Abstract:

A package-on-package stacked microelectronic structure comprising a pair of microelectronic packages attached to one another in a flipped configuration. In one embodiment, the package-on-package stacked microelectronic structure may comprise a first and a second microelectronic package, each comprising a substrate having at least one package connection bond pad formed on a first surface of each microelectronic package substrate, and each having at least one microelectronic device electrically connected to the each microelectronic package substrate first surface, wherein the first and the second microelectronic package are connected to one another with at least one package-to-package interconnection structure extending between the first microelectronic package connection bond pad and the second microelectronic package connection bond pad.
PACKAGE-ON-PACKAGE STACKED MICROELECTRONIC STRUCTURES

TECHNICAL FIELD

Embodiments of the present description generally relate to the field of microelectronic package fabrication, and, more particularly, to a microelectronic structure including two microelectronic packages stacked in a flipped configuration.

BACKGROUND

The microelectronic industry is continually striving to produce ever faster and smaller microelectronic packages for use in various electronic products, including, but not limited to, computer server products and portable products, such as portable computers, electronic tablets, cellular phones, digital cameras, and the like. One route to achieve these goals is the fabrication of stacked packages. On type of package stacking, called Package-on-Package (PoP) stacking, is becoming an important solution for mobile and wireless applications that require small lateral dimensions, low package heights, and high bandwidth between the microelectronic devices within the Package-on-Package stacked structure.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. It is understood that the accompanying drawings depict only several embodiments in accordance with the present disclosure and are, therefore, not to be considered limiting of its scope. The disclosure will be described with additional specificity and detail through use of the accompanying drawings, such that the advantages of the present disclosure can be more readily ascertained, in which:

FIGs. 1 - 7 illustrates cross-sectional views of processes of fabricating a package-on-package stacked microelectronic structure, according to an embodiment of the present description.

FIG. 8 illustrates a cross-sectional view of a package-on-package stacked microelectronic structure, according to another embodiment of the present description.

FIG. 9 illustrates a cross-sectional view of a package-on-package stacked microelectronic structure, according to still another embodiment of the present description.

FIG. 10 illustrates a cross-sectional view of a package-on-package stacked microelectronic structure, according to yet another embodiment of the present description.

FIG. 11 illustrates a top plan view along line A-A of FIG. 3, according to one embodiment
of the present description.

FIG. 12 illustrates a top plan view along line A-A of FIG. 3, according to another embodiment of the present description.

FIG. 13 is a flow chart of a process of fabricating a package-on-package stacked microelectronic structure, according to an embodiment of the present description.

FIG. 14 illustrates a computing device in accordance with one implementation of the present description.

DESCRIPTION OF EMBODIMENTS

In the following detailed description, reference is made to the accompanying drawings that show, by way of illustration, specific embodiments in which the claimed subject matter may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the subject matter. It is to be understood that the various embodiments, although different, are not necessarily mutually exclusive. For example, a particular feature, structure, or characteristic described herein, in connection with one embodiment, may be implemented within other embodiments without departing from the spirit and scope of the claimed subject matter. References within this specification to "one embodiment" or "an embodiment" mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation encompassed within the present description. Therefore, the use of the phrase "one embodiment" or "in an embodiment" does not necessarily refer to the same embodiment. In addition, it is to be understood that the location or arrangement of individual elements within each disclosed embodiment may be modified without departing from the spirit and scope of the claimed subject matter. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the subject matter is defined only by the appended claims, appropriately interpreted, along with the full range of equivalents to which the appended claims are entitled. In the drawings, like numerals refer to the same or similar elements or functionality throughout the several views, and that elements depicted therein are not necessarily to scale with one another, rather individual elements may be enlarged or reduced in order to more easily comprehend the elements in the context of the present description.

The terms "over", "to", "between" and "on" as used herein may refer to a relative position of one layer with respect to other layers. One layer "over" or "on" another layer or bonded "to" another layer may be directly in contact with the other layer or may have one or more intervening layers. One layer "between" layers may be directly in contact with the layers or may have one or more intervening layers.
Embodiments of the present description include a package-on-package stacked microelectronic structure comprising a pair of microelectronic packages attached to one another in a flipped configuration. In one embodiment, the package-on-package stacked microelectronic structure may comprise a first and a second microelectronic package, each comprising a substrate having at least one package connection bond pad formed on a first surface of each microelectronic package substrate, and each having at least one microelectronic device electrically connected to the each microelectronic package substrate first surface, wherein the first and the second microelectronic package are connected to one another with at least one package-to-package interconnection structure extending between the first microelectronic package connection bond pad and the second microelectronic package connection bond pad.

