
(12) United States Patent
Palm

USOO677918OB1

US 6,779,180 B1
Aug. 17, 2004

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(21)
(22)
(51)
(52)
(58)

(56)

APPARATUS AND METHOD FOR
PREVENTING STACK OVERFLOW FROM
SYNCHRONOUS COMPLETION OF
ASYNCHRONOUS FUNCTIONS

Inventor: Jeffrey William Palm, Rochester, MN
(US)
International Business Machines
Corporation, Armonk, NY (US)

ASSignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 09/154,491
Filed: Sep. 16, 1998

Int. Cl... G06F 9/00
U.S. Cl. .. 718/100; 718/102
Field of Search 709/230, 107,

709/108, 103,100; 718/100, 102

References Cited

U.S. PATENT DOCUMENTS

5.987,517 A * 11/1999 Firth et al................... 709/230

- - - - - s

CLIENT (): * CALLBACKO.
40S

SYSTEMNEEDs 40
TASK PERFORMED,
SETS FLAG =TRUE,
CALLSSUBSYTEM

430

580-T-2.

450 I
TEST FLAG; ...

NITATE CALLBACK
4S5

COMPLETE
PROCESSING OF

TASK
465

6,293,712 B1 9/2001 Coutant 395/704
6,314,513 B1 11/2001 Ross et al. 712/228

* cited by examiner
Primary Examiner Thomas Lee
ASSistant Examiner. The Thanh Ho
(74) Attorney, Agent, or Firm-Schmeiser, Olsen & Watts;
Leslie J. Payne
(57) ABSTRACT

A Stack unwinding mechanism and method for Same is
presented. The Stack unwinding mechanism reduces Stack
overflow problems by determining if an asynchronous func
tion completed Synchronously and unwinding the Stack if the
function did complete Synchronously. The Stack unwinding
mechanism then completes the client's processing of the
asynchronous function's task after the Stack has been
unwound. This allows client processing to take place when
there is little chance of stack overflow or overgrowth. If the
asynchronous function will complete asynchronously, the
Stack unwinding mechanism allows processing to continue
normally because there is little chance for Stack overflow in
this situation. The various embodiments of the present
invention disclosed herein are especially well-Suited to
embedded processor environments.

55 Claims, 11 Drawing Sheets

45

TASK COMPLETED

420
RETRIEVE
CALLBACK
ADDRESS

U.S. Patent Aug. 17, 2004 Sheet 1 of 11 US 6,779,180 B1

00
a1

10

MEMORY
PROCESSOR CONTROLLER

120

MAN MEMORY

Operating System

Subsystem

Subsystem Function

Auxiliary Storage I/F

170

DASD

FIG. 1
- 180

U.S. Patent Aug. 17, 2004 Sheet 2 of 11 US 6,779,180 B1

Control Block Subsystem

Subsystem
Function

126

Stack Unwinding Mechanism

Callback Function

FIG 2

U.S. Patent

35

RETURN TO
CLIENT
FROM

SUBSYSTEM
CALL

320

CLIENT
RETURNS

325

SUBSYSTEM
PROCESSES

TASK

330

SUBSYSTEM
CALLS

CALLBACK
FUNCTION

335
PROCESS
CALLBACK
(FINISH

TASK- DATA
TO CLE
340

RETURN TO
SUBSYSTEM

345

SUBSYSTEM
RETURNS

Aug. 17, 2004

300
305- CALL 1.

SUBSYSTEM

NO

Sheet 3 of 11

CAN THE
TASKBE

SYNCHRONOUSLY
COMPLETED2

FIG. 3

310

YES

US 6,779,180 B1

350

COMPLETE
TASK

355

CALL
CALLBACK
FUNCTION

360

RETURN TO
SUBSYSTEM

365

RETURN TO
CLIENT

370
CLIENT
CALLS

CALLBACK
FUNCTION

375
PROCESS
CALLBACK
(FINISH

TASK- DATA
TO CLIENT

RETURN TO
CLIENT

CLIENT
RETURNS

U.S. Patent Aug. 17, 2004 Sheet 4 of 11 US 6,779,180 B1

O - 1100
SET FLAG = TRUE

20

CALL SUBSYSTEM

130
RETURN FROM

SUBSYSTEM CALL

FLAG = TRUE2

INITIATE CALLBACK

50

SET FLAG = FALSE

FIG. 4

230

PROCESS CALLBACK SET FLAG = FALSE

FIG. 5

U.S. Patent Aug. 17, 2004 Sheet 7 of 11 US 6,779,180 B1

ClientFunct()
()
()
()
test flag = TRUE finitialize boolean flag to TRUE

SubsysFunct() // call the asynchronous subsystem
if (test flag ==TRUE) { // subsystem will complete

ff asynchronously
test flag = FALSE /fset flag to FALSE

else { // subsystem completed synchronously
ClientCallback() // call the callback function directly

}

ClientCallback()

if (test flag =TRUE) { ft subsystem completed synchronously
test flag = FALSE // set flag to FALSE

else { f/stack is unwound . . . proceed

FIG. 8

US 6,779,180 B1 Sheet 11 of 11 Aug. 17, 2004 U.S. Patent

086

XISYL HO ONISS@HOONH4

(Lºw (JOIHA) ZI '?IH

W§. LÄS&HITS SITWO
016

:Olšano

US 6,779,180 B1
1

APPARATUS AND METHOD FOR
PREVENTING STACK OVERFLOW FROM

SYNCHRONOUS COMPLETON OF
ASYNCHRONOUS FUNCTIONS

BACKGROUND OF THE INVENTION

1. Technical Field
This invention generally relates to computer System

resource management and more Specifically relates to
memory management in a multi-threaded programming
environment.

2. Background Art
The development of the EDVAC computer system of

1948 is often cited as the beginning of the computer era.
Since that time, computer Systems have evolved into
extremely Sophisticated devices, and computer Systems may
be found in many different Settings. Computer Systems
typically include a combination of hardware (e.g.,
Semiconductors, circuit boards, etc.) and Software (e.g.,
computer programs). AS advances in Semiconductor pro
cessing and computer architecture push the performance of
the computer hardware higher, more Sophisticated computer
Software has evolved to take advantage of the higher per
formance of the hardware, resulting in computer Systems
today that are much more powerful than just a few years ago.

Computer Systems typically include operating System
Software that controls the basic function of the computer,
and one or more Software application programs that run
under the control of the operating System to perform desired
tasks. For example, a typical IBM Personal Computer may
run the OS/2 operating System, and under the control of the
OS/2 operating System, a user may execute an application
program, Such as a word processor. AS the capabilities of
computers have increased, the application programs
designed for high performance computer Systems have
become extremely powerful.
AS a computer System is utilized to accomplish the

various tasks for which it was designed, it uses an electronic
memory Storage area in order to perform the necessary
calculations and manipulations associated with the pro
ceSSes at hand. The "stack” is a dedicated portion of the
computer System's memory Storage area used by the com
puter System to Store the State of the computer System, to
pass variables between functions, and to Store return
addresses So that the System can return to its original
location before function calls. Thus, the Stack Serves as a
temporary Storage location where the computer can place
interim information while performing various processing
operations. As a part of the processing associated with the
normal operations of the computer System, the computer
System will issue "function calls' for various procedures.
Whenever the System calls a function as part of accomplish
ing a task, the current state of the computer (if needed), a
return address, and variables being passed to and from the
function are placed into an area of the Stack known as a
“stack frame” and placed onto the stack for use by the
System.

Because computer Systems are designed in a multitude of
different ways, Stacks are also implemented in Several ways.
Portions of an operating System, which control most com
puter Systems these days, may use more than one Stack.
Furthermore, Stacks can be implemented in a fixed size,
wherein Stacks can only grow So large, or Stacks can be
implemented in an “infinite” size, wherein Stacks can use
hard drive or other space to grow until the hard drive or other

15

25

35

40

45

50

55

60

65

2
Space is completely full. If the size of the Stack is fixed, care
must be exercised So as not to exceed the boundaries of the
Stack. If more Stack frames are placed onto the Stack than can
be accommodated within the preestablished limits of the
Stack, then the Stack "overflows' and the entire System can
crash as the instructions Stored on the Stack overwrite other
areas of the computer System's memory Storage area. This
type of memory error will commonly cause loSS of data and
other significant problems. In addition, Some Systems will
completely and irretrievable lock if the stack is overflowed.
Most Systems will, at a minimum, generate Stack exceptions.
Even those systems that have an infinite stack will suffer a
performance hit if the Stackgrows too large because most of
the stack will be on the hard disk, and hard disks are
Substantially slower than memory.
As a general rule, each different function call, processed

during the computer's normal operation, will generate a
Stack frame that will be placed on the Stack for eventual
removal by the computer System. One function call gener
ally creates one Stack frame on the Stack and 10 function
calls will generate 10 Stack frames on the Stack. If too many
function calls are made and too many Stack frames are
generated, the Stack frames can exceed the logical limits of
the Stack boundaries and overrun the limits of the Stack
portion of the memory as described above. Furthermore,
even if the Stack size is not fixed, the System will Suffer a
Serious performance hit because the Stack will be paged into
and out of disk memory.

