M

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5;

GO6F 13/14 Al

(11) International Publication Number:

(43) International Publication Date:

WO 90/05340

17 May 1990 (17.05.90)

(21) International Application Number: PCT/US89/04913

(22) International Filing Date: 3 November 1989 (03.11.89)

(30) Priority data:

267,265 4 November 1988 (04.11.88) US

(71) Applicant: LAMA SYSTEMS INC. [US/US]; 2115 Nor-
thland Drive, Austin, TX 78756 (US).

(72) Inventors: LAKOSKI, Robert, P. ; 5417 Shoalwood Drive,
Austin, TX 78756 (US). VAN CLEVE, Roy, Jr. ; 3935
Lago Vista Drive, Austin, TX 78734 (US).

(74) Agent: CAHN, Maurice, U.; Leydig, Voit & Mayer, Suite
300, 700 Thirteenth Street, N.W., Washington, DC 20005
(US).

(81) Designated States: AT (European patent), AU, BE (Euro-
pean patent), BF (OAPI patent), BJ (OAPI patent), BR,
CF (OAPI patent), CG (OAPI patent), CH (European
patent), CM (OAPI patent), DE (European patent), DK,
FI, FR (European patent), GA (OAPI patent), GB (Eu-
ropean patent), IT (European patent), JP, KR, LU (Eu-
ropean patent), ML (OAPI patent), MR (OAPI patent),
NL (European patent), NO, SE (European patent), SN
(OAPI patent), SU, TD (OAPI patent), TG (OAPI pa-
tent).

Published
With international search report.

(54) Title: PERSONAL COMPUTER ACCESS CONTROL SYSTEM

. T\
T ==\

//

%u
"ﬂﬂr 4 yI"

(i

2

ﬂ

A

|
!
Q

(57) Abstract

A personal computer security access system incorporating default, boot up, bi-level security access control software (14)
which prevents access to the computer without input of the access code and password and a physical disk drive blocking device
(12) which can be locked to prevent removal of the softwave (14) from the computer. i

d?;.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.
AT Austtia

AU Australia

BB Barbades

BE Belgm

BF Burkina Faso

BG Bulgaria

BI Benin

BR Brazl

CA Canada

CF Central African Republic
CG Congo

CH Switzerland

CM Cameroon

DE Germany, Federal Republic of
DK Denmark

EERFE ZROEgERREH

Spain

Fintand

France

Gabon

United Kingdom
Hungary

Italy

Japan

Democratic People’s Republic
of Korea
Republic of Korea
Licchtenstein

Sri Lanka
Luxembourg
Monaco

GRdU2RBBEESEEE

Madagascar
Mali
Mauritania
Malawi
Netherlands
Norway
Romania
Sudan
Sweden
Senegal
Soviet Union
Chad

Togo

United States of America

WO 90/05340

PCT/US89/04913

1

PERSONAL COMPUTER ACCESS CONTROL SYSTEM
TECHNICAL FIELD

This invention relates to computer
security and, more particularly, to an access
control program coupled with a physical disk drive
blocking device prohibiting unauthorized alteration,
copying or destruction of programs and data encoded

in a computer memory or on computer disks.

BACKGROUND OF THE INVENTION

The presence and use of personal computers
in all phases of business and the home is now well
established. Also, now well established are a
myriad of problems ranging from vandalism including
the introduction of computer viruses into computer
operating systems and programs to theft or
alteration of sensitive business information and
data. While actual theft of the computer hardware
has occasioned the introduction of numerous devices
for locking down the hardware to prevent theft, the
great damage occurs when sensitive data, both
business and personal, is compromised. The
introduction of physical security adjuncts such as
internal locking systems and even external portable
disk drive locking devices such as that embodied in
United States Letters Patent 4,685,312, which is
owned by Applicant.

Since the introduction of the personal
computer and the full-height disk drive, personal
computer design has advanced to where a general
computer includes an internal hard disk drive and an
external boot diskette drive. Thus, when the
computer is turned on, the computer automatically
defaults to the external boot diskette drive which,

WO 90/05340 PCT/US89/04913

2

if empty, causes the computer to reroute its
initialization to the internal hard disk. It is
this programmed initialization that permits access
control to the computer by employing software which
will deny access to the programs and information
contained on that hard disk drive by an authorized
person. In contrast, an access control for main
frame and multi-user computer systems are complex
and require the likes of an audit trail,
multi-permission levels, file and directory
restrictions and even encryption. Such security is
particularly of great concern to persons dealing
with highly-sensitive business information or, even
more importantly, to national security information.
However, the numerous above-identified safeguards
are not particularly useful or productive when
employed with a single user personal computer.
First, access control, alone, is sufficient to
maintain a personal computer personal. Secondly,
the introduction of one or more of the numerous
safeguards identified above may consume significant
system resources thereby denying utilization of the
computer's full potential.

Referring to those safeguards, as a
practical matter, it leaves the computer operator
somewhat at a disadvantage when needing to step away
from the computer momentarily for whatever reason.
Log-off and log-on procedures will waste
considerable time and energy, so much so as to deter
the user from employing the safeguards thereby
leaving the program and data exposed while the user
is absent from the workstation.

The following definitions are set forth
for a more complete understanding of the invention:
DOS - disk operating system - permits
initialization of the computer for

WO 90/05340

PCT/US89/04913

3

use with compatible software (MS DOS

PC DOS)

Driver (OR "DEVICE DRIVER" - a
subprogram, often used to control
hardware peripherals, which acts as
an extension of the operating
system

LAMASYS.SYS - the security device
driver, loaded and initialized by
DOS at boot time

LAMA.COM - a DOS command level
program which may be used to invoke
the security driver after boot time
(like hotkey)

LAMAINST.EXF = the DOS program which
installs the LAMASYS.SYS driver so
that it will be initialized at boot
time

BIOS keyboard service interrupts - a
set of functions for reading the
keyboard which are standardized as
part of the IBM standard

Drive A - the floppy disk drive or
other removable medium device
which the system treats as the
first boot device

Hard Disk - a high capacity, fixed
(non- removable) memory storage
device

Hotkey - a user selected combination
of keys used to invoke a program

K equals thousand of bytes - exactly
1024 bytes

RAM - random access memory =
volatile, loses contents when power

is turned off

WO 90/05340

PCT/US89/04913

4

CGA - color graphics adapter - IBM
standard

EGA - enhance graphics adapter - IBM
standard

<ENTER> - the enter key

<Ctrl> - the control key

<Alt> - the alternate key

 -rthe delete key

ESCAPE - the escape key

A: - the A drive

B: - the B drive

C: - the hard disk drive

Config.Sys - a special file
containing a list of drivers and
other initialization commands which
DOS reads at boot time

Side Kick - a commercially available
"memory resident" utility program
by Borland, Intl.

Periscope - a commercially available
debugging system used by
programmers .

Mirror - a background communications
package

ATTR.COM - a commercially available
program, distributed by PC
Magazine, to allow a user to hide
and otherwise protect sensitive
files and directories

Steal - to redirect a system function
call (such as keyboard) to one's
own program to allow special
handling before passing it on for
normal system processing

Hook - to redirect a system function
call (such as keyboard) to one's

WO 90/05340 PCT/US89/04913

5

own program to allow special

handling before passing it on for

normal system processing
Access control means a system which prevents the use
of a personal computer by unauthorized personnel
(persons who should not be accessing the personal
computer). For mainframe and other multi-user
computer systems, full security may require audit
trails, multiple permission levels, file and
directory restrictions, and even encryption. Such
safeguards are generally inapplicable to the vast
majority of single-user personal computers and even
if operable consume excessive system resources. For
the single-user system, access control is intended

to keep a personal computer personal.
SUMMARY OF THE INVENTION

It is therefore an object of this
invention to provide an access control system
overcoming the shortcomings of the prior art.

It is another object of this invention to
provide an access control system which prevents
unauthorized persons from accessing programs and
information stored on the hard disks of a personal
computer or, further, to prevent access through a
personal computer to a mainframe or multi-user
network.

It is still another object of this
invention to permit full use of the computer,
computer programs and data stored on the computer
hard disk or within a system by an authorized user
but to render use of the computer virtually
impossible to a user without authorization.

Still another object of this invention is

to provide an access control system which requires

WO 90/05340

6

only a very small portion of computer memory for its
operation.

Another object of this invention is to
provide instant security screen activation upon
keystroke command by the authorized user, and to
return to the prior state, after the password is
given.

Another objéct of this invention is to
provide access control software coupled with a
physical security boot drive slot blocking device to
prevent introduction or removal of diskettes or
cartridges from the drive slot when the physical
blocking device is secured.

These and other objects are satisfied by a
combination of a computer access control system for
use on a personal computer having a diskette boot
drive device to deter unauthorized access to the
computer data and programs, comprising physical
means for blocking removal or insertion of diskette
(operator removable medium) containing the computer
boot drive device, and computer access control
program means for enabling and disabling a personal
computer upon input demonstrating authority to
access the computer.

Still other objects are satisfied by a
method for controlling access to a personal computer
with a diskette drive, comprising the following
steps: inserting a computer program containing
device into the diskette data drive, blocking the
drive with a lockable blocking device, installing a
computer program including a device driver that is
first addressed by the computer during boot up and
which requires entry of a proper access code and
password prior to moving to another device driver,

and entering a selected access code and password.

PCT/US89/04913

WO 90/05340 PCT/US89/04913

7

This invention unites two previously
independent access deterrent means, software and
hardware, to provide access control that can be
employed with confidence to prevent unauthorized
access or use of a personal computer. In essence,
the software prevents unauthorized entry into the
system both at time of initialization and during
temporary breaks in the operator's work routine.
The combination of the hardware and software creates
an intruder barrier prohibiting access, without
damage, to the computer and with sounding of audible
alarms if attempted surreptitiously.

In brief, the software described is for an
embodiment directed for use with a MS-DOS or PC-DOS
(2.0 or higher) based computer. When the computer
is powered up or reset, it searches for a file
called CONFIG.SYS which contains a list of "device
drivers". Each of these in turn is loaded into
memory and then given temporary control of the
computer to allow initialization of the device it
controls.

The access control software for purposes
of convenience is referred to as LAMASYS.
LAMASYS.SYS is a DOS device driver file which is
activated at boot time as the first driver invoked
by the CONFIG.SYS initialization process. It acts
as an extension of the operating system, much like
the console driver system included with PC-DOS.

As the system initializes, either by
having power applied or by being reset, the
LAMASYS.SYS driver is invoked prior to any other
drivers. If the correct password and access code
are not entered, the LAMASYS.SYS driver will not
return control to the operating system, preventing
initialization and any use of the computer. 1In

addition, the driver continues to monitor the BIOS

WO 90/05340 PCT/US89/04913

8

keyboard service interrupts, even after the computer
begins normal operations. Any time a key is
pressed, the value of the returned keystroke is
compared to a user-defined key (hotkey). If they
match, the LAMASYS.SYS driver is invoked again.

When security is invoked, LAMASYS.SYS
temporarily "steals" whichever DOS and BIOS
interrupts it requires in order to maintain system
control. When authorization is verified and the
-LAMASYS.SYS returns control, all interrupts are
restored to their previous state and the original
screen is restored. ,

The reliability of the access control
governed by the software depends upon maintaining
control of the disk drive which the computer uses
for initialization. Generally, since personal
computers attempt to initialize first from a
diskette if one can be found in drive A:, it is
essential to block access to diskette Drive A:
during the initialization process.

Blocking access is achieved by use of
ancillary locking hardware. More particularly, a
disk drive lock is employed to block the diskette
slot in such a way that a diskette may not be
inserted into an empty drive or that a diskette
locked into a drive will continue to function but
may not be removed without causing visible damage to
the computer or the hardware.

7 The software uses only 7K of memory, 4K of
which are used to save the current screen data so
that it can be restored later. While this is
sufficient to store a normal 80x25 text screen, it
does not provide ehough memory to save a color
graphics screen (16K bytes) or a 110x75 text screen,
let alone some EGA graphics screens (256K). 1In

balancing the competing principals, minimizing

WO 90/05340 PCT/US89/04913

9

resident memory requirements versus complete screen
text storage, the former was selected with the
intent of saving as much screen area as can be saved
in 4K and foregoing tying up memory.

The disk drive lock and software
combination, therefore, provides password protected
access control at boot-up time. In addition, the
computer may be disabled at any time by the press of
a user-selected "hotkey". Only entry of the correct
password will return the computer to normal
operation, and excessive erroneous entries will trip
the audio alarm, at which point only the original
"hotkey" can turn it off. In order to proteét the
user's work-in-progress, the computer cannot be
re-booted from the keyboard when in the disabled
(secured state). The secured state may also be
invoked from a batch file or from the DOS command
line by use of the appropriate command file
(LAMA.COM) .

The invention herein provides a computer
access control system which does not in any way
restrict or monitor the activities of authorized
users once the appropriate log-on procedure has been
followed. Furthermore, the system neither restricts
data files or directories nor does it restrict
access to programs or count keystrokes. Indeed, it
is a primary objective of the software in this
invention to be as transparent as possible for the
authorized user, and impossible for the unauthorized
user. It is for this very reason that the software
only requires 7K of resident memory, including 4K

for screen storage..

WO 90/05340 PCT/US89/04913

10

BRIEF DESCRIPTION OF THE DRAWING

Figure 1 is a schematic representation of

a computer secured by the invention.
DETATLED DESCRIPTION OF THE INVENTION

The invention includes hardware component
12 and software component 14 for use together on a
multiple drive personal computer 10. Software
component 14 is an access control program. The
software for personal computers is stored on an
insertable/removable medium such as floppy diskette
14 or alternatively, an optical disk or a RaM
cartridge. The computer includes disk drive unit 11
configured to receive the diskette (disk or
cartridge, if applicable). It is this disk drive
unit to which the hardware component is directed.

The hardware component may take the form
of a portable disk drive locking unit of the type
described in United States Patent 4,685,312 Lakoski
et al, incorporated herein by. reference.
Alternately, the hardware can be of the form of a
computer bezel mounted, lock and lock bar assembly
described in Applicant's United States Patent
Application S.N. 227,129 filed August 2, 1988
incorporated by reference. The primary requirement
of any hardware employed in this invention is to
secure and otherwise keep the access control program
locked into the boot drive thereby preventing
- unauthorized removal of the program without causing
visible damage to the locking unit or computer.

Both of the identified locking units are
operated with a key. It is not intended to thus
limit the invention to a combination lock or even a
more sophisticated electronic locking means. As a

-~

]

WO 90/05340

11

practical matter, especially in a multiunit
supervised environment, the supervisor may possess a -
master key or duplicate key to unlock the
subordinate's units. By this means, the
supervisor's disk can be substituted for the
subordinate's, thus denying the subordinate access
to. the computer. This concept may prove valuable in
the case of a recalcibrant employee.

