(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization
International Bureau
(43) International Publication Date
4 November 2010 (04.11.2010)
(10) International Publication Number
WO 2010/126584 A1

(51) International Patent Classification:
AOIN 43/22 (2006.01) AOIN 59/20 (2006.01)
AOIN 65/00 (2009.01) AOIP 7/04 (2006.01)
AOIN 59/16 (2006.01) AOIN 25/22 (2006.01)

(21) International Application Number:
PCT/US20 10/00 1240

(22) International Filing Date:
27 April 2010 (27.04.2010)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:

(71) Applicant (for all designated States except US): DOW AGROSCIENCES, LLC [US/US]; 9330 Zionville Road, Indianapolis, IN 46268-1054 (US).

(72) Inventors; and

(74) Agents: HUSER, Kevin, J. et al; Krieg Devault LLP, One Indiana Square, Suite 2800, Indianapolis, IN 46204-2079 (US).

Published:
— with international search report (Art. 21(3))
— with amended claims and statement (Art. 19(1))

(54) Title: INSECTICIDE COMPOSITION COMPRISING A SPINOSYN, A METAL AND A PROTEINACEOUS MATERIAL

(57) Abstract: Pest controlling compositions exhibiting enhanced pesticidal activity levels are disclosed. In one embodiment, a composition includes at least one pesticide, at least one transition metal salt and at least one proteinaceous material. In this embodiment, the composition exhibits enhanced pesticidal activity levels compared to a composition dissimilar only in not having the at least one transition metal salt and the at least one proteinaceous material.
INSECTICIDE COMPOSITION COMPRISING A SPINOSYN, A METAL AND A PROTEINACEOUS MATERIAL

CROSS REFERENCE TO RELATED APPLICATIONS

The subject application claims priority to U.S. Provisional Application No. 61/214,965 filed April 30, 2009, the contents of which are incorporated herein by reference in their entirety.

FIELD OF THE INVENTION

The invention disclosed in this document is related to the field of pesticides and their use in controlling pests.

BACKGROUND OF THE INVENTION

Pests cause millions of human deaths around the world each year. Furthermore, there are more than ten thousand species of pests that cause losses in agriculture. These agricultural losses amount to billions of U.S. dollars each year. Termites cause damage to various structures such as homes. These termite damage losses amount to billions of U.S. dollars each year. As a final note, many stored food pests eat and adulterate stored food. These stored food losses amount to billions of U.S. dollars each year, but more importantly, deprive people of needed food.

Many pesticide compositions have been developed over time to destroy pests and alleviate the damages they cause. These compositions are often applied to the environment in which the insects or other pests live or where their eggs are present, including the air surrounding them, the food they eat, or objects which they contact. Several of these compositions are vulnerable to chemical and physical degradation when
applied to these environments. If these types of degradation occur, the pesticidal activity of the pesticides can be adversely affected, commonly necessitating an increase in the concentration at which the pesticides are applied and/or more frequent applications of the pesticides. As a result, user costs and the costs to consumers can escalate. Therefore, a need exists for new pesticide compositions that exhibit increased stability and enhanced activity compared to existing pesticide compositions when, for example, the pesticide compositions are applied to an environment to control pests.
SUMMARY OF THE INVENTION

The present invention concerns novel pesticide compositions and their use in controlling insects and certain other invertebrates. In one embodiment, a composition includes at least one pesticide, at least one metal salt and at least one proteinaceous material. In this embodiment, the composition exhibits enhanced pesticidal activity levels compared to a composition dissimilar only in not having the at least one metal salt and the at least one proteinaceous material. In one form, the at least one pesticide is a photo-labile pesticide. In another form, the at least one pesticide is a macrocyclic lactone insecticide.

In a more particular form, the at least one pesticide is a spinosyn, such as spinetoram or spinosad, the at least one metal salt is a transition metal salt such as a transition metal acetate, acetylacetonate, nitrate, sulfate, carbonate or halide, including chloride, fluoride, bromide and iodide, and the at least one proteinaceous material is egg albumen, whey, gelatin or zein. However, it should be appreciated that alternatives for the at least one pesticide, transition metal salt and proteinaceous material are contemplated.

In another embodiment, a composition includes from about 8% to about 15% by weight of spinetoram, from about 40% to about 60% by weight of a proteinaceous material, and from about 25% to about 40% by weight of a transition metal salt. In one aspect of this embodiment, the transition metal salt includes iron (III) sulfate and the proteinaceous material includes egg albumen.

In yet another embodiment, a method includes applying to a locus where control is desired an insect-inactivating amount of a pesticide composition. Still, further
embodiments, forms, features, aspects, benefits, objects, and advantages of the present invention shall become apparent from the detailed description and examples provided.
DETAILED DESCRIPTION OF THE INVENTION

Throughout this document, all temperatures are given in degrees Celsius, and all percentages are weight percentages unless otherwise stated.

Pesticide compositions exhibiting increased stability and enhanced pesticidal activity are described in this document. More particularly, in one or more embodiments, the pesticide compositions exhibit enhanced residual pesticidal activity. A pesticide is herein defined as any compound which shows some pesticidal or biocidal activity, or otherwise participates in the control or limitation of pest populations. Such compounds include fungicides, insecticides, nematicides, miticides, termicides, rodenticides, molluscides, arthropodicides, herbicides, biocides, as well as pheromones and attractants and the like.

Examples of pesticides that can be included in the compositions described herein include, but are not limited to, antibiotic insecticides, macrocyclic lactone insecticides (for example, avermectin insecticides, milbemycin insecticides, and spinosyn insecticides), arsenical insecticides, botanical insecticides, carbamate insecticides (for example, benzofuranyl methylcarbamate insecticides, dimethylcarbamate insecticides, oxime carbamate insecticides, and phenyl methylcarbamate insecticides), diamide insecticides, desiccant insecticides, dinitrophenol insecticides, fluorine insecticides, formamidine insecticides, fumigant insecticides, inorganic insecticides, insect growth regulators (for example, chitin synthesis inhibitors, juvenile hormone mimics, juvenile hormones, moultine hormone agonists, moultine hormones, moultne inhibitors, precocenes, and other unclassified insect growth regulators), nereistoxin analogue insecticides, nicotinoid insecticides (for example, nitroguanidine insecticides,
nitromethylene insecticides, and pyridylmethylamine insecticides), organochlorine insecticides, organophosphorus insecticides, oxadiazine insecticides, oxadiazolone insecticides, phthalimide insecticides, pyrazole insecticides, pyrethroid insecticides, pyrimidinamine insecticides, pyrrole insecticides, tetramic acid insecticides, tetronic acid insecticides, thiazone insecticides, thiazolidine insecticides, thiourea insecticides, urea insecticides, as well as, other unclassified insecticides.

Some of the particular insecticides that can be employed in the compositions described in this document include, but are not limited to, the following: 1,2-dichloropropane, 1,3 dichloropropene, abamectin, acephate, acetamiprid, acethion, acetoprole, acrinathrin, acrylonitrile, alanycarb, aldicarb, aldoxycarb, aldrin, allethrin, allosaminid, allyxycarb, alpha-cypermethrin, alpha-endosulfan, amidithion, aminocarb, amiton, amitraz, anabasine, athidathion, azadirachtin, azamethiphos, azinphos-ethyl, azinphosmethyl, azothoate, barium hexafluorosilicate, barthrin, bendiocarb, benfuracarb, bensultap, beta-cyfluthrin, beta-cypermethrin, bifenthrin, bioallethrin, bioethanomethrin, biopermethrin, bioresmethrin, bistrifluron, borax, boric acid, boric acid, bromfenvinfos, bromocyclen, bromo-DDT, bromophos, bromophosethyl, bufencarb, buprofezin, butaguanos, butathiofos, butocarboxim, butonate, butoxycarboxim, cadusafos, calcium arsenate, calcium polysulfide, camphechlor, carbonanolate, carbaryl, carbofuran, carbon disulfide, carbon tetrachloride, carbophenothenion, carbosulfan, cartap, chlorantraniliprole, chlorbicyclen, chlordane, chlorecone, chlordimeform, chloethoxyfos, chlorfenapyr, chlorfenvinphos, chlorfluazuron, chlormephos, chlороform, chloropicrin, chlorphoxim, chlorprazophos, chlorpyrifos, chlorpyrifos methyl, chlorthiophos, chromafenozide, cinerin I, cinerin II, cismethrin, cloethocarb, closantel, clothianidin, copper acetoarsenite,
copper arsenate, copper naphthenate, copper oleate, coumaphos, coumimathoate, crotamiton, crotoxyphos, crufomate, cryolite, cyanofenphos, cyanophos, cyanthoate, cyclethrin, cycloprothrin, cyfluthrin, cyhalothrin, cypermethrin, cyphenothrin, cyromazine, cythioate, DDT, decarbofuran, deltamethrin, demephion, demephion-O, demephion-S, demeton, demeton-methyl, demeton-O, demeton-O-methyl, demeton-S, demeton-S-methyl, demeton-S-methylsulphon, diafenthiuron, dialifos, diatomaceous earth, diazinon, dicapthon, dichlofenthion, dichlorvos, dicresyl, dicrotophos, dicyclanil, dieldrin, diflubenzuron, dilor, dimefluthrin, dimefox, dimetan, dimethoate, dimethrin, dimethylvinphos, dimetilan, dinex, dinoprop, dinosam, dinotefuran, diofenolan, dioxabenzofos, dioxacarb, dioxathion, disulfoton, dithicrofos, d-limonene, DNOC, doramectin, ecdysterone, emamectin, EMPC, empenthrin, endosulfan, endothion, endrin, EPN, epofenonane. epinomectin, esfenvalerate, etaphos, ethiofencarb, ethion, ethiprole, ethoate-methyl, ethoprophos, ethyl formate, ethyl-DDD, ethylene dibromide, ethylene dichloride, ethylene oxide, etofenprox, etrimfos, EXD, famphur, fenamiphos, fenazaflor, fenchlorphos, fenmetharcarb, fenfluthrin, fenitrothion, fenobucarb, fenoxacrin, fenoxycarb, fenpirithrin, fenpropathrin, fensulfothion, fenthion, fenthion-ethyl, fenvalerate, fipronil, flonicamid, flubendiamide, flucofuron, flucylohydroxuron, fluvalinate, flufenerim, flufenoxuron, flufenprox, flucythrin, formetanate, formothion, formparanate, fosmethilan, fospirate, fosthietan, flirathiocarb, furathrin, gamma-cyhalothrin, gamma-
HCH, halifenprox, halofenozide, HCH, HEOD, heptachlor, heptenophos, heterophos, hexaflumuron, HHDN, hydramethylnon, hydrogen cyanide, hydropropene, hyquincarb, imidacloprid, imiprothrin, indoxacarb, iodomethane, IPSP, isazofos, isobenzan, isocarbophos, isodrin, isofenphos, isoprocarb, isoprothiolane, isothioate, isoxathion,
ivermectin, jasmolin I, jasmolin II, jodfenphos, juvenile hormone I, juvenile hormone II, juvenile hormone III, kelevan, kinoprene, lambda-cyhalothrin, lead arsenate, lepimectin, letophos, lindane, lirimfos, lufenuron, lythidathion, malathion, malonoben, mazidox, mecabam, mecarphon, menazon, mephosfolan, mercuros chloride, mesulfenfos, metaflumizone, methacrifos, methamidophos, methidathion, methiocarb, methocrotophos, methomyl, methoprene, methoxychlor, methoxyfenozide, methyl bromide, methylchloroform, methylene chloride, metofluthrin, metolcarb, metoxadiazone, mevinphos, mexacarbate, milbemectin, milbemycin oxime, mipafox, mirex, monocrotophos, morphothion, moxidectin, naftalofos, naled, naphthalene, nicotine, nifluridide, nitenpyram, nithiazine, nitrilacarb, novaluron, noviflumuron, omethoate, oxamyl, oxydemeton-methyl, oxydeprofos, oxydisulfoton, para-dichlorobenzene, parathion, parathion-methyl, penfluron, pentachlorophenol, permethrin, phenkapton, phenothrin, phenzoate, phorate, phosalone, phosfolan, phosmet, phosniclor, phosphamidon, phosphine, phoxim, phoxim-methyl, pirimetaphos, pirimicarb, pirimiphos-ethyl, pirimiphos-methyl, potassium arsenite, potassium thiocyanate, pp’-DDT, prallethrin. precocene I, precocene II, precocene III, primidophos, profenofos, profluthrin, promacyl, propamcarb, propaphos, propetamphos, propoxur, prothidathion, prothiofos, prothoate, protrifenbute, pyraclofos, pyrafluprole, pyrazophos, pyresmethrin, pyrethrin I, pyrethrin II, pyridaben, pyridalyl, pyridaphenthion, pyrifluquinazon, pyrimidifen, pyriproxyfen, quassia, quinalphos, quinalphosmethyl, quinothion, rafoxanide, resmethrin, rotenone, ryania, sabadilla, schradan, selamectin, silafluofen, silica gel, sodium arsenite, sodium fluoride, sodium hexafluorosilicate, sodium thiocyanate, sophamide, spinetoram, spinosad, spiromesifen,
spirotetramat, sulcofuron, sulfluramid, sulfotep, sulfonyl fluoride, sulprofos, tau-fluvalinate, tazimcarb, TDE, tebufenozide, tebufenpyrad, tebufirimfos, teflubenzuron, tefluthrin, temephos, TEPP, terallethrin, terbufos, tetrachloroethane, tetrachlorvinphos, tetramethrin, theta-cypermethrin, thiacloprid, thiamethoxam, thicrofos, thiocarbamate, thiocyclam, thiodicarb, thiofanox, thiometon, thiosulfate, thuricide, tolfenpyrad, triprene, vamidothion, vaniliprole, XMC, xylylcarb, zeta-cypermethrin, zolaprofos, and α-ecdysone.

