I*I Innovation, Sciences et Innovation, Science and CA 3132485 A1 2020/09/17
Développement économique Canada Economic Development Canada
en 3 132 485

Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office

(12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION

13 A1l
(86) Date de dépo6t PCT/PCT Filing Date: 2020/03/11 (51) ClLInt./Int.Cl. HO4N 19/10(2014.01),
- o . HO4N 19/12(2014.01), HO4N 19/122(2014.01),

(87) Date publication PCT/PCT Publication Date: 2020/09/17 HOAN 19/157 (2014.01), HO4N 19/176 (2014.01)
(85) Entrée phase nationale/National Entry: 2021/09/02 HO4N 19/186 (2014.01), HO4N 19/60(2014.01)
(86) N° demande PCT/PCT Application No.: US 2020/022066 | (71) Demandeur/Applicant:
(87) N° publication PCT/PCT Publication No.: 2020/185876 TENCENT AMERICALLC, US
(30) Priorité/Priority: 2019/03/12 (US62/817,517) (72) Inventeurs/Inventors:

ZHAO, XIN, US;

XU, XIAOZHONG, US;

LI, XIANG, US;

LIU, SHAN, US

(74) Agent: BORDEN LADNER GERVAIS LLP

(54) Titre : PROCEDE ET APPAREIL D'ENCODAGE OU DE DECODAGE DE VIDEO
(54) Title: METHOD AND APPARATUS FOR VIDEO ENCODING OR DECODING

(57) Abrégé/Abstract:

A method and apparatus for encoding or decoding a video sequence includes encoding or decoding the video sequence using a
4:4:4 chroma format, or encoding or decoding the video sequence using a 4:2:2 chroma format, wherein when encoding or
decoding the video sequence using the 4:4:4 chroma format, copying an affine motion vector of one 4x4 chroma block using an
operation other than an averaging operation, and when encoding or decoding the video sequence using the 4:2:2 chroma format,
associating each 4x4 chroma block with two 4x4 co-located chroma blocks such that an affine motion vector of one 4x4 chroma
block is an average of the motion vectors of the two co-located chroma blocks.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191



wO 20207185876 A1 |0 0000 Y00 O O 0

CA 03132485 2021-09-01

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
17 September 2020 (17.09.2020)

‘O 00 0O 0 0
(10) International Publication Number

WO 2020/185876 Al

WIPO I PCT

(51) International Patent Classification:

HO4N 19/10(2014.01) HO4N 19/176 (2014.01)
HO4N 19712 (2014.01) HO4N 19/186 (2014.01)
HO4N 197122 (2014.01) HO4N 19/60 (2014.01)
HO4N 197157 (2014.01)

(21) International Application Number:
PCT/US2020/022066

(22) International Filing Date:
11 March 2020 (11.03.2020)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

62/817,517 12 March 2019 (12.03.2019) UsS

(71) Applicant: TENCENT AMERICA LLC [US/US]; 2747
Park Boulevard, Palo Alto, California 94306 (US).

(72) Inventors; and

(71) Applicants: ZHAOQO, Xin [US/US]; c/o TENCENT
AMERICA LLC, 2747 Park Boulevard, Palo Alto, Cali-
fornia 94306 (US). XU, Xiaozhong [US/US]; c/o TEN-
CENT AMERICA LLC, 2747 Park Boulevard, Palo Alto,
California 94306 (US). L1, Xiang [US/US]; c/o TENCENT
AMERICA LLC, 2747 Park Boulevard, Palo Alto, Cali-
fornia 94306 (US). LIU, Shan [US/US]; c/o TENCENT
AMERICA LLC, 2747 Park Boulevard, Palo Alto, Califor-
nia 94306 (US).

Agent: RABENA, John F. et al.; Sughrue Mion PLLC,
2000 Pennsylvania Avenue, Suite 900, Washington, District
of Columbia 20006-1812 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

GM, KE,LR, LS, MW, MZ, NA,RW, SD, SL, ST, SZ, TZ,

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
with international search report (Art. 21(3))

(54) Title: METHOD AND APPARATUS FOR VIDEO ENCODING OR DECODING

(57) Abstract: A method and apparatus for encoding or decoding a video sequence includes encoding or decoding the video sequence
using a 4:4:4 chroma format, or encoding or decoding the video sequence using a 4:2:2 chroma format, wherein when encoding or
decoding the video sequence using the 4:4:4 chroma format, copying an affine motion vector of one 4x4 chroma block using an operation
other than an averaging operation, and when encoding or decoding the video sequence using the 4:2:2 chroma format, associating each
4x4 chroma block with two 4x4 co-located chroma blocks such that an affine motion vector of one 4x4 chroma block is an average

of the motion vectors of the two co-located chroma blocks.



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

METHOD AND APPARATUS FOR VIDEO ENCODING OR DECODING

Cross-Reference to Related Application

[0001] This application claims priority under 35 U.S.C. § 119 from U.S. Provisional
Application No. 62/817,517 filed on March 12, 2019 in the U.S. Patent & Trademark Office, the

disclosure of which is incorporated herein by reference in its entirety.

Field

[0002] Methods and apparatuses consistent with embodiments relate to video processing,
and more particularly, encoding or decoding a video sequence which can support different

chroma formats (e.g. 4:4:4, 4:2:2) in Versatile Video Coding (VVC).

Background

[0003] Recently, the Video Coding Experts Group (VCEG) of the ITU
Telecommunication Standardization Sector (ITU-T), a sector of the International
Telecommunication Union (ITU), and the ISO/IEC MPEG (JTC 1/SC 29/WG 11), a
standardization subcommittee of the Joint Technical Committee ISO/IEC JTC 1 of the
International Organization for Standardization (ISO) and the International Electrotechnical
Commission (IEC), published the H.265/High Efficiency Video Coding (HEVC) standard in
2013 (version 1). This standard was updated in 2014 to version 2, in 2015 to version 3, and in
2016 to version 4.

[0004] Since then they have been studying the potential need for standardization of future
video coding technologies with a compression capability that significantly exceeds that of the

-1-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

HEVC standard (including its extensions). In October 2017, they issued the Joint Call for
Proposals on Video Compression with Capability beyond HEVC (C{P). By February 15, 2018, a
total of 22 C{P responses on standard dynamic range (SDR), 12 CfP responses on high dynamic
range (HDR), and 12 CfP responses on 360 video categories were submitted, respectively. In
April 2018, all received CfP responses were evaluated in the 122 MPEG / 10th JVET (Joint
Video Exploration Team - Joint Video Expert Team) meeting. With careful evaluation, JVET
formally launched the standardization of next-generation video coding beyond HEVC, i.e., the
so-called Versatile Video Coding (VVC).

[0005] An HEVC block partitioning structure will now be described. In HEVC, a coding
tree unit (CTU) may be split into coding units (CUs) by using a quadtree structure denoted as a
coding tree to adapt to various local characteristics. The decision on whether to code a picture
area using inter-picture (temporal) or intra-picture (spatial) prediction may be made at the CU
level. Each CU can be further split into one, two or four prediction units (PUs) according to the
PU splitting type. Inside one PU, the same prediction process may be applied and the relevant
information may be transmitted to a decoder on a PU basis. After obtaining the residual block by
applying the prediction process based on the PU splitting type, a CU can be partitioned into
transform units (TUs) according to another quadtree structure like the coding tree for the CU. A
feature of the HEVC structure is that it may contain multiple partition concepts including CU,
PU, and TU. In HEVC, a CU or a TU can generally only be square shape, while a PU may be a
square or rectangular shape for an inter predicted block. In HEVC, one coding block may be
further split into four square sub-blocks, and a transform may be performed on each sub-block,
i.e.,, TU. Each TU can be further split recursively (using a quadtree split) into smaller Tus. This is

referred to as a Residual Quad-Tree (RQT).



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0006] At a picture boundary, HEVC employs an implicit quad-tree split so that a block
will keep quad-tree splitting until the size fits the picture boundary.

[0007] A block partitioning structure using a quad-tree (QT) plus binary tree (BT) will
now be described. In HEVC, a CTU may be split into CUs by using a quadtree structure denoted
as a coding tree to adapt to various local characteristics. The decision on whether to code a
picture area using an inter-picture (temporal) or an intra-picture (spatial) prediction may be made
at the CU level. Each CU can be further split into one, two, or four PUs according to the PU
splitting type. Inside one PU, the same prediction process may be applied and the relevant
information may be transmitted to the decoder on a PU basis. After obtaining the residual block
by applying the prediction process based on the PU splitting type, a CU can be partitioned into
transform units (TUs) according to another quadtree structure like the coding tree for the CU.
One feature of the HEVC structure is that it includes multiple partition concepts including CU,
PU, and TU.

