

Office de la Propriété
Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2653541 C 2014/12/23

(11)(21) **2 653 541**

(12) **BREVET CANADIEN**
CANADIAN PATENT

(13) **C**

(86) **Date de dépôt PCT/PCT Filing Date:** 2006/06/06
(87) **Date publication PCT/PCT Publication Date:** 2006/12/14
(45) **Date de délivrance/Issue Date:** 2014/12/23
(85) **Entrée phase nationale/National Entry:** 2008/11/26
(86) **N° demande PCT/PCT Application No.:** CA 2006/000936
(87) **N° publication PCT/PCT Publication No.:** 2006/130978
(30) **Priorité/Priority:** 2005/06/06 (US60/687,336)

(51) **Cl.Int./Int.Cl. C08G 65/00** (2006.01),
A01N 1/02 (2006.01), **A61K 47/30** (2006.01),
B01F 17/42 (2006.01)

(72) **Inventeurs/Inventors:**
BROOKS, DONALD E., CA;
KIZHAKKEDATHU, JAYACHANDRAN N., CA;
KAINTHAN, RAJESH KUMAR, CA

(73) **Propriétaire/Owner:**
THE UNIVERSITY OF BRITISH COLUMBIA, CA

(74) **Agent:** SMART & BIGGAR

(54) **Titre : SUBSTITUT DE SERUM ALBUMINE A BASE DE POLYMERÉ**

(54) **Title: POLYMER-BASED SERUM ALBUMIN SUBSTITUTE**

(57) Abrégé/Abstract:

This invention provides the use of a polymer comprising a hyperbranched polyether polyol such as hyperbranched polyglycerol as a serum albumin substitute. Also provided are high molecular weight hyperbranched polyglycerol polymers suitable for a variety of medical and non-medical uses including methods for making such high molecular weight polymers.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
14 December 2006 (14.12.2006)

PCT

(10) International Publication Number
WO 2006/130978 A1

(51) International Patent Classification:

C08G 65/00 (2006.01) **A01N 1/02** (2006.01)
A61K 47/30 (2006.01) **B01F 17/42** (2006.01)

(21) International Application Number:

PCT/CA2006/000936

(22) International Filing Date:

6 June 2006 (06.06.2006)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/687,336 6 June 2005 (06.06.2005) US

(71) Applicant (for all designated States except US): **THE UNIVERSITY OF BRITISH COLUMBIA** [CA/CA]; University-Industry Liaison Office, #103, 6190 Agronomy Road, Vancouver, British Columbia V6T 1Z3 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **BROOKS, Donald, E.** [CA/CA]; 3989 West 19th Avenue, Vancouver, British Columbia V6S 1C9 (CA). **KIZHAKKEDATHU, Jayachandran, N.** [IN/CA]; #806, 6001 Vine Street, Vancouver, British Columbia V6M 4A4 (CA). **KAINTHAN, Rajesh, Kumar** [IN/CA]; #4407, 2350 Life Sciences Mall, Vancouver, British Columbia V6T 1Z3 (CA).

(74) Agent: **SMART & BIGGAR**; Box 11560 Vancouver Centre, Suite 2200, 650 West Georgia Street, Vancouver, British Columbia V6B 4N8 (CA).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2006/130978 A1

(54) Title: POLYMER-BASED SERUM ALBUMIN SUBSTITUTE

(57) Abstract: This invention provides the use of a polymer comprising a hyperbranched polyether polyol such as hyperbranched polyglycerol as a serum albumin substitute. Also provided are high molecular weight hyperbranched polyglycerol polymers suitable for a variety of medical and non-medical uses including methods for making such high molecular weight polymers.

Polymer-Based Serum Albumin Substitute

Background of the Invention

Serum albumin is the most abundant plasma protein in animal blood. In humans, human serum albumin (HSA) is present at an average concentration of about 45-50 mg/ml in plasma which corresponds to 52-65% of the total protein content. The molecular weight of HSA is 66,300, it is not glycosylated and has a half-life of about 17 days in the circulation.

Serum albumin acts as a carrier of fatty acid, bilirubin, hormones, drugs and metal ions by reversibly binding these agents. Albumin functions in the delivery of biologically relevant materials and scavenges waste materials for elimination. One of its major functions, associated with its high concentration, is to provide much of the osmotic pressure in blood that is required to balance the high concentration of osmotically active macromolecules in the cytoplasm of blood cells. In addition, a pressure balance must be maintained across the endothelium between the interior of blood vessels and the interstitial space to avoid undue water movement and tissue swelling (edema). HSA provides about 80% of the colloid osmotic pressure that balances the hydrostatic pressure in the vascular tree.

Replacement of serum albumin is particularly important in acute conditions such as burns, severe blood loss, cardiac surgery, shock or other conditions where potentially life threatening fluid shifts occur unless lost volume and osmotic activity are replaced.

One approach for production or improvement of a plasma protein is to produce it by recombinant techniques. This has been done for HSA but because of the large amounts required for clinical purposes worldwide, this approach is cost prohibitive.

For decades, attempts have been made to use various polymers as cost effective serum albumin substitutes. Polysaccharides (modified starch such as hydroxyethyl starch (HES) or dextran) and collagen (i.e., gelatin) derivatives have been used as plasma expanders. Solutions of such macromolecules ("colloids"), rely on molecular size for their ability to produce the desired osmotic gradient between plasma and interstitial space. However, all the synthetic colloids increase plasma viscosity significantly, which is detrimental to the heart and circulatory system and all the synthetic colloids have effects on whole blood rheology, including red cell aggregation. While dextran and HES are or have been used as substitutes for serum albumin with respect to plasma expansion, they increase plasma viscosity dramatically because of their broad molecular weight distribution and high average molecular weight (Mw about 670,000 for hetastarch). Buffered salt solutions ("crystalloids") are also employed and are more cost effective than colloids, but they must be

administered in much larger volumes and their effects are very short term. None of the polysaccharide or collagen based derivatives nor salt solutions perform any function of serum albumin other than its role in the maintenance of osmotic pressure.

Various polymers have also been used or proposed as drug delivery vehicles or as carriers for biologically active compounds. Such polymers have included dendritic polymers, including dendrimers and hyperbranched polymers such as hyperbranched polyglycerol (HPG) (for example see: Sunder, A., et al. (1999) *Angew Chem. Int. Ed.* 38:3552-55; international patent application publication WO 2004/072153; and United States patent application publication 2005/0048650). Linear polyethylene glycols have been used in drug delivery and have also been proposed for use in perfusates and solutions for organ and tissue preservation (e.g. see United States Patent 6,321,909; United States Patent 6,616,858; United States Patent 6,949,335; United States patent application publications 2001/0037956 and 2006/0024657; and international patent application publication WO 2001/01774). In one publication, hyperbranched polymers containing a porphyrin core were proposed as hemoglobin substitutes (see international patent application PCT/GB2004/004841, now published as WO 2005/052023).

Summary of the Invention

It has now been discovered that hyperbranched polyether polyols including hyperbranched polyglycerol (HPG) are particularly good serum albumin substitutes and may be used as the basis for blood/plasma substitutes having viscosities more closely aligned to that provided by native serum albumin than the colloidal substitutes proposed or used to date. Furthermore, such polymers can be made to mimic other functions of serum albumin such as the capacity to carry fatty acids.

The new use of hyperbranched polymers provided by this invention is distinctly different from previous proposals which suggested using hyperbranched polymers as drug delivery vehicles or carriers. In the present invention, blood and serum may be replaced or expanded through the use of much larger amounts of hyperbranched polymer than would have been previously contemplated in the art for drug delivery. This invention also is distinctly different than the mere use of a hyperbranched polymer as an outer covering for a porphyrin molecule in the production of a hemoglobin replacement.

This invention includes the preparation of derivatized hyperbranched polymers not only for use as serum albumin substitutes but also to provide biologically active moieties. For example, this invention includes the use of hyperbranched polymers suitable as serum

albumin substitutes in combination with such polymers modified to carry biologically active moieties including drugs. Various species of such hyperbranched polymers may be combined to provide for both substitution of serum albumin as well as delivery of desired biologically active moieties to target cells and tissues.

5 This invention also includes novel derivatives of hyperbranched polymers including ones containing hydrophobic (e.g. alkyl) components linked to the hyperbranched polymer through ether linkages which is less likely to be hydrolyzed *in vivo*. Novel hyperbranched polymers of this invention also include such polymers which combine the presence of such hydrophobic regions and the presence of polyalkylene glycol or polyol substituents which additionally facilitate solubility and longevity.

10 This invention also provides new methods for preparing hyperbranched polyglycerol (HPG) which methods are particularly suited for the production of high molecular weight HPG which advantageously may exhibit narrow ranges of polydispersity. Such high molecular weight HPG molecules were not previously known and will be useful in a variety of applications as suggested in the art with respect to HPG, including biomedical applications (e.g. drug delivery or carrying of 15 biologically active moieties) and in other fields such as catalysts, coatings, adhesives, hydrogels and composites. Such high molecular weight HPG is particularly useful as precursors for preparation of derivatives because of the high level of hydroxyl groups available in each polymer molecule.

Detailed Description of the Embodiments of the Invention

20 Various embodiments of this invention provide a polymer comprising a hyperbranched polyglycerol (HPG), for use as a substitute for serum albumin or for maintenance of a living tissue or organ.

25 Various embodiments of this invention provide a polymer comprising a hyperbranched polyglycerol (HPG), wherein the HPG has a molecular weight of about 40,000 g/mol to about 5,000,000 g/mol and a polydispersity of about 1 to about 3.5.

Various embodiments of this invention provide a polymer comprising a hyperbranched polyglycerol (HPG), wherein the HPG has a molecular weight of about 50,000 g/mol to about 5,000,000 g/mol.

30 Various embodiments of this invention provide a sterile composition comprising a polymer of this invention and at least one physiologically acceptable salt, buffer, diluent or excipient.

The art contains various references describing preparation and uses of hyperbranched polyether polyols including HPG. Various means are known in the art for preparation of derivatives of such polymers, including derivatization with various functional groups and/or the production of copolymers

and block copolymers (such as the addition of alkyl groups through ester linkages and the addition of polyalkylene glycol groups). Publications describing preparation of HPG include: United States Patent 5,112,876; United States Patent 6,469,218; United States Patent 6,765,082; United States Patent 6,822,068; WO 2000/77070; Sunder, A. et al. (1999) *Macromolecules* 32:4240-46, (2000) 5 *Macromolecules* 33:309-14, (2000) *Macromolecules* 33:1330-37, and (2000) *Adv. Mater* 12:235-239; Knischaka, R. et al., (2000) *Macromolecules* 33:315-20; Haag, R., et al. (2000) *Macromolecules* 33:8158-66, and (2002) *J. Comb. Chem.* 4:112-19; Kautz, H., et al. (2001) *Macromol. Symp.* 163:67-73; Karger-Kocsis, J., et al. (2004) *Polymer*, 45:1185-95; Gao, C. & Yan, D. (2004) *Prog. Polym. Sci.* 29:183-275; and Tziveleka, L. et al., (2006) *Macromol. Biosci.* 6:161-169).

Sunder, A. et al., (1999) *Angew. Chem. Int. Ed.* 38:3552-55 contains a description of the preparation of amphiphilic modified HPG.

Hyperbranched polymers for use in this invention may be homopolymers, derivatives of homopolymers, and copolymers including block copolymers. As is discussed in further detail below, derivatives of hyperbranched polymers may include polymers which contain hydrophobic and/or hydrophilic regions which have been added to the polymer. Such regions may be provided by derivatization of terminal or branch hydroxyl groups on the hyperbranched polymer and/or by the addition of polymeric blocks to the branched polymer. An example of substituents which provide hydrophobic regions is the presence of an alkyl group. In this specification, "alkyl" includes any saturated or unsaturated hydrocarbon chain or cyclic moiety which may be substituted by one or more substituents which do not affect the overall hydrophobicity of the alkyl component when added to the branched polymer. For example, methodologies described herein for the addition of alkyl groups to a hyperbranched polymer through an ether linkage employing an epoxide precursor will result in the presence of at least one secondary hydroxyl group within the alkyl component added to the branched polymer.

In order to most closely conform to the mass of serum albumin, polymers for use in this invention may typically have molecular weights in the range of 40,000 to 60,000 g/mol (e.g. about 50,000). However, as shown herein, this molecular weight range is not necessary for serum albumin replacement and indeed, a wider range of molecular weights may be employed advantageously to provide other functions such as carrying of drugs or other biologically active moieties.

This invention contemplates the use of hyperbranched polymers in a wide range of molecular weights and procedures described herein are particularly suitable for production of high molecular weight hyperbranched polymers which may be useful either as an albumin substitute or for a drug carrying agent. Such high molecular weight polymers may have a M_n value in excess of 95,000 g/mol, or at least about 100,000 g/mol, and may be up to about 1,000,000 g/mol or more. Weight average molecular weight may be 1,500,000 or more and may be up to about 5,000,000. Polydispersity of such polymers may be in the range of about 1 to about 3.5 or about 1 to about 3.0, or about 1 to about 2.5, or less than about 2. In some situations, polydispersity may be less than about 1.7.

Various embodiments of this invention make use of hyperbranched polyglycerol (HPG). In some embodiments, the invention employs an HPG composition comprising a core derived from ring-opening polymerization of an excess of glycidol in the presence of an

anionic initiator. In some embodiments, the anionic initiator is the singly or multiply-deprotonated form of an alcohol or polyol. The anionic initiator may be the partially-deprotonated form of 1,1,1-tris-hydroxymethylpropane, where there is approximately three alkoxide function per 10 molecule of initiator. The resultant polyanionic polymers may be 5 quenched with proton donor reagent, such as an alcohol or water, to produce a neutral product.

This invention provides the means for the production of high molecular weight HPG previously not obtained in the art which describe polymerization in the absence of a solvent as well as in the presence of solvents such as THF, DMSO, and diglyme. This invention 10 provides a method for the preparation of hyperbranched polyols in which a monomer such as glycitol is added to a hydrogen-active starter compound in the presence of a basic catalyst, in the presence of an emulsifier which is an ether having a boiling point greater than about 90°C. The emulsifier will preferably have a dielectric constant of less than $\epsilon = 7.0$, more 15 preferably less than about 5.0 or less than about 3.0. A suitable emulsifier is dioxane. In some embodiments, the emulsifier is the only non-reactant liquid present during the polymerization reaction.