The second component of the system, in one
embodiment, is now described in detail as to its
installation, operation and program content. First,
addressing the system requirements, the program is
configured and designed to operate on an 1BMR
personal computer or equivalent, using a
conventional Disk Operating System (DOS) such as IBM
PC DOS or MS DOS version 2.0, etc. The program
supports both monochrome and color monitors and all
conventional CGA and EGA graphic modes.

Furthermore, the program is capable of supporting
non-standard screen dimensions as, for example,
132x44 characters, 110x75 or 80x66 modes of
super-EGA boards. Referring to memory requirements,
the program for installation requires only 7K bytes
of system RAM memory and only a 7.5K byte file on
the boot diskette. If the DOS program is in a
graphic mode when security is invoked, the security
screen (described below) will be compressed. This
is because only 4K of memory is used for saving the
screen, so only 4K of the screen can be written
over. In the high resolution EGA modes this
represents only two lines in the upper-left corner
of the screen. Finally, as an elementary practical
note, the program is only effective if the default
boot diskette drive is protected from intruder

usage.

PCT/US89/04913

WO 90/05340 PCT/US89/04913

12

To ihstall the access control program
included on the distribution diskette, the diskette
is inserted into the computer default drive (A:).
The user then types the installation execution
program command ("LAMAINST"), and then follows the
menus. There are two possible levels for
installation, basic and advanced.

The most common method of installation is
to copy the program onto the associated (a PC XT,
AT, etc.) permanently mounted hard disk where the
hard disk is most commonly used as the boot drive.
Hence, boot up by the hard disk is the default for
the LAMAINST.EXE installation program. Other
installation configurations are discussed later, but
most users will want to use the quick procedure now
described.

After DOS has been loaded, by placing the
computer access control program containing diskette
in drive A: and typing A: <ENTER>, drive A: becomes
the default drive. Next, LAMAINST <ENTER> is typed
and the program's Main Menu then appears. Pressing
"1" at the Main Menu selects installation onto the
hard drive. The user then selects a personal access
code of at least six characters which is inputted
upon request on the screen. The access code is the
first entry of the bi-level security access systen
provided by this invention.

The next screen requests entry of a
personal password, the second entry. This password
must not be forgotten or the system can be locked
out. The user then has the option of selecting a
"hotkey" (a key combination which immediately moves
the system into the security mode as detailed
below). The "hotkey" initially is assigned the key
combination "Ctrl 2". Once selection of the "hotkey"
is complete, the user presses "6" to return to the

r

a

WO 90/05340

13

Main Menu, then "5" to return to DOS. At this
point, the user must reboot the computer with the
<Ctrl><Alt> keys for the invention's computer
access control program to take effect. The
computer will now stop in the middle of the boot
process and require the user to properly input the
selected access code and password in order to
continue. Once properly entered, the computer will
continue booting in a conventional manner. Once the
"hotkey" is entered, the same security screen
appearing when booting, is viewed. Once the
"hotkey" use is verified, the user is assured that
the system has been successfully installed, so the
program diskette is removed from drive A: and the
diskette drive is locked up. -

The foregoing description of the basic
installation technique is now supplemented with
alternate and more advanced installation
instructions. As already noted, the default
installation method used by the execute program
relies on the computer using the hard disk as the
boot disk. The intended "target" for the purpose of
this program is identified in the first item in the
main menu. This is the simplest of cases, since the
same disk is both the "target" and the current
"hoot" disk. Other computer configurations, such as
two floppy boot diskettes will require
reconfiguration of INSTALL command line to direct
the boot function to the appropriate disk. For
successful installation of the control access
program onto a floppy boot diskette, the user must
specify the target diskette drive. For example, the
user would type "LAMAINST B: <Enter>" if the disk is
in drive B:.

once specified, LAMAINST will look for a
hard disk drive which is the current "boot" disk in

PCT/US89/04913

WO 90/05340

14

order to copy the current CONFIG.SYS file and to
disable booting from that drive. The end result is
that the program will boot only from the specified
floppy diskette and will complete booting as though
it had booted from the original hard disk (if any).
This feature renders the computer access control
program installation as transparent as possible. If
a hard disk drive is available and specified, the
installation program will simply use the specified
drive instead of conducting a search for the drive
containing the driver files. Unless a special
configuration requiring manual override is involved,
such specification is not necessary. In any case,
the result is to copy the security driver file to
the "target" disk and to modify the CONFIG.SYS file.

While almost never necessary, since the
current "boot" disk is automatically sensed, the
boot disk may be specified by using the following
command :

LAMATINST B: BOOT=C:
This example would specify that drive B: is the
target disk and that drive C: is the current "boot
disk". Hence, drive C: is disabled from booting.

Selection of a specified drive copies the
program on to the indicated drive and modifies the
system files as needed. The user will be required
to enter a new access code and password at this
time. If the software is found to be already
installed, a message will appear so indicating and
the screen will return to the main menu.

This text now turns to the various menu
options involved in installation. One option which
the user will find desirable is the ability to
change the access code and password. This allows
the access code and password to be changed for

systems which have previously been installed, but

PCT/US89/04913

(7

WO 90/05340 PCT/US89/04913

15

only after the user enters the current password to
demonstrate authority to access the system. If the
software is not currently installed, an error
message will appear on the screen. If the software
has been installed on a floppy diskette rather than
an internal hard disk the hardware/drive lock must
be removed, the diskette pulled from the slot, the
write-protect tab removed from the diskette and the
disk reinserted before any changes can take effect.
Should it be desired to remove the access control
software from the computer and restore the system to
its pre-installation state, the disk drive must be
unlocked and the write-protect tab removed from the
diskette before erasing the software.
Moving to the operational considerations
during installation the user invokes the security
option sub-menu. This sub-menu appears only after
the current password has been entered to demonstrate
access authority. The sub-menu options allow the
user to customize important operational
characteristics.
The first option is the selection of a
"hotkey". When the hotkey option is chosen the
computer generates a sound and message. In one
example, a screen would read:
"Now press the key combination which
will activate the security system. A
combination of <Alt> or <Ctrl> with
some other key is usually best.
The bell will sound again when your
new security HOTKEY is accepted.
If the security screen appears
instead, your HOTKEY is already set.
You may press <Escape> if you wish to
skip this procedure."

As a practical matter, the audible bell sound is

WO 90/05340 PCT/US89/04913

16

employed to inform the user that a particular key
combination has been accepted. Not all keys work as
"hotkeys" because some combinations cannot be sensed
at this level of keyboard service. For example,
ESCAPE cannot be used because it is used to escape
from the menus of the access control program.

The user's selection of a hotkey
combination should, in part, be governed by possible
conflict with functional or essential command keys
of the actual programs used. For this reason the
use of the <Ctrl> and <Alt> keys and coupled with
function or punctuation keys may prove the best
combinations. One further aspect of the hotkey is
now discussed. The security system will respond to
the "hotkey" only when the active program actually
requests a keystroke. This feature is to prevent
the computer from being interrupted in the middle of
critical operations, such as writing to the disk.
There is a disadvantage; the system may not respond
while involved in some tedious operation such as a
spreadsheet recalculation. Also, in operation, the
DOS'program which can never see the "hotkey" since
it is read by the security program may appear to be
halted since it is still waiting for a keystroke
which has never appeared. Pressing any key will
allow the system to continue. _

The presence of a hotkey is not required.
The program allows selection of a zero option which
only invokes security at boot up. This program
configuration, therefore, does not use any memory
once the boot up security is completed. A command
is also provided for the user who may wish to
restore the hotkey when the A> appears.

Screen color combination selections
provide a highly visible indicator of the presource
of a security screen. The screen color selection

[

@

WO 90/05340

PCT/US89/04913

17

option presents the user with an 8x16 grid
containing all 128 available color combinations for
the security screen. The default color, white on
blue, will blink on the screen and the cursor will
be located in its block on the grid. The cursor
control keys are employed to move the cursor to a
new color combination and press <Enter> to accept
it. As usual, <Escape> may be used to skip this
process. For monochrome monitors, the only useful
option here might be to select the black-on-black
option for screen blanking purposes.

The next option permits the user to
customize the security screen title. The title line
appears above the "AUTHORIZED PERSONNEL ONLY"
banner. Up to 60 characters may be used for the
title line. For convenience, due to internal
programming, the resulting line will be properly
centered on the screen. Since some CGA modes
support only 40 columns of text, it is prudent to
limit the title line to 40 characters or less when a
color monitor is in use. One further note on this
option relating to the EGA and VGA high resolution
graphics modes, the title never appears. This is
because so little of the graphics screen can be
preserved in the 4K of resident memory used for
screen storage that there is simply not enough space
to display the title.

Probably the most important option
available to the user is the selection of the
security level from a security level selection menu.
The choices are: 1) minimum intrusiveness which may
not suppress competing resident programs "SideKick";
2) controls and overrides such programs and also
halts spooling; and finally, 3) maximum security,
but halts all background activity.

WO 90/05340 PCT/US89/04913

18

Level 1, the system default level, is the
least intrusive, but least secure level. It is
usually adequate to maintain control unless a
.resident debugging system (such as "Periscope") or
other contentious resident programs, such as
"SideKick", are present. At level 1, only the BIOS
print-screen and the keyboard vectors are "stolen"
when security is invoked. Hence, background
communications and print spooling are allowed to
continue. However, "SideKick" and like programs
will try to "steal" the print screen and keyboard .
vectors back. Thus, a <Ctrl><Alt> reboot at
the security screen can be effected when it should
be prevented. A reasonable conclusion, therefore,
in such a case, a higher security level is required.

The second level "steals" the system timer
interrupts when the security screen is invoked.
"SideKick" type programs.cannot take over but can
temporarily disable timer-drive activities-such as a
print spooler. Level 2 has been reported to be the
best security level to use when running both
"SideKick"rand a background communications package
such as "Mirror".

The maximum security level, level 3, will
disable even a hardware based debugging program such
as "Periscope". When this security level is
invoked, all interrupts from 0 .. 1F are restored to
their values at CONFIG.SYS entry time, so that no
subsequently loaded drivers can be used to "hook" or
disable the security system. Caution must be
exercised in use, however, since security level 3
has been known to interfere with networking and
other background communications, in addition to
halting spooling, etc. While level 3 may be
extreme, it is extremely reliable.

[

WO 90/05340 PCT/US89/04913

19

The final option presented is very
practical, especially for the less adept. This
option selection of the alarm level, will request
the user to input a number between 1 and 9. The
inputted number will correspond to the number of
incorrect password entry attempts allowed before the
alarm is set off. The default value here is three,
which gives the authorized user a little latitude
for error while providing the intruder with little
room to experiment.

The final line in option menu ingquires if
the user wishes to return to the operating system.
Once selected, the currently resident LAMASYS.SYS
driver file is updated to reflect any changes to the
options above. The computer and screen then returns
to the original menu which allows the user to exit
the installation program and return to the DOS
command line. The user is cautioned since it is
only after the computer is rebooted and the newly
configured drive is reloaded that the inputted
option changes will be fixed.

Given the above installation methods and
options, the reader's attention is now directed to
the relatively simple operation of the computer
access control program. When the security screen is
activated, a characteristic trill eminates from the
PC audio system. The screen then goes blank and the
text, including the user controlled menu message
described above, and the request for the user access
code, will appear.

The access code must be entered exactly,
including capitalization. As is the case with most
programs, correction of erroneous input can be
effected though the backspace key until the <Enter>
key is pressed to complete the entry. Whatever the

user types is visible at this point so that the

WO 90/05340 PCT/US89/04913

20

state of the <Caps Lock> key can be verified, as
well as the overall operation of the keyboard
itself. Any key strokes beyond the twenty
characters allowed will simply be ignored. All
egtries, right or wrong, are accepted. The screen
moves on to requeét the password.

Password entry is identical to access code
entry, except that all typing is invisible. This is
to prevent any casual observers from reading the
password as it is being typed. If the access code
and password are both correct, the screen will be
restored to its original state and the boot process
will continue. If either the Password or the Access
Code is incorrect, the audio system will emit a
“less~than-encouraging sound. If the allowed number
of incorrect entries has not been exceeded, the
process starts over again at access code entry.
After the programmed number of allowed attempts is
surpassed a continuous alarm is sounded which can be
terminated only by entry of the "hotkey" or by
turning the machine off. If the hotkey is used the
security screen is restored. . Of course, if
vandalism is intended the intruder can pry the
physical locking device off of the computer and
remove the software diskette or substitute his own
diskette. Without further elaboration, such
activity is clearly detectable.

The removal of the access control program
may be desired or even required at certain times.
Since the configuration consists of the program
system file in the root directory of the boot disk,
the system may be effectively bypassed by removing
either the system file or the first line of the
CONFIG.SYS program. As a result of the system file
normally being hidden, a utility file, such as the
commercially available program ATTR.COM, is required

[¢3

WO 90/05340 PCT/US89/04913

21

to erase or rename the system file. Hence, it is
often easier to erase the first line of the
CONFIG.SYS file.

_ In the event a floppy diskette installation
configuration is present, the hard disk booting
condition can be restored by renaming the command
file (LCOMAND.COM) to its original name,
COMMAND.COM. Also the original CONFIG.SYS FILE
being hidden and renamed to CONFIG.SAV, it must be
released and renamed to restore the computer to its
pre-installation state. This requires a file
utility program.

Finally, to bypass the floppy diskette
boot up altogether, the hardware lock is unlocked,
the disk (cartridge) removed and the system rebooted
with a proper system disk. Of course, as noted
above, to remove the physical hardware lock without
damaging the computer requires the proper key.

A programmer may be interested that
manipulation of the DOS driver program allows for
the invocation of the security screen from any DOS
program. The program "LAMA.COM" is included to allow
security to be invoked from the DOS command line or
from a batch file. It produces exactly the same
effect as the "hotkey", a secured state. One use
for this program might be to call it at the end of a
long print run, when the user will be away from the
computer. Another use is as an Application in the
Microsoft Windows environment, since resident
utilities tend not to work there.

The following assembly language code
demonstrates how the security screen can be called
from any program by using the device driver
mechanisms built into DOS. 1In effect, the access

- control program acts as an extension of the
operating system. The DOS open command with the

WO 90/05340 PCT/US89/04913

22

name, 'ILAMA1988' is entered. Functions 3, 5, 7, or
10 will activate the security screen. After control
is returned, the device is closed in the normal
manner. If the open command fails, the access
program is not present. As an example, the DOS
command line utility, LAMA.COM, included on
Applicant's commercially available diskette, uses
exactly this method.

lamaname db 'LAMA1988', 0
dumnybuf db
0

.
’

Entry proc near
mov dx, offset lamanamé ; Load the name of

the driver

mov ah, 3Eh ; set to DOS open function
Xor al, al ;...in.the read mode.
int 21H ;jcall DOS.Is the driver
present?
mov bx,ax ;assume so, set bx to new
handle
jc LAMAout ;if fail, not available.
Bye.
mov ah, 44h ;call the DOS IOCTL
function
i mov al, 7 ; LAMALOCK+ = functions
3,5,7,10
mov dx, offset dummybuf ;DS:DX = dummy buffer
xXor cX,cx ;read no bytes anyway
int 21H ;This will call the
Security Screen
mov ah, 3Eh ;and not return without the
passwords.
int 21H ;jclose the LAMALOCK+handle in

BX

[

WO 90/05340 PCT/US89/04913

23
LA
MA
out:
ret ; return control to the caller
Entry
ehdp

The computer access control program
described above can be employed in many environments
and adapted to any of the broad range of
commercially available personal computers having
boot diskette or RAM cartridge input slots. Not to
belabor the obvious, but the true utility of the
program is achieved only when coupled with a
physical access slot blocking lockdown device to
prevent removal of the software once loaded.

