(12) STANDARD PATENT (11) Application No. AU 2011375748 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Projecting native application programming interfaces of an operating system into
other programming languages

(51) International Patent Classification(s)

GOG6F 9/44 (2006.01) GO6F 9/22 (2006.01)

GOG6F 9/06 (2006.01)
(21) Application No: 2011375748 (22) Date of Filing: 2011.10.11
(87) WIPO No: WO013/032506

(30) Priority Data

(31) Number (32) Date (33) Country
13/223,296 2011.08.31 us
(43) Publication Date: 2013.03.07

(44) Accepted Journal Date: 2016.11.24

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Pierson, Harold;Rector, Brent;Lovell, Martyn;Prakriya, Mahesh;Rowe, Stephen;Basu,
Tassaduq;Wlodarczyk, Robert A.;Omiya, Elliot H_Dunietz, Jerry;Holecek,
Ales;Osterman, Lawrence W.;Zeng, Wei;Wadhwa, Neeraj;Solkar, Shakeel;Aksionkin,
Michael

(74) Agent/ Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

(56) Related Art
US 5339422 A
US 2009/0199220 A1

wo 2013/032506 A1 || J1 ¥ 10O 00O 0 OO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/032506 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

7 March 2013 (07.03.2013) WIPOIPCT
International Patent Classification:
GO6F 9/44 (2006.01) GO6F 9/06 (2006.01)
GO6F 9/22 (2006.01)
International Application Number:
PCT/US2011/055704

International Filing Date:
11 October 2011 (11.10.2011)

Filing Language: English
Publication Language: English
Priority Data:

13/223,296 31 August 2011 (31.08.2011) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: PIERSON, Harold; c¢/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). RECTOR, Brent;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). LOVELL, Martyn; c/o Microsoft Corporation,

LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). PRAKRIYA, Ma-
hesh; c/o Microsott Corporation, LCA - International Pat-
ents, One Microsoft Way, Redmond, Washington 98052-
6399 (US). ROWE, Stephen; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). BASU, Tassadugq;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). WLODARCZYK, Robert A.; c/o Microsoft Cor-
poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). OMIYA, Elliot
H.; ¢/o Microsoft Corporation, LCA - International Pat-
ents, One Microsoft Way, Redmond, Washington 98052-
6399 (US). DUNIETZ, Jerry; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). HOLECEK, Ales;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). OSTERMAN, Lawrence W.; ¢/o Microsott Corpor-
ation, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). ZENG, Wei; c/o
Microsott Corporation, LCA - International Patents, One
Microsott Way, Redmond, Washington 98052-6399 (US).

[Continued on next page]

(54) Title: PROJECTING NATIVE APPLICATION PROGRAMMING INTERFACES OF AN OPERATING SYSTEM INTO

OTHER PROGRAMMING LANGUAGES

A2 ~106 ~108
-

DEVELOPMENT COMPILER/
TOOL PROG] 1 INTERPRETER

COMPUTER SYSTEM

100 100
j y

RUNTIME
APPLICATIONN

RUNTIME APPLICATION

i ¥

APT2

L1

METADATA
TILE

APT1

METADATA
TILE

METADATA
TFILE

£ (104

OPERATING SYSTEM

FIG.1

(57) Abstract: Information about the operating system application
programming interfaces is stored in a known format in a known loca-
tion. This information fully describes the APIs exposed by the operat-
ing system and is stored in API metadata files. A language compiler
or interpreter uses this API information to build a natural and familiar
representation of the native system API in the target language. The
language compiler or interpreter can read the API information at
compile time and/or runtime. The metadata is used to allow an ap-
plication to refer to named elements in the API. Projections are built
that use the metadata to map named elements in the API to named
elements in the target language, and to define wrappers that marshal
data of those elements between the target representation and the nat-
ive operating system representation.

WO 2013/032506 A1 WK 00N YO0 NN RO

31

WADHWA, Neeraj; c/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). SOLKAR, Shakeel; c/o
Microsoft Corporation, LCA - International Patents, One
Microsoft Way, Redmond, Washington 98052-6399 (US).
AKSIONKIN, Michael; c/o Microsoft Corporation, LCA
- International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted
a patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

26 Oct 2016

2011375748

10

15

20

25

30

BACKGROUND
[0001] An operating system typically has several application programming interfaces that
allow applications to access functionality supported by the operating system. Such APIs
are typically specified by an operating system using a named file or object in a computer
programming language. For example, the C programming language uses header files that
may have a name such as “interface.h”. Similarly, in C# a mechanism called “P/Invoke”
signatures is used to access operating system APIs. A person writing a computer program
that will make use of an operating system API typically includes a reference to a named
API file or object in the program, or uses another mechanism provided by the
programming language. That program, for example, then includes calls to functions
defined by that API, in the syntax used by that API.
[0002] APIs defined in this manner cannot be directly accessed by languages other than
the languages they are written in. To be made accessible to programs written in other
languages, APIs are “wrapped.” This wrapping typically has to be done manually per API
and per language and requires deep understanding of both the target language and the API
and operating system. Consequently, many operating system APIs are unavailable.
[0002a] It is desired to address or ameliorate one or more disadvantages or limitations
associated with the prior art, or to at least provide a useful alternative.