These Stack overflow errors are possible when an asyn
chronous function, particularly a Subsystem function, com
pletes its task "Synchronously.” In this Scenario, a System
would ask a Subsystem function to perform a task by calling
the function and handing it a variable that indicates what
task is to be performed. The System will also generally pass
a callback entry point (the address of a callback function) to
the Subsystem function. The callback entry point acts as a
notice to the Subsystem that the Subsystem needs to call the
System back when the task has been completed, and that the
Subsystem should call a particular callback function that is
pointed to by the callback entry point. A Stack frame is
placed on the Stack with the call to the Subsystem function.
The Subsystem knows that it can immediately complete its
task, and it does So. This completion is termed "synchro
nous” because the task was completed in the same computer
State. The Subsystem may call other Sub-functions or Sub
Systems that help it complete the task. Each of these Sub
functions will generally result in Stack frames being placed
on the Stack. Some of these Stack frames may still be on the
Stack when the Subsystem function calls back the System by
calling the callback function. This is particularly true if a
sub-function of the Subsystem function performs the call to
the callback function, because the call to the Sub-function
will generate another Stack frame. The callback function
causes yet another Stack frame to be placed on the Stack.

Therein lies the potential Stack problem. There are many
Stack frames on the Stack, and the Stack has not had a chance
to “unwind.” Unwinding, also called unwrapping, a Stack is
basically the process of allowing the System to "catch up' to
the multitude of Stack frames on the Stack. Functions are
returned from and each return unwinds or unwraps the Stack
by removing the Stack frame, associated with the function
being return from, off the Stack. For instance, if no more
functions are called at this point in the Scenario, normal
processing would incur a return from the callback function,
returns from all of the sub-functions called by the
Subsystem, and a return from the Subsystem function. The
Stack would then be at its starting point. The problem arises

US 6,779,180 B1
3

when these multiple frames are on the Stack and more calls
to Similar Subsystems or the same Subsystem occur. Or, if a
function is looping through a repetitive Series of Similar
asynchronous function calls that complete in a Synchronous
fashion, it is quite possible that the accumulated callback
functions can quickly cause the Stack to overflow. This
looping causes a problem because each call to an asynchro
nous function that completes Synchronously causes more
Stack frames to be placed on the Stack, with no opportunity
to unwind the Stack. This looping can happen, for example,
if large amounts of data are being moved from a disk drive
to memory.

There are Several possible Solutions to this Stack dilemma
known to those skilled in the art. For example, it is possible
to have the System treat every function call in the same
manner and wait for the task to be completed before pro
cessing the next function call. While ensuring that the Stack
will not overflow, this approach is extremely inefficient from
a processing point of view. Alternatively, it is possible to
create an “infinite Stack,' where the Size of the Stack can
grow as large as necessary. AS explained previously, this
Solution is also inefficient because System performance will
deteriorate as the Size of the Stack increases. At present, a
System must either operate without adequate Stack overflow
protection or operate with inefficient processing restraints
which are counterproductive in today's demanding
computer-based busineSS environment.

Therefore, there exists a need for a more acceptable Stack
overflow protection system. Without an improved mecha
nism for monitoring and managing the Stack to prevent
undesirable overflows, systems will continue to suffer from
artificial processing limitations or unnecessary exposure to
Stack overflows and the concomitant System crashes that
accompany this situation.

DISCLOSURE OF INVENTION

According to the preferred embodiments of the present
invention, a Stack unwinding mechanism is provided that
reduces Stack overflow problems by determining if an asyn
chronous function completed Synchronously and unwinding
the stack if the function did complete synchronously. The
Stack unwinding mechanism then completes the client's
processing of the asynchronous function's task after the
Stack has been unwound. This allows client processing to
take place when there is little chance of Stack overflow or
Overgrowth. If the asynchronous function will complete
asynchronously, the Stack unwinding mechanism allows
processing to continue normally because there is little
chance for Stack overflow in this situation. By providing
Stack management for asynchronous function calls that
complete Synchronously and by unwinding the Stack, the
Stack unwinding mechanism reduces the chances of Stack
overflow from Synchronous completion of asynchronous
functions. The various embodiments of the present invention
disclosed herein are especially well-Suited to embedded
processor environments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an apparatus according to a
preferred embodiment of the present invention;

FIG. 2 is a functional block diagram of a client interacting
with a Subsystem in accordance with a preferred embodi
ment of the present invention;

FIG. 3 is a flowchart of a method for using a stack
unwinding mechanism in accordance with a preferred
embodiment of the present invention;

5

15

25

35

40

45

50

55

60

65

4
FIG. 4 is a flowchart of a method used by a client for stack

management in accordance with a preferred embodiment of
the present invention;

FIG. 5 is a flowchart of a method used by a callback
function for Stack management in accordance with a pre
ferred embodiment of the present invention;

FIG. 6 is a flow diagram depicting Synchronous comple
tion of an asynchronous function using the callback mecha
nism of the present invention;

FIG. 7 is a flow diagram depicting Synchronous comple
tion of an asynchronous function using the callback mecha
nism of the present invention, with Stack frames shown at
each point along the diagram;

FIG. 8 contains the Sample code Segments required to
implement a Stack unwinding mechanism according to the
preferred embodiments of the present invention;

FIG. 9 is a flow diagram depicting asynchronous comple
tion of an asynchronous function;

FIG. 10 is a flow diagram depicting asynchronous
completion of an asynchronous function, with Stack frames
shown at each point along the diagram;

FIG. 11 is a flow diagram depicting Synchronous comple
tion of an asynchronous function without the callback
mechanism of the present invention; and

FIG. 12 is a flow diagram depicting Synchronous comple
tion of an asynchronous function without the callback
mechanism of the present invention, with Stack frames
shown at each point along the diagram.

BEST MODE FOR CARRYING OUT THE
INVENTION

The present invention relates generally to asynchronous
functions and Subsystem call and call back programming
models. In addition, although the invention is not limited to
multi-threaded environments, the invention is particularly
well Suited to multi-threaded operating Systems. For those
individuals who are not generally familiar with these
subjects, the Overview section below presents many of the
concepts that will help to understand the invention. Indi
viduals skilled in the art of asynchronous functions, Sub
System call and call back programming models, and multi
threaded operating Systems may wish to Skip the Overview
Section and proceed directly to the Detailed Description
Section of this specification.

1. Overview
Synchronous/Asynchronous Functions and Subsystem Call/
Callback Models

Function calls may be broadly categorized into two Sepa
rate classes. These classes are based on the System context
of the completed function. Basically, if a function can
complete a particular task while only being called once (e.g.,
in one thread of operation), then the function has operated in
one System context. If, however, a function cannot complete
a particular task without being called or running again (e.g.,
in a second thread of operation), then the function will
complete the task in a different context.

Functions that complete a particular task in the same
System context are called “Synchronous functions. Syn
chronous functions are functions which, when called,
execute the requested task and then immediately return to
the System in the same context in which the function call was
made. The system knows in advance that the task will be
completed immediately. This means that there is no need for
the System to wait for input/output or other processing; the

US 6,779,180 B1
S

function simply executes and returns on a Single function
call. For example, performing a math calculation is a Syn
chronous function because the math calculation will com
plete in the same System context (often immediately), and
the System does not have to worry about when the calcula
tion will take place.

In the other category, and the category with which the
preferred embodiments of the present invention are
concerned, there are certain functions which will require an
unknown amount of time to proceSS and the System will not
know in advance how long the function will need to com
plete the requested task. These types of functions are known
as "asynchronous” functions. An asynchronous function is
any function which, after being called the first time, will
complete the requested task at Some unknown time in the
future. For purposes of maintaining efficiency, the typical
System will issue an asynchronous function call and then
begin to process other tasks while the asynchronous task is
completed.

Asynchronous functions can also be split into two broad
categories. These categories describe the actual manner in
which the asynchronous function completed. ASynchronous
functions can complete in either an asynchronous or Syn
chronous manner. Even though the System will think that the
asynchronous function will complete at Some time in the
future, during certain situations asynchronous functions can
complete their tasks in a very short time and while in the
Same System context. These situations are referred to as
having an asynchronous function complete Synchronously.
Similarly, many situations will entail the asynchronous
function's being unable to complete its tasks until Some later
time and while in a different System context. These situa
tions are referred to as having an asynchronous function
complete asynchronously.

