发明名称

碳酰氟的制造方法

摘要

提供了不使用光气等毒性较强的原料和难以得到的原料，可以更廉价、有效、且没有爆炸等危险、安全连续地制造 COF₂的方法。向反应容器内导入四氟乙烯气体和氧气，在不存在氯气的情况下，使其在气相加热反应制造碳酰氟。反应容器优选管状的反应管。四氟乙烯气体可以使用加热 HCFC-22 气体热分解而得的未精制或精制的四氟乙烯气体。通过本发明可以低廉、有效且安全地制造用作 CVD 装置（化学气相蒸镀法）的清洗气。
1.一种碳酰氟的制造方法，其特征在于，将四氟乙烯气体与相对于所述四氟乙烯气体中的四氟乙烯为 0.9 至 5 摩尔量的氧气一起导入至反应容器内，使之加热反应，所述四氟乙烯气体选自经精制的四氟乙烯气体、含有四氟乙烯制造时的反应副产物的未精制的四氟乙烯气体混合物、含有以由氯化合物形成的稀释剂作为第三成分的四氟乙烯气体混合物，且所述四氟乙烯气体中的四氟乙烯的含量相对于其他成分的量以摩尔比计大于 1/10。

2. 如权利要求 1 所述的碳酰氟的制造方法，其特征在于，氧量相对于四氟乙烯为 0.9 至 3.5 倍摩尔量。

3. 如权利要求 1 或 2 所述的碳酰氟的制造方法，其特征在于，反应容器中存在的氮气含量为氧气含量的 3 倍摩尔以下。

4. 如权利要求 1 至 3 中任一项所述的碳酰氟的制造方法，其特征在于，反应容器中填充有选自金属氯化物、金属氧化物和金属中的填充剂作为催化剂或热介质。

5. 如权利要求 1 至 4 中任一项所述的碳酰氟的制造方法，其特征在于，用于四氟乙烯气体与氧气的反应的反应容器是耐腐蚀性密封反应容器，且是具有相对于 1 摩尔氧气为 30L 至 40L 的容量的容器。

6. 如权利要求 1 至 4 中任一项所述的碳酰氟的制造方法，其特征在于，用于四氟乙烯气体与氧气的反应的反应容器是氧化反应用反应管。

7. 如权利要求 6 所述的碳酰氟的制造方法，其特征在于，氧化反应用反应管是耐腐蚀性反应管，相对于 0.3mm 至 30mm 的直径，长度为 0.1m 至 30m。

8. 如权利要求 6 或 7 所述的碳酰氟的制造方法，其特征在于，反应管中的四氟乙烯气体的滞留时间为 1～30 秒。

9. 如权利要求 1～8 中任一项所述的碳酰氟的制造方法，其特征在于，气相下的加热反应温度为 300℃至 450℃。

10. 如权利要求 1 所述的碳酰氟的制造方法，其特征在于，导入至反应容器中的四氟乙烯气体是经精制的高浓度四氟乙烯气体，或者由所述经精
制的高浓度四氟乙烯气体与稀释剂形成的四氟乙烯气体混合物，并且所述高浓度四氟乙烯气体或四氟乙烯气体混合物中的四氟乙烯含量以摩尔比计大于 1/10。

11. 如权利要求 1 所述的碳酰氟的制造方法，其特征在于，导入反应容器中的四氟乙烯气体是通过 HCFC-22 的热分解反应而得的未精制的四氟乙烯气体组合物，或者是由所述未精制的四氟乙烯气体组合物与稀释剂形成的四氟乙烯气体混合物，所述未精制四氟乙烯气体组合物或四氟乙烯气体混合物中的四氟乙烯含量以摩尔比计大于 1/10。

12. 一种碳酰氟的制造方法，其特征在于，将氟二氯甲烷气体热分解，除去盐酸，将其干燥得到四氟乙烯气体组合物，不用将所述四氟乙烯气体组合物精制，继续在没有稀释剂的情况下将所述四氟乙烯气体组合物与氧气一起导入至反应容器中，使之在气相下加热反应。

13. 如权利要求 12 所述的碳酰氟的制造方法，其特征在于，添加相对于氟二氯甲烷为 5 至 15 倍量的加热至 750 至 950℃的水蒸气，使所述水蒸气在热分解用反应管中流动，由此将 HCFC-22 气体热分解。

14. 如权利要求 13 所述的碳酰氟的制造方法，其特征在于，热分解用反应管的直径为 0.3mm 至 10mm，长度为 200mm 至 600mm。

15. 如权利要求 14 所述的碳酰氟的制造方法，其特征在于，热分解反应管中的氟二氯甲烷气体的滞留时间为 0.001～0.1 秒。

16. 如权利要求 12 至 15 中任一项所述的碳酰氟的制造方法，其特征在于，氧量相对于四氟乙烯为 0.9 至 3.5 倍摩尔量。

17. 如权利要求 12 至 16 中任一项所述的碳酰氟的制造方法，其特征在于，反应容器中存在的氮气含量为氧气含量的 3 倍摩尔量以下。

18. 如权利要求 12 至 17 中任一项所述的碳酰氟的制造方法，其特征在于，用于四氟乙烯组合物与氧气反应的反应容器是氧化反应用反应管。

19. 如权利要求 18 所述的碳酰氟的制造方法，其特征在于，氧化反应用反应管中相对于 0.3mm 至 30mm 的直径，长度为 0.1m 至 30m。

20. 如权利要求 18 或 19 所述的碳酰氟的制造方法，其特征在于，氧化反应用反应管中的四氟乙烯的滞留时间为 1～30 秒。

21. 一种用于制造碳酰氟的未精制的四氟乙烯气体组合物，其特征在
于，将导入至反应容器内的氯二氟甲烷加热进行热分解，从生成的四氟乙烯气体中除去盐酸，再经干燥而得。
碳酰氟的制造方法

技术领域

本发明涉及氟氯乙烯(TFE)为原料的碳酰氟(COF₂)的制造方法，尤其涉及以使氟氯乙烯(TFE)与氧气反应进行氧化为特征的 COF₂ 的制造方法。

另外，本发明还涉及以氯二氟甲烷(HCFC-22)为原料的碳酰氟(COF₂)的制造方法，尤其以 HCFC-22 作为起始原料通过热分解法制造氟氯乙烯(TFE)，再将该 TFE 作为原料使其与氧气反应进行氧化，藉此连续制造作为最终目标化合物的 COF₂ 的方法。