SUMMARY

[0003] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not intended
to identify key features or essential features of the claimed subject matter, nor is it
intended to be used to limit the scope of the claimed subject matter.
[0003a] In one embodiment, the present invention provides a computer-implemented
process comprising: receiving metadata into memory describing application programming
interfaces of an operating system; receiving an indication of a named element in a program
in a target programming language referring to an element of one of the application
programming interfaces of the operating system; and using the metadata, creating a
projection element in the program in the target programming language, the projection
element being a projection of the element of the application programming interface of the
operating system to the named element in the program, such that at runtime, the projection
element in the program allows the program to access the application program interface of
the operating system; wherein the projection element marshals data between an operating

system representation and an application representation according to type; wherein the

1

26 Oct 2016

2011375748

10

15

20

25

30

metadata is stored in a metadata file, wherein the metadata file describes elements of the
application programming interface in a machine readable programming language
independent format and is stored in a standard file format in a known location as part of
the operating system.

[0003b] In another embodiment, the present invention provides an article of manufacture
comprising: a computer storage medium; computer program instructions stored on the
computer storage medium which, when processed by a processing device, instruct the
processing device to perform a process comprising: receiving metadata into memory
describing application programming interfaces of an operating system; receiving an
indication of a named element in a program in a target programming language referring to
an element of one of the application programming interfaces; and using the metadata,
creating a projection element in the program in the target programming language, the
projection element being a projection of the element of the application programming
interface of the operating system to the named element in the program, such that at
runtime, the projection element in the program allows the program to access the
application program interface of the operating system; wherein projecting the projection
element marshals data between an operating system representation and an application
representation according to type; wherein the metadata is stored in a metadata file,
wherein the metadata file describes elements of the application programming interface in a
machine readable programming language independent format and is stored in a standard
file format in a known location as part of the operating system.

[0003c] In a further embodiment, the present invention provides a computing machine
comprising: one or more processors; one or more computer storage media; computer
program instructions stored on the computer storage medium which, when processed by a
processing device, implement a language projection between application programming
interfaces of an operating system and applications in a target programming language;
wherein the application programming interfaces of the operating system are described by
metadata stored in memory; and wherein the language projection receives an indication of
a named element in a program in a target programming language referring to an element of
one of the application programming interfaces of the operating system, and, using the
metadata, creates a projection element in the program in the target programming language,
the projection element being a projection of the element of the application programming
interface of the operating system to the named element in the program, such that at

runtime, the projection element in the program allows the program to access the

2

26 Oct 2016

2011375748

10

15

20

25

30

application program interface of the operating system; wherein the projection element
marshals marshaling data between an operating system representation and an application
representation according to type; wherein the metadata is stored in a metadata file,
wherein the metadata file describes elements of the application programming interface in a
machine readable programming language independent format and is stored in a standard
file format in a known location as part of the operating system.

DESCRIPTION OF THE DRAWINGS
[0003d] Preferred embodiments of the present invention are hereinafter described, by way
of example only, with reference to the accompanying drawings, in which:
[0004] FIG. 1 is a block diagram of a system that includes projection of an API into other
programming languages.
[0005] FIG. 2 is a flow chart illustrating an example operation of a development tool.
[0006] FIG. 3 is a flow chart illustrating an example operation of a compiler or interpreter.
[0007] FIG. 4 is a block diagram of an example computing device in which such a system
can be implemented.

DETAILED DESRIPTION

[0008] In at least one embodiment, when an operating system is built, information about
the APIs is generated and stored in a known format in a known location within the
operating system. This information fully describes all the APIs exposed by the operating
system. This includes, but is not limited to, information about named elements of the API,
of a variety of types, such as basic types, enumerated types, structures, delegates,
interfaces, classes, methods, properties and events. This information is stored in API
metadata files.
[0009] A language compiler or interpreter uses this API information to build a natural and
familiar representation of the native system API in the target language. This representation
varies from language to language (as what is natural and familiar varies from language to
language). The language compiler or interpreter can read the API information at compile
time and/or runtime, whatever is most appropriate for the language in question. For
example, a statically compiled language like C++ would consume the metadata purely at
compile time while dynamic language like Python or JavaScript would consume the
metadata purely at runtime. An environment like .NET or Java would likely consume the
metadata both at compile and runtime. The metadata is used to allow an application to
refer to named elements in the API. Projections are built that use the metadata to map

named elements in the API to named elements in the target language, and to define

3

26 Oct 2016

2011375748

10

15

20

25

30

wrappers that marshal data of those elements between the target representation and the
native operating system representation.

