 to the development tool. The

development tool can present 206 the elements to the developer for selection, and use

information from the metadata to present such elements in a format appropriate for the

5 computer language the developer is using.

[0018] Referring now to Fig. 3, an example of operation of a language compiler or

interpreter will now be described. In processing a computer program, whether to compile

or interpret it, a sequence of elements of the computer program is detected 300. Whether

an element of the computer program is a reference to the API of the operating system is

10 determined 302. For example, this can be determined by looking up the element in the

metadata. A projection element is created 304, using the metadata, which allows data to

be exchanged between the computer program and the operating system. In particular, the

compiler or interpreter implements a projection of the named element in the operating

system API to a named element in the target language. The metadata allows an object to

15 be created and values to be marshaled between the data format used by the program and

the format used by the operating system. At runtime, this element allows the program to

access 306 the API of the operating system and marshal data between the application and

the operating system.

[0019] Having now described the general operation of such a system, a specific example

20 will now be described. In particular, more details of an example projection between the

metadata describing the API and a computer language specific representation of the

elements of the API will now be described.

[0020] The following description is merely one possible implementation and is not

considered to be limiting of the invention. In particular, it should be understood that the

25 following is merely an example of a language projection that could be implemented, and

that other implementations for this language are possible, and other projections into other

languages are possible.

[0021] In this example, JavaScript is the programming language into which the native

system APIs will be projected using the metadata. In the examples below, an explanation

30 is given for how some kinds of elements are projected into the JavaScript programming

language.

[0022] When a script attempt to create an instance of a particular object defined by an

operating system API, a Projector object is responsible for accessing the metadata to

create marshaling stubs that convert data between different types, possibly involving

4

WO 2013/032506 PCT/US2011/055704

creating proxy objects, and for dispatching method calls, managing events and managing

callback functions.

[0023] For named elements that are basic types, such as integers, strings, and the like, the

following are ways of projecting those API elements into JavaScript.

5 [0024] The operating system has several signed and unsigned integer types, such as an

unsigned integer of one byte (UInt8), unsigned integer of four bytes (UInt32), a signed

integer of four bytes (Int8), and signed and unsigned integers of eight bytes (UInt64 and

Int64). Named elements of these types are projected as JavaScript Number values. When

a JavaScript Number is marshaled into the operating system value, then the values are type

10 coerced into a JavaScript number, and then the process defined by the ES5 ToInt32

specification is followed. For UInt8, the result has modulo 2 ^8 applied. For an Int32,

modulo 2A16 is applied. For UInt32, modulo 2A32 is applied.

[0025] A 64-bit integer being marshaled into JavaScript value is represented as a standard

Number value if it falls in the range [-2A53, 2A53], if signed, or [0,2A53] if unsigned. If it

15 falls outside this range, it is represented as a Number value with a custom backing store

that maintains the full 64 bits of integer data. Mathematical operations on these custom

Number values cause the value to be coerced into a standard Number representation in the

range [-2A53, 2A53] or [0,2A53] if unsigned. If the value is outside this range, a Type

Error will be raised. A JavaScript value being marshaled into an 64-bit integer is directly

20 assigned if it is a projected value itself; otherwise, the result of applying a EC5

"ToInteger" conversion on the value is passed.

[0026] Named elements of the operating system API that are characters (represented by

16-bit unicode), strings or global unique identifiers (GUIDs) can be represented as

JavaScript strings and are projected into named strings in JavaScript.

25 [0027] A character being marshaled into JavaScript is converted into a JavaScript string

value containing the single character represented by the unicode value. A JavaScript value

being marshaled into a character is type coerced into a JavaScript string via the ES5

ToString operation and the first character is kept. The single character is then passed as

the Char16 value.

30 [0028] A string being marshaled into JavaScript is converted to a JavaScript String. A

JavaScript value being marshaled into a string is type coerced into a JavaScript string.

[0029] A GUID being marshaled into a JavaScript value is converted into a string format.

A JavaScript value being marshaled into a GUID is type coerced into a string and then

parsed into a format used by the operating system.