FIGs. 1-7 illustrate embodiments of the present description wherein a pair of microelectronic packages are attached to one another in a flipped configuration to form a package-on-package stacked microelectronic structure. As shown in FIG. 1, a package substrate 110 may be formed. The package substrate 110 may be any appropriate substrate, such as an interposer or the like, having a first surface 112 and an opposing second surface 114. The package substrate 110 may have a plurality of bond pads, comprising at least one microelectronic device attachment bond pad 122 and at least one package-to-package bond pads 124, formed in or on the package substrate first surface 112, and a plurality of external connection bond pads 126 formed in or on the package substrate second surface 114. The package substrate 110 may comprise a plurality of dielectric layers (not illustrated) having a plurality of conductive routes 116 formed therethrough, wherein the conductive routes 116 may form connections between appropriate bond pads, such as the microelectronic device attachment bond pads 122, the package-to-package bond pads 124, and/or the external connection bond pads 126.

The package substrate 110 may comprise any appropriate dielectric material, including, by not limited to, liquid crystal polymer, epoxy resin, bismaleimide tria/ine resin, FR4, polyimide materials, and the like. The conductive routes 116 may be formed of any appropriate conductive material, including, but not limited to, copper, silver, gold, nickel, and alloys thereof. It is understood that the package substrate 110 may be formed from any number of dielectric layers, may contain a rigid core (not shown), and may contain active and/or passive microelectronic devices (not shown) formed therein. It is further understood that the conductive routes 116 could form any desired electrical route within the package substrate 110 and/or with additional external components (not shown). It is also understood that solder resist layers (not shown) could be utilized on the package substrate first surface 112 and/or the package substrate second surface 114, as will be understood to those skilled in the art. The processes used for forming the
package substrate 110 are well known to those skilled in the art, and for the sake of brevity and conciseness will not be described or illustrated herein.

As shown in FIG. 2, a package interconnection material bump 134 may be formed on each of the package-to-package bond pads 124. The package interconnection material bumps 134 may be formed from any appropriate material, including, but not limited to, reflowable solder.

As shown in FIG. 3, a microelectronic device 142 having an active surface 144 and an opposing back surface 148 may be attached to corresponding microelectronic device attachment bond pads 122 with a plurality of device-to-substrate interconnects 132, in a configuration generally known as a flip-chip or controlled collapse chip connection ("C4") configuration, to form a microelectronic package 100. The device-to-substrate interconnects 132 may extend between the microelectronic device attachment bond pads 122 and mirror-image bond pads 146 on an active surface 144 of the microelectronic device 142 to form an electrical connection therebetween. It is understood that the microelectronic device bond pads 146 may be in electrical communication with integrated circuitry (not shown) within the microelectronic device 142. The microelectronic device 142 may be any appropriate microelectronic device, including, but not limited to a microprocessor, a chipset, a graphics device, a wireless device, a memory device, an application specific integrated circuit device, and the like.

The device-to-substrate interconnects 132 can be made any appropriate material, including, but not limited to, solders and conductive filled epoxies. Solder materials may include may be any appropriate material, including but not limited to, lead/tin alloys, such as 63% tin / 37% lead solder, or lead-free solders, such as a pure tin or high tin content alloys (e.g. 90% or more tin), such as tin/bismuth, eutectic tin/silver, ternary tin/silver/copper, eutectic tin/copper, and similar alloys. When the microelectronic device 142 is attached to the microelectronic substrate 110 with device-to-substrate interconnects 132 made of solder, the solder is reflowed, either by heat, pressure, and/or sonic energy to secure the solder between the microelectronic device bond pads 146 and the microelectronic device attachment bond pads 122. Additionally, the microelectronic device 142 may be copper pillar based flip chip component which is attached to the substrate 110, as will be understood to those skilled in the art.