For example, if the System requests a certain block of
information from a memory location, the System does not
know how long it will take to retrieve the requested infor
mation. If the requested information is readily available,
perhaps residing in the quickly accessible cache memory,
then the memory Subsystem can complete the function
almost immediately and return the requested information to
the system. The Subsystem will then call back the system to
tell the System that it has performed its task. The Subsystem,
thus, is an asynchronous function that completed Synchro
nously. If, on the other hand, the requested information is not
immediately available in the cache memory, then the func
tion must initiate the process of reading the desired infor
mation from main memory or, perhaps from a hard disk
drive or other Secondary Storage location. After the infor
mation has been retrieved, the function will issue a callback
function to the System, thereby alerting the System of the
availability of the requested information. Since Some
amount of time will have passed since the System made the
request for the information, the callback function will occur
in a different processing context or processor State. In
multi-threaded Systems, the different processing context will
mean that the callback function will occur on a different
thread. The Subsystem in this instance is an asynchronous
function that completed asynchronously.

It should be noted that, in the case of the asynchronous
function described above, the System has no way of knowing
whether the desired information is immediately available or
not at the time the System requests the desired information.
The System is, however, aware that the function is an
asynchronous function and that Some unknown amount of
time will be required to complete the requested task.
When the System calls a Subsystem to complete a task,

Such as retrieving information from a hard disk, the System

15

25

35

40

45

50

55

60

65

6
generally passes the address of a “control block” to the
Subsystem. The System places all necessary information into
a control block So that the Subsystem can complete the task
handed to it. The control block will contain Such information
as the address of the callback function, So that the Subsystem
can call back the System when the shared resource has been
accessed and the information retrieved. In addition, other
parameters are placed into the control block, Such as what
information is to be retrieved from the shared resource,
which shared resource is to be accessed (e.g., hard drive or
compact disk), and any other necessary information that the
Subsystem needs to process the command. If the Subsystem
cannot immediately complete the command, the Subsystem
will generally place the address of the control block into a
queue. The Subsystem will then return to the System, will run
again at Some later time, and will process the various control
blocks on its queue when it is the Subsystem's time to run
again. Generally, the Subsystem regains control through an
interrupt handler that initiates completion of the Subsystem
task. The Subsystem then calls back the System at the
indicated callback function. This callback occurs in a thread
or context different from that of the original call by the client
to the Subsystem.
A Subsystem is a logical collection of functions, object,

and data whose mission can be encapsulated and Segregated
from the rest of the system. Subsystems tend to be quite
complex. They generally have Several Sub-functions and can
actually call other Subsystems. These Sub-functions and
other Subsystems may place additional frames on the Stack
that may still be on the Stack while the original Subsystem is
Still running.

In addition, subsystems tend to use shared resources such
as disk drives that may take a while to respond to commands
from the subsystem or that may be in use by another
Subsystem. Thus, Subsystems are generally asynchronous
functions. The Subsystem call and callback model was
developed to handle these types of resources (and their
concomitant asynchronous function calls) that may not be
available or respond for some time. The call and callback
model is efficient because it allows the system to inform the
Subsystem that it has a task to perform, yet the System can
go about other busineSS until the Subsystem can actually
complete the task and notify the System. The System can then
complete its portion of the task, Such as moving data from
the Subsystem and into memory. Without the call/callback
model, the system would have to wait until the subsystem
completed its task. In today's Systems, this would be incred
ibly inefficient because many tasks, in particular reading
from or writing to hard drives, printers, compact disks, etc.,
can take a relatively long amount of time.

FIGS. 9-12 illustrate the call/callback model in action for
asynchronous functions that complete in asynchronous and
Synchronous manners. These figures also show the areas
where potential stack problems can occur. FIGS. 9 and 10
deal with an asynchronous function completing in an asyn
chronous manner. In FIG. 9, a flow diagram 700 for asyn
chronous completion of an asynchronous function is pre
Sented. In the beginning, the computer System decides that
it needs a task to be performed (step 710), and will issue a
function call to accomplish a specific task (step 720). During
the function call, the System generally passes a control block
(not shown in FIG. 9) to the subsystem. This control block
will usually contain the address of a callback function,
which indicates to the subsystem that the subsystem is to call
back the System using the callback function. AS shown in
FIG. 9, the task cannot be completed immediately (step
730), so the Subsystem returns (step 740) to await comple

US 6,779,180 B1
7

tion of the requested Subsystem task. At Some time in the
future, the requested task is completed by the Subsystem
(step 750) and the callback function's address is retrieved
from the control block (step 760). Then the subsystem
performs a call 770 to the callback function and the client
processing can continue to finish the task on the client Side
(step 780). When the callback function has performed its
duties, the callback function will return to the subsystem
(step 790).

FIG. 10 shows flow diagram 700, except that now a
portion of the Stack is shown at important processing points.
Stack portions 810-880 show the stack pointer illustrated as
an arrow. The Stack pointer points to the current Stack
location. Future Stack frames will be pushed onto the Stack
and the Stack pointer will be updated to point to the new
stack locations. Stack frames 0-4 are shown, but the frames
are only representative of actual frames as actual frames will
generally vary in size. Before the client performs the call to
the Subsystem (step 720), the Stack pointer is at its starting
point for this example (see stack portion 810). In stack
portion 820, after step 720 has been performed, a frame has
been added to the Stack and the Stack pointer now points to
frame 1. When the task cannot be completed immediately,
the Subsystem returns in step 740. During this return, the
Stack goes from having one frame on it (stack portion 830)
to having to no stack frames on it (stack portion 840). The
Stack pointer is now in its original location, and the task is
waiting to be completed.
When the subsystem function runs again, in step 750, it

will call the callback function. Prior to the call, the stack is
again shown at a zero location (stack portion 850). Note that
stack portion 810 and stack portion 850 do not necessarily
indicate the same starting locations on the Stack, as many
other Stack frames could have been added to or removed
from the stack in the interim between steps 740 and 760. The
call to the callback, step 770, causes a stack frame to be
placed on the Stack and the Stack pointer to be updated (Stack
portion 860). Once the callback function completes its
processing, it returns (step 790 and stack portion 870) and
the stack frame is popped off the stack (stack portion 880).
The Stack is now at the same location as illustrated in Stack
portion 860.

FIG. 10 illustrates that a stack overflow error or excessive
growth of the Stack is unlikely when an asynchronous
function executes asynchronously. The Stack is always
unwinding in this situation because Stack frames added by
function calls are being removed by function returns, mak
ing it more difficult for numerous Stack frames to be added
to the Stack.

FIGS. 11 and 12, however, illustrate a situation where
Stack overflow or overgrowth problems are much more
likely. FIGS. 11 and 12 show an asynchronous function
completing Synchronously and its effects on the Stack. FIG.
11 shows a flow diagram 900 for synchronous completion of
an asynchronous function without the present invention.
Similar to FIG. 9, the system, in order to accomplish some
required task (step 910), will initiate an asynchronous Sub
system function call 920. In contrast to the situation depicted
in FIG. 9, this time the subsystem immediately completes
the requested task Synchronously (step 930), issues a call
back function to alert the system of the completion of the job
(step 940) and issues a call 950. Then, client processing can
continue to finish the task on the client side (step 960).

It is at this point, at step 960, that the potential for stack
overflow occurs. The Subsystem will generally call other
Subsystems prior to step 940, and these subsystems will
usually add more Stack frames to the Stack. If the Subsystem

15

25

35

40

45

50

55

60

65

8
is processing in a loop Such that more Stack frames are being
added to the Stack because the Subsystem continues to be
called and continues to complete Synchronously, it is pos
Sible that the current Subsystem may continue to add addi
tional Stack frames to the Stack. This can cause the Stack to
overrun the portion of memory dedicated to the Stack or
grow So large as to need paging. In addition, other Sub
Systems or interrupt handlers may also add more Stack
frames at this point. If a Stack error does not occur in Step
960, the stack will unwind in steps 970 and 980. These steps
will return the Stack to the Starting location. In particular,
step 970 allows any subsystems, which the original Sub
System called to complete its original task, to complete.
Completing these Subsystems allows their Stack frames to be
removed from the Stack.

It must be understood that the client, in its callback
function Step of 960, is completing processing of the task.
This could entail receiving data from a hard drive, for
instance, and placing this data in an appropriate area of
memory. This completion of processing could take a rela
tively long time. It is this length of time and the number of
stack frames that have been added to the stack until step 960
that create the potential for Stack overflow or overgrowth.
While the client is processing in step 960, the stack is not
being unwound. In fact, in all likelihood more Stack frames
are being added during this processing by other functions,
Subsystems, and interrupt handlers. A very egregious prob
lem that may occur at this point is if Subsystems are
continuously being called, and all or most of them complete
synchronously. Then, each subsystem will be “stuck” tem
porarily in step 960, and each subsystem will have added
several stack frames to the stack. Because the stack is not
being unwound during this delay, the Stack keeps growing
with each interruption or call to functions or Subsystems.