Additionally, it is contemplated that any combination of the above insecticides can be employed in the compositions described herein. For more information consult "COMPENDIUM OF PESTICIDE COMMON NAMES" located at http://www.alanwood.net/pesticides/index.html. Also consult "THE PESTICIDE MANUAL" 14th Edition, edited by C D S Tomlin, copyright 2006 by British Crop Production Council.

Various pesticides are susceptible to chemical and physical degradation in the presence of certain environmental influences, such as heat and/or light. Pesticides that are susceptible to degradation with respect to the latter of these influences are commonly referred to as "photo-labile." With respect to at least some photo-labile pesticides, it is believed that their degradation can be attributed to a reaction with singlet oxygen. Examples of pesticides that are reactive with singlet oxygen include, but are not limited to, certain olefins, aromatics, phenols, naphthols, furans, pyrans and other heterocycles containing oxygen; pyroles, oxazoles, imidazoles, indoles and other heterocycles
containing nitrogen; aliphatic, alicyclic and aromatic amines; amino acids, peptides and proteins; and sulfur containing compounds such as mercaptans and sulfides; and the like. Further details regarding the determination of whether a pesticide is reactive with singlet oxygen are provided in International Patent Publication No. WO 2007/053760. It should be appreciated that any one or combination of the aforementioned photo-labile, singlet oxygen reactive pesticides could be included in the compositions described herein. More particular examples of photo-labile, singlet oxygen reactive pesticides that could be included either alone or in combination with each other in the compositions described herein include, but are not limited to, natural products which are microorganisms, microbial products, and materials derived or extracted from plants, animals, or mineral-bearing rocks. These natural products include products derived from naturally derived soil dwelling organisms such as actinomycete bacteria such as, for example, macrocyclic lactone insecticides. One exemplary macrocyclic lactone insecticide includes avermectins and derivatives thereof, such as abamectin, doramectin, emamectin, eprinomectin, ivermectin and selamectin. Another exemplary macrocyclic lactone insecticide includes milbemycins and derivatives thereof, such as lepimectin, milbemectin, milbemycin oxime and moxidectin. Yet another exemplary macrocyclic lactone insecticide includes spinosyns, such as spinosad, and derivatives thereof such as synthetically produced spinetoram as disclosed in U.S. Patents 5,227,295; 5,670,364; 5,591,606; 6,001,981; 6,143,526; 6,455,504; 6,585,990; 6,919,464; 5,362,634; 5,539,089; and 5,202,242, each of which is hereby incorporated herein by reference in its entirety. Other natural products include sabadilla or veratrine, pyrethrum or pyrethrin, neem oil or azadirachtin, rotenone, ryania or ryanodine, Bacillus thuringiensis (B. t.), Bacillus
subtilis, pheromones, natural attractants and the like. Other pesticides that could be included in the compositions described herein can include synthetically produced pesticides which are reactive toward singlet oxygen. Examples include, but are not limited to indoxacarb, imazalil and fenpropimorph. In addition to the foregoing, it should be appreciated that the compositions described herein could also include at least one pesticide which is reactive with singlet oxygen and at least one other pesticide which is not reactive with singlet oxygen or otherwise photo-labile.

In one embodiment, a composition includes at least one or a mixture of the aforementioned pesticides, at least one metal salt and at least one proteinaceous material. In this embodiment, the composition exhibits enhanced pesticidal activity compared to a composition dissimilar only in not having the metal salt and the proteinaceous material. For example, it is contemplated that the activity or half-life of the composition is extended and therefore the same activity can be achieved with a lower amount of the composition when compared to a composition dissimilar only in not having the metal salt and the proteinaceous material. Additionally or alternatively, it is contemplated that improved pesticidal control over time is achieved with the composition including the metal salt and the proteinaceous material when compared to a composition dissimilar only in not having the metal salt and the proteinaceous material.

As used herein, the term "metal salt" refers to a compound in which the hydrogen or hydrogens of an acid is/are replaced by a metal while retaining the same organic or inorganic moiety as the acid. By way of non-limiting example, organic or inorganic moieties that can form part of a metal salt include acetate, acetylacetonate, nitrate, sulfate, carbonate and halides, such as chloride, bromide, fluoride and iodide. In one or
more than one of the more particular embodiments described in this document, the metal salt can be a transition metal salt. For the purposes of this document, zinc is considered to be a transition metal. Non-limiting examples of transition metal salts include transition metal acetates, transition metal acetylacetonates, transition metal nitrates, transition metal sulfates, transition metal carbonates and transition metal halides, including chlorides, fluorides, bromides and iodides. More particular examples of transition metal acetates include, but are not limited to, zinc acetate, ferrous (iron (II)) acetate, ferric (iron (III)) acetate, cobalt (II) acetate and cupric (copper (II)) acetate. For transition metal acetylacetonates, more particular but non-limiting examples include cuprous (copper (I)) acetylacetonate, cupric (copper (II)) acetylacetonate, nickel (II) acetylacetonate and zinc acetylacetonate. More particular examples of transition metal nitrates include, but are not limited to, zinc nitrate, cupric (copper (II)) nitrate, manganese (II) nitrate, ferric (iron (III)) nitrate, cobalt (II) nitrate and nickel (II) nitrate. Non-limiting examples of transition metal sulfates include zinc sulfate, ferrous (iron (II)) sulfate, ferric (iron (III)) sulfate, manganese (II) sulfate, cobalt (II) sulfate, nickel (II) sulfate, and cupric (copper (II)) sulfate. A few particular but non-limiting examples of transition metal carbonates include zinc carbonate, manganese (II) carbonate, iron carbonate, nickel (II) carbonate, cobalt (II) carbonate and cupric (copper (II)) carbonate. More particular examples of transition metal fluorides include, but are not limited to, cuprous (copper (I)) fluoride, cupric (copper (II)) fluoride, zinc fluoride, manganese (II) fluoride, manganese (III) fluoride and ferric (iron (III)) fluoride. Non-limiting examples of transition metal chlorides include zinc chloride, cuprous (copper (I)) chloride, cupric (copper (II)) chloride, manganese (II) chloride, nickel (II) chloride, cobalt (II) chloride, ferrous (iron}
(II)) chloride and ferric (iron (III)) chloride. With respect to transition metal bromides, a few examples include, but are not limited to, zinc bromide, cuprous (copper (I)) bromide, cupric (copper (II)) bromide, cobalt (II) bromide, ferrous (iron (II)) bromide, ferric (iron (III)) bromide, manganese (II) bromide and nickel (II) bromide. A few more particular but non-limiting examples of transition metal iodides include manganese (II) iodide, nickel (II) iodide, cuprous (copper (I)) iodide and zinc iodide. Additionally, it is contemplated that any combination of the above transition metal salts can be employed in the compositions described herein.

In one or more embodiments, it is contemplated that the at least one transition metal salt is water soluble. Non-limiting examples of water-soluble transition metal salts include zinc chloride, zinc iodide, zinc nitrate, zinc bromide, zinc sulfate, zinc acetate, cupric (copper (II)) chloride, cupric (copper (II)) bromide, cuprous (copper (I)) bromide, cupric (copper (H)) nitrate, cupric (copper (H)) acetate, nickel (II) nitrate, nickel (II) bromide, nickel (II) chloride, nickel (II) iodide, nickel (II) sulfate, cobalt (II) nitrate, cobalt (II) sulfate, cobalt (II) acetate, cobalt (II) bromide, cobalt (II) chloride, ferrous (iron (II)) chloride, ferric (iron (III)) chloride, ferrous (iron (II)) sulfate, ferric (iron (III)) sulfate, ferrous (iron (II)) acetate, ferric (iron (III)) nitrate, ferrous (iron (II)) bromide, manganese (II) sulfate and manganese (II) chloride.

As used herein, the term "proteinaceous material" is used to describe a material, composition or compound that is defined by a protein, includes at least one protein or is a basic element of a protein. In one form, the proteinaceous material is a water-soluble protein. Further non-limiting examples of proteinaceous materials include albumin, such as egg albumen or bovine serum albumin (BSA); casein; gelatin; zein; a whey
composition, such as a mixture of lactose and whey protein; whey protein and amino
acids such as cysteine, methionine, tryptophan, histidine, and tyrosine.

The metal salt and proteinaceous material are typically present within the
compositions described in this document in an activity enhancing amount. An activity
enhancing amount is an amount which increases the half life of the composition, or
alternatively will enable the composition to achieve the same control of pests at a level
which is less than the amount required for the same pesticidal protection or control of the
composition in the absence of the metal salt and the proteinaceous material. In other
words, the metal salt and the proteinaceous material will either reduce the rate required
for protection or extend the residuality of the composition.