The polyglycerol branches formed in the polymerization reaction bear a number of secondary and primary alkoxide groups. Further substitution of this core may be effected. For example, polyol (e.g. linear polyglycerol) or polyalkyleneglycol substituents may be 20 bound to up to 80%, about 5% or more, or about 20 to 40%, of the alkoxide groups in the HPG core. The substituents may be derived from a ring opening reaction of a suitable epoxide such as a polyalkyleneglycol epoxide with the alkoxide groups. Such a polyalkyleneglycol substituent may be a polyethyleneglycol (PEG) or variants thereof such as polyethyleneglycol methylether (MPEG).

25 As a serum albumin substitute, it may be preferable to limit the molecular weight of a polyol or polyalkyleneglycol substituent to between about 100 to about 1,500 daltons, or about 100 to about 1,000 daltons, or about 100 to about 600 daltons. In some embodiments, the molecular weight may be over about 200 daltons. In some embodiments, a particularly useful molecular weight is 350 daltons which for MPEG, represents light ethoxy monomers. 30 However, for other applications such as drug delivery, higher molecular weights of polyalkyleneglycol substituents may be employed (e.g. up to about 20,000 daltons). In some embodiments, a mixture of polymers may be employed. For example, a majority of the polymers present in a composition may fall within lower molecular ranges for PEG

components to facilitate serum replacement whereas a limited proportion of the polymers present may comprise higher molecular weight components to facilitate drug delivery.

A further functional derivative may be bound to up to about 50%, or over 1%, or about 5 to about 10%, of the total number of available alkoxide groups. The further functional derivative may be derived from (for example) an alkyl epoxide, a polyalkyleneglycol-alkyl epoxide, or a glycidol aryl ether. Such epoxides may bear alkyl chains of between about 5 and about 30 carbon atoms, or between about 10 and about 30 carbons atoms, or about 15 to about 20 carbon atoms, or over 17 carbon atoms such as 18 carbons atoms. An example of an alkyl epoxide is octadecyl epoxide. The alkyl group is joined to the HPG through an ether linkage, unlike the ester linkages known in the art. Such derivatization creates regions of hydrophobicity surrounded by polar functions, conditions now shown herein to mimic the fatty acid binding sites in HSA. Procedures for preparation of such derivatives may also be adapted from the art, for example from the preparation of C₈ and C₁₆ ester modified HPG (Sunder et al. (1999) Angew. Chem. Int. Ed. 38:3552) or for the modification of other dendritic polymers (e.g. Walliman, P., et al. (1996) Helvetica Chima Acta. 79:779-88).

A further functional derivative may be the presence of anionic groups, which can bind metal ions such as calcium ions. Some of the HPG hydroxyl groups, for example up to about 50%, can be converted to carboxylic, phosphonic or sulphonic acid groups by suitable chemical modification. For example, this group may be phosphonic acid. The anionic nature of the resulting polymer increases the circulation half life to the polymer while in plasma.

Further functional derivatives may include the presence of amino or amine groups. Furthermore, this approach may be adapted to the preparation of specific derivatives which carry specific biologically active moieties such as peptides. Alkoxide groups may be converted to NH₂ groups or groups containing an NH₂ functionality. For example, NH₂ functionalities can be converted to iodoacetamide equivalents and coupled with a cysteine terminated peptide, thereby mimicking the adhesive prothrombotic function of platelets. Specific peptides may also be coupled to aldehyde groups generated by oxidation of the 1,2 diol groups in HPG. Modification with amino groups alone will provide a cationic polymer useful for nucleic acid delivery (see WO 2004/072155) or for scavenging undesirable proteins such as prions (see Supattapone, S., et al. (1999) P. NAS 96:14529-34). Also, the addition of branched amino groups would facilitate conjugation of chelating agents, for example MRI contrast agents (see Wiener, E., et al. (1994) Magn. Research Med. 31:1-7 and

Kobayashi, H., et al. (2003) *Bioconjugate Chem.* 14:388-41). As shown in the examples below, the presence of amine functionalities permits bilirubin scavenging.

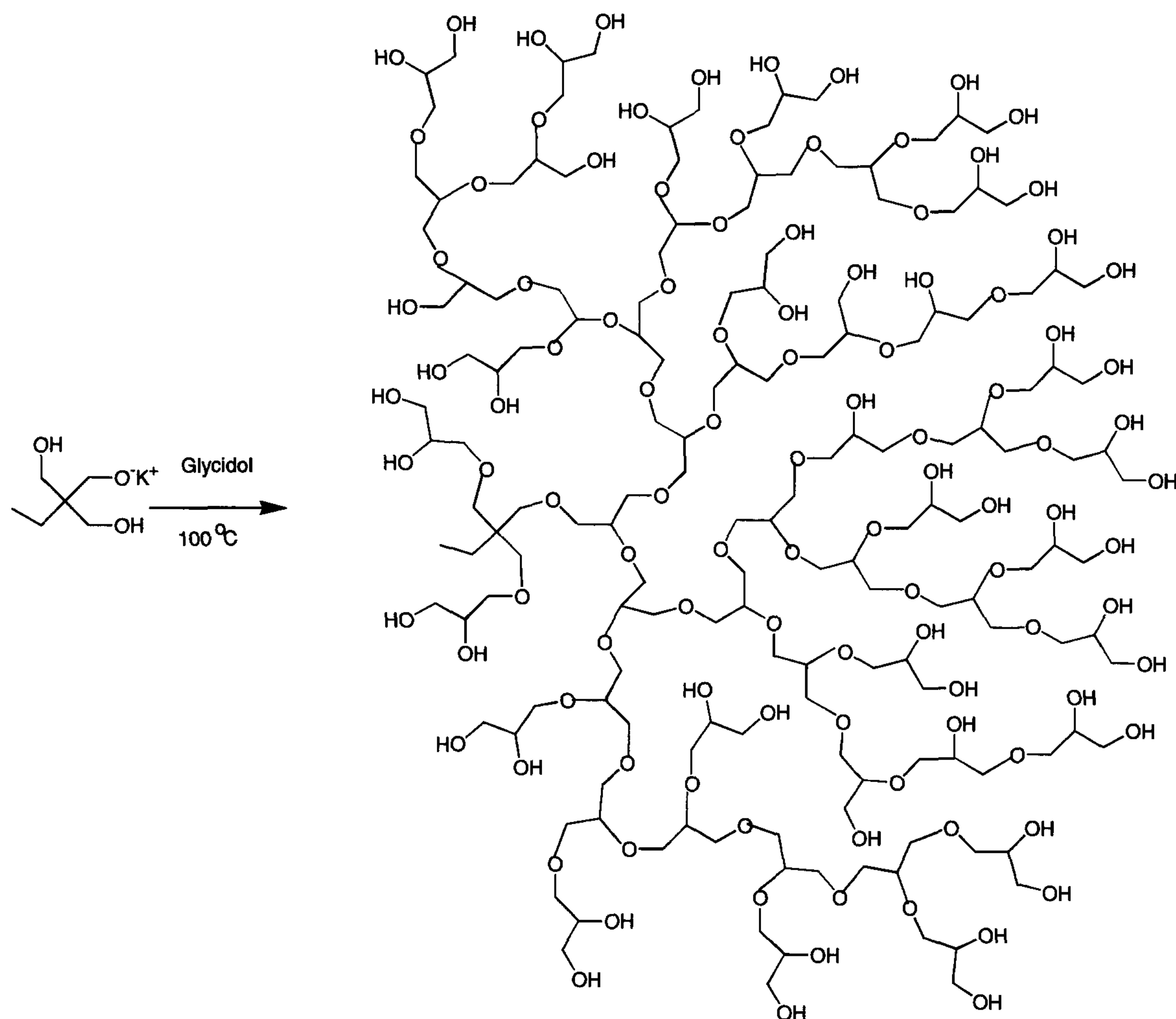
A further example of a derivative which contains a biologically active moiety is the addition of folic acid. Folic acid receptors are more abundant in cancer cells, providing for specific delivery of drugs to tumors using polymers of this invention (see Kono, K., et al. (1999) *Bioconjugate Chem.* 10:1115-21 and Quintana, A., et al. (2002) *Pharmaceutical Research* 19:1310-16).

A further example of a derivative that includes a biologically active moiety is the presence of 5-aminolevulininic acid, which is a carrier for the delivery of ALA to cells for applications in photodynamic treatment. Irradiation with light and subsequent reaction with oxygen creates tissue damaging singlet O₂ (see Battah, S., et al. (2001) *Bioconjugate Chem.* 12:980-88).

Other biologically active moieties could be joined to HPG or associated with HPG for use in this invention. Further examples include sialic acid having potential for inhibition of viral infections (Landers et al. (2002) *J. Infect. Dis.* 186:1222-30) or the additional of naphthyl or sulphonate groups which may have antiviral activity (e.g. Witvrouw, M., et al. (2000) *J. Med. Chem.* 43:778-83). Other descriptions of design of specialized glycodendrimers are found in the art (e.g. Turnbull, W. B. (2002) *Reviews in Molecular Biotechnology* 90:231-55) describing carbohydrate coated branched polymers useful as glycocarriers.

Hyperbranched polymers for use in this invention may also be associated with selected drugs, including hydrophobic drugs as is disclosed in the art. A proportion of polymer moieties for use as a serum albumin substitute for this invention may be associated with such drugs or a small proportion of the polymers present in a serum or blood replacement composition may be utilized for such purposes.

The branched materials employed in this invention can be synthesized to have narrow molecular weight distribution. The hyperbranched nature of the core molecule makes it very compact in solution, unlike a linear polymer or modified polysaccharide such as hydroxyethyl starch. It also provides these structures with low intrinsic viscosities, while the multiple reactive end groups provide many sites for derivatization with (for example) hydrophobic binding sites and addition of poly(ethylene glycol) (PEG) end chains to protect the molecule from host defense systems thereby improving the circulation time in the blood stream.


The high molecular weight HPG of this invention itself can be used as an albumin substitute after appropriate derivatization with hydrophobic groups, acid groups and amine groups. For example, glycidol and alkene epoxide can be copolymerized to get a hydrophobically modified high molecular weight polyglycerol.

5 Embodiments of this invention include a sterile blood/plasma expander or blood/plasma substitute or replacement composition comprising one or more species of the hyperbranched polymer described above in a concentration of (for example) 0.5-5% (w/v) in aqueous solution. Liquid concentrates which may be diluted for use are also included. The solution may further comprise cations or salts providing such cations including at least one of Na^+ , Ca^{2+} , Mg^{2+} or K^+ at physiologically acceptable concentration or to be diluted to such amounts. The solution may further comprise one or more suitable buffers such as, but not limited to, lactate or bicarbonate, in an amount which will maintain the pH of the resulting composition at physiological pH (for example at a pH of 7.2-7.8). Other known physiologically acceptable diluents and excipients may be present. The resultant solution 10 may have an intrinsic viscosity of less than 10 mL/g. Also included are dry, sterile 15 preparations of such compositions.

Embodiments of this invention include a dry, sterile composition comprising a dry sample of one or more species of the hyperbranched polymer as described above. The dry 20 compositions may further comprise at least one salt of the formula M_aX_b , where X=chloride or halide or other mono-, di-, or trianionic species, and $\text{M}=\text{Na}^+$, Ca^{2+} , Mg^{2+} or K^+ . The magnitude of a and b are dictated by the ionization state of M and X, providing a neutral salt M_aX_b which is overall neutral in charge (e.g. NaCl). The dry composition may further comprise one or more suitable buffers such as, but not limited to, Q(lactate) or Q(bicarbonate) where Q is an appropriate counterion (for example, Na^+ , Ca^{2+} , Mg^{2+} or K^+). 25 Other physiologically acceptable excipients may be present. The components of the dry composition may be present in a suitable ratio which, when hydrated with a suitable volume of sterile diluent such as water, affords a sterile plasma expander or blood/plasma substitute composition as described above. The intrinsic viscosity of the resulting composition may be less than about 20 mL/g. In some embodiments, it may be less than about 10 mL/g.

30 A synthetic strategy to make HPG involves the synthesis of hyperbranched polyglycerols by anionic ring opening multibranching polymerization of glycidol using a partially deprotonated polyalcohol as an initiator. In some embodiments the polyalcohol is trimethylolpropane (TMP). The hydroxyl-hydrocarbon may be partially deprotonated using potassium methylate (Scheme I). Limited deprotonation of TMP (only 10% of the total OH

groups are deprotonated) and slow monomer addition help to control molecular weights in order to provide narrow polydispersity. The polymerization proceeds with each alkoxide group reacting with the epoxide ring on its unsubstituted end, generating a secondary alkoxide and a primary alcohol group. Rapid cation-exchange equilibrium between primary and secondary hydroxyl groups leads to chain propagation from all the hydroxyl groups in the polymer molecule, producing a hyperbranched structure. The hyperbranched structure will have numerous hydroxyl end groups (given by the degree of polymerization (DP; one per reacted monomer) + the number of OH groups in the initiator) which are all reactive.

Scheme I. Synthesis of hyperbranched polyglycerol

15

An undesirable side reaction leads to macrocyclic species which can be formed by the initiation of polymerization from a deprotonated glycidol molecule followed by propagation and intramolecular reaction of one of the hydroxyl end groups with the epoxide group. This can be suppressed by slow monomer addition.

For derivatization, a fraction of terminal OH groups may be reacted with, for example, alkyl epoxides bearing appropriate alkyl chains (e.g., C18), creating regions of hydrophobicity surrounded by polar functions, conditions that mimic the fatty acid binding sites in HSA. Further derivatization may utilize similar chemistry whereby PEG epoxides such as poly(ethyleneglycol-methylether) (MPEG) epoxides are reacted with a fraction of the remaining OH functions to provide PEG or MPEG caps (see Scheme II below). Derivatization could also involve the use of alkyl epoxides bearing PEG caps which will place the alkyl chain between the cap and the HPG moiety.

This invention includes the use of a polymer comprising a hyperbranched polyether polyol such as HPG as a substitute for serum albumin in the treatment of a human or non-human animal or for the preservation of a living tissue or an organ. The use may be in the treatment of the animal to expand blood volume in the animal. Also contemplated is the use of such a polymer as a substitute for serum albumin in the preparation of a blood or plasma extender, replacement or substitute. Such polymers may not contain a porphyrin core. This invention also contemplates the use of hyperbranched polymers as described herein as a carrier for a drug or other biologically active moiety and for the preparation of therapeutic medicaments for delivery of such drugs or moieties to target tissues or cells. In particular, high molecular weight hyperbranched polymers of this invention may be employed for delivery of drugs and other biologically active moieties.