[0010] Accordingly, in one aspect, metadata describing application programming
interfaces of an operating system is stored in memory. Given an indication of a named
element in a program in a programming language, referring to an element of one of the
application programming interfaces, the named element is projected into the programming
language using the metadata. Projection can occur during compilation or interpretation of
the program. Projection can include creating code that creates one or more elements in the
programming language, and marshaling data for the created elements according to type.
Interfaces, including their methods, properties and events, can be so projected. Projection
also can include propagating exceptions from the operating system to the application.
[0011] Such projection of the operating system APIs into other languages can be
embodied in a computer-implemented process, an article of manufacture include one or
more computer storage media, or a computing machine.

[0012] In the following description, reference is made to the accompanying drawings
which form a part hereof, and in which are shown, by way of illustration, specific example
implementations of this technique. It is understood that other embodiments may be
utilized and structural changes may be made without departing from the scope of the
disclosure.

[0013] The following section provides an example operating environment in which such
projection of native system API’s into other languages can be implemented.

[0014] Referring to Fig. 1, a running application 100 accesses native system APIs 102 of
an operating system 104 during runtime. In order for such application to have such
functionality, a program 106 is written typically using a development tool 112, such as an
editor. Such programs are either compiled or interpreted by a compiler or interpreter 108
of the language to provide the runtime application 100. The development tool 112, and
compiler or interpreter 108, access metadata 110 that fully describes the APIs 102 of the
operating system. The development tool 112 assists a developer in writing programs, but
informing the developer of available native system API’s, via the metadata, and allowing
those APIs to be accessed using the developer’s programming language. The compiler or
interpreter embodies a projection of the native system APIs into the developer’s
programming language using the metadata. In particular, named elements in the API are
mapped to named elements in the target language, and values in those elements are

marshaled between formats used by the target language and the operating system.

3A

26 Oct 2016

2011375748

=
o

15

[0015] Building such a system begins with building an operating system with API’s
described with metadata. The metadata represents each named element of an API
description in a programming language independent form. This metadata provides a
complete description of the interface. The combined system metadata can be stored in a
series of metadata files in the ECMA-335 CLI format, but the specific format is
immaterial to the invention.

[0016] Given this context, an example implementation of such a system will be described
in more detail in connection with Figs. 2-4.

[0017] In Fig. 2, an example of operation of a development tool will now be described. A
developer commonly uses a form of development tool, such as an editor, when writing a
computer program. This editor can do a variety of tasks, such as verifying syntax and
proposing completions to strings entered by the developer. In this environment, the
metadata describing the operating system application programming interfaces can be used
in a variety of ways. In particular, it can be used to allow the developer to discover
available APIs. The development tool receives 200 a string input, such as a keyword that
might be used in an API as an identifier (such as “Mouse”) or a name space (such as the

name of the operating system). The metadata can be searched 202 to identify elements

3B

10

15

20

25

30

WO 2013/032506 PCT/US2011/055704

having the received input as part of an identifier or name space. Identifiers for the set of
matching elements can be collected and returned 204 to the development tool. The
development tool can present 206 the elements to the developer for selection, and use
information from the metadata to present such elements in a format appropriate for the
computer language the developer is using.

[0018] Referring now to Fig. 3, an example of operation of a language compiler or
interpreter will now be described. In processing a computer program, whether to compile
or interpret it, a sequence of elements of the computer program is detected 300. Whether
an element of the computer program is a reference to the API of the operating system is
determined 302. For example, this can be determined by looking up the element in the
metadata. A projection element is created 304, using the metadata, which allows data to
be exchanged between the computer program and the operating system. In particular, the
compiler or interpreter implements a projection of the named element in the operating
system API to a named element in the target language. The metadata allows an object to
be created and values to be marshaled between the data format used by the program and
the format used by the operating system. At runtime, this element allows the program to
access 306 the API of the operating system and marshal data between the application and
the operating system.

[0019] Having now described the general operation of such a system, a specific example
will now be described. In particular, more details of an example projection between the
metadata describing the API and a computer language specific representation of the
elements of the API will now be described.

[0020] The following description is merely one possible implementation and is not
considered to be limiting of the invention. In particular, it should be understood that the
following is merely an example of a language projection that could be implemented, and
that other implementations for this language are possible, and other projections into other
languages are possible.

[0021] In this example, JavaScript is the programming language into which the native
system APIs will be projected using the metadata. In the examples below, an explanation
is given for how some kinds of elements are projected into the JavaScript programming
language.

[0022] When a script attempt to create an instance of a particular object defined by an
operating system API, a Projector object is responsible for accessing the metadata to

create marshaling stubs that convert data between different types, possibly involving

4

10

15

20

25

30

WO 2013/032506 PCT/US2011/055704

creating proxy objects, and for dispatching method calls, managing events and managing
callback functions.