[0008] The QTBT structure removes the concepts of multiple partition types, i.e. it
removes the separation of the CU, PU and TU concepts, and supports more flexibility for CU
partition shapes. In the QTBT block structure, a CU can have either a square or rectangular
shape. As shown in FIG. 1A, a coding tree unit (CTU) is first partitioned by a quadtree structure.
The quadtree leaf nodes may be then further partitioned by a binary tree structure. There may be
two splitting types, symmetric horizontal splitting and symmetric vertical splitting, in the binary
tree splitting. The binary tree leaf nodes are called coding units (CUs), and that segmentation
may be used for prediction and transform processing without any further partitioning. This
means that the CU, PU and TU have the same block size in the QTBT coding block structure. In
the JEM, a CU may sometimes consist of coding blocks (CBs) of different color components,

3-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

e.g. one CU may contain one luma CB and two chroma CBs in the case of P and B slices of the
4:2:0 chroma format; and may contain a CB of a single component, e.g., one CU may contain
only one luma CB or just two chroma CBs in the case of I slices.
[0009] The following parameters are defined for the QTBT partitioning scheme:

CTU size: the root node size of a quadtree, the same concept as in HEVC,;

MinQTSize: the minimum allowed quadtree leaf node size;

MaxBTSize: the maximum allowed binary tree root node size;

MaxBTDepth: the maximum allowed binary tree depth;

MinBTSize: the minimum allowed binary tree leaf node size;
[0010] In one example of a QTBT partitioning structure, the CTU size may be set as
128x128 luma samples with two corresponding 64x64 blocks of chroma samples, the
MinQTSize may be set as 16x16, the MaxBTSize may be set as 64x64, the MinBTSize (for both
width and height) may be set as 4x4, and the MaxBTDepth may be set as 4. The quadtree
partitioning may be applied to the CTU first to generate quadtree leaf nodes. The quadtree leaf
nodes may have a size from 16x16 (i.e., the MinQTSize) to 128x128 (i.e., the CTU size). If the
leaf quadtree node is 128x128, it will not be further split by the binary tree since the size exceeds
the MaxBTSize (i.e., 64x64). Otherwise, the leaf quadtree node could be further partitioned by
the binary tree. Therefore, the quadtree leaf node may be also the root node for the binary tree
and it may have a binary tree depth as 0. When the binary tree depth reaches MaxBTDepth (i.e.,
4), no further splitting is considered. When the binary tree node has a width equal to MinBTSize
(i.e., 4), no further horizontal splitting is considered. Similarly, when the binary tree node has a

height equal to the MinBTSize, no further vertical splitting is considered. The leaf nodes of the



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

binary tree may be further processed by prediction and transform processing without any further
partitioning. In the JEM, the maximum CTU size may be 256x256 luma samples.

[0011] FIG. 1A illustrates an example of block partitioning by using a QTBT, and FIG.
1B illustrates the corresponding tree representation. The solid lines indicate quadtree splitting
and the dotted lines indicate binary tree splitting. In each splitting (i.e., non-leaf) node of the
binary tree, one flag may be signaled to indicate which splitting type (i.e., horizontal or vertical)
may be used, where 0 indicates horizontal splitting and 1 indicates vertical splitting. For the
quadtree splitting, there is no need to indicate the splitting type since quadtree splitting splits a
block both horizontally and vertically to produce 4 sub-blocks with an equal size.

[0012] In addition, the QTBT scheme supports the flexibility for the luma and chroma to
have a separate QTBT structure. Currently, for P and B slices, the luma and chroma CTBs in one
CTU share the same QTBT structure. However, for I slices, the luma CTB may be partitioned
into CUs by a QTBT structure, and the chroma CTBs may be partitioned into chroma CUs by
another QTBT structure, namely a DualTree (DT) structure. This means that a CU in an I slice
consists of a coding block of the luma component or coding blocks of two chroma components,
and a CU in a P or B slice consists of coding blocks of all three color components.

[0013] In HEVC, inter prediction for small blocks may be restricted to reduce the
memory access of motion compensation, such that bi-prediction is not supported for 4x8 and 8x4
blocks, and inter prediction is not supported for 4x4 blocks. In the QTBT scheme as
implemented in the JEM-7.0, these restrictions may be removed.

[0014] Block partitioning using ternary trees (TTs) will now be described. A Multi-type-

tree (MTT) structure has been proposed. MTT is a more flexible tree structure than QTBT. In



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

MTT, other than quad-trees and binary-trees, horizontal and vertical center-side triple-trees are
introduced, as shown in Figs. 2A and 2B.
[0015] Some benefits of the triple-tree partitioning include:
providing a complement to quad-tree and binary-tree partitioning triple-tree
partitioning is able to capture objects located in a block center while quad-tree
and binary-tree may be split along the block center;
the width and height of the partitions of the triple trees may be a power of 2
so that no additional transforms are needed;
the design of two-level trees is mainly motivated by complexity reduction;
theoretically, the complexity of traversing of a tree is T"D, where T denotes the
number of split types, and D is the depth of tree.
[0016] YUYV formats will now be described. Different YUV formats, i.e., chroma
formats, are shown in FIG. 3. Different chroma formats define different down-sampling grids of
different color components.
[0017] Cross-component linear modeling (CCLM) will now be described. In VIM, for
the chroma component of an intra PU, the encoder selects the best chroma prediction modes
among 8 modes including Planar, DC, Horizontal, Vertical, a direct copy of the intra prediction
mode (DM) from the luma component, Left and Top Cross-component Linear Mode
(LT _CCLM), Left Cross-component Linear Mode (L CCLM), and Top Cross-component Linear
Mode (T_CCLM). Of these modes, LT CCLM, L CCLM, and T CCLM can be categorized as
a Cross-component Linear Mode (CCLM). A difference between these 3 modes is that different
regions of neighboring samples may be used for deriving the parameters o and . For
LT CCLM, both the left and top neighboring samples may be used to derive the parameters o

-6-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

and . For L CCLM, only the left neighboring samples are used to derive the parameters a and
B. For T CCLM, only the top neighboring samples are used to derive the parameters o, and .
[0018] Cross-Component Linear Model (CCLM) prediction modes may be used to
reduce the cross-component redundancy, in which the chroma samples may be predicted based
on the reconstructed luma samples of the same CU by using a linear model as follows:

predc(i,j) = a - recr'(ij) + p. (Eq. 1)
[0019] Here, pred.(i,j) represents the predicted chroma samples in a CU and rec;'(i,j
represents the downsampled reconstructed luma samples of the same CU. Parameters o and 3
may be derived by a straight line equation, e.g., a max-min method. This computation process
may be performed as part of the decoding process, not just as an encoder search operation, so no
syntax is used to convey the o and B values.
[0020] For chroma 4:2:0 format, CCLM prediction applies a six-tap interpolation filter to
obtain the down-sampled luma sample corresponding to a chroma sample as shown in FIG. 3.
Here, a down-sampled luma sample Rec’L[x, y] may be calculated from reconstructed luma
samples.
[0021] The down-sampled luma samples may be used to find the maximum and
minimum sample points. The two points (couple of Luma and Chroma) (A, B) may be the
minimum and maximum values inside the set of neighboring Luma samples as depicted in FIG.

4. Where the linear model parameters o and 8 may be obtained according to the following

equation:
_YB~ VA
o= (Eq. 2)
B =ya— ax, (Eq. 3)



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0022] Here, division may be avoided and replaced by a multiplication and a shift. A
Look-up Table (LUT) may be used to store the pre-calculated values, and the absolute difference
values between maximum and minimum luma samples may be used to specify the entry index of
the LUT, and the size of the LUT may be 512.
[0023] In a T CCLM mode, only the neighboring samples (including 2 * W samples)
shown in Figs. SA and 5B may be used to calculate the linear model coefficients.
[0024] In a L. CCLM mode, only left neighboring samples (including 2 * H samples)
may be used to calculate the linear model coefficients, as shown in Figs. 6A and 6B.
[0025] The CCLM prediction mode also includes prediction between the two chroma
components, i.e., the Cr component may be predicted from the Cb component. Instead of using
the reconstructed sample signal, the CCLM Cb-to-Cr prediction may be applied in a residual
domain. This may be implemented by adding a weighted reconstructed Cb residual to the
original Cr intra prediction to form the final Cr prediction:

preda*(i,j) = pred.(ij) + o - resic'(i,j). (Eq. 4)
[0026] The CCLM luma-to-chroma prediction mode may be added as one additional
chroma intra prediction mode. At the encoder side, one more RD cost check for the chroma
components may be added for selecting the chroma intra prediction mode. When cb intra
prediction modes other than the CCLM luma-to-chroma prediction mode may be used for the
chroma components of a CU, CCLM Cb-to-Cr prediction may be used for Cr component
prediction.
[0027] Multiple Model CCLM (MMLM) is another extension of CCLM. As indicated by
the name, there can be more than one model in MMLM, e.g., two models may be used. In
MMLM, neighboring luma samples and neighboring chroma samples of the current block may

-8-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

be classified into two groups, each group may be used as a training set to derive a linear model
(i.e., a particular a and B may be derived for a particular group). Furthermore, the samples of the
current luma block may be also classified based on the same rule for the classification of
neighboring luma samples.

[0028] FIG. 8 shows an example of classifying the neighboring samples into two groups.
The threshold may be calculated as the average value of the neighboring reconstructed luma
samples. A neighboring sample with Rec’L[x,y] <= Threshold may be classified into group 1;

while a neighboring sample with Rec’L[x,y] > Threshold may be classified into group 2:

Pred |x,y]|=a,xRec', |x,y]+ B, if Rec',|x,y] <Threshold (Eq. 5)
Pred |x,y] =a,xRec',|x,y]|+ B, if Rec',[x,y]|>Threshold .
[0029] An affine motion compensated prediction will now be described. In HEVC, a

translation motion model may be applied for motion compensation prediction (MCP). However,
there may be many kinds of motion, e.g. zoom in/out, rotation, perspective motions and other
irregular motions. In the VTM4, a block-based affine transform motion compensation prediction
may be applied. As shown FIG. 9, the affine motion field of the block may be described by
motion information of two control point motion vectors (4-parameter) or three control point
motion vectors (6-parameter).

[0030] For a 4-parameter affine motion model, motion vector at a sample location (x, y)

in a block may be derived as:

Mmvx—MVUpy mvly—mvoy

mv, = X+ Y + Mvg,
w w Edq. 6
_ MV1y—MUgy My —MVgy ( q. )

my, = > > Yy + muvyg,,



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0031] For a 6-parameter affine motion model, motion vector at a sample location (X, y)

in a block may be derived as:

mvqx,—MVgy MU x—MVUpx

mv, = > x + Y + Mvg,
- - Eq. 7)
_ Mmviy—Mvoy MV — Mgy (
mv, = > m Y + mvg,y,
[0032] Here, mvo., mvgy, 1s a motion vector of the top-left corner control point, mvix, mviy

is a motion vector of the top-right corner control point, and mvax, mvay is a motion vector of the
bottom-left corner control point.