背景技术

在用于半导体制造工序、液晶制造工序，特别是氧化膜形成、绝缘膜形成等主要工序的 CVD 装置(化学气相蒸镀法)中，在清洗气等中使用全氟化碳(PFC)或三氟化氮(NF₃)等。但是，任一种气体的臭氧损耗潜能(ODP; Ozone Depletion Potential)为零，然而 100 年间的全球暖化潜能(GWP; Global Warming Potential)是 CO₂(二氧化碳)的一万倍左右，需要开发某种替代技术・材料。

另外，臭氧损耗潜能(ODP)是指根据目前所知，各种物质被认为的在无限长的时间内破坏臭氧的能力的积分，以氯三氟甲烷为 1 时的系数表示。

另外，全球暖化潜能(GWP)是每单位质量在一定期间(目前使用 100 年)对全球暖化的影响的积分，以二氧化碳为 1 时的系数(相对值)表示。

为了开发这些 PFC、NF₃ 等 CVD 腔室清洗气的替代技术材料，进行了国家项目，选择碳酰氟(COF₂)作为最有效的替代材料(参考非专利文献 1)。

碳酰氟(COF₂)是分子量为 66、沸点为-83℃的非燃性气体，清洗特性也优良，清洗效果不逊于以往品。另外，如果与水共存则分解成 CO₂(二氧化碳)。COF₂ 由于在大气中迅速分解因此 GWP 100 年值极小。即使考虑分解出的 CO₂，间接 GWP 100 年值也在 0.7 以下。因此，与 CO₂(二氧化碳)
的一万倍的 PFC、NF₃ 相比具有压倒性的优势。在上述项目中也有报道称，COF₂ 与那些清洗气相比具有大大削弱温室效应的效果(例如，参考非专利文献 2)。

另外，在液晶工业中，已有 COF₂ 实用化的报道。由于 COF₂ 可用水清洗机容易地除去，因此不需要以往必须的 NF₃、PFC 的除去装置，也减少了制造工序中的能量消耗(例如，参考非专利文献 3)。

COF₂ 的合成方法已知一般大致分为使一氧化碳或二氧化碳与氟、二氟化银等合适的氟化剂反应进行氧化的方法；使称为二氟化碳的光气与氟化氢、三氟化铝、三氟化砷、氟化钠等合适的氟化剂反应，将分子中的氯原子换成对应的氯原子的卤素交换方法；使三氟甲烷与氧反应的方法；使四氟乙烯气体与氧反应的方法这四种方法。

这些方法的具体示例如下所示。

1. 以一氧化碳或二氧化碳为原料的方法

作为以一氧化碳或二氧化碳为原料的方法，例如已知下述的方法。
(a) 将二氧化碳气体与氟气在气相下直接氟化的方法(参考专利文献 1)。
(b) 经一氧化碳的电解氟化的方法(参考专利文献 2)。
(c) 通过一氧化碳与氟气的反应来连续制造碳酰氟时，添加至少 1 种以上的选自 N₂、He、Ne、Ar 的第 3 成分气体，以动态状态且减压下边使气体流通边使其反应。另外，碳酰氟被冷阱捕捉之后，使第 3 成分气体或含有未反应的一氧化碳的第 3 成分气体循环的方法(参考专利文献 3)。
(d) 使金属氟化物之类的含氟化合物在由等离子体产生的激射状态下与 CO 反应，得到气体状反应混合物，接着，将该气体状反应混合物急速冷却，可以得到 COF₂，藉此制造碳酰氟的方法(参考专利文献 4)。
(e) 将一氧化碳用氟气直接氟化的方法(例如，参考非专利文献 4)。

但是，将一氧化碳电解氟化或直接氟化的方法需要昂贵的电解槽、耐腐蚀材料，或是为了控制巨大的反应热而引起设备变大等，是不适于工业的方法。另外，由一氧化碳与氟的直接反应而合成 COF₂ 的方法中，由于是可燃性气体的一氧化碳与强助燃性气体的氟之间的反应，因此反应急剧地发生，或由于反应热而产生四氟化碳等杂质，导致纯度下降。
2. 以氯气作为原料的方法：

以氯气作为原料的方法例如已知下述的方法。

(a) 向氢氟酸溶液中加入有三乙胺的溶液或分散有碱金属氟化物的
氟化氢溶液中，吹入氯气的方法（参考专利文献 5）。

(b) 氯气在溶剂中被氯化钠氯化的方法（参考专利文献 6）。

(c) 在活性炭催化剂的存在下，将氯气在气相下用氟化氢氯化的方法
（参考专利文献 7）。

(d) 使氯气在气相下与无机氯化物接触，之后在气相下使之与活性炭接
触，得到氯气与氯化碳酰二氯，再使其在气相下与活性炭接触，得到碳
酰氯的方法（参考专利文献 8）。

但是，使用该氯气的反应中，需要使用毒性高的氯气，另外合成的
COF₂ 也含有来自氯的氟氯化碳酰或氯化剂等杂质，而且难以与来自水份
的二氧化氯分离等，未必是理想的方法。

例如，(a)的溶剂存在下利用氟化氢进行氯化的方法存在难以与生成的
氯化氢分离的缺点。在溶剂以及三乙胺存在下利用氟化氢的氯气的氯化，
或者溶剂存在下利用氯化钠将氯气氯化的方法虽没有生成氯化氢而得到
碳酰氯，但是由于与生成的碳酰氯等摩尔生成三乙胺的盐酸盐、氯化钠，
因此需要将其舍弃或再利用。

(c)的在活性炭催化剂下利用氟化氢将氯气氯化的方法在该条件下主
要生成碳酰氯，难以除去副生的氯化氢。

(d)的将氯气在气相下用无机氯化物氯化，得到含有氯化碳酰二氯的混
合物，通过使其与活性炭接触而变换成氯化碳酰二氯与氯气的混合物后，
再用活性炭将氯化碳酰二氯通过活性炭催化剂歧化，藉此，得到碳酰氯的
方法中，通过无机氯化物的气相的氯化时，副生出一氧化碳和氯，为了将
其返回成氯气，需要使其与活性炭接触，需要其他的设备。