5

WO 2013/032506 PCT/US2011/055704

[0030] The operating system can have an API with a named element that is a DateTime

struct that represents a point in time or a TimeSpan struct that represents a quantity of

time. The DateTime structure can be projected into JavaScript as a Date instance with a

backing store matching the DateTime struct data (which has a different range and

5 precision than the Date instance). A TimeSpan struct is converted to milliseconds and

returned as a JavaScript Number. Similarly, a JavaScript number can be converted from

milliseconds to a 100-nanosecond units to pass as a TimeSpan struct.

[0031] It should be noted that, by interpreting metadata, a projection can also remap types

from the native environment into the existing types in the language projection in some

10 cases. For example, this is possible and desirable when the types in native API and

language projections have a compatible data layout, which can readily occur with

fundamental data types. With the metadata mapping, a projection can simply redirect all

operations, such as methods or properties on the language types, to the native types

directly. This makes uses of those types more natural and familiar to the language

15 developers. For example, a DateTime structure remapping can be implemented in this

manner. In the native API, a DateTime structure is exposed as

Windows.Foundation.DateTime in the metadata without any additional operations. In a C#

projection, this type can be redirected to System.DateTimeOffset in C# with rich support.

[0032] As another example, if a named element in an API is a method, it has a value

20 HRESULT as its return type, which is converted to exceptions in JavaScript. A returned

HRESULT is checked for success by the JavaScript engine. If the HRESULT indicates a

failure, the JavaScript engine throws an exception on the JavaScript side. Thus, for

JavaScript invoking methods of an operating system API, an HRESULT failure is surfaced

as a JavaScript Exception. For API methods consuming JavaScript methods (such as for

25 call backs or delegates described below), the JavaScript method call is wrapped in an

exception block (or the equivalent as provided by the JavaScript hosting API) so that

caught exceptions can be propagated as HRESULTS. However, the operating system also

allows HRESULTs to be in the in or out parameter positions of methods and properties.

In these cases, HRESULTS are marshaled as an unsigned 32-bit value (as described

30 above).

[0033] For named elements in an API that are enumerated types, which is a set of named

constants, these are represented in JavaScript as an object that contains a read only field

for each named value.

6

WO 2013/032506 PCT/US2011/055704

[0034] For named elements in an API that are "structs", a collection of named data fields,

these are represented in JavaScript as JavaScript objects. A Struct being marshaled into

JavaScript is converted into an object. Each named field in the struct becomes a named

property in the JavaScript object. The value of each named field in the struct is marshaled

5 as per the underlying type of the field. A JavaScript Value that is an object type can

marshaled into a Struct. The JavaScript Object or its prototype contains a named field for

each named field of the struct and the value of each named field is marshaled according to

the underlying type. Extra fields in the JavaScript Object that don't have equivalent in the

operating system API struct are ignored. If the marshalling of any struct value fails, a

10 marshalling error is returned.

[0035] In this example, the operating system does not have a type for an array, but instead

allows an arguments to methods to be a pair of an unsigned integer length representing a

number of elements, not bytes, in an array, followed by a pointer to the array's first

element.

15 [0036] When marshaling an array into Javascript, an object is created with the following

characteristics. The object has properties for each integer value between 0 and the length

of the array, minus 1, which are enumerable, writable and not configurable, and a 'length'

property initially set to the length of the vector, which is not writable, not enumerable and

not configurable. Its prototype is the Array prototype object. Its [[Put]] operation on

20 index properties sets the specified index on the underlying native array. Its

[[GetOwnProperty]] operations on index properties indexes into the underlying native

array. It does not have [[Class]] as "Array". When marshaling a JavaScript object, if the

object has [[Class]] "Array", then the array is copied into a native array and a reference to

this array is passed on. If the object was a projected array, then the underlying native

25 array is passed on.

[0037] The API also can have named elements that are delegates, or callback functions,

which is a reference to a single invokable method. These can be projected into JavaScript

as callable objects. The Projector wraps the callback delegate in a custom marshaling

object.