This invention also includes a method of expanding blood or plasma volume in a patient in need thereof comprising intravenous administration of an effective amount of a polymer or composition as described herein. A patient in need of such treatment may include patients suffering from blood loss, hemorrhage, burns, shock or who are undergoing surgery. It is within the skill of the medical practitioner to make use of compositions described herein for intravenous administration and to determine appropriate quantities, delivery rates, concentrations of components and relative presence of different species of polymers in accordance with this invention in order to provide an appropriate balance with respect to serum substitution and/or delivery of drugs or biologically active moieties. For example, the proportion of polymer molecules in a particular composition for administration to a patient which carry a drug or other biologically active moiety intended to be delivered to a cell or tissue, as compared to polymer molecules in the composition which act as a serum albumin replacement may be about 1:20, or about 1:50, or about 1:100, or about 1:1,000, or about 1:10,000 or about 1:100,000 or less.

This invention also includes the use of polymers and compositions of this invention for maintaining a tissue or organ in a patient in need thereof. Also included is a method of maintaining a tissue or organ in a patient in need thereof, the method comprising perfusion of the tissue or organ with an effective amount of a solution containing a polymer or composition of this invention. Patients 5 in need thereof include patients undergoing surgery or organ or tissue transplants. Such solutions may be oxygenated by known means.

This invention also includes any intravenous delivery apparatus or storage container for intravenous fluids containing a polymer or composition of this invention. Examples include sterile bags for storage and intravenous delivery, syringes, pump driven delivery apparatus and the like.

10 In another aspect, this invention includes the use, in a subject in need thereof, of the above-described compositions as a plasma expander, serum albumin substitute, or blood-free blood substitute or for the preparation of such medicaments.

15 In yet other aspects, the invention includes the use of the above-described compositions as small molecule drug, biologically active moiety, polypeptide, or polynucleotide delivery agents, or MRI contrast agents, or as scavenging agents or for the preparation of such medicaments.

The information above and examples described below are presented within this application in order to more fully describe the invention, they should not be considered limiting with respect to the scope of the invention described herein.

20

Examples

Synthesis

HPG polymers with degree of polymerization (DP) of 30 were made according to the methods of Sunder, A., et al. (1999) Macromolecules 32:4240) in order to standardize conditions and to check reproducibility. The polymers were characterized by NMR and GPC and results are shown in Table 1.

25 All chemicals were purchased from Sigma-Aldrich Canada Ltd. (Oakville, ON) and used without further purification except the following. Glycidol (96%) was purified by vacuum distillation and stored over molecular sieves in a refrigerator (2-4°C). Anhydrous diglyme and dioxane were obtained from Aldrich and used without further drying. Molecular weights and polydispersities of polyglycerol samples were determined by gel permeation chromatography (GPC) on a Waters 2690™ 30 separation module fitted with a

DAWN EOS™ multiangle laser light scattering (MALLS) detector from Wyatt Technology Corp. with 18 detectors placed at different angles (laser wavelength = 690 nm) and a refractive index detector (Optilab DSP™ from Wyatt Technology Corp.). An Ultrahydrogel™ linear column with bead size 6-13 μm (elution range 10^3 - 5×10^6 Da) and an Ultrahydrogel™ 120 with bead size 6 μm (elution range 150 - 5×10^3 Da) from Waters were used. An aqueous 0.1 N NaNO₃ solution was used as the mobile phase at a flow rate of 0.8 mL/min. The dn/dc value for polyglycerol was determined to be 0.12 g/ml in aqueous 0.1 N NaNO₃ solutions and was used for molecular weight calculations. The data were processed using Astra software provided by Wyatt Technology Corp.

Intrinsic viscosity, hydrodynamic radii, Mark-Houwink parameters and radius of gyration (R_g) were obtained from a triple detector from Viscotek Corp. connected to the GPC system, which utilizes refractive index, 90-degree light scattering and intrinsic viscosity determinations. The data were processed using the software provided by Viscotek. Hydrodynamic radii (R_h) were also obtained from a quasi elastic light scattering (QELS) detector (Wyatt Technology Corp.) which was connected to the MALLS detector using the Astra software.

After polymerization, the polymers were dissolved in methanol, neutralized by passing three times through a column containing cation exchange resin (Amberlite IRC-150). Polymers were then precipitated into excess of acetone and stirred for 1 hour. Acetone was decanted out and this procedure was repeated once more. Dialysis of polymers was done for three days against water using cellulose acetate dialysis tubing (MWCO 1000 or 10000 g/mol) with the water being changed three times per day. The polymers were generally non-sticky, highly viscous materials that did not flow. Dry polymer was obtained by freeze drying.

Narrow molecular weight distributions were obtained for lower molecular weights, as reported in the literature. Higher molecular weight polymers were synthesized by employing higher monomer/initiator core ratios but the products have polydispersities. This was the case even when a lower monomer addition rate was employed. This is consistent with the findings of earlier researchers who reasoned that this is due to an increase in viscosity of the polymerization mixture in the later stages of the reaction (reactions are carried out without solvent, in neat liquid monomer), which slows down the reversible cation exchange. By increasing stirrer speed and using diglyme (diethylene glycol dimethyl ether) as an emulsifying solvent (diglyme is a nonsolvent for polyglycerol) in order to dilute the

monomer and reduce viscosity of the polymerization mixture they reported obtaining unimodal, narrowed molecular distributions. However, when diglyme was used herein, polymers tended to higher molecular weights (e.g. above 100,000) with polydispersities around 2.

5 The ¹H NMR of the polymers showed the presence of TMP initiator. Peaks at 0.8 (3 H) and 1.3 ppm (2 H) are due to the methyl and methylene groups of TMP. The protons of polyglycerol appear as a broad resonance between 3.3 and 3.9 ppm. The hydroxyl protons appear at 4.7 ppm in methanol-d6.

10 ¹³C NMR gives information on both the degree of polymerization (DP) and degree of branching (DB). The assignment of peaks is well described in the literature. As shown in Table 1 the DB values ranged between 0.56 and 0.63, meaning that this fraction of monomers exhibit branch points. Higher molecular weight samples showed higher degrees of branching. The distribution of structural units was similar to reported values. The molecular weights obtained from NMR were higher than implied by the monomer/initiator 15 ratios employed. However, it is to be noted that this method is not convenient for high molecular weight polyglycerols (>10,000 g/mol) as the difference between the integrations of terminal and dentritic units becomes too low to allow accurate molecular weight estimates.

20 Molecular weight and polydispersity of the polymers were obtained by GPC analysis using both a Viscotek triple detector, which utilizes refractive index, 90-degree light scattering and intrinsic viscosity (IV) determination and a multi-angle laser light scattering detector (MALLS) that provides a measure of molecular weight distribution that does not rely on structural assumptions. However, MALLS were not particularly accurate for the low molecular weight samples.

25 The intrinsic viscosity (IV) values were low as anticipated for hyperbranched polymers and did not vary much with molecular weight. By contrast the IV value for serum albumin was about 3-5 whereas the following values were exhibited for previous albumin substitutes: heta starch (16.25), PVP (14.17), dextran 58 (20.2) and dextran 94 (26.78).

30 A decrease in IV implies a more compact structure per gram, as it is a direct measure of the increment in viscosity per gram of added material. Presumably this means that as the structures get larger and the radius of gyration, Rg, increases, the chains are less constrained by their neighbors and can occupy a higher local density away from the core. Near the core excluded volume effects would tend to force the chains into more extended configurations. The compactness is also reflected in the Rg values themselves as these were found to be less

than 10 nm even for a polymer with M_n of 300,000 g/mol. For comparison, R_g for a typical linear polymer of molecular weight 30,000 would be about 7 nm while Table 1 shows that this value of R_g is associated with a hyperbranched polymer of M_n 112,000.

5 GPC chromatograms of some polymers, especially those with higher molecular weights, showed the presence of a low molecular weight tail, which is expected to be predominantly the macrocyclics. To remove this low molecular weight fraction the polymer RKK-7 was subjected to dialysis. Two membranes with 1,000 and 10,000 mol. wt cut offs were used. It was found that polymer dialysed with 10,000 mol wt cut off was devoid of the low molecular weight tail and the polydispersity narrowed down to 1.9. The polymers with 10 different molecular weights purified by dialysis were utilized in initial animal testing.

Dioxane was also employed as an emulsifying agent otherwise following the procedure described above. The initiator as well as the polymer is insoluble in dioxane. Surprisingly, very narrowly dispersed high molecular weight polymers were obtained without the need for dialysis. The polymers were obtained by precipitation of methanolic 15 solution in acetone. The polydispersities were below 1.5 with monomodal distributions (Table 1A). Dialyzation (MWCO 1,000) did not change the molecular weight characteristics.

Table 1. Polyglycidol synthesis and characterization

Polymer Code	Glycidol/TMP	TMP/MeOK	Yield %	DB	DP	Rh (QELS) (nm)	Triple Detector			Multi-angle Light Scattering			
							M _n	PD	IV (mL/g)	R _g (nm)	M _n	PD	R _g (mm)
RKK-1	30	10	89	57	40	1.9	4250	1.3	5.7	2.2	-	-	-
RKK-2	30	10	86	58	37		4800	1.2	5.6	2.2	-	-	-
RKK-5	30	30	80	56	40		4600	1.3	6.1	2.3	-	-	-
RKK-6	270	30	71	63	355	5.1	14500	3.2	5.1	4.1	17800	2.4	
RKK-7	540	30	63	62	-	5.4	15400	6.3	5.2	5.1	36200	2.6	5.0
RKK-8	325	30	79	-	-		12500	5.3	5.0	4.6	25600	2.5	
RKK-11	270	30	84	-	-	13.7	112000	3.9	3.9	7.5	140000	2.9	7.9
RKK-12	270	30	79	-		16.7	305000	2.7	3.7	9.5	318000	2.2	8.0

(Experimental: Glycerol = 25 mL, time = 17 hours, temp = 95 °C; DB (degree of branching) and DP (degree of polymerization) are calculated from ¹³C NMR, monomer addition rate was 0.9 mL/min for RKK-8, 25 mL diglyme was used in the preparation of RKK-11 and 12)

Table 1A. Characteristics and solution properties of high molecular weight hyperbranched polyglycerols (homopolymers)

Polymer Code	Solvent	Theor. $M_n \times 10^{-3}$	Yield %	$M_n \times 10^{-3}$	$M_w \times 10^{-3}$	M_w/M_n	IV (mL/g)	R_h (QELS) (nm)	R_g (nm)	R_h (nm)	α
		$M_n \times 10^{-3}$					(PD)		(TDA)		
RKK-1	none	2.3	89	4.2	5.5	1.3	3.3	1.9	2.2	1.7	nd
RKK-2	none	2.3	80	4.8	5.7	1.2	3.4	nd	2.2	1.7	nd
RKK-3	none	2.3	86	4.6	6.0	1.2	3.2	nd	2.3	1.8	0.43
RKK-6	none	20	71	25	40	1.6	3.9	3.0	3.5	2.7	0.35
RKK-7	none	40	63	42.5	76.5	1.8	3.9	3.6	4.3	3.3	0.34
RKK-342	Diglyme	20	81	106	217	2.0	3.6	3.9	6.2	4.8	0.27
RKK-11	Diglyme	40	76	106	307	2.9	3.8	4.8	6.8	5.2	0.35
RKK-12	Diglyme	40	68	266	771	2.9	3.8	6.6	9.3	7.2	0.37
RKK-341	Diglyme	60	70	871	1475	1.7	3.8	7.8	12.5	9.6	0.39
RKK-27	Dioxane	20	83	359	491	1.4	3.3	6.3	9.2	7.0	0.31
RKK-337	Dioxane	40	90	540	589	1.1	3.0	6.8	9.2	7.1	0.34
RKK-340	Dioxane	60	79	670	728	1.1	3.1	6.6	9.2	7.1	0.31

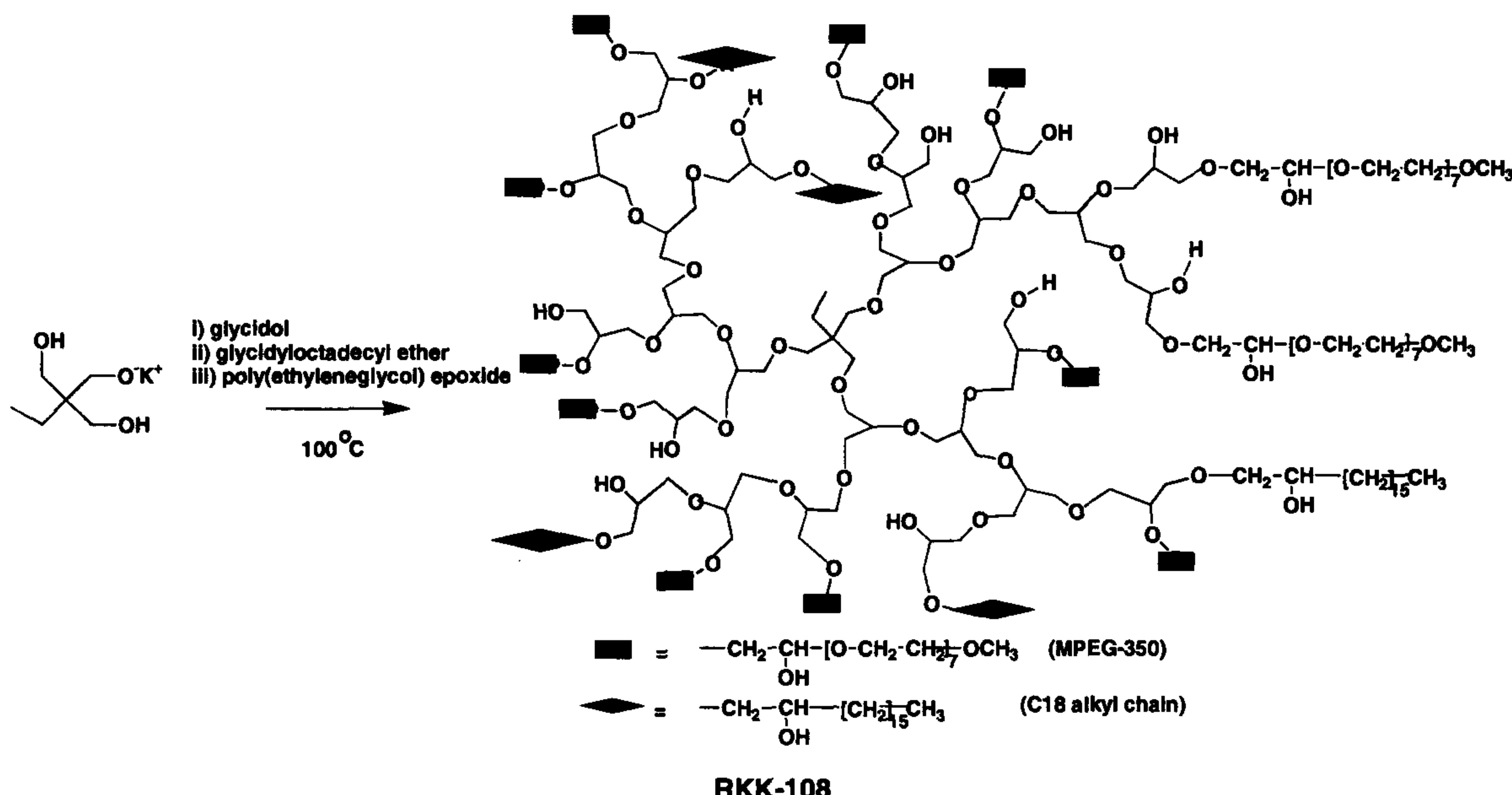
α is the conformation coefficient determined from the slope of log R_g -log M plot; R_h hydrodynamic radius; R_g radius of gyration

The choice of emulsifying agent permits the production of very high molecular weight HPG with narrow and/or low polydispersities. Limited deprotonation of TMP (only 10% of the total OH groups are deprotonated) and slow monomer addition are important for controlling molecular weight with narrow polydispersity. The polymerization proceeds with 5 each alkoxide group reacting with the epoxide ring on its unsubstituted end, generating a secondary alkoxide and a primary alcohol group. Rapid cation exchange equilibrium between primary and secondary hydroxyl groups leads to chain propagation from all hydroxyl groups in the polymer chain, leading to a hyperbranched structure. An undesirable side reaction leads to macrocyclics which can be formed by the initiation of polymerization 10 from a deprotonated glycidol monomer followed by propagation and intramolecular reaction of one of the alkoxide end groups with the epoxide group of the glycidol initiator. This is suppressed by slow monomer addition and by a faster propagation reaction. So, under identical polymerization conditions, the route to narrow polydispersity lies in the rapid 15 cation exchange process. It is possible that since dioxane is a less polar solvent (dielectric constant, $\epsilon = 2.2$) than diglyme ($\epsilon = 7.0$) the exchange process is more favored, leading to more branched (discussed later) and narrowly dispersed polymers.