[0033] In order to simplify the motion compensation prediction, block based affine
transform prediction may be applied. To derive motion vectors of each 4x4 luma sub-block, the
motion vector of a center sample of each sub-block, as shown in FIG. 10, may be calculated
according to above equations, and rounded to 1/16 fraction accuracy. Then the motion
compensation interpolation filters may be applied to generate the prediction of each sub-block
with a derived motion vector. The sub-block size of chroma-components may also be set to be
4x4. The MV of a 4x4 chroma sub-block may be calculated as the average of the MV of the
four corresponding 4x4 luma sub-blocks. As done for translational motion inter prediction, there
may be also two affine motion inter prediction modes: affine merge mode and affine AMVP
mode.

[0034] An affine merge prediction will now be described. AF MERGE mode may be
applied for CUs with both a width and a height larger than or equal to 8. In this mode the
CPMVs of the current CU may be generated based on the motion information of the spatial
neighboring CUs. There may be up to five CPMVP candidates and an index may be signaled to
indicate the one to be used for the current CU. The following three types of CPVM candidate
may be used to form the affine merge candidate list:

-10-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

(1) inherited affine merge candidates extrapolated from the CPMVs of the

neighbor CUs;

(2) constructed affine merge candidates CPMVPs that may be derived using the

translational M Vs of the neighbor CUs; and

(3) Zero MVs.
[0035] In VTM4, there may be a of maximum two inherited affine candidates, which
may be derived from an affine motion model of the neighboring blocks, one from left
neighboring CUs and one from above neighboring CUs. The candidate blocks are shown in FIG.
11. For the left predictor, the scan order may be A0->A1, and for the above predictor, the scan
order may be BO->B1->B2. The first inherited candidate from each side may be selected. No
pruning check is required to be performed between two inherited candidates. When a
neighboring affine CU is identified, its control point motion vectors may be used to derive the
CPMVP candidate in the affine merge list of the current CU. As shown in FIG. 12, if the
neighbor left bottom block A is coded in affine mode, the motion vectors v», v3 and v4 of the top
left corner, above right corner and left bottom corner of the CU which contains the block A may
be attained. When block A is coded with a 4-parameter affine model, the two CPMVs of the
current CU may be calculated according to vz, and vs. In case that block A may be coded with a
6-parameter affine model, the three CPMVs of the current CU may be calculated according to va,
vs and vs.
[0036] Constructed affine candidate means the candidate may be constructed by
combining the neighbor translational motion information of each control point. The motion
information for the control points may be derived from the specified spatial neighbors and
temporal neighbor shown in FIG. 13. CPMVk (k=1, 2, 3, 4) represents the k-th control point. For

-11-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

CPMV1, the B2->B3->A2 blocks may be checked and the MV of the first available block may
be used. For CPMV2, the B1->B0 blocks may be checked and for CPMV3, the A1->A0 blocks
may be checked. For TMVP is used as CPMV4 if it is available.
[0037] After MVs of four control points are attained, affine merge candidates may be
constructed based on that motion information. The following combinations of control point MVs
may be used to construct in order: {CPMV 1, CPMV,, CPMV3}, {CPMV1, CPMV; CPMV4},
{CPMV,, CPMV3;, CPMV4}, {CPMV;, CPMV3, CPMV4}, {CPMV,, CPMV;}, and { CPMVy,
CPMVs}.
[0038] The combination of 3 CPMVs constructs a 6-parameter affine merge candidate
and the combination of 2 CPMVs constructs a 4-parameter affine merge candidate. To avoid a
motion scaling process, if the reference indices of control points are different, the related
combination of control point MVs may be discarded.
[0039] After inherited affine merge candidates and constructed affine merge candidates
may be checked, if the list is still not full, zero MVs may be inserted to the end of the list.
[0040] An affine AMVP prediction will now be described. Affine AMVP mode can be
applied for CUs with both a width and a height larger than or equal to 16. An affine flag in a CU
level may be signaled in bitstream to indicate whether an affine AMVP mode may be to be used
and another flag may be signaled to indicate whether a 4-parameter affine or a 6-parameter affine
is to be used. In this mode, the difference of the CPMVs of current CU and their predictors
CPMVPs may be signaled in bitstream. The affine AVMP candidate list size may be 2 and it
may be generated by using the following four types of CPVM candidates in order:

(1) inherited affine AMVP candidates that may be extrapolated from the CPMVs

of the neighbor CUs;

-12-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

(2) constructed affine AMVP candidates CPM VPs that may be derived using the

translational M Vs of the neighbor CUs;

(3) translational MVs from neighboring CUs; and

(4) zero MVs
[0041] The checking order of inherited affine AMVP candidates may be the same as the
checking order of inherited affine merge candidates. A difference is that, for an AVMP
candidate, an affine CU that has the same reference picture as in current block may be
considered. No pruning process need be applied when inserting an inherited affine motion
predictor into the candidate list.
[0042] A constructed AMVP candidate may be derived from the specified spatial
neighbors shown in FIG. 13. The same checking order may be used as performed in an affine
merge candidate construction. In addition, a reference picture index of a neighboring block may
also checked. The first block in the checking order that may be inter coded and has the same
reference picture as in current CUs may be used. When the current CU is coded with a 4-
parameter affine mode, and mvo and mv; may be both available, they may be added as one
candidate in the affine AMVP list. When the current CU is coded with a 6-parameter affine
mode, and all three CPM Vs are available, they may be added as one candidate in the affine
AMVP list. Otherwise, a constructed AMVP candidate is set as unavailable.
[0043] If affine AMVP list candidates is still less than 2 after inherited affine AMVP
candidates and constructed AMVP candidate are checked mvo, mvi, and mv; will be added, in
order, as the translational MVs to predict all control point MVs of the current CU, when

available. Finally, zero MVs may be used to fill the affine AMVP list if it is still not full.

-13-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0044] An affine motion information storage will now be described. In VIM4, the
CPMVs of affine CUs may be stored in a separate buffer. The stored CPMVs may be used to
generate the inherited CPMVPs in an affine merge mode and an affine AMVP mode for the
lately coded CUs. The sub-block MVs derived from CPMVs may be used for motion
compensation, MV derivation of merge/AMVP list of translational MVs and de-blocking.
[0045] To avoid a picture line buffer for the additional CPMVs, affine motion data
inheritance from the CUs from above CTU may be treated differently to the inheritance from the
normal neighboring CUs. If the candidate CU for affine motion data inheritance is in the above
CTU line, the bottom-left and bottom-right sub-block MVs in the line buffer instead of the
CPMVs may be used for the affine MVP derivation. In this way, the CPMVs may be stored in
local buffer. If the candidate CU is 6-parameter affine coded, the affine model may be degraded
to 4-parameter model. As shown in FIG. 14, along the top CTU boundary, the bottom-left and
bottom right sub-block motion vectors of a CU may be used for affine inheritance of the CUs in
bottom CTUs.

[0046] Despite the above described advances, in VIM-4.0, the MV of a 4x4 chroma sub-
block in an affine coded coding block is calculated as the average of the MVs of the four
corresponding 4x4 luma sub-blocks. However, for chroma 4:4:4 and 4:2:2 formats, where each
4x4 chroma sub-block is associated with only one or two 4x4 luma sub-blocks, the current
scheme of MV derivation for a 4x4 chroma component leaves room for improvement to

accommodate the cases of chroma 4:4:4 and 4:2:2 formats.

-14-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

Summary

[0047] According to an aspect of the disclosure a method for encoding or decoding a
video sequence may comprise: encoding or decoding the video sequence using a 4:4:4 chroma
format, or encoding or decoding the video sequence using a 4:2:2 chroma format, wherein when
encoding or decoding the video sequence using the 4:4:4 chroma format, the method may further
comprises copying an affine motion vector of one 4x4 chroma block using an operation other
than an averaging operation, and wherein when encoding or decoding the video sequence using
the 4:2:2 chroma format, the method may further comprise associating each 4x4 chroma block
with two 4x4 co-located chroma blocks such that an affine motion vector of one 4x4 chroma
block is an average of the motion vectors of the two co-located chroma blocks.

[0048] According to an aspect of the disclosure, the method may further comprise,
regardless of the chroma format, dividing a current 4x4 chroma block into four 2x2 sub-blocks,
deriving a first affine motion vector of a co-located luma block for a top-left 2x2 chroma sub-
block, deriving a second affine motion vector of the co-located luma block for a bottom-right
2x2 chroma block, and deriving an affine motion vector of the current 4x4 chroma block using
the average of the first affine motion vector and the second affine motion vector.

[0049] According to an aspect of the disclosure, the method may comprise aligning an
interpolation filter used for motion compensation between luma and chroma components.

[0050] According to this aspect of the disclosure, when a video sequence is input using a
4:2:0 chroma format, the method may further comprise applying an 8-tap interpolation filter for

luma components and chroma components.

-15-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0051] According to an aspect of the disclosure, the method may further comprise:
coding as three separate trees, components Y, Cb, and Cr, and wherein each tree of the three
separate trees, codes one component of the components Y, Cb, and Cr.

[0052] According to this aspect of the disclosure, the coding as three separate trees may
be performed for an I slice or an I tile group.

[0053] According to an aspect of the disclosure, a maximum allowed transform size may
be the same for different color components.

[0054] According to this aspect of the disclosure, when encoding or decoding the video
sequence using the 4:2:2 chroma format, a maximum vertical size may be the same among
different color components, and a maximum horizontal transform size for chroma components
may be half of a maximum horizontal transform size for luma components.