A copy of the complete system program and
installation program are appended to this
application and incorporated by reference herein but
are not reproduced for purposes of convenience.

Given the foregoing modifications and
variations of the invention should now be evident to
the person of ordinary skill in the art. Such
modifications and variations are intended to fall
within the spirit and scope of this invention as
defined by the following claims.

WO 90/05340

. 24
/* Copyright (c) 1988 Lama Systems Inc. */

#include "stdio.h"
#include "dos.h"
#include "“stat.h"
#include *“fcntl.h”
#include "string.h"

#define FALSEQ

#define TRUE 1

#define PASSWORD 0 /* begin option definition list */
#define HOTKEY 1

#define ATTRIBUTE 2

#define TITLE 3

#define TITLELEN 60

#define SECURITY 4

#define ALARMLEVEL 5

#define BACKSPACE 8
#define ESCAPEKEY 0X1B
#define termch '\r'
#define tabincr 4 -

char firstfixed, topdisk;

char vidattr = 0x70;

char InMain = TRUE; /* Flagtotellif attop Ievel menu */
union REGS vidregs;

int HideKeys = FALSE;

int lamahandle;

unsigned lamasize;

char *CommsStr = "A:\\COMMAND.COM",

char *LCommStr = "A:\\LCOMAND.COM",

char *ConfStr = "A:\\CONFIG.SYS";

char *ConfSav = "A:\\CONFIG.SAV";

char *AutoStr = "A:\\AUTOEXEC.BAT";

char *LamaStr = "A:\\LAMASYS.SYS";

char *DeviceStr = "DEVICE =LAMASYS.SYS\n";
char *autoset1 = ":\nSET COMSPEC=",

char *autoset2 = ": \\LCOMAND COM\nautoexec\n\0x1 a"
char targetdisk = 'N’;

PCT/US89/04913

INSTALL

char hardboot = "N'; /* Initialize to assume no current hard drive boot */
char clineboot = 'N’; /* Assume no hard drive forced by command line option*/

#define BUFLEN 10000

char lamabuffer[BUFLEN];
char *RPLstring = "432 ROL";
char *DevPattern = "device";

* .
void VMovCur(row, col)
int row, col;

vidregs.h.ah = 2; [* Write character and attribute */
vidregs.h.dl = col;
vidregs.h.dh = row; /* initialize the video interface */
int86(0x10, &vidregs, &vidregs);

}

/*

*/

void VPutChr(outchar)

SURSTITUTE SHEET

*

(/]

WO 90/05340 PCT/US89/04913

int outchar; 25

vidregs.h.ah = 9; /* Write character and attribute */

vidregs.h.al = outchar;

vidregs.h.bl = vidattr; /* initialize the video interface */

vidregs.x.cx = 1,

int86(0x10, &vidregs, &vidregs);
— */
void VRepChr(outchar, repcount)

int outchar, repcount;

vidregs.h.ah = 9; /* Write character and attribute */
vidregs.h.al = outchar,

vidregs.h.bl = vidattr; /* initialize the video interface */
vidregs.x.cx = repcount;

int86(0x10, &vidregs, &vidregs);

vidregs.h.ah = 3; /* read cursor position */

int86(0x10, &vidregs, &vidregs);

vidregs.h.ah = 2; /* set cursor position */

vidregs.h.di + = repcount;

int86(0x10, &vidregs, &vidregs);

}
* */
void VOutChr(outchar)

int outchar;

{
VPutChr(outchar);
vidregs.h.ah = 3; /* read cursor position */
int86(0x10, &vidregs, &vidregs);
vidregs.h.ah = 2; /* set cursor position */
vidregs.h.dl + +;
int86(0x10, &vidregs, &vidregs);

™ *
void VOutTTY(outchar)
int outchar;

vidregs.h.ah = Ox0E; /* write TTY ¥/

vidregs.h.al = outchar;

vidregs.h.bl = 7;

vidregs.h.bh = 0;

int86(0x10, &vidregs, &vidregs);
A .
void VOutStr(outstr)

-char *outstr;

while (*outstr ! = "\0') VOutChr(*outstr+ +);

}

* I
#define HLINE "\315'

#define VLINE "\272'

#define ULCORNER "\311’
#define URCORNER "\273’
#define LLCORNER "\310'
#define LRCORNER '\274’

#define SHLINE '\304'
#define SVLINE '\263'

SUBSTITUTE SHEET

WO 90/05340

#define SULCORNER "\332 26
#define SURCORNER "\277’
#define SLLCORNER *\300’
#define SLRCORNER ’\331’

int singline = TRUE;

MakeBox (orgr, orgc, rows, cols)
int orgr, orgc, rows, cols;

int i
char border, saveattr;

saveattr = vidattr;

vidattr = 0x70;

VMovCur(orgr, orgc);

VOutChr(singline? SULCORNER: ULCORNER);
VRepChr(singline? SHLINE: HLINE, cols-2);
VPutChr(singline? SURCORNER: URCORNER);
border = singline? SVLINE: VLINE;

for(i=2; i rows; i++)

VMovCur(orgr+i-1, orgc);
VOutChr(border);
VRepChr(’’, cols-2);
VOutChr(border);
VPutChr(219);

VMovCur(orgr +rows-1, orgc);
VOutChr(singline? SLLCORNER: LLCORNER);
VRepChr(singline? SHLINE: HLINE, cols-2);
VOutChr(singline? SLRCORNER: LRCORNER);
VPutChr(219);
VMovCur(orgr+rows, orgc+1);
VRepChr(219, cols); '
vidattr = saveattr;
}
I* : */
cirscreen(filichar)

int fillchar;

{

int i;

for (i=0;i 25;i+ +)

VMovCur(i, 0);
VRepChir(filichar, 80);

}
r* */

char *LamaTitle1 = "AUTHORIZED PERSONNEL ONLY";

char *LamaTitle2 = "Installation Program";

char *LamaMAIN = "Main Menu";

char *Lamaltem1 = "1. Install the APO software onto Drive ";
char *Lamaltem2 = "2. Change the Access Code and Password";
char *Lamaltem3 = "3. Customize the Security Options";

char *Lamaltemd4 = "4. Uninstall the APQO software from Drive ";
char *Lamaltem5 = "5. Quit and return to DOS";

char *LamaChoose = "Choose a number";

SUBSTITUTE SHEET

PCT/US89/04913

€4

WO 90/05340 PCT/US89/04913

27
char *LamaCopy = “\332\304\ (c) Copyright Lama Systems inc. 1988\304\277",

int MUSTDRAW = TRUE;

int InitMenu()

{

int i;
if (MUSTDRAW)

cirscreen(177);
MakeBox (3, 10, 19, 60);
VMovCur(5, 28);
VOutStr(LamaTitle1);
VMovCur(6, 30);
VOutStr(LamaTitle2);
VMovCur(8, 35);
VOutStr(LamaMAIN);
VMovCur(10, 19);
VOutStr(Lamalitemt);
VOutChr(targetdisk);
VOutChr(™');
VMovCur(12, 19);
VOutStr(Lamaltem2);
VMovCur(14, 19);
VOutStr(Lamaltem3);
VMovCur(16, 19);
VOutStr(Lamaltem4);
VOutChr(targetdisk);
VOutChr(":');
VMovCur(18, 19);
VOutStr(Lamaltem5);
VMovCur(24, 19);
VOutStr(LamaCopy);
VMovCur(20, 32);
VOutStr(LamaChoose);
MUSTDRAW = FALSE;

}
return(getch());

/*===T—.=========-============================*/
VPutSqr(row, col, attr)
int row, col, attr;

int vrow, vcol;

vidattr = ((row < 4) + col) | attr;
vrow = row + 12;

veol = col*4 + 9;

VMovCur(vrow, vcol);

VOutChr('');

VOutChr(row + '0");

VOutChr(col + (col 10?7 '0": 'A-10));
VOutChr('’);

VMovCur(vrow, vcol +2);

GetAttr(orgattr.)
char orgattr;

SUBSTITUTE SHEEI

WO 90/05340 PCT/US89/04913

28
int row, col, saveattr, inchar;

saveattr = vidattr;

MakeBox(11, 8, 12, 66);

for (row = 0; row 7; row+ +),
for (col = 0; col 15; col+ +),

VPutSqr(row, col, 0);

vidattr = saveattr;

VMovCur(20, 8);

VOutChr(195);

VRepChr(196, 64);

VOutChr(180);

VMovCur(21,9);

VOutStr("Use the cursor keys to select your colors and to accept.");

row = (orgattr & OxF0) > 4;

col = orgattr & Ox0F;

VPutSqr(row, col, 0x80);

inchar = OxFF; /* nult for no action below */
do
if (inchar == 0) /* only for function keys */

VPutSqr(row, col, 0);
switch (getch())

case 'K': /*LEFT */
if (col 0) col--;
break;
case 'M’: /* RIGHT */
if (col 15) col+ +;
break;
case 'H": /*UP ¥/
if (row 0) row—;
: break;
case 'P": /* DOWN */
if(row 7) row+ +;
: break;

}
VPutSqr(row, col, 0x80);

}
while ((inchar=getch()) | = termch && inchar | = ESCAPEKEY };
vidattr = saveattr;
return(inchar = = ESCAPEKEY? -1: (row < 4) + col});
void
PopBox(row, mstring)
int row;
char *mstring;

int boxlen, boxcol;

MUSTDRAW = TRUE; |

boxlen = strien(mstring) +5;
boxcol = (80-boxlen)/2; -
MakeBox(row, boxcol, 5, boxlen);
VMovCur(row+1, boxcol + 3);
VOutStr(mstring);

SUBSTITUTE SHEET

n

WO 90/05340 PCT/US89/04913

int

PopMessage(row, mstring)
int row;
char *mstring;

int boxlen, boxcol;

PopBox(row, mstring);
VMovCur(row+3, 18);
VOutStr(InMain? " Press any key to return to the Main Menu.":
' “Press any key to return to the Options Menu.");
return(getch());

int
PromptKey()
{

int row;
union REGS keyregs;

row = 9;

putch(7); /* Bell */
MakeBox(row, 2,7,75);
VMovCur(row+1,5);
VOutStr(

“Now press the key combination which will activate the Security Screen.");
VMovCur(row+2, 5);
VOutStr(

"A combination of Alt or

with some other key is usually best.");

VMovCur(row+3,5);
VOutStr(

"The bell will sound again when your new security HOTKEY is accepted.");
VMovCur(row+4,5),
VOutStr(

"If the Security Screen appears instead, your HOTKEY is already set.");
VMovCur(row+5, 10);
VOutStr(

"You may press <ESCAPE > if you wish to skip this procedure.");
keyregs.h.ah = 0; /* Write character and attribute */
int86(0x16, &keyregs, &keyregs);
return(keyregs.x.ax); /* return whole scan code, not just character */

* */
char*
StrFind(pattern, string, length)

char *pattern, *string;

int length;

char *strptr, *retstr, *pattptr;
int gotmatch = FALSE;

strptr = string;

retstr = NULL;
while (!gotmatch && length-- 0)

SUBSTITUTE SHEET

WO 90/05340 PCT/US89/04913

if (*strptr+ + = = *pattern) 30

retstr = strptr-1;

pattptr = pattern+1;

while (*pattptr | = 0 && *strptr+ + = = *patiptr+ +) length—;
if (*pattptr == 0) gotmatch = TRUE;

if (1gotmatch) retstr = NULL,;
return(retstr);
}
I* : */
int
Decode()

{
return{ TRUE);

I* */
int
Encode()

{
return(TRUE);

I* *

#define HASHLEN 20

long
HashPass(str)
char *str;

long hashval = 0;

long *Iptr;

int i, dir, shiftcount, *front, *back;

char hashstr[HASHLEN + 1], *hashptr, *strptr;

if (*str == Q) return(OL);

hashptr = &hashstr[0];

Iptr = (long *) &hashstr[0];

front = (int *) &hashstr[0];

back = (int *) &hashstr[HASHLEN-2];
strptr = str;

dir = 1;

for (i = shiftcount = 0;i HASHLEN; i+ +)

*hashptr+ + = (*strptr) < shiftcount;
strptr + = dir;
if (*strptr == 0 | | strptr str)

dir = dir;
strptr + = dir;
shiftcount + +;

for (i = 0;i HASHLEN/4; i+ +, front+ +, back--)

*front + = *(front+HASHLEN/4);
*back -= *(back-HASHLEN/4) + *front;

}
hashval = *Iptr + *(Iptr+1) + *(Iptr+2) + *(iptr+3) + *(iptr+4);

if (hashval = = 0) hashval = 0xA55AC387;
return(hashval);

SUBSTITUTE. SHEET

WO 90/05340 PCT/US89/04913

} 31
I* */
char*
KeyFind(keystr)
char *keystr;

char *newptr;

newptr = StrFind(keystr, &lamabuffer, lamasize);
return(newptr = = NULL? newptr: newptr + strien(keystr));

}
* */
int
VerfPass(usernum)
int usernum;

char *basedata;

iong *Iptr;

int decodeok = TRUE;
char str[HASHLEN +1];

if ((basedata = KeyFind(RPLstring)) = = NULL)

{
PopMessage(12, "The LAMASYS.SYS driver is corrupted and unusable.");
decodeok = FALSE;

}

else

iptr = (long*) (basedata + 2 + usernum*8);
HideKeys = TRUE;
if ({PromptBox(11,20,str,” Please enter the CURRENT password. *,
"AUTHORIZATION REQUEST"))
return(FALSE);
if (*(Iptr+1) = HashPass(str))

putch(7);
PopMessage(12, “Incorrect! Authority to modify is denled'“)
decodeok = FALSE;

}

return(decodeok);

}
* */
int
PromptBox(row, inplen, inpstr, promptstr, tittleprompt)
int row, inplen;
char *inpstr, *promptstr, *titleprompt;

int boxlen, boxcol, promptcol, saveattr, retval;

MUSTDRAW = TRUE;
saveattr = vidattr,
boxlen = strien(prompitstr) +6;
boxcol = (80-boxlen)/2;
promptcol = boxcol + (boxien-inplen)/2;
if (titleprompt = = NULL)
MakeBox(row, boxcol, 5, boxlen);
else

MakeBox(row + +, boxcol, 6, boxlen);

SUBSTITUTE SHEET

WO 90/05340 PCT/US89/04913

32

VMovCur(row, boxcol + ((boxlen-strien(titieprompt))/2) +1);
VOutStr(titleprompt);

}
VMovCur(row + 1, boxcol +2});
VOutStr(promptstr);
VMovCur(row + 3, promptcol);
vidattr = OxOF;
VRepChr(’’, inplen+1);
VMovCur{ row + 3, promptcol);
retval = incurstr(inpstr, inplen);
HideKeys = FALSE;
vidattr = saveattr;
return(retval);

I* */
int
SetOption(optnum, usernum)

int optnum, usernum;

{

/*
Set the given "optnum’ for the given 'usernum’ in the LAMASYS.SYS version
contained in the global 'lamabuffer’. The contents have been decoded and
the current password verified previously, so no security verification is
required here.