3. 以三氟甲烷为原料的方法：

以三氟甲烷为原料的方法已知例如使三氟甲烷与氧在加热下反应的
方法（参考专利文献 13）。

但是，为了利用该方法良好制得碳酰氯，需要 500℃以上的高反应温
度。另外，大多数情况含有作为副产物的二氧化碳，难以从碳酰氯除去二
氧化碳。

4.以四氟乙烯为原料的方法；
以四氟乙烯为原料的方法已知例如以下所述的方法。
(a)使氟化乙烷与臭氧反应的方法(例如，参考非专利文献 5)
(b)使四氟乙烯(TFE)与含有二氟化氧的氧反应而得到碳酰氟的方法 (参考专利文献 9)。
(c)在由氟化物形成的大量的稀释剂的共存下，利用等摩尔的氧将四氟乙烯(TFE)氧化得到 COF₂ 的方法(例如，参考专利文献 10、专利文献 11)。
但是，(a)氟化乙烷与臭氧的反应、一氧化碳与四氟化碳的平衡反应中，收率、纯度均低，难以用作工业工序。

(b)的方法虽然确认没有生成二氧化碳气体，但是由于碳酰氟因原料中或催化剂中的水份容易水解生成二氧化碳气体和氟化氢，因此反应后也有可能生成二氧化碳气体。特别是作为副产物或也反应原料混入的二氧化碳气体达到数％至数十％，在半导体制造时的清洗气等的用途中，要求减少其量或被分离。另外，原料的氟化乙烷由于具有爆炸性因此操作中伴有危险。

另外，(C)的方法是流式系统，将 TFE 与等摩尔的氧在 200 至 450℃反应 1 至 10 秒，另外需要使用相对于 1 摩尔氧为 10 至 100 摩尔的由碳酰氟、氟利昂-22、氟利昂-113、氟利昂 C51-12 或全氟环状醚的混合物形成的 FC-75 作为稀释剂。在该文献中报道，TFE 与氧的反应中产生的反应热大，通常如果将该摩尔的 TFE 与氧的混合物加热，则将爆炸只能得到少量的 COF₂，因此使用稀释剂来抑制爆炸。但是，存在使用了这些稀释剂的氟化合物的价格不一定便宜，以及需要将生成物与这些稀释剂分离的操作的问题。

另外，成为 COF₂ 制造原料的 TFE 在工业上通过一氯二氟甲烷的高温热分解法制得。原本热分解反应是伴随有分子分解和再结合的复杂的反应，因此伴有多种副产物。因而，从含有多种副产物的热分解生成物中高效分离精制目标的高纯度 TFE，以及将未反应的 R-22 高效再使用是重要的课题(参考专利文献 12)。

5.COFO₂ 制造原料的 TFE 的制造方法；
四氟乙烯（TFE）工业上可以通过氯二氟甲烷 HCFC-22（有时被称为 R-22）的高温热分解法制得。

HCFC-22 的热分解反应中热分解温度为 HCFC-22 分解的温度即可，为了提高 TFE 的收率，通常在 600～700℃ 的气氛下进行反应。热分解的方法有内热法和外热法两种。内热法是通过使 HCFC-22 与加热水蒸气接触进行加热的方法，被用于大多数的情况。另一方面，将 HCFC-22 供给到热分解反应装置中，从反应装置外部通过热介质、直接加热等方法供给热量的是外热法。

但是，热分解反应是伴随有分子的分解和再结合的复杂的反应，因此伴随有多种反应副产物。因而，从含有这些反应副产物的热分解生成物中高效分离精制作为目标的高纯度 TFE，以及将未反应的 HCFC-22 高效再使用是重要课题。

因此，TFE 的精制如下进行：将 HCFC-22 的热分解反应生成物冷却、脱酸、干燥，再供给至第 1 精馏装置进行精馏，从第 1 精馏装置的塔顶抽出一氧化碳、三氟甲烷等所有的沸点比 TFE 低的成分，同时从底部排出除此以外的含有 TFE 的高沸物，接着，将高沸物供给至第 2 精馏装置，从塔顶馏出目标 TFE，从底部排出沸点比 TFE 高的成分。

此时，第 2 精馏装置的底部排出成分中，除了作为原料的 HCFC-22 之外，还含有与 TFE 比较为高沸点的多种成分，因此通过将该底部排出成分精制而分离 HCFC-22，补充经热分解被消耗的 R-22，供给至再次热分解工序。

[专利文献 1]日本专利特开平 11-116216 号公报
[专利文献 2]日本专利特公昭 45-26611 号公报
[专利文献 3]日本专利特开 2003-267712 号公报
[专利文献 4]日本专利特表 2002-515011 号公报
[专利文献 5]日本专利特开昭 54-158396 号公报
[专利文献 6]美国专利 3088975 号
[专利文献 7]美国专利 2836622 号
[专利文献 8]EPO253527 号公报
[专利文献 9]美国专利 3639429 号
[专利文献 10] 美国专利第 3404180 号
[专利文献 12] 日本专利特开平 7-233104 公报
[非专利文献 2] (财) 地球环境产业技术研究机构(RITE)企划调查部企画组 技术情报志 “RITE WORLD” 第 1 号(创刊号)研究组 半导体 CVD 清洗工程报告 [平成 17 年 8 月 16 日检索 网址 ＜URL:http://www.rite.or.jp/Japanese/kicho/kikaku/world/world04/01-18_19.pdf ＞
[非专利文献 3] 日本经济产业新闻 “转换成液晶生产用清洗气 COF₂”，2005 年 6 月 30 日。

碳酰氟(COF₂)的制造方法如上所述大致分为四种方法，其中之一的上述专利文献 10 等中记载的以四氟乙烯(TFE)作为原料的方法为了避免爆炸，需要添加相对于氟为 10 至 100 倍的昂贵的气体状的氟化合物(稀释剂)。

另外，已知由 HCFC-22 制造成为原料的 TFE，由于该制造方法是热分解，因此产生了以三氟甲烷为代表的以各种氟化物为主体的副产物，其精制以及未反应 HCFC-22 的回收等需要大量的劳力、成本和设备。

发明内容

因此，本发明的目的之一是提供一种以 TFE 为原料，不使用毒性高的光气等原料或难以得到的副原料、特别是作为稀释剂的各种氟化合物等，更廉价有效，且没有爆炸危险，安全而且连续高收率制造 COF₂ 的方法。

另外，本发明的其他目的之一是提供一种以 HCFC-22 为原材料，将其热分解制造 TFE，不用精制而直接将该 TFE 作为原材料，更廉价有效、
且没有爆炸危险，安全且连续制造 COF₂ 的方法。

以往，使 TFE 与氧直接反应时有爆炸的可能性，为了防止爆炸，使用氧气的 10 倍量的稀释剂(气体状的氟化合物)。

但是，本发明人发现作为目前或以往稀释剂使用的作为稀释剂的氟化物受到限制。即，本发明人发现使用精制的高纯度 TFE 时，或使用由 HCFC-22 制得的未精制的 TFE 时，未必需要用于防止爆炸的大量的稀释剂，以及氮气的存在阻碍 TFE 的氧化反应的进行。