30 [0038] A delegate being marshaled into JavaScript is wrapped in a JavaScript function

object. When the function object is invoked, the arguments are marshaled into the

equivalent parameter types as specified by the delegate and then the wrapped delegate

object is invoked. If any argument fails to marshal, the delegate call fails. If there are

fewer JavaScript arguments than delegate in parameters, the delegtate call fails. Extra

7

WO 2013/032506 PCT/US2011/055704

JavaScript arguments beyond the delegate in parameters are ignored. After the delegate is

invoked, the out parameters are marshaled into JavaScript types. If any out parameter fails

to marshal, the delegate call fails. The out parameters are then marshaled to JavaScript

values and returned.

5 [0039] If a native JavaScript function object is being marshaled into a delegate, that

callable object is wrapped in a delegate of the corresponding delegate type. When the

delegate is invoked, the in parameters are marshaled into JavaScript types and then the

JavaScript function object is invoked. If any argument fails to marshal, the delegate call

fails. After the delegate is invoked, the return value is mapped into the delegate's out

10 parameters based on the following rules. First, if there are no out parameters, the return

value from the JavaScript function object is ignored. Second, if the delegate specifies a

single out parameter, the return value from the JavaScript function object is marshaled into

that type. If that marshalling fails, the delegate call fails. Third, if the delegate specifies

multiple out parameters, the return value from the JavaScript function object return value

15 is an object with a named property for each out parameter. Each named property is

marshaled into the type of the corresponding out parameter. If the return value is not an

object, the delegate call fails. If the returned object doesn't contain a named property for

each out parameter, the delegate call fails. If the returned object contains extra named

properties that don't correspond to out parameters, they are ignored. If any named property

20 fails to marshal to the corresponding out parameter type, the delegate call fails.

[0040] The following example illustrates metadata for a delegate called IString Collection,

and pseudo-JavaScript code that creates an instance of this delegate.

[0041] Example metadata:

[uuid(...)]

25 delegate HRESULT Comparer([in] HSTRING sI, [in] HSTRING s2,

[out, retval] boolean* value)

interface IStringCollection

{
HRESULT Sort([in] Comparer compare);

30 }

[0042]

[0043] Pseudo-JavaScript:

//create an instance of a class that implements IStringCollection

strCol = getlStringCollection()

8

WO 2013/032506 PCT/US2011/055704

strCol.sort(function (si, s2) { return s1 > s2; });

[0044] Interfaces are not directly projected into JavaScript as objects. However, interfaces

can be parameter and return types of the operating system API methods.

[0045] To provide a projection that is natural in the target programming language, in the

5 examples above, members are projected into JavaScript have their names altered to

camelCase, following a strong convention in JavaScript to use camelCase names for

members. Types, which are akin to JavaScript constructor functions, are conventionally

PascalCased and are projected in that form. Similarly, enum properties, struct fields, event

names for the addEventListener pattern, have names in camelCase.

10 [0046] An interface instance that is not known based on static type information to be a

representation of a runtime class, being marshaled into JavaScript, goes through the

following steps. First, a call to the interface is made to obtain the runtime class name for

the interface. If successful, the object is projected as a runtime class instance object

(described below). Otherwise, the object is projected as though it were an instance of an

15 unnamed runtime class that implements exactly the interface is known to implement and

it's transitively required interfaces.

[0047] A JavaScript value being marshaled to an interface type is checked to see if it is a

projected runtime class instance object or projected interface instance object. If it is a

runtime class object, and the original value which that object proxies implements an

20 interface type, the objects implementation of that interface is passed to the operating

system. Otherwise, a type error exception is raised.

[0048] Objects in the operating system API may be instances of runtime classes. Runtime

classes implement a set of one or more interfaces (defined below). The list of implemented

interfaces of a running object can be determine either based on the metadata of the method

25 that returned the running object or by access the runtime class name and looking up the

metadata. Since JavaScript is a prototype based, dynamic language, it has no construct of

classes. Class constructs are projected in JavaScript as objects.