In one embodiment, a composition includes a ratio, by weight, between the metal
salt and the pesticide between about 1:10 and about 20:1, between the proteinaceous
material and the pesticide between about 1:1 and about 20:1 and between the
proteinaceous material and the metal salt between about 1:10 and about 20:1. In another
embodiment, a composition includes a ratio, by weight, between the metal salt and the
pesticide between about 1:2 and about 10:1, between the proteinaceous material and the
pesticide between about 2:1 and about 10:1 and between the proteinaceous material and the
metal salt between about 1:5 and about 10:1. In yet another embodiment, a
composition includes a ratio, by weight, between the metal salt and the pesticide from
about 1:1 to about 6:1, between the proteinaceous material and the pesticide from about
3:1 to about 8:1 and between the proteinaceous material and the metal salt from about 1:2
to about 4:1. In still another embodiment, a composition includes a ratio, by weight,
between the metal salt and the pesticide from about 2:1 to about 4:1, between the
proteinaceous material and the pesticide from about 4:1 to about 6:1 and between the proteinaceous material and the metal salt from about 1:1 to about 2:1. In yet another embodiment, a composition includes a ratio, by weight, between the metal salt and the pesticide between about 1:10 and about 20:1, between about 1:2 and about 10:1, from about 1:1 to about 6:1 or from about 2:1 to about 4:1; between the proteinaceous material and the pesticide between about 1:1 and about 20:1, between about 2:1 and about 10:1, from about 3:1 to about 8:1 or from about 4:1 to about 6:1; and between the proteinaceous material and the metal salt between about 1:10 and about 20:1, between about 1:5 and about 10:1, from about 1:2 to about 4:1 or from about 1:1 to about 2:1.

It should be appreciated however that alternative values for the weight ratios between the metal salt and the pesticide, the proteinaceous material and the pesticide and the proteinaceous material and the metal salt are contemplated. For example, in one embodiment, it is contemplated that a composition may include a ratio, by weight, between the metal salt and the pesticide between about 1:100 and about 100:1, between the proteinaceous material and the pesticide between about 1:100 and about 100:1 and between the proteinaceous material and the metal salt between about 1:100 and about 100:1. In another embodiment, it is contemplated that a composition may include a ratio, by weight, between the metal salt and the pesticide between about 1:50 and about 50:1, between the proteinaceous material and the pesticide between about 1:50 and about 50:1 and between the proteinaceous material and the metal salt between about 1:50 and about 50:1.

In still another embodiment, a composition includes from about 1% to about 30% by weight of the pesticide, from about 25% to about 75% by weight of the proteinaceous
material and from about 10% to about 60% by weight of the metal salt. In another embodiment, a composition includes from about 5% to about 25% by weight of the pesticide, from about 35% to about 65% by weight of the proteinaceous material and from about 20% to about 50% by weight of the metal salt. In still another embodiment, a composition includes from about 8% to about 15% by weight of the pesticide, from about 40% to about 60% by weight of the proteinaceous material and from about 25% to about 40% by weight of the metal salt.

Still, it should be appreciated that alternative values for the weight percentages of the pesticide, proteinaceous material and metal salt are contemplated. For example, in one embodiment, it is contemplated that a composition may include between about 0.1% and about 50% by weight of the pesticide, between about 15% and about 90% by weight of the proteinaceous material and between about 5% and about 80% by weight of the metal salt. Still, in another embodiment, it is contemplated that a composition may include between about 0.1% and about 75% by weight of the pesticide, between about 5% and about 95% by weight of the proteinaceous material and between about 1% and about 90% by weight of the metal salt.

The compositions described above can be prepared and provided in any suitable manner and also include other components, further details of which will be provided below. In one particular form, the pesticide, proteinaceous material, metal salt, water and any other components, if present, are mixed together, homogenized and provided as a liquid composition. The liquid composition may then be spray dried to provide a solid composition which may be in a powder or granular form, just to name a few possibilities. During the spray drying, the liquid composition is at least partially dehydrated or dried,
with such dehydration or drying resulting in the conversion of the liquid composition to
the solid composition which includes a smaller percentage by weight of water than the
liquid composition. In one or more forms, the spray drying will remove all or
substantially all of the water from the liquid composition as it is converted to the solid
composition. However, it should be appreciated that residual water may be present in
one or more forms of the solid composition.

For example, in one form, the solid composition includes between about 0.001% to
about 20% by weight of water after the spray drying. In yet another form, the solid
composition includes from about 0.001% to about 15% by weight of water after the spray
drying. In still another form, the solid composition includes from about 0.001% to about
10% by weight of water after the spray drying. In another form, the solid composition
includes from about 0.001% to about 5% by weight of water after the spray drying. In
yet another form, the solid composition includes from about 0.001% to about 4% by
weight of water after the spray drying. Still, in another form the solid composition
includes from about 0.001% to about 2% by weight of water after the spray drying. In
another form, the solid composition includes from about 0.001% to about 1% by weight
of water after the spray drying. However, it should be appreciated that alternatives values
for the weight percentage of water in the solid composition after the spray drying are
contemplated.

Accordingly, in one embodiment, a method includes providing a liquid
composition that includes at least one pesticide, at least one proteinaceous material, at
least one metal salt and water, and spray drying the liquid composition to provide a solid
composition. In one particular form of this embodiment, the spray drying includes
substantially removing all of the water from the liquid composition as it is converted to the solid composition. While not previously discussed, any other volatile materials besides water, if present in the liquid composition, will typically be entirely or substantially removed as the liquid composition is converted to the solid composition during the spray drying. However, it is contemplated that residual volatile materials other than water could be present in the solid composition after the spray drying. Additionally, the pesticide, proteinaceous material and metal salt are generally not volatile and will generally not be affected by the spray drying. Thus, it should be appreciated that the solid composition after spray drying will include ratios by weight between the pesticide and the proteinaceous material, the pesticide and the metal salt, and the metal salt and proteinaceous material that are the same as or substantially equivalent to the ratios by weight between these ingredients in the liquid composition.

PESTS

In one or more additional embodiments, the invention disclosed in this document can be used to control pests.

In one embodiment, the invention disclosed in this document can be used to control pests of the Phylum **Nematoda**.

In another embodiment, the invention disclosed in this document can be used to control pests of the Phylum **Arthropoda**.

In another embodiment, the invention disclosed in this document can be used to control pests of the Subphylum **Chelicera**.
In another embodiment, the invention disclosed in this document can be used to control pests of the **Class Arachnida**.

In another embodiment, the invention disclosed in this document can be used to control pests of the Subphylum **Myriapoda**.

In another embodiment, the invention disclosed in this document can be used to control pests of the **Class Symphyla**.

In another embodiment, the invention disclosed in this document can be used to control pests of the Subphylum **Hexapoda**.

In another embodiment, the invention disclosed in this document can be used to control pests of the **Class Insecta**.

In another embodiment, the invention disclosed in this document can be used to control Coleoptera (beetles). A non-exhaustive list of these pests includes, but is not limited to, *Acanthoscelides spp.* (weevils), *Acanthoscelides obtectus* (common bean weevil), *Agrilus planipennis* (emerald ash borer), *Agriotes spp.* (wireworms), *Anoplophora glabripennis* (Asian longhorned beetle), *Anthonomus spp.* (weevils), *Anthonomus grandis* (boll weevil), *Aphidius spp.*, *Apion spp.* (weevils), *Apogonia spp.* (grubs), *Ataenius spretulus* (Black Turgrass Ataenius), *Atomaria linearis* (pygmy mangold beetle), *Aulacophore spp.*, *Bothynoderes punctiventris* (beet root weevil), *Bruchus spp.* (weevils), *Bruchus pisorum* (pea weevil), *Cacoesia spp.*, *Callosobruchus maculatus* (southern cow pea weevil), *Carpophilus hemipteras* (dried fruit beetle), *Cassida vittata*, *Cerosterna spp.*, *Cerotoma spp.* (chrysomeids), *Cerotoma trifurcata* (bean leaf beetle), *Ceutorhynchus spp.* (weevils), *Ceutorhynchus assimilis* (cabbage seedpod weevil), *Ceutorhynchus napi* (cabbage curculio), *Chaetocnema spp.*
(chrysomelids), Colaspis spp. (soil beetles), Conoderus scalaris, Conoderus stigmosus, Conotrachelus nenuphar (plum curculio), Cotinus nitidis (Green June beetle), Crioceris asparagi (asparagus beetle), Cryptoles ferrugineus (rusty grain beetle), Cryptoles pusillus (flat grain beetle), Cryptoles turcicus (Turkish grain beetle), Ctenicera spp. (wireworms), Curculio spp. (weevils), Cyclocephala spp. (grubs), Cylindrocpturus adspersus (sunflower stem weevil), Deporaus marginatus (mango leaf-cutting weevil), Dermestes lardarius (larder beetle), Dermestes maculates (hide beetle), Diabrotica spp. (chrysomelids), Epilachna varivestis (Mexican bean beetle), Faustinus cubae, Hyllobius pales (pales weevil), Hypera spp. (weevils), Hypera postica (alfalfa weevil), Hyperodes spp. (Hyperodes weevil), Hypothenemus hampei (coffee berry beetle), Ips spp. (engravers), Lasioderma serricorne (cigarette beetle), Leptinotarsa decemlineata (Colorado potato beetle), Liogenys fuscus, Liogenys suturalis, Lissorhoptrus oryzophilus (rice water weevil), Lyctus spp. (wood beetles/powder post beetles), Maecolaspis joliveti, Megascelis spp., Melanotus communis, Meligethes spp., Meligethes aeneus (blossom beetle), Melolontha melolontha (common European cockchafer), Oberea brevis, Oberea linearis, Oryctes rhinoceros (date palm beetle), Oryzaephilus mercator (merchant grain beetle), Oryzaephilus surinamensis (sawtoothed grain beetle), Otiorhynchus spp. (weevils), Oulema melanopus (cereal leaf beetle), Oulema oryzae, Pantomorus spp. (weevils), Phyllophaga spp. (May/June beetle), Phyllophaga cuyabana, Phyllostreta spp. (chrysomelids), Phynchites spp., Popilliajaponica (Japanese beetle), Prostephanus truncates (larger grain borer), Rhizopertha dominica (lesser grain borer), Rhizotrogus spp. (European chafer), Rhynchophorus spp. (weevils), Scolytus spp. (wood beetles), Shenophorus spp. (Billbug), Sitona lineatus (pea leaf weevil), Sitophilus spp. (grain beetles),
weevils), *Sitophilus granaries* (granary weevil), *Sitophilus oryzae* (rice weevil),
Stegobium paniceum (drugstore beetle), *Tribolium spp.* (flour beetles), *Tribolium castaneum* (red flour beetle), *Tribolium confusum* (confused flour beetle), *Trogoderma variabile* (warehouse beetle), and *Zabrus tenebioides*.

In another embodiment, the invention disclosed in this document can be used to control **Dermaptera (earwigs)**.

In another embodiment, the invention disclosed in this document can be used to control **Dictyoptera (cockroaches)**. A non-exhaustive list of these pests includes, but is not limited to, *Blattella germanica* (German cockroach), *Blatta orientalis* (oriental cockroach), *Parcoblatta pennylvanica*, *Periplaneta americana* (American cockroach), *Periplaneta australoasiae* (Australian cockroach), *Periplaneta brunnea* (brown cockroach), *Periplaneta fuliginosa* (smokybrown cockroach), *Pyncoselus suninamensis* (Surinam cockroach), and *Supella longipalpa* (brownbanded cockroach).