These high molecular weight HPGs are very useful materials for applications utilizing further chemical manipulation owing to the presence of the very large number of 20 hydroxyl groups. For example, HPG-10 which has a M_n of 670,000 has about 9,000 OH groups or more. It is to be noted that this corresponds to a generation 11 PAMAM dendrimer. However, unlike the synthesis of a generation 11 dendrimer in 10 multisteps with same number of purification steps, these polymers were synthesized in a single step.

Derivatization

25 The initial target MW for a derivatized HPG was about 50,000 g/mol. A single pot synthesis based on the epoxide ring opening reaction (described below) was employed. This synthetic methodology avoids the formation of ester linkages, which may be susceptible to enzymatic hydrolysis by esterases. Numerous derivatives of the type desired may be prepared and a selection of these is presented in Table 2.


30 A three neck round bottom flask was used for the polymerization reactions. One neck was connected to an argon inlet and another closed with a stopper. The third neck was closed with a rubber septum and was used for monomer addition. Initially, the flask was flushed with argon and a weighed amount of trimethyloyl propane (120 mg) was added to it.

Required volume of potassium methylate (100 μ L) solution in methanol was then added to it and the mixture was stirred for 15 minutes. The flask was kept in an oil bath at 95°C and the excess methanol was evaporated in vacuum with stirring. After this the mechanical stirrer was connected to replace the stopper. Glycidol (5 mL) was syringed out and added drop wise to the reaction flask using a syringe pump. As the reaction progressed the mixture became viscous, however, the mechanical stirrer was able to mix it efficiently. After complete addition, the reaction mixture was stirred for additional 5 hours. Then a calculated amount of octadecyl epoxide (1 g) was added and continued the stirring at 95°C for 24 hours. PEG-epoxide (15 mL) was then added slowly using the syringe pump in 12 hours time. The whole mixture was then stirred for additional 5 hours. Methanol was then added to the mixture to dissolve the polymer followed by neutralizing passage through a cation exchange resin (AmberliteTM IRC-150). Unreacted octadecyl epoxide was extracted with hexane. The methanol was removed in vacuum to get the polymer which was dialyzed against water using a dialysis membrane (1000 MW CO). Dry polymer was obtained after 15 freeze drying.

In particular cases, a HPG of Mn about 7000-8000 g/mol was first synthesized. Long chain alkyl or phenyl groups were coupled to 5-10% of the approximately 100 end groups present by ring opening reaction of an alkene epoxide or glycidyl phenyl ether; phenyl alkyl groups may also be used to increase local hydrophobicity. Finally, MPEG caps were added to 20-40% of the -OH groups (whose number does not change since one is generated by each ring opening) by continuing the epoxide reaction using epoxide terminated MPEG with Mn being about 400-600 g/mol. MPEG epoxide was added dropwise in order to get a uniform distribution among the OH groups; the reaction is quantitative. The final product was washed with hexane to remove unreacted alkyl epoxide.

In a particular case exemplified in Scheme II (below), hyperbranched polyglycidol was prepared by anionic ring opening multibranching polymerization of glycidol from partially deprotonated trimethylolpropane using potassium methylate. The target molecular weight for the HPG was 7000-8000 g/mol. In the second step about 2.5% terminal OH groups (total number of OH groups = degree of polymerization + OH groups in the initiator) are reacted with octadecene oxide to create regions of hydrophobicity. In the third step poly(ethyleneglycol-monomethylether) epoxide is reacted with about 40% of remaining OH groups. The monomers, glycidol and MPEG-350 epoxide are added slowly to produce a uniform distribution leading to narrow polydispersity. The single pot synthesis is carried out

by sequential addition of monomers with final removal of unreacted alkyl epoxides by washing with hexane and dialysis.

5

Scheme II.

Since PEG chains increase the IV, a balance was sought between the number of 10 MPEG chains and their MW. However, since it is ideal for the polymer to be retained in the circulation for a suitable length of time, the desired balance may in practice be determined empirically. The alkene epoxide was synthesized by reaction of long chain alkenes such as octadecene and m-chloroperbenzoic acid and the epoxide terminated MPEG by reaction of 20 MPEG, sodium hydroxide and epichlorohydrin.

All polymers were subjected to dialysis and then characterized by ^1H NMR and GPC. 15 ^1H NMR showed the presence of alkyl groups, a peak corresponding to the OMe of MPEG-epoxide and the absence of any epoxide groups. Even though quantitative conversions were obtained for MPEG-epoxide, about 50% conversion was achieved for octadecene epoxide (ODE). As an example, compound RKK-43 had 2.5% octadecyl groups and 21% MPEG chains with respect to the total OH groups (approx. 100 per molecule) as measured by ^1H NMR, taken in DMSO-d6 to allow quantitative integration of all OH groups. The Mn of the 20 final polymer was 44,000, PDI of 2.5 and IV = 7.2 mL/g (compared to IV about 6 ml/g for the same HPG core). Results for a range of other products are summarized in Table 2. The IV values are slightly higher than that of HSA, which is 3.7 ml/g. However, it is to be noted that Dextran 70, a clinically utilized plasma expander, has an IV of about 26 ml/g.

Table 2. The physical characteristics of the copolymers

Polymer Code	Co-monomer (R)	R ^a %	PEG ^a %	No of R gps in a polymer chain ^b	Triple Detector				MALLS			QELS ^c
					M _n × 10 ⁻⁴	PD	IV (mL/g)	R _g (nm)	M _n × 10 ⁻⁴	PD	R _g (nm)	
RKK-43	ODE	2.5	20.7	6.8	3.89	2.23	7.17	5.71	4.40	2.50	-	40
RKK-55	ODE	1.7	25.5	4.8	2.87	2.67	7.90	5.70	5.10	1.78	-	-
RKK-56	ODE	1.8	40	3.8	3.66	2.50	7.90	6.06	5.10	2.15	-	-
RKK-71	ODE	1.6	27	3.9	3.61	1.94	8.01	5.60	4.66	2.10	-	-
RKK-108	ODE	2.6	37.5	9.5	6.65	1.77	7.94	6.66	8.50	1.50	13	20
RKK-110	ODE	0.8	18.3	4.6	6.76	2.77	8.12	7.69	8.70	3.74	28	-
RKK-153	ODE	4.6	40	15	7.80	3.1	8.2	25.4	12.00	3.2	9.7	15
RKK-148	ODE	4.5	71	nd	13.8	10.5	9.72	14.4	16.00	8.0	22.8	28
RKK-99	-	-	37	-	2.50	5.55	8.18	6.60	3.90	5.30	-	10

Table 2; continued

RKK-52 ^d	ODE	5.9	32	nd	45.00	6.30	12.50	22.75	119.00	3.00	70
RKK-112 ^e	ODE	3.1	28	nd	39.00	8.67	13.08	24.29	74.70	4.72	58
RKK-111 ^f	Brij 76	2.9	50	nd	91.40	2.77	8.36	8.36	101.00	2.39	8.2
RKK-122	GHDE	3	34	nd	19.00	1.70	8.50	9.60	25.00	2.00	37
RKK-117	PGE	10	30	nd	7.60	4.5	8.50	9.10	11.30	3.20	12.7
RKK-139	GNPE	2	28	4.1	3.0	3.3	8.4	6.2	4.0	2.6	7
RKK-120	GNPE	5.8	21	33	6.7	3	7.4	7.5	10.0	2.7	8
RKK-140	GNPE	10.5	38	70	10.6	3.1	6.9	8.7	17.0	2	9.6
RKK-141	GNPE	15	26	542	33.3	18.4	5.2	14.7	80.0	5.7	33
											HI

a) These values are with respect to Glycidol (OH groups)

b) Calculated from the number average molecular weight (MALLS) and composition

c) Measured using a microcuvette d) 20% hydroxylation of TMP, e) PEG-550 was used, f) epoxide of Brij-76 was used, nd) not determined due to suspected intermolecular association

The amount of octadecyl chains incorporated was increased by increasing the extent of deprotonation of TMP hydroxyl groups (20% - 30% instead of 10%). Some of these polymers were found to show ultra high molecular weights and broad polydispersity, indicating the formation of intermolecular aggregates.

5 Since conversion of the octadecene epoxide was not quantitative with 10% deprotonation of TMP hydroxyl groups, a more reactive epoxide was sought in order to avoid a purification step to remove unreacted monomer. To this end, the epoxide of Brij 76 (decaethylene glycol octadecyl ether) was used as a comonomer. It was found to be very reactive and up to 13% incorporation could be achieved. The aqueous solutions of these 10 copolymers were however turbid, perhaps due to the presence of large amounts of octadecyl groups, leading to phase separation. These copolymers were later found to be insoluble after 3 months of storage in the freezer.

15 Like octadecene epoxide, conversions up to only 50% were obtained for glycidyl hexadecyl ether (GHDE) suggesting that phase separation of the reaction mixture is the reason for low reactivity. Quantitative conversions were obtained for phenyl glycidyl ether (PGE) and glycidyl 4-nonyl phenyl ether (GNPE) which were miscible with glycidol and were added as their mixtures.

20 Higher incorporation can be achieved by increasing the amount of alkoxide groups in the core by adding deprotonating agents such as diphenyl methyl potassium to the HPG. Higher alkyl content can also be achieved by using glycidyl alkyl ethers having shorter alkyl chains (e.g. C₁₀). Up to 15% alkyl incorporation was obtained by a combination of these two approaches.

25 In order to determine whether the polymers formed intermolecular associations, the hydrodynamic radii (Rh) were measured using quasi-elastic light scattering (QELS). Polymer samples of known concentrations were made and subjected to QELS analysis in a microcuvette. The average Rh values of various polymers at 1mg/ml solutions are shown in Table 1 above. RKK-99, which does not contain alkyl groups has an average hydrodynamic radius of 10 nm. RKK-43, 108 and 153 had different hydrodynamic radii depending on the sample concentration. For example RKK-43 has Rh of 40 nm and 70 nm at concentrations 30 1mg/ml and 5 mg/ml respectively indicating possible aggregation. The corresponding Rh values for RKK-108 were 20 and 35 nm. The decreased size of RKK-108, which has higher molecular weight than RKK-43 may be due to the higher amount of PEG protecting the alkyl groups from intermolecular association. RKK-153 which has similar molecular characteristics compared to RKK-108 except that it has higher alkyl content has

hydrodynamic radii of 15 and 25 nm at 1mg/ml and 5mg/ml concentrations respectively. Lower Rh values could be due to the predominance of intramolecular association over intermolecular association which is favorable in the case of RKK-153 with higher alkyl content.

5 Intermolecular association may be reduced by small molecular encapsulation inside the hydrophobic pocket. The measured hydrodynamic radii of 1mg/ml solutions of RKK-43, 108 and 153 after pyrene encapsulations were found to be reduced drastically to 8, 10 and 14 nm respectively. This may be due to hydrophilic corona of PEG chains collapsing around the pyrene molecules embedded inside the hydrophobic pocket formed by the intra 10 molecular association of alkyl chains.

Synthesis of sulfonic acid group containing polymers

100 mg KH was weighed in to a 100 ml round bottom flask containing 10 ml anhydrous THF. To this a solution of RKK-108 (2 g) dissolved in 125 ml anhydrous THF 15 was added. The mixture was stirred for 45 minutes after which a solution of 1,3-propane sultone (30 mg) in 10 ml anhydrous THF was added. The mixture was stirred for additional 12 hours. THF was evaporated and the polymer was dissolved in water and acidified to neutral pH. The final polymer was purified by dialysis. Proton NMR showed the presence of 2.5% sulfonic acid groups. The amount of sulfonic acid groups can be varied by changing 20 the amount of 1,3-propane sultone added.

Fatty Acid Binding

One of the major functions of HSA is the binding and transport of fatty acids. The fatty acid binding properties of these polymers can be studied by ^{13}C NMR spectroscopy 25 according to several reports which contain NMR studies of fatty acid binding with proteins. The basis of interaction studies by ^{13}C NMR spectroscopy is that the chemical shift of the carbons of the fatty acid in the bound and free form differ. Alternative approaches may include titration calorimetry.

Proton-decoupled ^{13}C NMR spectra were recorded on a BrukerTM (75.47 MHz for 30 carbon) NMR spectrometer. Samples were dissolved in water and locking was done using CD_3OD in a capillary tube inserted into the sample. The multiplet at 49.15 from CD_3OD was used as an internal reference. Potassium salt of [1- ^{13}C] palmitic acid (PA) was synthesized following a reported procedure. Initially spectra were recorded at concentrations above and

below the critical micelle concentration (CMC) to see the association effects. 1.6mM is the CMC of potassium palmitate (KPA). The resonances of enriched carboxyl carbon appeared at 184.37 and 184.12 respectively. This agrees well with a reported value of 184.2 ppm.