[0049] Thus, operating system API objects are projected in JavaScript as objects. The

union of methods, properties and events defined on all the implemented interfaces of the

30 class represents the type members that are exposed as named properties available on the

projected JavaScript object, via its prototype. Consumers of the JavaScript language

projection can access any member of the class directly without concern regarding which

interface the member is actually defined on.

9

WO 2013/032506 PCT/US2011/055704

[0050] JavaScript objects are dynamic, meaning that new properties can be added or

removed on objects at any time. Projected objects can support adding new properties and

methods, so long as pre-defined interface members are not overridden or deleted. In

JavaScript terms, projected objects are extensible, but the collection of named type

5 members is non-configurable. Projected objects have a prototype with the instance

members defined on the collection of members from the runtime class-implemented

interfaces.

[0051] Such interfaces, as noted above, have methods, parameters and events.

[0052] Methods at the language projection layer are implemented as a vtable with a slot

10 per method. The metadata about an interface provides the method name as well as the

names, types and direction (in/out) of the parameters. Methods are projected in JavaScript

as callable properties on the projected runtime class or interface object. These properties

are {Writable=false, Enumerable=true, Configurable=false}. When called, the arguments

are marshaled according to their corresponding parameter types, the method is called with

15 these values. The return value(s) are marshaled to a JavaScript value, with the JavaScript

object returns as the value.

[0053] Properties at the language projection layer are implemented as get and/or set

methods. Accessing the property value calls the get method while updating the property

value invokes the set method. Properties can be read or write (i.e. get and set methods

20 available) or read only (i.e. only get method available). Properties are projected in

JavaScript as properties. Marshalling of the property value works as described above

depending on the underlying property type.

[0054] Events at the language projection layer are implemented as add and remove event

listener methods. The add method takes a delegate instance and returns data describing the

25 listener, while the remove method takes the data describing the listener and returns

nothing.

[0055] In JavaScript, any projected runtime class or interface object which has at least one

event projected onto it gets two additional properties added to its prototype,

addEventListener and removeEventListener. These properties are {Writable: false,

30 Enumerable: true, Configurable: false} and are assigned to be callable objects.

[0056] The addEventListener function takes a string argument which represents the name

of the event to listen to, a callback function to assign as the listener, and an optional third

parameter which is ignored. This function calls the underlying add Event method,

10

WO 2013/032506 PCT/US2011/055704

passing the marshaled callback function as a delegate, and stores the resulting token in a

map keyed by the reference identity of the callback function object.

[0057] The removeEventListener function takes a string argument which represents the

name of the event to remove a listener from, a callback function which should be removed,

5 and an optional third parameter which is ignored. This function looks up the callback

function by reference identity in the map of stored tokens, and if a token is found, calls

the underlying removeEvent method, passing the retrieved token.

[0058] When the event is fired, any JavaScript function objects passed as the callbacks

will be invoked. The arguments passed to the function object will be the marshaled values

10 of the arguments provided to the EventHandler delegate.

[0059] As shown by the foregoing, by having an API Projection layer for a language,

named elements of an operating system API, as specified by metadata stored in the

operating system, can be used to automatically create objects and marshal data between

the operating system API format and the application programming language format. It

15 should be understood that the foregoing is merely an example of projection between an

example operating system and an example programming language and that the invention is

not limited to this example.

[0060] Having now described an example implementation, a computing environment in

which such a system is designed to operate will now be described. The following

20 description is intended to provide a brief, general description of a suitable computing

environment in which this system can be implemented. The system can be implemented

with numerous general purpose or special purpose computing hardware configurations.

Examples of well known computing devices that may be suitable include, but are not

limited to, personal computers, server computers, hand-held or laptop devices (for

25 example, media players, notebook computers, cellular phones, personal data assistants,

voice recorders), multiprocessor systems, microprocessor-based systems, set top boxes,

game consoles, programmable consumer electronics, network PCs, minicomputers,

mainframe computers, distributed computing environments that include any of the above

systems or devices, and the like.