As shown in FIG. 4, an electrically-insulating flowable material, such as an underfill material 152 may be disposed between the microelectronic device 142 and the package substrate 110, which substantially encapsulates the device-to-substrate interconnects 132. The underfill material 152 may be used to reduce mechanical stress issues that can arise from thermal expansion mismatch between the microelectronic device 142 and the microelectronic substrate 110. The underfill material 152 may be an epoxy material, including, but not limited to
epoxy, cyanoester, silicone, siloxane and phenolic based resins, that has sufficiently low
viscosity to be wicked between the microelectronic device 142 and the microelectronic
substrate 110 by capillary action when introduced by an underfill material dispenser (not shown),
which will be understood to those skilled in the art. The underfill material 152 may be
subsequently cured (hardened), such as by heat or radiation. The underfill material 152 may also
be a molded material (molded underfill) or similar encapsulation material, which is underfilling
and covering the microelectronic device 142 at the same time and is applied in a molding step, as
will be discussed.

As shown in FIG. 5, a pair of microelectronic packages, illustrated as first microelectronic
package 100i and second microelectronic package 1002, may be placed in a substantially
mirrored position, wherein the first microelectronic package substrate first surface 112i faces the
second microelectronic package substrate first surface 1122, and the package interconnection
material bumps (see elements 134 of FIG. 4) of each of the first microelectronic package 100j
and the second microelectronic package 1002 attach to one another to form package-to-package
interconnection structures 154. The package-to-package interconnection structures 154 may
provide electrical communication routes between the first microelectronic package 100i and the
second microelectronic package 1002. It is noted the like components for the first
microelectronic package 100i and the second microelectronic package 1002 with regard to the
components of FIGs. 1-4 are denoted with subscript "1" and subscript "2", respectively.

The package interconnection material bumps (see elements 134 of FIG. 4) can be made
any appropriate material, including, but not limited to, solders and conductive filled epoxies.
Solder materials may include may be any appropriate material, including but not limited to,
lead/tin alloys, such as 63% tin / 37% lead solder, or lead-free solders, such a pure tin or high tin
content alloys (e.g. 90% or more tin), such as tin/bismuth, eutectic tin/silver, ternary
tin/silver/copper, eutectic tin/copper, and similar alloys. When the first microelectronic
package 100i and the second microelectronic package 1002 attach to one another with package
interconnection material bumps 134 that are made of solder, the solder is reflowed, either by
heat, pressure, and/or sonic energy such that corresponding interconnection material bumps of
the first microelectronic package 100i and the second microelectronic package 1002 combine to
form package-to-package interconnection structures 154.

As shown in FIG. 6, an encapsulation material 156 may be disposed between the first
microelectronic package 100i and the second microelectronic package 1002 to form a package-
on-package stacked microelectronic structure 180. The encapsulation material 156 may be any
appropriate material, such as an epoxy resin, and may provide structural rigidity to the package-
on-package stacked microelectronic structure 180, wherein the encapsulation material 156 substantially surrounds the package-to-package interconnection structures 154, the first microelectronic device 142, and the second microelectronic device 142.

As shown in FIG. 7, a variety of additional components may be a part of the package-on-package stacked microelectronic structure 180. As illustrated, external interconnects 158 may be attached to the first microelectronic package external connection bond pads 126 for connecting the package-on-package stacked microelectronic structure 180 to external structures (not shown), such as a motherboard. Furthermore, additional microelectronic devices may be a part of the package-on-package stacked microelectronic structure 180, such as additional microelectronic device 162 attached by additional device interconnects 166 extending between bond pads 164 of the additional microelectronic devices 162 and the second microelectronic package external connection bond pads 126.

It is understood that the subject matter of the present description is not limited to the structures illustrated in FIGs. 1-7. For example, as shown in FIG. 8, the microelectronic devices need not be attached by flip-chip attachment; rather, for example, the first microelectronic device back surface 148 may be attached to the first microelectronic package substrate first surface 112 and bond wires 172 may be formed between the first microelectronic package microelectronic device bond pads 146 and the first microelectronic package substrate microelectronic device attachment bond pads 122. Further, the underfill material (illustrated as first underfill material 152 and/or second underfill material 152 of FIG. 7) may not be necessary when the encapsulation material 156 is of sufficiently low viscosity to flow between the microelectronic device and the substrate, such as shown in FIG. 7 between the second microelectronic package microelectronic device 142 and the second microelectronic package substrate 110 (e.g. a molded underfill material). Moreover, one of the substrates (e.g. elements 110 and 110) may be single sided substrate (e.g. bond pads only on one surface), such as a flex tape (e.g. polyimide), a mold body with a redistribution layer, a ceramic material, a laminate, or any other appropriate single side substrate, such as illustrated for second microelectronic package substrate 110 in FIG. 9. In another embodiment, the first microelectronic package microelectronic device back surface 148 may be attached to the second microelectronic package microelectronic device back surface 148 with an adhesive material 174 prior to disposing the encapsulation material 156, as illustrated in FIG. 10.