[0023] For named elements that are basic types, such as integers, strings, and the like, the
following are ways of projecting those API elements into JavaScript.

[0024] The operating system has several signed and unsigned integer types, such as an
unsigned integer of one byte (UInt8), unsigned integer of four bytes (UInt32), a signed
integer of four bytes (Int8), and signed and unsigned integers of eight bytes (UInt64 and
Int64). Named clements of these types are projected as JavaScript Number values. When
a JavaScript Number is marshaled into the operating system value, then the values are type
coerced into a JavaScript number, and then the process defined by the ES5 Tolnt32
specification is followed. For Ulnt8, the result has modulo 28 applied. For an Int32,
modulo 216 is applied. For Ulnt32, modulo 2”32 is applied.

[0025] A 64-bit integer being marshaled into JavaScript value is represented as a standard
Number value if it falls in the range [-2753, 253], if signed, or [0,2"53] if unsigned. If it
falls outside this range, it is represented as a Number value with a custom backing store
that maintains the full 64 bits of integer data. Mathematical operations on these custom
Number values cause the value to be coerced into a standard Number representation in the
range [-2"53, 2753] or [0,2753] if unsigned. If the value is outside this range, a Type
Error will be raised. A JavaScript value being marshaled into an 64-bit integer is directly
assigned if it is a projected value itself; otherwise, the result of applying a EC5
"Tolnteger" conversion on the value is passed.

[0026] Named elements of the operating system API that are characters (represented by
16-bit unicode), strings or global unique identifiers (GUIDs) can be represented as
JavaScript strings and are projected into named strings in JavaScript.

[0027] A character being marshaled into JavaScript is converted into a JavaScript string
value containing the single character represented by the unicode value. A JavaScript value
being marshaled into a character is type coerced into a JavaScript string via the ES5
ToString operation and the first character is kept. The single character is then passed as
the Charl6 value.

[0028] A string being marshaled into JavaScript is converted to a JavaScript String. A
JavaScript value being marshaled into a string is type coerced into a JavaScript string.
[0029] A GUID being marshaled into a JavaScript value is converted into a string format.
A JavaScript value being marshaled into a GUID is type coerced into a string and then

parsed into a format used by the operating system.

5

10

15

20

25

30

WO 2013/032506 PCT/US2011/055704

[0030] The operating system can have an API with a named element that is a DateTime
struct that represents a point in time or a TimeSpan struct that represents a quantity of
time. The DateTime structure can be projected into JavaScript as a Date instance with a
backing store matching the DateTime struct data (which has a different range and
precision than the Date instance). A TimeSpan struct is converted to milliseconds and
returned as a JavaScript Number. Similarly, a JavaScript number can be converted from
milliseconds to a 100-nanosecond units to pass as a TimeSpan struct.

[0031] It should be noted that, by interpreting metadata, a projection can also remap types
from the native environment into the existing types in the language projection in some
cases. For example, this is possible and desirable when the types in native API and
language projections have a compatible data layout, which can readily occur with
fundamental data types. With the metadata mapping, a projection can simply redirect all
operations, such as methods or properties on the language types, to the native types
directly. This makes uses of those types more natural and familiar to the language
developers. For example, a DateTime structure remapping can be implemented in this
manner. In the native API, a DateTime structure is exposed as
Windows.Foundation.DateTime in the metadata without any additional operations. In a C#
projection, this type can be redirected to System.DateTimeOffset in C# with rich support.
[0032] As another example, if a named element in an API is a method, it has a value
HRESULT as its return type, which is converted to exceptions in JavaScript. A returned
HRESULT is checked for success by the JavaScript engine. If the HRESULT indicates a
failure, the JavaScript engine throws an exception on the JavaScript side. Thus, for
JavaScript invoking methods of an operating system API, an HRESULT failure is surfaced
as a JavaScript Exception. For API methods consuming JavaScript methods (such as for
call backs or delegates described below), the JavaScript method call is wrapped in an
exception block (or the equivalent as provided by the JavaScript hosting API) so that
caught exceptions can be propagated as HRESULTS. However, the operating system also
allows HRESULTs to be in the in or out parameter positions of methods and properties.
In these cases, HRESULTS are marshaled as an unsigned 32-bit value (as described
above).

[0033] For named elements in an API that are enumerated types, which is a set of named
constants, these are represented in JavaScript as an object that contains a read only field

for each named value.