本发明人着眼于 COF₂ 的制造以及 TFE 的制造工序中的氟化物，认识到由 HCFC-22 制造 TFE 时生成的作为副产物的氟化物在以 TFE 为原料用氧气将其氧化的 COF₂ 的制造方法中，对反应没有任何不良影响，完全没有必要将其除去即进行精制，另外还认识到将 TFE 氧化制造 COF₂ 时尽可能地将共存的氮气排出，可以提高其收率，另外还发现，制造碳酰氟 (COF₂) 时，如果适当设定高效蒸发反应热等反应方法、反应条件，则可以不用稀释剂或仅使用少量，就没有爆炸危险性地高效制造 COF₂，完成了本发明。

通过本发明，加入氧气，使其与 TFE 本身或者通过将氯二氟甲烷 (HCFC-22) 热分解而得的末精制的 TFE 直接反应，藉此可以制造目标的碳酰氟 (COF₂)。

本发明具体如下所示。

1. 碳酰氟的制造方法，其特征在于，将四氟乙烯气体制备相对于该四氟乙烯气体中的四氟乙烯为 0.9 至 5 摩尔量的氧气一起导入至反应容器内，使之加热反应，该四氟乙烯气体选自精制的四氟乙烯气体，含有四氟乙烯制造时的反应副产物的末精制的四氟乙烯气体组合物，含有以由氟化合物形成的稀释剂作为第三成分的四氟乙烯气体混物物，且该四氟乙烯气体中的四氟乙烯的含量相对于其他成分的量以摩尔比计大于 1/10。

2. 如上述 1 所述的碳酰氟的制造方法，其特征在于，氧量相对于四氟乙烯为 0.9 至 3.5 倍摩尔量。

3. 如上述 1 或 2 所述的碳酰氟的制造方法，其特征在于，反应容器中存在的氮气含量为氧气含量的 3 倍摩尔以下。

4. 如上述 1 至 3 中任一项所述的碳酰氟的制造方法，其特征在于，反
应容器中填充有选自金属氟化物、金属氧化物和金属的填充剂作为催化剂或热介质。

5. 如上述 1 至 4 中任一项所述的碳酰氟的制造方法，其特征在于，用于四氟乙烯气体与氧气的反应的反应容器是耐腐蚀性密封反应容器，且是具有相对于 1 摩尔氧气为 30L 至 40L 的容量的容器。

6. 如上述 1 至 4 中任一项所述的碳酰氟的制造方法，其特征在于，用于四氟乙烯气体与氧气的反应的反应容器是氧化反应用反应管。

7. 如上述 6 所述的碳酰氟的制造方法，其特征在于，氧化反应用反应管是耐腐蚀性反应管，相对于 0.3mm 至 30mm 的直径，长度为 0.1m 至 30m。

8. 如上述 6 或 7 所述的碳酰氟的制造方法，其特征在于，反应管中的四氟乙烯气体的滞留时间为 1～30 秒。

9. 如上述 1～8 中任一项所述的碳酰氟的制造方法，其特征在于，气相下的加热反应温度为 300℃～450℃。

10. 如上述 1 所述的碳酰氟的制造方法，其特征在于，导入至反应容器中的四氟乙烯气体是经精制的高浓度四氟乙烯气体，或者由该经精制的高浓度四氟乙烯气体与稀释剂形成的四氟乙烯气体混合物，是该高浓度四氟乙烯气体或四氟乙烯气体混合物中的四氟乙烯含量以摩尔比计大于 1/10 的四氟乙烯气体。

11. 如上述 1 所述的碳酰氟的制造方法，其特征在于，导入反应容器的四氟乙烯气体是由 HCFC-22 的热分解反应而得的未精制的四氟乙烯气体组合物，或者该未精制的四氟乙烯气体组合物与稀释剂形成的四氟乙烯气体混合物，是该未精制四氟乙烯气体组合物及四氟乙烯气体混合物中的四氟乙烯含量以摩尔比计大于 1/10 的四氟乙烯气体。

12. 碳酰氟的制造方法，其特征在于，将氟二氯甲烷气体热分解，除去盐酸，将其干燥得到四氟乙烯气体组合物，不用将其精制，继续在没有稀释剂的情况下将四氟乙烯气体组合物与氧气一起导入至反应容器中，使其在气相下加热反应。

13. 如上述 12 所述的碳酰氟的制造方法，其特征在于，添加相对于氟二氯甲烷为 5 至 15 倍量的加热到 750 至 950℃的水蒸气，使其在热分解用反应管中流动，藉此将 HCFC-22 气体热分解。
14. 如上述 13 所述的碳酰氟的制造方法，其特征在于，热分解用反应管的直径为 0.3mm 至 10mm，长度为 200mm 至 600mm。

15. 如上述 14 所述的碳酰氟的制造方法，其特征在于，热分解反应管中的氯二氟甲烷气体的滞留时间为 0.001～0.1 秒。

16. 如上述 12 至 15 中任一项所述的碳酰氟的制造方法，其特征在于，氧量相对于四氟乙烯为 0.9 至 3.5 倍摩尔量。

17. 如上述 12 至 16 中任一项所述的碳酰氟的制造方法，其特征在于，反应容器中存在的氨气含量为氧气含量的 3 倍摩尔量以下。

18. 如上述 12 至 17 中任一项所述的碳酰氟的制造方法，其特征在于，用于四氟乙烯组合物与氧气反应的反应容器是氧化反应用反应管。

19. 如上述 18 所述的碳酰氟的制造方法，其特征在于，氧化反应用反应管相对于 0.3mm 至 30mm 的直径，长度为 0.1m 至 30m。

20. 如上述 18 或 19 所述的碳酰氟的制造方法，其特征在于，氧化反应用反应管中的四氟乙烯的滞留时间为 1～30 秒。

21. 用于碳酰氟的制造的未精制的四氟乙烯气体组合物，其特征在于，将导入至反应容器内的氯二氟甲烷加热进行热分解，从生成的四氟乙烯气体中除去盐酸，再经干燥而得。

通过本发明不仅可以用无需使用以往的氧的 10 倍量以上的大量稀释剂，而且无需使用经精制的昂贵的 TFE。简单来讲，加入氧气，使其与 TFE 本身或通过将氯二氟甲烷(HCFC-22)热分解而得的经精制或未精制的 TFE 气体组合物反应，藉此可以连续地制造目标碳酰氟(COF₂)。因此，不需 TFE 的精制以及昂贵的稀释剂，而且可以没有爆炸等危险性、安全有效且廉价地连续制造目标碳酰氟(COF₂)。