In another embodiment, the invention disclosed in this document can be used to control **Diptera (true flies)**. A non-exhaustive list of these pests includes, but is not limited to, *Aedes spp.* (mosquitoes), *Agromyza frontella* (alfalfa blotch leafminer), *Agromyza spp.* (leafminer flies), *Anastrepha spp.* (fruit flies), *Anastrepha suspensa* (Caribbean fruit fly), *Anopheles spp.* (mosquitoes), *Bactrocera spp.* (fruit flies), *Bactrocera cucurbitae* (melon fly), *Bactrocera dorsalis* (oriental fruit fly), *Ceratitis spp.* (fruit flies), *Ceratitis capitata* (Mediterranean fruit fly), *Chrysops spp.* (deer flies), *Cochliomyia spp.* (screwworms), *Contarinia spp.* (Gall midges), *Culex spp.* (mosquitoes), *Dasineura spp.* (gall midges), *Dasineura brassicae* (cabbage gall midge), *Delia spp.* (gall midges), *Delia platura* (seedcorn maggot), *Drosophila spp.* (vinegar flies), *Fannia spp.* (filth

perseae, Scaptocoris castama, and Tḥatoma spp. (bloodsucking conenose bugs/kissing bugs).

In another embodiment, the invention disclosed in this document can be used to control Homoptera (aphids, scales, whiteflies, leafhoppers). A non-exhaustive list of these pests includes, but is not limited to, Acrythosiphon pisum (pea aphid), Adelges spp. (adelgids), Aleurodes proletella (cabbage whitefly), Aleurodicus disperses, Aleurothrixus floccosus (woolly whitefly), Aluacaspis spp., Amrasca bigutella bigutella, Aphrophora spp. (leafhoppers), Aonidiella aurantii (California red scale), Aphis spp. (aphids), Aphis gossypii (cotton aphid), Aphis pomi (apple aphid), Aulacorthum solani (foxglove aphid), Bemisia spp. (whiteflies), Bemisia argentifolii, Bemisia tabaci (sweetpotato whitefly), Brachycoccus noxius (Russian aphid), Brachycorynella asparagi (asparagus aphid), Brevennia rehi, Breviceps brassicae (cabbage aphid), Ceroplastes spp. (scales), Ceroplastes rubens (red wax scale), Chionaspis spp. (scales), Chrysomphalus spp. (scales), Coccus spp. (scales), Dysaphis plantaginea (rosy apple aphid), Empoasca spp. (leafhoppers), Eriosoma lanigerum (woolly apple aphid), Icerya purchasi (cottony cushion scale), Idioscopus nitidulus (mango leafhopper), Laodelphax striatellus (smaller brown planthopper), Lepidosaphes spp., Macrosiphum spp., Macrosiphum euphorbiae (potato aphid), Macrosiphum granarium (English grain aphid), Macrosiphum rosae (rose aphid), Macrosteles quadrilineatus (aster leafhopper), Mahanarva frimbiolata, Metopolophium dirhodum (rose grain aphid), Mictis longicornis, Myzus persicae (green peach aphid), Nephrotettix spp. (leafhoppers), Nephrotettix cinctipes (green leafhopper), Nilaparvata lugens (brown planthopper), Parlatoria pergandii (chaff scale), Parlatoria Ŧiziphi (ebony scale), Peregrinus maidis (corn delphacid), Philaenus spp. (spittlebugs),
Phylloxera vitifoliae (grape phylloxera), Physokermes piceae (spruce bud scale).

Planococcus spp. (mealybugs), Pseudococcus spp. (mealybugs), Pseudococcus brevipes (pine apple mealybug), Quadraspidiotus perniciosus (San Jose scale), Rhopalosiphum spp. (aphids), Rhopalosiphum maidae (corn leaf aphid), Rhopalosiphum padi (oat bird-cherry aphid), Saissetia spp. (scales), Saissetia oleae (black scale), Schizaphis graminum (greenbug), Sitobion avenae (English grain aphid), Sogatella furcifera (white-backed planthopper), Therioaphis spp. (aphids), Toumeyella spp. (scales), Toxoptera spp. (aphids), Trialeurodes spp. (whiteflies), Trialeurodes vaporariorum (greenhouse whitefly), Trialeurodes abutiloneus (bandedwing whitefly), Unaspis spp. (scales), Unaspis yanonensis (arrowhead scale), and Zulia enteriana.

In another embodiment, the invention disclosed in this document can be used to control Hymenoptera (ants, wasps, and bees). A non-exhaustive list of these pests includes, but is not limited to, Acromyrmex spp., Athalia rosae, Atta spp. (leafcutting ants), Camponotus spp. (carpenter ants), Diprion spp. (sawflies), Formica spp. (ants), Iridomyrmex humilis (Argentine ant), Monomorium spp., Monomorium minimum (little black ant), Monomorium pharaonis (Pharaoh ant), Neodiprion spp. (sawflies), Pogonomyrmex spp. (harvester ants), Polistes spp. (paper wasps), Solenopsis spp. (fire ants), Tapoinoma sessile (odorous house ant), Tetranomorium spp. (pavement ants), Vespula spp. (yellow jackets), and Xylocopa spp. (carpenter bees).

In another embodiment, the invention disclosed in this document can be used to control Isoptera (termites). A non-exhaustive list of these pests includes, but is not limited to, Coptotermes spp., Coptotermes curvignathus, Coptotermes frenchii, Coptotermes formosanus (Formosan subterranean termite), Cornitermes spp. (nasute

In another embodiment, the invention disclosed in this document can be used to control Lepidoptera (moths and butterflies). A non-exhaustive list of these pests includes, but is not limited to, Achoea janata, Adoxophyes spp., Adoxophyes orana, Agrotis spp. (cutworms), Agrotis ipsilon (black cutworm), Alabama argillacea (cotton leafworm), Amorbia cuneana, Amyelosis transitella (navel orangeworm), Anacamptodes defectaria, Anarsia lineatella (peach twig borer), Anomis sabulijera (jute looper), Anticarsia gemmatalis (velvetbean caterpillar), Archips argyrospila (fruit tree leafroller), Archips rosana (rose leafroller), Argyrotaenia spp. (tortricid moths), Argyrotaenia citrina (orange tortrix), Autographa gamma, Bonagota cranaodes, Borbo cinnara (rice leaf folder), Bucculatrix thurberiella (cotton leaf perforator), Caloptilia spp. (leaf miners), Capua reticulana, Carposina niponensis (peach fruit moth), Chilo spp., Chlumetia transversa (mango shoot borer), Choristoneura rosaceana (oblique banded leafroller), Chrysodeixis spp., Cnaphalocerus medinalis (grass leafroller), Colias spp.,
Conpomorpha cramerella, Cossus cossus (carpenter moth), Crambus spp. (Sod webworms), Cydia funebrana (plum fruit moth), Cydia molesta (oriental fruit moth),
Cydia nignicana (pea moth), Cydia pomonella (codling moth), Darna diducta, Diaphania spp. (stem borers), Diatraea spp. (stalk borers), Diatraea saccharalis (sugarcane borer),
Diatraea graniosella (southwester corn borer), Earias spp. (bollworms), Earias insulata (Egyptian bollworm), Earias vitella (rough northern bollworm), Ecdytopophia aurantianum, Elasmopalpus lignosellus (lesser cornstalk borer), Epiphysias postruttana (light brown apple moth), Ephestia spp. (flour moths), Ephestia cautella (almond moth),
Ephestia elutella (tobacco moth), Ephestia kuehniella (Mediterranean flour moth),
Epimeces spp., Epinotia aporema, Eynthia thrax (banana skipper), Eupoecilia ambiguella (grape berry moth), Euxoa auxiliaris (army cutworm), Feltia spp. (cutworms), Gortyna spp. (stem borers), Grapholita molesta (oriental fruit moth),
Hedylepta indicata (bean leaf webber), Helicoverpa spp. (noctuid moths), Helicoverpa armigera (cotton bollworm), Helicoverpa zea (bollworm/corn earworm), Heliothis spp. (noctuid moths), Heliothis virescens (tobacco budworm), Hellula undalis (cabbage webworm), Indarbela spp. (root borers), Keiferia lycopersicella (tomato pinworm),
Leucinodes orbonalis (eggplant fruit borer), Leucoptera malifoliella, Lithocollectis spp., Lobesia botrana (grape fruit moth), Loxagrotis spp. (noctuid moths), Loxagrotis albicosta (western bean cutworm), Lymantria dispar (gypsy moth), Lyonetia clerkella (apple leaf miner), Mahasena corbetti (oil palm bagworm), Malacosoma spp. (tent caterpillars), Mamestra brassicae (cabbage armyworm), Maruca testulalis (bean pod borer), Metisa plana (bagworm), Mythimna unipuncta (true armyworm), Neoleucinodes elegantalis (small tomato borer), Nymphula depunctalis (rice caseworm), Operophthera
brumata (winter moth), Ostrinia nubilalis (European corn borer), Oxydia vesulia, Pandemis cerasana (common currant tortrix), Pandemis heparana (brown apple tortrix), Papilio demodocus, Pectinophora gossypiella (pink bollworm), Peridroma spp. (cutworms), Peridroma saucia (variegated cutworm), Perileucoptera coffeella (white coffee leafminer), Phthorimaea operculella (potato tuber moth), Phyllocnisitits citrella, Phyllonorycter spp. (leafminers), Pieris rapae (imported cabbageworm), Plathypena scabra, Plodia interpunctella (Indian meal moth), Plutella xylostella (diamondback moth), Polychrosis viteana (grape berry moth), Prays endocarpa, Prays oleae (olive moth), Pseudaletia spp. (noctuid moths), Pseudaletia unipunctata (armyworm), Pseudoplusia includens (soybean looper), Rachiplusia nu, Scirpophaga incertulas, Sesamia spp. (stemborers), Sesamia inferens (pink rice stem borer), Sesamia nonagrioides, Setora nitens, Sitotroga cerealella (Angoumois grain moth), Sparganothis pilleriana, Spodoptera spp. (armyworms), Spodoptera exigua (beet armyworm), Spodoptera fugiperda (fall armyworm), Spodoptera oedania (southern armyworm), Synanthedon spp. (root borers), Thecla basilides, Thermisia gemmatalis, Tineola bisselliella (webbing clothes moth), Trichoplusia ni (cabbage looper), Tuta absoluta, Yponomeuta spp., Zeuzera coffeae (red branch borer), and Zeuzera pyrina (leopard moth).

In another embodiment, the invention disclosed in this document can be used to control Mallophaga (chewing lice). A non-exhaustive list of these pests includes, but is not limited to, Bovicola ovis (sheep biting louse), Menacanthus stramineus (chicken body louse), and Menopon gallinea (common hen house).
In another embodiment, the invention disclosed in this document can be used to control **Orthoptera (grasshoppers, locusts, and crickets).** A non-exhaustive list of these pests includes, but is not limited to, *Anabrus simplex* (Mormon cricket), *Gryllotalpidae* (mole crickets), *Locusta migratoria, Melanoplus spp.* (grasshoppers), *Microcentrum retinerve* (angular winged katydid), *Pterophylla spp.* (katydids), *chistocerca gregaria, Scudderia furcata* (fork tailed bush katydid), and *Valanga nigricorni.*

In another embodiment, the invention disclosed in this document can be used to control **Phthiraptera (sucking lice).** A non-exhaustive list of these pests includes, but is not limited to, *Haematopinus spp.* (cattle and hog lice), *Linognathus ovillus* (sheep louse), *Pediculus humanus capitis* (human body louse), *Pediculus humanus humanus* (human body lice), and *Pthirus pubis* (crab louse).

In another embodiment, the invention disclosed in this document can be used to control **Siphonaptera (fleas).** A non-exhaustive list of these pests includes, but is not limited to, *Ctenocephalides canis* (dog flea), *Ctenocephalides felis* (cat flea), and *Pulex irritans* (human flea).