10

15

20

25

30

WO 2013/032506 PCT/US2011/055704

[0034] For named elements in an API that are “structs”, a collection of named data fields,
these are represented in JavaScript as JavaScript objects. A Struct being marshaled into
JavaScript is converted into an object. Each named field in the struct becomes a named
property in the JavaScript object. The value of each named field in the struct is marshaled
as per the underlying type of the field. A JavaScript Value that is an object type can
marshaled into a Struct. The JavaScript Object or its prototype contains a named field for
cach named field of the struct and the value of each named field is marshaled according to
the underlying type. Extra fields in the JavaScript Object that don’t have equivalent in the
operating system API struct are ignored. If the marshalling of any struct value fails, a
marshalling error is returned.

[0035] In this example, the operating system does not have a type for an array, but instead
allows an arguments to methods to be a pair of an unsigned integer length representing a
number of elements, not bytes, in an array, followed by a pointer to the array’s first
clement.

[0036] When marshaling an array into Javascript, an object is created with the following
characteristics. The object has properties for each integer value between 0 and the length
of the array, minus 1, which are enumerable, writable and not configurable, and a ‘length’
property initially set to the length of the vector, which is not writable, not enumerable and
not configurable. Its prototype is the Array prototype object. Its [[Put]] operation on
index properties sets the specified index on the underlying native array. Its
[[GetOwnProperty]] operations on index properties indexes into the underlying native
array. It does not have [[Class]] as “Array”. When marshaling a JavaScript object, if the
object has [[Class]] “Array”, then the array is copied into a native array and a reference to
this array is passed on. If the object was a projected array, then the underlying native
array is passed on.

[0037] The API also can have named elements that are delegates, or callback functions,
which is a reference to a single invokable method. These can be projected into JavaScript
as callable objects. The Projector wraps the callback delegate in a custom marshaling
object.

[0038] A delegate being marshaled into JavaScript is wrapped in a JavaScript function
object. When the function object is invoked, the arguments are marshaled into the
equivalent parameter types as specified by the delegate and then the wrapped delegate
object is invoked. If any argument fails to marshal, the delegate call fails. If there are

fewer JavaScript arguments than delegate in parameters, the delegtate call fails. Extra

7

10

15

20

25

30

WO 2013/032506 PCT/US2011/055704

JavaScript arguments beyond the delegate in parameters are ignored. After the delegate is
invoked, the out parameters are marshaled into JavaScript types. If any out parameter fails
to marshal, the delegate call fails. The out parameters are then marshaled to JavaScript
values and returned.
[0039] If a native JavaScript function object is being marshaled into a delegate, that
callable object is wrapped in a delegate of the corresponding delegate type. When the
delegate is invoked, the in parameters are marshaled into JavaScript types and then the
JavaScript function object is invoked. If any argument fails to marshal, the delegate call
fails. After the delegate is invoked, the return value is mapped into the delegate’s out
parameters based on the following rules. First, if there are no out parameters, the return
value from the JavaScript function object is ignored. Second, if the delegate specifies a
single out parameter, the return value from the JavaScript function object is marshaled into
that type. If that marshalling fails, the delegate call fails. Third, if the delegate specifies
multiple out parameters, the return value from the JavaScript function object return value
is an object with a named property for each out parameter. Each named property is
marshaled into the type of the corresponding out parameter. If the return value is not an
object, the delegate call fails. If the returned object doesn’t contain a named property for
cach out parameter, the delegate call fails. If the returned object contains extra named
properties that don’t correspond to out parameters, they are ignored. If any named property
fails to marshal to the corresponding out parameter type, the delegate call fails.
[0040] The following example illustrates metadata for a delegate called IString Collection,
and pseudo-JavaScript code that creates an instance of this delegate.
[0041] Example metadata:

[uuid(...)]
delegate HRESULT Comparer([in] HSTRING s1, [in] HSTRING s2,

[out, retval] boolean* value)
interface IStringCollection

{
HRESULT Sort([in] Comparer compare);

}

[0042]

[0043] Pseudo-JavaScript:

//create an instance of a class that implements IStringCollection

strCol = getlIStringCollection()

10

15

20

25

30

WO 2013/032506 PCT/US2011/055704

strCol.sort(function (s1, s2) { return s1 > s2; });

[0044] Interfaces are not directly projected into JavaScript as objects. However, interfaces
can be parameter and return types of the operating system API methods.

[0045] To provide a projection that is natural in the target programming language, in the
examples above, members are projected into JavaScript have their names altered to
camelCase, following a strong convention in JavaScript to use camelCase names for
members. Types, which are akin to JavaScript constructor functions, are conventionally
PascalCased and are projected in that form. Similarly, enum properties, struct fields, event
names for the addEventListener pattern, have names in camelCase.

[0046] An interface instance that is not known based on static type information to be a
representation of a runtime class, being marshaled into JavaScript, goes through the
following steps. First, a call to the interface is made to obtain the runtime class name for
the interface. If successful, the object is projected as a runtime class instance object
(described below). Otherwise, the object is projected as though it were an instance of an
unnamed runtime class that implements exactly the interface is known to implement and
it’s transitively required interfaces.