[0055] According to an aspect of the disclosure, at least one of a Position-Dependent
Predictor combination (PDPC), a Multiple Transform Selection (MTS), a Non-Separable
Secondary Transform (NSST), an Intra-Sub Partitioning (ISP), and a Multiple reference line
(MRL) intra prediction may be applied to both a luma component and a chroma component.
[0056] According to this aspect of the disclosure, when the Multiple reference line
(MRL) intra prediction is applied to both the luma component and the chroma component, and
when encoding or decoding the video sequence is performed using the 4:4:4 chroma format, the
method may further comprise selecting an Nth reference for intra prediction, and using a same
reference line without explicit signaling for chroma components; when the Intra-Sub Partitioning
(ISP) is applied to both the luma component and the chroma component, the method may further
comprise applying the Intra-Sub Partitioning (ISP) at a block level for a current block for
components Y, Cb, and Cr; and when different trees are used for different color components, the

-16-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

method may further comprise implicitly deriving coding parameters for U and V components
from collocated Y components without signaling,

[0057] According to an aspect of the disclosure, a device for encoding or decoding a
video sequence, may comprise: at least one memory configured to store program code; at least
one processor configured to read the program code and operate as instructed by the program
code, the program code including: first encoding or decoding code configured to cause the at
least one processor to encode or decode the video sequence using a 4:4:4 chroma format, or
encode or decode the video sequence using a 4:2:2 chroma format, wherein when the first
encoding or decoding code is configured to cause the at least one processor to encode or decode
the video sequence using the 4:4:4 chroma format, the first encoding or decoding code may
further comprise code configured to cause the at least one processor to copy an affine motion
vector of one 4x4 chroma block using an operation other than an averaging operation, and
wherein when the first encoding or decoding code is configured to cause the at least one
processor to encode or decode the video sequence using the 4:2:2 chroma format, the first
encoding or decoding code may further comprise code configured to cause the at least one
processor to associate each 4x4 chroma block with two 4x4 co-located chroma blocks such that
an affine motion vector of one 4x4 chroma block is an average of the motion vectors of the two
co-located chroma blocks.

[0058] According to an aspect of the disclosure, the first encoding or decoding code may
further comprise code configured to cause the at least one processor to: divide a current 4x4
chroma block into four 2x2 sub-blocks, derive a first affine motion vector of a co-located luma
block for a top-left 2x2 chroma sub-block, derive a second affine motion vector of the co-located

luma block for a bottom-right 2x2 chroma block, and derive an affine motion vector of the

-17-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

current 4x4 chroma block using the average of the first affine motion vector and the second
affine motion vector.

[0059] According to an aspect of the disclosure, the first encoding or decoding code may
further comprise code configured to cause the at least one processor to: align an interpolation
filter used for motion compensation between luma and chroma components.

[0060] According to this aspect of the disclosure, when the first encoding or decoding
code is configured to cause the at least one processor to encode or decode the video sequence
using the 4:2:2 chroma format, the first encoding or decoding code may further comprise code
configured to cause the at least one processor to apply an 8-tap interpolation filter for luma
components and chroma components.

[0061] According to an aspect of the disclosure, the first encoding or decoding code may
further comprise code configured to cause the at least one processor to: code as three separate
trees, components Y, Cb, and Cr, and wherein each tree of the three separate trees codes one
component of the components Y, Cb, and Cr.

[0062] According to this aspect of the disclosure, the configuration to code as three
separate trees may be configured to be performed for an I slice or an I tile group.

[0063] According to an aspect of the disclosure, the first encoding or decoding code
further may comprise code configured to cause the at least one processor to: allow a maximum
transform size to be the same for different color components.

[0064] According to this aspect of the disclosure, when the first encoding or decoding
code is configured to cause the at least one processor to encode or decode the video sequence
using the 4:2:2 chroma format, the first encoding or decoding code may further comprise code
configured to cause the at least one processor to set a maximum vertical size to be the same

-18-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

among different color components, and set a maximum horizontal transform size for chroma
components to be half of a maximum horizontal transform size for luma components.

[0065] According to an aspect of the disclosure, the first encoding or decoding code may
further comprise code configured to cause the at least one processor to: apply at least one of a
Position-Dependent Predictor combination (PDPC), a Multiple Transform Selection (MTS), a
Non-Separable Secondary Transform (NSST), an Intra-Sub Partitioning (ISP), and a Multiple
reference line (MRL) intra prediction to both a luma component and a chroma component.
[0066] According to an aspect of the disclosure, a non-transitory computer-readable
medium storing instructions may be provided, the instructions comprising: one or more
instructions that, when executed by one or more processors of a device, cause the one or more
processors to: encode or decode the video sequence using a 4:4:4 chroma format, or encode or
decode the video sequence using a 4:2:2 chroma format, wherein when the instructions, when
executed by the one or more processors of the device cause the one or more processors to encode
or decode the video sequence using the 4:4:4 chroma format, the instructions, when executed by
the one or more processors of the device, further cause the one or more processors to copy an
affine motion vector of one 4x4 chroma block using an operation other than an averaging
operation, and wherein when the instructions, when executed by the one or more processors of
the device cause the one or more processors to encode or decode the video sequence using the
4:2:2 chroma format, the instructions, when executed by the one or more processors of the
device, further cause the one or more processors to associate each 4x4 chroma block with two
4x4 co-located chroma blocks such that an affine motion vector of one 4x4 chroma block is an

average of the motion vectors of the two co-located chroma blocks.

-19-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0067] While the afore described methods, devices, and non-transitory computer-
readable mediums have been described individually, these descriptions are not intended to
suggest any limitation as to the scope of use or functionality thereof. Indeed these methods,
devices, and non-transitory computer-readable mediums may be combined in other aspects of the

disclosure.

Brief Description of the Drawings

[0068] Further features, the nature, and various advantages of the disclosed subject
matter will be more apparent from the following detailed description and the accompanying

drawings in which:

[0069] FIG. 1A is a diagram of a partitioned coding tree unit in accordance with an
embodiment;

[0070] FIG. 1B is a diagram of a coding tree unit in accordance with an embodiment;
[0071] FIG. 2A is a diagram of a coding tree unit in accordance with an embodiment;
[0072] FIG. 2B is a diagram of a coding tree unit in accordance with an embodiment;
[0073] FIG. 3 is a diagram of different YUV formats in accordance with an embodiment;
[0074] FIG. 4 is a diagram of different luma values in accordance with an embodiment;
[0075] FIG. 5A is a diagram of samples used in cross-component linear modeling in

accordance with an embodiment;
[0076] FIG. 5B is a diagram of samples used in cross-component linear modeling in
accordance with an embodiment;
[0077] FIG. 6A is a diagram of samples used in cross-component linear modeling in

accordance with an embodiment;

-20-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0078]

FIG. 6B is a diagram of samples used in cross-component linear modeling in

accordance with an embodiment;

[0079]

FIG. 7A is a diagram of samples used in cross-component linear modeling in

accordance with an embodiment;

[0080]

FIG. 7B is a diagram of samples used in cross-component linear modeling in

accordance with an embodiment;

[0081]

FIG. 8 is an example of a classification using a Multiple Model CCLM in

accordance with an embodiment;

[0082]
embodiment;
[0083]
embodiment;
[0084]
embodiment;
[0085]
embodiment;
[0086]
embodiment;
[0087]
embodiment;
[0088]

[0089]

FIG. 9A is an example of an affine motion field of a block in accordance with an

FIG. 9B is an example of an affine motion field of a block in accordance with an

FIG. 10 is a an example of an affine motion vector field in accordance with an

FIG. 11 is an example of candidate blocks for a prediction in accordance with an

FIG. 12 is an example of candidate blocks for a prediction in accordance with an

FIG. 13 is an example of candidate blocks for a prediction in accordance with an

FIG. 14 is an example of motion vector usage in accordance with an embodiment;

FIG. 15 is a simplified block diagram of a communication system in accordance

with an embodiment;

21-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0090] FIG. 16 is a diagram of a streaming environment in accordance with an
embodiment;

[0091] FIG. 17 1s a block diagram of a video decoder in accordance with an embodiment;
[0092] FIG. 18 is a block diagram of a video encoder in accordance with an embodiment;
[0093] FIG. 19 is a flowchart of an example process for encoding or decoding a video

sequence in accordance with an embodiment; and

[0094] FIG. 20 is a diagram of a computer system in accordance with an embodiment.

Detailed Description

[0095] FIG. 15 illustrates a simplified block diagram of a communication system (400)
according to an embodiment of the present disclosure. The communication system (400) may
include at least two terminals (410-420) interconnected via a network (450). For unidirectional
transmission of data, a first terminal (410) may code video data at a local location for
transmission to the other terminal (420) via the network (450). The second terminal (420) may
receive the coded video data of the other terminal from the network (450), decode the coded data
and display the recovered video data. Unidirectional data transmission may be common in
media serving applications and the like.

[0096] FIG. 15 illustrates a second pair of terminals (430, 440) provided to support
bidirectional transmission of coded video that may occur, for example, during
videoconferencing. For bidirectional transmission of data, each terminal (430, 440) may code
video data captured at a local location for transmission to the other terminal via the network
(450). Each terminal (430, 440) also may receive the coded video data transmitted by the other
terminal, may decode the coded data and may display the recovered video data at a local display

device.
20



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0097] In FIG. 15, the terminals (410-440) may be illustrated as servers, personal
computers and smart phones but the principles of the present disclosure are not so limited.
Embodiments of the present disclosure find application with laptop computers, tablet computers,
media players and/or dedicated video conferencing equipment. The network (450) represents
any number of networks that convey coded video data among the terminals (410-440), including
for example wireline and/or wireless communication networks. The communication network
(450) may exchange data in circuit-switched and/or packet-switched channels. Representative
networks include telecommunications networks, local area networks, wide area networks and/or
the Internet. For the purposes of the present discussion, the architecture and topology of the
network (450) may be immaterial to the operation of the present disclosure unless explained
herein below.

[0098] FIG. 16 illustrates, as an example for an application for the disclosed subject
matter, the placement of a video encoder and decoder in a streaming environment. The disclosed
subject matter can be equally applicable to other video enabled applications, including, for
example, video conferencing, digital TV, storing of compressed video on digital media including
CD, DVD, memory stick and the like, and so on.