另外，以往由 HCFC-22 经高温热分解法制得的 TFE 组合物只要没有精制，就没有商品价值，而应用至本发明中时不需要特别的精制，因此可以直接作为 COF₂ 的制造原料使用，开辟了未精制的 TFE 组合物的新用途，使其价值显著提高。

具体实施方式

(1) 分批法与流动法
在本说明书中，“反应”表示密闭容器内的由分批法的反应，或者将原料在反应管中流动并使其反应的流动法(连续法)。优选流动法(连续法)。

(2)反应器

“反应容器”表示用于分批法的“密封反应容器”或者用于流动法的管状等的“反应管”，管的形状也可以是任何的形状。“将气体导入至反应容器”是指为了进行由分批法的反应而向密闭容器内填充气体，或者为了进行由流动法的反应而使气体在反应管中流通。这些的容器的材料优选耐腐蚀性的不锈钢材、蒙乃尔合金、哈斯特洛依耐蚀镍基合金、铬镍铁合金制。

为了防止爆炸性反应而使其在低压下反应，因此使用的“密封反应容器”的大小，特别是由 TFE 制造 COF₂的工序中使用的容器的大小优选使用相对于原料为充分大的反应容器。这也依赖于反应的规模、条件，例如数毫摩尔的规模中，优选使用相对于 1 摩尔氧气为 30L 至 40L 的容器。

使用“反应管”时，使用的反应管的直径与长度的比例因制造规模、反应温度、气体的流速等而不同。在此，将在 HCFC-22 的热分解工序中使用的反应管称为“热分解用反应管”，将在由 TFE 和氧制造 COF₂的工序中使用的反应管称为“氧化反应用反应管”。

由 TFE 制造 COF₂时产生高温的反应热，因此氧化反应用反应管推荐使用散热效率好的。例如，长度相对于直径(内径)的比充分大的反应管。这也依赖于气体的流量，例如，相对于 0.3mm 至 30mm 的直径，长度为 0.1m 至 30m，更优选为相对于 2mm 至 15mm 的直径，长度为 0.2m 至 15m，优选以氧化反应用反应管中的 TFE 的滞留时间(该“滞留时间”表示原料气体在反应管内的滞留的时间，用(反应管容积(0℃、1 大气压中原料气体的供给速度)表示。单位为秒。以下相同))为 1～30 秒的方式将 TFE 送入。

另外，由 HCFC-22 制造 TFE 时也依赖于 HCFC-22 的流量，热分解反应管的优选直径(内径)为 0.3mm 至 10mm，更优选为 2mm 至 10mm，与此相对长度为 200mm 至 600mm，优选以热分解反应管中的 HCFC-22 的滞留时间为 0.001～0.1 秒的方式将 HCFC-22 送入。

另外，HCFC-22 的热分解反应中优选的水蒸气量为 HCFC 量的 5 至 15 倍。

只要可以有效散发反应热，对这些氧化反应用以及热分解用反应管的
形状就没有特别的限定。例如，为了容易进行加热等操作和处理，也可以将上述的长度达到数 m 的反应管，卷成螺旋状，缩小后使用。

(3) 氧气

“氧气”表示纯粹的氧气或高纯度的氧气。实质上仅由氧形成的气体。这些氧气可以是例如封入气缸的市售品，或者也可以是其他的工业上可以得到的氧气。“高纯的氧气”优选是 95 摩尔％以上，更优选 99％以上纯度的氧气。

(4) 氮气

另外，氮气的混入是为了防碍本反应，其量以少者为宜。氮气的允许混入量优选相对于氧气在 3 倍摩尔量以下，更优选在 2 倍摩尔量以下，再更优选在 1 倍摩尔量以下，最优选相对于氧在 10 摩尔％以下。这样“不存在氮气的情况下”是指实质上不存在阻碍反应的量的氮气，氮气相对于氧在 10 摩尔％以下，优选在 5 摩尔％以下，更优选不存在的状态。

除去反应容器内作为空气混在的氮气可以通过以下方法容易地达到：用上述氧气、作为反应原料的 TFE 或 HCFC-22 在反应容器内流通使其置换，或者将反应容器抽成真空之后填充氧气、TFE 或 HCFC-22。

(5) 氧气和 TFE

对于氧气的量，由于 TFE 与氧的反应是分别等摩尔的反应，因此从反应效率以及经济性的观点来看，最适的两者的混合比是等摩尔。但是，氧相对于 TFE 为等摩尔以上，例如 5 摩尔也不妨碍本反应。另外，根据情况的不同，相对于 1 摩尔 TFE 的氧也可以为 0.9 摩尔。因此，相对于 TFE 的氧的允许摩尔量为 0.9 至 5 倍摩尔，推荐的摩尔量为 0.9 至 3.5 倍摩尔，特别优选 0.9 至 1.5 倍摩尔，最优先选等摩尔量。在此，等摩尔量未必表示严格的等摩尔量，而是表示 0.9 至 1.2 摩尔。

另外，考虑经精制的 TFE 或未精制的 TFE 气体组合物中含有的 TFE 的比例，来确定氧相对于经精制的 TFE 气体或未精制的 TFE 气体组合物的混合比即可。另外，按照 TFE 的含量以摩尔比计大于 1/10 的条件添加稀释剂的情况也考虑其中含有的 TFE 的比例来决定即可。

(6) 氯二氟甲烷

“氯二氟甲烷”是也称为 HCFC-22 的氟化物(CHClF_2)。可以使用市售
的 HCFC-22。对于纯度没有特别的限定，纯度越高越好，优选 90％以上，更优选 98％以上。

(7) 加热反应与热分解温度

“加热反应”中的加热温度根据反应时间、反应规模等的不同而不同，在由 TFE 到 COF₂的变换反应中优选 300℃至 450℃。分批式反应容器的情况优选 350℃至 450℃，使用了反应管的连续法的情况优选 300℃至 450℃。

另外，将 HCFC-22 热分解制造作为 COF₂的制造原料的 TFE 时的热分解温度，根据热分解反应管的直径、反应管中流动的 HCFC-22 的流速、稀释剂浓度、其他要件的不同而不同，优选 700℃至 950℃，更优选 750℃至 950℃。