FIG. 12 illustrates these concepts. FIG. 12 shows flow
diagram 900 as in FIG. 11, but now stack portions
1010–1060 have been added to visually diagram the prob
lem. Before the client calls the Subsystem, the Stack pointer
is at its zero location (stack portion 1010). After the call (step
920) to the subsystem, there is one frame on the stack and
the Stack pointer is pointing to the Second frame (Stack
portion 1020). Because the task completes immediately, the
Subsystem calls the callback function without returning to
the client. Before calling the callback function, the Sub
System has made other Subsystem calls that have placed two
more Stack frames on the Stack. Whether or not more Stack
frames have been added by the subsystem before the Sub
System calls the callback function is generally determined by
the complexity of the Subsystem. In particular, if the Sub
System is calling other asynchronous Subsystems that are
also completing Synchronously, then numerous Stack frames
could be added at this point. Some extra frames are shown
as an example in stack portion 1025. The call to the callback
function (step 950) causes another frame to be placed on the
stack (stack portion 1030). Any further calls to other func
tions or Subsystems or interrupt handlers may exceed the
limit of the Stack in this simple example.

Fortunately, in this example, the callback function per
forms its duties without further calls to functions or Sub
Systems and without interruptions by an interrupt handler, So
the stack begins to unwind after step 960. One stack frame
is popped off the stack during the return in step 970 (stack
portions 1040 and 1050), the frames added by the subsystem
are removed before the return to the System (Stack portion
1060), and the return of step 980 removes the final stack
frame (stack portion 1070). This places the stack in its
original location as in stack portion 1010.

US 6,779,180 B1
9

Multi-Threaded Operating Systems
In a multi-threaded System, each proceSS can include one

or more “threads.” Threads are a type of “mini-process” that
shares the address Space of their parent process. Because the
threads share the resources of the parent process, multiple
threads can be spun off at one time without requiring
excessive memory resources. For these reasons, a thread is
often described as a “light process.”
A multi-threaded operating System will Support the multi

threaded capability of a multi-threaded process and alternate
the actual processing activity among Several different
threads in a Specified Sequence or, alternatively, in accor
dance with a priority Scheme, where all threads share the
Same address Space. The benefit of a multi-threaded System
is that large processes may be broken into Small processes
(threads), each of which completes its task “concurrently”
with the other processes. Each thread is actually time-sliced
on a Single processor, meaning that each thread has a certain
amount of time to run before the processor will run another
thread or process.

2. Detailed Description
According to the preferred embodiments of the present

invention, a Stack unwinding mechanism is provided that
reduces Stack overflow problems by determining if an asyn
chronous function completed Synchronously and unwinding
the Stack if the function did complete Synchronously. By
providing Stack management for asynchronous function
calls that complete Synchronously and by unwinding the
Stack, the Stack unwinding mechanism reduces the chances
of Stack overflow from Synchronous completion of asyn
chronous functions. The various embodiments of the present
invention disclosed herein are especially well-Suited to
embedded processor environments. Any System, including
multi-threaded Systems, using a call/callback method of
operation or model can benefit from this design.

Referring now to FIG. 1, a computer system 100 in
accordance with a preferred embodiment of the present
invention is an AS/400 mid-range computer System.
However, those skilled in the art will appreciate that the
methods and apparatus of the present invention apply
equally to any computer System, regardless of whether the
computer System is a complicated multi-user computing
apparatus or a single user device Such as a personal
computer, WorkStation, or embedded Systems. Such as radios,
phones, hand-held computers, television Set-top boxes, or
disk drive Subsystems. Computer system 100 suitably com
prises a processor 110, main memory 120, a memory con
troller 130, an auxiliary storage interface 140, and a terminal
interface 150, all of which are interconnected via a system
bus 160. Note that various modifications, additions, or
deletions may be made to computer system 100 illustrated in
FIG. 1 within the scope of the present invention such as the
addition of cache memory or other peripheral devices. FIG.
1 is presented to simply illustrate Some of the Salient features
of computer system 100. In particular, it should be noted that
the preferred embodiments of the present invention
(including processor 110, memory controller 130, and main
memory 120) can be placed in an embedded System running
in auxiliary Storage interface 140, and this embedded System
could use the preferred embodiments of the present inven
tion.

Processor 110 performs computation and control func
tions of computer system 100, and comprises a suitable
central processing unit (CPU). Processor 110 may comprise
a single integrated circuit, Such as a microprocessor, or may
comprise any Suitable number of integrated circuit devices

15

25

35

40

45

50

55

60

65

10
and/or circuit boards working in cooperation to accomplish
the functions of a processor. Processor 110 suitably executes
an operating System 121, a client 122, and a Subsystem 127
within main memory 120. There may be multiple clients
operating at one time; however, only one client will be
discussed. FIG. 1 is meant to be illustrative but not control
ling.

Auxiliary Storage interface 140 allows computer System
100 to store and retrieve information from auxiliary storage
devices, Such as magnetic disk (e.g., hard disks or floppy
diskettes) or optical storage devices (e.g., CD-ROM). One
Suitable Storage device is a direct acceSS Storage device
(DASD) 170. As shown in FIG. 1, DASD 170 may be a
floppy disk drive which may read programs and data from a
floppy disk 180. It is important to note that while the present
invention has been (and will continue to be) described in the
context of a fully functional computer System, those skilled
in the art will appreciate that the mechanisms of the present
invention are capable of being distributed as a program
product in a variety of forms (including as an update to a
current call/callback model), and that the present invention
applies equally regardless of the particular type of Signal
bearing media to actually carry out the distribution.
Examples of Signal bearing media include: recordable type
media such as floppy disks (e.g., disk 180) and CD ROMS,
and transmission type media Such as digital and analog
communication links, including wireleSS communication
linkS.
Memory controller 130, through use of a processor (not

shown) separate from processor 110, is responsible for
moving requested information from main memory 120 and/
or through auxiliary storage interface 140 to processor 110.
While for the purposes of explanation, memory controller
130 is shown as a separate entity, those skilled in the art
understand that, in practice, portions of the function pro
vided by memory controller 130 may actually reside in the
circuitry associated with processor 110, main memory 120,
and/or auxiliary Storage interface 140.

Terminal interface 150 allows system administrators,
computer programmers, users, and other computer Systems
to communicate with computer system 100, normally
through programmable workstations. Terminal interface 150
can, however, comprise any type of interface that allows a
user to interact with computer system 100. For instance, if
the preferred embodiments of the present invention are used
in an embedded System in auxiliary Storage interface 140,
buS 160 and its associated logic could Serve as terminal
interface 150 So that a main computer can communicate
requests to auxiliary Storage interface 140. Although the
system 100 depicted in FIG. 1 contains only a single main
processor 110 and a single system bus 160, it should be
understood that the present invention applies equally to
computer Systems having multiple processors and multiple
system buses. Similarly, although the system bus 160 of the
preferred embodiment is a typical hardwired, multidrop bus,
any connection means that Supports bi-directional commu
nication in a computer-related environment could be used.
Main memory 120 Suitably contains an operating System

121, a Stack 124, a client 122 containing Stack unwinding
mechanism 123, a control block 125 containing a flag 126,
and a subsystem 127 containing a subsystem function 128.
There could be one or more stacks 124 and stack 124 could
be part of operating System 121. In addition, part of Stack
124 could reside on DASD 170, Such as if the stack is
infinite and can be paged to and from DASD 170. An infinite
Stack, if it continues to grow, will essentially use all of the
space on DASD 170 and in memory 120 that operating

US 6,779,180 B1
11

system 121 allows to stack 124. When the extra space (on
DASD 170 and in memory 120) used for stack. 124 is full,
then any further increases in Stack size will generally cause
exceptions (e.g., errors reported to computer System 100 by
operating System 124) or over-written data. Client 122 can
be part of operating System 121, a separate program, or any
piece of software that communicates with subsystem 127. A
client, as the term is used in this specification, is any
requester of Subsystem Services. AS Such, a client could
actually be another Subsystem, if that Subsystem calls a
Second Subsystem and requests that the Second Subsystem to
perform a task. For the purposes of this illustration, oper
ating System 121 is a multi-threaded operating System and is
capable of performing Systems management tasks which are
typical of operating Systems used in computer Systems
generally. Stack unwinding mechanism 123 is a Software
mechanism that controls callback functions from the Stack
perspective and prevents undesired Stack overflow from
Synchronous completion of asynchronous functions. Flag
126 is used by stack unwinding mechanism 123 to track the
Synchronous completion of an asynchronous function (Such
as Subsystem function 128), allowing Stack unwinding
mechanism 123 to clear unneeded callback functions asso
ciated with the asynchronous functions from the Stack. This
will be discussed in more detail below.