[0099] A streaming system may include a capture subsystem (513), that can include a
video source (501), for example a digital camera, creating, for example, an uncompressed video
sample stream (502). That sample stream (502), depicted as a bold line to emphasize a high data
volume when compared to encoded video bitstreams, can be processed by an encoder (503)
coupled to the camera (501). The encoder (503) can include hardware, software, or a
combination thereof to enable or implement aspects of the disclosed subject matter as described
in more detail below. The encoded video bitstream (504), depicted as a thin line to emphasize

-23-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

the lower data volume when compared to the sample stream, can be stored on a streaming server
(505) for future use. One or more streaming clients (506, 508) can access the streaming server
(505) to retrieve copies (507, 509) of the encoded video bitstream (504). A client (506) can
include a video decoder (510) which decodes the incoming copy of the encoded video bitstream
(507) and creates an outgoing video sample stream (511) that can be rendered on a display (512)
or other rendering device (not depicted). In some streaming systems, the video bitstreams (504,
507, 509) can be encoded according to certain video coding/compression standards. Examples
of those standards include H.265 HEVC. Under development is a video coding standard
informally known as Versatile Video Coding (VVC). The disclosed subject matter may be used
in the context of VVC.

[0100] FIG. 17 may be a functional block diagram of a video decoder (510) according to
an embodiment of the present invention.

[0101] A receiver (610) may receive one or more codec video sequences to be decoded
by the decoder (610); in the same or another embodiment, one coded video sequence at a time,
where the decoding of each coded video sequence is independent from other coded video
sequences. The coded video sequence may be received from a channel (612), which may be a
hardware/software link to a storage device which stores the encoded video data. The receiver
(610) may receive the encoded video data with other data, for example, coded audio data and/or
ancillary data streams, that may be forwarded to their respective using entities (not depicted).
The receiver (610) may separate the coded video sequence from the other data. To combat
network jitter, a buffer memory (615) may be coupled in between receiver (610) and entropy
decoder / parser (620) (“parser” henceforth). When receiver (610) is receiving data from a

store/forward device of sufficient bandwidth and controllability, or from an isosychronous

-24-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

network, the buffer (615) may not be needed, or can be small. For use on best effort packet
networks such as the Internet, the buffer (615) may be required, can be comparatively large and
can advantageously of adaptive size.

[0102] The video decoder (510) may include a parser (620) to reconstruct symbols (621)
from the entropy coded video sequence. Categories of those symbols include information used
to manage operation of the decoder (510), and potentially information to control a rendering
device such as a display (512) that is not an integral part of the decoder but can be coupled to it,
as was shown in FIG. 17. The control information for the rendering device(s) may be in the form
of Supplementary Enhancement Information (SEI messages) or Video Usability Information
(VUI) parameter set fragments (not depicted). The parser (620) may parse / entropy-decode the
coded video sequence received. The coding of the coded video sequence can be in accordance
with a video coding technology or standard, and can follow principles well known to a person
skilled in the art, including variable length coding, Huffman coding, arithmetic coding with or
without context sensitivity, and so forth. The parser (620) may extract from the coded video
sequence, a set of subgroup parameters for at least one of the subgroups of pixels in the video
decoder, based upon at least one parameters corresponding to the group. Subgroups can include
Groups of Pictures (GOPs), pictures, tiles, slices, macroblocks, Coding Units (CUs), blocks,
Transform Units (TUs), Prediction Units (PUs) and so forth. The entropy decoder / parser may
also extract from the coded video sequence information such as transform coefficients, quantizer
parameter (QP) values, motion vectors, and so forth.

[0103] The parser (620) may perform entropy decoding / parsing operation on the video
sequence received from the buffer (615), so to create symbols (621). The parser (620) may
receive encoded data, and selectively decode particular symbols (621). Further, the parser (620)

-25-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

may determine whether the particular symbols (621) are to be provided to a Motion
Compensation Prediction unit (653), a scaler / inverse transform unit (651), an Intra Prediction
Unit (652), or a loop filter (656).

[0104] Reconstruction of the symbols (621) can involve multiple different units
depending on the type of the coded video picture or parts thereof (such as: inter and intra picture,
inter and intra block), and other factors. Which units are involved, and how, can be controlled
by the subgroup control information that was parsed from the coded video sequence by the
parser (620). The flow of such subgroup control information between the parser (620) and the
multiple units below is not depicted for clarity.

[0105] Beyond the functional blocks already mentioned, decoder (510) can be
conceptually subdivided into a number of functional units as described below. In a practical
implementation operating under commercial constraints, many of these units interact closely
with each other and can, at least partly, be integrated into each other. However, for the purpose
of describing the disclosed subject matter, the conceptual subdivision into the functional units
below is appropriate.

[0106] A first unit is the scaler / inverse transform unit (651). The scaler / inverse
transform unit (651) receives quantized transform coefficient as well as control information,
including which transform to use, block size, quantization factor, quantization scaling matrices,
etc. as symbol(s) (621) from the parser (620). It can output blocks comprising sample values,
that can be input into aggregator (655).

[0107] In some cases, the output samples of the scaler / inverse transform (651) can
pertain to an intra coded block; that is: a block that is not using predictive information from

previously reconstructed pictures, but can use predictive information from previously

-26-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

reconstructed parts of the current picture. Such predictive information can be provided by an
intra picture prediction unit (652). In some cases, the intra picture prediction unit (652)
generates a block of the same size and shape of the block under reconstruction, using
surrounding already reconstructed information fetched from the current (partly reconstructed)
picture (656). The aggregator (655), in some cases, adds, on a per sample basis, the prediction
information the intra prediction unit (652) has generated to the output sample information as
provided by the scaler / inverse transform unit (651).

[0108] In other cases, the output samples of the scaler / inverse transform unit (651) can
pertain to an inter coded, and potentially motion compensated block. In such a case, a Motion
Compensation Prediction unit (653) can access reference picture memory (657) to fetch samples
used for prediction. After motion compensating the fetched samples in accordance with the
symbols (621) pertaining to the block, these samples can be added by the aggregator (655) to the
output of the scaler / inverse transform unit (in this case called the residual samples or residual
signal) so to generate output sample information. The addresses within the reference picture
memory form where the motion compensation unit fetches prediction samples can be controlled
by motion vectors, available to the motion compensation unit in the form of symbols (621) that
can have, for example X, Y, and reference picture components. Motion compensation also can
include interpolation of sample values as fetched from the reference picture memory when sub-
sample exact motion vectors are in use, motion vector prediction mechanisms, and so forth.
[0109] The output samples of the aggregator (655) can be subject to various loop filtering
techniques in the loop filter unit (656). Video compression technologies can include in-loop
filter technologies that are controlled by parameters included in the coded video bitstream and
made available to the loop filter unit (656) as symbols (621) from the parser (620), but can also

27-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

be responsive to meta-information obtained during the decoding of previous (in decoding order)
parts of the coded picture or coded video sequence, as well as responsive to previously
reconstructed and loop-filtered sample values.

[0110] The output of the loop filter unit (656) can be a sample stream that can be output
to the render device (512) as well as stored in the reference picture memory (656) for use in
future inter-picture prediction.

[0111] Certain coded pictures, once fully reconstructed, can be used as reference pictures
for future prediction. Once a coded picture is fully reconstructed and the coded picture has been
identified as a reference picture (by, for example, parser (620)), the current reference picture
(656) can become part of the reference picture buffer (657), and a fresh current picture memory
can be reallocated before commencing the reconstruction of the following coded picture.

[0112] The video decoder (510) may perform decoding operations according to a
predetermined video compression technology that may be documented in a standard, such as
H.265 HEVC. The coded video sequence may conform to a syntax specified by the video
compression technology or standard being used, in the sense that it adheres to the syntax of the
video compression technology or standard, as specified in the video compression technology
document or standard and specifically in the profiles document therein. Also necessary for
compliance can be that the complexity of the coded video sequence is within bounds as defined
by the level of the video compression technology or standard. In some cases, levels restrict the
maximum picture size, maximum frame rate, maximum reconstruction sample rate (measured in,
for example megasamples per second), maximum reference picture size, and so on. Limits set by
levels can, in some cases, be further restricted through Hypothetical Reference Decoder (HRD)

specifications and metadata for HRD buffer management signaled in the coded video sequence.

-28-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0113] In an embodiment, the receiver (610) may receive additional (redundant) data
with the encoded video. The additional data may be included as part of the coded video
sequence(s). The additional data may be used by the video decoder (510) to properly decode the
data and/or to more accurately reconstruct the original video data. Additional data can be in the
form of, for example, temporal, spatial, or signal-to-noise ratio (SNR) enhancement layers,
redundant slices, redundant pictures, forward error correction codes, and so on.

[0114] FIG. 18 may be a functional block diagram of a video encoder (503) according to
an embodiment of the present disclosure.

[0115] The encoder (503) may receive video samples from a video source (501) (that is
not part of the encoder) that may capture video image(s) to be coded by the encoder (503).
[0116] The video source (501) may provide the source video sequence to be coded by the
encoder (503) in the form of a digital video sample stream that can be of any suitable bit depth
(for example: 8 bit, 10 bit, 12 bit, ...), any colorspace (for example, BT.601 Y CrCB, RGB, ...)
and any suitable sampling structure (for example Y CrCb 4:2:0, Y CrCb 4:4:4). In a media
serving system, the video source (501) may be a storage device storing previously prepared
video. In a videoconferencing system, the video source (503) may be a camera that captures
local image information as a video sequence. Video data may be provided as a plurality of
individual pictures that impart motion when viewed in sequence. The pictures themselves may
be organized as a spatial array of pixels, wherein each pixel can comprise one or more samples
depending on the sampling structure, color space, etc. in use. A person skilled in the art can
readily understand the relationship between pixels and samples. The description below focuses

on samples.

-20.



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0117] According to an embodiment, the encoder (503) may code and compress the
pictures of the source video sequence into a coded video sequence (743) in real time or under
any other time constraints as required by the application. Enforcing appropriate coding speed is
one function of Controller (750). Controller (750) controls other functional units as described
below and is functionally coupled to these units. The coupling is not depicted for clarity.
Parameters set by controller can include rate control related parameters (picture skip, quantizer,
lambda value of rate-distortion optimization techniques, etc.), picture size, group of pictures
(GOP) layout, maximum motion vector search range, and so forth. A person skilled in the art
can readily identify other functions of controller (750) as they may pertain to video encoder
(503) optimized for a certain system design.