(8) 四氟乙烯气体

“四氟乙烯气体(TFE 气体)”表示如下经精制的 TFE 气体，含有 TFE 制造时的副产物的未精制的 TFE 气体组合物，含有由氟化物形成的稀释剂作为第三成分的 TFE 气体混合物。TFE 气体中 TFE 的含量相对于由 TFE 制造时的副产物、稀释剂等形成的其他气体成分以摩尔比计必须大于 1/10。

(9) 经精制的四氟乙烯气体

“经精制的四氟乙烯气体”是对应于未精制的 TFE 气体组合物的用语，表示纯粹的 TFE 气体、市售或工业水平能够生产的经精制的高纯度・高浓度的 TFE 气体。具体表示 TFE 浓度为 90％以上、优选 TFE 浓度在 98％以上的气体。

(10) 四氟乙烯气体组合物

“四氟乙烯气体组合物(TFE 气体组合物)”表示市售或工业水平能够生产的未精制的 TFE 气体组合物。优选经 HCFC-22 的热分解反应而得的 TFE 气体组合物(来自 HCFC-22 的 TFE 组合物)。“来自 HCFC-22 的 TFE 气体组合物”是不仅含有主成分的 TFE，而且还含有由该反应副生的各种氟化物构成的热分解副产物以及未反应的 HCFC-22 的气体组合物。TFE 气体组合物中的 TFE 的含量相对于由反应副产物、未反应原料等构成的其他气体成分以摩尔比计必须大于 1/10。另外，作为稀释剂的氟化物不包含
在四氟乙烯气体组合物的范围内。

一般，从 HCFC-22 到 TFE 的选择率（变换率）为 70～95。副产物为三氟甲烷、六氟丙烯、四氟氯乙烷、全氟环丁烷等氟化物，一氧化碳等。

(11) 四氟乙烯气体混合物

“四氟乙烯气体混合物（TFE 气体混合物）” 是含有由氟化物形成的稀释剂作为第 3 成分的 TFE 气体混合物。具体表示，在上述 “精制的 TFE 气体” 或者含有 TFE 制造时的反应副产物的未精制的 TFE 气体组合物中，混合有由氟化物形成的稀释剂。与 TFE 气体组合物的情况相同，TFE 气体组合物中的 TFE 的含量相对于由 TFE 制造时的反应副产物、稀释剂等构成的其他气体成分以摩尔比计必须大于 1/10。

(12) 相对于其他成分的量，四氟乙烯的含量以摩尔比计大于 1/10 的 TFE 气体

“相对于其他成分的量的 TFE 的含量以摩尔比计大于 1/10 的 TFE 气体” 是上述的 “精制的 TFE 气体”、“未精制的 TFE 气体组合物”、或者由上述精制的 TFE 气体或未精制的 TFE 气体组合物与稀释剂形成的 “TFE 混合物”，表示这些气体中的 TFE 含量相对于由 TFE 制造时的反应副产物、稀释剂等形成的其他气体成分以摩尔比计大于 1/10 的气体。

(13) 氟化物

“氟化物”表示碳数为 1 至 10、优选碳数为 1 至 4、更优选碳数为 1 或 2 的含有氟原子的化合物，可例举如 COF₂、氯氟碳类（CFCs）、氢氟碳类（HFCs）、全氟化碳类（PFCs）、氢氯氟碳类（HCFCs）等氟化烃。具体如下所示。

作为 CFCs 的示例，可例举如 CFC-11（CCl₃F）、CFC-12（CCl₂F₂）、CFC-113（CCl₂CFCClF₂）等，特别优选 CFC-113。作为 HCFCs 的示例，可例举如 HCFC-22（CHClF₂）、HCFC-123（CHCl₂F₃）、HCFC-141b（CH₃CCl₂F）、HCFC-142b（CH₃CClF₂）等，特别优选 HCFC-22。作为 PFCs 的示例，可例举 C₂F₆ 等。作为 HFCs 的示例，可例举如 HFC-23（CH₃F）、HFC-32（CH₂F₂）、HFC-125（CH₂F₂CH₃）、HFC-134a（CH₂F₂CH₃）、HFC-143a（CH₂F₂CH₃）、HFC-152a（CH₂CH₂F₂）等。

另外，不会阻碍反应的稀释剂也可以是 CFC/HCFC 混合型(例如，
R-502(HCFC-22/CFC-115 共沸混合物)、HFC 混合物(例如，R-404A(HFC-125/143a/134a混合物)、R-407C(HFC-32/125/134a混合物)、R-410A(HFC-32/125混合物))。

(14)其他成分

“其他成分”表示来自 HCFC-22 的 TFE 气体组合物中含有的热分解副产物以及未反应的 HCFC-22、TFE 气体混合物中含有的稀释剂。

(15)稀释剂

“稀释剂”表示由 TFE 制造 COF₂时，可以向经精制的 TFE 气体或未精制的 TFE 气体组合物中添加的氮化物。另外，由 HCFC-22 连续地制造 COF₂时作为副产物生成的这些氮化物是 TFE 生成物中必然混入的化合物，而不是有意添加的，因此在此不包含在稀释剂的范畴中。本发明中，使 TFE 气体与氧气在氧相对于 TFE 为 0.9 至 5 倍摩尔量的条件、优选等摩尔量的条件下反应即可，基本上没有再添加由氮化物形成的稀释剂的必要。但是，期待进一步的安全性等特殊的情况下，允许稀释剂的共存、混入。由于可能进一步增加生成物中的杂质，因此不会将该 TFE 气体与氧气的反应生成物回流作为稀释剂使用。混入稀释剂时，对于其量，经精制的 TFE 气体或未精制的 TFE 气体组合物中的 TFE 之外的成分与稀释剂的合计摩尔数相对于 TFE 的摩尔数不到 10 倍即可。原则上本发明中不需混入稀释剂。

以下，说明 COF₂的制造方法。

以往，仅有 TFE 与氧的反应会发生爆炸，本发明人发现，通过在优选不存在氮的条件下，使其与氧优选为等摩尔的氧反应，经精制的 TFE 气体当然可以使用，未精制的市售 TFE 直接使用，或者经 HCFC-22 的热分解而得的 TFE 气体组合物不用分离精制而直接使用，藉此可以有效、安全且高收率地合成 COF₂。

本发明中使用的 TFE 可以使用市售或工业水平生产的以 TFE 为主要成分的 TFE 气体，由 HCFC-22 制得的未精制的 TFE 气体组合物或将其精制后的 TFE 气体。根据需要也可以混入稀释剂。