It should be understood that main memory 120 will not
necessarily contain all parts of all mechanisms shown. For
example, portions of client 122 and operating System 121
may be loaded into an instruction cache (not shown) for
processor 110 to execute, while other files may well be
Stored on magnetic or optical disk storage devices (not
shown). In addition, although client 122 is shown to reside
in the same memory location as operating System 121 and
Stack unwinding mechanism 123, it is to be understood that
main memory 120 may consist of disparate memory loca
tions. The term “memory” as used herein refers to any
Storage location within the Virtual address Space of System
100.
AS Stated previously, clients call Subsystems to have the

Subsystems complete various tasks, Such as retrieving infor
mation from hard drives. Many of these subsystem functions
are asynchronous functions. Asynchronous functions that
complete Synchronously create potentials for Stack prob
lems. To alleviate these problems, a preferred embodiment
of the present invention determines whether the asynchro
nous function completed Synchronously or asynchronously.
If the asynchronous function completed its task
asynchronously, little chance for Stack error occurs, and the
System functions Substantially as described with reference to
FIGS. 9 and 10. If the asynchronous function completed its
task Synchronously, the Stack unwinding mechanism 123
unwraps the Stack (or accelerates the unwrapping of the
Stack) by returning before the completion of the client's task
and “off-loads” the client’s processing of the task until a
later time. The client off-loads its processing of the task
until, in its main loop, it calls the callback function to
complete processing of the task. The unwrapping of the
Stack virtually eliminates any potential for Stack overflow or
Overgrowth caused by asynchronous functions that complete
Synchronously. It is possible that Some processing by the
client can be performed before the callback function returns
to the client; however, the longer the System stays in the
callback function, the higher the chances of Stack overflow
or Stack overgrowth. Thus, it is preferable that only minimal
or no client task processing is performed before a return in
the most preferred embodiment of the present invention. In
a preferred embodiment of the present invention, Stack

15

25

35

40

45

50

55

60

65

12
unwinding mechanism 123 operates both in the client's main
program or thread of execution and in the callback func
tion's program or thread of execution.

It is important to note that the task given to the Subsystem
is part of a "larger client task. The client needs a task
performed and it informs the subsystem that the subsystem
has its own task, which is needed to complete the client's
task, to perform. The Subsystem completes its part of the
task (e.g., by retrieving information from a hard drive), then
the client completes its part of the task (e.g., by retrieving the
information from the hard drive and placing this information
in memory). In a most preferred embodiment, the callback
function is the mechanism that actually completes the cli
ent's task. However, any System wherein an asynchronous
Subsystem calls back the client after the Subsystem com
pletes Synchronously will cause a Scenario that has the
potential to cause Stack overflow or overgrowth.

Referring now to FIG. 2, a block diagram illustrating
major functional elements of computer system 100, in
accordance with a preferred embodiment of the present
invention, is shown. Client 122 contains callback function
210 and client 122 interacts with control block 125 and
Subsystem function 128. Subsystem function 128, as part of
Subsystem 127, retrieves and sends information to DASD
170 in this example. There will generally be many sub
Systems and Several Subsystem functions per Subsystem, but
only one Subsystem and Subsystem function are shown here.
Subsystem 128, in this example, would reside in auxiliary
storage interface 140 (not shown in FIG. 2). It should be
noted that all of the functionality contained in main memory
120 (shown in FIG. 1) could be contained in auxiliary
interface 140. Callback function 210 is a function that
finishes processing a task, Such a retrieving data from a
Subsystem. When Subsystem 127 finishes its task it will
generally, according to the call/callback model, call client
122 back by calling callback function 210 to inform client
122 that subsystem 127 has completed its task.

Prior to contacting subsystem 127 and Subsystem function
128, client 122 will usually create a control block 125 and
place flag 126 and the address of callback function 210 (not
shown in FIG. 2) in this control block, which is an area of
memory that preferably holds information about the Sub
System task. Each task for each Subsystem will generally
have a control block 125 associated with the task and the
client will create each control block 125 and place a Space
for flag 127 in each control block 125. The client will
generally pass the address of the control block to each
Subsystem and each Subsystem will return the address back
to the client during the callback function call So that the
client knows which task is being performed. While the
control block will be described as being passed to and from
Subsystem 127 through a pass-by-address Scheme, any
method known to those skilled in the art can be used to
inform the subsystem of its task and have the subsystem
inform the System that the task is completed. For instance,
variables and data that make up a control block 125 could be
passed to subsystem 127, and subsystem 127 could pass
back needed variables and data to client 122. Control block
125 also allows each flag 126 associated with each control
block 125 to be easily found and tested. Although this is the
most preferred embodiment for implementing flag 126,
many other embodiments can perform the same function.
For instance, multiple flags could be implemented in a
tabular format, wherein both the address of each control
block and each control block's flag would be stored. Note
that there will generally be many of these control blocks,
flags, and Subsystems operating at any one time.

US 6,779,180 B1
13

Under normal operating conditions, client 122 creates
control block 125 and passes the address of control block
125 to Subsystem function 128. Subsystem function 128
uses control block 125 to determine what its task is. Once it
completes this task (e.g., it Successfully retrieves informa
tion from DASD 170), it uses control block 125 to retrieve
the address of callback function 210. Subsystem function
128 then calls callback function 210. Callback function 210
completes the processing of the task, normally by retrieving
data from Subsystem function 128 and placing it into main
memory 120 (not shown in FIG. 2).

Stack unwinding mechanism 123 manipulates and uses
flag 126 to determine whether Subsystem function 128
completed Synchronously or asynchronously. Stack unwind
ing mechanism 123 is preferably part of both client 122 and
callback function 210 (which is, itself, part of client 122).
This most preferred embodiment of the present invention
will be detailed with reference to FIGS. 3, 4, and 8. This
preferable Separation of Stack unwinding mechanism 123
occurs because callback function 210 is a Sub-function of
client 122 and it is easiest to perform certain flag operations
in both client 122 and callback function 210. Furthermore,
this embodiment does not require additional changes to
Subsystems or Subsystem functions So that current Sub
systems will work with the preferred embodiments of the
present invention. Stack unwinding mechanism 123 can also
be implemented in a variety of other ways. For instance,
Stack unwinding mechanism 123 can be changed to one
Sub-function within client 122, wherein this Sub-function
will contain all the functionality of the split version of the
most preferred embodiment as detailed in forthcoming
FIGS. 3, 4, and 8. This is less preferred because Stack
unwinding mechanism 123 will have to determine whether
the client or the callback function called Stack unwinding
mechanism 123; however, this is still a viable alternative
Stack unwinding mechanism.

Turning now to FIG. 3, a method 300 for implementation
of a Stack unwinding mechanism in accordance with a
preferred embodiment of the present invention is presented.
Method 300 shows the important, global steps taken by stack
unwinding mechanism 123 So that Stack unwinding mecha
nism 123 can provide better Stack management when an
asynchronous function completes Synchronously. FIG. 3
does not, however, illustrate the manipulation of flag 126 by
Stack unwinding mechanism 123. Flag 126 is used in the
most preferred embodiments of the present invention to
provide a relatively easy method of Stack management, but
the implementation details of the flag's manipulation are
harder to understand if overall System functionality is not
well understood. Thus, FIG. 3 gives a general overview of
System functionality before the particulars of flag manipu
lation are developed in FIGS. 4 and 5.

At the most basic level, FIG. 3 diagrams that stack
unwinding mechanism 123 determines if the Subsystem (an
asynchronous function) completed its task Synchronously
and, if So, Stack unwinding mechanism 123 will unwrap the
Stack. To perform this determination and unwrapping of the
stack, method 300 starts when an asynchronous subsystem
127 is called (or subsystem function 128 is called) to
accomplish whatever task may need to be accomplished
according to the task at hand (step 305). This step may
represent a call to a disk drive System, a printer request, a
memory fetch, etc. During this step, the address of the
control block is preferably passed to subsystem 127.

If the task can be synchronously completed (step 310=
YES), the subsystem will generally complete the task (step
350) or will know that it can complete the task. Then the

15

25

35

40

45

50

55

60

65

14
Subsystem will retrieve the callback function's address from
the control block and will call the callback function (step
355). The callback function's purpose is to both inform the
client that the task is done and to actually take the Steps to
complete the task, Such as retrieving information from the
Subsystem and placing it in main memory. However, the
time spent in the callback function, as Stated previously, is
one factor leading to potential Stack overflow or overgrowth
problems. To mitigate these problems, the most preferred
embodiment of the present invention returns from the call
back function without processing the task. This occurs in
step 360. In step 365, the Subsystem returns to the client. The
Stack has now been unwound.