[0118] Some video encoders operate in what a person skilled in the art readily recognizes
as a “coding loop.” As an oversimplified description, a coding loop can consist of the encoding
part of an encoder (730) (“source coder” henceforth) (responsible for creating symbols based on
an input picture to be coded, and a reference picture(s)), and a (local) decoder (733) embedded in
the encoder (503) that reconstructs the symbols to create the sample data that a (remote) decoder
also would create (as any compression between symbols and coded video bit stream is lossless in
the video compression technologies considered in the disclosed subject matter). That
reconstructed sample stream is input to the reference picture memory (734). As the decoding of
a symbol stream leads to bit-exact results independent of decoder location (local or remote), the
reference picture buffer content is also bit exact between local encoder and remote encoder. In
other words, the prediction part of an encoder “sees” as reference picture samples exactly the
same sample values as a decoder would “see” when using prediction during decoding. This
fundamental principle of reference picture synchronicity (and resulting drift, if synchronicity

-30-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

cannot be maintained, for example because of channel errors) is well known to a person skilled
in the art.

[0119] The operation of the “local” decoder (733) can be the same as of a “remote”
decoder (510), which has already been described in detail above in conjunction with FIG. 16.
Briefly referring also to FIG. 16, however, as symbols are available and en/decoding of symbols
to a coded video sequence by entropy coder (745) and parser (620) can be lossless, the entropy
decoding parts of decoder (510), including channel (612), receiver (610), buffer (615), and parser
(620) may not be fully implemented in local decoder (733).

[0120] An observation that can be made at this point is that any decoder technology
except the parsing/entropy decoding that is present in a decoder also necessarily needs to be
present, in substantially identical functional form, in a corresponding encoder. The description
of encoder technologies can be abbreviated as they are the inverse of the comprehensively
described decoder technologies. Only in certain areas a more detail description is required and
provided below.

[0121] As part of its operation, the source coder (730) may perform motion compensated
predictive coding, which codes an input frame predictively with reference to one or more
previously-coded frames from the video sequence that were designated as “reference frames.” In
this manner, the coding engine (732) codes differences between pixel blocks of an input frame
and pixel blocks of reference frame(s) that may be selected as prediction reference(s) to the input
frame.

[0122] The local video decoder (733) may decode coded video data of frames that may
be designated as reference frames, based on symbols created by the source coder (730).
Operations of the coding engine (732) may advantageously be lossy processes. When the coded

-31-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

video data may be decoded at a video decoder (not shown in FIG. 17), the reconstructed video
sequence typically may be a replica of the source video sequence with some errors. The local
video decoder (733) replicates decoding processes that may be performed by the video decoder
on reference frames and may cause reconstructed reference frames to be stored in the reference
picture cache (734). In this manner, the encoder (503) may store copies of reconstructed
reference frames locally that have common content as the reconstructed reference frames that
will be obtained by a far-end video decoder (absent transmission errors).

[0123] The predictor (735) may perform prediction searches for the coding engine (732).
That is, for a new frame to be coded, the predictor (735) may search the reference picture
memory (734) for sample data (as candidate reference pixel blocks) or certain metadata such as
reference picture motion vectors, block shapes, and so on, that may serve as an appropriate
prediction reference for the new pictures. The predictor (735) may operate on a sample block-
by-pixel block basis to find appropriate prediction references. In some cases, as determined by
search results obtained by the predictor (735), an input picture may have prediction references
drawn from multiple reference pictures stored in the reference picture memory (734).

[0124] The controller (750) may manage coding operations of the video coder (730),
including, for example, setting of parameters and subgroup parameters used for encoding the
video data.

[0125] Output of all aforementioned functional units may be subjected to entropy coding
in the entropy coder (745). The entropy coder translates the symbols as generated by the various
functional units into a coded video sequence, by loss-less compressing the symbols according to
technologies known to a person skilled in the art as, for example Huffman coding, variable
length coding, arithmetic coding, and so forth.

-32-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0126] The transmitter (740) may buffer the coded video sequence(s) as created by the
entropy coder (745) to prepare it for transmission via a communication channel (760), which
may be a hardware/software link to a storage device which would store the encoded video data.
The transmitter (740) may merge coded video data from the video coder (730) with other data to
be transmitted, for example, coded audio data and/or ancillary data streams (sources not shown).
[0127] The controller (750) may manage operation of the encoder (503). During coding,
the controller (750) may assign to each coded picture a certain coded picture type, which may
affect the coding techniques that may be applied to the respective picture. For example, pictures
often may be assigned as one of the following frame types:

[0128] An Intra Picture (I picture) may be one that may be coded and decoded without
using any other frame in the sequence as a source of prediction. Some video codecs allow for
different types of Intra pictures, including, for example Independent Decoder Refresh Pictures.
A person skilled in the art is aware of those variants of I pictures and their respective
applications and features.

[0129] A Predictive picture (P picture) may be one that may be coded and decoded using
intra prediction or inter prediction using at most one motion vector and reference index to predict
the sample values of each block.

[0130] A Bi-directionally Predictive Picture (B Picture) may be one that may be coded
and decoded using intra prediction or inter prediction using at most two motion vectors and
reference indices to predict the sample values of each block. Similarly, multiple-predictive
pictures can use more than two reference pictures and associated metadata for the reconstruction

of a single block.

-33-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0131] Source pictures commonly may be subdivided spatially into a plurality of sample
blocks (for example, blocks of 4 x 4, 8 x 8, 4 x 8, or 16 x 16 samples each) and coded on a block-
by-block basis. Blocks may be coded predictively with reference to other (already coded) blocks
as determined by the coding assignment applied to the blocks’ respective pictures. For example,
blocks of I pictures may be coded non-predictively or they may be coded predictively with
reference to already coded blocks of the same picture (spatial prediction or intra prediction).
Pixel blocks of P pictures may be coded non-predictively, via spatial prediction or via temporal
prediction with reference to one previously coded reference pictures. Blocks of B pictures may
be coded non-predictively, via spatial prediction or via temporal prediction with reference to one
or two previously coded reference pictures.

[0132] The video coder (503) may perform coding operations according to a
predetermined video coding technology or standard, such as H.265 HEVC. In its operation, the
video coder (503) may perform various compression operations, including predictive coding
operations that exploit temporal and spatial redundancies in the input video sequence. The coded
video data, therefore, may conform to a syntax specified by the video coding technology or
standard being used.

[0133] In an embodiment, the transmitter (740) may transmit additional data with the
encoded video. The video coder (730) may include such data as part of the coded video
sequence. Additional data may comprise temporal/spatial/ SNR enhancement layers, other forms
of redundant data such as redundant pictures and slices, Supplementary Enhancement
Information (SEI) messages, Visual Usability Information (VUI) parameter set fragments, and so

on.

-34-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0134] The present disclosure is directed to several block partitioning methods wherein
motion information is considered during a tree split for video encoding. More specifically, the
techniques in this disclosure relate to tree splitting methods for flexible tree structures based on
motion field information. The techniques proposed in this disclosure can be applied to both
homogenous and heterogeneous derived motion fields.

[0135] Derived motion field of a block is defined as homogenous if the derived motion
field is available for all sub-blocks in the block and all motion vectors in the derived motion field
are similar, such as, the motion vectors share the same reference frame and the absolute
differences among motion vectors are all below a certain threshold. The threshold may be
signaled in bitstreams or predefined.

[0136] Derived motion field of a block is defined as heterogeneous if the derived motion
field is available for all sub-blocks in the block and the motion vectors in the derived motion
field are not similar, such as, at least one motion vector refers to a reference frame which is not
referred by other motion vectors, or at least one absolute difference between two motion vectors
in the field is larger than a signaled or predefined threshold.

[0137] FIG. 19 is a flowchart of an example process (800) for encoding or decoding a
video sequence. In some implementations, one or more process blocks of FIG. 19 may be
performed by decoder (510). In some implementations, one or more process blocks of FIG. 19
may be performed by another device or a group of devices separate from or including decoder
(510), such as encoder (503).

[0138] As shown in FIG. 19, process (800) may comprise encoding or decoding a video

sequence using a 4:4:4 chroma format or a 4:2:2 chroma format (810).

-35-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0139] When process (800) includes encoding or decoding the video sequence using the
4:4:4 chroma format, as further shown in FIG. 19, process (800) may further comprises copying
an affine motion vector of one 4x4 chroma block using an operation other than an averaging
operation (820).

[0140] When process (800) includes encoding or decoding the video sequence using the
4:2:2 chroma format, as further shown in FIG. 19, process (800) may further comprises
associating each 4x4 chroma block with two 4x4 co-located chroma blocks such that an affine
motion vector of one 4x4 chroma block is an average of the motion vectors of the two co-located
chroma blocks (830).

[0141] Although FIG. 19 shows example blocks of process (800), in some
implementations, process (800) may include additional blocks, fewer blocks, different blocks, or
differently arranged blocks than those depicted in FIG. 19. Additionally, or alternatively, two or
more of the blocks of process (800) may be performed in parallel.

[0142] Further, the proposed methods may be implemented by processing circuitry (e.g.,
one or more processors or one or more integrated circuits). In one example, the one or more
processors execute a program that is stored in a non-transitory computer-readable medium to
perform one or more of the proposed methods.

[0143] The techniques described above, can be implemented as computer software using
computer-readable instructions and physically stored in one or more computer-readable media.
For example, FIG. 20 shows a computer system (900) suitable for implementing certain
embodiments of the disclosed subject matter.

[0144] The computer software can be coded using any suitable machine code or
computer language, that may be subject to assembly, compilation, linking, or like mechanisms to

-36-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

create code comprising instructions that can be executed directly, or through interpretation,
micro-code execution, and the like, by computer central processing units (CPUs), Graphics
Processing Units (GPUs), and the like.

[0145] The instructions can be executed on various types of computers or components
thereof, including, for example, personal computers, tablet computers, servers, smartphones,
gaming devices, internet of things devices, and the like.