[0047] A JavaScript value being marshaled to an interface type is checked to see if it is a
projected runtime class instance object or projected interface instance object. Ifitisa
runtime class object, and the original value which that object proxies implements an
interface type, the objects implementation of that interface is passed to the operating
system. Otherwise, a type error exception is raised.

[0048] Objects in the operating system API may be instances of runtime classes. Runtime
classes implement a set of one or more interfaces (defined below). The list of implemented
interfaces of a running object can be determine either based on the metadata of the method
that returned the running object or by access the runtime class name and looking up the
metadata. Since JavaScript is a prototype based, dynamic language, it has no construct of
classes. Class constructs are projected in JavaScript as objects.

[0049] Thus, operating system API objects are projected in JavaScript as objects. The
union of methods, properties and events defined on all the implemented interfaces of the
class represents the type members that are exposed as named properties available on the
projected JavaScript object, via its prototype. Consumers of the JavaScript language
projection can access any member of the class directly without concern regarding which

interface the member is actually defined on.

10

15

20

25

30

WO 2013/032506 PCT/US2011/055704

[0050] JavaScript objects are dynamic, meaning that new properties can be added or
removed on objects at any time. Projected objects can support adding new properties and
methods, so long as pre-defined interface members are not overridden or deleted. In
JavaScript terms, projected objects are extensible, but the collection of named type
members is non-configurable. Projected objects have a prototype with the instance
members defined on the collection of members from the runtime class-implemented
interfaces.

[0051] Such interfaces, as noted above, have methods, parameters and events.

[0052] Methods at the language projection layer are implemented as a vtable with a slot
per method. The metadata about an interface provides the method name as well as the
names, types and direction (in/out) of the parameters. Methods are projected in JavaScript
as callable properties on the projected runtime class or interface object. These properties
are {Writable=false, Enumerable=true, Configurable=false}. When called, the arguments
are marshaled according to their corresponding parameter types, the method is called with
these values. The return value(s) are marshaled to a JavaScript value, with the JavaScript
object returns as the value.

[0053] Properties at the language projection layer are implemented as get and/or set
methods. Accessing the property value calls the get method while updating the property
value invokes the set method. Properties can be read or write (i.e. get and set methods
available) or read only (i.e. only get method available). Properties are projected in
JavaScript as properties. Marshalling of the property value works as described above
depending on the underlying property type.

[0054] Events at the language projection layer are implemented as add and remove event
listener methods. The add method takes a delegate instance and returns data describing the
listener, while the remove method takes the data describing the listener and returns
nothing.

[0055] In JavaScript, any projected runtime class or interface object which has at least one
event projected onto it gets two additional properties added to its prototype,
addEventListener and removeEventListener. These properties are {Writable: false,
Enumerable: true, Configurable: false} and are assigned to be callable objects.

[0056] The addEventListener function takes a string argument which represents the name
of the event to listen to, a callback function to assign as the listener, and an optional third

parameter which is ignored. This function calls the underlying add Event method,

10

10

15

20

25

30

WO 2013/032506 PCT/US2011/055704

passing the marshaled callback function as a delegate, and stores the resulting token in a
map keyed by the reference identity of the callback function object.

[0057] The removeEventListener function takes a string argument which represents the
name of the event to remove a listener from, a callback function which should be removed,
and an optional third parameter which is ignored. This function looks up the callback
function by reference identity in the map of stored tokens, and if a token is found, calls
the underlying remove Event method, passing the retrieved token.

[0058] When the event is fired, any JavaScript function objects passed as the callbacks
will be invoked. The arguments passed to the function object will be the marshaled values
of the arguments provided to the EventHandler delegate.

[0059] As shown by the foregoing, by having an API Projection layer for a language,
named elements of an operating system API, as specified by metadata stored in the
operating system, can be used to automatically create objects and marshal data between
the operating system API format and the application programming language format. It
should be understood that the foregoing is merely an example of projection between an
example operating system and an example programming language and that the invention is
not limited to this example.

[0060] Having now described an example implementation, a computing environment in
which such a system is designed to operate will now be described. The following
description is intended to provide a brief, general description of a suitable computing
environment in which this system can be implemented. The system can be implemented
with numerous general purpose or special purpose computing hardware configurations.
Examples of well known computing devices that may be suitable include, but are not
limited to, personal computers, server computers, hand-held or laptop devices (for
example, media players, notebook computers, cellular phones, personal data assistants,
voice recorders), multiprocessor systems, microprocessor-based systems, set top boxes,
game consoles, programmable consumer electronics, network PCs, minicomputers,
mainframe computers, distributed computing environments that include any of the above
systems or devices, and the like.