There still remains processing that needs to be completed
for the task to end. Thus, the client itself calls the callback
function in step 370, and the callback function performs the
processing needed to complete the task (step 375). Stack
unwinding mechanism 123, thus, off-loads processing until
the Stack has been unwrapped. This minimizes the time
spent in the callback function when the callback function has
been called by the Subsystem. Because the Stack is
unwrapped when the client calls the callback function, there
will be far fewer Stack frames on the Stack and there is a
much lower chance of stack overflow or overgrowth. Once
the task is complete, the callback function returns to the
client (step 380) and the client then returns (step 385).

If the Subsystem cannot finish its task immediately (step
310=NO), the subsystem will return to the client (step 315)
and the client will return (320). Sometime later, the Sub
System will run again and will complete the task (step 325).
The subsystem then calls the callback function (step 330),
which then finishes processing the task on the client side
(step 335) and return to the Subsystem (step 340). The
subsystem then returns (step 345).

Turning now to FIGS. 4 and 5, these figures show
methods that Stack unwinding mechanism 123 uses to deter
mine whether an asynchronous function completed
Synchronously, Such that the Stack must be unwrapped and
the client's processing of the task delayed until the client's
main program, or asynchronously. There are, however, Some
important caveats to be considered before proceeding to a
description of these figures. First, FIG. 4 represents a part of
Stack unwinding mechanism 123 contained in the client, and
FIG. 5 represents a part of stack unwinding mechanism 123
contained in the callback function. Second, the callback
function can be called by the Subsystem when the subsystem
can complete its task Synchronously (this occurs between
steps 1120 and 130 of FIG. 4), be called by the client (step
1160 of FIG. 4), or run at a later time in another system state
when the Subsystem cannot complete its task Synchronously.
Finally, the flag's state at each location in FIGS. 4 and 5 does
not necessarily indicate whether the asynchronous function
completed Synchronously or asynchronously. This will be
more apparent in the discussions that follow.

Referring now to FIG. 4, a method 1100 for implemen
tation of the client part of the Stack unwinding mechanism
in accordance with the preferred embodiments of the present
invention is presented. Method 1100 begins when stack
unwinding mechanism 123 sets flag 126 to TRUE (step
1110). Flag 126 will be used later to indicate whether the
Subsystem completed Synchronously or asynchronously and
whether the callback function should process or not proceSS
the callback. The client then calls the Subsystem in step
1120, generally passing the address of a control block to the
Subsystem. The control block usually contains flag 126, the
task to be performed, and the address of the callback
function. Between the time the Subsystem is called (Step

US 6,779,180 B1
15

1120) and the Subsystem returns to the client (step 1130), the
callback function (and method 1200 of FIG. 5) may be
performed. The callback function will be performed if the
Subsystem can complete its task in the same System State and
the Subsystem calls the callback function to tell the client
that the task is done. The callback function will not be called
immediately by the Subsystem if the Subsystem cannot
perform its task in the same System State.

Regardless of whether the Subsystem can or cannot com
plete its task immediately, it will generally return (step 1130)
to the client. Stack unwinding mechanism 123 will check the
status of the flag 126 associated with this control block 125
to see if flag 126 is TRUE (step 1140). At this point, if the
flag is TRUE then the callback function (and method 1200
of FIG. 5) did not run and the subsystem will complete
asynchronously. The flag is then set false, in step 1150, to
indicate to the callback function that it should process the
callback. The callback function, in this situation, will be
called by the Subsystem at Some later point in time after the
Subsystem completes the task.

If the flag is FALSE, the Subsystem completed synchro
nously and the callback function (and method 1200 of FIG.
5) has run and set the flag to false. In this instance, the Stack
will have already been unwound, and the callback function
must be processed directly. This means that Stack unwinding
mechanism 123, as part of client 122, will initiate the
callback function (step 1160). Because the client calls the
callback function as part of its main loop, the Stack has been
unwound and the time spent in the callback function, after
it has been called from the subsystem, is minimal. This
should greatly reduce chances for Stack overflow. After
performing either step 1160 or step 1150, the client will
return (step 1170).

Referring now to FIG. 5, a method 1200 is presented that
implements the callback function part of the Stack unwind
ing mechanism in accordance with a preferred embodiment
of the present invention. Each time the callback function
runs, method 1200 will be performed as part of stack
unwinding mechanism 123. The address of the control block
asSociated with the current task will generally be sent to the
callback function so that the callback function will know
which flag 126 to test. As shown in FIG. 5, the flag is tested
by Stack unwinding mechanism 123 as Soon as the callback
function begins executing. If the flag is TRUE (step 1210=
YES), then the Subsystem completed synchronously and the
callback function is being called by the Subsystem. In this
instance, the flag is set to FALSE (step 1230) and the
function immediately returns to the subsystem (step 1240).
In previous Systems, the callback function would, at this
point, perform whatever processing is necessary to complete
the task at the client level. In FIG. 5, however, step 1210 is
placed near or at the beginning of the callback function So
that the callback function can determine if the asynchronous
function has completed Synchronously. If the function com
pleted Synchronously, Stack unwinding mechanism 123
returns to the Subsystem. This quick return Serves two
purposes. First, the time spent in the callback function,
which as illustrated in reference to FIGS. 11 and 12 causes
the potential for Stack overflow or overgrowth, is minimized.
Second, the return from the callback function allows the
Subsystem and all calls made by the Subsystem to complete
their processing, and the Stack has a chance to unwind.
Because of these returns, the Stack should be completely
unwound in a very short time period.

If the flag is FALSE in step 1210, there are two possible
reasons for this. First, the Stack unwinding mechanism could
have Set the flag false, as discussed in the previous para

15

25

35

40

45

50

55

60

65

16
graph. When the Subsystem completes Synchronously, there
Still remains processing to be completed by the client. The
client itself then calls the callback function in step 1160 of
FIG. 4 to complete this processing and finish the task. The
processing, thus, is off-loaded Such that the client will
Subsequently call the callback function in the client's main
loop, program, or thread of operation. In this case, the Stack
unwinding mechanism returns (step 1240) to the client.

Second, if the Subsystem completed asynchronously, the
Subsystem will run at Some later time and complete its task.
Once the task is complete, the Subsystem will call the
callback function. This time, flag 126 has been set to FALSE
by the client in step 1150 of FIG. 4. When the call from the
client Subsequently happens, the callback function, after
testing flag 126, proceeds to do the callback processing (Step
1220) and returns to the subsystem (step 1240).

Flag 126 in methods 1100 and 1200 indicates slightly
different statuses in each method. In method 1100, which is
performed by the client, a value of TRUE indicates that the
asynchronous function (Subsystem) actually will complete
asynchronously. Similarly, a value of FALSE indicates that
the Subsystem completed Synchronously and processing
must be performed by the client and callback function.
Conversely, in method 1200, which is performed by the
callback function of the client, a value of TRUE means that
no processing must be performed and that the Subsystem
completed synchronously. A value of FALSE means that
processing must be performed, but that the Subsystem com
pleted Synchronously or asynchronously. In short, flag 126
Serves two different purposes, one purpose for each method:
in method 1100, the flag indicates the asynchronous/
Synchronous completion of the Subsystem, while in method
1200 the flag indicates whether processing must or must not
be performed.
Two examples will help clarify the paths taken through

the methods by asynchronous functions that complete Syn
chronously or asynchronously. For the first example, con
sider the asynchronous completion of an asynchronous
function. In step 1120, the Subsystem is called by the client.
The task cannot be immediately completed, So the Sub
system returns to the client in step 1130. Flag 126 is still
TRUE (step 1140), so stack unwinding mechanism 123 (as
part of client 122) sets the flag to FALSE (step 1150). The
client then returns (step 1170). At some time in the future,
the Subsystem completes its task and notifies the client by
calling the callback function. Stack unwinding mechanism
123, preferably as part of the callback function (which is
itself part of client 122), tests flag 126 in step 1210. Because
the flag is FALSE, the callback will be processed in step
1220 and the callback function will return to the subsystem
in step 1240.

For the Second example, consider the Synchronous
completion of an asynchronous function. This case is pre
sented in FIGS. 6 and 7. References will be made also to
FIGS. 4 and 5. FIG. 6 shows a flow diagram 400 for
Synchronous completion of an asynchronous function using
the Stack unwinding mechanism of the present invention.
FIG. 7 presents the same situation as described above in
reference to FIGS. 11 and 12, but includes the additional
processing performed by a Stack unwinding mechanism in
accordance with a preferred embodiment of the present
invention. AS shown in FIG. 6, when a System issues an
asynchronous function call, a flag is set to TRUE just before
the function call is made (step 405, which corresponds to
step 1110 in FIG. 4). When call 410 goes forward, as with
FIGS. 11 and 12 above, the task is completed synchronously
(step 415) and the Subsystem retrieves the callback function

US 6,779,180 B1
17

(step 420) and calls the callback function (step 425).
However, in this case, the flag is tested (step 430, which
corresponds to step 1210 in FIG. 5) and, since the flag is
TRUE, the system knows that the Subsystem has completed
synchronously. Therefore, the flag is set to FALSE (step 430,
which corresponds to step 1230 in FIG. 5) and the system
returns to the subsystem (step 435, which corresponds to
step 1240 in FIG. 5) and, from there, returns to the client
(step 440, which corresponds to step 1130 in FIG. 4). This
unwinds the Stack and limits the potential for Stack overflow
or overgrowth problems. Similar to the callback function,
the client tests the flag (step 450, which corresponds to step
1140 in FIG. 4), and initiates the callback function (step 450)
with a call 455, corresponding to step 1160 in FIG. 4. Then,
the callback function will perform the necessary processing
to complete the task (step 460) and return to the client when
completed (step 465). The client then returns in step 1170 of
FIG. 4.