[0146] The components shown in FIG. 20 for computer system (900) are exemplary in
nature and are not intended to suggest any limitation as to the scope of use or functionality of the
computer software implementing embodiments of the present disclosure. Neither should the
configuration of components be interpreted as having any dependency or requirement relating to
any one or combination of components illustrated in the exemplary embodiment of a computer
system (900).

[0147] Computer system (900) may include certain human interface input devices. Such
a human interface input device may be responsive to input by one or more human users through,
for example, tactile input (such as: keystrokes, swipes, data glove movements), audio input (such
as: voice, clapping), visual input (such as: gestures), olfactory input (not depicted). The human
interface devices can also be used to capture certain media not necessarily directly related to
conscious input by a human, such as audio (such as: speech, music, ambient sound), images
(such as: scanned images, photographic images obtain from a still image camera), video (such as
two-dimensional video, three-dimensional video including stereoscopic video).

[0148] Input human interface devices may include one or more of (only one of each
depicted): keyboard (901), mouse (902), trackpad (903), touch screen (910), data-glove (904),
joystick (905), microphone (906), scanner (907), camera (908).

-37-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

[0149] Computer system (900) may also include certain human interface output devices.
Such human interface output devices may be stimulating the senses of one or more human users
through, for example, tactile output, sound, light, and smell/taste. Such human interface output
devices may include tactile output devices (for example tactile feedback by the touch-screen
(910), data-glove (904), or joystick (905), but there can also be tactile feedback devices that do
not serve as input devices), audio output devices (such as: speakers 909, headphones (not
depicted)), visual output devices (such as screens 910 to include cathode ray tube (CRT) screens,
liquid-crystal display (LCD) screens, plasma screens, organic light-emitting diode (OLED)
screens, each with or without touch-screen input capability, each with or without tactile feedback
capability—some of which may be capable to output two dimensional visual output or more than
three dimensional output through means such as stereographic output; virtual-reality glasses (not
depicted), holographic displays and smoke tanks (not depicted)), and printers (not depicted).
[0150] Computer system (900) can also include human accessible storage devices and
their associated media such as optical media including CD/DVD ROM/RW (920) with CD/DVD
or the like media (921), thumb-drive (922), removable hard drive or solid state drive (923),
legacy magnetic media such as tape and floppy disc (not depicted), specialized ROM/ASIC/PLD
based devices such as security dongles (not depicted), and the like.

[0151] Those skilled in the art should also understand that term “computer readable
media” as used in connection with the presently disclosed subject matter does not encompass
transmission media, carrier waves, or other transitory signals.

[0152] Computer system (900) can also include interface(s) to one or more
communication networks. Networks can for example be wireless, wireline, optical. Networks
can further be local, wide-area, metropolitan, vehicular and industrial, real-time, delay-tolerant,

-38-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

and so on. Examples of networks include local area networks such as Ethernet, wireless LANS,
cellular networks to include global systems for mobile communications (GSM), third generation
(3G), fourth generation (4G), fifth generation (5G), Long-Term Evolution (LTE), and the like,
TV wireline or wireless wide area digital networks to include cable TV, satellite TV, and
terrestrial broadcast TV, vehicular and industrial to include CANBus, and so forth. Certain
networks commonly require external network interface adapters that attached to certain general
purpose data ports or peripheral buses (949) (such as, for example universal serial bus (USB)
ports of the computer system (900); others are commonly integrated into the core of the
computer system (900) by attachment to a system bus as described below (for example Ethernet
interface into a PC computer system or cellular network interface into a smartphone computer
system). Using any of these networks, computer system (900) can communicate with other
entities. Such communication can be uni-directional, receive only (for example, broadcast TV),
uni-directional send-only (for example CANbus to certain CANbus devices), or bi-directional,
for example to other computer systems using local or wide area digital networks. Certain
protocols and protocol stacks can be used on each of those networks and network interfaces as
described above.

[0153] Aforementioned human interface devices, human-accessible storage devices, and
network interfaces can be attached to a core (940) of the computer system (900).

[0154] The core (940) can include one or more Central Processing Units (CPU) (941),
Graphics Processing Units (GPU) 942, specialized programmable processing units in the form of
Field Programmable Gate Areas (FPGA) (943), hardware accelerators for certain tasks (944),
and so forth. These devices, along with Read-only memory (ROM) (945), Random-access
memory (RAM) (946), internal mass storage such as internal non-user accessible hard drives,

-39-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

solid-state drives (SSDs), and the like (947), may be connected through a system bus (948). In
some computer systems, the system bus (948) can be accessible in the form of one or more
physical plugs to enable extensions by additional CPUs, GPU, and the like. The peripheral
devices can be attached either directly to the core’s system bus (948), or through a peripheral bus
949. Architectures for a peripheral bus include peripheral component interconnect (PCI), USB,
and the like.

[0155] CPUs (941), GPUs (942), FPGAs (943), and accelerators (944) can execute
certain instructions that, in combination, can make up the aforementioned computer code. That
computer code can be stored in ROM (945) or RAM (946). Transitional data can be also be
stored in RAM (946), whereas permanent data can be stored for example, in the internal mass
storage (947). Fast storage and retrieve to any of the memory devices can be enabled through the
use of cache memory, that can be closely associated with one or more CPU (941), GPU (942),
mass storage (947), ROM (945), RAM (946), and the like.

[0156] The computer readable media can have computer code thereon for performing
various computer-implemented operations. The media and computer code can be those specially
designed and constructed for the purposes of the present disclosure, or they can be of the kind
well known and available to those having skill in the computer software arts.

[0157] As an example and not by way of limitation, the computer system having
architecture (900), and specifically the core (940) can provide functionality as a result of
processor(s) (including CPUs, GPUs, FPGA, accelerators, and the like) executing software
embodied in one or more tangible, computer-readable media. Such computer-readable media
can be media associated with user-accessible mass storage as introduced above, as well as certain

storage of the core (940) that are of non-transitory nature, such as core-internal mass storage

-40-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

(947) or ROM (945). The software implementing various embodiments of the present disclosure
can be stored in such devices and executed by core (940). A computer-readable medium can
include one or more memory devices or chips, according to particular needs. The software can
cause the core (940) and specifically the processors therein (including CPU, GPU, FPGA, and
the like) to execute particular processes or particular parts of particular processes described
herein, including defining data structures stored in RAM (946) and modifying such data
structures according to the processes defined by the software. In addition or as an alternative, the
computer system can provide functionality as a result of logic hardwired or otherwise embodied
in a circuit (for example: accelerator 944), which can operate in place of or together with
software to execute particular processes or particular parts of particular processes described
herein. Reference to software can encompass logic, and vice versa, where appropriate.
Reference to a computer-readable media can encompass a circuit (such as an integrated circuit
(IC)) storing software for execution, a circuit embodying logic for execution, or both, where
appropriate. The present disclosure encompasses any suitable combination of hardware and
software.

[0158] While this disclosure has described several exemplary embodiments, there are
alterations, permutations, and various substitute equivalents, which fall within the scope of the
disclosure. It will thus be appreciated that those skilled in the art will be able to devise numerous
systems and methods which, although not explicitly shown or described herein, embody the

principles of the disclosure and are thus within the spirit and scope thereof.

41-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

WHAT IS CLAIMED IS:

1. A method for encoding or decoding a video sequence, the method comprising:

encoding or decoding the video sequence using one of a 4:4:4 chroma format and a 4:2:2
chroma format,

wherein when encoding or decoding the video sequence using the 4:4:4 chroma format,
the method further comprises copying an affine motion vector of one 4x4 luma block using an
operation other than an averaging operation and associating the affine motion vector to a co-
located 4x4 chroma block, and

wherein when encoding or decoding the video sequence using the 4:2:2 chroma format,
the method further comprises associating each 4x4 chroma block with two 4x4 co-located luma
blocks such that an affine motion vector of one 4x4 chroma block is an average of the motion

vectors of the two co-located luma blocks.

2. The method of claim 1, further comprising,

regardless of the chroma format, dividing a current 4x4 chroma block into four 2x2 sub-
blocks,

deriving a first affine motion vector of a co-located luma block for a top-left 2x2 chroma
sub-block,

deriving a second affine motion vector of the co-located luma block for a bottom-right
2x2 chroma block, and

deriving an affine motion vector of the current 4x4 chroma block using the average of the

first affine motion vector and the second affine motion vector.

-40-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

3. The method of claim 1, further comprising
aligning an interpolation filter used for motion compensation between luma and chroma

components.

4. The method of claim 3, wherein when a video sequence is input using a 4:2:0 chroma

format, applying an 8-tap interpolation filter for luma components and chroma components.

5. The method of claim 1, further comprising,
coding as three separate trees, components Y, Cb, and Cr, and
wherein each tree of the three separate trees codes one component of the components Y,

Cb, and Cr.

6. The method of claim 5, wherein the coding as three separate trees is performed for an I

slice or an I tile group.

7. The method of claim 1, wherein a maximum allowed transform size is the same for

different color components.

8. The method of claim 7, wherein when encoding or decoding the video sequence using the
4:2:2 chroma format, a maximum vertical size is the same among different color components,
and a maximum horizontal transform size for chroma components is half of a maximum

horizontal transform size for luma components.

-43-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

9. The method of claim 1, wherein at least one of a Position-Dependent Predictor
combination (PDPC), a Multiple Transform Selection (MTS), a Non-Separable Secondary
Transform (NSST), an Intra-Sub Partitioning (ISP), and a Multiple reference line (MRL) intra

prediction is applied to both a luma component and a chroma component.

10. The method of claim 9, wherein

when the Multiple reference line (MRL) intra prediction is applied to both the luma
component and the chroma component, and when encoding or decoding the video sequence is
performed using the 4:4:4 chroma format, the method further comprises selecting an Nth
reference for intra prediction, and using a same reference line without explicit signaling for
chroma components,

when the Intra-Sub Partitioning (ISP) is applied to both the luma component and the
chroma component, the method further comprises applying the Intra-Sub Partitioning (ISP) at a
block level for a current block for components Y, Cb, and Cr, and

when different trees are used for different color components, the method further
comprises implicitly deriving coding parameters for U and V components from collocated Y

components without signaling.