[0061] FIG. 4 illustrates an example of a suitable computing system environment. The
computing system environment is only one example of a suitable computing environment
and is not intended to suggest any limitation as to the scope of use or functionality of such

a computing environment. Neither should the computing environment be interpreted as

11

10

15

20

25

30

WO 2013/032506 PCT/US2011/055704

having any dependency or requirement relating to any one or combination of components
illustrated in the example operating environment.

[0062] With reference to FIG. 4, an example computing environment includes a
computing machine, such as computing machine 400. In its most basic configuration,
computing machine 400 typically includes at least one processing unit 402 and memory
404. The computing device may include multiple processing units and/or additional co-
processing units such as graphics processing unit 420. Depending on the exact
configuration and type of computing device, memory 404 may be volatile (such as RAM),
non-volatile (such as ROM, flash memory, etc.) or some combination of the two. This
most basic configuration is illustrated in FIG. 4 by dashed line 406. Additionally,
computing machine 400 may also have additional features/functionality. For example,
computing machine 400 may also include additional storage (removable and/or non-
removable) including, but not limited to, magnetic or optical disks or tape. Such additional
storage is illustrated in FIG. 4 by removable storage 408 and non-removable storage 410.
Computer storage media includes volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage of information such as
computer program instructions, data structures, program modules or other data. Memory
404, removable storage 408 and non-removable storage 410 are all examples of computer
storage media. Computer storage media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium which can be used to store the
desired information and which can accessed by computing machine 400. Any such
computer storage media may be part of computing machine 400.

[0063] Computing machine 400 may also contain communications connection(s) 412 that
allow the device to communicate with other devices. Communications connection(s) 412
is an example of communication media. Communication media typically carries computer
program instructions, data structures, program modules or other data in a modulated data
signal such as a carrier wave or other transport mechanism and includes any information
delivery media. The term "modulated data signal" means a signal that has one or more of
its characteristics set or changed in such a manner as to encode information in the signal,
thereby changing the configuration or state of the receiving device of the signal. By way

of example, and not limitation, communication media includes wired media such as a

12

26 Oct 2016

2011375748

10

15

20

25

30

wired network or direct-wired connection, and wireless media such as acoustic, RF,
infrared and other wireless media.

[0064] Computing machine 400 may have various input device(s) 414 such as a display, a
keyboard, mouse, pen, camera, touch input device, and so on. Output device(s) 416 such
as speakers, a printer, and so on may also be included. All of these devices are well known
in the art and need not be discussed at length here.

[0065] This system may be implemented in the general context of software, including
computer-executable instructions and/or computer-interpreted instructions, such as
program modules, being processed by a computing machine. Generally, program modules
include routines, programs, objects, components, data structures, and so on, that, when
processed by a processing unit, instruct the processing unit to perform particular tasks or
implement particular abstract data types. This system may be practiced in distributed
computing environments where tasks are performed by remote processing devices that are
linked through a communications network. In a distributed computing environment,
program modules may be located in both local and remote computer storage media
including memory storage devices.

[0066] The terms “article of manufacture”, “process”, “machine” and “composition of
matter” in the preambles of the appended claims are intended to limit the claims to subject
matter deemed to fall within the scope of patentable subject matter defined by the use of
these terms in 35 U.S.C. §101.

[0067] Any or all of the aforementioned alternate embodiments described herein may be
used in any combination desired to form additional hybrid embodiments. It should be
understood that the subject matter defined in the appended claims is not necessarily
limited to the specific implementations described above. The specific implementations
described above are disclosed as examples only.

[0068] Throughout this specification and the claims which follow, unless the context
requires otherwise, the word "comprise”, and variations such as "comprises” and
"comprising”, will be understood to imply the inclusion of a stated integer or step or group
of integers or steps but not the exclusion of any other integer or step or group of integers
or steps.

[0069] The reference in this specification to any prior publication (or information derived
from it), or to any matter which is known, is not, and should not be taken as an

acknowledgment or admission or any form of suggestion that that prior publication (or

13

26 Oct 2016

2011375748

information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

14

26 Oct 2016

2011375748

10

15

20

25

30

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented process comprising:

receiving metadata into memory describing application programming interfaces of
an operating system;

receiving an indication of a named element in a program in a target programming
language referring to an element of one of the application programming interfaces of the
operating system; and

using the metadata, creating a projection element in the program in the target
programming language, the projection element being a projection of the element of the
application programming interface of the operating system to the named element in the
program, such that at runtime, the projection element in the program allows the program to
access the application program interface of the operating system;

wherein the projection element marshals data between an operating system
representation and an application representation according to type; wherein the metadata is
stored in a metadata file, wherein the metadata file describes elements of the application
programming interface in a machine readable programming language independent format

and is stored in a standard file format in a known location as part of the operating system.

2. The computer-implemented process of claim 1, wherein creating the project element
comprises, when the program is compiled, creating code that defines one or more

projection elements.
3. The computer-implemented process of claim 1, wherein creating the projection element
comprises, when the program is interpreted, creating code that defines one or more

projection elements.