The results in Table 3 show that KPA binds to polymer RKK-43 (HPG, 2.5% C18 chains, 21% MPEG; Mn = 44,000) as evidenced by the chemical shift of the carboxylate carbon. Both these and the pure KPA results show the chemical shift is insensitive to the presumed formation of micelles since shifts were similar above and below the CMC. For core HPG (RKK-7) or HPG-MPEG without octadecyl chains (RKK-99) the shift was similar to free palmitate. This indicates that the potassium palmitate is bound in a hydrophobic environment, which leads to the upfield shift of the carboxylate resonance.

To obtain comparative data for various polymers, 35 mg of selected polymers were dissolved in 0.5 ml of 1.5 mM KPA and the change in chemical shift determined (Table 3). It was found that the change in chemical shift was significant only for polymers containing hydrophobic groups and depended weakly on the amount of alkyl group incorporated.

15 Polymers with Brij-76 groups also bound potassium palmitate efficiently.

The stoichiometry of the complex between KPA and RKK-43 was determined by a mole ratio method. The concentration of palmitate was kept constant at 1.5 mM, which is below its CMC and the molar concentration of RKK-43 (Mn = 45,000) was varied from 0.16 to 3 mM. A plot of the change in chemical shift, $\Delta\delta$, as a function of polymer concentration resulted in two lines intersecting at an approximate ratio of 3:1, indicating about 3 moles of KPA bound per mole of RKK-43.

20 Solubilization properties were considered using 200 mg each of RKK-43, RKK-108, RKK-153, RKK-99 and RKK-7, dissolved in 1 mL of water and stirred with 20 mg of palmitic acid for two days. The resulting solutions were filtered twice through a 0.22 μ m filter membrane and analyzed by ^{13}C NMR. An intense peak appeared at around 177 ppm in the case of RKK-43, RKK-153 and RKK-108, which are copolymers containing octadecyl chains, whereas no such peak appeared in the cases of RKK-7 and RKK-99 which contained no alkyl groups. The peak at 177 ppm corresponded to the enriched carboxyl carbon of palmitic acid.

25 For quantitative estimation of the palmitic acid solubilized by the above polymers, filtered solutions of RKK-108 (10 and 20 wt %)-palmitic acid mixtures were freeze dried and the residue were dissolved. ^{13}C NMR was taken in 100 mM chromium(III)triacetylacetone (relaxation agent) solution in methanol-d4. Good signal to

noise ratios were obtained with a pulse delay of one second using inverse gated decoupling without nuclear overhauser enhancement (NOE). On average, a single polymer molecule of RKK-108 with 9.5 octadecyl chains dissolved 0.75 molecule of palmitic acid. RKK-153, which has similar molecular weight and composition except that it contains 15 octadecyl chains in a single polymer chain, was found to solubilize 2.8 molecules of palmitic acid. The validation was performed using the obtained NMR data of a known mixture of [1-¹³C] palmitic acid and RKK-108.

RKK-259 with 17% C₁₀ chains was found to solubilize 21 molecules of palmitic acid.

Table 3. The chemical shift data of the interaction between potassium palmitate (KPA) and various polymers

Sample Code	Composition	polymer (RKK) properties	pH of the medium	Solvent	Concentration of PA (mM)	Chem. Shift of ^{13}C 1 (ppm)
1	KPA		10.0	H_2O	3.00	184.37
2	KPA		10.0	H_2O	1.5	184.12
3	KPA + RKK-43	2.5 mol % ODE, 21 % PEG	7.0	H_2O	1.5	182.64
4	KPA + RKK-99	No alkyl gyps, 37 % PEG	7.0	H_2O	3.00	183.56
5	PA + RKK-7	Polyglycidol	7.0	H_2O	0.49	183.81
6	KPA + 55	1.73 mol % ODE, 24 % PEG	7.0	H_2O	1.5	182.78
7	KPA + 52	5.9 mol % ODE, 31 % PEG	7.0	H_2O	1.5	182.49
8	KPA + 72	2.76 mol % brij, 14 % PEG	7.0	H_2O	1.5	182.46
9	KPA + 85	6.25 mol % brij, 13.5 % PEG	7.0	H_2O	1.5	182.36
10	KPA + 77	13 mol % brij, 8 % PEG	7.0	H_2O	1.5	182.34

Table 3; continued

11	KPA + 122	3 mol % GHDE, 34 % PEG	7.0	H ₂ O	1.5	182.54
12	KPA + 120	5.8 mol % GNPE, 21 % PEG	7.0	H ₂ O	1.5	182.60
13	KPA + 117	10 mol % PGE, 30 % PEG	7.0	H ₂ O	1.5	183.18
14	KPA + 108	2.6 mol % ODE, 40 % PEG	7.0	H ₂ O	1.5	182.66
15	KPA + 110	0.8 mol % ODE, 18 % PEG	7.0	H ₂ O	1.5	182.67
16	KPA + 153	4.6 mol % ODE, 40 % PEG	7.0	H ₂ O	1.5	182.56

Bilirubin Binding

One of the major ligands for albumin is bilirubin. The binding is through both hydrophobic and electrostatic interactions. To mimic the bilirubin properties of albumin, HPGs having both amine and alkyl groups were prepared by the following method. Low bilirubin binding capacities were obtained for HPGs containing hydrophobic (alkyl) modification alone, whereas binding capacities close to that of albumin (1 to 2 BR molecules per molecule) was achieved through the amine modification.

A three neck round bottom flask was used for the polymerization reactions. One neck was connected to an argon inlet and another closed with a stopper. The third neck was closed with a rubber septum and was used for monomer addition. Initially the flask was flushed with argon and a weighed amount of trimethyloyl propane (120 mg) was added to it. Required volume of potassium methylate (100 μ L) solution in methanol was then added to it and the mixture was stirred for 15 minutes. The flask was kept in an oil bath at 95°C and the excess methanol was evaporated in vacuum with stirring. After this, the mechanical stirrer was connected to replace the stopper. A mixture of glycidol (5.4 mL) and N-(2,3-epoxypropyl)phthalimide (1.64 g) was added drop wise to the reaction flask using a syringe pump. As the reaction progressed the mixture became viscous, however, the mechanical stirrer was able to mix it efficiently. After complete addition, the reaction mixture was stirred for additional 5 hours. MPEG-epoxide (15 mL) was then added slowly using the syringe pump in 12 hours time. The whole mixture was then stirred for additional 5 hours. The polymer was dialyzed against water using a dialysis membrane (1000 MW CO). The dry polymer was obtained after freeze drying. According to NMR, 6.7% of phthalimide and 25% MPEG groups were present in the obtained copolymer. Phthalimide groups were converted to amine groups by hydrazinolysis. Hydrazine monohydrate (2.8 ml) was added to the solution of the polymer in methanol and the mixture was refluxed for 16 hours. After cooling, the mixture was filtered, methanol was evaporated. The obtained polymer was dissolved in water and was subjected to dialysis. After drying, 14.5 g of a colorless, highly viscous polymer was obtained. The 1H NMR showed the absence of phthalimide peaks. The dialysed copolymer (1 g) was dissolved in 10 ml methanol and 0.5 g of octadeceneepoxide (ODE) was added. The reaction mixture was stirred at 65°C for 1.5 days. After completion of the reaction, excess of ODE was extracted with hexane, and methanol was evaporated to get the final polymer. The amine and the alkyl contents have been varied

by employing different amounts of phthalimide and alkene epoxides of different chain lengths.

Drug Carrying Capacity

5 "Unimolecular micelles" having a hydrophobic core and hydrophilic shell are known to solubilize hydrophobic molecules such as pyrene in water. Tests using pyrene as the binding molecule and RKK-108, RKK-43 and RKK-153 (10 wt % solutions) as the host polymers were carried out. The filtered solutions were freeze dried and redissolved in D₂O. The solutions were analyzed by ¹H NMR and showed the presence of aromatic protons
10 corresponding to pyrene. 0.39, 0.40 and 1.4 moles of pyrene per mole of polymer respectively were found to be solubilized. This confirms that the polymers of this invention can also be used for entrapping hydrophobic drugs for controlled delivery because the copolymers with hydrophobic groups bind external hydrophobic molecules in water. A possible mechanism is that the alkyl chains coupled to HPG arrange themselves inside the
15 molecule into a hydrophobic core resembling the interior of a micelle formed in water by hydrophobic association of alkyl chains. Association of hydrophobic external molecules may then occur by partition of the external materials into the core where they are dissolved.

Amphiphilic polymers are known to form intermolecular associations through their hydrophobic groups and some will also bind fatty acids or hydrophobic molecules such as pyrene. However, these types of molecules do not necessarily form simple micelles at a single concentration because of the large size of the hydrophilic head groups. As the concentration in water increases, the extent of association may also increase which can allow the amount of pyrene bound to rise faster than the polymer concentration. Pyrene solubilities in aqueous solutions of various concentrations of RKK-43, RKK-108 and RKK-153 were therefore measured using UV/VIS spectroscopy. An excess of pyrene was stirred with the polymer solutions of various concentrations for 15 hours, filtered using 0.2 μ M syringe filters and the resultant solution analyzed. Literature value of 29,500 for ϵ_{max} was used for concentration measurements. In water the solubility of pyrene is very low at room temperature and is 7×10^{-7} M. The solubility increases in the presence of polymers and the
20 value increases with increase in polymer concentration. Plots of solubility against polymer concentrations were linear indicating the absence of any associations in the concentration range studied, as any association behavior would lead to a change in slope. The slopes of the fitted straight lines showed that a single molecule of polymer RKK-43, RKK-108 and RKK-
25

153 dissolves 0.35, 0.41 and 1.32 molecules of pyrene. The higher solubility in the case of RKK-153 might be due to higher alkyl content in a single polymer chain which shows solubilizing ability even at concentrations as low as 1.25×10^{-6} mol/L (Table 2). The values obtained for all these polymers are very close to that obtained from proton NMR. Addition 5 of salt like NaCl increases the pyrene solubilization significantly. This may be due to the decrease in the concentration of water inside the hydrophobic environment thereby increasing its hydrophobicity.

Fluorescent probes can be used for quantitative analysis of a polymer molecule's binding capacity which is important for formulating drug delivery vehicles. We used 10 anionic fluorescent probe (1-anilinonaphthalene-8-sulfonic acid (ANS) for this purpose. Phosphate buffered saline (PBS: 150 mmol/L NaCl, 1.9 mmol/L NaH₂PO₄, 8.1 mmol/L Na₂HPO₄, pH 7.4) was used to prepare the solutions. The excitation wavelength was set at 370 nm and the emission range was set between 400 and 600 nm. Spectra were recorded using a plate reader.

15 Pure ANS in water has weak fluorescence in a range 400-600 with a maximum at 520 nm. This is because of its low fluorescence yield in a polar environment. Addition of RKK polymer leads to increase in fluorescence intensity and the blue shift of the emission maximum (λ_{max}), typically from 520 nm to 475 nm. Since the RKK polymer solution do not show any peak in the range, the change in spectrum is considered to be due to the binding of 20 ANS by RKK polymers. The enhancement of fluorescence yield and a blue shift upon addition of RKK polymers suggest that ANS aromatic rings are placed in less hydrophilic environment.

25 The binding constant (K_b) and the number of binding centers per one molecule (n) for RKK polymers were determined by the double fluorometric titration technique. In the first fluorometric titration, increasing concentrations of RKK polymers were added to constant concentration of ANS and the extreme intensity of ANS fluorescence was measured. In the second fluorometric titration increasing concentrations of ANS (C_{ANS}) were added to constant concentration of RKK polymer and the fluorescence intensity was measured. Plot of C_{pol}/^{C_{ANS}bound} against 1/C_{free ANS} and linear regression gave the values for 30 K_b and n. RKK-153, 108, 117 were used for the study and the values are given in Table 4.

Table 4. ANS binding by RKK polymers

Polymer	Mol/Mol polymer	Binding constant × 10 ⁵ mol ⁻¹
RKK-108	0.32	2.4
RKK-153	0.60	4.5
RKK-117	0.26	4.1
HSA	1.82	11

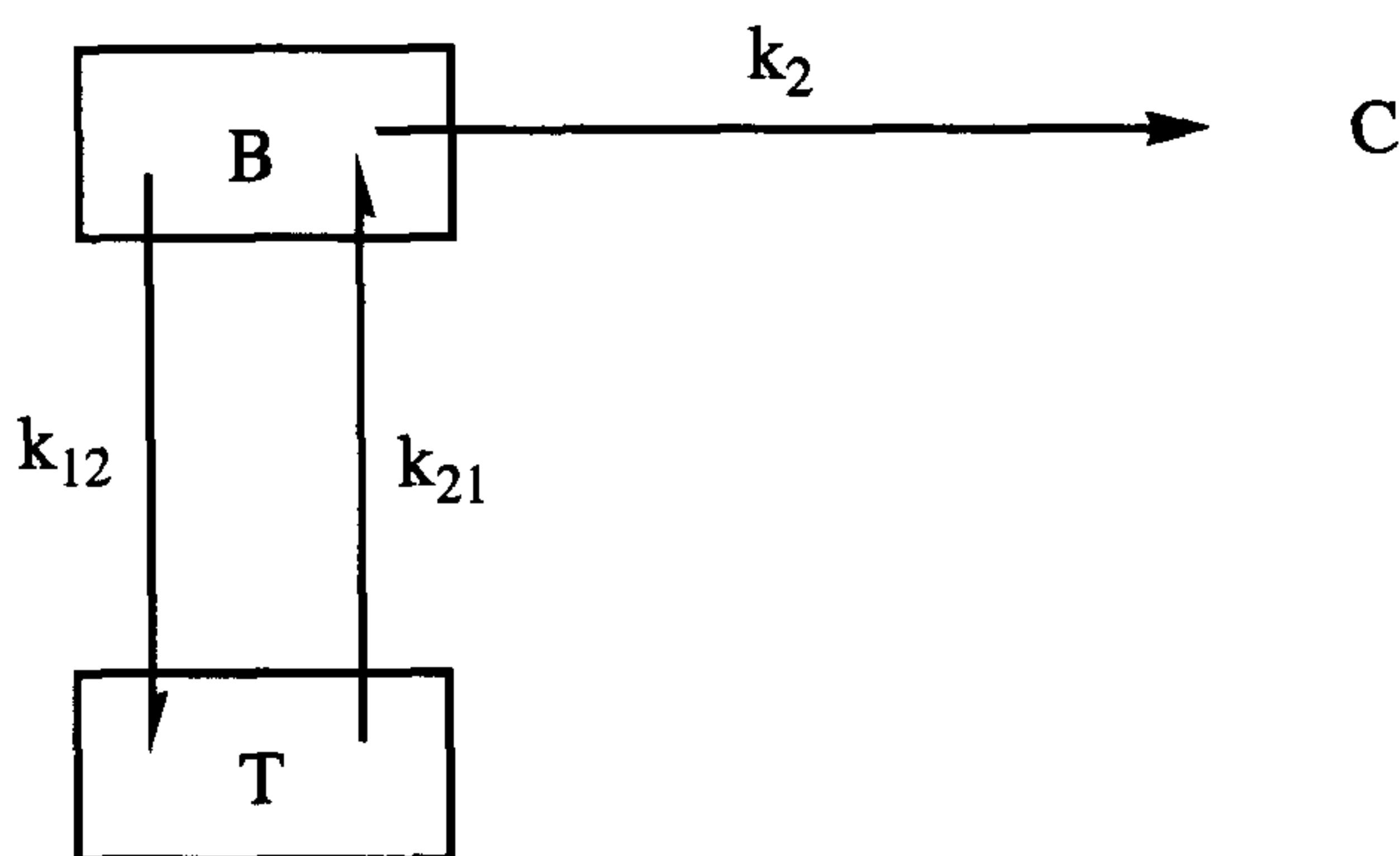
RKK-153 with higher alkyl content was found to bind more ANS molecules than RKK-108 and has a higher binding constant. While these values are lower than that reported for human serum albumin, it is to be noted that HSA has specific hydrophobic pockets containing cationic groups. New modifications to make use of both electrostatic and hydrophobic forces will enhance the interaction between the polymer and ANS.