In another embodiment, the invention disclosed in this document can be used to control **Thysanoptera (thrips).** A non-exhaustive list of these pests includes, but is not limited to, *Frankliniella fusca* (tobacco thrips), *Frankliniella occidentalis* (western flower thrips), *Frankliniella shultzei Frankliniella williamsi* (corn thrips), *Heliothrips haemorrhaidalis* (greenhouse thrips), *Ripiphorothrips cruentatus, Scirtothrips spp., Scirtothrips citri* (citrus thrips), *Scirtothrips dorsalis* (yellow tea thrips), *Taeniothrips rhopalantennalis, and Thrips spp.*
In another embodiment, the invention disclosed in this document can be used to control Thysanura (bristlets). A non-exhaustive list of these pests includes, but is not limited to, *Lepisma* spp. (silverfish) and *Thermobia* spp. (firebrats).

In another embodiment, the invention disclosed in this document can be used to control *Nematoda* (nematodes). A non-exhaustive list of these pests includes, but is not limited to, *Aphelenchoides* spp. (bud and leaf & pine wood nematodes), *Belonolaimus*...

In another embodiment, the invention disclosed in this document can be used to control *Symphyla* (symphylans). A non-exhaustive list of these pests includes, but is not limited to, *Scutigerella immaculata*.

MIXTURES

The compositions disclosed in this document can also be used, for reasons of economy, chemical and physical stability, and synergy, with acaricides, algicides, antifeedants, avicides, bactericides, bird repellents, chemosterilants, fungicides, herbicide safeners, herbicides, insect attractants, insect repellents, mammal repellents, mating disrupters, molluscicides, other insecticides, other pesticides, plant activators, plant growth regulators, rodenticides, synergists, defoliants, desiccants, disinfectants, semiochemicals, and virucides (these categories not necessarily mutually exclusive).
FORMULATIONS

The compositions described in this document may also be provided with phytologically-acceptable inert ingredients to provide or complement a carrier and can be formulated into, for example, baits, concentrated emulsions, dusts, emulsifiable concentrates, fumigants, gels, granules, microencapsulations, seed treatments, suspension concentrates, suspoemulsions, tablets, water soluble liquids, water dispersible granules or dry flowables, wettable powders, and ultra low volume solutions.

For further information on formulation types see "CATALOGUE OF PESTICIDE FORMULATION TYPES AND INTERNATIONAL CODING" Technical Monograph n°2, 5th Edition by CropLife International (2002).

Pesticide compositions can be frequently applied as aqueous suspensions or emulsions prepared from concentrated formulations of such compositions. Such water-soluble, water-suspendable, or emulsifiable formulations are either solids, usually known as wettable powders, or water dispersible granules, or liquids usually known as emulsifiable concentrates, or aqueous suspensions. Wettable powders, which may be compacted to form water dispersible granules, comprise an intimate mixture of the pesticide composition, a carrier, and surfactants. The carrier is usually chosen from among the attapulgite clays, the montmorillonite clays, the diatomaceous earths, or the purified silicates. Effective surfactants, which can comprise from about 0.5% to about 10% of the wettable powder, are found among sulfonated lignins, condensed naphthalenesulfonates, naphthalenesulfonates, alkylbenzenesulfonates, alkyl sulfates, and nonionic surfactants such as ethylene oxide adducts of alkyl phenols.
Emulsifiable concentrates comprise a convenient concentration of a pesticide composition dissolved in a carrier that is either a water miscible solvent or a mixture of water-immiscible organic solvent and emulsifiers. Useful organic solvents include aromatics, especially xylenes and petroleum fractions, especially the high-boiling naphthalenic and olefinic portions of petroleum such as heavy aromatic naphtha. Other organic solvents may also be used, such as the terpenic solvents including rosin derivatives, aliphatic ketones such as cyclohexanone, and complex alcohols such as 2-ethoxyethanol. Suitable emulsifiers for emulsifiable concentrates are chosen from conventional anionic and nonionic surfactants.

Aqueous suspensions comprise suspensions of water-insoluble pesticide compositions dispersed in an aqueous carrier. Suspensions are prepared by finely grinding the pesticide composition and vigorously mixing it into a carrier comprised of water and surfactants. Ingredients, such as inorganic salts and synthetic or natural gums, may also be added, to increase the density and viscosity of the aqueous carrier. It is often most effective to grind and mix the pesticide composition at the same time by preparing the aqueous mixture and homogenizing it in an implement such as a sand mill, ball mill, or piston-type homogenizer.

Pesticide compositions may also be applied as granular formulations that are particularly useful for applications to the soil. Granular formulations contain the pesticide composition dispersed in a carrier that comprises clay or a similar substance. Such formulations are usually prepared by dissolving the pesticide composition in a suitable solvent and applying it to a granular carrier which has been pre-formed to the appropriate particle size, in the range of from about 0.5 to 3 mm. Such formulations may
also be formulated by making a dough or paste of the carrier and pesticide composition and crushing and drying to obtain the desired granular particle size.

Dusts containing a pesticide composition are prepared by intimately mixing the pesticide composition in powdered form with a suitable dusty agricultural carrier, such as kaolin clay, ground volcanic rock, and the like. Dusts can be applied as a seed dressing, or as a foliage application with a dust blower machine.

It is equally practical to apply a pesticide composition in the form of a solution in an appropriate organic solvent, usually petroleum oil, such as the spray oils, which are widely used in agricultural chemistry.

Pesticide compositions can also be applied in the form of an aerosol formulation. In such formulations, the pesticide composition is dissolved or dispersed in a carrier, which is a pressure-generating propellant mixture. The aerosol formulation is packaged in a container from which the mixture is dispensed through an atomizing valve.

Pesticide baits are formed when the pesticide composition is mixed with food or an attractant or both. When the pests eat the bait they also consume the pesticide composition. Baits may take the form of granules, gels, flowable powders, liquids, or solids. They may be used in or around pest harborages.

Fumigants are pesticides that have a relatively high vapor pressure and hence can exist as a gas in sufficient concentrations to kill pests in soil or enclosed spaces. The toxicity of the fumigant is proportional to its concentration and the exposure time. They are characterized by a good capacity for diffusion and act by penetrating the pest's respiratory system or being absorbed through the pest's cuticle. Fumigants are applied to
control stored product pests under gas proof sheets, in gas sealed rooms or buildings or in special chambers.

Oil solution concentrates are made by dissolving a pesticide composition in a solvent that will hold the pesticide composition in solution. Oil solutions of a pesticide composition usually provide faster knockdown and kill of pests than other formulations due to the solvents themselves having pesticidal action and the dissolution of the waxy covering of the integument increasing the speed of uptake of the pesticide. Other advantages of oil solutions include better storage stability, better penetration of crevices, and better adhesion to greasy surfaces.

Another embodiment is an oil-in-water emulsion, wherein the emulsion comprises oily globules which are each provided with a lamellar liquid crystal coating and are dispersed in an aqueous phase, wherein each oily globule comprises at least one compound which is agriculturally active, and is individually coated with a monolamellar or oligolamellar layer comprising: (1) at least one non-ionic lipophilic surface-active agent, (2) at least one non-ionic hydrophilic surface-active agent and (3) at least one ionic surface-active agent, wherein the globules having a mean particle diameter of less than 800 nanometers. Further information on the embodiment is disclosed in U.S. patent publication 20070027034 published February 1, 2007, having Patent Application serial number 11/495,228. For ease of use this embodiment will be referred to as "OIWE".

For further information consult "INSECT PEST MANAGEMENT" 2nd Edition by D. Dent, copyright CAB International (2000). Additionally, for more detailed information consult "HANDBOOK OF PEST CONTROL - THE BEHAVIOR, LIFE
OTHER FORMULATION COMPONENTS

Generally, when the compositions disclosed in this document are used in a formulation, such formulation can also contain other components. These components include, but are not limited to, (this is a non-exhaustive and non-mutually exclusive list) wetters, spreaders, stickers, penetrants, buffers, sequestering agents, drift reduction agents, compatibility agents, anti-foam agents, cleaning agents, rheology agents, stabilizers, dispersing agents and emulsifiers. A few components are described forthwith.

A wetting agent is a substance that when added to a liquid increases the spreading or penetration power of the liquid by reducing the interfacial tension between the liquid and the surface on which it is spreading. Wetting agents are used for two main functions in agrochemical formulations: during processing and manufacture to increase the rate of wetting of powders in water to make concentrates for soluble liquids or suspension concentrates; and during mixing of a product with water in a spray tank to reduce the wetting time of wettable powders and to improve the penetration of water into water-dispersible granules. Examples of wetting agents used in wettable powder, suspension concentrate, and water-dispersible granule formulations are: sodium lauryl sulphate; sodium dioctyl sulphasuccinate; alkyl phenol ethoxylates; and aliphatic alcohol ethoxylates.

A dispersing agent is a substance which adsorbs onto the surface of particles and helps to preserve the state of dispersion of the particles and prevents them from
reaggregating. Dispersing agents are added to agrochemical formulations to facilitate dispersion and suspension during manufacture, and to ensure the particles redisperse into water in a spray tank. They are widely used in wettable powders, suspension concentrates and water-dispersible granules. Surfactants that are used as dispersing agents have the ability to adsorb strongly onto a particle surface and provide a charged or steric barrier to reaggregation of particles. The most commonly used surfactants are anionic, non-ionic, or mixtures of the two types. For wettable powder formulations, the most common dispersing agents are sodium lignosulphonates. For suspension concentrates, very good adsorption and stabilization are obtained using polyelectrolytes, such as sodium naphthalene sulphonate formaldehyde condensates. Tristyrylphenol ethoxylate phosphate esters are also used. Non-ions such as alkylarylethylene oxide condensates and EO-PO block copolymers are sometimes combined with anionics as dispersing agents for suspension concentrates. In recent years, new types of very high molecular weight polymeric surfactants have been developed as dispersing agents. These have very long hydrophobic 'backbones' and a large number of ethylene oxide chains forming the 'teeth' of a 'comb' surfactant. These high molecular weight polymers can give very good long-term stability to suspension concentrates because the hydrophobic backbones have many anchoring points onto the particle surfaces. Examples of dispersing agents used in agrochemical formulations are: sodium lignosulphonates; sodium naphthalene sulphonate formaldehyde condensates; tristyrylphenol ethoxylate phosphate esters; aliphatic alcohol ethoxylates; alky ethoxylates; EO-PO block copolymers; and graft copolymers.
An emulsifying agent is a substance which stabilizes a suspension of droplets of one liquid phase in another liquid phase. Without the emulsifying agent the two liquids would separate into two immiscible liquid phases. The most commonly used emulsifier blends contain alkylphenol or aliphatic alcohol with 12 or more ethylene oxide units and the oil-soluble calcium salt of dodecylbenzene sulphonic acid. A range of hydrophile-lipophile balance ("HLB") values from 8 to 18 will normally provide good stable emulsions. Emulsion stability can sometimes be improved by the addition of a small amount of an EO-PO block copolymer surfactant.

A solubilizing agent is a surfactant which will form micelles in water at concentrations above the critical micelle concentration. The micelles are then able to dissolve or solubilize water-insoluble materials inside the hydrophobic part of the micelle. The types of surfactants usually used for solubilization are non-ionics: sorbitan monooleates; sorbitan monooleate ethoxylates; and methyl oleate esters.