11. A device for encoding or decoding a video sequence, the device comprising;
at least one memory configured to store program code;
at least one processor configured to read the program code and operate as instructed by

the program code, the program code including:

-44-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

first encoding or decoding code configured to cause the at least one processor to encode
or decode the video sequence using at least one of a 4:4:4 chroma format and a 4:2:2 chroma
format,

wherein when the first encoding or decoding code is configured to cause the at least one
processor to encode or decode the video sequence using the 4:4:4 chroma format, the first
encoding or decoding code further comprises code configured to cause the at least one processor
to copy an affine motion vector of one 4x4 luma block using an operation other than an
averaging operation and to associate the affine motion vector to a co-located 4x4 chroma block,
and

wherein when the first encoding or decoding code is configured to cause the at least one
processor to encode or decode the video sequence using the 4:2:2 chroma format, the first
encoding or decoding code further comprises code configured to cause the at least one processor
to associate each 4x4 chroma block with two 4x4 co-located luma blocks such that an affine
motion vector of one 4x4 chroma block is an average of the motion vectors of the two co-located

luma blocks.

12. The device of claim 11, wherein the first encoding or decoding code further comprises
code configured to cause the at least one processor to:

divide a current 4x4 chroma block into four 2x2 sub-blocks,

derive a first affine motion vector of a co-located luma block for a top-left 2x2 chroma
sub-block,

derive a second affine motion vector of the co-located luma block for a bottom-right 2x2

chroma block, and

-45-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

derive an affine motion vector of the current 4x4 chroma block using the average of the

first affine motion vector and the second affine motion vector.

13. The device of claim 11, wherein the first encoding or decoding code further comprises
code configured to cause the at least one processor to:
align an interpolation filter used for motion compensation between luma and chroma

components.

14. The device of claim 13, wherein when the first encoding or decoding code is configured
to cause the at least one processor to encode or decode the video sequence using the 4:2:2
chroma format, the first encoding or decoding code further comprises code configured to cause
the at least one processor to

apply an 8-tap interpolation filter for luma components and chroma components.

15. The device of claim 11, wherein the first encoding or decoding code further comprises
code configured to cause the at least one processor to:
code as three separate trees, components Y, Cb, and Cr, and

wherein each tree of the three separate trees codes one component of the components Y,

Cb, and Cr.

16. The device of claim 15, wherein the configuration to code as three separate trees is

configured to be performed for an I slice or an I tile group.

-46-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

17. The device of claim 11, wherein the first encoding or decoding code further comprises
code configured to cause the at least one processor to:

allow a maximum transform size to be the same for different color components.

18. The device of claim 17, wherein when the first encoding or decoding code is configured
to cause the at least one processor to encode or decode the video sequence using the 4:2:2
chroma format, the first encoding or decoding code further comprises code configured to cause
the at least one processor to

set a maximum vertical size to be the same among different color components, and set a
maximum horizontal transform size for chroma components to be half of a maximum horizontal

transform size for luma components.

19. The device of claim 11, wherein the first encoding or decoding code further comprises
code configured to cause the at least one processor to:

apply at least one of a Position-Dependent Predictor combination (PDPC), a Multiple
Transform Selection (MTS), a Non-Separable Secondary Transform (NSST), an Intra-Sub
Partitioning (ISP), and a Multiple reference line (MRL) intra prediction to both a luma

component and a chroma component.

20. A non-transitory computer-readable medium storing program code, the program code
comprising one or more instructions that, when executed by one or more processors of a device,

cause the one or more processors to:

-47-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

encode or decode the video sequence using at least one of a 4:4:4 chroma format and a
4:2:2 chroma format,

wherein when the instructions, when executed by the one or more processors of the
device cause the one or more processors to encode or decode the video sequence using the 4:4:4
chroma format, the instructions, when executed by the one or more processors of the device,
further cause the one or more processors to copy an affine motion vector of one 4x4 luma block
using an operation other than an averaging operation and associating the affine motion vector to
a co-located 4x4 chroma block, and

wherein when the instructions, when executed by the one or more processors of the
device cause the one or more processors to encode or decode the video sequence using the 4:2:2
chroma format, the instructions, when executed by the one or more processors of the device,
further cause the one or more processors to associate each 4x4 chroma block with two 4x4 co-
located luma blocks such that an affine motion vector of one 4x4 chroma block is an average of

the motion vectors of the two co-located luma blocks.

-48-



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

1/21

%;

\\\\\\E\\\\\\\E\\\\\\\\\\\\W\\\\\\m\\\\\\m

§ § I S N

FIG. 1A



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

2/21

FIG. 1B



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

3/21

FIG. 2A FIG. 2B



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

4/21

S

R

G

FIG. 3



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

5/21

1024
Y = ax + 5%

; B

e
W |
& 8 &
= b .
3 7 . ® *
o | Al & #
= ™S ® =
g L) - & &
- | & |
b & #

L
1024

&

FIG. 4



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

6/21

FIG. 5A FIG. 5B



H

WO 2020/185876

CA 03132485 2021-09-01

7121

PCT/US2020/022066

Second bp

e pafarenes toew

; -

FIG. 8A

FIG. 6B



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

8/21

IW
W

z)
regd
iy

I

FIG. 7TA FIG. 7B



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

9/21

“,

TeGRe resar Lpes. Lese. Less  RLese RLRZI RLRR. TaLer. taLe meses pese. pese sidee spess aeess

%

FIG. 8



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

10/21

RIS

i : o
Cup ; LA

FIG. %A FIG. 9B



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066
11/21
&\
TN
k b
oI [N
. ‘H‘ \ “\
']
LR
r4

FIG. 10



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

12/21

FIG. 11



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

13/21

X ooy
: RPN
- —a
¥, *
5 3

.
vl A
Iv o ur bt R
’:\\‘;:-_E;'2> s
T, Y,
% ¥

FIG. 12



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

14/21

B | B3 Bl | BG
A2

Current block

a3

Af P

FIG. 13



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

15/21

FIG. 14



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

16/21

<7450

FIG. 15



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

17/21

ST \
512 |
503,> \/
5074 S
511
N
513
510
506 \_/

FIG. 16



CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

18/21

: e Symbols 621
Chanpel | .| Receiver Buffer N Parser

. ; 0 Memaory P
612 : 610 615 620:

%

%

k:

-4
" Scaler [
Inverse.
Transform
651

Loop. Filter Display
656 CF L 612

655

¥ . . ¥

Meotion Comp. Intra.
Prediction. Prediction
653 652

Y L,_m.,

Current
Picture o
656

Reference Picture Buffer
657

FIG. 17



WO 2020/185876

# Source
? 501

CA 03132485 2021-09-01

19/21

Controller

750

Source Video

Sequence

“_;:S.ourcef Coder |

730

1

Predictor

LA

Coding

Engine

732

smmJ—% Coder

735

i Reference picture memory |

734

FIG. 18

PCT/US2020/022066

Entrepy

Transmitter
740:

,,,,,,,,,,,,,,

Channel
760:



CA 03132485 2021-09-01

PCT/US2020/022066

WO 2020/185876

20/21

0g8

"$90]q PWOIYO PIIRIO[-03 oMm]
311 JO SI0I02A UOHOW Y] JO a8eidar
UE SI J00[Qq BWOIYD $X{ JUO JO JOIDIA
UOTIOW QUILIE UR 1BY} oS $3j00]q
BUOIYD PAIBOO[-00 HXfy 0] YIm
300]q BWOIYD X OB 2IBIJOSSY

6l Did

1RO} BUIOIYD 2ty Buisn apoasp/eposud

.sommh@%m

SUITLIZAE UR UBY} IO cocﬁmaom
ue FuIsn Y00[q BWOIYD pxiy| 078

2UO JO 101004 UOLOW SUIJe ue Ado;

JBULIOL BUIOIYD Fipiy BUisn sposep/spasul

|

"JEWIO) BUIOIYD Zi7:y 10 JBWU0S BULIOIYD vy J341ia Buisn aouanbas 03pia 3podap/apaoul




CA 03132485 2021-09-01

WO 2020/185876 PCT/US2020/022066

21/21

FiG. 20
' 7“" \1” VJ/‘HHH“‘\L W:/““““““L //‘\\\HHH‘:’
Computer System 300 . SlcPu|E S GPUE | FPGA | - Acdl. | ;
" Sloa - 4942 b - 944 | |-
\\TTTT r'rrrr'/‘ ““:'ﬂ'ﬂﬁg N T ,& (Eaau S @“ R
System Bus 948 S
‘ q & 4 o
4
Graphics
{ Adapter
950
I & ,,,,,,,,,,,
T e e eeeeee o et e et eoeeee e et e eesreeee e eee e
L L o
940 94\9
j
; \
(/,r .
i\ 4 ¥
} ! | N
) ‘ . N
S— ‘3’ 7777777777 - { Network
Interface
; i “ %4
L'<‘” - é ———————————— - <~ }Z { ( Nt/ A

923 R /



	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - CLAIMS
	Page 45 - CLAIMS
	Page 46 - CLAIMS
	Page 47 - CLAIMS
	Page 48 - CLAIMS
	Page 49 - CLAIMS
	Page 50 - CLAIMS
	Page 51 - DRAWINGS
	Page 52 - DRAWINGS
	Page 53 - DRAWINGS
	Page 54 - DRAWINGS
	Page 55 - DRAWINGS
	Page 56 - DRAWINGS
	Page 57 - DRAWINGS
	Page 58 - DRAWINGS
	Page 59 - DRAWINGS
	Page 60 - DRAWINGS
	Page 61 - DRAWINGS
	Page 62 - DRAWINGS
	Page 63 - DRAWINGS
	Page 64 - DRAWINGS
	Page 65 - DRAWINGS
	Page 66 - DRAWINGS
	Page 67 - DRAWINGS
	Page 68 - DRAWINGS
	Page 69 - DRAWINGS
	Page 70 - DRAWINGS
	Page 71 - DRAWINGS