The above described results with small molecule binding shows that HPG polymers with internal hydrophobic pockets are useful as carrier molecules and drug delivery vehicles in biomedical applications.

Animal Testing

Animal trials were carried out under contract with the Advanced Therapeutics group at the B.C. Cancer Research Centre on the Vancouver Hospital site (Vancouver, British Columbia, Canada). Initially toxicology studies were conducted for the polyglycidol core material. Three HPG compounds were tested in mice, designated in Table 1 as RKK-1 ($M_n = 4,250$), RKK-7 ($M_n = 15,400$) and RKK-11 ($M_n = 112,000$). They were injected into Balb C mice at four concentrations (dosages) from 100 mg/ml (1 g/Kg) to 6.25 mg/ml (62.5 mg/Kg), 2 mice per concentration per compound, and followed for 28 days for signs of toxicity (e.g., lethargy, dry eyes, weight loss, scruffy coats). No untoward indicators were found and all animals, even those with the very high doses of the highest molecular weight compound, grew normally with no signs of toxicity. Hence, the core HPG compound was well tolerated by mice.

The copolymers RKK-43, RKK-108 and RKK-117 dissolved in isotonic saline were also tested in Balb/c mice following intravenous administration at concentrations 0.5 g/Kg and 1g/Kg and followed for 30 days for signs of toxicity and body weight loss. No signs of


toxicity or weight loss were observed even in the case of RKK-117 which contains 10% aromatic groups.

Pharmacokinetics

5 Pharmacokinetic analyses of RKK-43 and RKK-108 were conducted after tritium labeling to assess their circulation longevity and organ uptake. Radiolabeling was done by partial methylation of about 1% of the hydroxyl groups. First, approximately 5% of the hydroxyl groups were converted into potassium alkoxides by reaction with potassium hydride and then reacted with tritium labeled methyl iodide (C^3H_3I). The products were 10 purified by dialysis. Mice were injected at a dose of 1g/Kg and blood was analyzed at 30 min, 1, 2, 4, 24, 48 and 72 hours, 7, 14 and 30 days. Plasma was assessed for levels of test compounds by scintillation counting.

15 It was found that concentrations of RKK-43 in plasma were reduced to 50% of initial dose after 24 hours. The levels decreased to less than 1% after 7 days. In the case of RKK-108 the levels were 75% after 24 hours. This may be due to its higher molecular weight (larger size) as well as higher incorporation of PEG. Molecular weight dependence of polymer elimination from blood circulation has been reported. Since these polymers are chemically constituted of only -C-C- and C-O-C bonds (neither of which are substrates for common enzymes in the circulation) rapid enzymatic breakdown does not occur.

20 The levels of RKK polymers in plasma was analyzed as a function of time using a standard two-compartment open model consisting of a central compartment (B) which is mainly plasma, and the tissue compartment (T). The elimination part is represented by compartment C. The central compartment is considered open since elimination occurs from this compartment by excretion. There is assumed to be reversible exchange between the 25 blood and tissue compartments. This two compartment open model is described in more detail below with k_{12} and k_{21} representing rate constants for transfer between compartments 1 and 2, the plasma and tissues and k_2 is the rate constant for elimination.

When the polymer solutions are injected intravenously into mice, the polymer molecules will undergo simultaneous elimination and distribution processes which includes reversible diffusion into the tissues. The polymer concentration in plasma decreases with time in two distinguishable exponential phases. During the distribution phase the concentration of polymer increases to a maximum in the tissue compartment and the concentration in the blood decreases due to loss to tissue and elimination. During the elimination phase the concentration decreases both in tissue and blood compartments as a function of time. Such a system can be expressed by the equation $P(t) = Ae^{-\alpha t} + Be^{-\beta t}$ where P is the concentration of drug in plasma and t is time. Curve fitting of the data gave $t = 0$ values for the plasma concentration of the material associated with the distribution and elimination phases (A and B) and the values for α and β . The apparent rate constants k_{12} , k_{21} , and k_2 are calculated using the following equations and the calculated values are shown in Table 5.

$$15 \quad P_0 = A + B$$

$$k_{21} = (A\beta + B\alpha) / P_0$$

$$k_2 = \alpha\beta / k_{21}$$

$$k_{12} = \alpha + \beta - k_2 - k_{21}$$

20 **Table 5. Rate constants determined from pharmacokinetic analysis of polymer concentrations in plasma over time**

Polymer	A (mg/mL plasma)	B (mg/mL plasma)	$\alpha (h^{-1})$	$\beta (h^{-1})$	P_0	$k_{21} (h^{-1})$	$k_2 (h^{-1})$	$k_{12} (h^{-1})$
RKK-108	8.450	0.220	0.021	0.00149	8.670	0.00198	0.01558	0.00459
RKK-43	8.123	0.040	0.028	0.00050	8.163	0.00064	0.02218	0.00589

The low molecular weight RKK-43 was eliminated from the system one and half times faster than high molecular weight RKK-108. Its diffusion from blood to tissues is faster whereas the reverse process is slower compared to that of RKK-108. This shows that it is possible to adjust retention time in blood by manipulating the molecular weight and/or 5 PEG content of the polymer.

At termination, various organs (liver, spleen, lungs, and heart) were collected and processed for scintillation counting and determination of test compound levels. Levels of the polymers in the organs were analyzed and the amount of polymer in the plasma present in the tissues subtracted. Values for plasma volumes in various organ tissues of mice were 10 taken from the literature. We found that the levels of polymer detected in the organs was mainly due to the blood present, in which the concentration of polymer is relatively high. Levels of both polymers were found to increase slowly in the spleens of the mice over the 30 days of experiment, with values ranging from 0.2 to 0.4 mg per gram tissue. Levels in lungs were very low but 0.1 and 0.2 mg/g tissue levels were observed on the 14th day. Constant 15 levels of RKK-43 (0.1 mg/g) were found in the heart over the period of 30 days while it was found to increase slowly from 0.03 to 0.17 in the case of RKK-108. The highest tissue levels of RKK-43 and RKK-108 were observed in the livers, with levels being around 1.6 mg/g after two days. Higher amounts of low molecular weight RKK-43 containing 20% of PEG was accumulated in the liver compared to RKK-108 which contains 40% PEG. This clearly 20 shows the protective nature of PEG chains against uptake by the reticuloendothelial system.

This analysis indicated that the half life of RKK-108 is about 33 hr, meaning that its concentration in plasma has dropped to half its initial value over that period. This is consistent with the time periods required for postoperative support in many cases.

25 Coagulation

Three polymer samples were tested for blood compatibility using the activated partial thromboplastin time (APTT) and the prothrombin time (PT) in fresh human plasma. PT is used to evaluate the extrinsic and common coagulation pathway and the results are expressed in seconds required for a fibrin clot to form after tissue thromboplastin (innovin) has been 30 added to the blood sample. APTT is used to evaluate the intrinsic and common coagulation pathway. The results are expressed in seconds required for a fibrin clot to form in the plasma sample after a partial thromboplastin reagent (actin) and calcium chloride have been added

to the sample. Blood was mixed with a measured amount of citrate and the plasma was obtained by centrifugation.

RKK-1, which is core HPG, slightly decreased the prothrombin time and increased the activated partial thromboplastin time considerably with increasing concentration. RKK-5 111, which is a copolymer of glycidol, epoxide of Brij-76 and PEG-epoxide increased PT and APTT with increasing concentration. However, RKK-108, which is a copolymer of glycidol, octadecene epoxide and PEG epoxide, did not affect the APTT and PT even if present at high concentration (10 wt %). Hence, MPEG may be used to shield the HPG and hydrophobic core from coagulation proteins.

10

Red Cell Aggregation and Blood Rheology

The apparent viscosity of anticoagulated whole blood depends mainly on plasma viscosity, hematocrit, the geometry and deformability of red blood cells (RBC) and their aggregation. Blood viscosity at high shear rate reflects red blood cell deformability and the 15 viscosity at low shear rate reflects erythrocyte aggregation. Erythrocytes aggregate naturally in the presence of macromolecules like immunoglobulins, fibrinogen or high molecular weight dextran, forming primarily linear aggregates known as rouleaux. Extreme versions of these aggregates can be very difficult to break down in flow due to reversible bridge formation by the polymeric molecules which adsorb between the erythrocytes. On the other 20 hand, red cells do not aggregate in the presence of albumin or low molecular weight dextran ($\leq 40,000$) which do not form the bridges due to their smaller size and weaker adsorption. Red cell aggregation increases whole blood viscosity and presents a challenge to the heart and circulatory system of patients already compromised by their medical condition.

The response of red cells to HPG derivatives added to human blood *in vitro* was 25 determined by microscopic examination and whole blood viscometry. Derivatives were prepared in isotonic saline at 100 mg/mL and were filtered on 0.20 μm filters. These were added to freshly drawn, EDTA anti-coagulated blood to a final plasma concentration of 17.2 g/L. The resulting plasma concentration was 82.8% of the native value. The hematocrits were between 39 and 43% v/v.

30 Under microscopic examination aggregation was assessed using a qualitative index that scales with the strength of cell-to-cell interaction.³¹ The visual aggregation index (VAI) scale is:

VAI	0	single cells, no aggregation
	1	50% single cells : 50% aggregated cells
	2	rouleaux : >90% cells in aggregates
	2.5	rouleaux: cap-ends , side-to -side aggregates
5	3	clumps : distorted cells & rouleaux

Compared to control, the HPG core and polymers with >35% MPEG, whether or not they contained octadecyl chains, had no significant effect on aggregation at 17 mg/ml. However, polymers with (a) lower MPEG content (RKK-43: 21%), (b) higher molecular weight MPEG chains (28% MPEG 550 cf MPEG 350 used for all other derivatives) and (c) a polymer containing Brij rather than C18 and MPEG chains, all produced significantly elevated red cell aggregation.

Whole blood viscosity of blood-derivative mixtures were determined at 35 ± 1 °C in a Contraves LS2™ rotational Couette viscometer. Shear stress was measured at a series of shear rates between 0.2 and 80 s^{-1} . Whole blood variable shear rate viscometry studies showed that RKK-43 (2.5% C18, 21% MPEG) significantly elevated low shear rate viscosity while RKK-108 (2.6% C18, 38% MPEG) had little effect, consistent with results of the aggregation studies. This shows that use of a high concentration of PEG chains helps to protect the HPG/hydrophobic core from binding to cell surfaces. It is to be noted that all the synthetic plasma expanders in current use cause increased whole blood viscosity at low shear rate, indicative of increased red blood aggregation.

Complement activation

When a foreign material comes in contact with blood, the host defense system called complement system which comprises more than 20 plasma proteins activates and a series of chemical reactions take place leading to inflammation. There are two pathways of activation: the classical and the alternative pathways. The classical pathway is activated by an antigen-antibody complex and the alternate pathway requires only a foreign material. Examples of polymers known to cause complement activation include dextran, regenerated cellulose, sephadex, nylon, poly(methylmethacrylate), poly(propylene), poly(acrylamide), poly(hydroxyethylmethacrylate), plasticised PVC. An example of polymer which thought to not activate complement is poly(N-vinylpyrrolidone). Surface induced complement activation has been reported to activate cell adhesion, platelet aggregation and platelet

activation leading to thrombosis. Since the activation peptide C3a is formed during both the activation pathways, its estimation leads to an accurate indication of the complement activation.

The effects of HPG polymers on complement activation were studied in vitro by measuring C3a in citrate anticoagulated plasma using QUIDEL™ Complement C3a Enzyme Immunoassay following the procedure mentioned in the kit. The plasma collected from four healthy volunteers were pooled and was mixed with polymer solutions in 1:1 volume ratios, incubated at 37 °C for 2 hours and frozen at -80 °C until analysis. The results are shown in Table 6. Known biocompatible polymers including PEG, dextran, hetastarch, poly(N-vinylpyrrolidone) were tested for comparison. The C3a levels generated in the case of branched polyglycidol(RKK-1) and linear glycidol (RKK-213) were similar to that of control experiment in which the incubation was done in the presence of saline solution alone. This shows that these polymers are non complement activating and therefore biocompatible. Among the other polymers tested, the C3a levels were similar to the controls in the case of PEG and dextran whereas higher C3a generation was observed in the case of hetastarch and poly(N-vinylpyrrolidone). Among the derivatized polyglycidols, RKK-108 was found to be non complement activating whereas slightly higher values were obtained in the case of RKK-153.