30 [0061] FIG. 4 illustrates an example of a suitable computing system environment. The

computing system environment is only one example of a suitable computing environment

and is not intended to suggest any limitation as to the scope of use or functionality of such

a computing environment. Neither should the computing environment be interpreted as

11

WO 2013/032506 PCT/US2011/055704

having any dependency or requirement relating to any one or combination of components

illustrated in the example operating environment.

[0062] With reference to FIG. 4, an example computing environment includes a

computing machine, such as computing machine 400. In its most basic configuration,

5 computing machine 400 typically includes at least one processing unit 402 and memory

404. The computing device may include multiple processing units and/or additional co

processing units such as graphics processing unit 420. Depending on the exact

configuration and type of computing device, memory 404 may be volatile (such as RAM),

non-volatile (such as ROM, flash memory, etc.) or some combination of the two. This

10 most basic configuration is illustrated in FIG. 4 by dashed line 406. Additionally,

computing machine 400 may also have additional features/functionality. For example,

computing machine 400 may also include additional storage (removable and/or non

removable) including, but not limited to, magnetic or optical disks or tape. Such additional

storage is illustrated in FIG. 4 by removable storage 408 and non-removable storage 410.

15 Computer storage media includes volatile and nonvolatile, removable and non-removable

media implemented in any method or technology for storage of information such as

computer program instructions, data structures, program modules or other data. Memory

404, removable storage 408 and non-removable storage 410 are all examples of computer

storage media. Computer storage media includes, but is not limited to, RAM, ROM,

20 EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks

(DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage

or other magnetic storage devices, or any other medium which can be used to store the

desired information and which can accessed by computing machine 400. Any such

computer storage media may be part of computing machine 400.

25 [0063] Computing machine 400 may also contain communications connection(s) 412 that

allow the device to communicate with other devices. Communications connection(s) 412

is an example of communication media. Communication media typically carries computer

program instructions, data structures, program modules or other data in a modulated data

signal such as a carrier wave or other transport mechanism and includes any information

30 delivery media. The term "modulated data signal" means a signal that has one or more of

its characteristics set or changed in such a manner as to encode information in the signal,

thereby changing the configuration or state of the receiving device of the signal. By way

of example, and not limitation, communication media includes wired media such as a

12

wired network or direct-wired connection, and wireless media such as acoustic, RF,

infrared and other wireless media.

[0064] Computing machine 400 may have various input device(s) 414 such as a display, a

keyboard, mouse, pen, camera, touch input device, and so on. Output device(s) 416 such

5 as speakers, a printer, and so on may also be included. All of these devices are well known

in the art and need not be discussed at length here.

[0065] This system may be implemented in the general context of software, including

computer-executable instructions and/or computer-interpreted instructions, such as

program modules, being processed by a computing machine. Generally, program modules

10 include routines, programs, objects, components, data structures, and so on, that, when

processed by a processing unit, instruct the processing unit to perform particular tasks or

implement particular abstract data types. This system may be practiced in distributed

computing environments where tasks are performed by remote processing devices that are

linked through a communications network. In a distributed computing environment,

15 program modules may be located in both local and remote computer storage media

including memory storage devices.

[0066] The terms "article of manufacture", "process", "machine" and "composition of

matter" in the preambles of the appended claims are intended to limit the claims to subject

matter deemed to fall within the scope of patentable subject matter defined by the use of

20 these terms in 35 U.S.C. § 101.

[0067] Any or all of the aforementioned alternate embodiments described herein may be

used in any combination desired to form additional hybrid embodiments. It should be

understood that the subject matter defined in the appended claims is not necessarily

limited to the specific implementations described above. The specific implementations

25 described above are disclosed as examples only.

[0068] Throughout this specification and the claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" and

"comprising", will be understood to imply the inclusion of a stated integer or step or group

of integers or steps but not the exclusion of any other integer or step or group of integers

30 or steps.