4. The computer-implemented process of claim 1, wherein the projection element

comprises an interface including methods, properties and events.

5. The computer-implemented process of claim 1, wherein the projection element

propagates exceptions from the operating system to the application.

15

26 Oct 2016

2011375748

10

15

20

25

30

6. An article of manufacture comprising:

a computer storage medium; computer program instructions stored on the
computer storage medium which, when processed by a processing device, instruct the
processing device to perform a process comprising:

receiving metadata into memory describing application programming
interfaces of an operating system;

receiving an indication of a named element in a program in a target
programming language referring to an element of one of the application
programming interfaces; and

using the metadata, creating a projection element in the program in the target
programming language, the projection element being a projection of the element of
the application programming interface of the operating system to the named
element in the program, such that at runtime, the projection element in the program
allows the program to access the application program interface of the operating
system,;

wherein projecting the projection element marshals data between an operating
system representation and an application representation according to type;

wherein the metadata is stored in a metadata file, wherein the metadata file
describes elements of the application programming interface in a machine readable
programming language independent format and is stored in a standard file format in a

known location as part of the operating system.

7. The article of manufacture of claim 6, wherein creating the projection element

comprises, at compile time, creating code that defines one or more projection elements.

8. The article of manufacture of claim 6, wherein creating the projection element
comprises, when the program is interpreted, creating code that defines one or more

projection elements.

9. The article of manufacture of claim 6, wherein the projection element comprises an

interface including methods, properties and events.

10. The article of manufacture of claim 6, wherein the projection element propagates

exceptions from the operating system to the application.

16

26 Oct 2016

2011375748

10

15

20

25

30

11. A computing machine comprising:

one Or More processors;

one or more computer storage media;

computer program instructions stored on the computer storage medium which,
when processed by a processing device, implement a language projection between
application programming interfaces of an operating system and applications in a target
programming language;

wherein the application programming interfaces of the operating system are
described by metadata stored in memory; and

wherein the language projection receives an indication of a named element in a
program in a target programming language referring to an element of one of the
application programming interfaces of the operating system, and, using the metadata,
creates a projection element in the program in the target programming language, the
projection element being a projection of the element of the application programming
interface of the operating system to the named element in the program, such that at
runtime, the projection element in the program allows the program to access the
application program interface of the operating system;

wherein the projection element marshals marshaling data between an operating
system representation and an application representation according to type; wherein the
metadata is stored in a metadata file, wherein the metadata file describes elements of the
application programming interface in a machine readable programming language
independent format and is stored in a standard file format in a known location as part of

the operating system.

12. The computing machine of claim 11, wherein creating the projection element

comprises, at compile time, creating code that defines one or more projection elements.

13. The computing machine of claim 11, wherein creating the projection element
comprises, when the program is interpreted, creating code that defines one or more

projection elements.

14. The computing machine of claim 11, wherein the projection element comprises an

interface including methods, properties and events.

17

26 Oct 2016

2011375748

15. The computing machine of claim 11, wherein the projection element propagates

exceptions from the operating system to the application.

18

WO 2013/032506 PCT/US2011/055704
1/4
112 1,f-~106 108
_| DEVELOPMENT N .| COMPILER/
" TOOL » PROGRAM " INTERPRETER
COMPUTER SY$TEM
100 ~100
q?‘“} & i,‘j
RUNTIME RUNTIME APPLICATION
APPLICATION N 1
w w
1102
API 1 API 2 APIN
A& A A ;/“1 1 0
METADATA METADATA METADATA
FILE FILE FILE
104
OPERATING SYSTEM

FIG.1

WO 2013/032506

2/4

PCT/US2011/055704

RECEIVE STRING INPUT

200

SEARCH METADATA

202

COLLECT MATCHING IDENTIFIERS

204
A

ki

PRESENT ELEMENTS TO DEVELOPER
FOR SELECTION

206

=

FIG. 2

WO 2013/032506

PCT/US2011/055704

300

302

i

("3 04

3/4

DETECT NAMED ELEMENT
¥

DETERMINE IF ELEMENT IN APl {7
¥

CREATE PROJECTION ELEMENT 7
¥

AT RUNTIME ALLOW ACCESS -~

THROUGH API

FIG. 3

WO 2013/032506 PCT/US2011/055704
4/4
400
) ~408
404 406 REMOVABLE ./
: ~ 402
et STORAGE
~ 410
SYSTEM PROCESSING NONREMOVABLE |/
MEMORY UNIT STORAGE
414
voLATILE | /%0 INPUT DEVICE(S)
MEMORY GRAPHICS 416
PROCESSING OUTPUT DEVICE(S) [T
NONVOLATILE UNIT
MEMORY COMMUNICATION | 412
CONNECTION(S)

FIG. 4

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