*

_char *basedata, attr, offset;
long *iptr, AccHold;
int decodeok = TRUE;
int ccount, *iptr, hkey;
char str[81]; /* Large enough to hold any entry */

switch(optnum)

case PASSWORD:
if ((basedata = KeyFind(RPLstring)) == NULL)
decodeok = FALSE;
else

Iptr = (long*) (basedata + 2 + usernum*8);

if ({PromptBox(13, 20, str,
" Please enter your new ACCESS CODE. ", NULL))
return(FALSE);

AccHold = HashPass(str);

if ({PromptBox(14, 20, str,
* Please enter your new PASSWORD. *, NULL))
return(FALSE);

*Iptr = AccHold;

*(Iptr+1) = HashPass(str);

break;
case HOTKEY:
if ((basedata = KeyFind("hotkey=")) = = NULL)
decodeok = FALSE;
else

{
hkey = PromptKey();
if ((hkey & Oxff) == ESCAPEKEY)

PopMessage(10,"ESCAPE from HOTKEY request. No changes made.");
return(FALSE);

SUBSTITUTE SHEET

WO 90/05340 PCT/US89/04913

33

putch(7); /* Bell */
putch(7); /* Bell */
putch(7); /* Bell*/
iptr = (int*) (basedata);
*iptr = hkey;

break;
case ATTRIBUTE:
if ((basedata = KeyFind("attribute=")) = = NULL)
decodeok = FALSE;

else
{
if ((attr = GetAttr(*basedata)) == -1)
PopMessage(15,"ESCAPE from COLOR request. No changes made.");
return(FALSE);

*basedata = attr;

break;
case TITLE:
if ((basedata = KeyFind("MString=")) = = NULL)
decodeok = FALSE;
else

{
if ({PromptBox(13, TITLELEN, str,
"Please enter the text which you wish to appear on your Security Screen.”
, NULL))

return(FALSE);
*hasedata+ + = offset = (TITLELEN - strlen(str))/2;

strnset(basedata, ' *, TITLELEN);
basedata + = offset;
strepy(basedata, str);

break;
case SECURITY:
if ((basedata = KeyFind("hotkey=")) == NULL) .
decodeok = FALSE;
else

basedata + = 3;
do

{

MakeBox(15, 11, 9, 60);
VMovCur(16, 27);
VOutStr("Security Level Selection Menu");
VMovCur(18, 14);

VOUtStr("1. Minimum intrusiveness, but can't suppress SideKick.");
VMovCur(19, 14);

VOutStr("2. Controls SideKick, etc., but also halts spooling.);
VMovCur(20, 14);

VOutStr("3. Maximum security, but halts ALL background activity.");

VMovCur(22, 17);
VOutStr('Press 1 or 2 or 3 to select your security level.");

}
while (((hkey=getch()) "1’ || hkey '3) && hkey! =ESCAPEKEY);
if (hkey = = ESCAPEKEY)

PopMessage(17," ESCAPE from LEVEL request. No changes made. ");

SUBSTITUTE SHEET

WO 90/05340 PCT/US89/04913

return(FALSE); 34
')
*basedata = hkey - '0";

break;
case ALARMLEVEL:
if ((basedata = KeyFind(*maxatt=")) = = NULL)
decodeok = FALSE;
else

{
do

{
MakeBox(17,2,5,75);
VMovCur(18, 4);
VOutStr(
"Enter the number of incorrect attempts required to set off the alarm.");
VMovCur(20, 24);
VOutStr("Press a number between 1 and 9.");

while (((hkey = getch() 1’ | | hkey '9’) && hkey! =ESCAPEKEY);
if (hkey = = ESCAPEKEY)

PopMessage(18,"ESCAPE from ALARM setting. No changes hade.“);

return{ FALSE);
}
*basedata = hkey-'0";
}
break;

}
if (!decodeok)
PopMessage(14,
"The driver could not be decoded properiy and may be corrupted!";
return(decodeok);

J* */

int

SetPass()

I*)

Given a file, which has been loaded into "lamasize’ bytes of 'lamabuffer’:
1. Allow the password to be changed
2. re-encpde the file
3. write and close the file

*/

{
if (1SetOption(PASSWORD, 0)) return(FALSE);
_chmod(LamasStr, 1, 0); /* UNHIDE */
if ((famahandle = open(LamaStr, O_CREAT | O_RDWR | O_BINARY,
S_IREAD|S_IWRITE)) 0)
{ /* then the LAMA driver can’t be written on the diskette. */
PopMessage(12,
"The LAMASYS.SYS file can not be written. Please check the drive. "Y;
return(FALSE);

Encode();
Iseek(lamahandie, OL, 0);
write(lamahandle, &amabuffer[0], lamasize);
close(lamahandie };
_chmod(LamaStr, 1, FA_RDONLY | FA HIDDEN | FA_SYSTEM); /* HIDE FOR LATER */
return(TRUE);
}

SUBSTITUTE SHEET

*

WO 90/05340 PCT/US89/04913

35
/* */
int
ReadLAMA(usetarget)
int usetarget,

int orghandle;

if ((orghandle = open(usetarget? LamaStr: "LAMASYS.SYS",
O_RDONLY | O_BINARY)) 0)
{ /* then the LAMA driver isn't on the current drive */
PopMessage(12,
"The LAMASYS.SYS file is not on the current drive. Please correct.");
return{ FALSE);

}
lamasize = (unsigned) filelength(orghandle); /*LAMASYS.SYS must be */
if (lamasize BUFLEN)

close(orghandle);
PopMessage(12,"The LAMASYS.SYS file is invalid. Try to install again.");
return(FALSE);

read(orghandle, &lamabuffer[0], lamasize);
close(orghandie);
return(Decode());

* , */

PopOKinst()

PopMessage(12,
"“The installation was successful. It will take effect after you reboot.");

void
FixRefs(filename, orgstr, newstr)
char *filename, *orgstr, *newstr;

{
FILE *fp;
int ¢, pattchar, pattlen;
long fileloc;
char *copy;

if((fp = fopen(filename, *r+")) = = NULL) return;
patichar = *orgstr;

pattlen = strien(orgstr);

do

{
while((c=getc(fp)) ! = EOF && ¢ ! = pattchar && tolower(c) ! = pattchar);
if(c!= EOF)

{
fileloc = ftell(fp);
copy = orgstr,
while(* + +copy && (*copy = = (c=getc(fp)) | | *copy= =tolower(c))) ;
if (*copy) fileloc-= 2;
fseek(fp, fileloc, SEEK_SET);
if (1*copy) fwrite(newstr, pattlen, 1,p);

} while(c !l EOF);
fclose(fp);

WO 90/05340 PCT/US89/04913

int 36
FixDevices(ordfile, destfile, drive, dofix)
char *orgfile, *destfile;
int drive, dofix;
{
FILE *orgfp, *destfp;
int c, nextc, pattchar, pattlen;
char *copy;

orgfp = fopen(ordfile, "rt");
if((destfp = fopen(destfile, "wt")) == NULL)
{ .

if (orgfp != NULL) fclose(orgfp);
return(FALSE);

}
fputs({ DeviceStr, destfp);
if (orgfp ! = NULL)
do :

{
while((c=getc(orgfp)) | = EOF && ¢ !="d' && ¢ ! = 'D’) putc(c, destfp);
if(c!= EOF)
{ /*we have found a 'D’, DEVICE? */
putc(¢, destfp); /* must output character in any case */
if (dofix)

copy = DevPattern;
while(* + +copy && (*copy==(c= getc(orgfp)) | | *copy= =tolower(c)))
putc(c, destfp);
if (*copy)
- pute(c, destfp); /* must still put out last character */
else
{ /* We have found the word DEVICE */
while((c=getc(orgfp)) =="") putc(*’, destip);

putc(c, destfp);
if (¢ =="=") [* then we have a device specification */

{ ,
while((c=getc(orgfp)) =="") putc(’’, destfp);
if ((nextc = getc(orgfp)) I = ":") /* no drive here*/

putc(drive, destfp };
putc(', destfp);

putc(¢, destfp);
putc(nextc, destfp); /* complete stream */

}

} while(c = EOF);
if (orgfp != NULL) fclose(orgfp);
fclose(destfp);
return(TRUE);

int
RestConf()
{

FILE *orgfp, *destfp;
char *lineptr, inbuff[250];

SUBSTITUTE SREET

»

WO 90/05340 PCT/US89/04913

37

if((orgfp = fopen(ConfSav, "rt")) = = NULL) return(FALSE);
if((destfp = fopen(ConfStr, "wt")) = = NULL)
{ fclose(orgfp); return(FALSE); }
while ((lineptr=fgets(inbuff, 250, orgfp)) ! = NULL)
if (StrFind("LAMASYS.SYS", lineptr, strien(lineptr)) = = NULL &&
StrFind("lamasys.sys", lineptr, strien(lineptr)) = = NULL)
fputs(lineptr, destip);
fclose(orgfp);
fclose(destfp);
return{ TRUE);

}
* */
int
TargetStat(line)
int line;

char buffer[512];
int retval, target;
/* Returns 0x80 if not ready, 3 if write-protected */
target = targetdisk - 'A’; -
retval = biosdisk(2, target, 0, 0, 1, 1, &buffer); /* read twice!*/
if ((retval = biosdisk(2, target, 0,0, 1, 1, &buffer)) == 0)
retval = biosdisk(3, target, 0, 0, 1, 1, &buffer);
if (retval = = 0x80)
PopMessage(line, "The target diskette is not ready. Please correct.”);
else ,
if (retval == 3)
PopMessage(line,
"The target diskette is write protected. Please correct.”);
return(retval);

}

* *
void

Finstall()

/*

Finstall is called by the installation process to configure the system to
boot from a floppy disk in drive A:. This copies and modifies the required
files from the current boot drive. '

*/
int orghandle, tstat;
char bootchar;
FILE *fp;

if (TargetStat(12)) return; /* 3 = = write-protected, 0x80 if not ready */
*Comm©Str = targetdisk;
if (access(CommStr,0) !=0)
{ [* then the target disk isn't a boot disk */
PopMessage(12, "The target diskette is not a boot disk. Please correct.");
return;

}
*LamaStr = targetdisk;
if (access(LamaStr, 0) = = 0) /* the system is already installed */

PopMessage(12, ’
" AMASYS.SYS is already installed on the target diskette. Try Uninstall.");
return;

}
if (!ReadLAMA(FALSE) | | !SetPass()) return;
/* Now look for the hard boot disk, use its config.sys, and anti-boot it. */

SYBSTITUTE SHEET

WO 90/05340 PCT/US89/04913

38
if (clineboot ! ="N') /* boot disk on command line */
hardboot = clineboot;
else

hardboot = °N’; /* assume no boot disk to start */
*L.CommStr = *CommStr = bootchar = firstfixed;
while (bootchar topdisk && hardboot =="N"),

if (access{ LCommsStr, 0) == 0) /* Previously installed, quit */

PopMessage(12,
*The hard disk has already been modified. Try Uninstall first.");
return;

if (access(CommStr,0) == 0))
hardboot = bootchar;
else
bootchar+ +;
*.CommStr = *CommStr = bootchar; /* Set next Drive */

}
if (hardboot {="'N")

{
*AutoStr = *CommStr = *LCommStr = *ConfStr = *ConfSav = hardboot;
if (hardboot firstfixed) /* Floppy-only installation */
{ /* The user normally boots from the floppy drive *hardboot’ */

rename(ConfStr, ConfSav); /* rename config.sys - config.sav */

*ConfStr = targetdisk;

FixDevices(ConfSav, ConfStr, hardboot, FALSE);

unlink(ConfSav);

else
{ /* The user normally boots from the drive "hardboot’ */
rename(CommStr, LCommStr);
rename(ConfStr, ConfSav); /* rename config.sys - config.sav */
*ConfStr = targetdisk;
FixDevices(ConfSav, ConfStr, hardboot, TRUE);
unlink(ConfSav);
FixRefs(ConfStr, “command.com", "LCOMAND. COM") [**/
*AutoStr = hardboot;
FixRefs(AutaStr, "command.com"”, "LCOMAND.COM*);
*AutoStr = targetdisk;
if((fp = fopen(AutoStr, "wt")) == NULL)
if ({amahandie = open(AutoStr, O_CREAT | O_RDWR | O_BINARY,
S_IREAD[S_IWRITE)) 0)
{ /* then AUTOEXEC.BAT file can't be written on the diskette. */
PopMessage(12,
“The new AUTOEXEC.BAT file can not be written. Please check the drive.");
return;

}
putc(hardboot, fp);
fputs(autosett, fp);
putc(hardboot, fp);
fputs(autoset2, fp);
fclose(fp);

}
PopOKinst();
}
I* */

SUBSTITUTE SHEET

WO 90/05340 PCT/US89/04913

. 39
void
install()

if (targetdisk firstfixed)

Finstall(); /* only if a floppy drive is explicitly given */
return;

}
*LamaStr = *ConfStr = *ConfSav = targetdisk;
if (access(LamasStr, 0) = = 0) /* the system is already installed */

{
PopMessage(12,
"LAMASYS.SYS is already installed on the target disk. Try Uninstall.");
return;

}
if ({ReadLAMA(FALSE) || !SetPass()) return;
rename(ConfStr, ConfSav); /* rename config.sys - config.sav */
if (FixDevices(ConfSav, ConfStr, targetdisk, FALSE))

{
unlink(ConfSav);
PopOKinst();

else

rename(ConiSav, ConfStr); /* rename config.sys - config.sav */
PopMessage(12,)
“The CONFIG.SYS file cannot be modified. Installation failed.");

PopOKUninst()

{
PopMessage(15,
"The Uninstall process was successful. You should reboot to complete it.");

int
CheckLAMA()

*LamaStr = targetdisk;
if (access(LamaStr,0)!1=0)
{ /* thenthe system is not installed on the target disk */
PopMessage(15, "APO is not installed on the target disk.");
return(FALSE);

}
_chmod(Lamas$tr, 1, 0); /* UNHIDE */
unlink(LamaStr);
return(TRUE);