Referring now to FIG. 7, the flow diagram 400 of FIG. 6
is shown, only now Small portions of the Stack are shown at
each important processing point. Before the Subsystem is
called (step 410), the Stack is at a starting location, as
illustrated by stack portion 510. After the call to the
Subsystem, a frame is on the Stack due to the call (Stack
portion 520). During the Subsystem's processing, the Sub
System may call other Sub-functions or other Subsystems that
might place additional Stack frames on the Stack. This is
illustrated by stack portion 530. The subsequent call to the
callback function (Step 425) places yet another Stack frame
on the stack (stack portion 540). At this point, the stack is
quite full and any Subsequent calls may overflow the Stack
or cause the Stack to be paged out to disk. However, Stack
unwinding mechanism 123 tests the flag and discovers that
the Subsystem function has completed Synchronously. Stack
unwinding mechanism 123 sets the flag equal to FALSE here
and returns without undue delay or processing. The short
time in the callback function means that there is less time for
other functions to add Stack frames at this critical juncture of
processing. In addition, this allows the Subsystem to unwrap
the Several Stack frames placed on the Stack during its
processing. Even if the total System is in Some type of
iterative State, where constant tasks are being Sent to the
Same or Several Subsystems, the constant unwrapping of the
Stack by the current invention will eliminate the vast major
ity of stack overflows or overgrowth.
When the callback function returns, one stack frame is

popped off the stack (stack portions 550 and 565), and the
Subsystem gets to perform clean up operations that pop the
frames added during its processing (Stack portion 570). At
this point, one more Stack frame removal is all that is needed
to place the Stack in its original location. This occurs in Step
440 (stack frames 570 and 580).

Referring now to FIG. 8, a code section 700 for imple
menting a preferred embodiment of a Stack unwinding
mechanism of the present invention is presented. Code
section 700 illustrates the salient points of stack unwinding
mechanism 123 and methods 1100 and 1200, placed into
code form. Code section 700 is basically self explanatory
when Viewed in conjunction with the previous discussions,
but one particularity that has not been previously discussed
needs to be presented. Testing and Setting flags in the manner
used in the previous discussions and in code section 700 can
be problematic in a preemptive multitasking System. The
requirement is that, if the Subsystem completes
asynchronously, the test and set following the SubsysFunct(
) call return must occur before the test and Set in
ClientCallback(). This can be assured through a variety of

15

25

35

40

45

50

55

60

65

18
Synchronization mechanisms depending on the preemption
environment. If the test-and-Set is not atomic, then one
process could read the State of the flag but not change the
flag. A Second proceSS could then change the flag, only to
have the first process then change the flag. This usually
could not occur in a non-preemptive environment because
each function would not be interrupted. To prevent this
anomaly, important Sections of code are placed in "pro
tected” regions where only one proceSS can have access to
the protected area of code at one time.
The most preferred embodiments of the present invention

have been described. These embodiments are the most
preferred because they generally require no significant Sub
System modifications to fully implement. Instead, in most
applications, only clients (and callback functions of the
clients) need be modified to Support the current invention. If
modifications to Subsystems are acceptable, another embodi
ment of the present invention can be implemented. Referring
back to FIG. 6, after the subsystem's task is completed in a
synchronous manner (step 415), the subsystem itself would
set the flag equal to FALSE. Steps 420, 425, and 435 would
not be performed. Instead, once the Subsystem completes the
task and Sets the flag, the Subsystem would return to the
client in step 440. When the Subsystem returns to the client,
the client tests the flag (see FIG. 4, step 1140). If the flag is
FALSE, the client calls the callback function in step 1160.
Step 1230 of FIG. 5, wherein the callback function has tested
the flag an found that the flag is TRUE is no longer
necessary, because the Subsystem is performing this Setting
of the flag to FALSE.

If the Subsystem cannot complete its task immediately
(the Subsystem will complete its task asynchronously), then
the Subsystem would generally not change the flag at this
Stage. Were the Subsystem to change the flag at this point, the
client (in step 1140 of FIG. 4) would find a FALSE flag and
run the callback function (step 1160). It is highly unlikely
that the asynchronous task would be complete at this stage,
as the Subsystem just returned to the client and generally will
not run until Sometime in the future. The callback function
then would not need to perform step 1230 of FIG. 5 because
the only entities changing the flag to false are the client (Step
1150 of FIG. 4) and the subsystem (if the subsystem
completed its task Synchronously).

Thus, the Subsystem can be made to perform Some aspects
of the Stack unwinding mechanism. This is a leSS preferred
embodiment only because Subsystems, clients, and callback
functions would all have to be changed to implement this
embodiment. The most preferred embodiments only entail
changing clients and callback functions.
By implementing the preferred embodiments of the

present invention, the potential for Stack overflow problems
inherent in current Systems can be Substantially eliminated
and System performance can be enhanced. Specifically, no
additional System calls or context Switches are required
using the present invention. In addition, this Solution pre
Sented herein offers better performance than the So-called
“infinite Stack’ Solution because the Stack Size is controlled
and there will be less of a requirement to page the Stack in
and out of memory.

Further, the most preferred embodiments of the present
invention provide a client controlled code flow and there are
no additional required interfaces to the existing Subsystems.
This provides for flexibility and compatibility for adopting
the Solutions contained herein with existing Systems and
Subsystems. There is no requirement that the Subsystem
communicate explicitly to the client whether it completed
Synchronously or asynchronously.

US 6,779,180 B1
19

Finally, the present invention is very robust and adds a
great deal of Stability to Systems where the Solutions pre
Sented herein are adopted. Specifically, an explicit return
function is provided for all Suitable asynchronous function
calls and, therefore, all relevant return codes are provided
back to the callers without exception. This eliminates Stack
overflow-related errors, enhancing both System performance
and stability.
While the present invention has been particularly shown

and described with reference to preferred embodiments
thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein
without departing from the Spirit and Scope of the invention.
What is claimed is:
1. An apparatus comprising:
a processor coupled to a bus,
a memory coupled to the bus, and
a Stack unwinding mechanism residing in the memory, the

Stack unwinding mechanism unwrapping a Stack by
returning before completion of a client task if an
asynchronous function completed a Second task Syn
chronously.

2. The apparatus of claim 1 wherein the Stack is at least
partially present in memory.

3. The apparatus of claim 1 wherein the apparatus further
comprises a client that calls the asynchronous function and
wherein the Stack unwinding mechanism unwraps the Stack
by returning to the client from the asynchronous function if
the asynchronous function completed the Second task Syn
chronously.

4. The apparatus of claim 1 wherein the asynchronous
function is part of a Subsystem.

5. The apparatus of claim 1 wherein the Second task must
be completed as part of the client task.

6. The apparatus of claim 1 wherein the client completes
the client task after the Stack has been unwrapped.

7. The apparatus of claim 6 wherein the client completes
the client task by calling a callback function that then
completes the client task.

8. The apparatus of claim 7 wherein the stack unwinding
mechanism directs the client to call the callback function
after the Stack unwinding mechanism has unwrapped the
Stack.

9. The apparatus of claim 1 wherein the Stack unwinding
mechanism determines by using a flag whether the asyn
chronous function completed the Second task Synchronously.

10. The apparatus of claim 9 wherein the flag is contained
in a control block residing in the memory, and wherein the
Stack unwinding mechanism uses an address of the control
block to access the flag.

11. The apparatus of claim 4 wherein the Second task is
contained in a control block residing in the memory, and
wherein the client directs the subsystem to perform the
Second task by passing an address of the control block to the
Subsystem.

12. An apparatus comprising:
a processor coupled to a bus,
a memory coupled to the bus,
a Stack residing in the memory;
an asynchronous Subsystem function and a client residing

in the memory, the client directing the asynchronous
Subsystem function to perform a Subsystem task as part
of performing a client task, and

a Stack unwinding mechanism residing in the memory, the
Stack unwinding mechanism unwrapping the Stack
before completion of a client task if the asynchronous

15

25

35

40

45

50

55

60

65

20
Subsystem function completed the Subsystem task
Synchronously, the Stack unwinding mechanism
unwrapping the Stack by returning to the Subsystem
thereby allowing the Subsystem to return to the client,
the client completing processing of the client task after
the Stack has been unwrapped.