Surfactants are sometimes used, either alone or with other additives such as mineral or vegetable oils as adjuvants to spray-tank mixes to improve the biological performance of the pesticide on the target. The types of surfactants used for bioenhancement depend generally on the nature and mode of action of the pesticide. However, they are often non-ionics such as: alky ethoxylates; linear aliphatic alcohol ethoxylates; aliphatic amine ethoxylates.

Organic solvents are used mainly in the formulation of emulsifiable concentrates, ULV formulations, and to a lesser extent granular formulations. Sometimes mixtures of solvents are used. The first main groups of solvents are aliphatic paraffinic oils such as kerosene or refined paraffins. The second main group and the most common comprises
the aromatic solvents such as xylene and higher molecular weight fractions of C9 and ClO aromatic solvents. Chlorinated hydrocarbons are useful as cosolvents to prevent crystallization of pesticides when the formulation is emulsified into water. Alcohols are sometimes used as cosolvents to increase solvent power.

5 Thickeners or gelling agents are used mainly in the formulation of suspension concentrates, emulsions and suspensions to modify the rheology or flow properties of the liquid and to prevent separation and settling of the dispersed particles or droplets. Thickening, gelling, and anti-settling agents generally fall into two categories, namely water-insoluble particulates and water-soluble polymers. It is possible to produce suspension concentrate formulations using clays and silicas. Examples of these types of materials, include, but are limited to, montmorillonite, e.g. bentonite; magnesium aluminum silicate; and attapulgite. Water-soluble polysaccharides have been used as thickening-gelling agents for many years. The types of polysaccharides most commonly used are natural extracts of seeds and seaweeds are synthetic derivatives of cellulose.

10 Examples of these types of materials include, but are not limited to, guar gum; locust bean gum; carrageenan; alginates; methyl cellulose; sodium carboxymethyl cellulose (SCMC); hydroxyethyl cellulose (HEC). Other types of anti-settling agents are based on modified starches, polyacrylates, polyvinyl alcohol and polyethylene oxide. Another good anti-settling agent is xanthan gum.

15 Microorganisms cause spoilage of formulated products. Therefore preservation agents are used to eliminate or reduce their effect. Examples of such agents include, but are not limited to: propionic acid and its sodium salt; sorbic acid and its sodium or
potassium salts; benzoic acid and its sodium salt; p-hydroxy benzoic acid sodium salt; methyl p-hydroxy benzoate; and 1,2-benzisothiazalin-3-one (BIT).

The presence of surfactants, which lower interfacial tension, often causes water-based formulations to foam during mixing operations in production and in application through a spray tank. In order to reduce the tendency to foam, anti-foam agents are often added either during the production stage or before filling into bottles. Generally, there are two types of anti-foam agents, namely silicones and non-silicones. Silicones are usually aqueous emulsions of dimethyl polysiloxane while the non-silicone anti-foam agents are water-insoluble oils, such as octanol and nonanol, or silica. In both cases, the function of the anti-foam agent is to displace the surfactant from the air-water interface.

For further information see "CHEMISTRY AND TECHNOLOGY OF AGROCHEMICAL FORMULATIONS" edited by D.A. Knowles, copyright 1998 by Kluwer Academic Publishers. Also see "INSECTICIDES IN AGRICULTURE AND ENVIRONMENT - RETROSPECTS AND PROSPECTS" by A.S. Perry, 1.

APPLICATIONS

The actual amount of a pesticide composition to be applied to loci of pests is generally not critical and can readily be determined by those skilled in the art. In general, concentrations from about 0.01 grams of pesticide per hectare to about 5000 grams of pesticide per hectare are expected to provide good control.

The locus to which a pesticide composition is applied can be any locus inhabited by a pest, for example, vegetable crops, fruit and nut trees, grape vines, ornamental...
plants, domesticated animals, the interior or exterior surfaces of buildings, and the soil around buildings. Controlling pests generally means that pest populations, activity, or both, are reduced in a locus. This can come about when: pest populations are repulsed from a locus; when pests are incapacitated in or around a locus; or pests are exterminated, in whole or in part, in or around a locus. Of course a combination of these results can occur. Generally, pest populations, activity, or both are desirably reduced more than fifty percent, preferably more than 90 percent.

Generally, with baits, the baits are placed in the ground where, for example, termites can come into contact with the bait. Baits can also be applied to a surface of a building, (horizontal, vertical, or slanted, surface) where, for example, ants, termites, cockroaches, and flies, can come into contact with the bait.

Because of the unique ability of the eggs of some pests to resist pesticide compositions repeated applications may be desirable to control newly emerged larvae.

Systemic movement of pesticides in plants may be utilized to control pests on one portion of the plant by applying the pesticide composition to a different portion of the plant. For example, control of foliar-feeding insects can be controlled by drip irrigation or furrow application, or by treating the seed before planting. Seed treatment can be applied to all types of seeds, including those from which plants genetically transformed to express specialized traits will germinate. Representative examples include those expressing proteins toxic to invertebrate pests, such as *Bacillus thuringiensis* or other insecticidal toxins, those expressing herbicide resistance, such as "Roundup Ready" seed, or those with "stacked" foreign genes expressing insecticidal toxins, herbicide resistance, nutrition-enhancement or any other beneficial traits. Furthermore, such seed treatments
with the invention disclosed in this document can further enhance the ability of a plant to better withstand stressful growing conditions. This results in a healthier, more vigorous plant, which can lead to higher yields at harvest time.

It should be readily apparent that the invention can be used with plants genetically transformed to express specialized traits, such as *Bacillus thuringiensis* or other insecticidal toxins, or those expressing herbicide resistance, or those with "stacked" foreign genes expressing insecticidal toxins, herbicide resistance, nutrition-enhancement or any other beneficial traits.

The invention disclosed in this document is suitable for controlling endoparasites and ectoparasites in the veterinary medicine sector or in the field of animal keeping. Compositions are applied in a known manner, such as by oral administration in the form of, for example, tablets, capsules, drinks, granules, by dermal application in the form of, for example, dipping, spraying, pouring on, spotting on, and dusting, and by parenteral administration in the form of, for example, an injection.

The invention disclosed in this document can also be employed advantageously in livestock keeping, for example, cattle, sheep, pigs, chickens, and geese. Suitable formulations are administered orally to the animals with the drinking water or feed. The dosages and formulations that are suitable depend on the species.

Before a pesticide composition can be used or sold commercially, such composition undergoes lengthy evaluation processes by various governmental authorities (local, regional, state, national, international). Voluminous data requirements are specified by regulatory authorities and must be addressed through data generation and submission by the product registrant or by another on the product registrant's behalf.
These governmental authorities then review such data and if a determination of safety is concluded, provide the potential user or seller with product registration approval.

Thereafter, in that locality where the product registration is granted and supported, such user or seller may use or sell such pesticide.

EXAMPLES

The following examples are for illustration purposes and are not to be construed as limiting the invention disclosed in this document to only the embodiments disclosed in these examples.

EXAMPLE COMPOSITIONS

Example compositions A-D described below each include spinetoram.

Spinetoram is a mixture of 50-90% (2R,3aR,5aR,5bS,9S,13S,4R,6aS,6bR)-2-(6-deoxy-3-O-ethyl-2,4-di-O-methyl-α-L-mannopyranosyloxy)-13-[(2R,55,6S)-5-(dimethylamino)tetrahydro-6-methylpyran-2-yloxy]-9-ethyl-2,3,3a,4,5,5a,5b,6,9,10,11,12,13,14,16a,16b-hexadecahydro-14-methyl-l/-as-indaceno[3,2-c]oxacyclododecine-7,15-dione and 50-10% (2R,3aR,5a5,5b5,9S,13S,14S,16a5,16b5)-2-(6-deoxy-3-O-ethyl-2,4-di-O-methyl-α-L-mannopyranosyloxy)-13-[(2R,55,6S)-5-(dimethylamino)tetrahydro-6-methylpyran-2-yloxy]-9-ethyl-2,3,3a,5a,5b,6,9,10,11,12,13,14,16a,16b-tetradecahydro-4, 14-dimethyl-1H-αS-indaceno[3,2-i]oxacyclododecine-7,15-dione. Spinetoram is synthetically derived from a natural product and is typically accompanied by various impurities. Accordingly,
for each of the compositions prepared below in Examples A-D, an assay was performed on the spinetoram used to determine the presence of impurities.

For each assay, a calibration stock solution sample was prepared by adding approximately 43 mg of an analytically standard form of spinetoram with 10.0 mL of purified water into a 125 mL glass jar. The glass jar was gently swirled until the spinetoram was dispersed into the purified water. 100.0 mL of methanol was then added to the water/spinetoram mixture in the glass jar. A second solution was prepared by adding 10 mL of purified water and approximately 50 mg of the spinetoram product used in each of Examples A-D to a 125 mL glass jar. The glass jar was gently swirled until the spinetoram dispersed into the purified water. 100.0 mL of methanol was then added to the mixture. Each sample was then analyzed using liquid chromatography performed with the following instrumentation and under the following conditions:

- **Chromatograph**: Agilent (formerly Hewlett Packard) model 1100 or equivalent
- **Column**: Phenomenex Luna, C8(2) 3μm, 150 m x 4.6 mm column
- **Mobile Phase A**: water with 2 g/L ammonium acetate, pH adjusted to 5.5 with acetic acid
- **Mobile Phase B**: acetonitrile/methanol (80:20, v:v)
- **Isocratic elution**: 20% A / 80% B
- **Flow**: 1.0 mL/minute
- **Injection volume**: 10.0 µL
- **Detector**: UV @ 250 nm
- **Run Time**: 20 minutes
- **Integrator**: Agilent EZChrom Elite data acquisition system, or equivalent

Based on the results of the liquid chromatography, the weight percentage of the pure spinetoram component of each of the spinetoram products used in Examples A-D was calculated. The weight percentage of impurities was then calculated by subtracting the weight percentage of the pure spinetoram component from 100. The weight percentage
of spinetoram impurities in each of Examples A-D, based from these calculations, is provided below.

Example A:

A liquid composition including spinetoram, egg albumen and zinc acetate, among other ingredients, was prepared according to the following. Spinetoram, Reax® 88A, a dispersant commercially available from MeadWestvaco Corporation, P.O. Box 118005, Charleston, SC 29423, Geropon® SDS, a surfactant commercially available from Rhodia, Inc., 8 Cedar Brook Drive, Cranbury NJ, 08512, and a balance of water to provide a suspension concentrate having 25-50% w/w of spinetoram were mixed together. The resulting mixture was milled in an Eiger Mini Motormill media mill from Eiger Machinery, Inc., 888 East Belvidere Road, Grayslake, Illinois, 60030, to a particle size of 1-10 µm (volume weighted mean diameter). The particle size was measured using a Malvern Mastersizer 2000 laser diffraction particle analyzer from Malvern Instruments Ltd., Enigma Business Park, Grovewood Road, Malvern, Worcestershire WR14 1XZ, United Kingdom. After milling, egg albumen from Grade II chicken egg whites from Sigma Aldrich Corporation, 3050 Spruce St., St. Louis, MO, 63103 and zinc acetate-dihydrate, 98+% from Sigma Aldrich Corporation, were added to the mixture under agitation. The total solids concentration of the mixture was adjusted in the range of 20-50% by weight by adding water, and the pH was adjusted to 6-9 with ammonia solution as appropriate. The mixture was then homogenized with a Silverson L4RT-A homogenizer from Silverson Machines Inc., 355 Chestnut St., East Longmeadow, MA, 01028, for about 15-30 minutes. The weight percentages for each of the foregoing
ingredients, based on the total weight of the composition exclusive of water, are provided in Table 1. Table 1 also provides the weight percentage of spinetoram impurities in the composition based on the values determined by the assay procedure described above.