As shown in FIG. 11, which is a top plan view along line A-A of FIG. 3, the arrangement of the package interconnection material bumps 134 may be such that they substantially surround the microelectronic device 142. In other embodiment shown in FIG. 12, the package
interconnection material bumps 134 may be arranged on opposing sides of the microelectronic
device 142. It is understood that the arrangements of the package interconnection material
bumps 134 in FIGs. 11 and 12 are merely exemplary and any appropriate arrangement may be
employed.

FIG. 13 is a flow chart of a process 200 of fabricating a microelectronic structure
according to an embodiment of the present description. As set forth in block 202, a first
microelectronic package may be formed, comprising a substrate having a first surface and at
least one package connection bond pad formed on the each microelectronic package substrate
first surface. At least one first microelectronic device may be electrically connected to the
microelectronic package substrate first surface, as set forth in block 204. As set forth in
block 206, a second microelectronic package may be formed, comprising a substrate having a
first surface and at least one package connection bond pad formed on the each microelectronic
package substrate first surface. At least one second microelectronic device may be electrically
connected to the microelectronic package substrate first surface, as set in block 208. As set forth
in block 210, the second microelectronic package first surface may be oriented to face the first
microelectronic package first surface. At least one package-to-package interconnection structure
may be formed between the first microelectronic package connection bond pad and the second
microelectronic package connection bond pad, as set forth in block 212.

FIG. 14 illustrates a computing device 300 in accordance with one implementation of the
present description. The computing device 300 houses a board 302. The board 302 may include
a number of components, including but not limited to a processor 304 and at least one
communication chip 306A, 306B. The processor 304 is physically and electrically coupled to
the board 302. In some implementations the at least one communication chip 306A, 306B is also
physically and electrically coupled to the board 302. In further implementations, the
communication chip 306A, 306B is part of the processor 304.

Depending on its applications, the computing device 300 may include other components
that may or may not be physically and electrically coupled to the board 302. These other
components include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory
(e.g., ROM), flash memory, a graphics processor, a digital signal processor, a crypto processor, a
chipset, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio
codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass,
an accelerometer, a gyroscope, a speaker, a camera, and a mass storage device (such as hard disk
drive, compact disk (CD), digital versatile disk (DVD), and so forth).

The communication chip 306A, 306B enables wireless communications for the transfer of
data to and from the computing device 300. The term "wireless" and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 306 may implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The computing device 300 may include a plurality of communication chips 306A, 306B. For instance, a first communication chip 306A may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 306B may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.

The processor 304 of the computing device 300 may be included in a package-on-package stacked microelectronic structure, as described above. The term "processor" may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory. Furthermore, the communication chip 306A, 306B may be included in a package-on-package stacked microelectronic structure, as described above.

In various implementations, the computing device 300 may be a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultra mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder. In further implementations, the computing device 300 may be any other electronic device that processes data.

It is understood that the subject matter of the present description is not necessarily limited to specific applications illustrated in FIGs. 1-14. The subject matter may be applied to other microelectronic devices and assembly applications, as well as any appropriate electronic application, as will be understood to those skilled in the art.

The following examples pertain to further embodiments. Specifics in the examples may be used anywhere in one or more embodiments.

In Example 1, a package-on-package stacked microelectronic structure may comprise a first microelectronic package, comprising a substrate having a first surface and at least one
package connection bond pad formed on the microelectronic package substrate first surface, and having at least one microelectronic device electrically connected to the microelectronic package substrate first surface; a second microelectronic package, comprising a substrate having a first surface and at least one package connection bond pad formed on the each microelectronic package substrate first surface, and having at least one microelectronic device electrically connected to the microelectronic package substrate first surface; and at least one package-to-package interconnection structure extending between the first microelectronic package connection bond pad and the second microelectronic package connection bond pad.

In Example 2, the subject matter of Example 1 can optionally include an encapsulation material disposed between the first microelectronic package substrate first surface and the second microelectronic package substrate first surface.

In Example 3, the subject matter of Example 1 or 2 can optionally include at least one of the first microelectronic package microelectronic device and the second microelectronic package microelectronic device being attached to its respective substrate with a plurality of interconnects in a flip-chip configuration.