20 **Table 6. Complement activation by RKK polymers**

Polymer Code	Composition	C3a ng/mL
Saline control		13160
PEG - 350		10847
Dextran 23K		15216
Hetastarch		25236
PVP		19888
RKK-1	Branched polyglycidol	14144
RKK-213	Linear polyglycidol	13392
RKK-108	PEG/ODE/PEG	14592
RKK-153	PEG/ODE/PEG	17992

Polymer Con. = 2 wt %; Inc. Temp = 37 °C; Incubation time 120 min; polymer solution was prepared in isotonic saline solution (150 mM), PEG = polyethyleneglycol; ODE = octadecene epoxide)

The alternative pathway of complement activation is reported to begin with the reaction of nucleophiles such as amino and hydroxyl groups with a labile thioester group on the C3b molecule. The hyperbranched polyglycidol core molecule has a number of hydroxyl groups which equals the degree of polymerization. However, as demonstrated above, these 5 polymers are surprisingly non complement activating in plasma.

The effect of Brij-containing molecules on red cell aggregation may be due to the structure of the end group caps, where the PEG chains are coupled to the HPG end groups with the alkyl chain forming the new end groups. This may allow molecular and cellular aggregation to occur. Thus, the opposite orientation with PEG chains as the end groups 10 would be better or the PEG caps should be added after the alkyl groups, as described above.

Platelet activation

To measure platelet activation, blood was collected from normal donors into sodium citrate anticoagulant and the platelet rich plasma (PRP) isolated by centrifugation. Fifty 15 microliters of PRP was then incubated at 37°C with an equal volume of polymer suspended in saline at concentrations ranging from 0.5 – 2 wt. %. Aliquots of the incubation were removed at 10, 30 and 100 minutes to assess the activation state of the platelets using fluorescence flow cytometry. Expression of the platelet activation marker CD62P and the platelet pan-marker CD42 were detected using a Coulter Epics-XL™ (Miami, FL) and a 20 double staining method. Briefly, 10 µL of post-incubation polymer/platelet mix was diluted in HEPES buffer and incubated with 5 µL of monoclonal anti-CD42-FITC and 5µL of monoclonal anti-CD62P-PE (both from Immunotech, Marseilles, France). The addition of 1 U/mL of bovine thrombin (Sigma) was used to activate platelets as a positive control. 25 Mouse IgGs conjugated to the same chromophore (FITC or PE) were used as the non-specific binding controls. After 30 min incubation, the samples were fixed with 1 mL of formol saline. Samples were analysed within 2 hours; instrument gates were set to count 5000 platelets as defined by their forward scatter profile. Data are reported as the percentage of platelets positive for both of the bound antibodies (Table 7).

Platelets exposed to thrombin (positive controls) showed an anticipated rapid 30 increase in CD62 expression within 10 minutes to 88.7% of cells analyzed. Platelets exposed to saline alone had a maximum of 24.8% CD62 expression at 100 minutes while polymers known to be biocompatible, PEG 350, hetastarch, PVP and dextran, caused CD62 expression at levels ranging from 12.2 to 23.8% (see table 7). All RKK compounds tested at

up to 2 wt % caused $\leq 25\%$, platelet activation expression, indicating that these compounds have little or no direct effect on platelets and the activation levels are consistent with those seen with compounds that are already in human use. Although there was some CD62 expression seen in all samples other than those incubated only with the control antibodies 5 (0.06%), the polymer induced activation was no greater than that seen with saline alone; thus, the low level CD62 expression seen in these studies can be attributed to the choice of suspending medium for the polymer.

Table 7. Platelet activation data

Polymer	Conc. Wt %	Incubation time (min)		
		10	30	100
Negative control		0.06		
Positive control		88.7		
saline		18.1	22.7	24.8
PEG-350	2	19	19.9	
	1	14.1	17.1	14.6
Hetastarch	2	18.8	21.2	
	1	13	23.8	17.3
PVP	2	14.1	15.9	
	1	11.2	15.9	16.2
Dextran	2	12.2	16.1	
	1	12.6	18.4	17.1
RKK-28	2	13.3	18.2	
	1	14.1	21.5	17
	0.5	14	18.4	22.4
RKK-108	2	7.44	9.4	
	1	11.3	16.4	15
	0.5	13.5	17.9	15.1
RKK-153	2	3.3	3.6	
	1	8.4	11.3	19.3
	0.5	13.1	14.7	15.1
RKK-43	2	6.14	4.8	
	1	11.4	13.3	21.3
	0.5	22.7	21.4	
RKK-213	2	21	25	
	1	17	21.2	21.6
	0.5	15.2	21.4	

Plasma protein precipitation

It is known that addition of PEG to plasma can cause protein precipitation. This depends on PEG concentration and its molecular weight. RKK-1, RKK-108 and RKK-153 did not cause plasma protein precipitation when solutions of these polymers in 150 mM aqueous NaCl solution were added to anticoagulated plasma. No visual evidence of precipitation was observed when 100 μ L of polymer solutions of various concentrations were added to 1 mL of plasma to final concentrations of 10 to 60 mg/mL. Similar results were obtained in the case of PEG-350. However protein precipitation was observed when PEG-6000 was added to a concentration of 60 mg/ml. In the case of PEG-350, plasma concentration of 180 mg/ml was needed for protein precipitation. Therefore, the RKK polymers do not cause protein precipitation when present in plasma in a concentration range where these polymers may be used as plasma expanders.

In some cases, increasing the molecular weight of the PEG would be contraindicated, as would too low a concentration of lower MW PEG. The prolonged retention of RKK-108 in the plasma of mice and the lower levels found in liver compared to RKK-43 suggest that about 40% PEG-350 chains would be ideal in some embodiments. However, the invention permits a wide range of variables while still providing for improved performance.

Acute Response to Isovolemic Blood Exchange Using Polymer RKK 108

In this study, the animals were Lewis rats of 325-360 g weight. The following solutions were used: lactated Ringers solution (control); 10 μ M IC-41 (MW 83,000) prepared in lactated Ringers solution for blood exchange = 15% total volume exchange (TVE). % TVE calculated according to weight = % x 58 ml / kg weight of animal.

The animals were anaesthetized using 4% isofluorane and maintained at 0.5% - 2% during the surgical observation period of 3 hours. The O₂ saturation values and the heart rate (HR) were continuously monitored using an oxymeter (NoninTM) clipped on to one of the animal's paws. Catheters made of polyethylene tubing (Clay Adams PE 50TM) were inserted into each of the femoral artery and vein and were held in place with #5 silk suture. The heparinized (30 UI/mL) femoral artery catheter was hooked up to a pressure transducer (AD Instrument) through a stopcock. The pulse pressure (PP) and HR were obtained at the start of blood exchange, periodically after the early part of the exchange, at 1.5 hours into the blood exchange, and at the end of blood exchange (approx. 3 hours post-infusion).

For the control animal (n = 1) (for pre-exchange blood status), blood was sampled immediately after cannulation from the femoral artery catheter: 150 μ L for complete blood count (CBC); 300 μ L for blood gases; 600 μ L for kidney/liver function tests. The blood samples for blood gases and kidney/liver function tests were immediately brought to St 5 Paul's Hospital Clinical Laboratory, Vancouver, Canada, for testing. The CBC analysis was conducted within 10 minutes of blood sampling. The animal was euthanized after blood collection. Organ tissues (liver, kidney, spleen, pancreas, skeletal muscle and heart) were collected for future immunohistochemical analysis.

For the experimental animal (n = 1), after obtaining PP and HR readings, the 10 respective catheters were connected to the push-pull pump (Harvard ApparatusTM) where the femoral vein catheter was connected to the push 5-mL syringe (BD) while the arterial catheter was connected to the pull 5-mL syringe (via 23 gauge needles. The 15% TVE isovolemic exchange was performed at 200 μ L/min. After the exchange, the animal was observed for about 3 hours while under maintenance anesthesia. At the end of 3 hours, 15 blood samples were handled the same manner as in the control animal mentioned above. Organ tissue samples were also collected as above.

The perfusion of polymer RKK108 had minimal effects on the cardiovascular system of the animal that received the 15% total blood volume exchange (TVE) of polymer. The mean HR (335 BPM) and PP (mean of systolic/diastolic) were relatively stable and constant 20 for the majority of the post-infusion period indicating that the polymer had little or no major effect on the ability of the heart to regulate contractility, heart rate and blood pressure at this dose. The mean PP of 77 mm Hg (approx. 96/57) in the post-infused animal displayed little fluctuations except for when the anesthetic declined in the final 30 minutes before termination.

25 Table 8 shows the blood cell count in the animals treated with saline or polymer, and it demonstrates little or no effect of the polymer on the major cell types in the circulation over this acute 3 hour time period. There was a possible two-fold increase in white blood cells (WBC) in the polymer treated animal that may reflect increases in the percentage of neutrophils (%N) within the population. There were also decreases in the percentage of 30 lymphocytes (%L) in the polymer treated animals. The latter results may likely be associated with the increased time that the animals are open to surgical insult compared to the controls, and not the polymer. The immune system had sufficient time to mount a systemic response to the sites of surgical wound injury, and would increase the number of

circulating WBC and/or reducing specific lymphocyte populations which could migrate to the wound site. Moreover, the polymer treated animal did have an increase in the platelet count (PLT) that appeared to still be in the normal range.

The blood chemistry data shows little or no apparent effect of the polymer on the 5 circulating levels of red blood cells (RBC), hemoglobin (HGB), and hematocrit (HCT). Moreover, the blood gases that were analyzed (Table 9) confirm that there is only a marginal effect of the polymer on the blood gas levels of both pCO₂ which and pO₂ as both showed little change from the control, pre-infusion values. Similarly, the net ability of the blood to buffer itself against changes in pH were not affected by infusion of the polymer as indicated 10 by changes in pH, cHCO₃ (bicarbonate) and cBase as all these values were all within normal values in the polymer treated animal.

Table 8. Complete Blood Count

Rat ID	Condition	WBC	%N	%L	%M	%E	%B	RBC	HGB	
Lewis 3A-1	Pre-blood exchange	3.56	15.4	77.7	5	0.76	1.05	8.66	147	
Lewis 2B-15-1	Post blood exchange, 15% TVE	7.83	62.3	29.4	7	.070	1.18	8.07	139	
Rat ID	Condition	HCT	MCV	MCH	MCHC	RDW	PLT	MPV	PVT	PDW
Lewis 3A-1	Pre-blood exchange	42.7	49.3	17	346	15.7	273	5.51	1.51	19.1
Lewis 2B-15-1	Post blood exchange, 15% TVE	40.1	49.7	17.2	346	14.6	382	4.98	1.9	20.2

Table 9. Blood Gas, Oxymetry, Electrolyte and Metabolite Values

Rat ID	Condition	pH	Blood Gas Values					Barometer mmHg
			pCO ₂ mmHg	pO ₂ mmHg	cHCO ₃ (P)c mmol/L	cBase (B)c mmol/L		
Lewis 3A-1	Pre-blood exchange	7.43	46	423	30	5	758	
Lewis 2B-15-1	Post blood exchange, 15% TVE	7.49	36.8	464	28.1	5.2	757	
Oxymetry Values								
Rat ID	Condition	sO ₂	ctHb g/L	Hctc	F _O 2Hb	F _{CO} 2Hb	F _M etHb	
Lewis 3A-1	Pre-blood exchange	0.98	137					
Lewis 2B-15-1	Post blood exchange, 15% TVE	0.984	150	0.459	0.997	-0.001	-0.012	

Measurement of Osmotic Pressure

Osmotic pressure (OP) was measured using a Jupiter™ 231 membrane osmometer (UIC Inc, Joliet, IL). A two-layer, 5000 dalton cut-off membrane (Gonotec GMBH, Berlin) was prepared as recommended and OP was measured in water at 25 °C. Human serum albumin (HSA) 5 was measured as a control sample and the measured molecular weight is in agreement with the accepted value of 67,000 daltons.

Results for human serum albumin (HSA) and RKK-108 osmotic pressure are summarized 10 in Table 10. The results show that at similar concentrations, RKK-108 has lower osmotic pressure than albumin. This means that a higher concentration of the polymer may be selected in order to produce a similar osmotic effect to that of albumin.

Table 10

Membrane Osmotic Pressure				
membrane:	5000 Dalton cut-off			
solvent:	water			
temperature:	25 °C			
solute	concentration	pressure	Mn†	A2‡
	g/mL	dynes/cm ²	g/mol	mol-cm ³ /g ²
Human Serum Albumin	0.0091	10000	68000	0.0033
dHPG – (RKK-108)	0.01	5500	53000	0.00033
+/- (1 SD)		300	16000	0.00001

† number average molecular weight.

‡ second virial coefficient

15

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of skill in the art in light of the teachings of this invention that changes and modification may be made thereto without departing from the scope of the invention.

Additional References

- 1 Salmon, J.B.; Mythen, M.G. *Blood reviews* **1993**, 7, 114.
- 2 Cochrane injury group albumin reviewers, The Cochrane Library **1998**, 3.
- 3 Schierhout, G.; Roberts, I.; Alderson, P. The Cochrane Library **1998**, 3.
- 4 Bunn, F.; Alderson, P.; Hawkins, V. The Cochrane Library **2000**, 4.
- 5 Paull, J. *Anaesth. Intensive care* **1987**, 15, 163.
- 6 Battle, J.; Del Rio, F.; Lopez Fernandez, M.F. *Throm. Haemost.* **1985**, 54, 697.
- 7 a) Diehl, J.T.; Lester, J.L.; Cosgrove, D.M. *Ann Thorac surg.* **1982**, 34, 674 b) Bremerich, D. H.; Lischke, V.; Asskali, F.; Forster, H.; Behne, M. *International Journal of Clinical Pharmacology and Therapeutics* **2000**, 38, 408. C) Felfernig, M.; Franz, A.; Braunlich, P.; Fohringer, C.; Kozek-langencker, A. *Acta Anaesthesiol Scand.* **2003**, 47, 70.
- 8 a) Treib, J.; Baron, J. F.; Grauer, M. T.; Strauss, R. G. *Intensive care med* **1999**, 25, 258 b) Dintenfass, L. *Rheology of blood in diagnostic and preventive medicine* Butterworths, London, **1976**, 181.
- 9 Sunder, A.; Hanselmann, R.; Frey, H.; Mulhaupt, R. *Macromolecules* **1999**, 32, 4240.
- 10 a) Jones, M. C.; Leroux, J. C. *Eur. J. Pharmacol. Biopharm.* **1999**, 48, 101. B) Kataoka, K.; Harada, A.; Nagasaki, Y. *Adv. Drug Deliv. Rev.* **2001**, 47, 113. C) Kabanov, A. V.; Batrakova, E. V.; Alakhov, V. Y. *Adv. Drug Deliv. Rev.* **2002**, 54, 759.
- 11 Kautz, H.; Sunder, A.; Frey, H. *Macromol. Symp* **2001**, 163, 67.
- 12 Organic Synthesis CV1 494.
- 13 US Patent 6,221,977
- 14 Morgan, M. T.; Carnahan, M. A.; Immoos, C. E.; Ribeiro, A. A.; Finkelstein, S.; Lee, S. J.; Grinstaff, M. W. *J. Am. Chem. Soc.* **2003**; 125, 15485.