Table 1

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinetoram</td>
<td>10.0</td>
</tr>
<tr>
<td>Spinetoram impurities</td>
<td>1.47</td>
</tr>
<tr>
<td>Egg Albumen</td>
<td>50.75</td>
</tr>
<tr>
<td>Zinc Acetate</td>
<td>33.4</td>
</tr>
<tr>
<td>Reax® 88A</td>
<td>3.65</td>
</tr>
<tr>
<td>Geropon® SDS</td>
<td>0.73</td>
</tr>
</tbody>
</table>

The liquid composition was then spray-dried using a Buchi® Model 190 bench top spray dryer from Buchi Corporation, 19 Lukens Drive, Suite 400, New Castle, DE 19720, at about a 300-400 ml/hr feed rate, 4-6 bar nozzle pressure, 115-140° C inlet temperature and 50-100° C outlet temperature to provide a solid composition. It is believed that the spray drying process removes all or substantially all of the water and other volatile ingredients from the liquid composition as it is converted to the solid composition. Since none of the ingredients in Example A apart from the water is believed to be volatile, it is contemplated that the solid composition includes weight percentages for each of the ingredients that substantially correspond to those provided in Table 1. However, since the solid composition was later used for bio-efficacy experiments, an assay was performed to determine its proportion by weight of pure spinetoram so appropriate concentrations for testing could be prepared.

For this assay procedure, a calibration stock solution sample was prepared by adding approximately 43 mg of an analytically standard form of spinetoram with 10.0 mL of purified water into a 125 mL glass jar. The glass jar was gently swirled until the
spinetoram was dispersed into the purified water. 100.0 mL of methanol was then added to the water/spinetoram mixture in the glass jar. A second solution was prepared by adding 10 mL of purified water and approximately 130 mg of the solid composition to a 125 mL glass jar. The glass jar was gently swirled until the solid composition dispersed into the purified water. 100.0 mL of methanol was then added to the mixture and the mixture was shaken for at least about 5 minutes on a mechanical shaker. An aliquot of the mixture was then filtered through a 0.45 µm nylon syringe filter, with the first few filtered drops being discarded, and the remaining filtrate providing a sample for liquid chromatography. Each sample was then analyzed using liquid chromatography performed with the following instrumentation and under the following conditions:

- **Chromatograph:** Agilent (formerly Hewlett Packard) model 1100 or equivalent
- **Column:** Phenomenex Luna, C8(2) 3µm, 150 m x 4.6 mm column
- **Mobile Phase A:** water with 2 g/L ammonium acetate, pH adjusted to 5.5 with acetic acid
- **Mobile Phase B:** acetonitrile/methanol (80:20, v:v)
- **Isocratic elution:** 20% A / 80% B
- **Flow:** 1.0 mL/minute
- **Injection volume:** 10.0 µL
- **Detector:** UV @ 250 nm
- **Run Time:** 20 minutes
- **Integrator:** Agilent EZChrom Elite data acquisition system, or equivalent

Based on the results of the liquid chromatography, the weight percentage of the pure spinetoram component for the solid composition was calculated to be 10.0%.

Example B:

A liquid composition including spinetoram, egg albumen and ferric (iron (III)) sulfate, among other ingredients, was prepared according to the following. Spinetoram, Reax® 88A, Geropon® SDS and a balance of water to provide a suspension concentrate
having 25-50% w/w of spinetoram were mixed together. The resulting mixture was milled in an Eiger Mini Motormill media mill to a particle size of 1-10 µm (volume weighted mean diameter). The particle size was measured using a Malvern Mastersizer 2000 laser diffraction particle analyzer. After milling, egg albumen from Grade II chicken egg whites from Sigma Aldrich Corporation and ferric sulfate-hydrate, 97% from Sigma Aldrich Corporation were added to the mixture under agitation. The total solids concentration of the mixture was adjusted in the range of 20-50% by weight by adding water, and the pH was adjusted to 6-9 with ammonia solution as appropriate. The mixture was then homogenized with a Silverson L4RT-A homogenizer for about 15-30 minutes. The weight percentages for each of the foregoing ingredients, based on the total weight of the composition exclusive of water, are provided in Table 2. Table 2 also provides the weight percentage of spinetoram impurities in the composition based on the values determined by the assay procedure described above.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinetoram</td>
<td>10.0</td>
</tr>
<tr>
<td>Spinetoram impurities</td>
<td>1.47</td>
</tr>
<tr>
<td>Egg Albumen</td>
<td>50.75</td>
</tr>
<tr>
<td>Iron (III) sulfate</td>
<td>33.4</td>
</tr>
<tr>
<td>Reax® 88A</td>
<td>3.65</td>
</tr>
<tr>
<td>Geropon® SDS</td>
<td>0.73</td>
</tr>
</tbody>
</table>

The liquid composition was then spray-dried using a Buchi® Model 190 bench top spray dryer from Buchi Corporation at about a 300-400 ml/hr feed rate, 4-6 bar nozzle pressure, 115-140° C inlet temperature and 50-100° C outlet temperature to provide a solid composition. It is believed that the spray drying process removes all or substantially all of the water and other volatile ingredients from the liquid composition as
it is converted to the solid composition. Since none of the ingredients in Example B apart from the water is believed to be volatile, it is contemplated that the solid composition includes weight percentages for each of the ingredients that substantially correspond to those provided in Table 2. However, since the solid composition was later used for bio-efficacy experiments, an assay was performed to determine its proportion by weight of pure spinetoram so appropriate concentrations for testing could be prepared. The assay was performed according to the procedure described above with respect to Example A and the weight percentage of the pure spinetoram component for the solid composition was calculated to be 9.4%.

Example C:

A liquid composition including spinetoram, egg albumen and cupric (copper (H)) acetate, among other ingredients, was prepared according to the following. Spinetoram, Reax® 88A, Geropon® SDS and a balance of water to provide a suspension concentrate having 25-50% w/w of spinetoram were mixed together. The resulting mixture was milled in an Eiger Mini Motormill media mill to a particle size of 1-10 µm (volume weighted mean diameter). The particle size was measured using a Malvern Mastersizer 2000 laser diffraction particle analyzer. After milling, egg albumen from Grade II chicken egg whites from Sigma Aldrich Corporation and cupric acetate-monohydrate from Sigma Aldrich Corporation were added to the mixture under agitation. The total solids concentration of the mixture was adjusted in the range of 20-50% by weight by adding water, and the pH was adjusted to 6-9 with ammonia solution as appropriate. The mixture was then homogenized with a Silverson L4RT-A homogenizer for about 15-30
minutes. The weight percentages for each of the foregoing ingredients, based on the total weight of the composition exclusive of water, are provided in Table 3. Table 3 also provides the weight percentage of spinetoram impurities in the composition based on the values determined by the assay procedure described above.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinetoram</td>
<td>10.0</td>
</tr>
<tr>
<td>Spinetoram impurities</td>
<td>1.47</td>
</tr>
<tr>
<td>Egg Albumen</td>
<td>50.75</td>
</tr>
<tr>
<td>Copper (II) acetate</td>
<td>33.4</td>
</tr>
<tr>
<td>Reax® 88A</td>
<td>3.65</td>
</tr>
<tr>
<td>Geropon SDS</td>
<td>0.73</td>
</tr>
</tbody>
</table>

The liquid composition was then spray-dried using a Buchi® Model 190 bench top spray dryer from Buchi Corporation at about a 300-400 ml/hr feed rate, 4-6 bar nozzle pressure, 115-140° C inlet temperature and 50-100° C outlet temperature to provide a solid composition. It is believed that the spray drying process removes all or substantially all of the water and other volatile ingredients from the liquid composition as it is converted to the solid composition. Since none of the ingredients in Example C apart from the water is believed to be volatile, it is contemplated that the solid composition includes weight percentages for each of the ingredients that substantially correspond to those provided in Table 3. However, since the solid composition was later used for bio-efficacy experiments, an assay was performed to determine its proportion by weight of pure spinetoram so appropriate concentrations for testing could be prepared. The assay was performed according to the procedure described above with respect to Example A and the weight percentage of the pure spinetoram component for the solid composition was calculated to be 10.7%.
Example D:

A liquid composition including spinetoram, egg albumen and zinc carbonate, among other ingredients, was prepared according to the following. Spinetoram, Reax® 88A, Geropon® SDS and a balance of water to provide a suspension concentrate having 25-50% w/w of spinetoram were mixed together. The resulting mixture was milled in an Eiger Mini Motormill media mill to a particle size of 1-10 µm (volume weighted mean diameter). The particle size was measured using a Malvern Mastersizer 2000 laser diffraction particle analyzer. After milling, egg albumen from Grade II chicken egg whites from Sigma Aldrich Corporation and zinc carbonate in the form of zinc carbonate RAC from Bruggemann Chemical U.S., 15 Reese Avenue, Suite 200, Newtown Square, PA, 19073, were added to the mixture under agitation. The total solids concentration of the mixture was adjusted in the range of 20-50% by weight by adding water, and the pH was adjusted to 6-9 with ammonia solution as appropriate. The mixture was then homogenized with a Silverson L4RT-A homogenizer for about 15-30 minutes. The weight percentages for each of the foregoing ingredients, based on the total weight of the composition exclusive of water, are provided in Table 4. Table 4 also provides the weight percentage of spinetoram impurities in the composition based on the values determined by the assay procedure described above.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinetoram</td>
<td>10.0</td>
</tr>
<tr>
<td>Spinetoram impurities</td>
<td>1.47</td>
</tr>
<tr>
<td>Egg Albumen</td>
<td>50.75</td>
</tr>
<tr>
<td>Zinc carbonate</td>
<td>33.4</td>
</tr>
</tbody>
</table>

Table 4
The liquid composition was then spray-dried using a Buchi® Model 190 bench top spray dryer from Buchi Corporation at about a 300-400 ml/hr feed rate, 4-6 bar nozzle pressure, 115-140° C inlet temperature and 50-100° C outlet temperature to provide a solid composition. It is believed that the spray drying process removes all or substantially all of the water and other volatile ingredients from the liquid composition as it is converted to the solid composition. Since none of the ingredients in Example D apart from the water is believed to be volatile, it is contemplated that the solid composition includes weight percentages for each of the ingredients that substantially correspond to those provided in Table 4. However, since the solid composition was later used for bio-efficacy experiments, an assay was performed to determine its proportion by weight of pure spinetoram so appropriate concentrations for testing could be prepared. The assay was performed according to the procedure described above with respect to Example A and the weight percentage of the pure spinetoram component for the solid composition was calculated to be 11.9%.