In Example 4, the subject matter of Example 3 can optionally include at least one of a first underfill material disposed between the first microelectronic package microelectronic device and the first microelectronic package substrate, and a second underfill material disposed between the second microelectronic package microelectronic device and the second microelectronic package substrate.

In Example 5, the subject matter of Examples 1 to 2 can optionally include at least one of the first microelectronic package microelectronic device and the second microelectronic package microelectronic device is attached to its respective substrate with a plurality of wirebonds.

In Example 6, the subject matter any of Examples 1 to 4 can optionally include a back surface of the first microelectronic package microelectronic device being attached to a back surface of the second microelectronic package microelectronic device with an adhesive material.

In Example 7, the subject matter of any of Examples 1 to 6 can optionally include the first microelectronic package substrate including a second surface and the second microelectronic package substrate including a second surface, and further including a plurality of external bond pads in or on at least one of the first microelectronic package substrate second surface and the second microelectronic package substrate second surface.

In Example 8, a method of forming a package-on-package stacked microelectronic structure may comprise forming a first microelectronic package, comprising a substrate having a first surface and at least one package connection bond pad formed on the each microelectronic
package substrate first surface; electrically connecting at least one first microelectronic device to the microelectronic package substrate first surface; forming a second microelectronic package, comprising a substrate having a first surface and at least one package connection bond pad formed on the each microelectronic package substrate first surface; electrically connecting at least one second microelectronic device to the microelectronic package substrate first surface; orienting the second microelectronic package first surface to face the first microelectronic package first surface; and forming at least one package-to-package interconnection structure between the first microelectronic package connection bond pad and the second microelectronic package connection bond pad.

In Example 9, the subject matter of Example 8 can optionally include forming at least one package-to-package interconnection structure between the first microelectronic package connection bond pad and the second microelectronic package connection bond pad comprising forming a package interconnection material bump on its respective first microelectronic package connection bond pad, forming a package interconnection material bump on the second microelectronic package connection bond pad, and attaching the first microelectronic package interconnection material bump with the second microelectronic package interconnection material bump.

In Example 10, the subject matter of Example 9 can optionally include forming the package interconnection material bump on its respective first microelectronic package connection bond pad, forming the package interconnection material bump on the second microelectronic package connection bond pad, and attaching the first microelectronic package interconnection material bump with the second microelectronic package interconnection material bump comprising forming a package interconnection solder bump on its respective first microelectronic package connection bond pad. forming the package interconnection solder bump on the second microelectronic package connection bond pad, and reflowing the first microelectronic package interconnection solder bump with the second microelectronic package interconnection solder bump.

In Example 11, the subject matter of any of Examples 8 to 10 can optionally include disposing an encapsulation material between the first microelectronic package substrate first surface and the second microelectronic package substrate first surface.

In Example 12, the subject matter of any of Examples 8 to 11 can optionally include electrically connecting the first microelectronic device to the microelectronic package substrate first surface comprising electrically connecting the first microelectronic device to the first microelectronic package substrate first surface with a plurality of interconnects in a flip-chip
configuration.

In Example 13, the subject matter of Example 12 can optionally include disposing a first underfill material between the first microelectronic package microelectronic device and the first microelectronic package substrate.

In Example 14, the subject matter of any of Example 8 to 13 can optionally include electrically connecting the second microelectronic device to the microelectronic package substrate first surface comprising electrically connecting the second microelectronic device to the second microelectronic package substrate first surface with a plurality of interconnects in a flip-chip configuration.

In Example 15, the subject matter of Example 14 can optionally include disposing a second underfill material between the second microelectronic package microelectronic device and the second microelectronic package substrate.

In Example 16, the subject matter of Example 8 can optionally include at least one of electrically connecting the first microelectronic device to the microelectronic package substrate first surface and electrically connecting the second microelectronic device to the microelectronic package substrate comprises at least one of electrically connecting the first microelectronic device to the first microelectronic package substrate first surface with a plurality of wirebonds and electrically connecting the second microelectronic device to the second microelectronic package substrate first surface with a plurality of wirebonds.

In Example 17, the subject matter of Example 8 can optionally include attaching a back surface of the first microelectronic package microelectronic device to attached to a back surface of the second microelectronic package microelectronic device with an adhesive material.