FUninstall()
char bootchar;

if (TargetStat(15)) return; /*3 if write-protected, 0x80 if not ready*/
if (1CheckLAMA()) return; /* Can't proceed, not installed */
/* Find the modified boot disk and restore its config.sys and command.com */
if (clineboot != "N') /* boot disk on command line */
hardboot = clineboot;

SUBSTITUTE SHEET

WO 90/05340 PCT/US89/04913

else 40

hardboot = 'N'; /* assume no boot disk to start */
*L.CommStr = bootchar = firstfixed; /*Start with C: */
while (bootchar topdisk && hardboot == 'N"),

if (access(LCommStr, 0) = = 0) /* Previously installed, OK */
hardboot = bootchar;

else
bootchar+ +;

L.CommStr = bootchar; / Set next Drive */

}

}
if (hardboot ! = "N')
{ /* The drive 'hardboot’ is the modified boot disk */
*AutoStr = *CommStr = *LCommStr = hardboot;
if (hardboot = firstfixed } /* must restore original hard diskfiles */
{ I* The user normally boots from the floppy drive 'hardboot’ */
rename(LCommStr, CommStr);
remove(LCommStr); /* Get rid of LCOMMAND.COM one way or another */
FixRefs(AutoStr, "lcomand.com”, "COMMAND.COM");
*AutoStr = targetdisk;
unlink(AutoStr);

}
*ConfStr = *ConfSav = targetdisk;
if (rename(ConfStr, ConfSav) == 0) /* Success */

*ConfStr = hardboot;
RestConf();
- unlink(ConfSav);
if (hardboot = firstfixed) /* must restore original files */
FixRefs(ConfStr, "lcomand.com”, "COMMAND.COM");
} ,

PopOKUninst();

void
Uninstall()

*LamaStr = targetdisk;
if (targetdisk firstfixed)
if (TargetStat(14)) /* 3 if write-protected, 0x80 if not ready */

return; :

if (access(LamaStr,0) 1= 0)

{ /*thenthe system is not installed on the target disk */

PopMessage(14, "APO is not installed on the target disk.");
return;

}
if ({ReadLAMA(TRUE) | | VerfPass(0)) return;
if (targetdisk firstfixed)

FUninstall(); /* only if a floppy drive is explicitly given */
return;

} . -
if (1CheckLAMA()) return; /* Can't proceed, not installed */
*ConfStr = *ConfSav = targetdisk;
if (rename(ConfStr, ConfSav) = = 0) /* Success */

RestConf();

SUBSTITUTE SHEET

1h

&

WO 90/05340 PCT/US89/04913

unlink(ConfSav); 41

-}
PopOKUninst();
A */

void
DispOptions()

clrscreen(177);

MakeBox (3, 10, 19,60);

VMovCur(5, 28);

VOutStr(LamaTitle1);

VMovCur(6, 30);

VOutStr("Security Options Menu");

VMovCur(8, 20); -
VOutStr("1. Select the Security Hotkeys");
VMovCur(10,20 };

VOutStr(2. Select the Security Screen Colors");
VMovCur(12,20);

VOutStr(“3. Enter the Security Screen Title");
VMovCur(14, 20);

VOutStr("4. Select the Security Level");
VMovCur(16, 20);

VOutStr("5. Select the Alarm Level");

VMovCur(18, 20);

VOutStr("6. Save and return to the Main Menu");
VMovCur(20, 32);

VOutStr(LamaChoose);

}
r* */

void OptionMenu()
*

Using the handle of the read/write, binary file, which is loaded
into "lamasize’ bytes of 'lamabuffer’:
1. Verify password authority
2. Decode the file
3. Set any options
4. re-encode the file
5. write and close the file
*
/

int inchar, DONE;

MUSTDRAW = TRUE;
*LamaStr = targetdisk;
if (targetdisk firstfixed)
if (TargetStat(14)) /* 3 if write-protected, 0x80 if not ready */
return, .
if (access(LamaStr,0)!=0)
{ /* then the system is not installed on the target disk */
PopMessage(14, "APO is not installed on the target disk.");
return;

}
if (1ReadLAMA(TRUE) || VertPass(0) | | 1Decode()) return;
InMain = FALSE;
DispOptions();
DONE = FALSE;
V\{rhile (!DONE)

QUESTITUTE SHEET

WO 90/05340

do inchar = getch(); while { inchar 1’ & inchar '6’);

switch(inchar)

ﬁ:ase '1’: SetOption(HOTKEY, 0);
break;

case '2": SetOption(ATTRIBUTE, 0);
break;

case '3": SetOption(TITLE, 0);
break;

case '4": SetOption(SECURITY, 0);
break;

case '5": SetOption(ALARMLEVEL, 0);
break;

case '6": DONE = TRUE;
break;

}
if (\DONE) DispOptions();

InMain = TRUE; /* back at main menu level */

chmod(LamasStr, 1, 0); /* UNHIDE */

if ((lamahandle = open(LamaStr, O_CREAT | O_RDWR | O_BINARY,
S_IREAD|S_IWRITE)) 0)
{ /*then the LAMA driver can't be written on the diskette. */

PopMessage(12,

"The LAMASYS.SYS file can not be written. Please check the drive.");

return;

}
Encode();
Iseek(lamahandle, OL, 0);
write(lamahandle, &lamabuffer[0], lamasize);
close{ lamahandle);

PCT/US89/04913

_chmod(LamaStr, 1, FA_RDONLY | FA_HIDDEN | FA_SYSTEM); /* HIDE FOR LATER */

return;

Password()

*LamaStr = targetdisk;
if (targetdisk firstfixed)

if (TargetStat(14)) /* 3 if write-protected, 0x80 if not ready */

return;
if (access(LamaStr,0) !=0)

{ /*then the system is not installed on the target disk */
PopMessage(14, "APQ is not installed on the target disk.");

return;

}
if (ReadLAMA(TRUE) && VerfPass(0)) SetPass();
/*==========================="

void main(argc,argv)
int argc;
char *argv{];

int DONE = FALSE;
int i;
char *parmptr, inchar, bootchar;

vidregs.h.bh = 0;

topdisk = 'A’ + setdisk(getdisk()); /* Limit for hard boot disk */

SUBSTITUTE SHEET

o

o

4

WO 90/05340

43
firstfixed = (biosequip() & 0x00C0) > 6;
if (firstfixed = = 0) firstfixed = 1; /* 1 floppy systems boot from C: */
firstfixed + = 'B’;
i=1;
RPLstring = '3'; / Just to be obscure */
while (arge-- 1)

{
if (EquivStr(argv[i], "?", 999) || EquivStr(argv[1], "/H", 899))
{ I* Give some brief command-line help, then exit */
printf(" This program is used to install the APO high security\n");
printf("software onto either the hard disk which has is used to boot\n");
printf(“or else onto a floppy disk which has already been formatted\n");
printf("as a boot disk. Any valid disk drive may be entered as the\n");
printf(“"command line option. If no option is given, drive C: will be\n");
printf("assumed for the target disk.\n"),
exit(0);

parmptr = argv[i};
inchar = toupper(*parmptr);
if (EquivStr(parmptr, "boot=",5))

for (parmptr + = 5; *parmptr ==""; parmptr+ +) ;
inchar = toupper(*parmptr); /* force upper case */
if (inchar = "A’ && inchar topdisk),

clineboot = inchar; /* force boot choice */

}
else
if (*(parmptr+1) = = "’ && inchar = 'A’ && inchar topdisk),
targetdisk = inchar; /*if == "A:", leaveas0*/
else

{ /* The command-line option wasn't recognized */
printf("An option was not recognized. Try ? for help");
exit(1); /* exit with error code == 1 */

}

i++;

}
(RPLstring+5) = 'P’; / Also to be obscure */
if (targetdisk = = 'N') /* no target/boot disk on command line */

bootchar = firstfixed;
while (bootchar topdisk && targetdisk = = "N'),

CommStr = bootchar; / Set next Drive */
if (access(CommsStr,0) == 0)
targetdisk = bootchar; /* use first booting hard disk */
else
~ bootchar+ +;

}
if (targetdisk = = 'N’)

PopMessage(12, "No default boot disk could be found. Exiting!");
exit(1);

}
while (IDONE)
switch(InitMenu())

case '1": Install();

break;
case '2": Password();

SUBSTITUTE SHEET

PCT/US89/04913

WO 90/05340 PCT/US89/04913

break; 44
case '3": OptionMenu();

break;
case '4’: Uninstall();

break;
case '5’: DONE = TRUE;

vidattr = 7;
cirscreen(’’);
exit(0);

e ' *

int
EquivStr(str1, str2, complen)
char *str1, *str2;

int complen;

I*

Compare strings, "str1" and "str2" for equivalence of the first
"complen"” characters. This function allows case insensitivity by mapping
all alphabetic characters to upper case.

Accepts if both are equivalent but less than the given length.

*
/

char chart;
int

for (i = 1;1 complen; i+ +),
if ((chart =toupper(*strt + +)) | = toupper(*str2+ +))
return{ FALSE);
else
if (chart =="\0") i = complen;
return{ TRUE);

THIS FUNTION PREVENTS TYPING OUT OF THE INPUT FIELD AND SOUNDS THE BELL
WHEN AN ATTEMPT IS MADE TO DO SO. IT TERMINATES BY THE ‘termch’' CHARACTER.

IT ALSO HANDLES BACK-SPACES, BUT NO OTHER INTRA-LINE EDITING IS IMPLEMENTED.
Returns FALSE only if the escape key is pressed.

*/

int

incurstr(str, ssize)
int ssize;
char *str;

int n, savn, backount;
char inchar;

n=0;

while (inchar = getch()) | = termch && inchar |= ESCAPEKEY)
if {(inchar =="\0")

getch();)
else
if (inchar ! = BACKSPACE) {* if not back-space.... */ .
{ e
savn = n+ +;

*str+ + = inchar;
if (inchar =="\t') n + = tabincr-1;

SUBSTITUTE SHEET

[

WO 90/05340 PCT/US89/04913

else 45
if (inchar ')
{
n++;
if (n ssize && HideKeys) VOutChr(’~");
inchar | = 64;
if (n ssize)
VOutTTY('\007’);
n = savy;
str--;
}

else
if (!HideKeys) VOutChr(inchar);

else /* have backspace */
if(n0)
{
str--;
if {(IHideKeys)

backount = 1;
if (*str = = "\t) backount = tabincr,
else
if (*str *’) backount = 2;
n -= backount;
for (; backount 0; backount--)
VOULTTY(BACKSPACE);
VPutChr('’);
}
}
}
*str = "\0";
return(inchar = = ESCAPEKEY? FALSE: TRUE);
/}*==*/

SURSTITUTE SHEET

WO 90/05340 PCT/US89/04913

46
: Copyright (c) 1988 Lama Systems Inc. EXECUTE
name LAMA
page 55,132
title 'LAMA -- Lama security software driver: password only ’
ZERORAM EQU 0 ; set to 1 for no-hotkey, min memory model, else 0
code segment public '"CODE’)
LAMA proc far
assume cs:code,ds:code,es:code
org 0
iVlax_Cmd equ 16 ; MS-DOS command code maximum:
: ; this is 16 for MS-DOS 3.x
; and 12 for MS-DOS 2.x.
device driver header
i—leader dd -1 ; link to next device, -1 = end of list
dw 8000h ; device attribute word:
: ; bit 15 = 1 for character devices
; bit 14 = 1 if driver can handie |OCTL
;-bit 13 = 1 if block driver & non-IBM format
;bit12 =0
; bit 11 = 1 if OPEN/CLOSE/RM supported (DOS 3.x)
;bit10 =0
;bt 9=0
;bit'8=0
;bit7=0
;bit5=0
;bit4=20
; bit 3 = 1 if CLOCK device
; bit 2 = 1'if NUL device
; bit 1 = 1if Standard Output
; bit 0 = 1if Standard Input
dw Strat ; device "Strategy” entry point
dw Intr ; device "lnterrupt" entry point
db LAMA1988’ 117?

; character device name, 8 char, or if block
; device, no. of units in first byte followed by
; 7 don’t care bytes

Double word pointer to Request Header
; Passed to Strategy routine by MS-DOS

RHPtr dd ?
page

MS-DOS Command Codes dispatch table.
; The “Interrupt" routine uses this table and the i
; Command Code supplied in the Request Header to
; transfer to the appropriate driver subroutine.

1]

N

SUBSTITUTE SHEET

WO 90/05340

Dispatch:

; MS-DOS Request Header structure definition

Lamalnit
Media_Chk
Build_Bpb
I0CTL_Rd
Read
ND_Read
Inp_Stat
Inp_Flush
Write
Write_Vfy
Outp_Stat
Outp_Flush
IOCTL_Wnt
Dev_Open
Dev_Close
Rem_Media
Out_Busy

PCT/US89/04913

47
; # Driver Operation
i Type
10 either initialize driver
;1 block media check on block device
; 2 block build BIOS parameter block
: 3 either 1/O control read
;4 either read from device
+ 5 character non-destructive Read
: 6 character return current input status
; 7 character flush device input buffers
;8 either write to device
;9 either write with verify

; 10 character return current output status
; 11 character flush output buffers

; 12 either 1/O control write

; 13 either device open (MS-DOS 3.x)

; 14 either device close (MS-DOS 3.x)

; 15 either removable media (MS-DOS 3.x)
;167 output until busy (MS-DOS 3.x)

; The first 13 bytes of all Request Headers are the same and are
; referred to as the "Static" part of the Header. The number and
; meaning of the following bytes varies. In this "Struc" definition
; we show the request Header contents for Read and Write calls.

Request

Riength
Unit
Command
Status

Reserve db

Media
Address
Count
Sector
Request

struc

db
db
db
dw

8dup (?)

db
dd
dw
dw
ends

page

; request header template structure

» beginning of "Static" portion

IS TN) -Q S)

; reserved area

; length of request header

; unit number for this request

; request header's command code
; driver’s return status word

;bit15 = Error
; bits 10-14 = Reserved
;bit9 = Busy
;bit8 = Done

; bits 0-7 = Error code if bit 15 = 1

; end of "Static” portion, the remainder in
; this example is for Read and Write functions

?

W)) N -

; Device Driver "Strategy Routine"

; Media Descriptor byte
; memory address for transfer
; byte/sector count value
; starting sector value
; end of request header template

; Each time a request is made for this device, MS-DOS first
: calls the "Strategy Routine", then immediately calls the
; "Interrupt routine".

SUBSTITUTE SHEET

WO 90/05340

48
; The strategy Routine is passed the address of the Request

: Header in ES:BX, which it saves in a local variable and then
: returns to MS-DOS.

Strat proc far
; save address of Request Header
mov word ptr cs:[RH_Ptr],bx
mov word ptr cs:[RH_Ptr+2],es
; ete.
ret

Strat endp -

; Device Driver “interrupt Routine"
; This entry point is called by MS-DOS immediately after the

; call to the "Strategy Routine”, which saved the long address

; of the Request Header in the local variable "RH_Ptr".