由 HCFC-22 制造 TFE 时，根据以往通常进行的方法，通过高温热分解法制造氯二氟甲烷 HCFC-22 即可。通过使 HCFC-22 与加热水蒸气接触进行加热的内热法，或者也可以是将 HCFC-22 供给至热分解反应装置中，
从反应装置的外部通过热介质、直接加热等方法供应热量的外热法。对于任一种热分解方法，通过在供给至热分解反应装置中之前将 HCFC-22 事先加热到 200～400℃，可以在短时间内进行热分解。

可以将所得的 TFE 气体组合物经精制，或不经精制而用作本发明的 COF₂ 制造原料。通常，HCFC-22 的热分解反应是伴有分子的分解和再结合的复杂的反应，因而伴有产生反应副产物，因此，进行将这些反应副产物分离精制，以及用于将未反应的 HCFC-22 再使用的回收操作，然而在本发明中，可以将 TFE 气体组合物直接作为 COF₂ 制造原料使用，因此未必要该精制、回收。

TFE 的制造中使用的水蒸气本身优选被加热到比反应温度高的 750 至 950℃的水蒸气。对 HCFC-22 与水蒸气的供给比率没有特别的限定，只要是可以充分进行 HCFC-22 的热分解的程度即可。一般水蒸气优选为 HCFC-22 的 5 至 15 倍量，即，HCFC-22/水蒸气(摩尔比)＝1/5～1/15 的范围。另外，为了充分进行分解反应，热分解反应装置中的 HCFC-22 的滞留时间优选为 0.001～0.1 秒。

热分解温度为 HCFC-22 分解的温度即可，为了提高 TFE 的收率，在 600～950℃的气氛下进行反应。以上，TFE 的制造基本按照以往法进行即可。

由 TFE 的 COF₂ 的制造如下进行：将 TFE 气体与相对于该 TFE 气体中的 TFE 为 0.9 至 5 摩尔量的氧气一起导入至反应容器中，该 TFE 气体选自经精制的 TFE 气体、含有 TFE 制造时的反应副产物的未精制的 TFE 气体组合物、以由氟化合物形成的稀释剂作为第三成分的 TFE 气体混合物，且该 TFE 气体中的 TFE 的含量相对于其他成分的量以摩尔比计大于 1/10。

对于 TFE 气体没有特别的限定，优选含有 TFE 制造时的反应副产物的未精制的 TFE 气体组合物。

反应的方法也可以是使用密封反应容器的分批式，优选由 HCFC-22 一贯地合成 COF₂ 的流动法(连续法)。虽没有特别的限定，但通过以能够有效释放 TFE 与氧的反应中产生的热量的反应方式(例如，使用充分细的反应管可以有效散热的反应方式)进行，能够以高收率合成 COF₂。另外，分批式或连续式还因反应的规模等而不同，通过良好设定分批中的反应容器
的大小，流动式中流量、反应管的粗细和长度、反应温度、接触时间等，可以有效、安全、廉价地制造 COF₂。制造 COF₂ 的优选反应方式的具体示例可例举如下，对于在密封反应容器中使之反应的情况，使用相对与 1 摩尔氧气具有 30L 至 40L 的容量的容器使之反应的方式，以及对于使用反应管的情况，以 TFE 的滞留时间为 1～30 秒的方式分别送入 TFE 和氧的反应方式。

对于分批法的情况，推荐使用相对于原料充分大的反应容器，在低压力下使之反应等的方法。例如，如果 TFE 与氧分别各自为 2mmol 左右，则向 75ml 左右的反应容器中仅加入该 TFE 和氧再加热到 400℃左右的方法。详细如上所述。

对于流动法的情况，推荐将 TFE 气体与大致等摩尔的氧气流入到反应管中混合，一边使其在充分长的细管中流通一边加热该细管，藉此使之反应等的方法。该方式中，优选的反应管的直径、长度、加热温度等因气体流量的不同而不同，可例举如以下的反应条件，如果 TFE 与氧的流量分别为每分钟各 60ml 左右，则使用直径(内径)为 3mm 左右、长度为 10m 左右的反应管，将加热温度定为 350℃左右，将反应管中的滞留时间定为 11 秒左右。另外，也根据 TFE、氧的流量的不同而不同，可例举如下的条件，使用直径为 6mm 左右、长度为 2m 左右的反应管，将加热温度定为 400℃左右，将反应管中的滞留时间定为 3 至 6 秒左右；使用直径为 14mm 左右、长度为 0.3m 左右的反应管，将加热温度定为 400℃左右，将反应管中的滞留时间定为 6 秒左右等。

反应时，可以向反应容器中填加填充物作为催化剂或热的介质。作为填充物可例举如金属氟化物、金属氧化物、金属等。作为金属氟化物可例举如氟化钠、氟化钾、氟化镁、氟化钙、氟化钡、氟化铝等型金属氟化物，氟化铁、氟化钴、氟化镍、氟化锰、氟化铜、氟化锌等过渡金属氟化物。作为金属氧化物可例举如氧化镁、氧化铝等型金属氧化物，氧化铁、氧化钴、氧化镍、氧化锰、氧化铜、氧化锌等过渡金属氧化物。作为金属只要不妨碍反应即可，可例举如铬镍铁合金、哈氏特洛依耐蚀镍基合金等。另外，也可以是铁的表面氧化成为氧化物后的情况等金属与金属盐、不同的金属盐的组合。
本反应中得到的粗生成物可以通过通常的精制法得到高纯度的 COF₂。例如通过使用蒸馏塔将粗生成物蒸馏精制，可以得到纯度 99% 以上的 COF₂。经蒸馏被分离的 HCFC-22 可以作为 TFE 的原料再利用。

本反应可以通过高纯度的 TFE 气体或者 TFE 气体组合物与氧来进行。另外也可以根据需要使稀释剂并存，其中，TFE 气体或 TFE 气体组合物中的除 TFE 之外的成分与稀释剂的合计摩尔数相对于 TFE 的摩尔数不到 10 倍。这种情况当然包含在本申请中。

这样，通过本发明不仅没有必要如以往使用由有效的氯化物形成的大量的稀释剂，而且也没有必要使用经精制的昂贵的 TFE 气体。可以直接使用通过 HCFC-22 的热分解而工业合成的未精制的 TFE 组合物。