In Example 18, the subject matter of any of Examples 8 to 17 can optionally include the first microelectronic package substrate including a second surface and the second microelectronic package substrate including a second surface, and further including forming a plurality of external bond pads in or on at least one of the first microelectronic package substrate second surface and the second microelectronic package substrate second surface.

In Example 19, a computing device may comprise a board; and a package-on-package stacked microelectronic structure attached to the board, wherein the package-on-package stacked microelectronic structure comprising a first microelectronic package, comprising a substrate having a first surface and at least one package connection bond pad formed on the microelectronic package substrate first surface, and having at least one microelectronic device electrically connected to the microelectronic package substrate first surface; a second microelectronic package, comprising a substrate having a first surface and at least one package
connection bond pad formed on the each microelectronic package substrate first surface, and having at least one microelectronic device electrically connected to the microelectronic package substrate first surface; and at least one package-to-package interconnection structure extending between the first microelectronic package connection bond pad and the second microelectronic package connection bond pad.

In Example 20, the subject matter of Example 19 can optionally include an encapsulation material disposed between the first microelectronic package substrate first surface and the second microelectronic package substrate first surface.

In Example 21, the subject matter of Examples 19 or 20 can optionally include at least one of the first microelectronic package microelectronic device and the second microelectronic package microelectronic device being attached to its respective substrate with a plurality of interconnects in a flip-chip configuration.

In Example 22, the subject matter of Example 21 can optionally include at least one of a first underfill material disposed between the first microelectronic package microelectronic device and the first microelectronic package substrate, and a second underfill material disposed between the second microelectronic package microelectronic device and the first microelectronic package substrate.

In Example 23, the subject matter of Example 19 or 20 can optionally include at least one of the first microelectronic package microelectronic device and the second microelectronic package microelectronic device being attached to its respective substrate with a plurality of wirebonds.

In Example 24, the subject matter of Example 19 can optionally include a back surface of the first microelectronic package microelectronic device attached to a back surface of the second microelectronic package microelectronic device with an adhesive material.

In Example 25, the subject matter of any of Examples 19 to 24 can optionally include the first microelectronic package substrate including a second surface and the second microelectronic package substrate including a second surface, and further including a plurality of external bond pads in or on at least one of the first microelectronic package substrate second surface and the second microelectronic package substrate second surface.

Having thus described in detail embodiments of the present description, it is understood that the present description defined by the appended claims is not to be limited by particular details set forth in the above description, as many apparent variations thereof are possible without departing from the spirit or scope thereof.
Claimed:

1. A package-on-package stacked microelectronic structure, comprising:
 a first microelectronic package, comprising a substrate having a first surface and at least one package connection bond pad formed on the microelectronic package substrate first surface, and having at least one microelectronic device electrically connected to the microelectronic package substrate first surface;
 a second microelectronic package, comprising a substrate having a first surface and at least one package connection bond pad formed on the each microelectronic package substrate first surface, and having at least one microelectronic device electrically connected to the microelectronic package substrate first surface; and
 at least one package-to-package interconnection structure extending between the first microelectronic package connection bond pad and the second microelectronic package connection bond pad.

2. The package-on-package stacked microelectronic structure of claim 1, further including an encapsulation material disposed between the first microelectronic package substrate first surface and the second microelectronic package substrate first surface.

3. The package-on-package stacked microelectronic structure of claims 1 or 2, wherein at least one of the first microelectronic package microelectronic device and the second microelectronic package microelectronic device is attached to its respective substrate with a plurality of interconnects in a flip-chip configuration.

4. The package-on-package stacked microelectronic structure of claim 3, further including at least one of a first underfill material disposed between the first microelectronic package microelectronic device and the first microelectronic package substrate, and a second underfill material disposed between the second microelectronic package microelectronic device and the second microelectronic package substrate.

5. The package-on-package stacked microelectronic structure of claims 1 or 2, wherein at least one of the first microelectronic package microelectronic device and the second microelectronic package microelectronic device is attached to its respective substrate with a plurality of wirebonds.

6. The package-on-package stacked microelectronic structure of claims 1 or 2, wherein a back surface of the first microelectronic package microelectronic device is attached to a back surface of the second microelectronic package microelectronic device with an adhesive
material.

7. The package-on-package stacked microelectronic structure of claims 1 or 2, wherein the first microelectronic package substrate includes a second surface and the second microelectronic package substrate includes a second surface, and further including a plurality of external bond pads in or on at least one of the first microelectronic package substrate second surface and the second microelectronic package substrate second surface.