PCT/US89/04913

; back to MS-DOS

; The "interrupt Routine" uses the Command Code passed in the

; Request Header to transfer to the appropriate device handling

; routine. Each Command Code routine must place any necessary return
; information into the Request Header, then perform a Near Return

; with AX = Status.

Intr proc far
push ax ; save general registers
push bx
push cx
push dx
push ds
push - es
push di
push si
push bp
push cs ; make local data addressable
pop ds
les di,[RH_Ptr] ; let ES:DI = Request Header
; get BX = Command Code
mov bl,es:[di.Command]
xor bh,bh
cmp bx,Max Cmd ; make sure it's legal
jle Intr1 ; jump, function code is ok.
mov .ax,8003h ; set Error bit and "Unknown Command" code
jmp Intr2
Intri: shl bx,1 ; form index to Dispatch table and
; branch to driver routine
call word ptr [bx+ Dispatch]
; should return AX = status
les di,[RH_Ptr] ; restore ES:D! = addr of Request Header
intr2: or ax,0100h -~ ; merge Done bit into status and
mov es:[di.Status],ax
; store into Request Header
pop bp ; restore general registers
pop si
pop di

SUBSTITUTE SHEET

1)

s]

WO 90/05340
pop es 49
pop ds
pop dx
pop cx
pop bx
pop ax
ret ; back to MS-DOS
page

Command Code subroutines called by Interrupt Routine

These routines are called with ES:DI pointing to
; the Request Header.

; They should return AX = 0 if function was completed successfully,
-+or AX = 8000H + Error code if function failed.

PCT/US89/04913

Media_Chk proc near ; function 1 = Media Check
; etc.
xor ax,ax
ret
Media_Chk endp
Build_Bpb proc near ; function 2 = Build BPB
; etc.
xor ax,ax
ret
Build_Bpb endp
Read proc near : function 4 = Read
; etc.
xor ax,ax
ret
Read endp
Inp_Stat proc near ; function 6 = Input Status
; ete.
xor ax,ax
ret :
inp_Stat endp
Write proc near ; function 8 = Write
; etc.
xor ax,ax
ret
Write endp
Write_Vfy proc near : function 9 = Write with Verify
; etc.
xor ax,ax
ret
Write_Vfy endp
Outp_Flush proc -~ near : function 11 = Flush Output Buffers
; etc.
xor ax,ax
ret

Outp_Flush endp
SUBSTITUTE SHEET

WO 90/05340 PCT/US89/04913

50
IOCTL_Wrt proc near ; function 12 = 1/O Control Write
' ; ete. '
xor ax,ax
ret
10CTL_Wirt endp
Dev_Open proc near : function 13 = Device Open
; etc.
xor ax,ax
Dev_Open endp
Dev_Close proc near ; function 14 = Device Close
; etc.
xor ax,ax
ret
Dev_Close endp
Rem_Media proc near ; function 15 = Removable Media
; etc.
xor ax,ax
ret
Rem_Media endp
Out_Busy proc near ; function 16 Output Until Busy
; etc.
xor ax,ax
ret
Out_Busy endp
page
videocall macro
pushf
call dword ptr cs:VidVect
endm
keybdcall macro
pushf ; Call BIOS keyboard routine,
call dword ptr cs:KbVect ; but directly to avoid traps
endm
diskcall ~ macro
int 13h ; call BIOS DISK function
endm
TRUE EQU -1
FALSE EQU 0
: ASCI definitions
i:vel equ 07h
backsp equ 08h
cr equ 0dh
esckey equ 1bh
home equ 1eh
If equ 0ah
soh equ 01h ; start of header

eot equ 04h ; end of text

SUBSTITUTE SHEET

WO 90/05340 PCT/US89/04913

51
eom equ 0 ; DOS end-of-message
ack equ 06h
nack equ 15h
cancel equ 18h)
xon equ 11h ;
Q
xoff equ 13h ;
IDkey db '‘LamalD =’
IF ZERORAM
db ‘ZR ; ZeroRam version
ELSE
db 'HK ; Hot Key version
ENDIF
db ‘LamalD =’
scankey db 'hotkey ="'
scan_code dw 0300h ;(Ctrl-2) scan code to start/stop program.
KbVect dw 2 DUP (0) ;Holds old Interrupt 16h BIOS vector.
inLAMA db FALSE ;Busy flag, for our stack
{eeememeannnnnne- [NtEICEPE keystroke reading
Keyint16 proc far
sti ;Turn interrupts back on.
cmp ah0 :See if was request for an actual key.
je come_back JIf so, we'll check it first, -
skip_us:;jmp dword ptr cs:KbVect ;Otherwise, let go straight to caller.
come_back:
cmp cs:inlLAMA, FALSE ;Is LAMA routine busy?
jne skip_us ;If so, pass all keys along.
getkey: keybdcall
cmp ax,cs:iscan_code ;ls scan code correct?
je now_busy ;1 so, go to work.
iret ;Else just pass on key to caller.
now_busy:
call LAMATEST ;Go to LAMA.
mov ah,0 :Reset AH to BIOS key read function.
jmp getkey :Go get new key from BIOS. .
Keyint16 endp
flag_str db '332 RPL’ : marks boundary of password
numusers db 1 ; used by INST utility
maxusers db 1 ; used by INST utility
UtlAccess1 dw 318Bh ; "LAMA"
UlAccess2 dw 363Bh
UtPassword1dw 0B35Dh ; "LOCK"
U1Password2dw 0F7A2h
hashstr db 21 DUP (0) ; HASHLEN +1
hashptr dw 0
Iptr dw 0
front dw 0
back dw 0
dir dw 1
shiftcount dw 0
icount dw 0
HashPass PROC near
CMP BYTE PTR pw_buf,00H
JNE L0021

SUBSTITUTE SHEET

WO 90/05340

L0021:

L0048:

L0064

Loo71:

L0074:

L0081:

LO09A:

52
DX,DX

AX,DX

LOODA

AX, offset hashstr
hashptr, AX

Iptr, AX

Sl, ax

AX, offset hashstr+ 18
back, AX

DI, offset pw_buf
dir, 0001H
AX,AX
shiftcount, AX
icount,AX
SHORT L0074
AL,[DI]

CX, shiftcount
AL CL

BX, hashptr
[BX],AL -
hashptr

DI, dir

BYTE PTR [D1},00H
L0064

di, offset pw_buf
L0071

AX, dir

AX

dir, AX

DI,AX

shiftcount

icount

icount, + 14H
L0048
icount,0000H
SHORT LO09A
AX,[SI+0AH]
[SI],AX

BX, back
AX,[BX-0AH]

. AX{SI]

[BX],AX
icount
Sl,+02H
back, +02H
icount, + 05H
L0081

BX, Iptr

DX, [BX+02H]
AX [BX]
AX,[BX+04H]
DX,[BX+06H] -
AX,[BX+08H]
DX,[BX+0AH]
AX,[BX+0CH]
DX,[BX+0EH)]
AX,[BX+10H]
DX, [BX+12H]
CX,DX

CX,AX

SUBSTITUTE SHEET

PCT/US89/04913

; hashstr{HASHLEN-2]

PCT/US89/04913

WO 90/05340
53
JNE LOODA
MOV DX,0A55AH
MOV AX,0C387H
LOODA: ret

HashPass ENDP

-***
]

bummyIRET proc far
iret
DummylRET endp

o***

DISPlay Character in AL
disp_ch proc near

push di
push si
mov ah, OEh ; BIOS write tty
mov bh, DispPage
mov bl, LamAttr
videocall
pop si
pop di
ret
disp_ch endp
;*t***
; DISPlay STRing from memory
disp_str proc near
displp: lodsb
cmp a,0
je dispout
call disp_ch
jmp displp
dispout: ret

disp_str endp
-***
; clr_line - clears line (0 at top, 24 at bottom)

; preserves affected registers

cir_tine PROC NEAR

push ax . ;save general registers
push bx
push cX
push dx
push di
push si
mov ah,6 ; init window function
mov al,0 ; # lines to scroll
mov bh,LamAttr ; attribute for blanked area
) cmp splitser, 0

je doclr
mov bh, 0

doclrl: mov ch,dh ; y coordinate, upper left coordinate of window
mov cl,0 : x coordinate, upper left coordinate of window
mov di, MaxCol ; x coordinate, lower right coordinate of window
cmp d, 79
jbe dockmod
mov dl, 79

dockmod:cmp VMODE, 7
jbe doVcall
mov di,32 : x coordinate, lower right coordinate of window

doVcall:videocall

: pop si

SUBSTITUTE SHEET

WO 90/05340 PCT/US89/04913

. 54

pop di

pop dx

pop cX

pop bx

pop ax

ret

cir-line endp

RERKERRIREKARERIRIKE X I AR hkhkkkkkkkdhkkkrhhkkkkkhkhkdhtdhdhkkhkhkkkkkhrkhkdc
s

; CLRSCR --- clears screen
; preserves affected registers;
; assumes variable “"column® set to # columns on screen - 1

clrscr proc near
push ax ; save general registers
push bx
push cX
push dx
push di
push si
mov ax,0600h ; AH = = 6 for "scroll or initialize window"
; AL = = 0 for # lines to scroll
xar cx,cx ; CL,CH == x,y coordinates of upper left corner
xor bh, bh
cmp VMODE, 7
jbe CGAclr
mov dx, 0120h ; X,y lower right
jmp daclrs
CGAclr:
mov dl, MaxCol
cmp dl, 79
jbe dosetdh
mov dl, 79
dosetdh:mov dh, 05h ; X,y lower right
cmp splitscr, 0
jne docirs
mov bh, LamAttr ; attribute for blanked area
mov dh,18h ; X,y lower right
doclrs: videocall "
pop si
pop di
pop dx
pop cX
pop bx
pop ax
ret
clrscr endp

ckkkkhkkkkhhkhkkhkhkhkkhkhkbhkdrrrkhhhhikhhhkdkbhkhkkrhkkkhkkkkkkkrkkkrhkkkkkikdhhkhdhht
s

: Used by LAMATEST to steal vectors from debuggers and hidden here
; just to be obtuse. Note that CLI and STl are done elsewhere.

StealVects proc near
les di, ObscureZ2
mov ax, es:[14h] ; Save current PRINTSCREEN vector
mov ‘ SavePscrn,ax
mov ax, es:[16h]
mov SavePScrn+2,ax
mov ax, es:[20h] ; Save original BIOS timer vector
mov SaveTimer,ax
mov ax, es:[22h]
mov SaveTimer+2,ax
mov ax, es:;[70h] ; Save original BIOS TIC vector

SUBSTITUTE SHEET

WO 90/05340

nosteal:

stealout:ret
StealVects

mov
mov
mov
cmp
jb
mov
mov
rep
mov
mov
stosw
mov
stosw

mov
mov
stosw
mov
stosw
mov
mov
stosw
mov
stosw
cmp
je
mov
mov
stosw
mov
stosw
mov
mov
stosw
mov
stosw

endp

PCT/US89/04913

SaveTic,ax L

ax, es:[72h]

SaveTic+2,ax

stealv, 2 ; security level 27

nosteal ; skip if less than 2

si, offset InitVects
cx, VectLenVar
Mmovsw

di, ObscureNMI

ax, offset cs:DummyIRET ; make dummy printscreen vect.

; mov es:[14h}, ax
ax, cs
; mov es:[16h], bx
di, ObscureV
ax, offset cs:DummylRET ; make dummy printscreen vect.
; mov es:[14h], ax
ax, cs
; mov es:[16h], bx
di, 24h - ; point to 0:24h

ax, offset cs:INT_9 ; use local to defeat ctl-alt-del
ax, cs

stealv, FALSE ; steal timer unless minimum security level

stealout
di, 20h ; point to INT 8 - Timer
ax, TimerVect

; mov es:[20h], ax
ax, TimerVect +2

; mov es:[22h], bx
di, 70h ; point to INT 1C - Timer
ax, TicVect

; mov es:{70h], ax
ax, TicVect+2

; mov es:[72h], bx

.*******************************'k*******************‘******************
1

: Set cursor position to (0,y). (0,0} is upper-left corner.

setc_row

jge

proc near
push
push
push
push
push
mov
mov
xor
cmp
ja
cmp
jne
mov
cmp
ja
mov
sub.
doset

ax ; save general registers
bx

dx

di

si

ah,2

bh, DispPage
dl, di

VMODE, 7
doset
dh,LAMA1_LINE
dostd

dl, 10

MaxCol, 39
doset

dl, TitleOff

di, 10

; always go column 10 in title line

; offset-20+ 10

SUBSTITUTE SHEET

WO 90/05340 PCT/US89/04913

56
xor dl, di
. jmp doset
dostd:
mov d, 4
cmp MaxCol, 39
jbe doset
mov dl, 18H
doset: videocall
pop si
pop di
pop dx
pop bx
pop ax
ret
setc_row endp
; WaitMilli()
; Waits 1/1000 second (+ or - 7?%) and returns
SETVALequ O
TPort equ 40h
WaitMilli proc near
push ax
push bx
push cX
push dx
mov dx, 60 ; Loop used in case timer is disabled. GAMES, etc!!
mov al, SETVAL
out 43h, al ; read timer 0
in al, TPort
mov bl, al
in al, TPort
mov bh, al
miloop1:
dec dx
je waitout
mov al, SETVAL
out 43h, al
in al, TPort
mov cl, al :
in al, TPort
mov ch, al
mov ax, bx
sub ax, cx
cmp ax, 1000
jle miloop1
waitout:pop dx
pop ' cX
pop bx
pop ax
ret
WaitMilli endp

TIMODE EQU 0B6H
. LOCATION OF PORTS

SUBSTITUTE SHEET

(A

WO 90/05340

PORT B EQU
TIMER EQU
FREQ dw
PERIOD dw 1
CUTOFF dw
savesetdb 0

sndtone PROC

MOV
ouT
MOV
MOV
MOV
Div
out
MOV
out
IN
MOV
OR
out
MOV

DELOOP: call WaitMilli
LOOP

CMP
JE
MOV
AND
ouT
TONEXIT:RET
sndtone ENDP

57

61H
40H
1000 ; Must always be = 13

TRUE

near

AL, TIMODE
TIMER+3, AL
CX, FREQ
DX, 12H

AX, 34DEH
CX
TIMER+2, AL
AL AH
TIMER+2, AL
ALPORT B
saveset, AL
AL,03
PORT B, AL
CX, PERIOD

DELOOP
CUTOFF, FALSE
TONEXIT

AL, saveset

AL, OFCH
PORT_B, AL

PCT/US89/04913

;8255 port B addr
:8253 timer port addr

:Select TIMER 2,L.SB,MSB
:Write the timer mode register
; get reques

: UPPER NUMERATOR

: LOWER NUMERATOR

; the quotient is in AX

:Write timer 2 cnt - LSB

:‘Write timer 2 cnt - MSB
:Get current setting of port
;Save the setting

;Turn speaker on

:Set delay count

;If not, continue beeping speaker
; turn off tone at end?