15 a) Ugoloni, R.; Ragona, L.; Siletti, E.; Fogolari, F.; Visschers, R. W.; Alting, A. C.; Molinari, H. *Eur. J. Biochem.* **2001**, *268*, 4477. b) Stolowich, N. J.; Frolov, A.; Atshaves, B.; Murphy, E. J.; Jolly, C. A.; Billheimer, J. T.; Scott, A. I.; Schroeder, F. *Biochemistry* **1997**, *36*, 1719. c) Ragona, L.; Fogolari, F.; Zetta, L.; Perez, D. M.; Puyol, P.; Kruif, K. D.; Lohr, F.; Ruterjans, H.; Molinari, H. *Protein Science* **2000**, *9*, 1347.

16 a) Wolfrum, C.; Borchers, T.; Sacchettini, J. C.; Spener, F. *Biochemistry* **2000**, *39*, 1469. b) Miller, K. R.; Cistola, D. P. *Molecular and Cellular biochemistry* **1993**, *123*, 29. c) Cistola, D. P.; Sacchettini, J. C.; Banaszak, L. J.; Walsh, M. T.; Gordon, J. I. J. *Biol. Chem.* **1989**, *15*, 2700.

17 De Mul, M. N. G.; Davis, H. T.; Evans, E. E.; Bhave, A. V.; Wagner, J. R. *Langmuir* **2000**, *16*, 8276.

18 a) Newkome, G. R.; Yao, Z. Q.; Baker, G. R.; Gupta, V. K. *J. Org. Chem.* **1985**, *50*, 2004. b) Hawker, C. J.; Wooley, K. L.; Frechet, J. M. J. *J. Chem. Soc., Perkin Trans. I* **1993**, 1287.

19 Almgrem, M.; Grieser, F.; Thomas, J. K. *J. Am. Chem. Soc.* **1979**, *101*, 279.

20 Mackay, D. *J. Chem. Eng. Data.* **1977**, *22*, 273.

21 a) Liu, M.; Frechet, J. M. J. *Polym. Bull.* **1999**, *43*, 379. b) Shu, C.; Leu, C. *Macromolecules* **1999**, *32*, 100.

22 Shcharbin, D.; Klajnert, B.; Mazhul, V.; Bryszewska, M. *Journal of Fluorescence*. **2003**, *13*, 519.

23 a) Vladimirov, Y. A.; Dobretstoc, G. E.; (1980). *Fluorescent Probes in studying Biological Membranes*, Nauka, Moscow, Russia. B) Scatchard, G. *Ann. N. Y. Acad. Sci.* **1949**, *51*, 660.

24 Yamaoka, T.; Tbabata, Y.; Ikada, Y. *J. Pharma. Sci.* **1995**, *84*, 349.

25 Notari, R. E. *Biopharmaceutics and Clinical Pharmacokinetics, an introduction*, 3rd ed., Marcel Dekker, Inc. New York, 1980

26 Bally, M. B.; Mayer, L. D.; Hope, M. J.; Nayar, R. *Liposome Technol.* (Gregoriadis, G., 2nd ed.) CRC **1993**, 3, 27.

27 Allen, T. M.; Hansen, C. *Biochim. Biophys. Acta.* **1991**, *1068*, 133.

28 S. Chien. *The Red Blood Cell*, D.M. Surgenor, ed., Academic Press, NY, **1975**, 1031-1133.

29 Letcher R.L.; Chien, S.; Pickering, T. G.; Sealy, J. E.; Laragh, J.H. *Ame. J. Med.* **1981**, *70*, 1195

30 Charansonney, O.; Mouren, S.; Dufaux, J.; Duvelleroy, M.; Vicaut, E. *Biorheology* **1993**, *30*, 75

31 Buxbaum, K., Evans, E., Brooks,D.E. *Biochemistry*. **1982**, *21*, 3225.

32 Janzen, J., Elliott,T.G., Carter, C.J.and.Brooks, D.E, *Biorheology* **2000**, *37*, 225.

33 Menu, P.; longrois, G.; Faivere, B.; Donner, M.; Labrude, P.; Stoltz, J. F.; Vigneron, C. *Transfusion Sci.* **1999**, *20*, 5.

34 a) Lamba, N, M. K.; Courtney, J. M.; Gaylor, J. D.; Lowe, G. D. O. *Biomaterials* **1999**, *21*, 89. b) Kidane, A. Park, K. *J Biomed Mater Res.* **1999**, *48*, 640. c) Lim, F.; Yu. X.; Cooper, S. L. *Biomaterials* **1993**, *14*, 537 d) Payne, M. S.; Horbett, T. A. *J Biomed Mater Res.* **1987**, *21*, 843. e) Jantova, J.; Cheung, A. K.; Parker, C. J. *Complement and inflammation* **1991**, *8*, 61.

35 Beillatt, J.; Dorson, W. J. *ASAIO J.* **1984**, *7*, 57.

36 a) Hayashi, K.; Fukumura, H.; Yamamoto, N. *J Biomed Mater Res.* **1990**, *24*, 1385. b) Kamp, K.W.; Oeveren, W. V. *Int J Art Org* **1993**, *16*, 836

37 Chenoweth, D. E. *Artif Org* **1988**, 12, 508 a) Bahulekar, R.; Tamura, N.; Ito, S.; Kodama, M. *Biomaterials* **1999**, 20, 357 b) Hoenich N. A.; Woffindin, C.; Stamp, S.; Roberts, S. J.; Turnbull, J. *Biomaterials* **1997**, 18, 1299 c) Crreno, M. P.; Labarre, D.; Jozefowicz, M.; Kazatchkine, M. D. *Molecular immunology* **1988**, 25, 165.

WE CLAIM:

1. A polymer comprising a hyperbranched polyglycerol (HPG), for use as a substitute for serum albumin or for maintenance of a living tissue or organ.
2. The polymer of claim 1, wherein the polymer does not contain a porphyrin core.
3. The polymer of claim 2, wherein the polymer comprises a branched polyether core.
4. The polymer of claim 3, wherein the core has a focal point derived from a polyol initiator.
5. The polymer of any one of claims 1 to 4, wherein the HPG is derived from ring-opening polymerization of glycidol in the presence of an anionic initiator.
6. The polymer of any one of claims 1 to 5, wherein the polymer further comprises regions of hydrophobicity.
7. The polymer of claim 6, wherein the regions of hydrophobicity are provided by the presence of aryl groups, alkyl groups, or both.
8. The polymer of claim 7, wherein the polymer comprises C₅ to C₃₀ alkyl groups.
9. The polymer of claim 8, wherein alkyl groups contain greater than 17 carbon atoms.
10. The polymer of claim 7, 8 or 9, wherein the alkyl groups include C₁₈ groups.
11. The polymer of claim 8, 9 or 10, wherein the alkyl groups are joined to about 50% or more of alkoxide groups on the HPG.
12. The polymer of claim 8, 9 or 10, wherein the alkyl groups are joined to from about 5% to about 10% of alkoxide groups on the HPG.
13. The polymer of any one of claims 8 to 12, wherein the alkyl groups are joined to the polymer through ether linkages.

14. The polymer of any one of claims 1 to 13, wherein the polymer comprises hydrophilic copolymer regions.
15. The polymer of claim 14, wherein the copolymer is a polyol.
16. The polymer of claim 15, wherein the polyol is polyglycerol.
17. The polymer of claim 14, wherein the copolymer is a polyalkyleneglycol.
18. The polymer of any one of claims 1 to 17, wherein the polymer comprises polyalkyleneglycol-alkylether moieties.
19. The polymer of claim 17 or 18, wherein the polyalkyleneglycol is a PEG.
20. The polymer of claim 19, wherein the PEG has a molecular weight of from about 100 to about 800 daltons.
21. The polymer of claim 20, wherein the molecular weight of the PEG is about 350 daltons.
22. The polymer of claim 19, 20 or 21, wherein the PEG is MPEG.
23. The polymer of any one of claims 14 to 22, wherein said copolymers and moieties are joined to about 80% or more of alkoxide groups on the HPG.
24. The polymer of any one of claims 14 to 22, wherein said copolymers and moieties are joined to from about 5% to about 50% of alkoxide groups on the HPG.
25. The polymer of any one of claims 1 to 24, wherein the polymer comprises amine groups.
26. The polymer of any one of claims 1 to 25, wherein the polymer comprises one or more of sulfonic acid groups, phosphonic acid groups and carboxylic acid groups.
27. The polymer of any one of claims 1 to 26, further comprising at least one biologically active moiety or drug linked to the polymer or associated therewith.

28. The polymer of any one of claims 1 to 27, for use as the substitute for serum albumin.
29. A polymer as defined in any one of claims 1 to 28, for use in treatment of a human or non-human patient to expand blood volume in the patient.
30. A polymer as defined in any one of claims 1 to 27, for use as said substitute for serum albumin in preparation of a blood or plasma expander, replacement or substitute.
31. The polymer of any one of claims 1 to 27, for use in preservation of said tissue or organ.
32. A polymer as defined in any one of claims 1 to 27, for use in preservation of said tissue or organ by perfusion of the tissue or organ in a human or non-human animal patient.
33. A sterile composition comprising a polymer as defined in any one of claims 1 to 27, and at least one physiologically acceptable salt, buffer, diluent or excipient, for the use as defined in any one of claims 28 to 32.
34. The composition of claim 33 in dry form.
35. The composition of claim 33 in aqueous solution.
36. The composition of claim 35, wherein the intrinsic viscosity of the solution is no more than about 10 ml/g.
37. The composition of claim 35 or 36, wherein the solution is oxygenated.
38. The composition of any one of claims 33 to 37, for intravenous administration.
39. The composition of any one of claims 33 to 38, for tissue or organ perfusion.
40. An intravenous delivery apparatus or storage container for intravenous fluids containing the composition of any one of claims 33 to 39.
41. Use of the polymer of claim 27 for delivery of the drug or active moiety to a target tissue, organ or cell therein.

42. A polymer comprising a hyperbranched polyglycerol (HPG), wherein the HPG has a molecular weight of about 40,000 g/mol to about 5,000,000 g/mol and a polydispersity of about 1 to about 3.5.
43. A polymer comprising a hyperbranched polyglycerol (HPG), wherein the HPG has a molecular weight of about 50,000 g/mol to about 5,000,000 g/mol.
44. The polymer of claim 42 or 43, wherein the HPG molecular weight is at least 65,000 g/mol.
45. The polymer of claim 42 or 43, wherein the HPG molecular weight is at least 95,000 g/mol.
46. The polymer of claim 42 or 43, wherein the HPG molecular weight is at least 100,000 g/mol.
47. The polymer of claim 42 or 43, wherein the HPG molecular weight is at least 200,000 g/mol.
48. The polymer of any one of claims 42 to 47, having a polydispersity of no more than 2.5.
49. The polymer of any one of claims 42 to 48, which comprises a branched polyether core.
50. The polymer of claim 49, wherein the core has a focal point derived from a polyol initiator.
51. The polymer of any one of claims 42 to 50, derived from ring-opening polymerization of glycidol in the presence of an anionic initiator.
52. The polymer of any one of claims 42 to 48, wherein the polymer comprises regions of hydrophobicity.
53. The polymer of claim 52, wherein the regions of hydrophobicity are provided by the presence of aryl groups, alkyl groups, or both.

54. The polymer of claim 53, comprising said alkyl group, which are C₅ to C₃₀ alkyl groups.
55. The polymer of claim 53 or 54, wherein alkyl groups contain greater than 17 carbon atoms.
56. The polymer of claim 53, 54 or 55, wherein the alkyl groups include C₁₈ groups.
57. The polymer of claim 54, 55 or 56, wherein the alkyl groups are joined to about 50% or more of alkoxide groups on the HPG.
58. The polymer of claim 54, 55 or 56, wherein the alkyl groups are joined to from about 5% to about 10% of alkoxide groups on the HPG.
59. The polymer of any one of claims 54 to 58, wherein the alkyl groups are joined to the polymer through ether linkages.
60. The polymer of any one of claims 42 to 59, wherein the polymer comprises hydrophilic copolymer regions.
61. The polymer of claim 60, wherein the copolymer is a polyol.
62. The polymer of claim 61, wherein the polyol is polyglycerol.
63. The polymer of claim 60, wherein the copolymer is a polyalkyleneglycol.
64. The polymer of any one of claims 42 to 59, wherein the polymer comprises polyalkyleneglycol-alkylether moieties.
65. The polymer of claim 63 or 64, wherein the polyalkyleneglycol is a PEG.
66. The polymer of claim 65, wherein the PEG has a molecular weight of from about 100 to about 800 daltons.
67. The polymer of claim 66, wherein the molecular weight of the PEG is about 350 daltons.
68. The polymer of claim 65, 66 or 67, wherein the PEG is MPEG.

69. The polymer of any one of claims 60 to 68, wherein said copolymers and moieties are joined to about 80% or more of alkoxide groups on the HPG.
70. The polymer of any one of claims 60 to 68, wherein said copolymers and moieties are joined to from about 5% to about 50% of alkoxide groups on the HPG.
71. The polymer of any one of claims 42 to 70, wherein the polymer comprises amine groups.
72. The polymer of any one of claims 42 to 71, wherein the polymer comprises one or more of sulfonic acid groups, phosphonic acid groups and carboxylic acid groups.
73. The polymer of any one of claims 42 to 72, further comprising at least one biologically active moiety or drug linked to the polymer or associated therewith.
74. A sterile composition comprising a polymer as defined in any one of claims 42 to 73, and at least one physiologically acceptable salt, buffer, diluent or excipient.
75. The composition of claim 74 in dry form.
76. The composition of claim 74 in aqueous solution.
77. The composition of claim 76, wherein the solution has an intrinsic viscosity that is no more than about 10 ml/g.
78. The composition of claim 76 or 77, wherein the solution is oxygenated.
79. The composition of any one of claims 74 to 78, for intravenous administration.
80. The composition of any one of claims 74 to 79, for use in perfusion of an organ or tissue.
81. An intravenous delivery apparatus or storage container for intravenous fluids containing the composition of any one of claims 74 to 78.
82. Use of the polymer of any one of claims 42 to 73 as a serum albumin substitute.

83. Use of the polymer of claim 73 for delivery of the drug or active moiety to a target tissue or a cell therein.

84. Use of a polymer as defined in any one of claims 42 to 73 in preparation of a blood or plasma expander, replacement or substitute.