13. The apparatus of claim 12 wherein the client com
pletes the client task by calling a callback function that then
completes the client task.

14. The apparatus of claim 13 wherein the stack unwind
ing mechanism directs the client to call the callback func
tion.

15. The apparatus of claim 12 wherein the stack unwind
ing mechanism determines by using a flag whether the
asynchronous Subsystem function completed the Subsystem
task Synchronously.

16. The apparatus of claim 15 wherein the flag is con
tained in a control block residing in the memory, and
wherein the Stack unwinding mechanism uses an address of
the control block to access the flag.

17. The apparatus of claim 12 wherein the subsystem task
is contained in a control block residing in the memory, and
wherein the client directs the Subsystem to perform the
Subsystem task by passing an address of the control block to
the Subsystem.

18. An apparatus comprising:
a processor coupled to a bus,
a memory coupled to the bus,
a Stack residing in the memory;
an asynchronous Subsystem function and a client residing

in the memory, the client calling the asynchronous
Subsystem and directing the asynchronous Subsystem
function to perform a Subsystem task as part of per
forming a client task; and

a Stack unwinding mechanism residing in the memory, the
Stack unwinding mechanism unwrapping the Stack after
completion of the Subsystem task if the asynchronous
Subsystem function completed the Subsystem task
Synchronously, the Stack unwinding mechanism
unwrapping the Stack by returning to the client, the
client completing processing of the client task after the
Stack has been unwrapped.

19. A method comprising the steps of:
a) determining if an asynchronous function completed a

first task Synchronously; and
b) unwrapping a Stack by returning before completion of

a client task if the asynchronous function completed the
first task Synchronously.

20. The method of claim 19 wherein the step of unwrap
ping a Stack by returning before completion of a client task
if the asynchronous function completed the first task Syn
chronously further comprises the Step of completing the
client task after the Stack has been unwrapped.

21. The method of claim 19 wherein the step of deter
mining if an asynchronous function completed a first task
Synchronously further comprises the Step of testing a flag to
determine if the asynchronous function completed Synchro
nously.

22. The method of claim 21 further comprising, before the
Step of determining if an asynchronous function completed
a first task Synchronously, the Step of Setting the flag to a
particular value that indicates that the asynchronous function
will complete asynchronously.

23. The method of claim 21 wherein the step of testing a
flag to determine if the asynchronous function completed a
first task Synchronously further comprises the Step of acceSS
ing a control block to retrieve the flag.

US 6,779,180 B1
21

24. The method of claim 20 wherein the step of complet
ing the client task after the Stack has been unwrapped further
comprises calling a callback function that completes the
client task.

25. A method for reducing Stack overflow in a computer
System using the call/callback model, the computer System
comprising a Stack, a client, and an asynchronous Subsystem
function, the method comprising the Steps of:

a) the client directing the Subsystem to perform a Sub
System task as part of a client task,

b) determining if the asynchronous Subsystem function
completed the Subsystem task Synchronously; and

c) performing the following steps if the asynchronous
Subsystem function completed Synchronously:
i) unwrapping the Stack by returning before completion

of the client task, and
ii) completing the client task after the Stack has been

unwrapped.
26. The method of claim 25 wherein the step of deter

mining if the asynchronous Subsystem function completed a
Subsystem task Synchronously further comprises the Step of
testing a flag to determine if the asynchronous Subsystem
function completed Synchronously.

27. The method of claim 26 further comprising, before the
Step of determining if the asynchronous Subsystem function
completed a Subsystem task Synchronously, the Step of
Setting the flag to a particular value that indicates that the
asynchronous Subsystem function will complete asynchro
nously.

28. The method of claim 26 wherein the step of the step
of testing a flag to determine if the asynchronous Subsystem
function completed Synchronously further comprises the
Step of accessing a control block to retrieve the flag.

29. The method of claim 25 wherein the computer system
further comprises a direct acceSS Storage device and a
memory, at least part of the Stack and all of the asynchronous
Subsystem function and the client being Stored in the
memory, wherein the Stack is infinite, and wherein part of
the Stack can be stored on the direct access Storage device.

30. The method of claim 25 wherein the client further
comprises a callback function and wherein the Step of
completing the client task after the Stack has been
unwrapped further comprises calling the callback function
that completes the client task.

31. A method for reducing stack overflow in a multi
threaded computer System using the call/callback model, the
computer System comprising a callback function, a client,
and a Subsystem, the method comprising the Steps of:

a) the client performing the following steps:
i) setting a flag to a first value;
ii) calling the Subsystem, directing the Subsystem to

complete a Subsystem task as part of a client task,
iii) determining if the flag is the first value;
iv) setting the flag to a Second value if the flag is the

first value; and
V) calling a callback function if the flag is not the first

value;
b) the Subsystem performing the following steps:

i) determining if the Subsystem task can be completed
in a first thread; and

c) the callback function performing the following steps:
i) determining if the flag is the first value; and
iii) completing the client task if the flag is not the first

value.
32. The method of claim 31 wherein the client performs

the Step of Setting the flag to the Second value if the flag is

15

25

35

40

45

50

55

60

65

22
the first value, and the Subsystem performs the Step of
calling the callback function if the Subsystem task can be
completed in the first thread.

33. The method of claim 31 wherein the subsystem
performs the Step of Setting the flag to the Second value if the
Subsystem task can be completed in the first thread.

34. The method of claim 31 further comprising the step of
running the Subsystem in another thread if the Subsystem
could not complete the Subsystem task in the first thread.

35. A computer-readable medium having a program prod
uct for reducing Stack overflow in a multi-threaded
computer, Said program product comprising:

a Stack unwinding mechanism unwrapping a Stack by
returning before completion of a client task if an
asynchronous function completed a Second task Syn
chronously; and

Signal bearing media bearing the Stack unwinding mecha
S.

36. The program product of claim 35 wherein the signal
bearing media comprises transmission media.

37. The program product of claim 35 wherein the signal
bearing media comprises recordable media.

38. The program product of claim 35 wherein a client calls
the asynchronous function and wherein the Stack unwinding
mechanism unwraps the Stack by returning to the client from
the asynchronous function if the asynchronous function
completed the Second task Synchronously.

39. The program product of claim 35 wherein the stack is
at least partially present in memory.

40. The program product of claim 35 wherein the asyn
chronous function is part of a Subsystem.

41. The program product of claim 35 wherein the second
task must be completed as part of the client task.

42. The program product of claim 35 wherein the client
completes the client task after the Stack has been unwrapped.

43. The program product of claim 41 wherein the client
completes the client task by calling a callback function that
then completes the client task.

44. The program product of claim 42 wherein the stack
unwinding mechanism directs the client to call the callback
function after the Stack unwinding mechanism has
unwrapped the Stack.

45. The program product of claim 35 wherein the stack
unwinding mechanism determines by using a flag whether
the asynchronous function completed the Second task Syn
chronously.

46. The program product of claim 44 wherein the flag is
contained in a control block residing in the memory, and
wherein the Stack unwinding mechanism uses an address of
the control block to access the flag.

47. The program product of claim 39 wherein the second
task is contained in a control block residing in the memory,
and wherein the client directs the subsystem to perform the
Second task by passing an address of the control block to the
Subsystem.

48. A program product comprising:
a Stack unwinding mechanism unwrapping a Stack before

completion of a client task if an asynchronous Sub
System function completed a Subsystem task
Synchronously, the Stack unwinding mechanism
unwrapping the Stack by returning to a Subsystem
thereby allowing the Subsystem to return to a client, the
client completing processing of the client task after the
Stack has been unwrapped; and

Signal bearing media bearing the Stack unwinding mecha
nism.

49. The program product of claim 47 wherein the signal
bearing media comprises transmission media.

US 6,779,180 B1
23

50. The program product of claim 47 wherein the signal
bearing media comprises recordable media.

51. The program product of claim 47 wherein the client
completes the client task by calling a callback function that
then completes the client task.

52. The program product of claim 50 wherein the stack
unwinding mechanism directs the client to call the callback
function.

53. The program product of claim 50 wherein the stack
unwinding mechanism determines by using a flag whether
the asynchronous Subsystem function completed the Sub
System task Synchronously.

24
54. The program product of claim 52 wherein the flag is

contained in a control block residing in the memory, and
wherein the Stack unwinding mechanism uses an address of
the control block to access the flag.

55. The program product of claim 50 wherein the Sub
System task is contained in a control block residing in the
memory, and wherein the client directs the Subsystem to
perform the Subsystem task by passing an address of the

10 control block to the Subsystem.

k k k k k