[0069] The reference in this specification to any prior publication (or information derived

from it), or to any matter which is known, is not, and should not be taken as an

acknowledgment or admission or any form of suggestion that that prior publication (or

13

information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

14

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented process comprising:

receiving metadata into memory describing application programming interfaces of

5 an operating system;

receiving an indication of a named element in a program in a target programming

language referring to an element of one of the application programming interfaces of the

operating system; and

using the metadata, creating a projection element in the program in the target

10 programming language, the projection element being a projection of the element of the

application programming interface of the operating system to the named element in the

program, such that at runtime, the projection element in the program allows the program to

access the application program interface of the operating system;

wherein the projection element marshals data between an operating system

15 representation and an application representation according to type; wherein the metadata is

stored in a metadata file, wherein the metadata file describes elements of the application

programming interface in a machine readable programming language independent format

and is stored in a standard file format in a known location as part of the operating system.

20 2. The computer-implemented process of claim 1, wherein creating the project element

comprises, when the program is compiled, creating code that defines one or more

projection elements.

3. The computer-implemented process of claim 1, wherein creating the projection element

25 comprises, when the program is interpreted, creating code that defines one or more

projection elements.

4. The computer-implemented process of claim 1, wherein the projection element

comprises an interface including methods, properties and events.

30

5. The computer-implemented process of claim 1, wherein the projection element

propagates exceptions from the operating system to the application.

15

6. An article of manufacture comprising:

a computer storage medium; computer program instructions stored on the

computer storage medium which, when processed by a processing device, instruct the

processing device to perform a process comprising:

5 receiving metadata into memory describing application programming

interfaces of an operating system;

receiving an indication of a named element in a program in a target

programming language referring to an element of one of the application

programming interfaces; and

10 using the metadata, creating a projection element in the program in the target

programming language, the projection element being a projection of the element of

the application programming interface of the operating system to the named

element in the program, such that at runtime, the projection element in the program

allows the program to access the application program interface of the operating

15 system;

wherein projecting the projection element marshals data between an operating

system representation and an application representation according to type;

wherein the metadata is stored in a metadata file, wherein the metadata file

describes elements of the application programming interface in a machine readable

20 programming language independent format and is stored in a standard file format in a

known location as part of the operating system.

7. The article of manufacture of claim 6, wherein creating the projection element

comprises, at compile time, creating code that defines one or more projection elements.

25

8. The article of manufacture of claim 6, wherein creating the projection element

comprises, when the program is interpreted, creating code that defines one or more

projection elements.

30 9. The article of manufacture of claim 6, wherein the projection element comprises an

interface including methods, properties and events.

10. The article of manufacture of claim 6, wherein the projection element propagates

exceptions from the operating system to the application.

16

11. A computing machine comprising:

one or more processors;

one or more computer storage media;

5 computer program instructions stored on the computer storage medium which,

when processed by a processing device, implement a language projection between

application programming interfaces of an operating system and applications in a target

programming language;

wherein the application programming interfaces of the operating system are

10 described by metadata stored in memory; and

wherein the language projection receives an indication of a named element in a

program in a target programming language referring to an element of one of the

application programming interfaces of the operating system, and, using the metadata,

creates a projection element in the program in the target programming language, the

15 projection element being a projection of the element of the application programming

interface of the operating system to the named element in the program, such that at

runtime, the projection element in the program allows the program to access the

application program interface of the operating system;

wherein the projection element marshals marshaling data between an operating

20 system representation and an application representation according to type; wherein the

metadata is stored in a metadata file, wherein the metadata file describes elements of the

application programming interface in a machine readable programming language

independent format and is stored in a standard file format in a known location as part of

the operating system.

25

12. The computing machine of claim 11, wherein creating the projection element

comprises, at compile time, creating code that defines one or more projection elements.

13. The computing machine of claim 11, wherein creating the projection element

30 comprises, when the program is interpreted, creating code that defines one or more

projection elements.

14. The computing machine of claim 11, wherein the projection element comprises an

interface including methods, properties and events.

17

15. The computing machine of claim 11, wherein the projection element propagates

exceptions from the operating system to the application.

5

18

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