8. A method of forming a package-on-package stacked microelectronic structure, comprising:
 forming a first microelectronic package, comprising a substrate having a first surface and at least one package connection bond pad formed on the each microelectronic package substrate first surface;
 electrically connecting at least one first microelectronic device to the microelectronic package substrate first surface;
 forming a second microelectronic package, comprising a substrate having a first surface and at least one package connection bond pad formed on the each microelectronic package substrate first surface;
 electrically connecting at least one second microelectronic device to the microelectronic package substrate first surface;
 orienting the second microelectronic package first surface to face the first microelectronic package first surface; and
 forming at least one package-to-package interconnection structure between the first microelectronic package connection bond pad and the second microelectronic package connection bond pad.

9. The method of claim 8, wherein forming at least one package-to-package interconnection structure between the first microelectronic package connection bond pad and the second microelectronic package connection bond pad comprises forming a package interconnection material bump on its respective first microelectronic package connection bond pad, forming a package interconnection material bump on the second microelectronic package connection bond pad, and attaching the first microelectronic package interconnection material bump with the second microelectronic package interconnection material bump.

10. The method of claim 9, wherein forming the package interconnection material bump on its respective first microelectronic package connection bond pad, forming the package interconnection material bump on the second microelectronic package connection bond pad, and
attaching the first microelectronic package interconnection material bump with the second microelectronic package interconnection material bump comprises forming a package interconnection solder bump on its respective first microelectronic package connection bond pad, forming the package interconnection solder bump on the second microelectronic package connection bond pad, and reflowing the first microelectronic package interconnection solder bump with the second microelectronic package interconnection solder bump.

11. The method of any of claims 8-10, further including disposing an encapsulation material between the first microelectronic package substrate first surface and the second microelectronic package substrate first surface.

12. The method of any of claim 8-10, wherein electrically connecting the first microelectronic device to the microelectronic package substrate first surface comprises electrically connecting the first microelectronic device to the first microelectronic package substrate first surface with a plurality of interconnects in a flip-chip configuration.

13. The method of claim 12, further including disposing a first underfill material between the first microelectronic package microelectronic device and the first microelectronic package substrate.

14. The method of any of claims 8-10, wherein electrically connecting the second microelectronic device to the microelectronic package substrate first surface comprises electrically connecting the second microelectronic device to the second microelectronic package substrate first surface with a plurality of interconnects in a flip-chip configuration.

15. The method of claim 14, further including disposing a second underfill material between the second microelectronic package microelectronic device and the second microelectronic package substrate.

16. The method of claim 8, wherein at least one of electrically connecting the first microelectronic device to the microelectronic package substrate first surface and electrically connecting the second microelectronic device to the microelectronic package substrate comprises at least one of electrically connecting the first microelectronic device to the first microelectronic package substrate first surface with a plurality of wirebonds and electrically connecting the second microelectronic device to the second microelectronic package substrate first surface with a plurality of wirebonds.

17. The method of claim 8, further comprising attaching a back surface of the first microelectronic package microelectronic device to a back surface of the second microelectronic package microelectronic device with an adhesive material.

18. The method of claim 8, wherein the first microelectronic package substrate
includes a second surface and the second microelectronic package substrate includes a second surface, and further including forming a plurality of external bond pads in or on at least one of the first microelectronic package substrate second surface and the second microelectronic package substrate second surface.

19. A computing device, comprising:
 a board; and
 a package-on-package stacked microelectronic structure attached to the board, wherein
 the package-on-package stacked microelectronic structure comprises:
 a first microelectronic package, comprising a substrate having a first surface and at least
 one package connection bond pad formed on the microelectronic package substrate first surface,
 and having at least one microelectronic device electrically connected to the microelectronic
 package substrate first surface;
 a second microelectronic package, comprising a substrate having a first surface and at
 least one package connection bond pad formed on the each microelectronic package substrate
 first surface, and having at least one microelectronic device electrically connected to the
 microelectronic package substrate first surface; and
 at least one package-to-package interconnection structure extending between the first
 microelectronic package connection bond pad and the second microelectronic package
 connection bond pad.

20. The computing device of claim 19, further including an encapsulation material
 disposed between the first microelectronic package substrate first surface and the second
 microelectronic package substrate first surface.