; if not, just quit

;:Recover value of port

: TURN OFF BOTH GATES

, hame

sndbell()

: description Sounds the speaker according to values of EQU's used

sndbell PROCnear
MOV
MOV
MOV

sndbell ENDP

CUTOFF, FALSE
PERIOD, 60
FREQ, 1000
sndtone
CUTOFF, TRUE
FREQ, 1500
sndtone

Whoops()

; description Sounds the whooping alarm and hangs up the machine.

Whoops PROC
MoV
MoV

Prelp: MOV

WhoopLp:CALL
add

near
CUTOFF, FALSE
PERIOD, 30
FREQ, 100
sndtone

FREQ, 100

SUBSTITUTE SHEET

WO 90/05340 PCT/US89/04913
, 58
. cmp FREQ, 2000
ja PreLp
mov ah,1 ; read keyboard
keybdcall
jz Whooplp ; have no key waiting, loop
mov ah, 0 ; read keyboard
keybdcall
cmp ax scan _code ;ls scan code correct?
jne Whooplp
MOV CUTOFF, TRUE
CALL sndtone
ret
Whoops ENDP
; name Oops()
; description Builds ominously from low to high and returns.
Oops PROC near
MOV CUTOFF, FALSE
MoV PERIOD, 25
- MOV FREQ, 20
Ooplp: CALL sndtone
mov ah,1 ; read keyboard
keybdcall .
jz OopsChk ; have no key waiting, loop
mov ah, 0 ; read keyboard
keybdcall
cmp ax scan_code :lsscan code correct?
je OopsOut
OopsChk:addFREQ, 5
cmp FREQ, 3000
joe Ooplp
OopsOut: '
pushf
MOV CUTOFF, TRUE
CALL sndtone
popf
ret ; if returns "equal’ (ie. JE), then hotkey was pressed
Oops ENDP
; name Blatt()
; description Sends an insulting failure sound
Blatt PROC near
MOV CUTOFF, TRUE
MOV PERIOD, 20
mov al, 50
mul entry_count
mov cX, ax
Bloop: cmp FREQ, 60
jne setlo
mov FREQ, 103
imp sendit
setlo: mov FREQ, 60
sendit: push cX
CALL sndtone

UBSTITUTE SHEER

o

¢)

PCT/US89/04913

WO 90/05340
59

pop cx
loop Bioop
ret

Biatt ENDP

INT_9 PROC FAR ;(Flags saved by INT)
ST ;Allow interrupts
PUSH AX :Save used register
cmp cs:inLAMA, FALSE ; are we in LAMA input?
JE PROCESS_KEY ;If not, continue on.
IN AL,60H :Get key scan code
CMP AL, 46H :Check if CTL-Break key
JE StopReset ;If so, break out
PUSH AX
MOV AH,2 ;Get shift status fn
keybdcall
AND AL,0CH ; ignore ANY CTL-ALT combo
CMP AL,0CH
POP AX
JNE PROCESS_KEY ;If not, continue on.
CMP AL, 53H ;Check if DEL key
JE StopReset ;then is our signal

PROCESS_KEY:
POP AX :Restore register
JMP DWORD PTR CS:OrgINT9 :Process key as normal

Reset the keyboard interrupt controller (forget the key strbke)

:These instructions reset
; the keyboard.

:l/O delay for fast AT's

:Disable interrupts and
;reset the int controller

;Allow interrupts
:Restore register
;Go back where we came from

: dummy value, must be initialized

StopReset:
IN AL61H
MoV AH,AL
OR AL,80H
ouT 61H,AL
MOV AL AH
JMP SHORT $+2
ouTt 61H,AL
cu
MOV AL,20H
out 20H,AL
STl
POP AX
IRET
INT_9 endp
SCRNSIZE equ 2000
screenbuf dw SCRNSIZE DUP (0)
endbuff label near
VMode db 5Eh
VideoSeg dw 0B800h
savecurs dw 33cgSh ; dummy value

splitscr db 0
DispPage db 0

line numbers (0 = = top) for display

LOGIN_LINE db 5

PW_LINE db 7

ENTRY_LINE db 10

LAMA1_LINE db 19
21

LAMA3_LINE db

113
114

WO 90/05340

SaveScrn

getcursor:

getcurt:

proc near
push -
push
push
push
push
push
mov

mov

mov

call
call
call
call
call
mov
videocall
and
mov
mov
dec
mov
mov
videocall
mov
mov’
mov
mov
cmp
je
cmp
je
mov
cmp
jle
jmp

mov
mov
mov
mov
mov
mov
cmp

cmp
ja

mov
mov
mov
mov
mov
mov

mov
mov
cmp
je

60
; screen

ds

es

di

si

bx

cX

cX, CS

es, cX

ds, cx

sndbell
sndbell
sndbell
sndbell
sndbell
ah, OFh

al, 7Fh
VMode, al
DispPage, bh
ah

MaxCol, ah
ah, 3

savecurs, dx

di, offset screenbuf
al, VMode
VideoSeg, 0B00Oh
a,7

getcursor

al, OFh

getcursor
VideoSeg, 0B800h
al, 6

getcursor
pixmode

LOGIN_LINE, 5 ;13
PW LINE, 7 14
ENTRY_LINE, 10
LAMA1_LINE, 19
LAMA3_LINE, 21
splitscr, 0

al, 4

getcuri

al, 6

getcur1
LOGIN_LINE, 1 ;2
PW_LINE ,2
ENTRY_LINE, 3 ;4
LAMA1_LINE, 4 ;0
LAMA3 LINE, 5
splitscr, 1

ds, VideoSeg
si, 0
cs:splitscr, 0
singlscr

SUBSTITUTE SHEET

; CGA graphics?

PCT/US89/04913

; read current mode

; correct top-bit error

; read cursor position

; monochrome adapter?

; monochrome graphics adapter?

(r

WO 90/05340

mov
rep
mov
mov
rep
jmp
singlscr:
mov
cmp
jbe
mov
mov
sub
shi
saverow:mov cx, 80
rep
dec
je
add
jmp
stdscr: rep
saveout:pop c©x
pop
pop
pop
pop
pop
ret
pixmode:
push
mov
videocall
pop
mov
mov
pixioop:
push
mov
mov
videocall
and
mov
dec
mov
videocall
shl
shl
shi
shi
add
pop
stosb
cmp
ib
inc
mov
mov
videocall
mov
mov

61
cx, SCRNSIZE/2
Mmovsw
si, 8192
cx, SCRNSIZE/2
movsw
saveout

cx, SCRNSIZE
CS:MaxCol, 79

stdscr

bx, 25

dx, word ptr CS:MaxCol
dx, 79

dx, 1

movsw
bx
saveout
si, dx
saverow
movsw

bx
si
di
es
ds

di
ah, 8

PCT/US89/04913

; always do 25 lines

: BIOS read char/attr

: to reset video, MUST HAVE!

di
dx, 0
cX, 281

di
ah, 0Dh
bh, DispPage

al, OfH
bl, al

cx
ah, 0Dh

al,1
al1
al,1
al,1
al, bl
di

di, offset endbuff

; start at row O

: set column counter to 281

; save buffer pointer
; read pixel

; save LS nibble

; read pixel

; restore buffer pointer
: save 2 pixels
; end of storage space?

deccol

cX : This is needed to reset the video into char mode
al, bl ; get LS nibble

ah, 0Ch ; write pixel

PW_LINE ,0

LOGIN_LINE, 0

SUBSTITUTE SHEET

WO 90/05340

mov
jmp
deccaol: dec
ig
mov
inc
mov
- mov
mov
mov
mov
mov
jmp

SaveScrn endp

-*********************************;***********************************
N .

; clear screen

RestScrn proc near
push
push
push
push
mov
cmp
joe
mov
mov
restloop:
mov
inc
push
mov
mov
and
mov
videocall
dec
mov
shr
shr
shr
. shr
mov
videocall
pop
cmp
jae
dec
19
mov
inc
Imp

CGArest:mov es, VideoSeg

mov

cmp

je

mov

rep

mov

mov

ENTRY_LINE, 1
saveout

cX

pixioop

cX, 281

dx
LOGIN_LINE, 1 ;2
PW LINE, 2 3
ENTRY_LINE, 3 ;4
LAMA1_LINE, 4 ;0
LAMA3_LINE, 5
splitscr, 1

pixioop

es
di
si
bx

si, offset screenbuf

VMODE, 7
CGArest
dx, 0

cX, 281

bl, [si]

si

si

al, bl

bh, DispPage
al, ofH

ah, 0Ch

cX
al, bl
al,1
al,1
al,1

- alt

ah, 0Ch

si

si, offset endbuff
restout

cX

restloop

cX, 281

dx

restloop

di, 0

splitscr, 0
singlrst

cx, SCRNSIZE/2
MOVSW

di, 8192

cx, SCRNSIZE/2

62

; decr. column
; continue if O

PCT/US89/04913

; set column counter to 281

: increment row

;startatrow 0

; set column counter to 281

; get LS nibble

; write pixel

; get LS nibble

; write pixel

; end of storage space?

; decr. column
; continue if = 0

; set column counter to 281

; increment row

SUBSTITUTE SHEET

o

WO 90/05340

jmp
singlrst:
mov
cmp
jbe
mov
mov
sub
shi
restrow:
mov
rep
dec
jz
add
Jymp
reststd:rep movsw
restout:mov ah, 2
mov
mov
videocall
pop
pop
pop

RestScrn

reststd 63

cx, SCRNSIZE
MaxCol, 79

reststd

bx, 25

dx, word ptr MaxCol
dx, 79

dx, 1

cx, 80
MOVsW
bx
restout
di, dx
restrow

; set cursor position
bh, DispPage
dx, savecurs

bx
si
di
es

xx

ObscureZ dd0
ObscureV dwi4H
ObscureNMI dw
keycount db 0
editecho db FALSE

editline proc near
mov

InputLp: mov
keybdcall
cmp
jne
cmp
je
dec
dec
mov
cmp
je
push
push
push
call
mov
mov
mov
videocall
pop
pop
pop
jmp

: Constant used to obscure code
: Constant used to obscure code
08H : Constant used to obscure code

di,offset pw_buf

ah,0 . read keyboard
al, backsp : backspace?

testfunc

keycount, 0

InputLp

keycount

di

byte ptr [di], 0

editecho, FALSE

InputLp

cX

si

di

disp_ch

ax, 0920h ; write char = = space

bl, LamAttr ; set attr

cx, 1 ; write 1 char

di

si

cX
InputLp

SUBSTITUTE SHEET

PCT/US89/04913

WO 90/05340

testtunc:
cmp
jne
mov
jmp
addchar:
cmp
ie
‘inc
mov
inc
cmp
je
call
editcout:
cmp
jne
ret
editline endp

PCT/US89/04913

64

al,cr
addchar
keycount, 0
editcout

keycount, PWLEN
editcout
keycount

byte ptr [di],al

di

; don't over-run space

editecho, FALSE
editcout
disp_ch

aler
Inputlp

okkkdkkkkkkhkhkkkkdkkkkkkkhkhkkikkkikikdkkikhkhhkidhkikkkkhkhkikikkikkihkikkikkkkikdiii
]

ClearBuf proc near

; clear buffer for another try
push
push
push
pop
mov
mov
xor
rep
pop
pop
ret

ClearBuf endp

?7? make into macro
ax

es

ds

es

cx,PWLEN +1 ; initialize loop
di,offset pw_buf

al,al

stosb-

es

ax

sREKIXAREA R KEAARAkRkEAhkkhkkk bRk hkbkbkkhkkrhkrhkkrkdhhkkihhdkkrhkikkhkkikk
1

DispPW proc near
MOV
call
MOV

call setc_row-

mov
call disp_str
ret

DispPW endp

DH,PW_LINE

clr_line ; clear line for another try
DH,PW_LINE

si, offset pw_pmpt

shAkR ARk kkkhkdddkkhkhkikhkkkkdkdkhdkihhhkihhhkkhkkhhrkkkkkkihrtkkhkrkkhhkhkihkk
]

DispEnt proc near
mov
cali setc_row
mov
call disp_str
xor
mov
mov
call
ret

DispEnt endp

dh,ENTRY_LINE
si, offset entry_msg

ax,ax
al.entry_count
cx,1

bin2dec

REAEREE IR EEEEAR IR RIKRREREEEIERARAEARRAAXREETERARR AR LR ARk TRk Tk *d k%
1

LAMATEST proc near

SUBSTITUTE SREET

£

WO 90/05340 PCT/US89/04913

; notes: 63
 if 0 is read, nextread returns extended ASCl code
should adapt to host's graphics mode

NOTE: Must be called with CLI active

push bx
cli :Avoid interrupt right now.
mov cs:iinLAMA/1 ;Set busy flag, to protect our stack.
mov C$:5avss,ss :Save caller's stack segment.
mov cs:savsp,sp :save caller’s stack pointer.
mov bx,cs
mov ss,bx ‘Reset stack to our code segment.
mov sp,offset cs: topstack -Start our stack below KbVect addr.
push cx
push dx
push bp
push si ;Save all registers.
push di
push ds
push es
push cs
pop es .
mov cx, CS:VectLenVar ; save all vectors now, restore later
Ids si, CS:0ObscureZ
mov di, offset CS:SaveVects
rep movsw
push cs
pop ds
call StealVects ; assume CLI active now, take over vectors
sti

call SaveScrn : save screen, as much as 4k will hold
; put up screen

DoScreen:
call cirscr ; clear screen area
mov entry_count,0
cmp VMODE, 7 ; not enought room in hires, skip
ja main_loop
mov dh,LAMA1_LINE
call setc_row
mov si, offset TitleStr

. cmp - MaxCol, 39
ja dtitle
xor ah, ah
mov al, TitleOff

add si, ax

dtitle: call disp_str
mov dh,LAMA3_LINE
call setc_row

mov si, offset lama3
. call disp_str

main_loop:
cmp entry_count,0 ; display count of entry attempts
ie put_login
call DispEnt)

put_login: ; prompt for login
cmp AccessToo, FALSE
je put_prompt
mov dh,LOGIN_LINE ; clear line for another try
call clr_line
MOV DH,LOGIN_LINE

SUBSTITUTE SHEET

WO 90/05340 PCT/US89/04913

66 -

call setc_row
mov si, offset login_pmpt
call disp_str
; retrieve login
MOV editecho, 1
call ClearBuf
call editline
call HashPass
; retrieve password without echo
put_prompt: ; prompt for password
push ax
push dx
call DispPW
cal - ClearBuf
MoV editecho, FALSE
call editline
pop dx
pop ax
; don't bother decrypting password if login is invalid
cmp AccessToo, FALSE
je dohash
cmp ax, UlAccess1
jne bad_pw :
cmp dx, U1Access2
jne bad_pw
dohash: call HashPass
call ClearBuf
cmp ax, U1Password1
jne - bad_pw
cmp dx, U1Password2
je good_pw
; keep count of bad tries
bad_pw: inc entry_count
call Blatt
mov al, maxatts
cmp al, 0
ie main_loop ; try again
cmp al, entry_count)
ja main_foop ; try again .
call clrscr : ; clear screen area
call Oops
ie recover
call Whoops ' ; alarm and hang up
recover;jmp DoScreen
; NOW WE MUST RESTORE THE SCREEN
good_pw:
call RestScrn ; restore screen
cli
mov cx, CS:VectLenVar
mov si, offset SaveVects
les di, ObscureZ2
rep movsw
mov di, ObscureV
mov ax, SavePScrn ; replace dummy printscreen vect.
stosw ; mov 0:[14h}, ax
mov ax, SavePScrn+2
stosw ; mov 0:[16h], bx
mov di, 20h ; point to INT 8 - Timer
mov ax, SaveTimer
stosw ; mov 0:[20h], ax

SUBSTITUTE SHEET

WO 90/05340
67
mov ax, SaveTimer+2
stosw
mov di, 70h
mov ax, SaveTic
stosw
mov ax, SaveTic+2
stosw
pop es
pop ds
pop di
pop si
pop bp :Restore all registers
pop dx
pop ©x
mov §S,CS:5avss ;restore old stack
mov sp,cs:savsp
sti
mov cs:inLAMA, FALSE ;Clear busy flag.
pop bx
ret

LAMATEST endp

page

-************Q**
!