BIO-EFFICACY TESTING

Biological efficacy experiments were conducted according to the following parameters. A spinetoram control solution was prepared utilizing Delegate®, a water-dispersible granule formulation of spinetoram commercially available from Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, in water to obtain a spinetoram concentration in solution of 125 ppm. Test solutions were also prepared

| Reax® 88A | 3.65 |
| Geropon SDS | 0.73 |
utilizing the solid compositions of Examples A-D (Example A-D solutions) in water to obtain a spinetoram concentration in each solution of 125 ppm. These solutions, plus a water-only control, were applied to potted pepper plants (*Capsicum annuum*) using a Mandel track sprayer calibrated to deliver the equivalent of 200 L/Ha of spray. Treated plants were allowed to dry and then were aged outdoors in natural sunlight or under a set of lamps emitting ultraviolet light at levels comparable to natural sunlight. At the appropriate time after treatment, i.e., at 3, 6, 11 and 14 days after treatment, 2.5 cm diameter disks were cut from treated leaves. One leaf disk was placed in each well of a 32 well plastic tray, which also contained a thin layer of agar to provide moisture. There were 8 replicate disks per treatment. Each well was infested with three second instar beet armyworm (*Spodoptera exigua*) larvae, and the well was sealed with plastic film. Larvae were held in an environmental chamber at 25°C/40 percent relative humidity. At 48 hours after infestation, the larvae were graded for mortality. A larva was considered dead if it could not move after being prodded, and the percent mortality (percent control) was calculated.

Table 5 below provides the percent control of the insect associated with the spinetoram control solution relative to an untreated standard. For Example A-D solutions, Table 5 provides the improvement in percent control relative to the spinetoram control solution (i.e., (percent control by Example A-D solutions) — (percent control by spinetoram control solution). Table 5 also provides the average improvement over the spinetoram control solution which was calculated by summing the individual improvements for each of the days relative to the control and then dividing by the number of measurements.
Table 5

<table>
<thead>
<tr>
<th>Solution</th>
<th>3 DAT</th>
<th>4 DAT</th>
<th>5 DAT</th>
<th>6 DAT</th>
<th>7 DAT</th>
<th>9 DAT</th>
<th>10 DAT</th>
<th>11 DAT</th>
<th>12 DAT</th>
<th>13 DAT</th>
<th>14 DAT</th>
<th>Average Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinetoram Control Solution</td>
<td>79</td>
<td>--</td>
<td>--</td>
<td>67</td>
<td>--</td>
<td>--</td>
<td>8</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Example A Solution</td>
<td>17</td>
<td>--</td>
<td>--</td>
<td>-8</td>
<td>--</td>
<td>--</td>
<td>17</td>
<td>--</td>
<td>--</td>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Example B Solution</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>12</td>
<td>--</td>
<td>--</td>
<td>63</td>
<td>--</td>
<td>--</td>
<td>42</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Example C Solution</td>
<td>17</td>
<td>--</td>
<td>--</td>
<td>21</td>
<td>--</td>
<td>--</td>
<td>46</td>
<td>--</td>
<td>--</td>
<td>46</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Example D Solution</td>
<td>8</td>
<td>--</td>
<td>--</td>
<td>21</td>
<td>--</td>
<td>--</td>
<td>13</td>
<td>--</td>
<td></td>
<td>13</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

The headings in this document are for convenience only and must not be used to interpret any portion thereof.

Any theory, mechanism of operation, proof, or finding stated herein is meant to further enhance understanding of the present invention and is not intended to make the present invention in any way dependent upon such theory, mechanism of operation, proof, or finding. It should be understood that while the use of the word preferable, preferably or preferred in the description above indicates that the feature so described may be more desirable, it nonetheless may not be necessary and embodiments lacking the same may be contemplated as within the scope of the invention, that scope being defined by the claims that follow. In reading the claims it is intended that when words such as "a," "an," "at least one," "at least a portion" are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. Further, when the language "at least a portion" and/or "a portion" is used the item may include a portion and/or the entire item unless specifically stated to the contrary. While the
invention has been illustrated and described in detail in the drawings and foregoing
description, the same is to be considered as illustrative and not restrictive in character, it
being understood that only the selected embodiments have been shown and described and
that all changes, modifications and equivalents that come within the spirit of the
invention as defined herein or by any of the following claims are desired to be protected.
What is claimed is:

1. A composition, comprising at least one pesticide, at least one transition metal salt and at least one proteinaceous material, wherein the composition exhibits enhanced pesticidal activity levels compared to a composition dissimilar only in not having the at least one transition metal salt and the at least one proteinaceous material.

2. The composition of claim 1, wherein the at least one pesticide is a photo-labile pesticide.

3. The composition of claim 1, wherein the at least one pesticide is a reactive with singlet oxygen.

4. The composition of claim 1, wherein the at least one pesticide is a macrocyclic lactone insecticide.

5. The composition of claim 1, wherein the at least one pesticide is a spinosyn selected from the group consisting of spinetoram and spinosad.

6. The composition of claim 1, which includes a ratio by weight between the at least one transition metal salt and the at least one pesticide from about 1:1 to about 6:1, a ratio by weight between the at least one proteinaceous material and the at least one pesticide from about 3:1 to about 8:1, and a ratio by weight between the at least one proteinaceous material and the at least one transition metal salt from about 1:2 to about 4:1.
7. The composition of claim 1, wherein the transition metal in the transition metal salt is selected from the group consisting of zinc, iron, copper and manganese.

8. The composition of claim 1, wherein the at least one transition metal salt is selected from the group consisting of a transition metal acetate, a transition metal acetylacetonate, a transition metal nitrate, a transition metal sulfate, a transition metal halide and a transition metal carbonate.

9. The composition of claim 1, wherein the at least one proteinaceous material is selected from the group consisting of egg albumen, whey, gelatin and zein.

10. The composition of claim 9, wherein the at least one transition metal salt is selected from the group consisting of iron (III) sulfate, copper (II) acetate, zinc acetate and zinc carbonate.

11. A composition, comprising from about 8% to about 15% by weight of spinetorham, from about 40% to about 60% by weight of a proteinaceous material, and from about 25% to about 40% by weight of a transition metal salt.

12. The composition of claim 11, wherein the transition metal salt is selected from the group consisting of iron (III) sulfate, copper (II) acetate, zinc acetate and zinc carbonate.
13. The composition of claim 12, wherein the proteinaceous material is selected from
the group consisting of egg albumen, whey, gelatin and zein.

14. The composition of claim 11, wherein the transition metal salt includes iron (III)
sulfate and the proteinaceous material includes egg albumen.

15. A method of controlling insects which comprises applying to a locus where
control is desired an insect-inactivating amount of a composition according to claim 11.
1. A composition, comprising at least one pesticide, at least one transition metal salt and at least one proteinaceous material, wherein the composition exhibits enhanced pesticidal activity levels compared to a composition dissimilar only in not having the at least one transition metal salt and the at least one proteinaceous material.

2. The composition of claim 1, wherein the at least one pesticide is a photo-labile pesticide.

3. The composition of claim 1, wherein the at least one pesticide is a reactive with singlet oxygen.

4. The composition of claim 1, wherein the at least one pesticide is a macrocyclic lactone insecticide.

5. The composition of claim 1, wherein the at least one pesticide is a spinosyn selected from the group consisting of spinetoram and spinosad.

6. The composition of claim 1, which includes a ratio by weight between the at least one transition metal salt and the at least one pesticide from about 1:1 to about 6:1, a ratio by weight between the at least one proteinaceous material and the at least one pesticide from about 3:1 to about 8:1, and a ratio by weight between the at least one proteinaceous material and the at least one transition metal salt from about 1:2 to about 4:1.
7. The composition of claim 1, wherein the transition metal in the transition metal salt is selected from the group consisting of zinc, iron, copper and manganese.

8. The composition of claim 1, wherein the at least one transition metal salt is selected from the group consisting of a transition metal acetate, a transition metal acetylacetonate, a transition metal nitrate, a transition metal sulfate, a transition metal halide and a transition metal carbonate.

9. The composition of claim 1, wherein the at least one proteinaceous material is selected from the group consisting of egg albumen, whey, gelatin and zein.

10. The composition of claim 9, wherein the at least one transition metal salt is selected from the group consisting of iron (III) sulfate, copper (II) acetate, zinc acetate and zinc carbonate.

11. A composition, comprising from about 8% to about 15% by weight of spinetoram, from about 40% to about 60% by weight of a proteinaceous material, and from about 25% to about 40% by weight of a transition metal salt.

12. The composition of claim 11, wherein the transition metal salt is selected from the group consisting of iron (III) sulfate, copper (II) acetate, zinc acetate and zinc carbonate.
13. The composition of claim 12, wherein the proteinaceous material is selected from the group consisting of egg albumen, whey, gelatin and zein.

14. The composition of claim 11, wherein the transition metal salt includes iron (III) sulfate and the proteinaceous material includes egg albumen.

15. A method, comprising:

 providing a first composition including from about 8% to about 15% by weight of spinetoram, from about 40% to about 60% by weight of a proteinaceous material, and from about 25% to about 40% by weight of a transition metal salt;

 selecting a locus where insect control is desired and a second composition that includes spinetoram and in which the proteinaceous material and the transition metal salt are absent is susceptible to degradation and reduced pesticidal activity; and

 applying said first composition to said locus in order to achieve enhanced insect control relative to applying said second composition to said locus.
STATEMENT UNDER ARTICLE 19 (1)

Brief statement

This brief statement is provided pursuant to Article 19, paragraph 1 of the PCT. The amended claims herein replace the originally presented claims. Claims 1-14 are unchanged. Claim 15 has been amended in a manner fully supported by the original description of the application. More particularly, support for the amendment to claim 15 is found, for example, on page 9, line 16 to page 11, line 18; on page 14, lines 3-10; on page 16, lines 5-7; on page 39, line 22 to page 40, line 7; and on page 42, line 12 to page 53, line 4.
A. CLASSIFICATION OF SUBJECT MATTER

INV. A01N43/22 A01N65/00 A01N59/16 A01N59/20 A01P7/04 A01N25/22

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

AOIN

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal , CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2007/031565 A2 (NEUROFF GMBH KG W) [DE]; PARKER DIANA L [CA]; WILSON CAMERON D [CA]; P 22 March 2007 (2007-03-22) paragraphs [0005] - [0007], [0010] - [0011], [0021], [0027], [0041] examples 3-5,8-9 claims 1,2,5,15,20</td>
<td>1-5,7, 10-15</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C

X See patent family annex

Date of the actual completion of the international search

30 July 2010

Date of mailing of the international search report

10/08/2010

Name and mailing address of the ISA

Zanobini, Alessandra

European Patent Office, P B 5818 Patentlaan 2
NL- 2280 HV Rijswijk
Tel (+31-70) 340-2040,
Fax (+31-70) 340-3016
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 99/39576 AI (NEUDORFF W GMBH KG [DE]) 12 August 1999 (1999-08-12) page 3, line 24 - line 27 page 4, line 25 - page 5, line 14 page 6, line 29 - page 7, line 6 examples 3, 9 claims 10, 22</td>
<td>6</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>EP 1940228 A2 09-07-2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 2009507902 T 26-02-2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU 2006308599 A1 10-05-2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA 2626386 A1 10-05-2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN 101299919 A 05-11-2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 1956901 A2 20-08-2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 2009513674 T 02-04-2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KR 20080064135 A 08-07-2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU 734017 B2 31-05-2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU 2723299 A 23-08-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BR 9907654 A 24-10-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA 2320351 A1 12-08-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN 1290125 A 04-04-2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CZ 20002879 A3 11-07-2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DE 69901290 D1 23-05-2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DE 69901290 T2 22-08-2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DK 1052899 T3 12-08-2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ES 2175950 T3 16-11-2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HU 0101417 A2 28-08-2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IL 137664 A 15-12-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 3710379 B2 26-10-2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 2002501947 T 22-01-2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO 20003917 A 04-10-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NZ 505769 A 20-12-2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL 342390 A1 04-06-2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZA 9900929 A 08-09-1999</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)