21. The computing device of claims 19 or 20, wherein at least one of the first
 microelectronic package microelectronic device and the second microelectronic package
 microelectronic device is attached to its respective substrate with a plurality of interconnects in a
 flip-chip configuration.

22. The computing device of claim 21, further including at least one of a first
 underfill material disposed between the first microelectronic package microelectronic device and
 the first microelectronic package substrate, and a second underfill material disposed between the
 second microelectronic package microelectronic device and the first microelectronic package
 substrate.

23. The computing device of claims 19 or 20, wherein at least one of the first
 microelectronic package microelectronic device and the second microelectronic package
 microelectronic device is attached to its respective substrate with a plurality of wirebonds.
24. The computing device of claim 19, wherein a back surface of the first microelectronic package microelectronic device is attached to a back surface of the second microelectronic package microelectronic device with an adhesive material.

25. The computing device of claim 19, wherein the first microelectronic package substrate includes a second surface and the second microelectronic package substrate includes a second surface, and further including a plurality of external bond pads in or on at least one of the first microelectronic package substrate second surface and the second microelectronic package substrate second surface.
Forming a first microelectronic package, comprising a substrate having a first surface and at least one package connection bond pad formed on the each microelectronic package substrate first surface

Electrically connecting at least one first microelectronic device to the microelectronic package substrate first surface

Forming a first microelectronic package, comprising a substrate having a first surface and at least one package connection bond pad formed on the each microelectronic package substrate first surface

Electrically connecting at least one first microelectronic device to the microelectronic package substrate first surface

Orienting the second microelectronic package first surface to face the first microelectronic package first surface

Forming at least one package-to-package interconnection structure between the first microelectronic package connection bond pad and the second microelectronic package connection bond pad

End

FIG. 13
FIG. 14
A. CLASSIFICATION OF SUBJECT MATTER

H01L 25/065(2006.01)i, H01L 23/48(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01L 25/065; H01L 23/373; H01L 21/50; H01L 23/48; H01L 23/02; H05K 7/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- Korean utility models and applications for utility models
- Japanese utility models and applications for utility models

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

eKOMPASS/KIPO internal & keywords: POP, package, encapsulation, chip, interconnect

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2014-0145325 Al (KYUNG HO LEE et al.) 29 May 2014 See abstract, paragraphs [0025]-[0033], claims 1, 4 and figures 1A-1D.</td>
<td>1-4, 6, 8-15, 17, 19-22, 24, 5, 16, 18, 23-25</td>
</tr>
<tr>
<td>Y</td>
<td>US 2006-0055017 Al (JEONG-HYEON CHO et al.) 16 March 2006 See abstract, paragraphs [0027]-[0029] and figure 2.</td>
<td>5, 7, 16, 18, 23, 25</td>
</tr>
<tr>
<td>A</td>
<td>US 2011-0068481 Al (SUNG-KYU PARK et al.) 24 March 2011 See abstract, paragraphs [0059]-[0063] and figure 1A.</td>
<td>1-25</td>
</tr>
<tr>
<td>A</td>
<td>US 2011-0117700 Al (CHENG-YI WENG et al.) 19 May 2011 See abstract, paragraphs [0042]-[0048] and figure 5.</td>
<td>1-25</td>
</tr>
<tr>
<td>A</td>
<td>US 2006125574 Al (KI-MYUNG YOON) 01 July 2004 See abstract, paragraphs [0031]-[0048] and figures 2-6.</td>
<td>1-25</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search: 30 March 2015 (30.03.2015)

Date of mailing of the international search report: 31 March 2015 (31.03.2015)

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KR 10-2014-0067359 A</td>
<td>05/06/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4938273 B2</td>
<td>23/05/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-0688501 B1</td>
<td>02/03/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-2006-0023677 A</td>
<td>15/03/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 283489 A</td>
<td>01/07/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 283489 B</td>
<td>01/07/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 1283489 B</td>
<td>01/07/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7276786 B2</td>
<td>02/10/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8399992 B2</td>
<td>19/03/2013</td>
</tr>
<tr>
<td>US 2011-0117700 Al</td>
<td>19/05/2011</td>
<td>CN 101976651 A</td>
<td>16/02/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101976651 B</td>
<td>03/04/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201118965 A</td>
<td>01/06/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 1417972 B</td>
<td>01/12/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8198131 B2</td>
<td>12/06/2012</td>
</tr>
</tbody>
</table>