PCT/US89/04913

» bin2dec: binary to decimal conversion. Displays the contents of AX
: on the screen as a signed decimal number. Finds the rightmost digit by

 division, repeating until all found. The CH register contains the
: # of digits to be displayed. AX is destroyed by this call.

bin2dec proc near
push bx
push cX
push dx
mov cl,0 ;
mov bx,10 ;
: check for negative number. If negative, make number positive.
or ax,ax ;
jnl more_hex ;yes
neg ax ;
push ax
mov al, '’
call disp_ch

: main division loop - get decimal digit until no more remain
more_hex:

; mov 0:[22h], bx
; point to INT 1C - Timer

; mov 0:[70h], ax
;. mov 0:[72h], bx
o d F 9 % J Je g ok de ek ke ok

minimum

clear digit count

set divisor = 10
is number positive?

no - negate the negative

xor dx,dx ; cleanup
div bx ; divide by 10
push dx ; save remainder
inc cl ; digit counter + = 1
or ax,ax ; test quotient
jnz more_hex ; continue if more
; main digit print loop - reverse order
sub ch,cl ; min. # digits reached?
jle morechr ; yes, begin display
Xor dx,dx : no, start pushing 0's
morezero:
push dx
inc cl ; digit counter + = 1
dec ch ; check whether matched yet
jnz morezero : no, keep pushing it

SUBSTITUTE SHEET

WO 90/05340 PCT/US89/04913
68
morechr:
pop dx ; restore last digit
add dl,30h ' ; converts to ASCI
push ax
mov al, di
call disp_ch
pop ax
dec cl ; digits coutn -= 1
"jnz morechr ; continue if more
pop dx
pop cX
pop bx
ret
bin2dec endp
;***************’k**'k********
XXX db "MaxCol =
MaxCol db 0 ; maximum row for the current video mode.
MaxCol2 db 0 ; allow use as word
ObscureZ2 dd 0 ; Constant used to obscure code
entry count db 0 ; # entry attempts
PWLEN equ 20 ; size of password
pw_buf db (PWLEN +1) dup (0) typed password buffer (extra space for $)
MesgKey db 'MString="; let MString be customized with 60 chars
TitleOff db 20 ; offset of text from start of .string
; counter- |012345678901 2345678901 2345678901 2345678901 234567890123456789 |
;TitleStrdb’ LAMALOCK +
TitleStrdb’ Anchor Pad Plus ’
db eom
WPFstring db "Write-protect error. Drive A: is not protected.’,7,0
login_pmpt db "Access Code:’,eam
pw_pmpt db 'Password: ',eom
lama3 db * AUTHORIZED PERSONNEL ONLY’,cr,lf,eom
entry msg db ' Entry Attempts: ',eom
;***********************************t**********i***?t****'k************
stackspac db 150 DUP (0)
topstack dw 0
Vectlength equ 40H
InitVects dw VectLength DUP (0)
SaveVects dw VectLength DUP (0)
SavePScrn dw 2 DUP (0);Holds old Interrupt 8 BIOS vector.
TimerVect dw 2 DUP (0) ;Holds old Interrupt 8 BIOS vector.
SaveTimer dw 2 DUP (0) ;Holds old Interrupt 8 BIOS vector.
TicVect dw 2 DUP (0) ;Holds old Interrupt 1ch BIOS vector.
SaveTic dw 2 DUP (0) ;Holds old Interrupt 1ch BIOS vector.
VidVect dw 2 DUP (0) ;Holds old interrupt 10h BIOS vector.
OrgINT9 dw 2 DUP (0);Holds old Interrupt 9 BIOS vector.
savss dw ? ;Holds caller's stack segment
savsp dw ? ;Holds caller’s stack pointer
VectlenVar dw VectLength
attrkey db attribute =’
LamAttr db 07H
maxakey db ‘maxatt=" ; keyword for maximum attempts
maxatts db 3 ; alarms after three attempts
;alarmkey db ‘alarm="
;alarmievel db
writetest -db FALSE ; assume don't test drive A: write protect

SUBSTITUTE SHEET

el

WO 90/05340 PCT/US89/04913

69
stealv db 0 : Level of security, vector stealing. 2= =max
AccessToo db TRUE - BOTH Acess Code and Password
;***ﬁ***************
page
:int23 dw 0,0
;int1b dw 0,0

ND_Read: ;function5 = Non-Destructive Read
Inp_Flush: ; function 7 = Flush Input Buffers
Outp_Stat: ; function 10 = Output Status

IOCTL_Rd proc near ; function 3 = 1/O Control Read
cli
call LAMATEST : ;Go to LAMA.
xor ax,ax
ret

IOCTL_Rd endp

EndByte db 5Ah ; last byte, not XORed in sweep decode
;***
doscall macro :
int 21h . call MS-DOS function
endm
Lamalnit proc near . : function 0 = Initialize Driver
push ds
push es ; save address of Request Header
push di
push ax
push cs
pop ds
xor ax, ax
mov es, ax .
mov ax, es:[40h] ; Save original BIOS video vector
mov VidVect,ax ; BEFORE calling disp_str!
mov ax, es:[42h] .
mov VidVect +2,ax
cmp writetest, FALSE
je LTest
readioop:
mov ax, 0201H : BIOS diskette read.
push cs
pop es
mov bx, offset screenbuf
mov cx, 0001H
mov dx, 0000H
diskcall .
jib readloop : loop until read passes
mov ax, 0301H : BIOS diskette write back
diskcall
and ah, 02H ; write protect error
jnz LTest :
mov si, offset WPFstring
call disp_str
WPfail: imp WPiail
: XXXXX Proper DOS calls cannot be made during INIT, must cheat. XXXX
LTest: xor ax, ax
mov es, ax

SUBSTITUTE SHEET

WO 90/05340

mov
mov
mov
mov

IFE ZERORAM

ENDIF

mov
mov
stosw
mov
stosw

push
pop
mov
Ids
mov
rep
push
pop
xor
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
cli

IFE ZERORAM

ENDIF

call LAMATEST

IF ZERORAM

mov

mov

ENDIF

mov
mov
mov
mov

mov

es, ax

mov
mov

cx, 17

rep

ax, es:[24h]
OrgINT9,ax
ax, es:[26h]
OrgINT9 +2,ax

di, 24h

ax, offset cs:INT_9 ; use local to defeat ctl-alt-del

ax, cs

cs

es

cx, VectLenVar
si, ObscureZ

di, offset InitVects
MovVsw

cs

ds

ax, ax

es, ax

ax, es:[58h]
KbVect,ax
ax, es:[5Ah]
KbVect+2,ax
ax, es:[20h]
TimerVect,ax
ax, es:[22h]
TimerVect +2,ax
ax, es:[70h]
TicVect,ax
ax, es:[72h]
TicVect +2,ax

ax,offset Keylnt16
es:[58h}, ax

ax, cs

es:[5Ah], ax

;Go to LAMA.

ax, cs

ax, offset CS:Media_Chk

70

di, offset CS:Dispatch

stosw

; point to 0:24h

; Save original BIOS timer vector

; Save original BIOS timer vector

;17 functions in the table

; set first usable memory address as start of Lamalnit to reclaim its memory

IF ZERORAM

ELSE

pop
pop
pop
pop

mov
mov

ax
di

es
ds

PCT/US89/04913

; Save entry hardware keyboard vector

; Save original BIOS keyboard vector -

; restore Request Header address

word ptr es:[di.address],offset CS:Header
word ptr es:[di.address],offset CS:Build_Bpb

SUBSTITUTE SHegr

Al

WO 90/05340

ENDIF

Lamalnit
intr
LAMA
code

mov

mov
xor
ret
endp

endp
endp
ends
end

word ptr es:[di.address],offset CS:Lamalnit

71

word ptr es:[di.address +2],cs

ax,ax

: return status

SUBSTITUTE SHEET

PCT/US89/04913

WO 90/05340 PCT/US89/04913

72
WE CILAIM:

1. A computer access control system for
use on a personal computer having an external boot
dfive device to deter unauthorized access to the
computer data and programs, comprising:

physical means for blocking removal or
insertion of a computer program code containing
device from the computer boot drive device, and

computer access control program means for
enabling and disabling a personal computer upon
input demonstrating authority to access the
computer.

2. The control system according to claim
1 where the computer access control program
comprises a priority device driver which is first
addressed during bootup.

3. A computer access control system
according to claim 1 including a program featuring a
bi-level entry access input requirement where an
access code and password must both be properly
inputted to demonstrate authority and obtain control
of the computer.

4. A computer access control system
according to claim 1 comprising means for
immediately disabling a computer upon single input
without destroying any data.

5. A computer access control system
according to claim 2 where the program includes
means for selecting the installation configuration;

20

WO 90/05340 PCT/US89/04913

73
a plurality of security levels offering

differing degrees of security;

means for selecting a desired one of said
security levels; and

means for selecting an appropriate alarm

level.

6. A personal computer access control
system for a computer with a default boot drive,
comprising:

a) computer software featuring a program
including program means to override system
initialization during boot up to require entry of an
access code and a password before initialization of
the operating system, program means to permit
interruption of computer operations by entry of a
user defined key and restoration upon entry of the

password, and
b) means for maintaining said software

in the default boot drive of the computer, said
means being positionable between a drive blocking
mode which locks said software in said boot drive
and an unblocking mode which permits removal of said

software from said boot drive.

7. A system according to claim 6 where
said program requires only approximately a 7.5K byte
file on the disk.

8. A system according to claim 6 where
said program further comprises a security driver
file to modify the system configuration program of

the computer.

WO 90/05340

74

9. A system according to claim 8 where
said program further comprises at least three
different security levels and means to select a
particular level of security desired.

10. A method for controlling access to a
personal computer with an external data drive,
comprising the following steps:

inserting a computer program containing
device into the external data drive,

blocking the external data drive with a a
lockable, blocking device capable of physically
locking the program into the computer,

installing a computer program including a
device driver that is first addressed by the
computer during boot up,

selecting a proper access code and
password,

rebooting the computer, and

entering a selected access code and
password.

11. A method according to claim 10
further comprising the steps of selecting the
desired level of security, selecting a user defined
hotkey for immediate interrupting of computer

operations, and selecting the security screen color.

12. A method for personal computer access

control, comprising the steps of:

a) providing computer software on a
medium removable from the computer including a
system configuration drive-command to supersede the
computer's disk operating system's configuration to
prevent access to the disk operating system without
demonstrating authority to so access the computer,

PCT/US89/04913

(]

=

PCT/US89/04913

WO 90/05340
75
b) locking the computer software into
the computer, and
c) inputting an access code and a

password to demonstrate authority to access the

computer.

WO 90/05340 PCT/US89/04913

1/1

i %

FIG. 1
SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

International Application No. PCT /US89 /04913

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate ail)

According to International Patent Classification (IPC) or to both National Classification and IPC

INT. Cl.(5): GO6F 13/14
U.S.Cl. 364/200

il. FIELDS SEARCHED

Minimum Documentation Searched 7

Classification System Classification Symbols

U.S. 364/200,900; 70/14,57,58

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched 8

IIl. DOCUMENTS CONSIDERED TO BE RELEVANT ¢

Category * Citation of Document, 1! with indication, where appropnate, of the relevant passages 12 Relevant to Claim No. 13
Y,E | US,A, 4,870,591 (CICCIARELLI et al.) 5,9, 11
P 26 SEPTEMBER 1989, see column 11, line 45-
column 13, line 19.
Y US,A, 4,719,566 (KELLEY) 12 JANUARY 1988, 1,6,10,12
see column |, line 65 - column 2, line 45.
Y US,A, 4,685,312 (LAKOSKI et al.) 11 AUGUST 1,6,10,12
1987, see the entire document. -
Y US,A, 4,652,990 (PAILEN et al.) 24 MARCH I-12
1987, see the entire document.
Y US,A, 4,621,321 (BOEBERT et al.) 04 NOVEMBER |I-12
1986, see the entire document..
Y US,A, 4,439,830 (CHUEH) 27 MARCH 1984, 1-12
see the entire document.
Y US,A, 4,218,738 (MATYAS et al.) 19 AUGUST 1-12
1980, see the entire document.

* Special categories of cited documents: 10

“A" document defining the general state of the art which is not
considered to be of particular relevance

“E" earlier document but published on or after the internationat
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

“0O" document referring to an oral disclosure, use, exhibition or
other means

“pP" document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
invoive an inventive step

“Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

iV. CERTIFICATION

Date of the Actual Completion of the International Search

24 JANUARY 1990

Date of Mailing of this International Search Report

23 FEB 1390

International Searching Authority

ISA/US

Signature of Authorized Officer . -

9%62524222,bﬁ?a%éuafté?dza:zé%;f
Examiner-Mar Napiorkowski

Form PCT/ISA/210 (second sheet) (Rev.11-87)

International Application No.

PCT/US89/04913

I!l. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category *

Citation of Document, with indication, where appropriate, of the relevant passages [Relevant to Claim No

Y APS Text Search and Retrieval-Classroom 1-12
: Manual, Planning Research Corporation,
Virginia, Revision I11/87, pp. 1-14 and 1-26
through 1-36.

A US,A, 4,655,057 (DERMAN) 07 APRIL 1987, 1,6,10,12
see the entire document.

A US{A, 4,640,106 (DERMAN) 03 FEBRUARY 1987, 1,6,10,12
see the entire document.

A UsS,A, 4,527,405 (RENICK et al.) 09 JULY 1985,i1,6,10,12
see the entire document.

A US,A, 4,131,001 (GOTTO) 26 DECEMBER 1978, 1,6,10,12
see the entire document. :

Form PCT/ISA210 (extra sheet) (Rev.11-87)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