以下，通过实施例更详细地说明本发明，本发明不限定于以下的示例。

实施例 1；由 TFE 制造 COF₂(分批法)
向不锈钢制反应容器(75ml)中于-196℃用真空管导入 TFE(2.2mmol)和氧(2.2mmol)，将反应容器内的空气完全排除，同时用 TFE 和氧填充该容器内部之后，将其加热到 400℃，使之反应 30 分钟。通过真空管扫描将生成物移至-196℃冷阱（trap），测定其量，结果为 4.3mmol。

用 FT-IR 分析生成物，与标准品比较，结果生成物主要为 COF₂，收率为约 98%。

实施例 2；由 HCFC-22 连续制造 COF₂(1)
工序 1；由 HCFC-22 制造作为 COF₂ 的制造原料的 TFE(流量精)
使 HCFC-22 以每分钟 170ml 的速度、加热到 900℃的水蒸气以每分钟 1700ml 的速度在直径 3mm(内径约 2mm)、长度 300mm 的铬镍铁合金制反应管中流通，进行加热，使其在 900℃的温度下反应之后，将生成物洗脱，通过氯化钙管和碱石灰管使之干燥。

为了分析，取出所得组合物的一部分，通过气相色谱法进行分析，结果 HCFC-22 的转化率为 70%，TFE 的选择率为 99% 以上。

工序 2；由 TFE 制造 COF₂(流动法)
不用将工序 1 所得的 TFE 组合物(气流量每分钟 110ml)精制，直接将其预热到 200℃，使其以每分钟 60ml 流入与预热至 200℃的氧混合，将
该混合气体流入至直径 3mm(内径约 2mm)、长 10m 的铬镍铁合金制反应管中，同时在 350℃温度下使其反应。另外，此时的滞留时间为约 11 秒。

通过气相色谱法分析所得的生成物，结果由 TFE 以 98% 的收率得到 COF₂。

实施例 3：由 HCFC-22 连续制造 COF₂(2)

使 HCFC-22 以每分钟 253ml 的流速、加热至 920℃的水蒸气以每分钟 1700ml 的流速在直径 3mm(内径约 2mm)、长 300mm 的铬镍铁合金制反应管中流通，进行加热，使其在 920℃的温度下反应。将生成物水洗，通过氯化钙管和碱石灰管后，预热至 200℃，使其以每分钟 285ml 的流速流入与预热至 200℃的氧混合，将该混合气体流入至直径 6.4mm(内径约 4mm)、长 2m 的铬镍铁合金制反应管，同时使其在 400℃温度下反应。另外，此时滞留时间为约 3 秒。

用气体色谱法进行分析所得的生成物，结果由 TFE 以 90% 的收率得到 COF₂。

实施例 4：由 HCFC-22 连续制造 COF₂(3)

使 HCFC-22 以每分钟 253ml 的流速、加热至 920℃的水蒸气以每分钟 1600ml 的流速在直径 3mm(内径约 2mm)、长 300mm 的铬镍铁合金制反应管中流通，进行加热，使其在 920℃的温度下反应。将生成物水洗，通过氯化钙管和碱石灰管后，预热至 200℃，使其以每分钟 109ml 的流速流入与预热至 200℃的氧混合，将该混合气体流入至直径 6.4mm(内径约 4mm)、长 2m 的铬镍铁合金制反应管中，同时在 400℃温度下使其反应。另外，此时的滞留时间为约 6 秒。

通过气相色谱法分析所得的生成物，结果由 TFE 以 97% 的收率得到 COF₂。

实施例 5：由 HCFC-22 连续制造 COF₂(4)

使 HCFC-22 以每分钟 253ml 的流速、加热至 920℃的水蒸气以每分钟 1600ml 的流速在直径 3mm(内径约 2mm)、长 300mm 的铬镍铁合金制反应管中流通，进行加热，使其在 920℃的温度下反应。将生成物水洗，通过氯化钙管和碱石灰管后，预热至 200℃，使其以每分钟 109ml 的流速流入与预热至 200℃的氧混合，将该混合气体流入至直径 14mm(内径约
11mm)、长 30 cm 的铬镍铁合金制反应管中，同时在 370℃温度下使其反应。另外，此时的滞留时间为约 6 秒。

通过气相色谱法分析所得的生成物，结果由 TFE 以 100%的收率得到 COF₂。

实施例 6：由 HCFC-22 连续制造 COF₂(5)

使 HCFC-22 以每分钟 253ml 的流速、加热至 920℃的水蒸气以每分钟 1600ml 的流速在直径 3mm(内径约 2mm)、长 300mm 的铬镍铁合金制反应管中流通，进行加热，使其在 920℃的温度下反应。将生成物水洗，通过氯化钙管和碱石灰管之后，预热至 200℃，使其以每分钟 109ml 的流速流入与预热至 200℃的氧混合，将该混合气体流入至直径 14mm(内径约 11mm)、长 30cm 的铬镍铁合金制反应管中，同时在 400℃温度下使其反应。另外，此时的滞留时间为约 6 秒。

通过气相色谱法分析所得的生成物，结果由 TFE 以 88%的收率得到 COF₂。

实施例 7：由 HCFC-22 连续制造 COF₂(6)

除了事先将表面为氧化铁的网状铁装入至 15ml 的反应管中之外，与实施例 6 同样操作进行反应。

通过气相色谱法分析所得的生成物，结果由 TFE 以 94%的收率得到 COF₂。

比较例 1：在氮气存在下的 TFE 与氧的反应(1)

将在实施例 2 的上述工序 1 中所得的 TFE 组合物预热至 200℃，将其与预热至 200℃的空气混合(氧量为从每分钟 60 到 100ml)，再使其于 350℃下在直径 3mm(内径约 2mm)、长 10m 的铬镍铁合金制反应管中流通。

通过气相色谱法分析来自反应管的气体，结果可知没有进行 TFE 与空气的反应。

比较例 2：在氮气的存在下的 TFE 与氧的反应(2)

除了用空气(氧量每分钟为 109ml)代替氧之外，与实施例 4 同样操作，进行反应。

通过气相色谱法分析所得的生成物，结果虽生成了 COF₂，但收率非常低，为 13%。
由该比较例显示，当不仅有 TFE 组合物和氧，还存在氮时，反应不进行或反应难以进行。

通过本发明的制造方法，在没有氮气的情况下，通过使 TFE 或 TFE 生成物与等摩尔量的氧气加热反应，优选使用管状的反应管，可以容易且安全地制造 COF₂。即，通过本发明可以廉价、有效且安全地制造用作 CVD 装置（化学气相蒸镀法）的清洗气的 COF₂。